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Abstract

1st Supervisor: Prof. Sean P. Matt 2nd Supervisor: Prof. Matthew Browning

Stellar rotation, convection, and magnetism are intricately linked in low-mass stars
like the Sun. In their outer convective envelopes, the interplay of rotation and convection
form a magnetic dynamo capable of sustaining both large and small scale magnetic fields.
The strength of these magnetic fields are observed to grow with increasing rotation rate.
The coronae of low-mass stars are heated by these magnetic fields (the exact mechanism
of which remains under debate), such that the thermal pressure drives a quasi-steady
outflow of plasma, referred to as a stellar wind. Due to the interaction of the large-scale
magnetic field with the outflowing plasma, stellar winds are able to efficiently remove
angular momentum from these stars. Therefore, the evolution of rotation for low-mass
stars (on the the main sequence) is governed by their stellar winds, and by interrelation,
the evolution of their magnetic activity and stellar wind output. In this thesis I attempt
to better constrain the angular momentum-loss rates of the Sun and other Sun-like stars
through the use of magnetohydrodynamic simulations combined with a broad range of
observations. Though I do not find a concrete value for the solar case, I reduce the un-
certainty in its value to within a factor of a few by locating key factors/quantities which
limit our predictions, and further highlight the importance of understanding the solar
angular momentum-loss rate in an astrophysical context. For the other Sun-like stars, I
find the simulation results largely under-predict the angular momentum-loss rates im-
plied by current rotation-evolution models. The reason(s) for this are uncertain, but likely
involve uncertainties in both the observed magnetic field strengths and mass-loss rates of
these stars, along with the under-prediction of how much of the surface magnetic field is

“opened” by the stellar wind.

Copyright 2016-2020 Adam J. Finley.
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Chapter 1

Introduction and Background

“It is not knowledge, but the act of learning, not possession but the act of getting

there, which grants the greatest enjoyment.”
— Carl Friedrich Gauss

1.1 Motivation

Low-mass stars are observed to possess dynamo-driven magnetic fields which heat their
outer atmospheres to millions of degrees. The resulting thermal pressure drives a quasi-
steady wind of magnetised plasma away from the stellar surface, through interplanetary
space, and into the interstellar medium. With the exception of the solar wind, the stellar
winds of low-mass stars cannot be directly observed due to their tenuous nature and so
are poorly quantified. However, their potential interactions with planetary bodies leaves
many open questions surrounding the habitability of exoplanets. In the Solar System, for
example, the surface of Mars is inhospitable to life despite the planet possessing an orbit
within the “habitable zone” (as defined by temperature). This is likely a result of exposure
to the solar wind as, unlike Earth, Mars lacks a global magnetic field sufficient to protect
its surface, leading to the erosion of liquid water/volatiles. Additionally, the strength
of a stellar wind evolves during the star’s lifetime, i.e. the solar wind was likely stronger

during the Sun’s youth. An example of this appears in the apparent contradiction between
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the appearance of liquid water on the Earth’s surface and the supposed luminosity of the
Sun during its younger-years (~ 4.5 billion years ago). One explanation for this could
be that the Sun’s mass changed drastically during the early stages of its life, due to an
enhanced mass-loss rate in the solar wind. Such an increase in the mass-loss rates of
young Sun-like stars would likely have a significant impact on our definition of planetary
habitability (note this is not the only proposed resolution to the discrepancy, others include
an increased greenhouse effect or astrophysical interactions). To gain insight on the past,
current, and future environments of planets orbiting the Sun and other Sun-like stars, it
is important to understand the physics of stellar winds. Given the difficulties of studying
stellar winds directly, in this work I focus on the indirect effect of stellar winds in governing
the rotational evolution of low-mass stars. Though only a small fraction of a star’s mass
is lost during the main sequence to its stellar wind, the torque exerted by the wind on
the star is significant due to its interaction with the stellar magnetic field. Typically the
rotation period of a Sun-like star grows from a few days to around a month during its
lifetime on the main sequence. By better understanding the angular momentum-loss rates
of stellar winds, the observed rotation period evolution of low-mass stars can be used to
provide information on the global properties of winds and infer the plasma environments

experienced by exoplanets.

1.2 Stellar Structure

Stellar winds are ubiquitous in astrophysics, appearing in many different places across
the Hertzsprung-Russell (HR) diagram (see Figure 1.1 for examples). There are many
different mechanisms that power them, from radiation pressure acting on dust grains to
complex magnetohydrodynamic (MHD) processes in protostellar disks, however they all
share the tendency to transport mass and angular momentum around a system. Stellar
winds in particular, either line-driven (e.g. Castor et al. 1975), dust-driven (e.g. Sedlmayr
and Dominik 1995), or coronal (e.g. thermally-driven like those in this thesis), are respon-
sible for many significant changes in the lifetime of a star. For example, hot stars (types O,

Band A) lose a significant amount of their Zero Age Main Sequence (ZAMS) mass through
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Figure 1.1: The Hertzsprung-Russell diagram produced from Gaia DR2, taken from Babusiaux et al. (2018).
Effective temperature is shown against luminosity which sorts different populations of stars. On the left,
examples of dust driven-winds from eta Carinae and a Wolf-Rayet star (image credits: Hubble Legacy Archive,
NASA, ESA). On the right, examples of coronal-winds from T-Tauri stars (Matt and Pudritz 2008) and low-
mass main sequence stars like the Sun (McComas et al. 2013).

strong line-driven winds, with mass-loss rates as high as ~ 107° M/ yr, that impact their
evolution during the Main Sequence (MS) (Pauldrach et al. 1986). Cool stars (otherwise
referred to as low-mass stars) which host coronal-winds (driven by high temperatures and
MHD processes) typically have much lower mass-loss rates, around 10714 M, /yr for the
Sun. However their winds have a much stronger influence over their rotational evolution
during the MS (see review of Bouvier et al. 2014). These different regimes are a direct

consequence of stellar mass, which governs the internal structure of stars.

Stars form through the gravitational collapse of large molecular (H>2) clouds in the
interstellar medium (Larson 2003). A fragmented cloud collapses down to form a proto-
star (along with an accretion disk), where the stellar contraction is slowed by an increase in
the thermal energy of the now mostly ionised Hydrogen. Due to the conservation of angu-
lar momentum, proto-stars are generally thought to be born rotating rapidly (Hartmann
and MacGregor 1982). During the formation of a low-mass star (M, < 1.3M), the proto-
star interacts with its accretion disk via its magnetic field, exchanging angular momentum
and mass (Tinker et al. 2002; Matt and Pudritz 2004). Therefore the rotation period of the

proto-star after the disk has been evaporated is strongly connected to the physics of stellar
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Figure 1.2: Kippenhahn diagram showing the internal structure-evolution for different stellar masses. The
upper line represents the surface of the star, below which a shaded area represents the extent of the surface
convection zone. The surface convection diminishes in size with increasing mass. Areas without shading are
radiative. These models are non-rotating with solar metallicity. The ages of a few well-known open clusters
are indicated by magenta lines. Taken from Amard et al. (2019).

winds, accretion, and other MHD processes (Suttner and Yorke 2001; Matt and Pudritz
2008; Zanni and Ferreira 2009). This phase of a low-mass star’s life, before the ignition
of nuclear fusion, is referred to as the Pre Main Sequence (PMS) (Stahler et al. 1986; Siess
et al. 2002). Nuclear fusion begins once the proto-star has collapsed to the point that the
pressure within the core is large enough to fuse Hydrogen/Deuterium, moving the star
onto the MS. All stars are powered by nuclear fusion, which takes place in, and sometimes
around the Hydrogen burning core (see the models of Baraffe et al. 2015). The dominant

nuclear reaction for low-mass stars is the proton-proton chain reaction (pp-chain), whose
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overall reaction is described as,

4H' 4 2¢~ — He® + 20.(0.5Mev) + 2v(26.6Mev), (1.1)

where energy is released from the binding energy of Helium, and the annihilation of
positrons that are produced in the reaction (Bethe 1939; Filippone 1986). The neutrinos
escape from the core, unaffected by the overlying mass of the star, allowing the nuclear
reaction rate to be probed (e.g. Bahcall et al. 2003). Another common nuclear reaction,
the Carbon-Nitrogen-Oxygen cycle (CNO-cycle), has the same overall reaction and be-
comes important towards the end of a low-mass stars lifetime (when the temperatures in
the core become hotter). Though it involves many more nuclear reactions than the pp-
chain, through the proton capture of Carbon to Nitrogen to Oxygen etc. The CNO-cycle
is thought to dominate the energy production of stars with masses greater than 1.5M,.
For completeness, I also mention the triple-a process, which converts three Helium nuclei
into Carbon. This final process occurs in stars where there is a high abundance of Helium
and a high enough temperature. This is therefore likely to be after the MS when Hydrogen

burning has been exhausted in the core (e.g. Dotter and Paxton 2009).

The burning of Hydrogen in the core releases energy in the form of thermal motion
and v-rays, which balances the star from further gravitational collapse during its entire MS
lifetime. The transport of energy from the core to the surface takes a few different forms,
that are said to either be radiative, i.e. radiative diffusion and thermal conduction are the
dominant forms of energy transport, or convective, i.e. convective motions are the most
dominant form of energy transport (Hansen et al. 2012). Convection zones form inside a
star when the vertical temperature gradients become very steep, such that a rising parcel of
fluid remains hotter than its surroundings and therefore continues to rise due to buoyancy
(Spiegel 1971). Figure 1.2 shows the evolution of stellar structure for four different mass
stars; 0.3M (fully-convective star), 0.5M, (Sun-like star), 1.0M, (partly-convective star),
and 1.5M¢ (upper-limit of stars with outer convection zones), from Amard et al. (2019).
As stellar mass increases, it is clear that the outer convective envelope diminishes, which

leads to the properties of these stars being different.
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Figure 1.3: High resolution image of a sunspot embedded in the solar photosphere taken with the Swedish
Solar Telescope. Granulation surrounds the sunspot, whose structure is revealed as a central umbra (the
darkest part) with a surrounding penumbra (a slightly lighter colour). Credit: The Royal Swedish Academy
of Sciences/The Institute for Solar Physics.

1.3 Convection, Magnetism, and Rotation of Low-mass Stars

For low-mass stars, the presence of an outer convective envelope is strongly connected to
the evolution of their rotation periods, and magnetic activity. In this Section I will discuss
the observations that show this, and how their magnetism links to their observed rotation

period distributions.

1.3.1 Observations of Magnetic Activity

Magnetism is commonly observed for low-mass stars, so much so, that magnetic fields
are thought to be ubiquitous for all masses less than ~ 1.5M, (see review of Reiners
2012). The most well-documented and studied example of a stellar magnetic field in that
of the Sun’s (see review of Charbonneau 2010). The Sun’s surface is covered with small-
scale granulation, i.e. convective motions, which are organised on the large-scale into

supergranulation. Sunspots appear as dark features in comparison to the granulation
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Figure 1.4: Comparison of a hand-drawn recording of sunspots moving across the solar disk, with a modern
image of the Sun. Taken from Johannes Hevelius (1647) and the Helioseismic and Magnetic Imager (HMI)
onboard the Solar Dynamics Observatory (July, 2014).

of the photosphere (see Figure 1.3), having a lower temperature of ~ 4500K, compared
to the average temperature in the photosphere of ~ 5800K. Hale (1908) discovered that
these sunspots have intense kG magnetic fields, which are ultimately responsible for the
suppression of convection and their relatively “cool” temperatures. Following this, it was
noted that sunspots tend to emerge in pairs and have bipolar magnetic fields which have
opposite east-west polarity from the other (northern or southern) hemisphere (Hale and
Nicholson 1925). Intriguingly, sunspot pairs also tend to be tilted towards the equator i.e.
the leading spot is closer to the equator than the following spot (Zirin 1988). The number
of sunspots on the Sun is observed to vary with an ~ 11 year period, which is referred to
as the sunspot cycle (see review by Hathaway 2015). Sunspots are observed to emerge at
around +/-30 degrees in latitude at the start of the cycle (solar minimum), this emergence
latitude progresses down toward the equator as the number of sunspots increases (towards
solar maximum). The number of sunspots then decreases to a new minimum at the end
of the ~ 11 year period. Each cycle is slightly different to the one that came before, with
the length and peak number of sunspots for each cycle varying significantly (Hathaway
et al. 1994). Sunspots have been recorded for hundreds of years, including some early
observations from Galileo Galilei (e.g. Galilei 1957). One such recording is shown in
Figure 1.4, made by Johannes Hevelius in 1647. This historical recording is compared to a

modern observation of the Sun from July 2014, and will be further discussed in Section 5.3.
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Figure 1.5: Temporal evolution of the emission in Ca II H & K lines, a proxy for magnetic activity. A
subset of example stars from Baliunas et al. (1995), Hall et al. (2007), and Egeland et al. (2017), which
show the variety of observed activity. For example, HD 20630 (kappa Ceti) has roughly the same mass
as the Sun, but is likely to be much younger and have a faster rotation rate. Taken from Egeland (2018)
(https:/ /www2.hao.ucar.edu/news/2019-may/ricky-egeland-developed-sunstardb).

Along with sunspots, bright features called faculae appear on the Sun’s surface. Though
they are less visually obvious than sunspots, they contribute strongly to the variation in

the Sun’s brightness during the sunspot cycle (Shapiro et al. 2016).

For other low-mass stars, faculae may even be the dominant component of the
brightness variations (Shapiro et al. 2014). Furthermore, the transition between dark spots
and bright faculae controlling the brightness variations of a star may remove our ability
to detect stellar rotation periods (see Reinhold et al. 2019, and Section 1.3.3). Another
indicator, linked with faculae, is the increased emission in the Ca II H & K lines. This
is observed for the Sun as being correlated directly with the deposition of magnetic en-
ergy into the chromosphere. Increased emission in Ca Il is also found for other stars, and
so by analogy is linked to heating processes in the stellar chromosphere (Eberhard and

Schwarzschild 1913; Noyes et al. 1984; Testa et al. 2015). Ca II H & K emission is observed
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Figure 1.6: Chromospheric activity cycle versus rotation period for low-mass stars with periodic Ca Il H &
K emission. Proposed active and inactive branches are shown with dashed lines. Stars with multiple cycle
periods are shown in green. The Sun is shown with a hollow circle. Taken from Saikia et al. (2018b).

to vary during the sunspot cycle (Schrijver et al. 1989), similar to the number of sunspots.
The “S-index” is a common measure of magnetic activity, derived from observations of
Ca II emission. It has been calculated for many stars using the results of multi-decadal
observations taken at the Mount Wilson Observatory and a few other locations (Wilson
1978; Baliunas et al. 1995; Hall et al. 2007; Egeland et al. 2017). Figure 1.5 shows the S-
index of the Sun during the last four decades, compared with that from other Sun-like
stars. This represents a subset of stars with S-index observations, but its clearly shows the
variety of observed magnetic activity. Some stars have stronger emission than the Sun,
with a similar periodic/variable magnetic activity. Whilst the weakest star shows little to
no discernible temporal evolution at all. From such datasets it is possible to evaluate the
magnetic cycle periods for stars that present with clear cycles, these can be then compared

with the Sun’s activity cycle.

The Sun has a magnetic cycle of ~ 22 years, over which time the polarity of the Sun’s
large-scale magnetic field reverses once, and then again, returning to the original polarity

(DeRosa et al. 2012). However, in activity indicators such as Ca Il and sunspot number, the
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Sun has an ~ 11 year activity cycle, where its activity is low then increases to a maximum,
and then back down to low. It is therefore important to be clear when discussing magnetic
cycles, whether it is the chromospheric activity cycle (typical) or magnetic cycle that is
being compared. In an attempt to better understand the magnetic fields of other stars,
when clear periodic cycles are detected, their periods are often plotted against rotation
period (see Figure 1.6). When first plotted this way, it was noticed that activity cycles
appeared to follow two distinct branches, labelled “active” and “inactive” (Brandenburg et
al. 1998; Saar and Brandenburg 1999). This was further developed by Bohm-Vitense (2007)
who suggested each branch was related to a distinct magnetic field generation mechanism
within stars. This received some support with the appearance of stars with multiple cycle
periods (e.g. Metcalfe et al. 2013), though it left the Sun (arguably the most reliable data
point) in between the two branches. This lead to the idea of the Sun being “in transition”
between the branches (see Metcalfe et al. 2016). However, subsequent work has shown that
with an increased sample size, and better definitions of cyclic activity, the branches are
likely to be caused by selection bias (see Saikia et al. 2018b) and therefore not representative

of the physics of magnetic field generation.

One of the most fascinating discoveries regarding the magnetic fields of low-mass
stars comes from observations of their x-ray activity. Figure 1.7 shows the x-ray luminosity
of stars, normalised by their bolometric luminosity, against Rossby number R, = P/7..
Here R, is the stellar rotation period normalised by the convective turnover timescale
in the convection zone 7., (which is thought to remove any mass-dependence). What
appears is arguably the clearest diagnostic of the magnetic field generation in low-mass
stars, whereby stars with large rotation period (high R,) have the weakest magnetic ac-
tivity (x-ray activity), and as their rotation periods increase (towards low R,) magnetic
activity increases as well, until saturation at R, = 0.1 — 0.2. In Figure 1.7, the grey cir-
cles represent the x-ray activity of stars above the fully-convective limit (> 0.35M) which
are partly convective (see Figure 1.2), and red circles show stars that are fully convective
(< 0.35M). Regardless of interior structure, the magnetic activity of low-mass stars ap-
pears to be a strong function of R,. Other diagnostics of stellar magnetic fields exist, such
as techniques that rely on the Zeeman effect (Zeeman 1897), which will be discussed in

Section 4.4.
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Figure 1.7: Rotation-activity relation for partly-convective stars (grey circles) and full-convective stars (red
circles). Fractional x-ray luminosity (of Bolometric luminosity) versus Rossby number R,. Regardless of
stellar structure, the x-ray activity of low-mass stars appears to follow the same relationship versus R,. The
best fit relation is shown with dashed black lines. Taken from Wright and Drake (2016).

1.3.2 The Dynamo Mechanism

The magnetic activity cycles of stars, and the structure of x-ray activity versus rotation rate
(or R,), are thought to be explained by the magnetic dynamos that govern the generation
of magnetic fields in low-mass stars (see review of Brun and Browning 2017). In this
Section I will provide some background to magnetic field generation through dynamo-
action. This process revolves around the induction equation (note the induction equation

is simply stated here, with the MHD equations being further discussed in Chapter 2),

OB
=V (V x B) + R,,'V*B, (1.2)

- - Y
induction diffusion

which describes the evolution of a magnetic field B embedded in a plasma with uni-
form magnetic diffusivity n and flow velocity V. Note this equation is written in its non-

dimensional form, where R,,, = UL /7 is the magnetic Reynolds number, U is the char-
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Figure 1.8: Schematic of dynamo-action, whereby differential rotation takes an initially poloidal field and
converts it into toroidal magnetic field deep inside the star, which is then converted back to poloidal field via
the a-effect or the Babcock-Leighton mechanism. Taken from Sanchez et al. (2013).

acteristic speed, and L is the characteristic length scale. In plasmas with R,, >> 1, the
induction term dominates (the plasma is said to be “ideal”, further discussed in Section
2.2) and the diffusive term can be ignored. In this regime the magnetic field is advected
with fluid motions, and vice versa. Alternatively, magnetic fields with R,, << 1 will
decay away due to the diffusive term, this is the case for magnetic fields generated in lab-
oratory settings. Given the MS lifetime of low-mass stars, and the comparatively short
diffusion timescale of the magnetic field (when using the characteristic scales and diffu-
sivity coefficient for stellar plasma), any magnetism present from a star’s formation will
be dissipated during its lifetime. Therefore, the magnetism of low-mass stars must be

dynamically generated through the induction term.

To show this, here I detail a simple Mean Field Theory (MFT) approach to mod-
elling stellar magnetism (see Moffatt 1978). This requires separating the plasma flow and

magnetic field vectors into their mean and time-varying components,

B =(B) +b, (1.3)

V =(V) +v. (1.4)

Upon substitution to the induction equation (allowing for a non-uniform 7), it is possible
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to show,

0B

5:VX(VXB—77V><B), (1.5)
9(B)
5 =V x ((V) x (B) + (v x b) — nV x (B)), (1.6)

where the time-averages of the fluctuating components satisfy (b)=0, and (v)=0. From
this I denote (E) = (v x b) as the “turbulent electromotive force” which is associated
with the magnetic field induced by the fluctuating components. A closure equation must
be found for (E) in order to solve the mean field induction equation above. For this, it is
possible to perform a Taylor expansion around (B), e.g. (E) = a(B) — fV x (B) (Where

a and [ are numerical coefficients), which when substituted into equation (1.6) gives,

9(B)

5 = V x ((V) x (B)+a(B) — (n+ B)V x (B)). (1.7)

Therefore, there are three terms that govern the evolution of the mean field (B); 1) the
large-scale flows, 2) turbulencei.e. V x («(B)), and 3) magnetic diffusion. From this equa-
tion the o — Q2 dynamo is proposed, where the large-scale flows, associated with rotation,
twist poloidal magnetic field into toroidal magnetic field at the base of the convection zone,
and then helical turbulence from the o term within the convection zone regenerates the
poloidal magnetic field (Parker 1955). This process is shown in the top row of Figure 1.8.
From this simple model it is clear that stellar dynamos generate stronger magnetic fields
with increased rotation i.e enhanced Q-effect, which is necessary to explain the obser-
vations in Figure 1.7. More recently, flux transport dynamos have been developed which
explain the regeneration of poloidal field through the Backcock-Leighton effecti.e. bipolar
magnetic field regions appear (on the Sun) with tilt angles, such that a large-scale merid-
ional circulation will transport opposite polarity flux poleward (Babcock 1961; Leighton
1964). This is shown on the bottom row of Figure 1.8, and is favoured currently in the

literature (Brun and Browning 2017).

For the Sun, I plot the latitudinally-averaged magnetic field strength in the photo-

sphere for the last ~ 20 years in Figure 1.9. From this, the so called butterfly-diagram ap-
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Figure 1.9: Magnetic butterfly diagram for the Sun, using magnetograms from the Michelson Doppler Imager
(MDI) onboard the Solar and Heliospheric Observatory (SOHO), and the Helioseismic and Magnetic Imager
(HMI) onboard the Solar Dynamics Observatory (SDO). The magnetic field of the Sun is averaged latitudinally
over a Carrington rotation (~ 27 days), and ~ 20 years of data is then stacked together to reveal the large-scale
polarity reversals and active latitudes of the Sun. Observations span sunspot cycle 23 and 24. The dashed
line indicates when SDO/HMI takes over from SOHO/MDI.

pears which shows the emergence latitude of bipolar active regions migrating towards the
equator during the solar cycle. The polar magnetic field also appears to be advected via the
Backcock-Leighton effect from the break-up of active regions. The generation of toroidal
magnetic field is thought to be based in the tachocline, i.e. the interface between the radia-
tive and convective regions within the Sun. However, stars that are fully-convective lack
somewhere with differential rotation/shear flow to generate the Q-effect. This has lead to
the development of other types of dynamo (e.g. o2, o —, etc). Such that the importance
of a tachocline in generating the magnetic fields of stars is under debate (Guerrero et al.
2016). It is likely not a fundamental requirement for dynamo-action, though it may play

a role in shaping the morphology of magnetic field that forms.

1.3.3 Rotation Period Evolution

The photospheres of low-mass stars are thought to be similar to that of the Sun, bear-

ing large-scale imperfections (i.e. spots and faculae) that produce time-varying signals
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Figure 1.10: Rotation periods versus stellar mass for observed star-forming and open clusters, with varying
ages. Stars with masses of 0.4-0.6, 0.7-0.9, and 0.9-1.1M, are indicated with triangles, crosses and squares
respectively. Initially stars have a broad rotation period distribution across all masses. As time progresses, the
rotation periods of stars appear to converge from the higher-masses. Taken from Gallet and Bouvier (2015).

when observed in white-light (Foukal and Lean 1986). So called light-curves, whereby
the brightness of a target star is plotted against time, provide information about the star’s
rotation rate through Fourier-analysis. By passing the light-curve through a periodogram
(such as the Lomb-Scargle; Press and Rybicki 1989), the power in different periods can be
assessed, and a likely rotation period inferred. Of course this is complicated by surface
differential rotation (Reinhold et al. 2013), for example dark and bright features on the
Sun appear at different active latitudes (and vary during the solar cycle), thus it is the
rotation period of those active latitudes that would be recovered by periodogram analysis
(Hempelmann 2003). The evolution of a low-mass star’s rotation period is, on average,
expected to be much larger than the effect of differential rotation and so this is generally

ignored (especially given our imperfect knowledge of magnetic dynamos).

By gathering a large sample of rotation periods, as done by McQuillan et al. (2013)
using the Kepler field stars, it is clear that (for low-mass stars) there is structure in the

mass-period diagram. This can be further examined by plotting stars with a similar age,
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as shown in Figure 1.10 for many different star forming clusters and open clusters (Gal-
let and Bouvier 2015). Viewed in this way, like snapshots in time, the evolution of a star
through this diagram becomes apparent. Initially proto-stars become visible with their ac-
cretion disks, here they have a wide range of rotation periods (with perhaps a slight mass-
dependence). Their disks exchange angular momentum such that their rotation periods
remain roughly constant (Gallet et al. 2019) until the disk is lost, a phase often referred to as
disk-locking (Matt and Pudritz 2004). For the next few million years, the proto-stars con-
tract, causing their rotation periods to decrease as the stars spin-up as they leave the PMS.
Once stars are on the MS, their rotation periods begin to increase in a mass-dependent way
(Matt et al. 2015), such that at late-ages stars have converged onto a tight mass-rotation se-
quence. The discovery of stellar spin-down on the MS is accredited to Skumanich (1972),
who compared the rotation period of the Sun, to stars in the Pleiades, Ursa Major, and
Hyades clusters, showing that they appeared to spin-down with the square-root of age
(see also Soderblom 1983). Since this discovery, empirical relationships have been derived
in order to infer the ages of low-mass stars, given their rotation period and mass (or B-V),
a technique called Gyrochronology (Barnes 2003, 2007). As rotation is connection to mag-
netic activity (Section 1.3.2), a similar technique has been developed using their magnetic

properties known as Magnetochronology (Vidotto et al. 2014a).

As the number of rotation period observations has grown (e.g. Agtieros et al. 2011;
McQuillan et al. 2013; Nafiez et al. 2015; Covey et al. 2016; Rebull et al. 2016; Douglas
et al. 2017; Agiieros 2017), models that describe the physical processes of rotation period
evolution have become increasingly detailed (e.g. Bouvier et al. 1997; Matt et al. 2015;
Sadeghi Ardestani etal. 2017; See et al. 2017b; Garraffo et al. 2018). These models generally

evolve the angular momentum equation,

dQ, T  Q.dl,

@ L L ar (1.8)

where the rotation rate of stars 2, = 27/P, evolves due to an applied torque 7 and
changes to the moment of inertia I.. There also exist a wide range of models which ac-
count for the internal transport of angular momentum within stars themselves (e.g. Kep-

pens et al. 1995; Solanki et al. 1997; Gallet and Bouvier 2013, 2015; Amard et al. 2019). A
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Figure 1.11: Rotation period observations for Sun-like stars in clusters with known ages. Triangles (direct and
inverted), and squares, indicate the 90th, 25th percentiles and median rotators from each cluster, respectively.
Rotation period observations span the Pre Main Sequence (PMS) into the Main Sequence (MS), where a clear
structure emerges from the initially broad distribution. The rotation period and age of the Sun are indicated
by a large circle. Taken from Gallet and Bouvier (2013).

popular paradigm for this is core-envelope decoupling, in which the convective envelope
and radiative core are allowed to rotate at different rates and have a timescale for trans-
porting angular momentum between them. The angular momentum equation can then

be written as a set of coupled equations,

dQeonv Tee 2 R,%adQ AMraq  Twind — Qeonv Aleonv a 9)
a1 conv 3 1conw oY dt Teony Teony dt '
dQyqq Tece 2 Rzad dMyaq  Qraddlreq 110

dt L *3 Laa " dt  ILag dt ' (1.10)

where quantities corresponding to the radiative core and convective envelope and de-
noted with the subscripts “rad” and “conv”, respectively. The rotation-evolution of the
envelope is governed the applied torque of the stellar wind 7,4, the exchange of angular
momentum with the radiative core 7., plus terms resulting from changes to the size of the
envelope/core, and the moment of inertia of the envelope. Similarly, the rotation of the

core is controlled by the corresponding exchange of angular momentum from the enve-
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lope, and its own structural changes. Importantly, the radiative core does not experience
the stellar wind torque directly and acts like a reservoir of angular momentum, coupled

by Tce.

It should now be clear that there exists a complex relationship between stellar mass
(convection), rotation, and magnetic activity which is fundamentally intertwined with
the stellar wind outflow. For the rotation periods of low-mass stars to change drastically
during the MS, they must lose angular momentum very efficiently to their stellar wind.
Additionally, stars that rotate the fastest should lose angular momentum at a higher rate
than the slower rotators, for their rotation periods to converge. Given the relatively weak
mass-loss rates of low-mass stars, the stellar magnetic field must play a key role in increas-
ing the efficiency of angular momentum lost through stellar winds on the MS (Weber and
Davis 1967; Mestel 1968). This increased efficiency is referred to as magnetic braking, and

is the focus of this thesis.

Better observations have also begun to show features of rotation-evolution which
have yet to be completely explained, i.e. weakened braking (van-Saders et al. 2016), stalled
braking (Curtis et al. 2019), the gap in intermediate rotation periods (Davenport and Covey
2018; Reinhold et al. 2019), and others. In this thesis I focus on Sun-like stars, therefore in
Figure 1.11 I show the rotation-evolution of stars from 0.9 —1.1M, from the clusters in Fig-
ure 1.10. The MS is very sparsely sampled, with the Sun used as a constraint within most
models (even those attempting to explain the van-Saders et al. 2016 asteroseismic stars),
therefore independently evaluating the Sun’s angular momentum-loss rate is a valuable

test of any theory explaining the rotation-evolution of low-mass stars.

1.4 Anatomy of an Astrosphere

In this Section, I briefly describe the general features of the area surrounding a star, where
its stellar wind is the dominant form of plasma. Chapter 2 is dedicated to a more in-
depth overview of the physical processes and mathematical framework which describes

the winds of the Sun and other Sun-like stars.
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Figure 1.12: Schematic of the Sun’s magnetic field, from a Potential Field Source Surface model (see Appendix
A), showing the connectivity of the solar wind to the Parker Solar Probe spacecraft during its first close
encounter with the Sun. Credit UC Berkeley; spacecraft image courtesy of NASA /Johns Hopkins APL.

