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Abstract 6 

Shoreline change in the form of beach rotation can occur at event to decadal timescales, 7 

especially in semi-sheltered embayments with bi-directional wave climates, leading to 8 

enhanced coastal vulnerability under predictions of increased sea level rise. Previous studies 9 

have shown that phases of winter-averaged atmospheric indices in the North Atlantic 10 

correlate with variations in average winter wave height and dominant direction; however, 11 

predictions of a localised wave climate and beach rotation from individual climate indices has 12 

exhibited limited skill. Here we show that the combination of two major north Atlantic 13 

climate indices, the North Atlantic Oscillation (NAO) and West Europe Pressure Anomaly 14 

(WEPA), improves the prediction of a wave power directionality index (WDI), known to 15 

correlate with beach rotation along the length of a headland bound gravel embayment. 16 

Results using a combination of NAO and WEPA, improves predictions of WDI with an 17 

associated R2 of 0.66, when compared to 0.23 and 0.31 for NAO and WEPA individually. 18 

Hindcast (WDIWW3) and index predicted (WDIPred) values of the WDI were shown to validate 19 

against measured beach rotation from 2008 to 2018 and modelled inshore potential longshore 20 

energy fluxes from 1980 to 2018. A long-term historic time series of WDIPred (1906-present) 21 

was then hindcast using records of NAO and WEPA. Qualitative validation of long-term 22 

beach rotation in response to the WDIPred is achieved with proxy records of beach change in 23 

the form of oblique and aerial photography and topographic maps. Low frequency (~60 24 
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years) beach rotation is shown to follow phases of the detrended cumulative WDIPred values, 25 

over the period of 1906 to 2018, linked to the multi-decadal fluctuations in detrended 26 

cumulative values of NAO and WEPA. When examined in the context of millennial-scale 27 

proxy NAO records, it is clear the recent centurial-scale analysis does not capture past 28 

variability and duration. This work has shown that: (1) potential future season ahead forecasts 29 

of atmospheric indices may skilfully predict beach rotation in many regions with bi-30 

directional wave climates; and (2) historical analysis highlights the potential past phases of 31 

extreme coastal realignment. These new insights will lead to proactive and informed 32 

management from local authorities and coastal engineers.  33 

Keywords: Beach rotation, NAO, WEPA, climate indices, atmospheric variability, N 34 

Atlantic. 35 

1. Introduction 36 

Predicting shoreline change and evolution is an ever growing issue for coastal managers, 37 

engineers and communities, particularly in light of observed and forecasted sea level rise 38 

(Nicholls et al., 2011). Whilst increases in storminess and significant wave height (Dodet et 39 

al., 2010) have been shown to cause significant cross-shore erosion of exposed beaches 40 

(Burvingt et al., 2016; Masselink et al., 2016; Scott et al., 2016), beach rotation due to 41 

longshore sediment transport under changes in the incoming wave direction (Klein et al., 42 

2002), plays an equally important role in coastal vulnerability for many semi-sheltered 43 

embayments with bi-directional wave climates (Ruiz de Alegria-Arzaburu and Masselink, 44 

2010; Wiggins et al., 2019a). Single storm events and annual winter rotational responses can 45 

leave embayments depleted of sediment at the up-wave extent, reducing overall beach 46 

volume and increasing the risk of damage, flooding and cliff retreat. If the wave climate 47 

maintains a bias towards a particular direction over multi-annual to decadal timescales, these 48 
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potential risks increase, due to the lack of recovered beach volumes, reducing the protection 49 

offered against damage under storm wave attack. 50 

Understanding the controls that wave power and direction have on beach response has been 51 

investigated globally, with phases of atmospheric indices showing strong links to wave height 52 

and direction on local to basin wide scales (Barnard et al., 2015; Harley et al., 2017; 53 

Ranasinghe et al., 2004). Within the North Atlantic, recent studies have identified both the 54 

North Atlantic Oscillation (NAO) and West Europe Pressure Anomaly (WEPA) as playing a 55 

significant role in controlling both the winter-averaged wave height and dominant wind 56 

directions (Bacon and Carter, 1993; Castelle et al., 2018, 2017; Dodet et al., 2010; Izaguirre 57 

et al., 2010; Martínez-Asensio et al., 2016; Plomaritis et al., 2015). Positive phases of the 58 

NAO have been shown to predict increased winter wave height and westerly winds in the 59 

upper latitudes of the north Atlantic, northward of 52° N, whilst positive phases of WEPA 60 

outscore other indices in predicting increased wave heights southward of this latitude, until 61 

the coast of Portugal (Castelle et al., 2018). Along the entire length of the south coast of the 62 

United Kingdom (<52° N), where waves are directionally bi-modal (south-westerly and 63 

easterly), Wiggins et al. (2019b) observed that winter NAO and WEPA were best suited to 64 

predicting easterly and south-westerly winter-averaged wave power, respectively, with weak 65 

or no correlation in their opposite directions. In turn, the beach response for many south-east 66 

facing beaches along the same coastline, showed rotation was controlled by the Wave 67 

Directional Index (WDI), defined as the standardised winter power balance between the 68 

primary and secondary winter wave directions (Wiggins et al., 2019a). Despite the strong 69 

correlations between WDI and beach rotation, individually, NAO and WEPA were only 70 

weakly positively correlated with the WDI, and only significantly correlated with beach 71 

rotation in two of the 22 measured locations. 72 
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Given the current state of winter NAO forecasting (Dunstone et al., 2016; Scaife et al., 2015; 73 

Weisheimer et al., 2017), and the ability to predict several months ahead for the coming 74 

winter season, any improvements to our understanding of the relationship between 75 

atmospheric indices and morphology could lead us towards season ahead beach response 76 

forecasts for rotational sites, a tool that would be welcomed by coastal managers from local 77 

to regional scales. Furthermore, an improved relationship between climate variability and 78 

beach response could offer the capability to investigate historic beach state, providing a 79 

representative indicator of potential future variability, and place the observed contemporary 80 

changes into a longer-term context. For example, centurial-scale reconstructions of the NAO 81 

(Cook et al., 2002; Faust et al., 2016; Trouet et al., 2012) and the use of proxy records  to 82 

model the NAO as far back as 3000BP (e.g. Baker et al., 2015), suggest that low frequency 83 

fluctuations of significant magnitude have occurred over multi-centurial timescales, many of 84 

which have been linked to well documented climate anomalies (e.g. Mediaeval Climate 85 

Anomaly, Little Ice Age), causing variations in precipitation, temperature and storminess, 86 

potentially driving large scale morphological activity such as sustained coastal dune 87 

transgression (Clarke and Rendell, 2006; Jackson et al., 2019). This study aims to investigate 88 

whether an improved relationship between climatic indices and winter WDI can be obtained 89 

by multivariate analysis, helping to place our current observations of wave climate controls 90 

on beach rotation into context with centurial scale fluctuations, allowing for proactive 91 

decisions in terms of long-term planning and coastal management.    92 

2. Regional setting 93 

Start Bay lies along the south coast of Devon, United Kingdom (50.27° N, 3.65° W), facing 94 

south east into the