1.4.1 The Quasi-steady Wind

As with our understanding of stellar magnetism, the winds of other stars are often de-
scribed by analogy with the solar wind. The solar wind is highly structured and shaped
by the Sun’s surface magnetic field, an example of this is shown in Figure 1.12. “Fast” wind
emerges from coronal holes, these are regions on the solar surface where the magnetic field
has been pushed open by thermal pressure. Coronal holes are often characterised by a
lack of emission in Ultraviolet radiation (e.g. Lowder et al. 2014). Fast wind tends to have
aspeed of around 750km /s and carries with it Alfvénic fluctuations which are evidence of
its heating mechanism (Tu 1988; Bavassano et al. 2000). “Slow” solar wind appears above
closed magnetic features on the Sun, such as the heliospheric current sheet/streamer belts.
The slow wind (speed of 300-400km/s) is observed to be denser and contains stronger
magnetic fields than the fast wind (Ebert et al. 2009). There is also evidence that the slow
wind sometimes contains Alfvénic fluctuations (often found in very-slow wind) like the

fast wind (D’Amicis and Bruno 2015), suggesting a common driving mechanism between
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Slow wind

e Rarefaction

Figure 1.13: Schematic depiction of a wind stream interaction. The star’s rotation axis is denoted by (2, its

magnetic moment is denoted by M. Fast wind is shown in red, slow in blue. Taken from Owens and Forsyth
(2013).

the very-slow and fast wind streams (Sanchez-Diaz et al. 2016). Differences between the
two likely originate from a larger expansion of the magnetic field (flux tubes) that contains
the very-slow wind. The mechanism(s) that produce the slow wind are less understood,
ranging from interchange reconnection on the open-closed field boundary to bursty re-

connection at the top of closed field loops (Fisk et al. 1998).

Like the solar wind, the wind emerging from a low-mass star’s hot corona will also
have a variety of speeds. As the wind travels through interplanetary space, the rotation of
the star will cause wind streams with different speeds to collide/interact (see Figure 1.13).
This leads to an increased wind density at the interface of different speed streams, with
fast wind (typically catching up to slow wind) being deflected away from the interaction.
In the solar wind these are referred to as Stream Interaction Regions (SIRs), and have an
effect on the magnetic field structure in the solar wind (Jones et al. 1998). Generally, as
the large-scale coronal magnetic field doesn’t evolve much during a solar rotation, these
features are often found to corotate with the Sun (Gosling and Pizzo 1999). Therefore they

form persistent features in the wind that orbiting (exo)planets will periodically experience.

Planets in orbit around low-mass stars experience the plasma environment pro-

duced by the stellar wind directly. In the Solar System, all of the planets, from Mercury to
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Figure 1.14: Variety of magnetospheres found in the Solar System, with their relative sizes indicated. Mer-
cury’s magnetic field likely contains a component induced by the solar wind, and is weak enough to become
nearly fully open to the solar wind. The Earth’s magnetosphere is the most studied, and is dominated by
the Dungey cycle. Jupiter and Saturn both have magnetospheres which contain plasma from their moons
(Io and Enceladus, respectively), this changes the response of their magnetospheric standoff distances to
changes in solar wind pressure. Jupiter’s magnetosphere is dominated by the Vasyliunas-cycle, whereas Sat-
urn most-likely has components of both Vasyliunas and Dungey-cycles (Badman and Cowley 2007). Credit:
Fran Bagenal and Steve Bartlett.

Neptune, are located in super-Alfvénic wind. This means that any disturbances caused by
the planet interacting with the wind cannot be transmitted back to the host star. For plan-
ets with no magnetic field (induced or dynamo-driven), the plasma in the wind directly
impinges onto the atmosphere (and/or surface) leading to the erosion of atmosphere and
any volatile elements (Zendejas et al. 2010). This is likely the reason why Mars has no at-
mosphere or surface volatiles, despite evidence for liquid water on the surface in the past
(Martin-Torres et al. 2015). Most planets in the Solar System however, host large-scale
magnetic fields (typically dipolar) which control the plasma environment surrounding
them (see Figure 1.14). The physics of their magnetospheres is a subject for another the-
sis entirely, though they have some common features. The strength of a planet’s magnetic

field sets the magnetopause standoff distance, where the magnetic pressure of the magne-
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tosphere balances the wind ram pressure. For example, Jupiter has the strongest magnetic
field and therefore has a magnetopause distance of around 45 Jupiter radii (Chané et al.

2017), whereas the Earth has a standoff distance of 10 earth radii (McFadden et al. 2006).

The solar wind interacts with the planetary magnetospheres in a number of ways,
one of the most significant is through dayside reconnection when the magnetic field in
the wind and planetary magnetosphere are oppositely directed (times of negative B, for
Earth). This strips the magnetic field from the dayside, which is subsequently advected
by the solar wind into the nightside magnetotail (Hoshino and Nishida 1983; Borovsky
et al. 2008). The release of stored magnetic energy in the magnetotail via further recon-
nection (known as a substorm), causes magnetotail plasma to flow along magnetic field
lines connected to the auroral oval (initiating the aurora). In Earth’s magnetosphere the
nightside flux is then transported back to the dayside for the process to start again, this
is referred to as the Dungey cycle (Dungey 1965). For the giant planets, their rapid rota-
tion rates play a significant role in governing the circulation of magnetospheric plasmas
when compared to the Dungey-cycle (e.g. the Vasyliunas-cycle, see Delamere 2015, for a
review). Auroral emission is observed from most of the planets in the Solar System (Bad-
man et al. 2015). Along with emission from the auroral oval, the plasma spiralling down
the magnetic field lines produces the synchrotron emission of radio waves. Jupiter’s mag-
netosphere, when viewed in radio, is one of the largest objects in the night’s sky (De Pater
1990). The detection of auroral radio emission from exoplanets would provide a valuable
diagnostic of their stellar wind environment, given that the auroral power scales as the
stellar wind power incident on the magnetosphere (Zarka 2007). However as of yet, there
have been no detections, which may be linked to the radio photosphere of the stellar wind
plasma obscuring the radio emission (Kavanagh et al. 2019; Vidotto et al. 2019). More
promisingly, the magnetospheres of transiting exoplanets have been shown to function
as “wind-ometers” to measure the properties of stellar winds around other stars (Vidotto

and Bourrier 2017).

For exoplanets that are close enough to their host star to experience sub-Alfvénic
wind, there exist a wide range of Star-Planet Interactions (SPIs) that could feasibly occur.

Information from the interaction of the planet with the stellar wind can now be transmitted
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Figure 1.15: Examples of Star-Planet Interactions (SPI) from numerical simulations. Top has the magnetic field
of the star and planet aligned such that the field lines from each hemisphere can connect. The middle scenario
has anti-aligned field between the star and planet, thus the interaction is limited. The bottom scenario shows
a more complicated quadrupolar stellar magnetic field, which is perpendicular to the planet’s magnetic field
in the equator. Taken from Strugarek et al. (2015).

back to the surface of the star by MHD waves, which for example, could lead to induced
features on the surface (e.g. Shkolnik et al. 2003). A few different SPIs from Strugarek et al.
(2015) are shown in Figure 1.15. The star and planet can now interact through magnetic
torques, which may cause the planet to migrate towards or away from the star (Strugarek
etal. 2014b). The degree to which SPIs are important varies with the topology of the stellar

magnetic field, planetary magnetic field, and orbital parameters.
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1.4.2 Transient Mass Ejections

Along with the quasi-steady wind, there exist transient features that appear stochasti-
cally in stellar winds. The most iconic are Coronal Mass Ejections (CMEs), an example
is shown on the left of Figure 1.16 for the Sun. CMEs occur when massive amounts of
magnetic energy are released in the solar atmosphere, they are sometimes accompanied
by flaring (Zhang et al. 2001). The build-up of magnetic energy is usually facilitated by
an active region, whose large kG field strengths and magnetic foot point twisting-motions
produce non-potential structures in the solar atmosphere (Georgoulis et al. 2019). Stellar
CMEs are largely unconstrained (Crosley and Osten 2018) unlike stellar flares, which have
been extensively studied due to the data produced by the Kepler and Transiting Exoplanet
Survey Satellite (TESS) missions (Davenport 2016). Stellar CMEs have been numerically
simulated in order to understand their behaviour for more active stars than the Sun. Sim-
ply assuming a correlation of CME energy with flare energy (as often shown for Sun) leads
to unbounded CME energies which are likely unphysical. In reality, it is likely that strong
overlying large-scale magnetic fields suppress the eruption of such CMEs (e.g. Alvarado-

Gomez et al. 2018).

For the Sun, the number of CMEs, or Interplanetary CMEs (ICMEs) when detected
by in-situ spacecraft, varies through the solar cycle. During times of high solar activity
CME:s occur around five times a day, whilst during solar minima CMEs occur on average
once every few days (Webb et al. 2017). CMEs are observed to have a three-part structure,
1) a bright shock front, 2) a dark cavity, and 3) a bright core, which expands with distance
from the Sun (see left of Figure 1.16). As the CME travels through interplanetary space, it
disturbs the background wind creating a shock front and turbulentboundary layer around
itself (see right of Figure 1.16). Within the ICME there is often a structured flux rope, which
is observed as a clear rotation of the magnetic field vector by in-situ measurements (Cane
and Richardson 2003). The flux rope is likely a remnant from the original CME structure,
which are often highly twisted flux ropes in the corona (Amari et al. 1999). ICMEs (along
with SIRs) are a large driver of space weather on Earth (Schwenn 2006), causing changes
to the ionosphere (i.e. reduced radio propagation, and scintillation), damaging spacecraft

(i.e. spacecraft charging, increasing atmospheric drag, etc), and inducing currents along
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Figure 1.16: Left: Scatter light image of a Coronal Mass Ejection (CME). Right: Schematic depiction of the
main features of an Interplanetary CME (ICME). Image from the Large Angle and Spectrometric Coronagraph
(LASCO) onboard the Solar and Heliospheric Observatory (SOHO), and schematic taken from Zurbuchen
and Richardson (2006).

man-made structures on the ground (i.e. cables and pipes) (see review of Pulkkinen 2007).
For more active stars, CMEs are also likely to contribute to atmospheric erosion, and so

are also important in constraining exoplanet habitability (Khodachenko et al. 2007).

A transient feature that has gained more interest recently, is that of “slingshot”
prominences. Prominence on the Sun are observed as absorption features as they tran-
sit the solar disk (also known as filaments), then in emission once they move past the
limb of the Sun. Solar prominences contain cool, dense material which is supported
by magnetic pressure (Xia and Keppens 2016), which typically either drain back down
to the photosphere or erupt off the Sun as CMEs (Parenti 2014). Slingshot prominences
on the other hand, are typically detected in rapidly rotating stars (Collier Cameron and
Robinson 1989a, 1989b), for which plasma has accumulated at the top of closed field loops
with large radial extent. These prominences are supported against the centrifugal force
by magnetic forces, and are mass-loaded by the stellar wind (e.g. Stauffer et al. 2017).
These prominences are observed as an absorption feature as they transit the stellar disk
(Collier Cameron 1999), and are ejected when the mass of the prominence surpasses the
amount which can be sustained in equilibrium (Jardine et al. 2001; Villarreal D’Angelo
et al. 2018). For low-mass stars, these prominences are fed by a supersonic wind, such

that the stellar surface does not respond to the growing mass of the prominence at the
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Figure 1.17: Diagram of the heliosphere, showing the termination shock, heliosheath, and heliopause. The
material in the heliosphere presents a barrier for cosmic ray particles and interstellar material. Credit: Jet
Propulsion Laboratory, Steven T. Suess.

top of the closed loop. This mass is ejected, and the process begins again with a repeat-
ing timescale that can be calculated from observations. Once the maximum supported
mass of a loop is calculated, the ejection timescale can be used to produce an estimate
of the mass-loss rate for the underlying stellar wind (Jardine and Collier Cameron 2019).
Therefore, slingshot prominences provide a valuable measurement of the mass-loss rates
from magnetically-active, rapidly rotating low-mass stars. Further work has shown that
the properties of these prominences change during the lifetime of a low-mass star, with
median to fast rotators predicted to host slingshot prominences for a considerable part of

their lives (Villarreal D’Angelo et al. 2019).
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1.4.3 Encounter with the Interstellar Medium

Stellar winds ultimately travel away from their host star and encounter the Interstellar
Medium (ISM). Much like the planetary magnetospheres previously discussed, the ram
pressure of the wind and that of the ISM govern the size of this “astrosphere” (the region
of influence of stellar wind plasma). For the the Sun, the edge of the heliosphere (in the
Sun’s relative direction of motion with the ISM) was found to be around 100au by both
Voyager spacecraft (Stone et al. 2008). As the Sun is moving with respect to the ISM, the
heliosphereis not spherical and instead has a tail-like structure in its wake (see Figure 1.17).
Given the scale of the heliosphere, and the tenuous nature of solar wind plasma, little is
known about it. The termination shock, the point where the solar wind become subsonic
due to its interaction with the ISM was crossed by Voyager 1 in 2004 and Voyager 2 in 2007.
The two spacecraft crossed this shock at different distances from the Sun, indicating that
the heliosphere may be irregular in shape (Stone et al. 2008), or is strongly time varying
(Washimi et al. 2017). Beyond the termination shock lies the heliosheath which is a layer
of compressed and turbulent plasma. Voyager 1 detected a region within the heliosheath
where the solar wind speed slowed to near-zero, at which point an increased number of
high-energy particles from outside the heliosphere began to be detected (Burlaga and Ness
2012). The heliopause, the location where both solar wind and ISM pressures are equal
was crossed by Voyager 1 in August 2012. Voyager 1 then sampled the ISM magnetic field
for the first time in human history, with data suggesting the local galactic magnetic field

is aligned with the Sun’s magnetic field (Burlaga and Ness 2014).

Like the Sun, the stellar winds of other stars carve out their own regions of the
ISM (see review by Wood 2004). Interestingly, neutral Hydrogen from the ISM was first
thought to pass through the heliosphere/astrosphere unaffected by its structure, as col-
lisional interactions for neutrals are much smaller than for charged plasma. However it
was subsequently realised that neutrals could be important due to charge exchange inter-
actions (Holzer 1972; Wallis 1975), which was further supported by detections of Lym-a
emission from neutral Hydrogen surrounding the heliosphere and other astrospheres.
The detection of this “Hydrogen wall” has allowed for a hand-full of close low-mass stars,

to have their mass-loss rates constrained based on the expected neutral Hydrogen abun-
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dances from hydrodynamic models (Wood et al. 2002, 2005). This is further discussed in
Section 4.4.2.
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Chapter 2

Stellar Wind Physics and Modelling

This Chapter contains information and relevant equations pertinent to the future Chapters
of the thesis. Similar material is presented in the introductions of the published papers

throughout this thesis.

2.1 The Physics of Plasmas

A plasma is generally defined as being a quasi-neutral gas of charged particles (which
can also include neutrals), that exhibit a collective behaviour. Collective behaviour is de-
scribed as when the motion of particles in the gas are not only dependent on the local
collisions, but are also influenced by changes to the gas in remote regions, i.e. charged
particles in the plasma produce electric fields and currents which affect the motions of
other charged particles at distance. This collective behaviour leads to some interesting

properties, such as the plasma frequency and the Debye length.

Consider a quasi-neutral plasma of electrons and ions, upon a small displacement
0z of a “slab” of electrons the electric field (F = —4nn.edz) created (considering the
charge density which develops on the leading face of the slab) acts as a restoring force on

the electrons,
d*5z

Me™ g = eF = —4mn.e*or. (2.1)
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This causes the electrons to oscillate with the frequency,

Arnee?
w? = : (2.2)

Me

where n. is the electron number density, e is the charge of an electron, and m. is the mass of
an electron. Note these oscillations have a group velocity of zero, and so do not transport
energy or information around the plasma. Equally the ions also have an associated plasma
frequency, though this is usually at a much lower frequency than the electrons, and so is

less important. A useful relationship for the plasma frequency is,

fp = 9 x 10°Hz\/n.[cm=3], (2.3)

so for example, the solar wind with n, = 10?cm™3 has an electron plasma frequency of

9 x 10*Hz.

Now consider applying an electric field E to the same quasi-neutral plasma. In this
case, the charged particles in the plasma move in such a way as to “shield” the rest of the
plasma from the applied field. This shielding is dielectricinnature, i.e. the plasmabecome
polarised such that the redistribution of charges prevents the applied electric field from
penetrating further into the plasma. The length-scale for this effect is called the Debye

length (and the overall effect is often referred to as Debye screening), which is given by,

kT,

ADp=\|—— 24
D 47_[_”6627 ( )

where kp is the Boltzmann constant, and 7, is the temperature of the electrons. Debye
screening will only occur if the number of charged particles within a Debye length is
significant i.e.
4
Np = ne§7r)\3D >> 1, (2.5)
where Np is the average number of electrons in a Debye length of one another in the

plasma.
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Figure 2.1: A variety of plasmas depicted in the temperature log(T") - number density log(n) plane. Hot,
low density plasmas are generally termed collisionless, as electromagnetic forces are primarily responsible
for the interactions of individual charged particles, this is the case for the solar corona. I is the ratio of the
mean potential energy per particle to the mean kinetic energy per particle. This ratio measures the degree
to which many-body interactions affect the particle dynamics. When I' << 1 (left of I" = 1 line), the system

is weakly coupled. When I' >> 1 (right of line), the interactions between particles strongly influence the
particle dynamics and so the system is strongly coupled. Credit: Donké, Hartmann, and Kalman.

Therefore for an ionised gas to be truly considered a plasma, it must satisfy; 1) quasi-
neutrality, by having a Debye length much smaller than the size of the system A\p << L,
2) collective behaviour, by having a high enough density of charged particles to allow
for Debye screening to occur, and in general 3) the motions of particles in the gas are
primarily influenced by electromagnetic forces. The varying degree to which collisions are
important within the plasma gives rise to two main types, non-collisional and collisional.
In the collisional case, the particles in the plasma collide regularly enough to achieve a
thermodynamic equilibrium, which is not typically the case in a non-collisional plasma.
The plasma in the solar corona is generally “collisionless” due to its high temperature and

low density. One way to quantify the degree of collisionality in a plasma is through the
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ratio of the plasma frequency to the collision frequency v,

—x\| —, (2.6)

which is related to the plasma temperature 7" and density n. Therefore, colder and denser
plasmas are more likely to be collisional e.g. neutron star atmospheres. Figure 2.1 shows
the broad range of plasmas that are often studied in the temperature-density plane. It
should be noted that the different plasmas in the Sun, from the Sun’s core to its atmo-
sphere and corona, span a wide range in this parameter space and so they require different

approximations to model.

Taking a closer look at individual charged particles in the plasma, other than colli-

sions with other particles, their motions are governed by the Lorentz force,

A%
F:q<E+C><B>7 2.7)

where the particle’s charge is ¢, and velocity is v. The background electromagnetic field
is characterised by the electric field E and magnetic field B. The effect of an applied
electric field has already been discussed, let’s instead consider applying a magnetic field B
perpendicular to the initial direction of particle motion. It can be shown that by solving the
equation of motion including the Lorentz force, charged particles in this uniform magnetic
field perform a gyration motion (in the plane perpendicular to B) with a constant speed

v, . The radius of the circle traversed by this motion is given by,

mev |
=— 2.
B qB ) ( 8)
with a gyro-frequency of,
(N qB
o= — = —. 2.9
Woy re  me (2.9)

This motion is displayed in Figure 2.2 (top row). Given the form of the Lorentz force, dif-

ferent charged particles gyrate in opposite directions. It can also be quickly deduced that
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the ion gyro-radius is much larger than the electron gyro-radius, for a given v, . The centre
of gyration is generally referred to as the guiding centre, as the motion of charged particles
subject to electromagnetic fields can be described by a superposition of the gyro-motion
and a drift motion due to additional forces. The simplest example of this is the famous
E x B drift. For the same gyro-motion, when an electric field is applied perpendicular to
the magnetic field, the particles have to work against an additional force during their orbit
around the guiding centre which changes v| during the orbit. The effect this has on the
shape of the gyration is shown in the second row of Figure 2.2, and more generally for an

applied force F in the third row. The speed at which the guiding centres of the particles

drift is given by,
FxB
Vit =~ 55 (2.10)
which for E x B drift becomes,
ExB
VExB = B2 (2.11)

It is important to note that in the case of E x B drift, differently charged particles drift in
the same direction and at the same speed vg B, such that charge neutrality is maintained
and no currents are established. In the case of an applied force, like the gradients in (or
curvature of) the magnetic field, the drift velocities are opposite for different charges and

so0 act to create currents (one example is the ring current in the Earth’s magnetosphere).

The Earth’s magnetosphere is an illustrative example of some of the general motions
that charged particles can undertake (see Figure 2.3). Consider plasma trapped along
closed dipolar magnetic field lines, then there are three principle motions that describe
how these particles move. Firstly the gyro-motion around the guiding centre magnetic
field, secondly the particle drifts due to the gradient and curvature of the magnetic field,
and thirdly bounce motion which is described as follows. For a particle gyrating around
its guiding centre, it can have a component of its velocity parallel to the magnetic field.
In the case of a uniform magnetic field this component v is unperturbed, however par-
ticles travelling along closed magnetic field lines experience the magnetic field strength

increasing as they travel towards one of the field foot points. The magnetic moment (first
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Figure 2.2: The motion of positive and negative charged particles in a magnetic field. A: motion of particles
in a uniform perpendicular magnetic field. B: gyro-motion from A, with the addition of an electric field. C: a
general force F in place of the electric field from B. D: the force F is due to the gradient of the magnetic field
(H). Figure based on Hannes Alfvén’s, Cosmical Electrodynamics (1950); Redesigned by Ian Tresman.

adiabatic invariant) of the gyrating particle must be conserved i.e.,

(2.12)

and so as the field strength B increases, the particle’s perpendicular speed v; must also
increase (for p to be a constant). For the particle to conserve kinetic energy, the parallel
motion v must decrease to compensate for the increase in v, , until the parallel velocity is

zero. From here a small kick in v} in the opposite direction (from an atmospheric collision,
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Figure 2.3: Overview of particle motions in the Earth’s inner magnetosphere. Particles gyrate around mag-
netic field lines, undertake bounce motion between mirroring points, and drift around in opposing directions
(given their charge) causing the ring current. Taken from Regi (2016).

etc) will cause the inverse process to occur, with the particle accelerating back along the
magnetic field line. The particles therefore “bounce” between mirroring points (locations
of speed reversal), with closed magnetic field lines acting like magnetic bottles. Of these
three motions, gyration is the highest frequency (fraction of a milli second), followed by

bounce-motion (~second), and then drift-motion (10-20 minutes, to go around the Earth).

Now examining the plasma as a whole, it is a very good electrical conductor given
that it consists of many charged particles with a low-frequency of collisions. To under-
stand the importance of this, let’s consider how the motions of the plasma influence the

electromagnetic fields. From Ohm’s law, the current density is given by,

v xB
j:a<E+ - >, (2.13)

where o is the conductivity of the plasma. This can be rearranged and substituted into

Faraday’s law,

0B
E = — Cv X E, (214)
0B vxB ]
8t=—cV><<— - +0_>, (2.15)
which after using Ampére’s law,
c
j=—V xB, (2.16)



36 CHAPTER 2. STELLAR WIND PHYSICS AND MODELLING

and the zero divergence of the magnetic field,

V-B=0, (2.17)
produces the induction equation,
0B c?
— =V x(vxB)+-—V?B, (2.18)
ot 4o

where = ¢?/4ro is the magnetic diffusivity of the plasma. This equation describes
how the bulk motion of the plasma v can generate magnetic field in opposition to its
diffusion (previously discussed in Section 1.3.2). As the plasma in the solar (or stellar)
wind is classically regarded as collisionless, its electrical conductivity can be treated as
being infinite (or the diffusivity equal to zero). This is often quantified using the magnetic
Reynolds number R,, = UL/ (characteristic length L and velocity U), for which the
advection of the magnetic field dominates its diffusion when R,,, >> 1. In this case, the

induction equation simplifies to the idealised form,

0B

5 =V x (vxB), (2.19)

which has interesting implications for how the plasma behaves. Consider the magnetic
flux ® threading a closed surface S(t) which is being advected by the fluid (this thought
experiment is referred to as Alfvén’s frozen-flux theorem). The evolution of ® is described
by changes to B at S(t) and the divergence of flux through the surface swept out by the

movement of S in time (Clarke et al. 2007),

dd 0B
— = —.dS— [ (vxB)-dl, (2.20)

where C'is a contour enclosing S(t). Using Stokes’ theorem this is equivalent to,

dd 0B
—= -—— B)| - dS. 2.21
7 /S(t) [(% V X (v x )} ds (2.21)
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The integrand of this equation can be replaced using the induction equation to show that,

dd

— = / uV2B - dS, (2.22)

i.e., the magnetic flux enclosed by a co-moving surface only changes as a result of the
diffusion term in the induction equation. Therefore in the idealised case of infinite con-

ductivity,

d®

o= 0, (2.23)
which implies that the plasma and magnetic field move together, or that the charged par-
ticles in the plasma are fixed to the magnetic field line that they gyrate around. The mag-
netic field is said to be “frozen-in” into the plasma. This is typically the case for most space
plasmas, from the Earth’s magnetosphere to the solar/stellar wind. However diffusion is
still important in governing fundamental processes like reconnection, ohmic heating, and

mixing of different plasmas. To investigate this, let’s consider the electron momentum

equation (in the absence of gravity),

OVe
Pe ot

ve X B

T pe(v - V)Ve = —en, (E n ) V- pet P (2.24)

C

where the motions of the electrons v, in a plasma are described in the form of the Navier-
Stokes fluid equation. pe is the electron pressure tensor, and P;e represents the momen-
tum exchanged between ions and electrons in the form of collisions. From this the gener-
alised Ohm’s law can be derived,

vxB jxB V:.pe medj

= uj+ — + (2.25)

E +
enec neec  nee2dt’

from which ignoring the last three terms on the right hand side returns us to the classical
Ohm’s law of equation (2.13). Further to this, assuming infinite conductivity (¢ = 0) takes
us back to the idealised Ohm'’s law. From left to right the additional three terms are, the
Hall effect, the electron pressure, and the electron inertia. So the frozen-in condition can

be broken by finite 1 (ohmic dissipation/Joule heating), the decoupling of the electrons
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and ions (Hall), divergence in the electron pressure (ambipolar diffusion), and changes to
the electron inertia (dve/dt). The Hall effect is specifically quite interesting, where (in the
absence of diffusivity 1) the magnetic field becomes frozen-in to the electrons rather than
the bulk plasma, leading to the creation of dispersive whistler waves which are observed
in many space plasma environments, from the Earth’s magnetosphere to the solar corona.
These terms introduce physics at very small scales, for example the Hall and electron

pressure terms become important at the ion inertial length,

c | 2m;
di = — = — 2.2
Wpi 4mn;q? (2.26)

and the electron inertia enters at the electron inertial length,

¢ c2m,
dy = — = | SMe 2.27
Wp dmn.e2 (2.27)

where by inertial length, I mean the characteristic length scale for ions and electrons to be
affected by electromagnetic forces. Typically the ion inertial length is much larger than the
electrons, some examples include; the solar corona (d; ~ 7m; d. ~ 20cm), and the solar
wind at 1au (d; = 70km; d. ~ 2km). Given these scales are relatively short in comparison
with the large-scale dynamics of stellar wind physics, they are set aside throughout this

thesis.

2.2 Ideal Magnetohydrodynamic Equations

Here I describe the generalised set of equations that govern a single-fluid MHD plasma ata
macroscopic level (further details can be found in Clarke et al. 2007; Priest 2014; Goedbloed
etal. 2019). To arrive at these equations a few assumptions are required, most notably the
simplification of charged particle motions into a macroscopic fluid description, i.e. that
the local thermodynamic properties of the plasma can be meaningfully defined. These
equations account for fluid motions that have length and temporal scales much larger

than the gyro/kinetic plasma scales, and so by construction do not recover oscillations in



2.2. IDEAL MAGNETOHYDRODYNAMIC EQUATIONS 39

the plasma at high frequencies (like the plasma frequency). The number density n is said
to be of equal parts, positive and negative charges (satisfying charge neutrality), such that

for a fully-ionised Hydrogen plasma the conditions,

n = Ne +ny = 20, (2.28)

ny — ne << m, (2.29)

describe the plasma everywhere. There are said to be no charge imbalances p* = (n,—n.)e

in the plasma, therefore the electric field E has zero divergence as given by,

V-E =4mpx = 0. (2.30)

The mass density of this overall neutrally-charged plasma is given by p = nm, where m
is the average particle mass, which is 0.5m,, for the fully-ionised hydrogen plasma. The

conservation of the mass density is maintained by,

dp

54— V- (pv)=0, (2.31)

where v is the bulk fluid velocity. Ohm’s law describes the current density j in the plasma
due to the total electric field (in a frame of reference with the plasma), which as previously

stated, in the ideal case provides a relation between the electric field E and the magnetic

field B,
vxB
E=— (2.32)
Cc
The evolution of the magnetic field is given by the idealised induction equation,
0B
E =V x (V X B), (233)

which must also maintain zero divergence,

V-B=0. (2.34)
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The gas pressure p is given by the equation of state, which is often taken as the ideal

gas law,

p=—pT. (2.35)
m

For an adiabatic process, pressure and density are connected by,
poxp, (2.36)

where 7 is the ratio of specific heats and has a value of 5/3 for a monoatomic ideal gas.

The Lagrangian form of the energy equation is then given by,

p’ dr/p
ral) =t 237
which utilises the conservation of entropy (S = p/p”). This includes the energy loss func-
tion £, which can incorporate different heating and cooling processes into the conserva-
tion of energy equation. Some examples include; thermal conduction, radiative cooling
(or absorption), ohmic dissipation, or even nuclear heating (i.e. in the star’s core). More
generally this equation is written in the Eulerian form (as previously done for the conser-

vation of mass and momentum equations),

dpe

v +V - (pev) = —prV-v— L, (2.38)

where ¢ is the energy density of the plasma, the total pressure is pr = p + B?/8m, the
total energy is E = pe + pv?/2 + B? /87, and £ = 0 in the idealised case. Note pressure
and energy include a contribution from the magnetic field B. The magnetic field also
influences the plasma through the j x B force which enters into the momentum equation

as,

ov jxB
P trv-V)v=pg+

— Vp. (2.39)

This equation describes the time-evolution of the bulk plasma motion v, which is subject
to a gravitational acceleration g, the j x B force, and forces due to pressure gradients

within the plasma itself. The j x B force can be broken down into the magnetic tension
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and pressure components,

jxB (VxB)xB
c - 47 ’
B-VB B2
= P V<87T) (2.40)

The magnetic tension acts a restoring force to curvature in the magnetic field, and allows
for Alfvén waves to propagate along magnetic field lines (see Section 2.2.1). Though the
j x B force must be orthogonal to B, the tension and pressure terms can have components
parallel to B, which cancel each other. The magnetic tension force can be rewritten in
terms of the curvature vector £ as follows. First define a unit vector in the direction of the

magnetic field B = B/|B|. Then £ points towards the centre of curvature, given by,

Re
_ Fg’

~

¢=B.-VB= (2.41)

where R, is a vector pointing out from the centre of curvature. The product rule can then

be used to rewrite the j x B force using,

B-VB BB -V(BB) B(B-V)B> B’B-VB

4 47 - 87 LA (242)
as,
jxB B? B?
_ - Y 2.43
c ¢ 4 Vi ( 87r> (2.43)
The operator V | is now defined as,
V,=V-BB V), (2.44)

which keeps only the derivatives that are orthogonal to B. The ratio of the magnetic
pressure term and the thermal pressure is often used to infer the behaviour of the plasma
ie.,

P 8mp

f= 5 /8x B2 (249
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For high-f3 plasma (5 >> 1), the gas pressure is large compared to the magnetic pressure
which is the case in the solar photosphere. For low-3 plasma (5 << 1), the magnetic
pressure dominates and so the thermal pressure can be ignored, as is the case of the low-
corona where the dynamics are said to be dominated by the large-scale magnetic field (see

Appendix A where coronal magnetic field models are discussed).

It is illustrative to consider different, but equivalent, forms of the MHD equations.
For example the time-evolution of the kinetic energy density can be found by taking the

scalar product of v with the momentum equation,

d /1
dt<2pv2>  v.Vp4v-jxB4pv-g. (2.46)

This shows that changes in the mechanical energy of the plasma are due to the work done

by pressure, gravitation and the j x B force.

2.2.1 Magnetohydrodynamic Waves

The ideal MHD equations allow for a variety of waves to propagate through the plasma.
Typically wave solutions are found by considering a small perturbation (denoted by ’) to
a uniform background plasma (denoted by ). For a static and uniform plasma, the MHD

equations, simplified to first-order, become,

ap’
5+ po(V-v') =0, (2.47)
ov’ 1
po5; = —1-Bo x (V x B) = V7, (2.48)
oB’

W =V x (V/ X BO) (249)
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Taking the time-derivative of the first-order perturbed momentum equation, substituting

the relation for Vp = /vp/pVp, and the other time-derivatives produces,

>v' By oB’ ypo /0p

W+ Tr0 X (V X 61&) - p%V(at> =0, (2.50)
aQV/
S T VA X VX [V x (v xva)] = EV(V V) =0, (2.51)

where the sound speed,

o= | O (2.52)
Po

Bo
VA = y
VAaTpo

have now been defined. The sound speed ¢, controls how fast perturbations in pressure

and Alfvén speed,

(2.53)

and density can travel through the plasma. The Alfvén speed va defines how fast trans-
verse oscillations in the magnetic field can propagate (this is analogous to a wave traveling

along a string, with magnetic tension acting as the restoring force).

Introducing perturbations, with wave vector k and frequency w, of the form,
v =vexpli(k - r —wt)], (2.54)
the linearised equations above can be used to construct a dispersion relation i.e.,
— W0V 4+ (E+vaD (k- V)k+ (va - K)[(va - k)V — (va - V)k — (k- V)va] = 0. (2.55)
If k is perpendicular to v this equation simplifies to,

—wV 4+ (2 +va)(k-V)k =0, (2.56)

w = tk\/c2+vVa?, (2.57)

whose solution is a longitudinal magnetosonic wave with phase velocity 1/c2 + va2. The

restoring pressure force is now a sum of the gas pressure and magnetic pressure, i.e. suc-
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cessive compressions and rarefactions in the gas pressure are accompanied by the bunch-
ing and separating of magnetic field lines (as the magnetic field is frozen-in to the plasma).

In the case that k is parallel to v, equation (2.55) becomes,

2

CS
(k2va? — W)V + <\72 — 1>k2(vA -v')va = 0. (2.58)
A

There are two types of wave motion which satisfy this relation; 1) ordinary longitudinal
wave which travels at ¢; and 2) the transverse Alfvén wave which travels at va. For the
more general case, where the angle between the wave vector k and the magnetic field

vector By (or va) is O, the dispersion relation can be written,
w(w? — k%% cos? O)[w? — Wk2(c2 + v4) + 2vik? cos? ©] = 0. (2.59)
From this, transverse Alfvén waves have the dispersion relation,
w = +(v4 cos O)k, (2.60)

and the fast (+) and slow (-) magnetosonic waves follow,

1 1
w= ik\/2(c§ +0q) £ 5\/(03 + v%)? — 4c2v? cos? ©. (2.61)

Along with the trivial entropy wave solution (w = 0), an initial disturbance to the plasma
will create backwards/forwards waves for each of the slow-magnetosonic, fast-magnetosonic,
and Alfvén waves (totalling 7 waves). As will be shown in the following Section, the
flow of stellar wind plasma accelerates from sub-sonic (and sub-Alfvénic) speeds, passing
through critical points where the flow speed matches the MHD wave speeds. At each of
the critical points, information about features up-stream of that critical point can no longer

by transmitted back to the base of the stellar wind by the corresponding MHD wave. A
final useful relation is given by the ratio of the isothermal sound speed and the Alfvén
speed,

2¢2 2p/p  8mp
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which relates back to the plasma 3 parameter.

2.3 Summary of the Ideal Magnetohydrodynamic Equations

The equations used to describe stellar wind plasma throughout this thesis are as follows,

dp

mass conservation: 5 +V-(pv) =0, (2.63)
ov jxB

momentum conservation: Por +p(v-V)v=pg+ — Vp, (2.64)
0B

magnetic flux conservation: i V x (v x B), (2.65)

Ope
energy conservation: B + V.- (pev) = —prV - v. (2.66)

These equations completely describe the motion of an idealised single-fluid plasma with
density p, pressure p, velocity v and magnetic field B (note that the electric field E and

current density j are not required).

2.4 The Solar Wind

Geomagnetic substorms were first observed in the 19th century, and were found to occur a
few days after large solar flares (Carrington 1859). The link between the two phenomena
was not established until Chapman (1929), who reasoned that the geomagnetic distur-
bances were caused by streams of particles that were ejected from solar flares and trav-
elled through the vacuum of space to Earth. This was motivated by the work of Birkeland
(1908), who performed laboratory experiments using charged particles and strong mag-
netic fields in order to reproduce the aurora. In explaining the deflection of cometary tails,
Biermann (1951) also provided evidence for a stream of particles leaving the Sun, however
these seemed to be more continuous than previously suggested by Chapman (1929). The
first mathematical description of the Sun’s corona was produced by Chapman and Zirin

(1957), who imagined it to be in hydrostatic equilibrium, reaching out beyond the Earth
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and into the ISM. Hydrostatic equilibrium is given by simplifying the radial momentum
equation to,
dp  GM,p
dr + 2

0, (2.67)

where G is Newton’s gravitational constant, M, is the Sun’s mass, and r is the radial
distance from the Sun centred on » = 0 with a radius of r = R,. By integrating the
hydrostatic equilibrium, using the ideal gas law from equation (2.35) the pressure in the

corona becomes,

r GM.poTo
- ) ——d 2.68
P poeXp< /T T 'r>, (2.68)

for any temperature profile T'(r), with pg = p(r0), To = T'(ro) and py = p(rp). For an

isothermal corona (I = constant) the pressure becomes,

GM*pQ 1 1
pzpo%p{—(—)}, (2.69)

which as r — oo, p tends to a constant i.e. po, = poexp(—GM.po/poro). However, in
Chapman’s model the pressure of the ISM required to balance a hydrostatic corona exceeds
any reasonable value (the ISM pressure is thought to be around 10~!°Pa). Additionally,
models for which the temperature 7" decreased with distance produced infinitely large p
at large distancesi.e. p ~ p/T soas T'— 0, p — oco. These inconsistencies were amended

by allowing the corona to be continuously expanding outward from the Sun.

2.4.1 First Mathematical Description of the Solar Wind - Parker (1958)

In 1957, Eugene Parker laid down the first model of the solar wind as it is known to-
day. Parker realised that the thermal pressure of the million degree corona was enough to
overcome gravity, and drive a supersonic outflow of plasma. As gravity weakens with dis-
tance, Parker suggested that the solar wind was in fact similar to the “de Laval nozzle”(De
Laval and Fagerstroem 1911), which incites a transition from subsonic to supersonic flow.
Parker’s work was submitted to The Astrophysical Journal, where it received heavy criti-

cism and was rejected by two referees before being published by the editor Subrahmanyan
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Figure 2.4: Wind speed versus radial distance for the five different types of solution produced by the isother-

mal Parker wind model. Solution V is the most physical solution, starting at the base of the corona as a
subsonic flow which transitions through the critical point r. to become supersonic. Credit: Alan Hood.

Chandrasekhar who worked in the same building as Parker at the time. The results from

Parker (1958) are as follows.

Consider a spherically-symmetric outflow of an isothermal plasma with a radial

velocity of v,. The conservation of mass requires,
4772 pu, = constant. (2.70)

Then the momentum equation, considering only the forces of gravity and pressure (from

the hot corona) is used to find v,.,

dv, ldp GM,

o o2 0, 271
v dr +pdr+ r2 0 ( )

where p is the thermal pressure of the plasma/gas, which is assumed to be ideal. Asthe T’
is isothermal, p can be eliminated and the momentum equation can be re-written in terms

of the isothermal sound speed c; = +/p/p, and the critical radius 7. = G M, /(2c?) (sonic
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point),

e\ dv,.  2c2
- — |- c—1)=0. 2.72
<Ur Ur) = + 3 (re—7)=0 (2.72)

In this form, the equation can be integrated analytically,

Up\ 2 Uy r 4r.
() ol () 4ln () ) 2.73)
Cs Cs Te T

where C'is a constant of integration. This equation can be solved numerically through the
implementation of the Newton-Raphson technique (see Appendix C.1). Different values
of C' produce a variety of solutions in a plane where the critical point r. is a saddle point,
see Figure 2.4. Solutions I and II are unphysical as they are double valued, and fail to
connect regions close to the Sun with those further away. Solution III have supersonic
speeds everywhere, including down to the solar surface, which is not observed. Solution
IV is referred to as the solar breeze, and remains subsonic everywhere. This solution
tends to a constant pressure at large distances, as found with the hydrostatic model. This
leaves solution V, which is the Parker wind solution (given by C' = —3). The solar wind
begins subsonic and transitions through the critical point 7. to become supersonic. At
large distances the velocity follows v, ~ 2¢s(Inr/ rc)l/ 2, while the density falls off as p ~

7~2(Inr)~1/2, This means that p — 0 and r — oo as required.

2.4.2 The “Polytropic Approximation”

A common addition to Parker’s model is the inclusion of a polytropic equation of state
i.e. using the adiabatic relation p  p?, for which ~ is the ratio of specific heats and has
a value of 5/3. In the polytropic approximation the value of v can be artificially lowered
to mimic the plasma heating as it expands, without the need for an energy equation to be
solved (e.g. Lamers and Cassinelli 1999). The polytropic sound speed is now cs = \/7p/p,
and is no longer constant due to the variation of T’ oc p7~! o (v,r%)1=7 with distance. The

resulting wind equations, found by manipulating equation (2.71), are,

v+1 71 _ 2-2y
A fre (D=3 2 (* —0, (2.74)
Ve Ve r v—1 v—1\r
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and,

4 5—3y
& - 1 [ Vese \ 71 & T 2 2¢s 2 4 v—1 _o, (2.75)
Te 9 — 37 \ 2¢4,4 Te 9 — 37\ Vese 5— 3y

where equation (2.74) describes the radial velocity v,, with the location of r. being solved

for using equation (2.75). The wind speed at r. is v. = \/GM./(2r.) = cs(rc). The radial
profile of p (or equally T)) is then related to p by p(r) = ¢, pi " p(r)7 /7y, where p(r) is given

by mass conservation from the surface value p, (equation (2.70)).

Mathematically, the value of v (otherwise referred to as the polytropic index) can
range from 1 to 5/3, with the case of 5/3 representing an adiabatic expansion. Typically
the value of v is lowered to around 1 < v < 1.1 (as done in this thesis), which reproduces
the approximately isothermal nature of the solar wind (see examples from Parker 1965;
Kopp and Holzer 1976; Washimi and Shibata 1993; Washimi and Sakurai 1993; Keppens
and Goedbloed 1999; Matt et al. 2012; Vidotto et al. 2014b; Réville et al. 2015a; Pantolmos
and Matt 2017). Further to this, some models involve a spatially varying polytropic index
which allows for the locations of energy deposition into the wind to be tuned (see Cohen

et al. 2006).

When used in Chapter 3 as an initial condition for the MHD wind simulations,
the control parameter c; . /vesc i.€. the ratio of sound speed at the base of the wind to
surface escape speed ves. = \/2G M, /R,, is used frequently. This can be transformed into

a coronal base temperature via,

Cs i\ 2 /1 2GMm
T, = . 2.76
<Uesc> < R.kp ) ( )

The Parker wind models, both isothermal and polytropic, require extremely large coronal

temperatures in order to approach the terminal speed of the fast solar wind (~ 700km/s),
which are not observed. It is understood that the heating and acceleration of coronal
plasma is more complex than Parker’s original model, although the Parker wind provides

a good basis to build from.



50 CHAPTER 2. STELLAR WIND PHYSICS AND MODELLING

1075""‘I ToTTTTTT T TTT T T T T T IE
; Chromosphere Tt ]
I \ Corona ]
I
@ ﬁ
£ 05
I
=) C ]
= - : :): i
it - . I g
= Call H{:
10° 3968 A § E
1000 e P
10? 10° 10* 10°
Height (km)

Figure 2.5: Temperature variation of the solar atmosphere with height. Named regions are highlighted, along
with the source regions of some frequently used emission lines. Taken from Yang et al. (2009).

2.4.3 Heating the Corona

The heating of the corona (and solar wind) continues to be a pervasive issue in solar
physics, with a variety of proposed mechanisms that operate under a range of different
conditions. These include shock dissipation, Alfvén waves (resonant absorption, mode
coupling, turbulent heating, Landau damping, etc), and small-scale reconnection (i.e.
nanoflares). It is expected that current in-situ measurements from Parker Solar Probe
(Fox et al. 2016) and Solar Orbiter (Mueller et al. 2013) will shed light on this by studying
the Sun’s atmosphere up close. The polytropic Parker wind model is able to approximate
the extended heating of the wind, but without connection to a physical mechanism. This
is acceptable for the purposes of this thesis, as the exact mechanisms which cause the
wind acceleration do not need to be parameterised. Instead the polytropic approximation
allows for a wide range of potential wind solutions to be experimented upon, with the re-

sults feeding back into one-dimensional theory (see Section 2.5.4). In this Section I briefly
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review the heating of the corona for completeness (for more details, see the reviews of

Klimchuk 2006; Parnell and De Moortel 2012; Priest 2014).

The temperature structure of the solar atmosphere is shown in Figure 2.5. Though
the surface temperature of the Sun is only ~ 5800K, the corona above this has a temper-
ature of ~ 1MK. These high temperatures are responsible for driving the solar wind, as
described by Parker (1958), however they defy our natural expectation that temperature
decreases with distance from the heating source (i.e. nuclear fusion in this case). The de-
position of energy and momentum into the solar atmosphere is particularly challenging,
given the variety of temperatures, densities and magnetic field structures that it contains.
This is coupled with mass and energy being transported around the different regions of
the solar atmosphere; the photosphere, the chromosphere, the transition region, and the
corona (see Figure 2.5). Before the space-age, the only way to view the Sun’s atmosphere

was through solar eclipse observations, see an example in Figure 2.6.

Energy in the corona is likely input by the Sun’s magnetic field, evidence for this
comes from the observations of the hottest coronal loops which tend to have stronger
magnetic fields than others (Fisher et al. 1998). This can be described in terms of the

Poynting flux (energy flux of the electromagnetic field) as,

E x B 52 o /B2

where the input energy through a surface S can do three things, heat the plasma via Ohmic

dissipation, accelerate the plasma via the j x B force, or increase the magnetic energy in
the corona. Energy flux is driven from the photosphere by the motion (due to convective
motions) of magnetic field lines embedded there. These motions are then thought to fuel
MHD waves (see Section 2.2) or magnetic reconnection in the solar atmosphere, which
dissipate their energy higher up in the corona. The difficulty in describing the heating of
the corona comes from both of these processes likely playing significant roles. For example
in the low corona, reconnection is observed directly to heat the corona (i.e. flares, jets,
spicules, microflares, etc.) (Hudson 1991). Whereas the solar wind is observed to contain

Alfvénic waves, which are the “smoking gun” of Alfvén-wave heating (Hollweg 1986;
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Figure 2.6: Solar eclipse from July 2019. Imaged by both ESO’s La Silla Observatory and the Large Angle and
Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO) spacecraft.
These observations are combined to provide a detailed image of the Sun’s corona structure. Credit: ESO/P.
Horélek/SOHO (ESA & NASA).

Goldstein et al. 1995). As well as heating the wind, MHD waves are proposed to also help
accelerate the wind (e.g. Suzuki 2011). This helps to resolve the need for unphysically

large thermal temperatures in the corona to drive the fast solar wind in Parker’s model.

2.5 Magnetised Stellar Winds

In the context of rotation period evolution, it is clear from observations that the stellar
magnetic field is important. Not only for heating the corona (and accelerating the wind),

but for increasing the effectiveness of angular momentum transfer to the stellar wind.
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Figure 2.7: Parker spiral magnetic field using the polarity of the magnetic field observed by the Parker Solar
Probe (PSP) during its first perihelion pass of the Sun (shown in the rotating frame). The average measured
field polarity from PSP colours its orbit. Similarly, the average field polarity for the Wind spacecraft at ~ lau

is shown around the edge with coloured circles that represent 12-hour averages. The parker spirals follow

equation (2.84) and appear to reproduce the heliospheric magnetic field structure well. Taken from Badman
et al. (2020).

2.5.1 Parker Spiral Magnetic Field

First, there is still more to learn from Parker (1958). Parker further explained, along with
the solar wind, the structure of the solar wind magnetic field. Consider a rotating frame

of reference, that contains a spherically-symmetric purely radial wind v,, the azimuthal

wind velocity is then given by,

vy = —Qu(r — Ry)sin 0. (2.78)
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This non-radial component of velocity comes directly from the transformation into the
rotating frame. Then the path followed by a magnetic field line anchored into the stellar

surface is,
1dr v, Uy

o 2.79
rdop vy Qu(r — Ry)sin@’ ( )

which is the streamline of velocity (see Appendix A). It follows that the magnetic field

itself is described by,
ro\ =2
BT‘ (’f’, 07 ¢) :B*(G’ ¢) <R> ) (280)
By(r,0,¢) =0, (2.81)
Q*Rz sin 0
By(r,0,¢) = — Bi(0,0) ————, (2.82)

VpT

where By is zero due to the flow being purely radial, and the B, term decays following the
conservation of magnetic fluxi.e. V-B = 0. B, (6, ¢) corresponds to the surface magnetic
field, however this surface does not have to be the stellar/solar surface (and isn’'t usually).
The magnetic field described by these equations predicts that the flow at various latitudes
g is essentially wrapped around the surface of a cone, the winding of which is less-severe
with proximity to the rotation poles. This predicts that the angle of the solar wind (in the

equator § = 90°), upon arrival at Earth should be,

Q. (r — R,
H) , (2.83)

Ur

¥ = tan! <

which for Q, = 2.6 x 10 %rad/s, r = 1.5 x 10%km, and v, ~ 400km/s, gives a value of

1 =~ 44°. More generally, the longitude of an equatorial magnetic field line is given by,

¢(r) = ¢« — —(r — Ry), (2.84)

where ¢, is the longitude where the field line begins. After Parker proposed the “spi-
ral” model, spacecraft observations soon supported the idea, measuring the solar wind

magnetic field to lay in the equatorial plane with an average angle that matched the spiral
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prediction (Coleman et al. 1962; Ness and Wilcox 1964). A relatively recent implemen-
tation of the Parker spiral can be found in Figure 2.7, again with good agreement to the

available data.

2.5.2 Angular Momentum Loss in Stellar Winds - Weber & Davis (1987)

One of the most fundamental results concerning the angular momentum-loss of low-mass
stars comes from Weber and Davis (1967). This thesis relies heavily on the mathematical
framework established in this work. First, let’s consider a wind with rotation but without
a magnetic field. It can be shown simply from the azimuthal momentum equation that,
for a surface rotation rate of (2., the azimuthal wind speed is,

A Q.R?

- 2.85
Vo = o (2.85)

where (in this case) A is the specific angular momentum of the plasma. This represents
the conservation of angular momentum. Now let’s add magnetic fields. Consider a wind
with velocity,

v = v, 4 vy, (2.86)

and magnetic field,

B = B, + By¢, (2.87)

that describe an equatorial flow, i.e. r is the cylindrical radius. A few conditions arise

naturally, such as the conservation of magnetic flux,
r? B, = constant, (2.88)
and the flow v being parallel to B in the rotating frame of reference with the star,

r(v; By — vy B;) = constant = —Q,7? B, (2.89)
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The radial momentum equation for the wind plasma (in the rotating frame) is,

vy op GM, 1 d v¢

—_ 4+ —+ —B B — 2.90
or +p8r + r2 d)dr(r o)+ =0 ( )

Ur 47Trp

which now includes the Lorentz force (j x B),/c, and the centrifugal force [pQ, x (£2, x
r)],. Using a polytropic equation of state p o p7, the radial momentum equation can be

rewritten as,

2

d(l 7y peyp\Tt GMo  vg 1 d ,
2 2 T - = —— —5—(rBy)". 2.91
dT{QUTJW—lp*(p*) r } r 87Tr2pdr(r 2 291)

In this expression the pressure gradient was rearranged as follows,

ldp 1d PN\
= (2 2.92
pdr pdr[p <p*> } 292
vp' " dp /s
= al) @59
v dp"Tsp.
- v ) 20

d( v peyp\T!
= wtnG) ) 2

Notice, if the terms on the right hand-side of equation (2.91) are set to zero, i.e. removing
the influence of the magnetic field and stellar rotation, the term on the left hand-side is
the Parker wind solution from the previous Section. In order to find solutions to equation

(2.91), v4 and B, must first be solved for.

Given this flow is axisymmetric, the azimuthal momentum equation involves only

the magnetic force,

v d 1 B, d

jx B
rdr( rvg) = pc(']>< Jo = drrpdr

—(rBy). (2.96)

Then it can be shown that

d B,
— By, =0 2.97
dr { ¢ 47Tpvrr ¢ } ’ 297)
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ie.,
B,
TV — rBy = constant = A, (2.98)
TPV,
because,
B,r?
———— = constant, (2.99)
47 pv,r2

from the conservation of flux and mass equations. As written above, A is the poloidal
vorticity-current stream function (see Goedbloed et al. 2019, for more details), and is often
mislabelled in the literature as being the specific angular momentum flux (this misnomer
is also unfortunately present throughout this thesis). Recall the value of A for the case
without a magnetic field in equation (2.85), this corresponds to the specific angular mo-
mentum which is a mechanical flux in the plasma. This term is also found in equation
(2.98), along with a second term that corresponds to the transport of angular momentum

via stresses/torques in the magnetic field. The Alfvénic Mach number is defined as,

Uy 4 pu?

2
M2 = () = (2.100)

From equation (2.89), the azimuthal velocity can then be written,

47 pv,
Tvr{(% —A) } — rvgB, = — QL B,, (2.101)
r T
B, M3 (rvg — A) — rvgB, = — Qur’B,, (2.102)
rug(M3 — 1) — AM3 = — Qur?, (2.103)

AMEr—20.1 -1
M3 -1

vy = 1 (2.104)

From this a new critical point is defined, the Alfvén radius R4, where Mf‘ —1 = 0. Atthis
point the denominator of the azimuthal velocity equations goes to zero, and so to keep

the expression finite the numerator must also vanish producing the condition,

A =QRY. (2.105)

The azimuthal velocity equation can be reduced by considering the conservation of mag-
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Figure 2.8: Wind speed versus radial distance for the different solutions produced by the Weber-Davis wind
model. The wind speed v, is normalised by the Alfvén velocity va, and the radius r is normalised by the
Alfvénradius R4. There are two critical points, the sonic point and the Alfvén point (highlighted with straight
lines). The physical solution traverse both critical points from subsonic to super-Alfvénic. Taken from Weber
and Davis (1967).

netic flux and mass,

Mi 47 pv,
o2 = B? = constant, (2.106)
such that,
Qurvg — vy
Vg = —————. 2.107
¢ va 1 — M124 ( )
From this the azimuthal magnetic field is,
B,
By = — —(ur — vy), (2.108)
Ur
Q.r R124 —r?
By =— (2.109)

B, ,
VA R124(1 — Mg)

where again the fact that M3 /v,7? = constant has been used.
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Returning to the radial momentum equation, it is now possible to numerically solve,

dv, vy 2vp A GM, ) 5 5 o Vr ) Uy
L Y |
paM3 r VA vA
Ypa f R -l
—3M3 +1| b x |02 — ———— (M3 — 1) — Q%2 M5 4 ,
A r 2(v—1) A A 2
pA]MA7 r

(2.110)

as done previously for the Parker wind solutions. The solutions to this are shown in
Figure 2.8. A similar structure can be found to the Parker wind solution in Figure 2.4,
but now with two critical points; the slow and fast magnetosonic points. As done for
the Parker wind, we adopt the solution that begins subsonic and traverses both critical
points to become supersonic and super-Alfvénic. The radial momentum equation can be

integrated in order to evaluate the energy flux per steradian in the wind as follows,

2 2
vy vy Y pa (1) GM, ByB,Qur
F— 2) . ° MY — 2.111
pvrr{2+2+7—1p14 A r 40p v, J’ ( )

which shows the kinetic energy flux in both the radial and azimuthal velocity, the flux of
thermal energy, gravitational energy, and the Poynting energy flux. The total energy flux

is a constant.

The angular momentum-loss rate of the wind is given by,

B,
= / Apv -dA = / <7“,0v7«v¢ — rB¢> 72 sin Odrdfde, (2.112)
A A 47T

where the poloidal vorticity-current stream function A is multiplied by the mass flux in
the wind and integrated over (in this case) a spherical closed surface. Given the result of

equation (2.105), the angular momentum-loss rate can also be written,
T = / Q.12 pvpr? sin Odrdfde, (2.113)
A

note that R 4 is the cylindrical radius such that we insert a factor of sin 6, to integrate over



60 CHAPTER 2. STELLAR WIND PHYSICS AND MODELLING

S — Pl

B 10-1 4 asma

v —— Magnetic Field

e -==- Total

‘g ——= Conserving Ang. Mom.

1072 1

10 20 30 40 50 60
Radial Distance [Stellar Radii]

Figure 2.9: Distribution of specific angular momentum A between the plasma and magnetic field stresses
along a magnetic field line. Values are taken from one of the wind simulations in Chapter 3. Note that this is
just one example, and the lines may cross earlier, later or not at all depending on the simulation parameters.

a sphere with the same radius r4 = R4sin¥),

2

2 .
T = / Q. (R4 sin 0)2pv,r? sin Odrdfded = gQ*Ri(47rr2pvr) = §Q*R124M. (2.114)
A

This shows that the Alfvén radius R4 is the key factor in determining the effectiveness
of the angular momentum lost through the stellar wind mass-loss M. Recall the non-
magnetised case from equation (2.85), upon calculating the resulting angular momentum-

loss rate,
2 .
T = / Q. (R, sin )% pv,r? sin Odrdfdd = gﬂ*RfM, (2.115)
A

it can be seen that R 4 analytically acts “like” a surface of rigid rotation for the wind (as the
stellar surface does for the un-magnetised case). In this thesis, I endeavour to characterise
the effectiveness of magnetic braking due to stellar winds by evaluating the R 4 from MHD

wind simulations with various magnetic properties. This is also combined with relation-
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ships from one-dimensional theory, see Section 2.5.4. Note however, that in reality the
wind does not rigidly-rotate out to R 4, instead the stellar wind contains both an angular
momentum flux in the plasma (protons) Fr,,, and magnetic field stresses F'45r, g, which
vary with radial distance. The stresses in the magnetic field transfer angular momentum
to the protons with distance, which when integrated is mathematically equivalent to rigid
rotation at R4. The radial profiles of A shown in Figure 2.9 are not fixed, and so vary with
the strength of the magnetic field, temperature of the wind, etc, with the magnetic field

or plasma terms dominating in different parts of the parameter space, following,

R2
2M3—f-1
A, = rsinfvg = Qu(rsin ) ——1— 2.116
p = 7sinOvg (rsin@) M1 ( )
B R124
Ap = —rsin0By—— = —Qu(rsin )2 Lo —. 2.117
B 7 sin ¢47Tpvr (rsin@) MZ 1 ( )

This makes the ratio of the angular momentum flux and magnetic field stresses Fans,p/ Fanr, B
a useful diagnostic of the stellar wind, especially when comparing observations of the so-
lar wind. From here I consider the mechanical angular momentum flux in the protons
Fanp and the angular momentum transported by magnetic field stresses Fays,p at vari-
ous limits in the Weber and Davis (1967) model (see Marsch and Richter 1984a, for more
details). These are defined as,
R
Mi——1
Fantp =pvply = popQ(rsin6)> —I——— (2.118)
’ MA - 1
R

Faa.s =pvrAp = —pu Q. (rsin 9)2]\222 - (2.119)
7

for which 7 is now the spherical radius. These terms often appear normalised by 7%, which

better represents the angular momentum-loss rate (see Section 6.4). Asr — 0, these terms
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become,

Fanplr—o 22 (rsin 0)*po, = 0, (2.120)
Fam Blrso =0 (Rasin0)?pu,., (2.121)
such that their ratio,
FAM,p
~ 0. (2.122)
FAM,B r—0

Similarly for Mfl >>landr >> Ry,

Fantplr—soo Rpsin? 9, R (vr — vr(Ra)), (2.123)
Fan,Blr—oo ~psin® 00, R% v, (Ra), (2.124)
SO,
FAM,p Up
~ ~ 1. (2.125)

FamBl,o  Ur(RA)
From this analysis it is clear that the ratio Fiaar,,/Fan, g varies considerably with distance,
and also has some useful features. This implies that if the radial wind speed at larger
distances is less than twice the wind speed at the Alfvén radius, the angular momentum-
loss will mainly be governed by the magnetic stresses. If the radial wind speed is higher,
then the angular momentum will be principally carried by the plasma in the wind. One

interesting result derived in Marsch and Richter (1984a) is that,
Ap

R% = , 2.126
A7 Q.0+ Famp/Fam,B) ( )

and so observational constraints on the distribution of angular momentum in the wind
can be used to infer the location of the Alfvén radius. Fundamentally, this implies that
winds which have more angular momentum carried in magnetic stresses have larger R 4.

Measurements of F'apsp,/Fanm,p are further discussed in Section 6.4.
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2.5.3 Current Models of Solar and Stellar Winds

In the literature, models of the solar wind have typically diverged away from the models
that are now frequently used to model stellar winds. Here I discuss the kinds of mod-
els that exist and their applications. Given the wealth of observations of the Sun’s mag-
netism and solar wind, the models that are used to explain the solar wind have become
increasingly complex. This links to Section 2.4.3, in which the heating of the corona was
discussed. Alfvén wave-driven solar wind models have been able to reproduce the prop-
erties of flows emerging from coronal holes, along open magnetic field lines (Suzuki 2011,
Shoda et al. Submitted). These models must span a huge range of density and temper-
ature scales from the photosphere to the corona, and so are normally one-dimensional
(following the expansion of a flux tube). Alfvén waves dissipate heat and momentum
into the corona through wave reflection and other processes, which all must be captured
self-consistently in these models. When the same physics is applied to multi-dimensional
MHD simulations, these physical effects are parameterised, see for example the Alfvén
Wave Solar Model (AWSoM) by van-der-Holst et al. (2014). These global solar wind mod-
els do a reasonable job of reproducing observations (Usmanov et al. 2018; Réville et al.
2020). However some authors have liberally applied solar wind models to the winds of
other Sun-like stars (e.g. Garraffo et al. 2017; Alvarado-Gémez et al. 2019), where it is un-
clear if the prescribed heating functions are valid given the reconstructed magnetic fields
of these stars are likely missing significant amounts of their small scale flux (See et al.
2019b). Another branch of solar wind models exist, primarily for space weather forecast-
ing (Wang and Sheeley Jr 1990; Odstrcil et al. 2002; Riley et al. 2011; Parsons et al. 2011).
These models are semi-empirical, relying on trends in past data to predict the arrival times

of ICMEs at Earth, or the severity of SIRs.

Previous MHD stellar wind simulations have opted for a simple approach, develop-
ing polytropic Parker-type winds that span a wide range of the parameter space (see Matt
etal. 2012; Réville et al. 2015a; Pantolmos and Matt 2017). The advantage of this is that the
fundamental connections between properties can be understood, i.e. increased heating,
stronger magnetic field strengths, etc. However, the mass-loss rates in these simulations

are not informed by realistic physics, with the wind emerging from the low-corona at a
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given speed and density. Because of this, the models have been used to construct semi-
analytic prescriptions for the angular momentum-loss rates of stars, given the mass-loss
rate and stellar properties. This means that for the semi-analytic relations to be used, the
mass-loss rates of stars need to also be prescribed such as through the model of Cranmer
and Saar (2011). Recently, the one-dimensional Alfvén wave-driven models have been ap-
plied to the wind of other Sun-like stars, revealing the dependence of the mass-loss rate
on various physical parameters (Shoda et al. Submitted). The model of Shoda et al. Sub-
mitted (see Appendix D), also shows good agreement with the angular momentum-loss

scalings of previous MHD polytropic wind models.

2,54 1D Semi-analytic Theory

Following the work of Weber and Davis (1967), when evaluating results from MHD wind
simulations (such as those presented in this thesis) the general aim is to find scaling rela-
tions which explain the dependencies of R4 on the input parameters. To accomplish this,
many previous works have turned to one-dimensional analysis, which has been shown
to yield useful results (e.g. Matt et al. 2012; Réville et al. 2015a; Pantolmos and Matt
2017). Consider a steady one-dimensional ideal MHD flow, that travels along a magnetic
flux tube. Let’s assume that this flow is representative of the entire wind i.e. the wind is
spherically-symmetric and depends only on radial distance. The magnetic field is approx-

imated by two regions, a potential inner region and a magnetically-open outer region,

R\ 142
B, <> , forr < R,,
B, = " (2.127)

R\ 2
B, (> , forr > R,,
r

where R, is the radius at which the wind pressure opens the magnetic field to become
purely radial, and B, is the field strength at R, (this is depicted in Figure 2.10). Henceforth
quantities denoted with “A” are measured at r = R4, “x” atr = R,, and “0” atr = R,.

The order of the magnetic field [ increases with complexity i.e. dipole [ = 1, quadrupole

| = 2, octupole [ = 3, etc. From this, a relationship for R4 can be produced that depends
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Figure 2.10: Schematic of a dipolar magnetic field in the framework of the 1D semi-analytic theory. The
opening radius R, is shown in red, the Alfvén radius R4 is shown in blue. The behaviour of a flux tube
area A with radial distance is depicted in green. Importantly this figure shows the difficultly in capturing
the dynamics of multidimensional flows with a one-dimensional relationship. In reality, and for the MHD
models explored throughout this thesis, the Alfvén surface is not spherical and so the best “spherical” value
for a given surface must be found numerically.

on either; 1) the surface magnetic field strength, or 2) the open magnetic flux in the wind.

From previous simulation results, R 4 is generally located in the open-field region,

so here it is assumed that R4 > R,. The field strength at the Alfvén radius B4 is then

R\ 2 R\ 142 / R\ 2
Ba=B,| — | =B — — . .
ca(E (R e

As the flow is ideal, the magnetic flux ® and mass-loss rate M, are conserved quantities

given by,
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along the magnetic flux tube (stellar wind),

Oy =47R4YBa = ATR2B, = ®open, (2.129)

r

142
pv AT R2 <> , forr < R,,

M = pu, A = R, (2.130)

pupdmr?, forr > R,.

To derive a relationship for R 4 based on the surface field strength B,, I begin with

the Alfvén speed v4 squared, and substitute the relation for B4 in terms of the surface

Bi [B* (2) - (;) T 2. (2.131)

Ampa 4mpa

field strength B,

v =

This relation is then rearranged, and M = PAV A4WR?4 is substituted into the denominator,

R* 204+-4 Ro 4 R* 2042 Ro 2 R* 2
BQ o 32 _
*<Ro> <RA> *<Ro) (RA> <RA>
’UA: =

ATpava M/Ri

- R\ 2142 s R\ 2
- o) Ra) (2.132)
M

Further rearranging for R4,

RaN2 / R\ 2 Ra\2/Ra\2 /RN\2 B2R?
) = — — ] = 2.133
&) (&) - &) &) -w e

and defining the wind magnetisation T = B2ZR2/(Mues.), where vese = \/2GM, /R, is

the surface escape speed, leads to,

RA 20+2 Ro 21 Vesc
-T— 2.134
<R*> (RA> VA ( )

This final equation relates R4 to T, but there are some unknowns i.e. the ratio of R,/ R4,

and the flow speed at R 4. Typically, R,/ R 4 is assumed to be constant (or has a dependence
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Figure 2.11: Top: Alfvén radius R4 versus wind magnetisation T for stellar winds with dipolar, quadrupolar
and octupolar magnetic fields. Coloured symbols represent the rotation rate of the stars (using the fraction
of break-up speed f), which are accounted for with the additional term (1 + f2/K?)~/2. For a given surface
magnetic field strength and mass-loss rate, increasing the complexity of the field reduces the size of R4 i.e.
weakens the strength of magnetic braking. Bottom: Alfvén radius R4 versus open-flux wind magnetisation
Y open for the stellar winds in the top panel. There is still a slight spread in values, which is likely caused by
variation in the wind acceleration profiles between the different magnetic topologies, see Section 3.4. Taken
from Réville et al. (2015a).

on Y that can be accounted for), and v 4 is parameterised as,

VA RA q
- . 2.135
“(m) (2.135)

UESC
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Figure 2.12: Alfvén radius divided by T'/(2+2) versus increasing rotation rate (in units of the break-up speed
f). Neglecting rotation, the residual of this division should be (vesc/v4)* ?+2), however centrifugal forces
change this relation to (vesc(14 f2/K?)72 /ua)/ %2 which is plotted with a dashed line. The difference
from this and the previous relationship are negligible up to around f = 0.03. Taken from Matt et al. (2012).

This relation is further discussed in the Appendix of the published paper in Section 3.3.

Using these assumptions, equation (2.134) can be written as,

R4 Vese\ 1/(21+2)
T (T UA> oc YV 24 (2.136)

which is the relation typically used to parameterise simulation results (see Réville et al.
2015a; Pantolmos and Matt 2017). The fit proportionality constants contain informa-
tion about the multi-dimensional nature of the flow, and so deviate slightly from what
would be expected analytically. The scaling of R4 versus T for stellar winds with dipo-
lar, quadrupolar and octupolar magnetic fields are shown in the top panel of Figure 2.11.
Notice that the simulations in Figure 2.11 use a variety of rotation rates, which modify
the scaling due to the magnetocentrifugal effect. Matt et al. (2012) parameterised this by

changing the wind speed used in the denominator of the wind magnetisation,

2 2 QQsz 2 2 2
new — Vese T K2 = Q]esc(l + f /K )7 (2137)

v
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where f = Q.R./\/GM,/R, is the fraction of break-up velocity, and K is a fit parameter
to the wind simulations (Réville et al. 2015a). This factor is already incorporated into
Figure 2.11. Centrifugal forces only become significant at the strongest rotation rates (i.e.
f > 0.03), see Figure 2.12 where the functional form of equation (2.137) is shown with a

dashed line (in good agreement with the simulation results).

A similar scaling relation can be derived in terms of the open magnetic flux ®,,cy,
which is independent of the complexity of the coronal magnetic field I. However, it is less
applicable to the study of other stars, where the open magnetic flux cannot be evaluated.

Starting again with substituting the field strength at R 4 in the relation for v124,

R\ 212
w_|2(s) ]
4 fa) ] (2.138)

which is rearranged,

R* 2
4 232 4 2
L nrBRy R )

2 _
VA= (47)?2 dmpaRY

: (2.139)

such that the open magnetic flux ® e, = 47 B, R2 can be substituted, along with M,

R* 2
1 (I)gpen/Ri <RA)
47)2 M )

va=1 (2.140)

Finally, by defining the open-flux wind magnetisation as Yopen, = o2 /R%/ (M Vese), A

open

relation for R4 is produced,

Ra\ 2 1 2. /R 1 Vese
< > = (2.141)

- = T open —-
R, 42 Moy (4m)2 " Py

As with the surface field strength formulation, by using equation (2.135), the scaling of

R4 in terms of Yy, is given by,

Ry Vese\ 1/2
7 X (To,,mm) oc TL/2), (2.142)
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Figure 2.13: Top: Alfvén radius R4 versus open-flux wind magnetisation Y opcn for stellar winds with differ-
ent wind-driving temperatures. All simulations use a dipolar magnetic field configuration. For a given open
magnetic flux and mass-loss rate, increasing the temperature of the wind reduces the size of R4. Bottom:
Alfvén radius R4 versus open-flux wind magnetisation Topen including the average wind speed at the Alfvén
radius (va), calculated from the simulations. This additional factor collapses all the wind simulations onto
a single scaling relation. Therefore the open magnetic flux, mass-loss rate, and stellar wind acceleration are
significant factors that affect the efficiency of magnetic braking in low-mass stars. Taken from Pantolmos and
Matt (2017).

For the wind simulations shown in Figure 2.11, this relation collapses the data points onto
arelatively tight sequence (see bottom panel). However, the simulations from Réville et al.

(2015a) are all driven by the same thermal wind temperature, unlike the simulations from
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Pantolmos and Matt (2017) which are shown in the top panel of Figure 2.13. Changes to the
thermal driving consequently affects the value of v4, and so changes the fit parameters
needed to explain the wind simulations. By evaluating the average wind speed at the
Alfvén radius (v4), Pantolmos and Matt (2017) were able to show that equation (2.142) is

able to describe all of their simulation results (see bottom panel of Figure 2.13).

One-dimensional semi-analytic theory is able to explain the results of MHD wind
simulations that include different pure magnetic geometries, differing rotation rates and a
variety of thermal wind driving temperatures. It is likely that these results are also true in
combination, i.e. the scaling of an octupole stellar wind with a range of thermal-driving
will be adequately described by the mathematics of this Section. However, the magnetic
fields of low-mass stars are not simply one magnetic geometry, instead containing multiple
magnetic components. In this case, which component produces the dominant scaling?

Where would a mixed geometry magnetic field be located in Figures 2.11 and 2.13?

2.5.5 Conserved Quantities in Stationary Ideal Magnetohydrodynamic Flows

For the idealised simulations conducted in this work, through Chapter 3 and 7, there are
some fundamental quantities that are conserved along magnetic field lines. This means
they satisty,

B Va=0, (2.143)

where « is the conserved quantity. These quantities are as follows,

= — 2.144
K PB (2.144)
By
A = rsin 6 (U — > , (2.145)
4K
1 kB
0 _ _ 2.14
eff rsin0<v¢ p )’ (2140
v? vy p GM, pBy
Ep = S — +rsinfQ.rr—o, (2.147)
2 ~v-1p T K

S = pp 7, (2.148)
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where £ is the mass flux per field strength, A is the specific angular momentum flux, Qs
is the effective rotation rate of the flow, Er is the Bernoulli’s equation for energy, and S is

the entropy of the plasma. These quantities are derived in Appendix B.

2.6 Thesis Outline

In this thesis, I develop magnetohydrodynamic models of stellar winds that include more
complex magnetic geometries than previous works, which favoured single magnetic ge-
ometries. These are then used to develop semi-analytic prescriptions for stellar angular
momentum-loss rates, referred to as “braking laws” (Chapter 3). I apply my semi-analytic
braking laws to a variety of observationally motivated cases in order to examine the effect
of variable magnetic activity on angular momentum-loss rates. Using both remote sens-
ing observations of the Sun’s photospheric magnetic field and in-situ measurements of the
solar wind, I calculate the braking torque due to the solar wind over ~ 20 years (Chapter
4). Additionally, 61 Cyg A, € Eri, £ Boo A and 7 Boo A have all been observed with the
Zeeman-Doppler imaging technique over multiple epochs such that the variation of their
large scale magnetic fields has been mapped. This is combined with estimated mass-loss
rates from astrospheric Lym-« observations, for all but tau Boo A, such that their time-
varying angular momentum-loss rates can be calculated (Chapter 4). For the Sun and
these four stars, I find a discrepancy between my semi-analytic braking law and the an-
gular momentum-loss rates expected by current rotational evolution models (mine being
a factor of 2-30 smaller). To begin ruling out further temporal variability as the cause of
this discrepancy, I calculate the solar angular momentum-loss rate using reconstructions
of solar activity from cosmogenic radioisotopes records (which span around 9000 years),
and show no evidence for an increased angular momentum-loss rate over this timescale
(Chapter 5). An attempt is made to directly measure the angular momentum content of
the solar wind using in-situ measurements from the Wind spacecraft, which appears to
support the result from my braking law (Chapter 6). This work continues and is the focus
of current and future collaborations with Parker Solar Probe and Solar Orbiter, two space-

craft that will venture closer to the Sun than any other man-made objects, collecting in-situ
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measurements of the solar wind which may shed light on the true angular momentum-
loss rate. Finally, the braking laws are revised to include the effect of non-axisymmetric
magnetic geometries, for which I perform some 3D magnetohydrodynamic simulations

(Chapter 7).
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Chapter 3

The Effect of Combined Magnetic
Geometries on Thermally Driven

Winds

3.1 Introduction

From Section 2.5.4, the angular momentum-loss rates of thermally-driven winds that con-
tain a single magnetic geometry (i.e. dipole, quadrupole, etc) with a known wind accel-
eration profile are well described by semi-analytic theory. However some open questions
remain, e.g. the effect of more realistic magnetic geometries. As an example, the Sun’s
photospheric magnetic field is observed to be far more complex than just a dipole, with
small scale active regions in addition to an organised large-scale field that evolves during
the 11-year solar activity cycle (DeRosa et al. 2012; Vidotto et al. 2018). This is reflected
in the large-scale morphology of the solar wind seen through coronagraph images (see
Figure 3.1, Michels et al. 1988; Lamy et al. 2019), or during total solar eclipses (e.g. Mikié
et al. 2018). The magnetic fields of other Sun-like stars have also been studied through
the Zeeman-Doppler imaging technique (ZDI, discussed further in Chapter 4), which re-
solves their large-scale magnetic fields, and shows that their surface magnetic fields con-

tain a variety of geometries that evolve in time (Petit et al. 2009; Morgenthaler et al. 2012;
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Figure 3.1: Variation of the large-scale solar wind during the Ulysses mission. Top panel shows the average
wind speed and magnetic field polarity versus latitude for each orbit, over the top of coronagraph images
of the Sun taken by the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and He-
liospheric Observatory (SOHO) spacecraft during the corresponding time periods. Bottom panel shows the

solar activity cycle in sunspot number and the inclination of the Heliospheric Current Sheet. Taken from
McComas et al. (2013).

Jeffers et al. 2014; Saikia et al. 2016; Jeffers et al. 2017, 2018; Saikia et al. 2018a). In order to
apply semi-analytic theory to these observed magnetic fields, it is first important to un-
derstand how combinations of the simplest large-scale magnetic field geometries (dipole,
quadrupole, and octupole) modify the relationships gained from studying isolated mag-
netic geometries. In this Chapter, I begin with an overview of the PLUTO MHD code
which I use to simulate stellar winds with a variety of combined magnetic fields. The
results from which, appear as they were published in The Astrophysical Journal. Following
this, I present some additional details/figures that were left out of the papers, and finally

I summarise the results from this Chapter in the context of the overall thesis.

3.2 The PLUTO Magnetohydrodynamic Code

PLUTO is a versatile shock capturing code, written in ¢ (Mignone et al. 2007; Mignone
2009), designed to evolve the HD or MHD equations (including their relativistic exten-
sions) on a static or adaptive grid. For readers that are not well-versed in computational
fluid dynamics, Appendix C.2 contains some introductory examples of finite difference

methods that illustrate the general concepts that will be discussed in this Section. The
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PLUTO code is highly modular in structure, meaning pieces of code can be included (or
excluded) to suit the system under study. PLUTO exploits a finite volume formalism to

evolve the HD or MHD equations in conservative form i.e.,

oU
o TV F=5, 3.1)

where U, F, and S represent conserved quantities, flux variables and source terms respec-
tively. For this Chapter, PLUTO is used to solve the ideal MHD equations (see Section 2.2

for more information), which correspond to,

o _ -T _ _
p pv 0
A vv — BB +1Ip Joy

v=|", F=| " Tl os=| B 62
E (E+pr)v—B(v-B) pv - g
B vB — Bv 0

where p is the mass density, v is the velocity field, g is the gravitational acceleration, B is
the magnetic field!, py = p+ B?/2is the combined thermal and magnetic pressure, I is the
identity matrix, and E = pe + pv?/2+B?/2 is the total energy density, with ¢ representing
the internal energy per unit mass of the fluid. Note the MHD equations require a closing
equation of state (EoS), which here is taken to be the ideal gas law i.e. pe = p/(v — 1),

where 7 represents the ratio of specific heats.

In a finite volume discretisation, the domain is decomposed into control volumes

(or grid cells) whose properties are known only as a volume-average i.e.,

) =5 / U, ")da, (3.3)

1
2

where the control volume (in one dimension) denoted i has cell facesati—1/2and i+1/2,
see Figure 3.2. These volume-averages are evolved by considering the fluxes through each

cell interface. This can be derived mathematically by considering first the differential form

1. The PLUTO code operates with a factor of 1/+/4m absorbed into the normalisation of B.
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Figure 3.2: Finite volume discretisation of the orange dashed function, volume averages are shown at the top
of the Figure (solid blue lines). In order to compute the fluxes through the cell faces, Riemann problems are
solved at the cell interfaces. This requires knowledge that is removed by averaging over each cell volume.
The bottom three examples show different reconstructions from the volume-averaged value, located at the
cell centre.

of equation (3.1) in one dimension (ignoring source terms),

tn+1

oU OF

U oF _ . /Ii+§ oUu oOF
ot oxr b .

5+ agg)d:rdt =0, (3.4)

1
2

when integrated over a time interval of At = t"t1 — ¢ and a cell size of Az = Ti1—T; 1
2 2

this gives an integral form of discretisation,

n n At [~ ~n
yrtt =y - Ar (FH; — FZ._;>, (3.5
where,
_ 1 tn+1
= /t Flag, 1. 0)d, (3.6)

is the integrated flux through the i + 1/2 cell interface. This method exactly evolves the
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volume-averages of U, however the fluxes between cells are unknown. To find these fluxes,
the PLUTO code solves “Riemann problems” at every cell interface, i.e. the temporal
evolution of an initial discontinuity separating two constant states. The Riemann problem

is defined by the initial condition,

Uy, forz<w 1,
U(z,0) = 2 (3.7)

Ugr, forxz > Tifls

where the value of U(x;1/9,t > 0) is to be found. The evolution of this problem is ex-
actly known for the HD case and is approximated by Riemann solvers for MHD. This is
shown schematically in Figure 3.3, the initial discontinuity evolves into shocks and rar-
efactions which travel at the characteristic speeds of the system. In the HD case, this
corresponds to a forwards and backwards propagating sound wave and an entropy wave.
In ideal MHD this problem is more complex, with the solution of the Riemann problem
following a 7 wave pattern (for the entropy wave plus the forward /backward propagat-
ing slow-magnetosonic, Alfvén, and fast-magnetosonic waves), see the diagram on the
right of Figure 3.3. The flux through the cell interface is evaluated on the discontinuity
between the initial states. For the wind simulations in this Chapter, the Harten, Lax, and
van Leer (HLL) solver (Einfeldt 1988) is used to solve the Riemann problems at cell inter-
faces. Though this scheme is more numerically diffusive than others, it was found that this
diffusivity acts to stabilise some of the numerically challenging features of stellar winds,

such as the open-closed magnetic field boundary.

To evolve the MHD equations accurately, the Riemann problems must be provided
with the left and right states, however the finite volume method only evolves volume-
averaged quantities which reside at the cell centres. Therefore, error in this scheme follows
from uncertainty in reconstructing the spatial variation of the function inside each control
volume from its volume-averaged value. The simplest method to acquire left and right
states at the cell faces, is to assume the volume-averaged value is representative of the
whole control volume and use that (green lines in Figure 3.2). A slighty more sophisticated
method would be to reconstruct the variation over the cell with a linear or even parabolic

function, in order to more accurately portray the continuous distribution in each volume.
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Figure 3.3: Left: Example of a hydrodynamic Riemann problem. Right: Schematic of the 7 waves from the
magnetohydrodynamic Riemann problems evolving in time.

Linear and parabolic reconstructions are shown in the lower half of Figure 3.2. Itis easy to
see that these reconstructions could create slopes that are too steep and that give spurious
negative values for quantities at the cell faces. To resolve this, PLUTO uses slope limiters
which restrict the gradient of the reconstructions inside each cell to prevent unphysical
or anomalous values at the interfaces which may leave to numerical errors or oscillatory
solutions. The system of MHD equations is evolved in time using a Runge Kutta (2 or 3
step) time stepping, where the time step At" is calculated using the Courant-Friedrichs-
Lewy (CFL) number (supplied by the user) and information available in the previous time

step.

For MHD cases, another constraint is produced as the magnetic field must maintain
V - B = 0, which is not automatically done by the numerical methods above. The PLUTO
code has multiple schemes to enforce zero divergence of the magnetic field, two of which
are used in this thesis: Hyperbolic Divergence Cleaning (Div Cleaning) (Dedner et al.
2002), and Constrained Transport (CT) (see To6th 2000, for discussion). In Div Cleaning,
the divergence free constraint is maintained by solving a modified set of the induction
equation and solenoidal constraint which allow for the creation of magnetic monopoles.

These monopoles are advected out of the simulation domain at the fastest admissible
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speed and are also subjected to a damping throughout their time in the domain. In CT, two
versions of the magnetic field are created, one at the cell-centre (B) and another staggered
onto the cell faces (b), which is an area-weighted average. The electromotive force (¢ =
—v x B) is calculated at the corners of the control volumes and is used to evolve the

staggered magnetic field using,

b db, 1
— ~dA = —+ = ~dl = .
/<at+Vxe) 0 — dt+A%€ 0, (3.8)

where A is the area of the cell interface in the x direction, and £ is the edge surrounding
the area A. This method conserves the divergence of the magnetic field at machine accu-
racy (which means that any initial error will propagate into the solution!). I find the CT
method in PLUTO is generally more accurate than the Div Cleaning method, especially for
studying time-dependent flows or instabilities. The work in this Chapter uses CT, though
the work in Chapter 7 uses Div Cleaning as the current implementation of CT in PLUTO
does not work with a three dimensional spherical grid geometry. Additionally, in this
thesis the magnetic field used in PLUTO is split into a background component By and a
deviation By such that the total magnetic field satisfies B = Bg + B;. The background
field is stationary, curl-free and satisfies the divergence constraint. The MHD equations
can then be reduced in terms of By and B4, which is computationally useful. The stellar
wind solutions in this work are initialised with a potential large-scale magnetic field Bg

which is acted upon by the stellar wind thus creating B .
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Abstract

Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries,
which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole,
and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum
from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar
wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we
quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations
with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of
magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our
combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field
strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength.
The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-
order component of the field (dipole in this paper) is the most significant in determining the angular

momentum loss.

Key words: magnetohydrodynamics (MHD) — stars: evolution — stars: low-mass — stars: magnetic field —

stars: rotation — stars: winds, outflows

1. Introduction

The spin down of cool stars (M, < 1.3 Mg) is a complex
function of mass and age, as shown by the increasing number
of rotation-period measurements for large stellar populations
(Barnes 2003, 2010; Irwin & Bouvier 2009; Agiieros et al.
2011; Meibom et al. 2011; McQuillan et al. 2013; Bouvier
et al. 2014; Stauffer et al. 2016; Davenport 2017). The
observed properties of these stars show a wide range of mass-
loss rates, coronal temperatures, field strengths, and geometries,
which all connect with stellar rotation to control the loss of
angular momentum (Reiners & Mohanty 2012; Gallet &
Bouvier 2013; Van Saders & Pinsonneault 2013; Brown 2014,
Gallet & Bouvier 2015; Matt et al. 2015; Amard et al. 2016;
Blackman & Owen 2016). Despite the wide range of
interlinking stellar properties, an overall trend of spin down
with an ag;s)roximately Skumanich law is observed at late ages:
Q, o< 77 (Skumanich 1972; Soderblom 1983).

For Sun-like stars on the main sequence, the spin-down
process is governed primarily by their magnetized stellar
winds, which remove angular momentum over the star’s
lifetime. Parker (1958) originally posited that stellar winds
must exist due to the thermodynamic pressure gradient between
the high-temperature corona and interplanetary space. Con-
tinued solar observations have constrained theoretical models
for the solar wind to a high degree of accuracy (Usmanov et al.
2014; van der Holst et al. 2014; Oran et al. 2015). Recent
models of the solar wind are beginning to accurately reproduce
the energetics within the corona and explain the steady outflow
of plasma into the heliosphere (e.g., Grappin et al. 1983; Van
der Holst et al. 2010; Pinto et al. 2016). The wind driving is
now known to be much more complex than a thermal pressure
gradient, with authors typically heating the wind through
the dissipation of Alfvén waves in the corona. Other cool stars
are observed with X-ray emissions indicating hot stellar

coronae like that of the Sun (Rosner et al. 1985; Wright
et al. 2004; Wolk et al. 2005; Hall et al. 2007). Similar stellar
winds and wind heating mechanisms are therefore expected to
exist across a range of Sun-like stars. Assuming equivalent
mass-loss mechanisms, results from the solar wind are
incorporated into more general stellar wind modeling efforts
(e.g., Cohen & Drake 2014; Alvarado-Gémez et al. 2016).
Detailed studies of wind-driving physics remain computa-
tionally expensive to run and so are usually applied on a case-
by-case basis. How applicable the heating physics gained from
modeling the solar wind is to other stars is still in question.
With the reliability of such results even for the global
properties of a given star in question, large-parameter studies
with simpler physics remain useful. A more general method
can allow for parameterizations that are more appropriate to the
variety of stellar masses and rotation periods found in observed
stellar populations. Parker-type solutions remain useful for this
due to their simplicity and versatility (Parker 1965; Mestel
1968; Sakurai 1990; Keppens & Goedbloed 1999). In these
solutions, wind plasma is accelerated from the stellar surface
and becomes transonic at the sonic surface. With the addition
of magnetic fields, the wind also becomes trans-Alfvénic, i.e.,
faster than the Alfvén speed, at the Alfvén surface. Weber &
Davis (1967) showed for a one-dimensional magnetized wind
that the Alfvén radius represented a lever arm for the spin-
down torque. Since the introduction of this result, many
researchers have produced scaling laws for the Alfvén radius
(Mestel 1984; Kawaler 1988; Matt & Pudritz 2008; Ud-Doula
et al. 2009; Pinto et al. 2011; Matt et al. 2012; Réville et al.
2015a), all of which highlight the importance of the magnetic
field strength and mass-loss rate in correctly parameterizing a
power-law dependence. In such formulations, the mass-loss
rate is incorporated as a free parameter, as the physical
mechanisms that determine it are not yet completely
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understood. Measuring the mass-loss rate from Sun-like stars is
particularly difficult due to the wind’s tenuous nature and poor
emission. Wood (2004) used Lya absorption from the
interaction of stellar winds and their local interstellar medium
to measure mass-loss rates, but the method is model-dependent
and only available for a few stars. Theoretical work from
Cranmer & Saar (2011) predicts the mass-loss rates from Sun-
like stars, but it is uncertain if the physics used within the
model scales correctly between stars. Therefore, parameter
studies where the mass-loss rate is an unknown parameter are
needed.

In addition to the mass-loss rate, the angular momentum loss
rate is strongly linked with the magnetic properties of a given
star. Frequently, researchers assume the dipole component of
the field to be the most significant in governing the global wind
dynamics (e.g., Ustyugova et al. 2006; Zanni & Ferreira 2009;
Gallet & Bouvier 2013; Cohen & Drake 2014; Gallet &
Bouvier 2015; Johnstone et al. 2015; Matt et al. 2015). Zeeman
Doppler imaging (ZDI) studies (e.g., Morin et al. 2008; Petit
et al. 2008; Fares et al. 2009; Jeffers et al. 2014; Vidotto et al.
2014a; See et al. 2015, 2016, 2017; Folsom et al. 2016;
Hébrard et al. 2016) provide information on the large-scale
surface magnetic fields of active stars. Observations have
shown stellar magnetic fields to be much more complex than
simple dipoles, containing combinations of many different field
modes. ZDI is a topographic technique that typically decom-
poses the field at the stellar surface into individual spherical
harmonic modes. The 3D field geometry can then be recovered
with field extrapolation techniques using the ZDI map as an
inner boundary. Several studies have considered how these
observed fields affect the global wind properties. Typically
used to determine an initial 3D field solution, a magnetohy-
drodynamics (MHD) code then evolves this initial state in time
until a steady-state solution for the wind and magnetic field
geometry is attained (e.g., Cohen et al. 2011; Vidotto et al.
2011; Alvarado-Gomez et al. 2016; do Nascimento et al. 2016;
Garraffo et al. 2016a; Nicholson et al. 2016; Réville et al.
2016). These works are less conducive to the production of
semianalytical formulations, as the principal drivers of the spin-
down process are hidden within complex field geometries,
rotation, and wind-heating physics.

A few studies show systematically how previous torque
formulations depend on magnetic geometry using single
modes. Réville et al. (2015a) explored thermally driven stellar
winds with dipolar, quadrupolar, and octupolar field geome-
tries. They concluded that higher-order field modes produce a
weaker torque for the same field strength and mass loss, which
is supported by results from Garraffo et al. (2016b). Despite
these studies and works like them, only one study has
systematically scaled the mass-loss rate for a mixed geometry
field (Strugarek et al. 2014a). However, the aforementioned
studies of the angular momentum loss from Sun-like stars have
yet to address the systematic addition of individual spherical
harmonic field modes.

Mixed geometry fields are observed within our closest star,
the Sun, which undergoes an 11 yr cycle oscillating between
dipolar and quadrupolar field modes from cycle minimum to
maximum, respectively (DeRosa et al. 2012). Observed Sun-
like stars also exhibit a range of spherical harmonic field
combinations. Simple magnetic cycles are observed using ZDI.
Both HD 201091 (Saikia et al. 2016) and HD 78366
(Morgenthaler et al. 2012) show combinations of the dipole,
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quadrupole, and octupole field modes oscillating similarly to
the solar field. Other cool stars exist with seemingly stochastic
changing field combinations (Petit et al. 2009; Morgenthaler
et al. 2011). The observed magnetic geometries all contain
combinations of different spherical harmonic modes with a
continuous range of mixtures; it is unclear what impact this will
have on the braking torque.

In this study, we investigate the significance of the dipole
field when combined with a quadrupolar mode. We focus on
these two field geometries, which are thought to contribute in
antiphase to the solar cycle and perhaps more generally to
stellar cycles in cool stars. Section 2 covers the numerical setup
with a small discussion of the magnetic geometries for which
we develop stellar wind solutions. Section 3 presents the main
simulation results, including discussion of the qualitative wind
properties and field structure, along with quantitative para-
meterizations for the stellar wind torque. We also highlight the
dipole’s importance in the braking and introduce an approx-
imate scaling relation for the torque. Finally, in Section 4, we
focus on the magnetic field in the stellar wind, first with a
discussion of the overall evolution of the flux, then with a
discussion of the open flux and opening radius within our
simulations. Conclusions and thoughts for further work can be
found in Section 5. The Appendix contains a short note on the
wind acceleration profiles of our wind solutions.

2. Simulation Method
2.1. Numerical Setup

This work uses the MHD code PLUTO (Mignone et al. 2007;
Mignone 2009), a finite-volume code that solves Riemann
problems at cell boundaries in order to calculate the flux of
conserved quantities through each cell. PLUTO is modular by
design, capable of interchanging solvers and physics during setup.
The present work uses a diffusive numerical scheme, the solver of
Harten, Lax, and van Leer (HLL; Einfeldt 1988), which allows for
greater numerical stability in the higher-strength magnetic field
cases. The magnetic field solenoidality condition (V - B = 0) is
maintained using the constrained transport method (See T6th 2000
for discussion).

The MHD equations are solved in a conservative form, with
each equation relating to the conservation of mass, momentum,
and energy, plus the induction equation for the magnetic field:

@—i-v-pv:O, (D)
ot
om
E—FV-(mv—BB—FIpT):pa, (2)
%—If+V-((E+pT)v—B(v~B))=m-a, 3)
Z—f—i—V%vB—Bv):O. @)

Here p is the mass density, v is the velocity field, a is the
gravitational acceleration, B is the magnetic field', pr = p + B /2
is the combined thermal and magnetic pressure, and m = pv is the
momentum density. The total energy density is written as £ = pe
+ m?*/(2p) + B*/2, with € representing the internal energy per

' The PLUTO code operates with a factor of 1/+/4x absorbed into the

normalization of B. Tabulated parameters are given in cgs units with this factor
incorporated.
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unit mass of the fluid. In addition, I is the identity matrix. A
polytropic wind is used for this study, such that the closing
equation of state takes the form pe = p/(y — 1), where
represents the polytropic index.

We assume the wind profiles to be axisymmetric and solve the
MHD equations using a spherical geometry in 2.5D; i.e., our
domain contains two spatial dimensions (r, #) but allows for 3D
axisymmetric solutions for the fluid flow and magnetic field
using three vector components (r, 6, ¢). The domain extends
from one stellar radius (R,) out to 60 R, with a uniform grid
spacing in € and a geometrically stretched grid in , which grows
from an initial spacing of 0.01 to 1.08 R,, at the outer boundary.
The computational mesh contains N, X Ny = 256 x 512 grid
cells. These choices allow for the highest resolution near the star,
where we set the boundary conditions that govern the wind
profile in the rest of the domain.

Initially, a polytropic Parker wind (Parker 1965; Keppens &
Goedbloed 1999) with v = 1.05 fills the domain, along with a
superimposed background field corresponding to our chosen
magnetic geometry and strength. During the time evolution, the
plasma pressure, density, and poloidal components of the
magnetic field (B,, By) are held fixed at the stellar surface, while
the poloidal components of the velocity (v,, vy) are allowed to
evolve in response to the magnetic field (the boundary is held
with dv,/dr=0 and dvy/dr =0). We then enforce the flow at
the surface to be parallel to the magnetic field (v||B). The star
rotates as a solid body, with B, linearly extrapolated into the
boundary and v set using the stellar rotation rate 2,

v, - By

vy = 1 sinf + By, ®))

€9

where the subscript “p” denotes the poloidal components (r, 6)
of a given vector. This condition enforces an effective rotation
rate for the field lines that, in steady-state ideal MHD, should
be equal to the stellar rotation rate and conserved along field
lines (Zanni & Ferreira 2009; Réville et al. 2015a). This
ensures that the footpoints of the stellar magnetic field are
correctly anchored into the surface of the star. The final
boundary conditions are applied to the outer edges of the
simulation. A simple outflow (zero derivative) is set at 60 R,
allowing for the outward transfer of mass, momenta, and
magnetic field, along with an axisymmetric condition along the
rotation axis (/=0 and 7). Due to the supersonic flow
properties at the outer boundary and its large radial extent
compared with the location of the fast magnetosonic surface,
any artifacts from the outer boundary cannot propagate upwind
into the domain.

The code is run, following the MHD equations above, until a
steady-state solution is found. The magnetic fields modify the
wind dynamics compared to the spherically symmetric initial
state, with regions of high magnetic pressure shutting off the
radial outflow. In this way, the applied boundary conditions
allow for closed and open regions of flow to form (e.g.,
Washimi & Shibata 1993; Keppens & Goedbloed 2000), as
observed within the solar wind. In some cases of strong
magnetic field, small reconnection events are seen, caused by
the numerical diffusivity of our chosen numerical scheme.
Reconnection events are also seen in G. Pantolmos & S. Matt
(2017, in preparation) and discussed in their Appendix. We
adopt a similar method for deriving flow quantities in cases
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exhibiting periodic reconnection events. In such cases, once a
quasi-steady state is established, a temporal average of
quantities such as torque and mass loss are used.

Inputs for the simulations are given as ratios of characteristic
speeds that control key parameters such as the wind
temperature (Cy/Vese), field strength (v4/vesc), and rotation rate
Veot/ Viep)- Where ¢, = /qp/p is the sound speed at the
surface, v4 = By / J4mp is the Alfvén speed at the north pole,

Viot 18 the rotation speed at the equator, Ve, = /2GMy /Ry is

the surface escape speed, and viep, = /GMyx/Ry is the
Keplerian speed at the equator. In this way, all simulations
represent a family of solutions for stars with a range of
gravities. As this work focuses on the systematic addition of
dipolar and quadrupolar geometries, we fix the rotation rate for
all of our simulations. Matt et al. (2012) showed that the
nonlinear effects of rotation on their torque scaling can be
neglected for slow rotators. They defined velocities as a
fraction of the breakup speed,

3.2
g _ tuRs ©)

- 172"
Vkep =Ry f=7/2 (GM*)

The Alfvén radius remains independent of the stellar spin rate
until f ~ 0.03, after which the effects of fast rotation start to be
important. For this study, a solar rotation rate is chosen
(f=4.46 x 107>) that is well within the slow-rotator regime.
We set the temperature of the wind with ¢,/vese = 0.25, higher
than the ¢;/vesc = 0.222 used in Réville et al. (2015a). This
choice of higher sound speed drives the wind to slightly higher
terminal speeds, which are more consistent with observed solar
wind speeds. Each geometry is studied with 10 different field
strengths controlled by the input parameter v4/ves., Which is
defined here with the Alfvén speed on the stellar north pole (see
next section). Table 1 lists all of our variations of va/Ves. for
each geometry.

Due to the use of characteristic speeds as simulation inputs,
our results can be scaled to any stellar parameter. For example,
using solar parameters, the wind is driven by a coronal
temperature of ~1.4 MK, and our parameter space covers a
range of stellar magnetic field strengths from 0.9 to 87 G over
the pole. Changing these normalizations will modify this range.

2.2. Magnetic Field Configuration

Within this work, we consider magnetic field geometries that
encompass a range of dipole and quadrupole combinations with
different relative strengths. We represent the mixed fields using
the ratio, Rg;p, of the dipolar field to the total combined field
strength.

In this study, the magnetic fields of the dipole and
quadrupole are described in the formalism of Gregory et al.
(2010) using polar field strengths:

R 3
B, gip(r, 0) = Bizl(—*) cos#, (7
r
1o ReY .
By dip(r, 0) = =B, | —| sin, ®)
2 r
1o Ri)! ’
Br,quad(r7 0) = EB* T (B3cos* 6 — 1), )
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Figure 1. Initial magnetic configurations for a dipolar field, quadrupolar field, and two mixed cases (red, green, magenta, and blue for the dipole fractions of 100%,
50%, 10%, and purely quadrupole, respectively). Mixed cases have the dominant pure field geometry overplotted with dashed colored lines. The combined fields add
in the northern hemisphere and subtract in the southern hemisphere because they belong to opposite field symmetry families. With as much as half the field strength in
the quadrupole, shown in green, the topology of the field is still dominated by the dipole field.

4
By, quaa (r, 0) = sz(ﬁ) cos 0 sin . (10)
r

The total field, comprised of the sum of the two geometries,
B(r, 0) = Byip(r, 0) + Bquaa(r, 0), (11)
where the total polar field, By = B! + BL™2, is controlled by
the Rgip parameter,
B!
By

Br,dip
Br,dip + Br,quad

Raip = 12)

r=R4,0=0

This work considers aligned magnetic moments such that R g,
ranges from 1 to 0, corresponding to all the field strengths in
the dipolar or quadrupolar mode, respectively. As with v4/Vesc,
Raip is calculated at the north pole. This sets the relative
strengths of the dipole and quadrupole fields,

B = RaipB, B =(1— Reaip) B, 3

Alternative parameterizations are commonly used in the
analysis of ZDI observations and dynamo modeling. These
communities use the surface-averaged field strengths, (|B|), or
the ratio of magnetic energy density (E,, x B?) stored within
each of the dipole and quadrupole field modes at the stellar
surface. During the solar magnetic cycle, values of B2, /deip
can range from ~10-100 at solar maximum to /10~ at solar
minimum (DeRosa et al. 2012). A transformation from our
parameter to the ratio of energies is simply given by

quuad _ E(l - 7edip)z
Bi, 3 R

, 14

where the numerical prefactor accounts for the integration of
magnetic energy in each mode over the stellar surface.

Initial field configurations are displayed in Figure 1. The
pure dipolar and quadrupolar cases are shown in comparison to
two mixed cases (Rgjp = 0.5, 0.1). These combined geometry
fields add in one hemisphere and subtract in the other. This
effect is due to the different symmetry families each geometry
belongs to, with the dipole’s polarity reversing over the
equator, unlike the equatorially symmetric quadrupole. Con-
tinuing the use of “primary” and “secondary” families as in
McFadden et al. (1991) and DeRosa et al. (2012), we refer to
the dipole as primary and quadrupole as secondary. The fields
are chosen such that they align in polarity in the northern
hemisphere. This choice has no impact on the derived torque or
mass-loss rate due to the symmetry of the quadrupole about the
equator. Either aligned or antialigned, these fields will always
create one additive hemisphere and one subtracting; swapping
their relative orientations simply switches the respective
hemispheres. This is in contrast to combining dipole and
octupole fields, where the aligned and antialigned cases cause
subtraction at the equator or poles, respectively (Gregory et al.
2016; A. Finley & S. Matt 2017, in preparation).

Figure 1 indicates that even with equal quadrupole and
dipole polar field strengths, Rgj, = 0.5, the overall dipole
topology will remain. In this case, the magnetic energy density
in the dipolar mode is 1.5 times greater than that in the
quadrupolar mode coupled with the more rapid radial decay of
the quadrupolar field; this explains the overall dipolar topology.
A higher fraction of quadrupole is required to produce a
noticeable deviation from this configuration, which is shown at
Rdgip = 0.1. More than half of the parameter space that we
explore lies in the range where the energy density of the
quadrupole mode is greater than that of the dipole
(quuad /deip > 1.0). For this study, the pure dipolar and
quadrupolar fields are used as controls (both of which were
studied in detail within Réville et al. 2015a), and five mixed
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Figure 2. Logarithm of density normalized by the surface value for dipolar, quadrupolar, and mixed magnetic fields for cases 7, 27, 57, and 67 (see Table 1). The
winds are initialized using the same initial polytropic Parker wind solution with v = 1.05 and ¢,/vesc = 0.25. Stellar rotation rate and magnetic field strength are set
with f = 4.46 x 107> and v, /Vese = 3.0. The Alfvén and sonic Mach surfaces are shown in blue and black, respectively; in addition, the fast and slow magnetosonic
surfaces are indicated with dot-dashed and dashed white lines. A transition from one to two streamers is seen with increasing quadrupolar field (decreasing R;p), and
the two combined field cases exhibit asymmetric field topologies about the equator due to the field addition and subtraction between the antisymmetric dipole and

symmetric quadrupole.

cases are parameterized by Rgjp values (Rg;p, = 0.8, 0.5, 0.3,
0.2, 0.1). We include R 4i, = 0.8 to demonstrate the dominance
of the dipole at higher values. Each R, value is given a
unique identifying color that is maintained in all figures
throughout this paper. Table 1 contains a complete list of
parameters for all cases, which are numbered by increasing
Va/Vese and quadrupole fraction.

3. Simulation Results
3.1. Morphology of the Field and Wind Outflow

Figure 1 shows the topological changes in field structure
from the addition of dipole and quadrupole fields. It is evident
in these initial magnetic field configurations that the global
magnetic field becomes asymmetric about the equator for
mixed cases, as does the magnetic boundary condition that is
maintained fixed at the stellar surface. It is not immediately
clear how this will impact the torque scaling from Réville et al.
(2015a), who studied only single geometries.

Results for these field configurations using our PLUTO
simulations are displayed in Figure 2. The dipole and
quadrupole cases are shown in conjunction with the mixed
field cases Rgip, = 0.5, 0.1. The figure displays the different
sizes of Alfvén surface that are produced for a comparable
value of polar magnetic field strength. The mixed magnetic
geometries modify the size and morphology of the Alfvén and
sonic surfaces. Due to the slow rotation, the fast and slow
magnetosonic surfaces are colocated with the sonic and Alfvén
surfaces (the fast magnetosonic surface always being the larger
of the two surfaces).

The field geometry is found to imprint itself onto the stellar
wind velocity with regions of closed magnetic field confining
the flow and creating areas of corotating plasma, referred to as
dead zones (Mestel 1968). Steady-state wind solutions
typically have regions of open field where a faster wind and
most of the torque is contained, along with these dead zone(s),
around which a slower wind is produced. Similar to the solar
wind, slower wind can be found on the open field lines near the
boundary of the closed field (Fisk et al. 1998; Feldman et al.
2005; Riley et al. 2006). Observations of the Sun reveal the fast
wind component emerging from deep within coronal holes,
typically over the poles, and the slow wind component
originating from the boundary between the coronal holes and
closed field regions. Due to the polytropic wind used here, we
do not capture the different heating and acceleration mechan-
isms required to create a true fast and slow solar-like wind (as
seen with the Ulysses spacecraft; e.g., McComas et al. 2000;
Ebert et al. 2009). Our models produce an overall wind speed
consistent with a slow solar wind component, which we
assume to represent the average global flow. More complex
wind-driving and coronal-heating physics are required to
recover a multispeed wind, as observed from the Sun (Cranmer
et al. 2007; Pinto et al. 2016).

Figure 3 displays a grid of simulations with a range of magnetic
field strengths and R i, = 0.3, 0.2, 0.1 values (B4 /Bg, ranges
from 3.6 to 54, values consistent with the solar cycle maximum),
where the mixing of the fields plays a clear role in the changing
dynamics of the flow. Regions of closed magnetic field cause
significant changes to the morphology of the wind. A single dead
zone is established on the equator by the dipole geometry,
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Figure 3. Simulation results for the lowest R, values 0.3, 0.2, and 0.1 (top, middle, and bottom, respectively), colored by poloidal wind speed, with field lines in
white. The current sheets are indicated by dashed lines, whose color corresponds to their Rg;, value in future figures. The streamer configuration is modified by
changes to both the field strength and mixing ratio. Increased field strength or R i, value tends to revolve the southern hemisphere streamer toward the south pole. The
Alfvén surfaces have been colored to show the flux of angular momentum normal to the surface (units normalized by 8 x 10’6p*vkepR*). The average Alfvén radius,
(Ry), from Equation (19) is shown by dashed gray lines. The sonic surface and opening radius are shown by solid black and dashed red lines, respectively. The
morphology and properties of the lower field cases are nearly indistinguishable, with only slight differences in the streamer locations. The reduction in torque with
increasing quadrupolar fraction can be visually seen by moving down the grid. The most dipolar field is in the top right panel, and the most quadrupolar is in the
bottom left; these models are chosen to emphasize the transition in field dominance.
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whereas the quadrupole creates two over the midlatitudes. Mixed
cases have intermediate states between the pure regimes. Within
our simulations, the dead zones are accompanied by streamers
that form above the closed field regions and drive a slower-speed
wind than that from the open field regions. The dynamics of these
streamers and their location and size are an interesting result of the
changing topology of the flow.

The dashed colored lines in Figure 3 show where the field
polarity reverses using B, = 0, which traces the location of the
streamers. The motion of the streamers through the grid of
simulations is then observed. With increasing quadrupole field,
the single dipolar streamer moves into the northern hemisphere,
and, with continued quadrupole addition, a second streamer
appears from the southern pole and travels toward the northern
hemisphere until the quadrupolar streamers are recovered, both
sitting at midlatitudes. This motion can also be seen for fixed
Rgip cases as the magnetic field strength is decreased. For a
given Rgjp value, the current sheets sweep toward the southern
hemisphere with increased polar field strength, in some cases
(36 and 38) moving onto the axis of rotation. This is the
opposite behavior to decreasing the Rgj, value; ie., the
streamer configuration is seen to take a more dipolar
morphology as the field strength is increased. Additionally in
Figure 3, for low field strengths, each Ry produces a
comparable Alfvén surface with very similar morphology, all
dominated by the quadrupolar mode.

3.2. Global Flow Quantities

Our simulations produce steady-state solutions for the
density, velocity, and magnetic field structure. To compute
the wind torque on the star, we calculate A, a quantity related
directly to the angular momentum flux Fypy = Apv (Keppens &
Goedbloed 2000),

B, |B,P
Ar, ) = r sinG(vO - —‘”i). (15)
P v By

Within axisymmetric steady-state ideal MHD, A is conserved
along any given field line. However, we find variations from
this along the open-closed field boundary due to numerical
diffusion across the sharp transition in quantities found there.

The spin-down torque, 7, due to the transfer of angular
momentum in the wind is then given by the area integral,

T:fAApv.dA, (16)

where A is the area of any surface enclosing the star. For
illustrative purposes, Figure 3 shows the Alfvén surface colored
by angular momentum flux (thick multicolored lines), which is
seen to be strongly focused around the equatorial region. The
angular momentum flux is calculated normal to the Alfvén
surface,

dr A A

— =Apw-A=Fy\-A, 17

A p AM a7
where A is the normal unit vector to the Alfvén surface. The
mass-loss rate from our wind solutions is calculated similarly to
the torque,

M:fA v - dA. (18)
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Both expressions for the mass loss and torque are evaluated
using spherical shells of area A that are outside the closed field
regions. This allows for the calculation of an average Alfvén
radius (which is cylindrical from the rotation axis) in terms of
the torque, mass flux, and rotation rate,

=
Ry) = - . 19
(Ra) ,MQ* 19)

Throughout this work, (R,) is used as a normalized torque that
accounts for the mass-loss rates that we do not control. Values
of the average Alfvén radius are tabulated in Table 1, and (R4)
is shown in Figure 3 using dashed gray lines. For each case, the
cylindrical Alfvén radius is offset inward of the maximum
Alfvén radius from the simulation, a geometrical effect, as this
corresponds to the average cylindrical R, and includes
variations in flow quantities as well. Exploring Figure 3, the
motion of the dead zones/current sheets has little impact on the
overall torque. For example, no abrupt increase in the Alfvén
radius is seen from cases 34 to 36 (where the southern streamer
is forced onto the rotation axis) compared to cases 44 and 46.
The torque is instead governed by the magnetic field strength in
the wind that controls the location of the Alfvén surface.

We parameterize the magnetic and mass-loss properties
using the “wind magnetization” defined by

2p2
_ By Ry
MVCSC

T (20)

where B, is the combined field strength at the pole. Previous
studies that used this parameter defined it with the equatorial
field strength (e.g., Matt & Pudritz 2008; Matt et al. 2012;
Réville et al. 2015a; G. Pantolmos & S. Matt 2017, in
preparation). We use polar values, unlike previous authors, due
to the additive property of the radial field at the pole for aligned
axisymmetric fields. Note that selecting one value of the field
on the surface will not always produce a value that describes
the field as a whole. The polar strength works for these aligned
fields but will easily break down for unaligned fields and
antialigned axisymmetric odd [ fields; thus, it suits the present
study, but a move away from this parameter in future is
warranted.

During analysis, the wind magnetization, Y, is treated as an
independent parameter that determines the Alfvén radius (Ry)
and thus the torque 7. We increase Y by setting a larger v4/Vesc,
creating a stronger global magnetic field. Table 1 displays all
the input values of Raip and v4/ves, as well as the resulting
global outflow properties from our steady-state solutions,
which are used to formulate the torque scaling relations within
this study. Figure 4 displays all 70 simulations in T—Rgp
space. Cases are color-coded by their Ry, value, a convention
that is continued throughout this work.

3.3. Single-mode Torque Scalings

The efficiency of the magnetic braking mechanism is known
to be dependent on the magnetic field geometry. This has been
previously shown for single-mode geometries (e.g., Réville
et al. 2015a; Garraffo et al. 2016b). We first consider two pure
geometries, dipole and quadrupole, using the formulation from
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Figure 4. Parameter space explored in terms of T, Yvee /(v(R4)), and Rip. Five mixed geometries are explored, along with pure cases of both dipole and quadrupole
geometries. Colors for each Rgip value are used throughout this work. The black line indicates Yei; (Equation (27)). The formula for predicting the torque exhibits a
quadrupolar scaling for T and R, values below the line and dipolar above (see Section 3.4).
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Figure 5. Average Alfvén radius vs. wind magnetization for all cases. Simulations are marked with color-coded circles indicating their R 4;, value. Left: solid lines
show the fit of dipole (red) and quadrupole (blue) to Equation (21). Dashed lines show the dipolar component fit (Equation (24)). Right: solid lines show the analytic
solution of dipole (red) and quadrupole (blue) to Equation (22) with K; = 1. Dashed lines show the dipolar component fit from Equation (25), dependent only on the

value of the field order /, unlike in the T space.

Matt & Pudritz (2008),
(Ra)

R

where K and my are fitting parameters for the pure dipole and
quadrupole cases using the surface field strength. Here we
empirically fit my; the interpretation of miy is discussed in Matt &
Pudritz (2008), Réville et al. (2015a), and G. Pantolmos &
S. Matt (2017, in preparation), where it is determined to be
dependent on magnetic geometry and the wind acceleration
profile. The Appendix contains further discussion of the wind
acceleration profile and its impact on this power-law relationship.

The left panel of Figure 5 shows the Alfvén radii versus the
wind magnetizations for all cases (color-coded with their Rg;p
value). The solid lines show the scaling relations for dipolar
(red) and quadrupolar (blue) geometries, as first shown in
Réville et al. (2015a). We calculate best-fit values for K and m,
for the dipole and quadrupole, tabulated in Table 2. Values here
differ due to our hotter wind (cy/ves. =0.25 versus their

KX, 1)

Cs/Vese = 0.222) using polar B,, and we do not account for our
low rotation rate. As previously shown, the dipole field is far
more efficient at transferring angular momentum than the
quadrupole. In this study, we consider the effect of combined
geometries; within Figure 5, these cases lie between the dipole
and quadrupole slopes, with no single power law of this form to
describe them.

G. Pantolmos & S. Matt (2017, in preparation) have shown
the role of the velocity profile in the power-law dependence of
the torque. In our simulations, the acceleration of the flow from
the base wind velocity to its terminal speed is primarily governed
by the thermal pressure gradient; however, magnetic topologies
can all modify the radial velocity profile (as can changes in wind
temperature, -, and rapid rotation, not included in our study).
Effects on the torque formulations due to these differences in
acceleration can be removed via the multiplication of T
with ves./(v(Ry)). In their work, the authors determined the
theoretical power-law dependence, m;y, = 1/(2] + 2), from one-
dimensional analysis. In this formulation, the slope of the power
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Table 2
Best-fit Parameters to Equations (21) and (22)

Topology (/) K, my

K; my my (D)

Dipole (1)
Quadrupole (2)

1.49 + 0.03
1.72 + 0.03

0.231 £ 0.003
0.132 £ 0.003

0.92 + 0.04
1.11 +£ 0.04

0.258 + 0.005
0.156 + 0.004

0.250
0.167

law is controlled only by the order of the magnetic geometry, /,
which is /=1 and /=2 for the dipole and quadrupole,
respectively,

(R4)

*

VCSC

<v(RA>>] ’

where K; and m; are fit parameters to our wind solutions,
tabulated in Table 2. The value of (v(R,)) is calculated as an
average of the velocity at all points on the Alfvén surface in the
meridional plane.”

Equation (22) is able to accurately predict the power-law
dependence for the two pure modes using the order of the
spherical harmonic field, /. We show this in the right panel of
Figure 5, where the Alfvén radii are plotted against the new
parameter, Yve./(v(R4)). A similar qualitative behavior is
shown in the scaling with T in the left panel. Using the
theoretical power-law dependencies, the dipolar (red) and
quadrupolar (blue) slopes are plotted with m; 4, = 1/4 and 1/6,
respectively. Using a single-fit constant K; = 1 for both slopes
within this figure shows good agreement with the simulation
results.

More accurate values of K; and my; are fit for each mode
independently. These values produce a better fit and are
compared with the theoretical values in Table 2. The mixed
simulations show a similar qualitative behavior to the plot
against 1.

Obvious trends are seen within the mixed-case scatter. A
saturation to quadrupolar Alfvén radii values for lower T and
Rgip values is observed, along with a power-law trend with a
dipolar gradient for higher T and Rg, values. This indicates
that both geometries play a role in governing the lever arm,
with the dipole dominating the braking process at higher wind
magnetizations.

=K [T (22)

3.4. Broken Power-law Scaling for Mixed Field Cases

Observationally, the field geometries of cool stars are, at
large scales, dominated by the dipole mode, with higher-order
[ modes playing smaller roles in shaping the global field. It is
the global field that controls the spin-down torque in the
magnetic braking process. Higher-order modes (such as the
quadrupole) radially decay much faster than the dipole, and as
such they have a reduced contribution to setting the Alfvén
speed at distances larger than a few stellar radii.

We calculate Tg;p,, which only takes into account the dipole’s
field strength,

- [2]
lp - .
By Mvesc

= R Y (23)

Taking as a hypothesis that the field controlling the location of
the Alfvén radius is the dipole component, a power-law scaling

2 It could be argued that this should be weighted by the total area of the

Alfvén surface, but, for simplicity, we calculate the unweighted average.
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Figure 6. Average Alfvén radius vs. the dipolar wind magnetization.
Considering only the dipolar field strength, we produce a single power law
for the Alfven radius (Equation (24)). Our wind solutions are shown to agree
well with the dipole prediction in most cases. Disagreements at low Y, and
Rdip values are explained by the quadrupolar slopes, shown by colored dashed
lines.

using Yg;, can be constructed in the same form as that of Matt
& Pudritz (2008),

(Ra)

R

= By dip [rrdip]ml’dip = Ks,dip [Rgip’r]m&dip . (24)

Substitution of the dipole component into Equation (22)
similarly gives

(Ra)

*

25)
(v(R) (

where K gip, Ms.dip» Kigip» and mygi, will be parameters fit to
simulations.

A comparison of these approximations can be seen in
Figure 5, where Equations (24) (left panel) and (25) (right
panel) are plotted with dashed lines for all the R g;, values used
in our simulations. Mixed cases that lie above the quadrupolar
slope are shown to agree with the dashed lines in both forms.
Such cases are dominated by the dipole component of the field
only, irrespective of the quadrupolar component.

The role of the dipole is even more clear in Figure 6, where
only the dipole component of Y is plotted for each simulation.
The solid red line in Figure 6, given by Equation (24), shows
agreement at a given Rgjp, with deviation from this caused by a
regime change onto the quadrupolar slope (shown by colored
dashed lines).

The behavior of our simulated winds, despite using a
combination of field geometries, simply follows existing
scaling relations with this modification. In general, the dipole
(Tgip) prediction shows good agreement with the simulated
wind models, except in cases where the Alfvén surface is close
to the star. In these cases, the quadrupole mode still has a
magnetic field strength able to control the location of
the Alfvén surface. Interestingly, and in contrast to the

v My dip
2 esc
= Kidip| RaipY ——— ,
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dipole-dominated regime, the quadrupole-dominated regime
behaves as if all the field strength is within the quadrupolar
mode. This is visible in Figure 5 for low values of T and R gip.

The mixed field (R4) scaling can be described as a broken
power law, set by the maximum of either the dipole component
or the pure quadrupolar relation. With the break in the power
law given by Yy,

(Ra)

_ {Ks,dip [sziip’r]mf’dipy it T > Tcrit(Rdip), (26)
Ry

Ks,quad [Y]™squaa, if T < Tcrit(Rdip) ,

where Y. is the location of the intercept for the dipole
component and pure quadrupole scalings,

1
. s quad — s, dip
KT,dlp Rzm&dip]

27

Terit(Raip) = [ dip

s,quad

The solid lines in Figure 4 show the value of Y., (Equation
(27)), dividing the two regimes. Specifically, the solutions
above the black line behave as if only the dipole component
(Yaip) is governing the Alfvén radius.

Transitioning from regimes is not perfectly abrupt. There-
fore, producing an analytical solution for the mixed cases that
includes this behavior would increase the accuracy for stars
near the regime change. For example, we have formulated a
slightly better fit using a relationship based on the quadrature
addition of different regions of field. However, it provides no
reduction in the error on this simpler form and is not easily
generalized to higher topologies. For practical purposes, the
scaling of Equations (26) and (27) accurately predicts the
simulation torque with increasing magnetic field strength for a
variety of dipole fractions. We therefore present the simplest
available solution, leaving the generalized form to be
developed in future work.

4. The Impact of Geometry on the
Magnetic Flux in the Wind

4.1. Evolution of the Flux

The magnetic flux in the wind is a useful diagnostic tool. The
rate of the stellar flux decay with distance is controlled by the
overall magnetic geometry. We calculate the magnetic flux as a
function of radial distance by evaluating the integral of the
magnetic field threading closed spherical shells, where we take
the absolute value of the flux to avoid field polarity
cancellations,

®(r) = 51§|B . dA|. (28)
r

Considering the initial potential fields of the two pure modes,

this is simply a power law in field order /,

l
B(r)p = @(%) ,

where / = 1 dipole and / = 2 quadrupole, and we denote the
flux with P for the potential field. Figure 7 displays the flux
decay of all values of v, /vesc for each Rg;p value (gray lines).
The behavior is qualitatively identical to that observed in
previous works (e.g., Schrijver et al. 2003; Johnstone et al.
2010; Vidotto et al. 2014b; Réville et al. 2015a), where the
field decays as the potential field does until the pressure of the

(29)

11

Finley & Matt

wind forces the field into a purely radial configuration with a
constant magnetic flux, referred to as the open flux. The power-
law dependence of Equation (29) indicates that, for higher
[ mode magnetic fields, the decay will be faster. We therefore
expect the more quadrupolar-dominated fields studied in this
work to have less open flux.

In the case of mixed geometries, a simple power law is not
available for the initial potential configurations; instead, we
evaluate the flux using Equation (28), where B is the initial
potential field for each mixed geometry. This allows us to
calculate the radial evolution of the flux for a given R 4jp, which
we compare to the simulated cases. Figure 7 shows the flux
normalized by the surface flux versus radial distance from the
star. For each Ry, value, the magnetic flux decay of the
potential field (black line) is shown with the different-strength
Va/Vesc simulations (gray lines). A comparison of the flux decay
for all potential magnetic geometries is given in the bottom
right panel, showing, as expected, the increasingly quadrupolar
fields decaying faster.

In this study, we control v4/ves., which, for a given surface
density, sets the polar magnetic field strength for our
simulations. The stellar flux for different topologies and the
same B, will differ and must be taken into account in order to
describe the dipole and quadrupolar components (dashed red
and blue lines) in Figure 7. We plot the magnetic flux of the
potential field quadrupole component alone with a dashed blue
line for each Ry, value,

R 2
O(r)pquad = (1 — Rdip><1>*,quad( *) , (30)

,
and, similarly, the potential field dipole component of the
magnetic flux,

Ry
D(r)paip = Rdipq)*,dip(T), (€29)
where in both equations the surface flux of a pure dipole/
quadrupole (P gip, Py quaa) field is required to match our
normalized flux representation.

Due to the rapid decay of the quadrupolar mode, the flux at
large radial distances for all simulations containing the dipole
mode is described by the dipolar component. The quadrupole
component decay sits below and parallel to the potential field
prediction for small radii, becoming indistinguishable for the
lowest R gip values as the flux stored in the dipole is decreased.
Importantly for small radii, simulations containing a quad-
rupolar component are dominated by the quadrupolar decay
following an [ = 2 power-law decay, which can be seen by
shifting the blue dashed line upward to intercept ®/®, = 1 at
the stellar surface.

This result for the flux decay is reminiscent of the broken
power-law description for the Alfvén radius in Section 3.4. The
field acts as a quadrupole, using the total field for small radii
and the dipole component only for large radii. There is a
transition between these two regimes that is not described by

either approximation. But it is shown by the potential solution
(black lines).

4.2. Topology-independent Open Flux Formulation

The magnetic flux within the wind decays following the
potential field solution closely until the magnetic field
geometry is opened by the pressures of the stellar wind and
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field flux until the wind pressures open the field to a constant flux. The open flux radii are displayed as gray circles. The bottom right panel shows a comparison of
each potential field flux decay along with the opening radii for each case (i.e., the black lines and gray circles from the other panels), color-coded to the value of Rg;p.

°®e R, =00

e%¢ R, =01

%o R, =02

Ry =03

e®e R,,=05
1

. 100 | Riip=0.8

Ryp=1.0

(Ry)/R

102 10° 10* 10°
T,

open

10°

(Ry)/R

o0 R, =00

®%e R,,=01

°®e R, =02

Ryip=0.3

e%e R, =05
1

. 107 Ry =0.8

®%e R,,=10

10°
10

10° 10* 10° 10°

Y penVesc! (o(R))

10?

Figure 8. Left: average Alfvén radius vs. open flux magnetization for all cases. Fits to Equation (33) are shown for the dipole (Rgi, = 1) and quadrupole (R4, = 0)
fields. The geometry of the field is shown to influence the scaling relation due to differences in the wind acceleration. Right: average Alfvén radius vs. open flux
magnetization accounting for the acceleration profile using work done by G. Pantolmos & S. Matt (2017, in preparation). The fit of Equation (34) is shown to reduce
the scatter for all simulations. A systematic discrepancy is still seen from the single power law with changing geometry.

the field lines are forced into a nearly radial configuration with
constant flux, shown in Figure 7 for all simulations. The
importance of this open flux is discussed by Réville et al.
(2015a). These authors showed a single power-law dependence
for the Alfvén radius, independent of magnetic geometry, when
parameterized in terms of the open flux, ®gpep,

D3 en /R
open/ *, (32)

Topen = .
Mves.

which, ignoring the effects of rapid rotation, can be fit with

(Ra)

*

=K, [Topen]m” s (33)

where m, and K, are fitting parameters for the open flux
formulation.
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Using the open flux parameter, Figure 8 shows a collapse
toward a single power-law dependence as in Réville et al.
(2015a). However, our wind solutions show a systematic
difference in power-law dependence from dipole to quadrupole.
On careful inspection of the result from Figure 6 of Réville
et al. (2015a), the same systematic trend between their
topologies and the fit scaling is seen.®> We calculate the best
fits for each pure mode separately, i.e., the dipole and
quadrupole, tabulated in Table 3.

G. Pantolmos & S. Matt (2017, in preparation) find solutions
for thermally driven winds with different coronal temperatures.
From these, they find that the wind acceleration profiles of a
given wind very significantly alter the slope in Ry—Yopen Space.

3 A choice in our parameter space may have made this clearer in Figure 8, due

to the increased heating and therefore larger range of acceleration allowing the
topology to impact the velocity profile.
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Table 3
Open Flux Best-fit Parameters to Equations (33) and (34)
Topology (/) K, m,
Dipole (1) 0.37 + 0.05 0.360 £ 0.006
Quadrupole (2) 0.62 + 0.01 0.283 4+ 0.002
K, K.m m. Meih
Topology-independent  0.08 + 0.03  0.0796  0.471 £ 0.003  0.500

From this work, our trend with geometry indicates that each
geometry must have a slightly different wind acceleration
profile. This is most likely due to differences in the superradial
expansion of the flux tubes for each geometry, which is not
taken into account with Equation (33). The field geometry is
imprinted onto the wind as it accelerates out to the Alfvén
surface. As such, this scaling relation is not entirely
independent of topology. Further details on the wind accelera-
tion profile in our study are available in the Appendix.
G. Pantolmos (2017, in preparation) are able to include the
effects of acceleration in their scaling through multiplication of
Topen With vese/(v(R4)). The expected semianalytical solution
from G. Pantolmos & S. Matt (2017, in preparation) is given as

<RA> = Kc[Topen Yeso :| la
Ry (v(R))

where the fit parameters are derived from 1D theory as
constants, K. 4, = 1/47 and m g, = 1/2.

We are able to reproduce this power-law fit of Tpe,, with the
wind acceleration effects removed, in the right panel of
Figure 8. Including all simulations in the fit, we arrive at values
of K. = 1.01K, y, £ 0.07 and m, = 0.942m, 4, = 0.009 for the
constants of proportionality and power-law dependence.
However, a systematic difference is still seem from one Rgjp
value to another. More precise fits can be found for each
geometry independently, but the systematic difference appear-
ing in the right panel implies that a modification to our
semianalytical formulations is required to describe the torque
fully in terms of the open flux.

Here we show that the scaling law from Réville et al. (2015a) is
improved with the modification from G. Pantolmos (2017, in
preparation). This formulation is able to describe the Alfvén radius
scaling with changing open flux and mass loss. However, with the
open flux remaining an unknown from observations and difficult
to predict, scaling laws that incorporate known parameters (such
as those of Equations (26) and (27)) are still needed for rotational
evolution calculations.

(34)

4.3. The Relationship between the Opening
and Alfvén Radii

The location of the field opening is an important distance. It
is critical both for determining the torque and for comparison to
potential field source surface (PFSS) models (Altschuler &
Newkirk 1969), which set the open flux with a tunable free
parameter Ry The opening radius, R,, we define as the radial
distance at which the potential flux reaches the value of the
open flux (Pp(R,) = Pypen)- This definition is chosen because
it relates to the 1D analysis employed to describe the power-
law dependences of our torque scaling relations. Specifically, a
known value of R, allows for a precise calculation of the open
flux (a priori from the potential field equations), which then
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Figure 9. Alfvén radii vs. opening radii for all simulated cases. Dashed lines
represent R,/R, = 3.2 and 1.7. Different geometries have a changing
relationship between the torque lever arm and the opening radius of the field.

gives the torque on the star within our simulations. The
physical opening of the simulation field takes place at slightly
larger radii than this, with the field becoming nonpotential due
to its interaction with the wind (which explains why the closed
field regions seen in Figure 3 typically extend slightly beyond
R,). A similar smooth transition is produced with PFSS
modeling.

In Figure 7, R, is marked for each simulation and for
comparative purposes in the bottom right panel. It is clear that
smaller opening radii are found for lower Ry, cases. Due to
their more rapidly decaying flux, they tend to have a smaller
fraction of the stellar flux remaining in the open flux. From the
radial decay of the magnetic field, the open flux and opening
radii are observed to be dependent on the available stellar flux
and topology. G. Pantolmos & S. Matt (2017, in preparation)
have recently shown these to also be dependent on the wind
acceleration profile. This complex dependence makes it
difficult to predict the open flux for a given system.

Our simulations produce values for the average Alfvén
radius, (R4), and the opening radius, R, for the seven different
geometries studied. It is interesting to consider the relative size
of these radii, as they both characterize key dynamic properties
for each stellar wind solution. For all cases shown in Figure 3,
the opening radii are plotted with dashed red lines, allowing for
the relative size to be compared with the cylindrical Alfvén
radius, shown with dashed gray lines. With increasing magnetic
field strength (), both radii are seen to grow from case to case;
however, with increasing Rgip, the cylindrical Alfvén radius
generally grows faster than the opening radius. To quantify
this, Figure 9 shows a plot of the Alfvén radii versus the
opening radii for all cases. Linear trends of R4/R, = 3.2 and
1.7 are indicated with dashed lines. For each R, value, the
relationship between the Alfvén and opening radius ((R4) /R,)
is seen to systematically decrease with increasing higher-order
field component. In all cases, for small radii, a shallower slope
is observed, which then steepens with increasing radial extent.

The dependence of the Alfvén radius and opening radius on
field geometry and magnetization is a constraint on PFSS
models, which are readily used with ZDI observations as a less
computationally expensive alternative to MHD modeling
(Jardine et al. 1999, 2002; Dunstone et al. 2008; Cohen et al.
2010; Johnstone et al. 2010; Réville et al. 2015b; Rosén et al.
2015). PFSS models are a useful tool; however, they require
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the source surface radius, R, as an input. Authors often set a
source surface and change the geometry and strength of the
field freely (Fares et al. 2010; See et al. 2015, 2017). We find,
however, that for a given Ry, value there exists a differing
relation for the opening radius, as we define it here, to the
Alfvén radius and magnetization. These trends are observed to
continue for higher / mode fields (A. Finley & S. Matt 2017, in
preparation), with (R4) /R, decreasing overall with increased
field complexity. As such, our results confirm that the opening
radius should not remain fixed when changing geometries or
increasing the wind magnetization. We find that the relation-
ship of (R4) /R, changes in both cases. With fixed magnetiza-
tion, the opening radius should move toward the star for higher-
order fields to maintain a constant thermal driving. Maintaining
the opening radius while increasing the field complexity infers
that the wind has a reduced acceleration. Similarly, with
increased wind magnetization, the opening radius should move
further from the star. The value of R, as we have defined it is
directly related to the source surface radius, and, for a given
magnetic geometry, the two should scale approximately
together. For example, for a dipole field, comparing our
definition of R, to the PFSS model shows that R, equals an
approximately constant value of 3/2 R,. Thus, conclusions
made about the opening radii are constraints on future PFSS
modeling.

A method for predicting R, within our simulations remains
unknown; however, it is understood that R, is key to predicting
the torque from our simulated winds. We do, however, find the
ratio of (R4) /R, to be roughly constant for a given geometry,
deviations from which may be numerical or suggest additional
physics that we do not explore here.

5. Conclusion

We undertake a systematic study of the two simplest
magnetic geometries, dipolar and quadrupolar, and, for the
first time, their combinations with varying relative strengths.
We parameterize the study using the ratio, R, of dipolar to
total combined field strength, which is shown to be a key
variable in our new torque formulation.

We have shown that a large proportion of the magnetic field
energy needs to be in the quadrupole for any significant
morphology changes to be seen in the wind. All cases above
the 50% dipole field show a single streamer and are dominated
by dipolar behavior. Even in cases of small Rg,, we observe
the dipole field to be the key parameter controlling the
morphology of the flow, with the quadrupolar field rapidly
decaying away for most cases, leaving the dipole component
behind. For smaller field strengths, the Alfvén radii appear
close to the star, where the quadrupolar field is still dominant,
and thus a quadrupolar morphology is established. Increasing
the fraction of quadrupolar field strength allows this behavior to
continue for larger Alfvén radii.

The morphology of the wind can be considered in the
context of star—planet or disk interactions. Our findings suggest
that the connectivity, polarity, and strength of the field within
the orbital plane depend in a simple way on the relative
combination of the dipole and quadrupole fields. Different
combinations of these two field modes change the location of the
current sheet(s) and the relative orientation of the stellar wind
magnetic field with respect to any planetary or disk magnetic field.
Asymmetries such as these can modify the Poynting flux
exchange for close-in planets (Strugarek et al. 2014b) or the
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strength of magnetospheric driving and geomagnetic storms on
Earth-like exoplanets. Cohen et al. (2014) used observed magnetic
fields to simulate the stellar wind environment surrounding the
planet-hosting star EV Lac. They calculated the magnetospheric
joule heating on the exoplanets orbiting the M dwarf, finding
significant changes to atmospheric properties such as thickness
and temperature. Additionally, transient phenomena in the solar
wind, such as coronal mass ejections, are shown to deflect toward
streamer belts (Kay et al. 2013). This has been applied to mass
ejections around M dwarf stars (Kay & Opher 2014) and could
similarly be applied here using the knowledge of the streamer
locations from our model grid.

If the host star magnetic field can be observed and
decomposed into constituent field modes containing dominant
dipole and quadrupole components, a qualitative assessment of
the stellar wind environment can be made. We find that the
addition of these primary and secondary fields creates an
asymmetry that may shift potentially habitable exoplanets in
and out of volatile wind streams. Observed planet-hosting stars
such as 7 Bootis have already been shown to have global
magnetic fields that are dominated by combinations of these
low-order field geometries (Donati et al. 2008). With further
investigation, it is possible to qualitatively approximate the
conditions for planets in the orbits of such stars. For dipole- and
quadrupole-dominated host stars with a given magnetic field
strength, our grid of models provide an estimate of the location
of the streamers and open field regions.

In this work, we build on the scaling relations from Matt
et al. (2012), Réville et al. (2015a), and G. Pantolmos &
S. Matt (2017, in preparation). We confirm existing scaling
laws and explore a new mixed field parameter space with
similar methods. From our wind solutions, we fit the variables
K, dips My gip> Ky quad> and M gaq (see Table 2), which describe
the torque scaling for the pure dipole and quadrupole modes.
From the 50 mixed-case simulations, we produce an approx-
imate scaling relation that takes the form of a broken power
law, as a single power-law fit is not available for the mixed
geometry cases in Y space.

For low T and dipole fractions, the Alfvén radius behaves
like a pure quadrupole,

T = K quadM QR E [T Psiauad (35)
) 2 J2ms,quad
— s,quadMl 2mx.qlladQ*R>§+4ms.quad|: (B*) ] ) (36)
VCSC

At higher T and dipole fractions, the torque is only dependent
on the dipolar component of the field,

T = Ky aipM QR [Yip P54 37)
=142 PPs.dip
_ s,dipM‘2m»v«dapQ*R§+4mA-dip[L: ) ] .6
esc

The later formulation is used when the Alfvén radius of a given
dipole and quadrupole mixed field is greater than the pure
quadrupole case for the same 7, i.e., the maximum of our new
formula or the pure quadrupole. We define Y to separate the
two regimes (see Figure 4).

The importance of the relative radial decay of both modes
and the location of the opening and Alfvén radii appear to play
a key role and deserve further follow-up investigation. This
work analytically fits the decay of the magnetic flux, but a
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Table 4
Predicting m; and m, Using ¢ = 0.8 £ 0.1
T0p010gy (l) my mr,lh(L q) mg, mo,lh(q)
Dipole (1) 0.231 £ 0.003 0.21 £ 0.01 0.360 £ 0.006 0.36 £ 0.02
Quadrupole (2) 0.132 £ 0.003 0.15 £+ 0.01 0.283 £ 0.002 0.36 & 0.02

parametric relationship for the field opening remains uncertain.
The relation of the relative sizes of the Alfvén and opening
radii are found to be dependent on geometry, which can be
used to inform PFSS modeling, where by the source surface
must be specified when changing the field geometry.

Paper II includes the addition of octupolar field geometries,
another primary symmetry family that introduces an additional
complication in the relative orientation of the octupole to the
dipole. It is shown, however, that the mixing of any two
axisymmetric geometries will follow a similar behavior,
especially if each belongs to a different symmetry family
(A. Finley & S. Matt 2017, in preparation). The lowest-order
mode largely dominates the dynamics of the torque until the
Alfvén and opening radii are sufficiently close to the star for the
higher-order modes to impact the field strength.

Thanks for helpful discussions and technical advice from
Georgios Pantolmos, Victor See, Victor Réville, Sasha Brun,
and Claudio Zanni. This project has received funding from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No. 682393). We thank Andrea Mignone and others
for the development and maintenance of the PLUTO code.
Figures in this work are produced using the python package
matplotlib (Hunter 2007).

Appendix
Wind Acceleration

The creation of a semianalytical formulation for the Alfvén
radius for a variety of stellar parameters has been the goal of
many studies proceeding this one (e.g., Matt & Pudritz 2008;
Matt et al. 2012; Réville et al. 2015a; G. Pantolmos & S. Matt
2017, in preparation). Using a 1D approximation based on
work by Kawaler (1988), previous studies aimed to predict the
power-law dependence, m, of the torque formulations used in
this work.

Using the 1D framework, the field strength is assumed to
decay as a power law B(r) = By (R,/ »™2, which in this study
is only valid for the pure cases. G. Pantolmos & S. Matt (2017,
in preparation) show that the effect of wind acceleration can be
removed from the torque scaling relations through the multi-
plication of YT and Yopen With vese/(v(R4)). The power-law
dependence then becomes

mgm = 1/Q21 + 2), (39)

and, similarly,

Mem = 1/2. (40)

The modified dependent parameter, Yves./(v(R,)), is used
throughout this work (see Figures 5 and 8), and the analytic
predictions for the power-law slopes are shown to have good
agreement with our simulations. This dependent variable,
however, requires additional information about the wind speed
at the Alfvén surface that is often unavailable.
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Figure 10. Scatter of the average Alfvén speed at the Alfvén surface as a
function of the average Alfvén radius. The dashed line shows a hydrodynamic
Parker wind with ¢;/vesc = 0.25, and the solid line shows a fit to all of our
simulation data. Variation is seen between the dipolar and quadrupolar data
toward the extreme values of the Alfvén radius. The combined average wind
acceleration profile (black) gives ¢ = 0.84. The winds in our simulations are
set with a higher coronal temperature than that of Réville et al. (2015a) and thus
show a larger acceleration (they produce g = 0.7).

Typically, rotational evolution models use the available
stellar surface parameters, e.g., 1. Therefore, knowledge of the
flow speed at the Alfvén radius, v(R,), is required for the
semianalytical formulations. G. Pantolmos & S. Matt (2017, in
preparation) and Réville et al. (2015a) show that v(R,) shares a
similar profile to a 1D thermal wind, v(r). Figure 10 displays
the average Alfvén speed versus the Alfvén radius for all 70
simulations (colored circles). The Parker wind solution
(Parker 1965) used in the initial condition is displayed for
comparison (dashed line). Nearly all simulations follow the
hydrodynamic solution, with a behavior mostly independent of
R gip- Toward higher values of the Alfvén radius, a noticeable
separation starts to develop between geometries. This range is
accessed less by the higher / order geometries as the range of
Alfvén radii is much smaller than that for the pure dipole mode.

In order to include the effects of wind acceleration in the
simplified 1D analysis to explain the simulation scalings
between R4, and Y, Réville et al. (2015a) introduced a
parameterization for the acceleration of the wind to the Alfvén
radius with a power-law dependence in radial distance using ¢,

V(RA) /Vese = (Ra/Ry)?. 4D

A single power law with ¢ = 0.84 is fit to the simulation data.
This power law is chosen for simplicity within the 1D
formalism. The use of this g parameter is approximate if
V(R4) is a power law in R4, which we show over the parameter
space has a significant deviation. Using the semianalytical
theory, Réville et al. (2015a) then derived the power-law
dependence for the Y scaling (Equation (21)),

mem =1/21+ 2 + q), (42)
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which includes geometric and wind acceleration parameters in
the form of / and g, respectively. Using this result, mg g, is
computed for both the dipole (I=1) and quadrupole (I =2)
geometries in Table 4 and compared to the simulation results
with good agreement.

G. Pantolmos & S. Matt (2017, in preparation) explain the
power-law dependence, so long as R,/R4 remains constant and
the wind acceleration profile is known. Reiners & Mohanty
(2012), Réville et al. (2015a), and G. Pantolmos & S. Matt
(2017, in preparation) all analytically described the power-law
dependence of the open flux formulation (Equation (33)) using
the power-law dependence ¢,

mom =1/2 + q). (43)
The result is independent of geometry, I. As before, the g
parameter approximates the wind driving as a power law in
radius, which is fit with a single power law for both geometries
such that m,, should be the same for both the dipole and
quadrupole. This prediction is tabulated in Table 4; however,
the simulation slopes are shown to no longer agree with the
result. It is suggested that the open flux slope is much more
sensitive to the wind acceleration than the Y formulation;
therefore, slight changes in flow acceleration modify the result.
Slightly different slopes can be fit for the dipole and
quadrupole cases that can recover the different m, values;
however, this is seemingly just a symptom of the power-law
approximation breaking down.

We conclude that the approximate power law of
Equation (41) gives a reasonable adjustment to the torque
prediction for known wind velocity profiles, despite the
badness of fit to the simulation points. Even though
the power-law approximation to the wind velocity profile
(Equation (41)) is not a precise fit to the data in Figure 10, the
value of g does provide a way to approximately include the
contribution of the wind acceleration to the fit power-law
exponents m, and m,. A more precise formulation could be
derived based on a Parker-like wind profile without the use of a
power law; however, the torque scaling with Y is relatively
insensitive to the chosen approximate velocity profile.
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Abstract

During the lifetime of Sun-like or low-mass stars a significant amount of angular momentum is removed through
magnetized stellar winds. This process is often assumed to be governed by the dipolar component of the magnetic
field. However, observed magnetic fields can host strong quadrupolar and/or octupolar components, which may
influence the resulting spin-down torque on the star. In Paper I, we used the MHD code PLUTO to compute
steady-state solutions for stellar winds containing a mixture of dipole and quadrupole geometries. We showed the
combined winds to be more complex than a simple sum of winds with these individual components. This work
follows the same method as Paper I, including the octupole geometry, which not only increases the field
complexity but also, more fundamentally, looks for the first time at combining the same symmetry family of fields,
with the field polarity of the dipole and octupole geometries reversing over the equator (unlike the symmetric
quadrupole). We show, as in Paper I, that the lowest-order component typically dominates the spin-down torque.
Specifically, the dipole component is the most significant in governing the spin-down torque for mixed geometries
and under most conditions for real stars. We present a general torque formulation that includes the effects of
complex, mixed fields, which predicts the torque for all the simulations to within 20% precision, and the majority
to within ~5%. This can be used as an input for rotational evolution calculations in cases where the individual

magnetic components are known.

Key words: magnetohydrodynamics (MHD) — stars: low-mass — stars: magnetic field — stars: rotation —

stars: winds, outflows

Supporting material: machine-readable table

1. Introduction

Cool stars are observed to host global magnetic fields that
are embedded within their outer convection zones (Reiners
2012). Stellar magnetism is driven by an internal dynamo that
is controlled by the convection and stellar rotation rate, the
exact physics of which is still not fully understood (see review
by Brun & Browning 2017). As observed for the Sun, plasma
escapes the stellar surface, interacting with this magnetic field
and forming a magnetized stellar wind that permeates the
environment surrounding the star (Cranmer et al. 2017). Young
main-sequence stars show a large spread in rotation rates for a
given mass. As a given star ages on the main sequence, their
stellar wind removes angular momentum, slowing the rotation
of the star (Schatzman 1962; Weber & Davis 1967; Mestel
1968). This in turn reduces the strength of the magnetic
dynamo process, feeding back into the strength of the applied
stellar wind torque. This relationship leads to a convergence of
the spin rates toward a tight mass—rotation relationship at late
ages, as stars with faster rotation incur larger spin-down torques
and vice versa for slow rotators. This is observed to produce a
simple relation between rotation period and stellar age
(Qy oc %3, Skumanich 1972), which is approximately
followed, on average (Soderblom 1983), over long timescales.

With the growing number of observed rotation periods
(Irwin & Bouvier 2009; Agiieros et al. 2011; Meibom
et al. 2011; McQuillan et al. 2013; Bouvier et al. 2014;
Stauffer et al. 2016; Davenport 2017), an increased effort has
been channeled into correctly modeling the spin-down process
(e.g., Reiners & Mohanty 2012; Gallet & Bouvier 2013; Van
Saders & Pinsonneault 2013; Brown 2014; Gallet & Bouvier
2015; Matt et al. 2015; Amard et al. 2016; Blackman &

Owen 2016; See et al. 2017a), as it is able to test our
understanding of basic stellar physics and also date observed
stellar populations.

The process of generating stellar ages from rotation is referred
to as gyrochronology, whereby a cluster’s age can be estimated
from the distribution of observed rotation periods (Barnes 2003;
Meibom et al. 2009; Barnes 2010; Delorme et al. 2011;
Van Saders & Pinsonneault 2013). This requires an accurate
prescription of the spin-down torques experienced by stars as a
result of their stellar wind, along with their internal structure
and properties of the stellar dynamo. Based on results from
magnetohydrodynamic (MHD) simulations, parameterized
relations for the stellar wind torque are formulated using the
stellar magnetic field strength, mass-loss rate, and basic stellar
parameters (Mestel 1984; Kawaler 1988; Matt & Pudritz 2008;
Ud-Doula et al. 2009; Pinto et al. 2011; Matt et al. 2012;
Réville et al. 2015). The present work focuses on improving
the modeled torque on these stars due to their magnetized
stellar winds, by including the effects of combined magnetic
geometries.

Magnetic field detections from stars, other than the Sun,
were reported over 30 yr ago via Zeeman broadening
observations (Robinson et al. 1980; Gray 1984; Marcy 1984),
a technique that has since been used on a multitude of stars
(e.g., Saar 1990; Johns-Krull & Valenti 2000). This technique,
however, only allows for an average line-of-sight estimate of
the unsigned magnetic flux and provides no information about
the geometry of the stellar magnetic field (see review by
Reiners 2012). More recently, the use of Zeeman Doppler
Imaging (ZDI), a tomographic technique capable of providing
information about the photospheric magnetic field of a given
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star, enables the observed field to be broken down into
individual spherical harmonic contributions (e.g., Hussain et al.
2002; Donati et al. 2006, 2008; Morin et al. 2008a, 2008b; Petit
et al. 2008; Fares et al. 2009; Morgenthaler et al. 2011;
Jeffers et al. 2014; Vidotto et al. 2014; See et al. 2015, 2016,
2017b; Folsom et al. 2016; Hébrard et al. 2016; Saikia et al.
2016; Kochukhov et al. 2017). This allows the 3D magnetic
geometry to be recovered, typically using a combination of field
extrapolation and MHD modeling (e.g., Cohen et al. 2011;
Vidotto et al. 2011; Alvarado-Gémez et al. 2016; do Nascimento
et al. 2016; Garraffo et al. 2016b; Nicholson et al. 2016; Réville
et al. 2016).

Pre-main-sequence stars, observed with ZDI, show a variety
of multipolar components, typically dependent on the internal
structure of the host star (Gregory et al. 2012; Hussain &
Alecian 2013). Many of these objects show an overall dipolar
geometry with an accompanying octupole component (e.g.,
Donati et al. 2007; Gregory et al. 2012). The addition of dipole
and octupole fields has been explored analytically, for these
stars, and is shown to impact the disk truncation radius along
with the topology and field strength of accretion funnels
(Gregory & Donati 2011; Gregory et al. 2016). For main-
sequence stellar winds, the behavior of combined magnetic
geometries has yet to be systematically explored. Our closest
star, the Sun, hosts a significant quadrupolar contribution
during the solar activity cycle maximum that dominates the
large-scale magnetic field geometry along with a small dipole
component (DeRosa et al. 2012; Brun et al. 2013). The impact
of these mixed geometry fields on the spin-down torque
generated from magnetized stellar winds remains uncertain.

It is known that the magnetic field stored in the lowest-order
geometries, e.g., dipole, quadrupole, and octupole, has the
slowest radial decay and therefore governs the strength of the
magnetic field at the Alfvén surface (and thus its size and
shape). With the cylindrical extent of the Alfvén surface being
directly related to the efficiency of the magnetic braking
mechanism, it is this global field strength and geometry that are
required to compute accurate braking torques in MHD
simulations (Réville et al. 2015, 2016). However, the effect
of the higher-order components on the acceleration of the wind
close in to the star may not be non-negligible (Cranmer & Van
Ballegooijen 2005; Cohen et al. 2009). Additionally, the small-
scale surface features described by these higher-order geome-
tries (e.g., starspots and active regions) will play a vital role in
modulating the chromospheric activity (e.g., Testa et al. 2004;
Aschwanden 2006; Giidel 2007; Garraffo et al. 2013), which is
often assumed to be decoupled from the open-field regions
producing the stellar wind. Models such as the AWESOM (van
der Holst et al. 2014) include this energy dissipation in the
lower corona and are able to match observed solar parameters
well. Work by Pantolmos & Matt (2017) shows how this
additional acceleration can be accounted for globally within
their semianalytic formulations.

Previous works have aimed to understand the impact of more
complex magnetic geometries on the rotational evolution of
Sun-like stars. Holzwarth (2005) examined the effect of
nonuniform flux distributions on the magnetic braking torque,
investigating the latitudinal dependence of the stellar wind
produced within their MHD simulations. Similarly, Garraffo
et al. (2016a) included magnetic spots at differing latitudes
and examined the resulting changes to mass-loss rate and
spin-down torque. The effectiveness of the magnetic braking
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from a stellar wind is found to be reduced for higher-order
magnetic geometries (Garraffo et al. 2015). This is explained
in Réville et al. (2015) as a reduction to the average Alfvén
radius, which acts mathematically as a lever arm for the applied
braking torque. Finley & Matt (2017, hereafter Paper I)
continue this work by discussing the morphology and braking
torque generated from combined dipolar and quadrupolar field
geometries using ideal MHD simulations of thermally driven
stellar winds. In this current work, we continue this mixed-field
investigation by including combinations with an octupole
component.

Section 2 introduces the simulations and the numerical
methods used, along with our parameterization of the magnetic
field geometries and derived simulation properties. Section 3
explores the resulting relationship of the average Alfvén radius
with increasing magnetic field strength for pure fields, as well
as generic combinations of axisymmetric dipole, quadrupole, or
octupole geometries. Section 4 uses the decay of the unsigned
magnetic flux with distance to explain observed behaviors in
our Alfvén radii relations; analysis of the open magnetic flux in
our wind solutions follows with a singular relation for
predicting the average Alfvén radius based on the open flux.
Conclusions and thoughts for future work can be found in
Section 5.

2. Simulation Method and Numerical Setup

As in Paper I, we use the PLUTO MHD code (Mignone et al.
2007; Mignone 2009) with a spherical geometry to compute
2.5D (two dimensions, r, 6, and three vector components, r, 0,
and ¢) steady-state wind solutions for a range of magnetic
geometries.

The full set of ideal MHD equations are solved, including the
energy equation and a closing equation of state. The internal
energy density € is given by pe = p/(y —1), where 7 is the
ratio of specific heats. This general set of equations is capable
of capturing nonadiabatic processes, such as shocks; however,
the solutions found for our steady-state winds generally do not
contain these. For a gas composed of protons and electrons ~y
should take a value of 5/3; however, we decrease this value to
1.05 in order to reproduce the observed near-isothermal nature
of the solar corona (Steinolfson & Hundhausen 1988) and a
terminal speed consistent with the solar wind. This is done,
such that on large scales the wind follows the polytropic
approximation, i.e., the wind pressure and density are related as
p o< p? (Parker 1965; Keppens & Goedbloed 1999). The
reduced value of v has the effect of artificially heating the wind
as it expands, without an explicit heating term in our equations.

We adopt the numerics used in Paper I, except that we
modify the radial discretization of the computational mesh.
Instead of a geometrically stretched radial grid as before, we
now employ a stepping (dr) that grows logarithmically. The
domain extent remains unchanged, from one stellar radius (R,.)
to 60 R,, containing N, x Ny = 256 x 512 grid cells. This
modification produces a more consistent aspect ratio between
dr and rdf over the whole domain, which marginally increases
our numerical accuracy and stability.

Characteristic speeds such as the surface escape speed and
Keplerian speed, vec and viep, and the equatorial rotation
speed, V.o, along with the surface adiabatic sound speed, c,
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Table 1
Fixed Simulation Parameters

Parameter Value Description

0% 1.05 Polytropic index

Cs/Vese 0.25 Surface sound speed/escape speed
f 4.46E-03 Fraction of breakup rotation

and Alfvén speed, v4, are given as follows:

Vesc = 26My = \/Evkep’ (D
Ry

where G is the gravitational constant, R, is the stellar radius,
and M, is the stellar mass;

Vrot = Q*R*, (2)

where (), is the angular stellar rotation rate (which is assumed
to be in solid-body rotation);

o= | 3)

Px

where 7 is the polytropic index and p, and p, are the gas
pressure and mass density at the stellar surface, respectively;
and

VA = By
A Trp*’

where B, is the characteristic polar magnetic field strength (see
Section 2.1).

We set an initial wind speed within the domain using a
spherically symmetric Parker wind solution (Parker 1965), with
the ratio of the surface sound speed to the escape speed ¢g/Vesc
setting the base wind temperature in such a way as to represent
a group of solutions for differing gravitational field strengths.
The same normalization is applied to the surface magnetic field
strength with vs/ves., and the surface rotation rate using
= Vrot/Vkeps Such that each wind solution represents a family
of solutions that can be applied to a range of stellar masses. The
same system of input parameters is used by many previous
authors (e.g., Matt & Pudritz 2008; Matt et al. 2012; Réville
et al. 2015; Pantolmos & Matt 2017). For this study we fix the
wind temperature and stellar rotation at the values tabulated in
Table 1.

A background field corresponding to our chosen potential
magnetic field configuration (see Section 2.1) is imposed over
the initial wind solution, and then all quantities are evolved to a
steady-state solution by the PLUTO code. The boundary
conditions are enforced, as in Paper I, at the inner radial
boundary (stellar surface), which are appropriate to give a self-
consistent wind solution for a rotating magnetized star. A fixed
surface magnetic geometry is therefore maintained along with
solid-body rotation.

The use of a polytropic wind produces solutions that are far
more isotropic than observed for the Sun (Vidotto et al. 2009).
The velocity structure of the solar wind is known to be largely
bimodal, having a slow and fast component that originate under
different circumstances (Fisk et al. 1998; Feldman et al. 2005;
Riley et al. 2006). This work and previous studies using a
polytropic assumption aim to model the globally averaged
wind, which can be more generally applied to the variety of

“
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observed stellar masses and rotation periods. More complex
wind driving and heating physics are needed in order to
reproduce the observed velocity structure of the solar wind;
however, they are far harder to generalize for other stars
(Cranmer et al. 2007; Pinto et al. 2016).

2.1. Magnetic Field Configurations

The magnetic geometries considered in this work include
dipole, quadrupole, and octupole combinations, with different
field strengths and in some cases relative orientations. As in
Paper I, we describe the mixing of different field geometries
using the ratio of the polar field strength in a given component
to the total field strength. Care is taken to parameterize the field
combinations due to the behavior of the two equatorially
antisymmetric components, dipole and octupole, at the poles.

We generalize the ratio defined within Paper 1 for each
component such that

B B

Rx - — — — - 5 (5)
IBL~' + B2 + 1B B

where in this work [/ is the principle spherical harmonic number
and x can be 1, 2, or 3 for dipole, quadrupole, or octupole fields.
The polar field strength of a given component is written as Bﬂlf",
and the By = [BEY + |BF? + |BL73| is a characteristic
field strength. The polar field strengths in the denominator are
given with absolute values because we are interested in the
characteristic strength of the combined components, which are
the same for aligned and anti-aligned fields. Therefore, summing
the absolute value of the ratios produces unity,

3
YIRI=1, (6)
=1

which allows the individual values of Rgip, Rquad, and R
(=R, R, and R;3) to range from 1 to —1 (north pole positive or
negative), with the absolute total remaining constant. We define
the magnetic field components using these ratios and the
Legendre polynomials P;,, which for the axisymmetric (m = 0)
field components can be written as

3 R\ 2
B.(r, 0) = B« >_ RiPi(cos 9)(—*) , (7
r

=1

3 1 Ry 1+2
By(r, 0) = By ) H_—I’RIP”(COS 9)(7) . 8)

=1

The northern polar magnetic field strengths for each component
are given by

B = RaipBs, BL? = RquaBss Bi > = RouBss  (9)

The relative orientation of the magnetic components is
controlled throughout this work by setting the dipole and
quadrupole fields (B! and B.=?) to be positive at the northern
stellar pole. The octupole component (BL=?) is then combined
with the dipolar and quadruplar components using either a
positive or negative strength on the north pole, which we define
as the aligned and anti-aligned cases, respectively.

The addition of dipole and quadrupole components was
explored in Paper I. We showed the fields to add in one
hemisphere and subtract in the other. Similar to the dipole, the
octupole component belongs in the “primary” symmetry
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family, having antisymmetric field polarity about the equator
(McFadden et al. 1991). The addition of any primary
geometries with any “secondary” family quadrupole (equato-
rially symmetric) would be expected to behave qualitatively
similarly. A different behavior is expected from the addition of
the two primary geometries (dipole—octupole). Here the field
addition and subtraction are primarily governed by the relative
orientations of the field with respect to one another. Aligned
fields will combine constructively over the pole and subtract
from one another in the equatorial region. Anti-aligned primary
fields, conversely, will subtract on the pole and add over the
equator.

Including the results from Paper I, this work includes
combinations of all the possible permutations of the axisym-
metric dipole, quadrupole, and octupole magnetic geometries.
Table 2 contains a complete list of stellar parameters for the
cases computed within this work. Parameters for the dipole—
quadrupole combined field cases are available in Table 1 of
Paper L. It is noted that in the course of the current work the
pure dipolar and quadrupole cases are resimulated; see Table 2.

2.2. Derived Stellar Wind Properties

The simulations produce steady-state solutions for density, p,
pressure, p, velocity, v, and magnetic field strength, B, for each
stellar wind case. From these results, the behavior of the spin-
down torque is ascertained. The torque on the star, 7, due to the
loss of angular momentum in the stellar wind is calculated as

T:fAApv-dA, (10)

where the angular momentum flux, given by Fay = Apv
(Keppens & Goedbloed 2000), is integrated over spherical
shells of area A (outside the closed-field regions). A is given by
By |B,?
A(r, 0) = rsiné’(vo - —(‘)i). (11)
p vy By
Similarly, the mass-loss rate from our wind solutions is
calculated as

M:va.dA. (12)

An average Alfvén radius is then defined, in terms of the
torque, mass-loss rate M, and rotation rate €),:

_ T
(Ra) = ,MQ* ; 13)

In this formulation, (Rs)/Ry is defined as a dimensionless
efficiency factor, by which the magnetized wind carries angular
momentum from the star, i.e., a larger average Alfvén radius
produces a larger torque for a fixed rotation rate and mass-loss
rate,

2
- MQ*Rﬁ( (Ra) ) | (14)
Ry
In ideal MHD, (Ra) is associated with a cylindrical Alfvén
radius, which acts like a “lever arm” for the spin-down torque
on the star.

The methodology of this work follows closely that of
Paper I, in which we produce semianalytic formulations for
(Ra) in terms of the wind magnetization, Y, as defined in
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previous works (Matt & Pudritz 2008; Matt et al. 2012; Réville
et al. 2015; Pantolmos & Matt 2017),

_BR?

T - ,
My

15)

where B, is now the characteristic polar field, which is split
among the different geometries using the ratios Rgip, R quad»
and R,. The values of T produced from the steady-state
solutions are indirectly controlled by increasing the value of
Va/Vese- This increases the polar magnetic field strength for a
given density normalization. The mass-loss rate is similarly
uncontrolled and evolves to steady state, depending mostly on
our choice of Parker wind parameters, but is also adjusted self-
consistently by the magnetic field. The values of T are
tabulated in Table 2, along with R; values, magnetic field
strengths given by va/ves, and the average Alfvén radii for
each case simulated. Results for combined dipole—quadrupole
cases are available in Table 1 of Paper I. Figure 1 shows the
parameter space of simulations with their value of T against the
different ratios for either quadrupole—octupole or dipole—
octupole cases, with the lower-order geometry ratio labeling
the cases (Rquag and Rg;p, respectively).

3. Wind Solutions and (R,) Scaling Relations
3.1. Single Geometry Winds

For single magnetic geometries, increasing the complexity of
the field decreases the effectiveness of the magnetic braking
process by reducing the average Alfvén radius (braking lever
arm) for a given field strength (Garraffo et al. 2015). The
impact of changing field geometries on the scaling of the
Alfvén radius for thermally driven winds was shown by Réville
et al. (2015) for the dipole, quadrupole, and octupole
geometries. We repeat the result of Réville et al. (2015) for a
slightly hotter coronal temperature wind, ¢, = 0.25 in our
cases, compared to ¢ = 0.222. This temperature more reason-
ably approximates the solar wind terminal velocity, typically
resulting in a wind speed of ~500kms ™' at 1au for solar
parameters. For each magnetic geometry, we simulate eight
different field strengths, changing the input value of v /ve. as
tabulated in Table 2 (cases 1-24).

Each wind solution gives a value for the Alfvén radius, (Rx),
and the wind magnetization, Y. These values are represented in
Figure 2 as colored circles, and their scaling can be described
using the Alfvén radius relation from Matt & Pudritz (2008),
with three precise power-law relations for the different
magnetic geometries, as found previously in the work of
Réville et al. (2015):

M = KX, (16)
Ry

where K and my are fit parameters for this relation, which
utilizes the surface field strength. Best-fit parameters for each
geometry are tabulated in Table 3.

With increasing [ values, the higher-order geometries
produce increasingly shallow slopes with wind magnetization,
such that they approach a purely hydrodynamical lever arm,
i.e., the wind carries away angular momentum corresponding to
the surface rotation alone, with the torque efficiency equal to
the average cylindrical radius of the stellar surface from the
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Figure 1. The two parameter spaces first examined in this work, quadrupole—octupole (left) and dipole—octupole (right), shown in terms of Y and either R quaa O Raip
(Equation (5)), respectively. Each point represents a simulation using the PLUTO code, with the color of each point labeling them throughout this work, depending on
their relative combination of field components. The black solid lines represent Y for each combination, where the break in the Alfvén radius scaling is found (see
equation (19)). In both two component parameter spaces, the average Alfvén radius scales as a pure octupole (bottom left) for low wind magnetisations and high
octupole fraction. Then scales with the lowest-order component, either dipole or quadrupole (upper right).

= Dipole
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Y

Figure 2. Average Alfvén radius vs. the wind magnetization, T (Equation (15)),
in our simulations with single geometries (circles). Different scaling relations are
shown for each pure geometry (solid lines). Higher / order geometries produce
a smaller Alfvén radius and thus smaller spin-down torque for a given polar
field strength and mass-loss rate. A similar result was first shown by Réville
et al. (2015).

rotation axis, (Ry) /Ry = (2/3)'/% (Mestel 1968). Any significant
magnetic braking in Sun-like stars will therefore be predomi-
nantly mediated by the lowest-order components.

3.2. Combined Magnetic Geometries

Based on work performed in Paper I, we anticipate the
behavior of the average Alfvén radius for magnetic field
geometries that contain, dipole, quadrupole, and octupole
components. The dipole component, having the slowest radial
decay, is expected to govern the field strength at large
distances, then the field should scale like the quadrupole at
intermediate distances, and finally, close to the star, the field
should scale like the octupole geometry. The Alfvén radius
formulation therefore takes the form of a twice-broken power

Table 3
Single Component Fit Parameters to Equation (16)
Topology (/) K my
Dipole (1) 1.53 £ 0.03 0.229 £ 0.002
Quadrupole (2) 1.70 £ 0.02 0.134 £ 0.002
Octupole (3) 1.80 £ 0.01 0.087 £ 0.001

Note. Fit values deviate slightly from those presented in Paper I owing to the
more accurate numerical results found with logarithmic grid spacing, used here.

K aip [ R, Y1msav,
= max § K quaa[(|Raipl + IR quaal) L] s,
K oet [(IR dipl + [Rquadl + [Roctl )L Ms0ct,
(17

which approximates the simulated values of the average Alfvén
radius. Note that [Raip| + [Rquadl + [Roctl = 1, such that the
final scaling depends purely on the total Y.

Here we present simulation results from combinations of
each field, sampling a range of mixing fractions and field
strengths. These are used to validate this semianalytic
prescription for predicting the spin-down torque on a star,
due to a given combination of axisymmetric magnetic fields.

3.2.1. Dipole Combined with Quadrupole

The regime of dipole and quadrupole combined geometries
is presented in Paper 1. We briefly reiterate the results here,
displaying values from that study in Figure 3.

These fields belong to different symmetry families, primary
and secondary. As such, their addition creates a globally
asymmetric field about the equator, with the north pole in
this case being stronger than the south. The relative fraction
of the two components alters the location of the current
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Figure 3. Average Alfvén radius scaling with wind magnetization, Y, for the
different combinations of dipole and quadrupole, from the study in Paper I
(circles). Solid lines show scaling for pure dipole and quadrupole. The
deviation from single power laws shows how the combination of dipole and
quadrupole fields modifies the Alfvén radius scaling, compared to single
geometries. The scaling predicted by only considering the fractional dipole
component is plotted with multiple dashed colored lines corresponding to the
different Rgp values. This shows that (Rx)/Rs scales with the dipole
component only, unless the quadrupole is dominant at a distance of ~R4.

sheet/streamers, which appear to resemble the dominant global
geometry.

It is shown in Paper I that the quadrupole component has a
faster radial decay than the dipole, and therefore at large
distances only the dipole component of the field influences the
location of the Alfvén radius. Closer to the star, the total field
decays radially like the quadrupole, with the dipole component
adding its strength, so near to the star the Alfvén radius scaling
depends on the total field strength. Therefore, we developed a
broken power law to describe the behavior of the average
Alfvén radius scaling with wind magnetization, which uses the
maximum of either the quadrupole slope using the total field
strength, as if the combined field decays like a quadrupole
(solid blue line), or the dipolar slope using only the dipole
component (shown in color-coded dashed lines). The dipole
component of the wind magnetization is formulated as

Bl=1 ZBZRZ
Yaip = | — R = R, Y (18)
By Mveg.

Mathematically, Equation (17) becomes the broken power law
from Paper I when Ry = O,

(Ra) _ K aip[RGp X1, if T > Vopir(Raip) (19)
Ry Ks,quad [Y]"squa, if T < Tcril(Rdip)>

where  the octupolar relation is  ignored, and
|Raipl + IR quaal = 1. Here Yy describes the intercept of the
dipole component and quadrupole slopes,

Ks,dip

dl d
g quad— s, dip
Tcrit(Rdip) - [ Riﬁ;&d‘p] . (20)

s,quad

Equation (17) further expands the reasoning above to include
any field combination of the axisymmetric dipole, quadrupole,
and octupole. The following sections test this formulation
against simulated combined geometry winds.

Finley & Matt

3.2.2. Quadrupole Combined with Octupole

Stellar magnetic fields containing both a quadrupole and
octupole field component present another example of primary
and secondary family fields in combination. As with the
axisymmetric dipole—quadrupole addition, the relative orienta-
tion of the two components simply determines which regions of
magnetic field experience addition and subtraction about the
equator, so that the torque and mass-loss rate do not depend on
their relative orientation. Compared with the dipole component,
both fields are less effective in generating a magnetic lever arm
to brake rotation at a given value of T.

We test the validity of Equation (17), setting Rgi, = O and
systematically varying the value of R g4, with the octupole
fraction composing the remaining field, Roet = 1 — Rgyaa-
Five mixed case values are selected (Rguag = 0.8, 0.5,
0.3, 0.2, 0.1) that parameterize the mixing of the two
geometries. Steady-state wind solutions are displayed in
Figure 4, showing, as with dipole—quadrupole addition, the
equatorially asymmetric fields produced. With increasing polar
field strength, the streamers are observed to shift toward the
lowest-order geometry morphology (quadrupolar in this case),
as was shown for the dipole in Paper 1.

The average Alfvén radii and wind magnetization are shown
in Figure 5. The behavior of (Rs) is quantitatively similar to
that of the dipole—quadrupole addition, where combined field
cases are scattered between the two pure geometry scaling
relations. The range of available (Rs) values between the pure
quadrupole and octupole scaling relations (solid blue and
green, respectively) is reduced compared to the previous
dipole—quadrupole, due to the weaker dependence of the
Alfvén radius with wind magnetization.

As required by Equation (17), with no dipolar component,
we introduce the quadrupole component of T as

pl=2 2B2R2
* ) = Ry T @1

Yguad = -
uad [ B* MVesc

and the second relation in Equation (17) takes the form

®)

*

= Rg,quad [’rquad]rm‘q"“d s (22)

where K qu.a and mggu.q are determined from the pure
geometry scaling (see Table 3).

The quadrupole component of the wind magnetization is
plotted for different Rquaq values in Figure 5, showing an
identical behavior to the dipole component in the dipole—
quadrupole combined fields. The Y q,q formulation is shown in
Figure 6, with the solid blue line described by Equation (22).
This agrees with a large proportion of the wind solutions, with
deviations due to a switch of regime onto the octupole relation,
the third relation in Equation (17),

R K
M = Ks,oct [Y]"s0e = 25’;;):;[ [Tquad]ms‘m» (23)
Ry unaﬁ

shown with a solid green line in Figure 5 and dashed color-
coded lines in Figure 6. As with the dipole—quadrupole
addition, a broken power law can be formulated taking the
maximum of either the octupole scaling or the quadrupole
component scaling, for a given Rgua value. For the
cases simulated, we find a deviation from this broken power
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Figure 4. Steady-state solutions for the quadrupole—octupole combined geometry cases 44, 45, and 46, showing a progression from weaker to stronger magnetization
() from left to right. The color background represents the poloidal speed normalized by the Keplerian speed (e.g., ~400 km s~ for solar parameters). Dead zones are
therefore in black. Thin white lines trace the magnetic field, with red dashed lines highlighting the field polarity reversals (i.e., where B, = 0). Alfvén and sonic
surfaces are indicated with thick blue and black lines, respectively, with the fast and slow magnetosonic surfaces represented as dot-dashed and dashed white lines.
Vertical gray dashed lines show the average Alfvén radius (Rs) (Equation (13), representing the torque efficiency, scales with the size of the Alfvén surface). The
asymmetry of the global magnetic field about the equator is shown, with a qualitatively similar behavior to the dipole-quadrupole simulations in Paper I.

law of no greater than 5%, with most cases showing a closer
agreement.

3.2.3. Dipole Combined with Octupole

Unlike the previous field combinations, both the dipole and
octupole belong to the primary symmetry family, and thus their
addition produces two distinct field topologies for aligned or
anti-aligned fields. Again, we test Equation (17), now with
Rquad = 0. The field combinations are parameterized using the
ratio of dipolar field to total field strength, Rgp, with the
remaining field in the octupolar component Roet = 1 — Rip.
The ratio of dipolar field is varied (R4, = 0.5, 0.3, 0.2, 0.1).
Additionally, we repeat these ratios for both aligned and anti-
aligned fields. This produces eight distinct field geometries that
cover a range of mixed dipole—octupole fields.

Figure 7 displays the behavior of both aligned and anti-
aligned cases with increasing field strength. The combination
of dipolar and octupolar fields produces a complex field
topology that is alignment dependent and impacts the local
flow properties of the stellar wind. The symmetric property of
the global field is maintained about the equator. Aligned
combinations have magnetic field addition over the poles,
which increases the Alfvén speed, producing a larger Alfvén
radius over the poles. However, the fields subtract over the

equator, which reduces the size of the Alfvén radius over the
equator; see the top panel of Figure 4. The bottom panel shows
anti-aligned mixed cases to exhibit the opposite behavior, with
a larger equatorial Alfvén radius and a reduction to the size of
the Alfvén surface at higher latitudes. The torque-averaged
Alfvén radius is shown by the gray dashed lines in each case,
representing the cylindrical Alfvén radius (Rs). For the
simulations in this work, the anti-aligned cases produce a
larger lever arm compared with their aligned counterparts, with
a few exceptions. In general, the increased Alfvén radius at the
equator for the anti-aligned fields is more effective at increasing
the torque-averaged Alfvén radius compared with the larger
high-latitude Alfvén radius in the aligned field cases.

The locations of the current sheets are shown in Figure 7
using red dashed lines. As noted with the dipole—quadrupole
addition in Paper I, the global dipolar geometry is restored with
increasing fractions of the dipole component or increased field
strength for a given mixed geometry. The latter is shown in
Figure 7 for both aligned and anti-aligned cases. With
increased field strength, a single dipolar streamer begins to
be recovered over the equator. A key difference between the
two field alignments is the asymptotic location of the three
streamers. In the case of an aligned octupole component,
increasing the total field strength for a given ratio forces the
streamers toward the equator, at which point they begin to
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Figure 5. Average Alfvén radius vs. wind magnetization, Y, for the different
combinations of quadrupole and octupole, in a similar format to Figure 3.
Color-coded dashed lines relate to the prediction considering only the
quadrupolar component of the field for each R quaq. The combinations shown
here behave in a similar manner to dipole—quadrupole combined fields, in a
sense that the lower-order field (with the lowest /) governs the Alfvén radius for
large wind magnetizations, Y, and the higher-order field (large /) controlling the
low magnetization scaling.

merge into the dipolar streamer. With an anti-aligned octupole
component, the opposite is found, with the high-latitude
streamers forced toward the poles and onto the rotation axis.
It is unclear whether this effect is significant itself in
influencing the global torque.

Using Equation (17), with no quadrupolar component, we
anticipate that the dipolar component (first relation) will be the
most significant in governing the global torque. Figures 8 and 9
show the dipole—octupole cases following the expected
behavior, as observed for dipole—quadrupole and quadrupole—
octupole combinations. We see that the average Alfvén radius
follows either the dipole component scaling (Ygip) or the
octupole scaling relation,

R K
M = Kg,oct [T]ms‘“c' = %[Tdip]ms‘m- (24)
R ' Rdip“

However, as evident in both figures, there is a deviation from
this scaling, with the strongest variations belonging to low-R gp
cases. Anti-aligned cases follow the behavior expected from
Paper I with a much higher precision than the anti-aligned
cases. Figure 9 shows the dipole scaling to overpredict the
aligned cases compared with the anti-aligned cases. This occurs
because Equation (17) is a simplified picture of the actual
dynamics within our simulations, and as such, it does not
encapsulate all of the physical effects. The trends are still
obvious for both aligned and anti-aligned cases, and the scatter
simply represents a reduction to the precision of our
formulation.

Despite this deviation from predicted values, Figure 9 shows
the dipole component again to be the most significant in
governing the global torque. With a more complex (higher /)
secondary component, the dipole dominates the Alfvén radius
scaling at a much lower wind magnetization, when compared
with the dipole—quadrupole combinations. For the dipole—
octupole cases simulated, the dipole component dominates the
majority of the simulated cases. For our dipole and octupole
mixed fields the transition between regimes occurs at
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Figure 6. Average Alfvén radius vs. the quadrupolar component of the wind
magnetization, Tqu.g, for cases with mixed quadrupole and octupole
components (circles). The solid blue line shows the prediction based on the
quadrupole component only (Equation (22)). The dashed lines show the
octupolar scaling (Equation (23)). A broken power law composed of
the quadrupolar component and the octupolar scaling (Rqua dependent)
can be constructed similarly to work done in Paper I. The quadrupolar
geometry dominates the scaling, for all of the R quaq values simulated here, at
(Ra) /R« ~ 9. The point at which the quadrupolar geometry dominates
for a given Rquaa value can be approximated by considering the strength
of the two fields at the Alfvén radii, i.e., the radial distance when the
strength of the quadrupole matches or exceeds that of the octu-
p()le Bquad/Bocl = unad/(l - unad)(r/R*)~

Taip = 100, such that the (Ra) for fields with R, = 0.1, or
higher, and a physically realistic wind magnetization will all be
governed by the dipole component.

3.2.4. Combined Dipole, Quadrupole, and Octupole Fields

In addition to the quadrupole—octupole and dipole—octupole
combinations presented previously, we also perform a small set
of simulations containing all three components. Their stellar
wind parameters and results are tabulated in Table 4. We select
a regime where the dipole does not dominate (Rgj, = 0.1), to
observe the interplay of the additional quadrupole and octupole
components. We also utilize cases §89—96 and 121-128 from
this work and cases 51-60 from Paper I, all of which sample
varying fractions of quadrupole and octupole with a fixed
Rgip = 0.1. These are compared against the three-component
cases, 129-160.

Equation (17) is adopted, now using all three components,
such that the results from these simulations are expected to
scale in magnetization like a twice-broken power law. As
noted with the dipole—octupole addition, the inclusion of an
octupolar component introduces behaviors that will not be
accounted for by this formulation, i.e., Equation (17) is
independent of field alignments, etc. We aim to characterize
this unaccounted-for physics in terms of an available
precision on the use of Equation (17). The simulated Alfvén
radii are compared against their predicted values in
Figure 10, along with the other simulations from this work
(shown in white). The three-component field combinations
have a small dipolar component; therefore, the dipolar
scaling of the average Alfvén radius is rarely the dominant
term in Equation (17). The different values of quadrupolar
and octupolar field that compose the remaining field strength
govern the average Alfvén radius scaling for the majority of
this parameter space. From Figure 10, the approximate
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Figure 7. Steady-state solutions for the dipole—octupole combined geometries with aligned fields (top row; cases 93, 94, and 95) and anti-aligned fields (bottom row;
cases 124, 125, and 126). The format and lines are the same as in Figure 4. The aligned cases have field adding near the poles and subtracting near the equator, where
the opposite is true for the anti-aligned cases. The difference in how these two cases combine results in a different shape of the Alfvén surface. Also, for the same
magnetization (Y), the anti-aligned cases, in general, systematically produce a larger torque efficiency ((Ra); vertical dashed gray lines). This is due to these cases
having a stronger field at low latitudes, where the angular momentum loss is more efficient.
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Figure 8. Average Alfvén radius scaling with wind magnetization, Y, for the
different combinations of dipole and octupole. The fields are either added
aligned at the poles (circles) or anti-aligned (stars). Dashed lines show the
dipole component scaling, color-coded to match the simulated values of R gip.
The overall behavior here is similar to the previous mixed combined fields,
with the lower-order field governing the Alfvén radius for large wind
magnetizations. However, the different field alignments appear to scatter
around the Yy, approximation, with the anti-aligned cases typically having
larger R, than the aligned cases, for the same Y.
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Figure 9. Average Alfvén radius scaling with only the dipolar component of
the wind magnetization, Yg;,, for cases with combined dipole and octupole
components. Aligned field are shown with circles, anti-aligned with stars. The
parameter space investigated here is well approximated by the dipole
component scaling relation (solid red line). Generally the aligned field cases
are shown to undershoot the dipole component approximation, while the anti-
aligned cases match the power law with similar agreement to the previous
combined geometries. The qualitative behavior is again similar to the previous
combined cases; however, due to the larger difference in radial decay of the
field, i.e., Baip/Boct = Raip/(1 — Raip)(r/Rs)?, the dipole dominates at much
smaller Ry =~ 3.

formulation agrees well with the simulated values, with the
largest discrepancies emerging at smaller radii and for anti-
aligned cases; see the residual plot below. A 10% divergence
from our prediction (dashed lines in both the top and bottom
panels of Figure 10) is shown to roughly approximate the
effects not taken into account by the simple scaling, with the
largest deviation to 18.3%.

Equation (17) is observed to have increasing accuracy as
the Alfvén radii become larger in Figure 10; this is due to the
increasing dominance of the dipolar component at large
distances. Quantifying the scatter in our residual, we
approximate the distribution of deviations as Gaussian and
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calculate a standard deviation of 5.1%, when evaluating all
160 of our simulated cases. Considering the 32 three-
component cases, the standard deviation remains of the same
order of 5.2%, indicating that the formulation maintains
precision with the inclusion of all three antisymmetric
components. The largest deviations from the predicted values
belong to the dipole—octupole simulations, and these are
observed within Figures 8§ and 9. In both figures, as well as
the residual, the predicted values are shown to underestimate
the simulated values, for small average Alfvén radii, but with
increasing field strength they begin to overpredict. The trends
in the residual represent physics not incorporated into our
approximate formula and can be explained. The under-
estimation at first is due to the sharpness of the regime
transition from the broken-power-law representation; in
reality, there is a smoother transition that is always larger
than the break in power laws. This significantly impacts the
dipole—octupole simulations, as they most often probe this
regime, as can be seen within Figure 9. For the dipole-
octupole combinations, we propose that this transition must
be much broader to match the deviations in the residual of
Figure 10.

Equation (17) represents an approximation to the impact of
mixed geometry fields on the prediction of the average Alfvén
radius. Our mixed cases are found to be well behaved and can
all be predicted by this formulation within ~+20% accuracy
for the most deviant; the majority lie within ~+5% accuracy.

3.3. Analysis of Previous Mixed Fields

Réville et al. (2015) presented mixed-field simulations
containing axisymmetric dipole, quadrupole, and octupole
components, based on observations of the Sun, at maximum
and minimum of magnetic activity, along with a solar-like star
TYC-0486. To further test our formulation, we use input
parameters and results from Table 3 of Réville et al. (2015) and
predict values for the average Alfvén radii of the mixed cases
produced in their work. We use Equation (17) with the fit
constants from their lower-temperature wind (¢s/Vesc = 0.222)
and manipulate the given field strengths into suitable R; values.
Results can be found in Table 5 and are shown in Figure 10
with red squares. The predicted values for the Alfvén radii
agree to better than 10% precision. The largest deviation, ~8%,
is for TYC-0486, which we credit to the location of the
predicted Alfvén radius falling in between regimes, at the break
in the power law (almost governed by the dipole component
only), where the broken-power-law approximation has the
biggest error.

Recent work by Réville & Brun (2017) presented 13
thermally driven wind simulations, in 3D, for the solar wind,
using Wilcox Solar Observatory magnetograms, spanning the
years 1989-2001. These simulations use the spherical harmo-
nic coefficients derived from the magnetograms, up to [ = 15,
including the nonaxisymmetric modes. We predict the values
of the average Alfvén radii using Equation (17), allowing the
strength of any nonaxisymmetric component to be added in
quadrature with the axisymmetric component to produce
representative strengths for the dipole, quadrupole, and
octupole components. For example, the dipole field strength
is computed as

BI' = BIEL D + B+ BT (29



THE ASTROPHYSICAL JOURNAL, 854:78 (18pp), 2018 February 20

Finley & Matt

Table 4
Input Parameters and Results from Simulations with Three Magnetic Components
Case 7?'dip”?fquadlRocl VA/Vesc <RA> /R* T Topen <V(RA)> /VCSC
129 0.1]0.6]0.3 0.5 3.1 181 289 1.09
130 0.1]0.6]0.3 1.0 3.6 698 502 1.33
131 0.1]0.6]0.3 1.5 4.0 1550 709 1.49
132 0.1]0.6]0.3 2.0 44 2760 923 1.61
133 0.1]0.6]0.3 3.0 4.9 6320 1400 1.81
134 0.1]0.6]0.3 6.0 6.3 27100 3030 2.17
135 0.1]0.6]0.3 12.0 7.9 111000 6430 2.65
136 0.1]0.6]0.3 20.0 9.3 308000 11200 3.09
137 0.1/0.6]0.6 0.5 2.7 182 194 0.97
138 0.1/0.3]0.6 1.0 3.1 702 326 1.17
139 0.1]0.3]0.6 1.5 34 1560 451 1.29
140 0.1]0.3]0.6 2.0 3.7 2760 585 1.37
141 0.1]0.3]0.6 3.0 42 6230 903 1.53
142 0.1]0.3]0.6 6.0 55 25600 2180 1.85
143 0.1]0.3]0.6 12.0 7.2 97000 4850 2.25
144 0.1]0.3]0.6 20.0 8.6 246000 8560 2.61
145 0.1]0.6] — 0.3 0.5 3.2 34 312 1.13
146 0.1]0.6] — 0.3 1.0 3.7 119 533 1.37
147 0.1]0.6] — 0.3 1.5 4.1 258 765 1.53
148 0.1]0.6] — 0.3 2.0 4.5 451 1000 1.65
149 0.1]0.6] — 0.3 3.0 5.1 1020 1500 1.85
150 0.10.6] — 0.3 6.0 6.5 4450 3400 221
151 0.110.6] — 0.3 12.0 8.2 18600 7260 2.69
152 0.110.6] — 0.3 20.0 10.1 55300 13200 3.17
153 0.1]0.3] — 0.6 0.5 3.0 4 254 1.05
154 0.110.3] — 0.6 1.0 35 21 430 1.25
155 0.110.3] — 0.6 1.5 3.9 49 607 1.37
156 0.110.3] — 0.6 2.0 4.2 91 782 1.49
157 0.110.3] — 0.6 3.0 4.7 214 1160 1.65
158 0.1]0.3] — 0.6 6.0 5.9 916 2440 2.01
159 0.1]0.3] — 0.6 12.0 7.5 3770 5360 241
160 0.1]0.3] — 0.6 20.0 9.3 11300 10200 2.85

We obtained the field strengths for the dipole, quadrupole, and
octupole components of the magnetograms used in the
simulations of Réville & Brun (2017), ignoring the higher-order
field components (V. Réville 2017, private communication). The
results from this are shown in Figure 10 with magenta squares
and show a good agreement in most cases to the simulated
values. However, we note that the Alfvén radii tabulated within
Réville & Brun (2017) are geometrically averaged rather than
torque averaged, as used in this work (both scale with wind
magnetization in a similar manner). These values thus represent
the average spherical radius for the Alfvén surface in their 3D
simulations. The base wind temperature for their simulations is
also cooler (cg/Vese ~ 0.234) than in our simulations. Never-
theless, Figure 10 shows good agreement with the predicted
values; we calculate a standard deviation of 8.4%. If we apply an
approximate correction to the spherical radii with a factor of 2/3
(due to the angular momentum lever arm being proportional to r
sin ) and use torque scaling coefficients fit to the lower-
temperature wind from Pantolmos & Matt (2017), we find that
all the magenta simulations fit within the 10% precision, despite
the inclusion of the nonaxisymmetric components. This suggests
that Equation (17) can be used in cases with nonaxisymmetric
geometries in combination, but further study is required to test
more fully.

12

4. Analysis Based on Open Flux
4.1. Magnetic Flux Profiles

The behavior of the stellar wind torque, quantified in the
previous sections, is similar to the results found in Paper I
Lower-order magnetic components decay more slowly with
radius than higher-order components. Thus, the lower-order
component typically dominates the dynamics of the global
torque. The higher-order component can usually be ignored,
unless it has a comparable field strength to the lower-order
component at the Alfvén radius, which requires the higher-
order field to dominate at the surface.

The radial dependence of the magnetic field is best described
by the unsigned magnetic flux. To calculate this, we evaluate
an integral of the magnetic field threading closed spherical
shells with area A; this produces the unsigned magnetic flux as
a function of radial distance,

o(r) = 95 B - dA|. (26)

For a potential field, as used in the initial conditions, the
magnetic flux decays as a simple power law,

l
B(r) = @(ﬁ) , @7
r
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Figure 10. Top panel: comparison of the simulated Alfvén radii vs. the
predicted Alfvén radii using Equation (17). The line of agreement is shown
with a solid black line, and the bounds of 10% deviation from the predicted
value are shown with black dashed lines. The bottom panel shows the residual,
((Ra)sim — (Ra)rmis)/(Ra)sim, and the 10% deviation with dashed lines. Cases
129-135 and 145-152 are colored purple, and cases 137-144 and 153160 are
colored orange, different from the color scheme of previous figures. The
quadrupole- and octupole-dominated cases with Rgj, = 0.1 are shown with
their original coloring (blue and green, respectively). All other simulations
from this work and Paper I are shown in gray. Three red squares represent
axisymmetric mixed-field simulations from Réville et al. (2015). Thirteen
magenta squares represent 3D nonaxisymmetric simulations with /,.x = 15
from Réville & Brun (2017) (the average Alfvén radius is computed differently
than Equation (13)).

Table 5
Comparison of Results, Ra /Rylsim, from Cases of Réville et al. (2015)
to the Prediction of Equation (17), Ra /Rx«|rm1s

ObjCCt RdipIunadIRocl T RA /R*lsim RA /R*lFMIS
Sun Min —0.4710.03] — 0.50 812 6.7 6.74
Sun Max 0.13|0.73]0.14 130 33 3.36
TYC-0486 —0.10[0.79] — 0.11 17600 7.7 7.10

where @, is the surface magnetic flux and [ represents the
magnetic order of the field, increasing for more complex fields.
Thus, higher-order fields decay radially faster.

The radial profiles of the flux in our steady-state solutions are
shown with thin gray lines in Figures 11-13. Each ratio (R;)
represents a different combined field geometry, with each gray
line having a different field strength. In each figure we include
the potential field solution for the flux with a solid black line,
produced by Equation (26), showing the initial magnetic field
configuration. No longer is a single power law produced;
instead, the components interact and produce a varying radial
decay. In magnetized winds, the magnetic forces balance the
thermal and ram pressures close to the star. Therefore, the
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unsigned flux approximately follows the potential solution.
Farther from the star the pressure of the wind forces the
magnetic field into a nearly radial configuration, beyond which
the unsigned flux becomes constant. This constant value is
referred to as the open flux, e, (typically larger field strength
produces a smaller fraction of open flux to surface flux).

In the cases with quadrupole—octupole mixed fields
(Figure 11), the individual potential field quadrupole and
octupole components are indicated with thick dashed blue and
green lines, respectively. As with the previous dipole and
quadrupole addition, the broken-power-law behavior shown in
the Alfvén radius formulation is visible. The quadrupole
component often represents the most significant contribution to
the total flux, as the dipole did within Paper I. The bottom right
panel of Figure 11 shows the relative decay of all the potential
fields.

Figure 12 shows the radial magnetic flux evolution for the
dipole—octupole combinations in a similar format to Figure 11.
A quantitatively similar behavior to the dipole—quadrupole and
quadrupole—octupole combinations is shown with the anti-
aligned field geometries, seen in the bottom row. This explains
why previously the anti-aligned cases provided a better fit to
the broken-power-law approximation than the aligned cases.
For the cases with an aligned octupole component, the profile
of the flux decay is distinctly different. The smooth transition
between the two regimes of the broken power law is replaced
with a deviation from the dipole that passes below the dipole
component at first and then asymptotes back. This is caused by
the subtraction of the dipole and octupole fields over the
equator, which reduces the unsigned flux and has the largest
impact at the radial distance where the two components have
the equal and opposite field strength.

For these two-component simulations, the approximate
formulation, Equation (17), mathematically approximates the
radial decay of the magnetic field with two regimes, an
octupolar decay close in to the star followed by a sharp
transition to the lower-order geometry (dipole or quadrupole),
which ignores any influence of the octupolar field. The
formulation works well when this is a good approximation,
which is typically the case for the dipole—quadrupole,
quadrupole—octupole, and anti-aligned dipole—octupole cases.
The inflection of the magnetic flux for aligned cases creates a
discrepancy between our simplification and the physics in the
simulation; therefore, we observe a scatter in our results
between the aligned and anti-aligned cases. Our formulation is
least precise when the inflection occurs near the Alfvén radius,
causing the formula to overpredict the average Alfvén radius.
However, in Section 3.2.4 we show this to be a systematic and
measurable effect that does not impact the validity of
Equation (17).

For the three-component simulations, the behavior of the
dipole-octupolar component alignment is shown to oppose the
previous dipole—octupole addition. Equation (17) more accu-
rately approximates the mixed-field cases with an aligned
octupole component than with an anti-aligned component. To
explore this, we show the radial evolution of the magnetic flux
in Figure 13. The top panel displays the aligned cases with
increasing octupolar component and decreasing quadrupolar
component, moving to the right. The reduction of flux, or
inflection in the flux profile, due to the dipole and octupole
addition is only seen to be significant for one case, where the
octupole fraction is maximized. In the remaining cases the
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Figure 11. Unsigned magnetic flux vs. radial distance (gray lines) for all the cases with combined quadrupole and octupole components (labeled
Rquaa = 0.1 — 0.8, along with the pure quadrupole and octupole cases (labeled Rquqa = 0.0 and 1.0). Thick dashed blue and green lines show the value
for a potential field for the quadrupole and octupole components, respectively, on their own. The total potential field flux, used as the initial condition,
Equation (26), is shown in solid black. Thin gray lines in each panel show the magnetic flux in a single steady-state solution, for different field strengths of a
given geometry. The flux within the simulations follows the potential field solution closely until the magnetic field is opened into a radial configuration with
constant flux. Gray circles indicate the location of the field opening radii R,, as we define it in this work. The mixed field geometries decay with an octupolar
dependence until reaching the quadrupolar component, at which point the quadrupole controls the decay. This explains why the broken-power-law approximation
is a good fit to the data in most cases. For comparison, the final panel shows all of the potential (initial) field geometries and their opening radii, colored according

to their Rquag value.

octupolar fraction is too small to produce a strong reduction in
the equatorial flux with the dipole, hence the well-behaved
relation between the simulated aligned cases and the predicted
average Alfvén radii in Figure 10. The poorest-fitting cases to
Equation (17) are the anti-aligned mixed cases shown in
Figure 13 with purple and orange stars. The potential field
solutions, shown with solid black lines, sit above the dashed
component slopes (most significant for cases 153-160, in
orange) showing an increased field strength due to the complex
addition of the three components in combination. This is unlike
most of the previous combined field cases, which are typically
described by either one component or the other; hence, the
predicted values differ for these cases.

This behavior is difficult to parameterize within our Alfvén
radius approximation, as it requires knowledge about the
magnetic field evolution in the wind. For this work, we simply
show why the simulations deviate from Equation (17) and
suggest that care be taken when using such formulations with
dipolar and octupolar components.

4.2. Open Flux Torque Relation

The open flux, ®,pe,, remains a key parameter in
describing the torque scaling for any magnetic geometry.
Réville et al. (2015) construct a semianalytic formulation for
the average Alfvén radius using the open flux wind
magnetization,

PFpen /R

. (28)
MVCSC

Topen =

14

The dependence of the average Alfvén radius on Y, is then
parameterized:

(Ra)

*

=K, [Topen]m“ s (29)

where K, and m, represent fit parameters to our simulations
using this open flux formulation. In Paper I, we show the
dependence of these fit parameters on magnetic geometry. We
show this again within the left panel of Figure 14. The scatter in
average Alfvén radius values for different field geometries is
reduced compared with that seen in the Y parameter spaces
(Figures 3, 5, and 8), such that a single power-law fit is viable,
shown with a solid black line. However, better fits are obtained
when considering each pure geometry independently, tabulated
in Table 6.

Work by Pantolmos & Matt (2017) showed how differing
wind acceleration affects the scaling relation by using
different base wind temperatures to accelerate their winds.
Different magnetic topologies produce slightly different wind
acceleration from the stellar surface out to the Alfvén radius,
due to the varying degree of super-radial expansion of the
magnetic field lines (Velli 2010; Riley & Luhmann 2012;
Réville et al. 2016). Thus, this causes the distinctly different
scaling relations in the left panel of Figure 14. Using the
averaged Alfvén speed (v(Ry)) at the Alfvén surface, this
difference in wind acceleration can be removed (see
Pantolmos & Matt 2017), and the result is shown in the
right panel of Figure 14.



THE ASTROPHYSICAL JOURNAL, 854:78 (18pp), 2018 February 20

Finley & Matt

1.000 ~
Raip =0.9 Raip =0.8 Raip=10.7 _\ Raip = 0.5 4
] =\
N 1\ L
N \ \ ‘
3 \
201004 N ;1\ 1\ ;
5 \ \ \
\ \ \
\ \ \ \
\ \ \ \
1.000 3 3 :
Raip =-0.9 Raip =-0.8 i Raip=-0.7 1IN Raip =-0.5
S N \ \
% 0.100{ N 7\ 3 1\ 4
5 \ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
0-010 1 T - T T T T
1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0
IR« IR« IR+ rIR IR«

Figure 12. Unsigned magnetic flux vs. radial distance for all the cases with combined dipole and octupole components (labeled R gip, = £0.5-0.9), both aligned (top
row) and anti-aligned (bottom row), in a similar format to Figure 11. Thick dashed red and green lines show the value for a potential field for the dipole and octupole
components, respectively, on their own. The aligned cases have a qualitatively different behavior from the dipole—quadrupole, quadrupole—octupole, and anti-aligned
dipole—octupole cases, in that the former show a subtle inflection in the their flux vs. radius (most apparent in the solid black lines for large R4;p values, the three top
left panels). This is caused by the subtraction of the two fields in the equatorial region, which has a maximum effect at the radius where the two components have the
same magnitude. The net effect of this inflection in the magnetic flux is subtle, and thus our scaling relation (which does not treat the aligned and anti-aligned cases
differently) remains an acceptable approximation to all simulations. For comparison, the rightmost panel shows all of the potential (initial) field geometries and their
opening radii, colored according to their Rg;p value, for the aligned and anti-aligned cases, respectively.

The semianalytic solution from Pantolmos & Matt (2017) is
given by

(Ra)
Ry

VSSC

<v(RA)>] ’

where K. and m, are fit parameters to this formulation. The fit
relationship from Pantolmos & Matt (2017) and a fit to our
simulation data (Table 6) are shown with all our simulated
cases (both Paper I and this paper) in the right panel of
Figure 14.

A small geometry-dependent scatter remains in the right
panel, which is noted in Paper I. The cause of this is an
unanswered question but may relate to systematic numerical
errors due to modeling small-scale complex field geometries.
Our fit agrees well with that from Pantolmos & Matt (2017),
with a shallower slope due to the inclusion of the higher-order
geometries that show this systematic deviation from the dipole
simulations.

=K. |:T0pen (30)

4.3. Field Opening Radius

As in previous works (e.g., Pantolmos & Matt 2017,
Paper I), we define an opening radius R, using the value of
the open flux. The opening radius is defined as the radial
distance at which the potential field for a given geometry
matches the value of the open flux, i.e., (R,) = Popen. In this
way, given the surface magnetic field geometry and the value
of R,, the open flux in the wind is recovered, and thus the
torque can be predicted. However, producing a single relation

15

for predicting the opening radius, and thus the open flux, for
our simulations remains an unsolved problem.

In Figures 11-13, the opening radii for all simulations are
marked with gray circles and compared in the final panel
(colored to match the respective R; value). With increasing
field strength, the simulations produce a larger average Alfvén
radius and a larger dead zone/opening radius. The Alfvén and
opening radii roughly grow together with increasing wind
magnetization, but their actual behavior is more complex. The
field complexity also has an affect on this relationship, with
more complex geometries producing smaller opening radii, as
the wind pressure is able to open the magnetic field closer to
the star.

We compare the average Alfvén radii and opening radii
within Figure 15. The simulations containing an octupolar
component, in general, show a shallower dependence, which
continues the trend from dipole to quadrupole presented in
Paper 1. Interestingly, the aligned dipole—octupole fields are
shown to have reduced values of R, for the Alfvén radii they
produce, compared to the aligned cases, which is a conse-
quence of the reduced flux from the field subtraction over the
equator. For these cases the wind pressure is able to open the
field much closer to the star, compared to the anti-aligned
cases.

The relationship between the opening radius and the lever
arm for magnetic braking torque in our wind simulations is
evidently complex and interrelated with magnetic geometry,
field strength, and mass-loss rate. The opening radius, as we
define it here, is algebraically related to the source surface
radius, rg, used within the potential field source surface (PFSS)
models. As such, the R, scales with ry for a given field
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Figure 13. Unsigned magnetic flux vs. radial distance for the sample of mixed dipole, quadrupole, and octupole cases in the same format as Figure 11. All cases
shown have 10% in the dipole component. Then, from left to right, the fraction in the octupole increases from 0% to 90% (with the remaining fraction in the
quadrupole component). The top row has aligned dipole—octupole; the bottom has anti-aligned.
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Figure 14. Average Alfvén radius vs. the open flux magnetization, Topen, Equation (28). All simulations from this study and Paper I are shown, color-coded as in the
previous figures. Left: different scaling relations (Equation (29), Table 6) are shown for each pure geometry and a combined fit. Right: open flux magnetization
divided by the average speed at the Alfvén surface (v(Ry)). The scatter is reduced, indicating that the different scalings in the left panel are primarily due to the effect
of magnetic geometry on the wind acceleration (as discussed in Paper I). However, there remains a small systematic trend, in that the higher-order geometry winds sit
lower for a given magnetization (seen in Paper I), which may be due to systematic numerical effects. The solid black line represents the fit to all data (see Table 6); the
dashed line represents the result from dipole wind simulations with different base wind temperatures from Pantolmos & Matt (2017).

geometry, and its behavior with increasing field strength should
be accounted for within future PFSS models.

5. Conclusions

This work presents results from 160 new MHD simulations
and 50 previously discussed simulations from Paper I, which we
use to disentangle the impacts of complex magnetic field
geometries on the spin-down torque produced by magnetized
stellar winds. Axisymmetric dipole, quadrupole, and octupole
fields are used to construct differing combined field geometries.

16

We systematically vary the ratios, R gip, R quad, and R, of each
field geometry with a range of total field strengths. Here we
reinforce results from Paper 1. With simple estimates using
realistic magnetic field topologies (obtained from ZDI observa-
tions) and representative field strengths and mass-loss rates for
main-sequence stars, the dipole component dominates the
spin-down process, irrespective of the higher-order components
(A. Finley et al. 2018, in preparation). The original formulation
from Matt et al. (2012) remains robust in most cases even for
significantly nondipolar fields. Combined with the work from
Pantolmos & Matt (2017), these formulations represent a strong
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Figure 15. Average Alfvén radius vs. opening radius for all cases. Black
dashed lines represent R/R, = 3.3 and 1.5, which bound all cases. The
simulations show a similar behavior to that discussed in Paper I, namely, a
geometry-dependent separation, with the octupole geometries having the
shallowest slope.

foundation for predicting the stellar wind torques from a variety
of cool stars with differing properties.

We show the distinctly different changes to topology from
our combined primary (dipole, octupole) and secondary
(quadrupole) symmetry family fields, “primary” being anti-
symmetric about the equator and “secondary” symmetric about
the equator (McFadden et al. 1991; DeRosa et al. 2012). The
addition of primary and secondary fields produces an
asymmetric field about the stellar equator, in contrast to the
combination of two primary fields, which maintains equatorial
symmetry. However, the latter case breaks the degeneracy of
the field alignment, producing two different topologies
dependent on the relative orientation of the combined
geometries. This is not the case for primary and secondary
field addition, i.e., dipole—quadrupole and quadrupole—octu-
pole, which produces the same global field reflected about the
equator.

The magnetic braking torque is shown, as in Paper I, to be
largely dependent on the dominant lowest-order field comp-
onent. For observed field geometries this is, in general, dipolar
in nature. We parameterize the torque from our mixed-field
simulations based on the decay of the magnetic field. The
average Alfvén radius, (Ra), is defined to represent a lever arm,
or efficiency factor, for the torque, Equation (14). From our
simulated cases we produce an approximate formulation for the
average Alfvén radius, Equation (17), where both K and my
have tabulated values from our simulations in Table 3. These
values are temperature dependent, e.g., ~1.7 MK for a 1 Mg
star. In this formulation, the octupole geometry dominates the
magnetic field close to the star; then it decays radially, leaving
the quadrupole governing the radial decay of the field; and
finally the quadrupole decays, leaving only the dipole
component of the field. In each regime the strength of the
field includes any component that is yet to decay away.

Using this formula, we are able to predict the torque in all of
our simulations to ~20% accuracy, with the majority predicted
to within ~5%. This is then extended to mixed-field
simulations presented in Réville et al. (2015) and Réville &
Brun (2017). The formulation presented within this work
remains an approximation, with a smoother transition from
each regime observed with the simulations. This work
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Table 6
Open Flux Fit Parameters to Equations (29) and (30)
Topology (/) K, my
Dipole (1) 0.33 + 0.03 0.371 £ 0.003
Quadrupole (2) 0.63 + 0.02 0.281 + 0.003
Octupole (3) 0.85 + 0.03 0.227 + 0.004
All simulations 0.46 + 0.03 0.329 + 0.004
K. me
Topology independent 0.08 £ 0.04 0.470 £ 0.004

represents a modification to existing torque formulations,
which accounts for combined field geometries in a very
general way. A key finding remains that the dipole component
is able to account for the majority of the magnetic braking
torque, in most cases. Thus, previous works based on the
assumption of the dipolar component being representative of
the global field are validated. It is noted here, however, that it is
the dipole component of the field and not the total field strength
that enters in the torque formulation; therefore, it is important
to decompose any observed field correctly to avoid
miscalculation.

In this study, as in the previous one, we do not include the
effects of rapid rotation or varying coronal temperatures.
Prescriptions for rotational effects on the three pure geometries
studied here are available (Matt et al. 2012; Réville et al. 2015),
along with differing coronal temperatures for dipolar geome-
tries (Pantolmos & Matt 2017). In general, differences in wind-
driving parameters and physics will introduce more deviation
from Equation (17); however, it is expected to remain valid.

Work remains in modeling the behavior of nonaxisymmetric
components on the stellar wind environments surrounding Sun-
like and low-mass stars and the associated spin-down torques.
Observed fields are shown to host a varied amount of
nonaxisymmetry (e.g., See et al. 2015). Works including more
complex coronal magnetic fields, such as the inclusion of
magnetic spots (e.g., Cohen et al. 2009; Garraffo et al. 2015),
tilted magnetospheres (e.g., Vidotto et al. 2010), and using ZDI
observations (e.g., Vidotto et al. 2011, 2014; Alvarado-Gémez
et al. 2016; Garraffo et al. 2016b; Nicholson et al. 2016;
Réville et al. 2016), have shown the impact of specific cases
but have yet to fully parameterize the variety of potential
magnetic geometries. The relative orientations of some field
combinations shown in this work have produced differences in
the braking lever arm; therefore, we expect the same to be true
for nonaxisymmetric geometries in combination. Since
Equation (17) predicts the Alfvén radii from Réville & Brun
(2017) (Section 3.3), this suggests that our approximate
formulation holds for nonaxisymmetric components (using a
quadrature addition of £/ components), but this remains to be
validated.
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In the original manuscript, Figure 5 was incorrectly printed as a copy of Figure 6. This erratum shows Figure 5 as it was intended.
All tabulated data and scientific results of the paper remain unaffected.
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Figure 5. Average Alfvén radius vs. wind magnetization, Y, for the different
combinations of quadrupole and octupole, in a similar format as Figure 3.
Color-coded dashed lines relate to the prediction considering only the
quadrupolar component of the field for each R quaq. The combinations shown
here behave in a similar manner to dipole—quadrupole combined fields, in a
sense that the lower order field (with the lowest /) governs the Alfvén radius for
large wind magnetizations, Y, and the higher order (large /) controlling the low
magnetization scaling.
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3.5 Additional Information

Details regarding the methodology of simulating stellar winds with PLUTO are given in
the published papers (3.3 & 3.4), however here I would like to highlight a few points of

interest.

3.5.1 Steady-state and Time-varying Solutions

In Sections 3.3 and 3.4 the 2.5D simulations are said to reach a steady-state, however no
condition is given to explain this. Throughout this work steady-states are evaluated by
monitoring the time-evolution of M, 7, and ®open, Which are calculated on sp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>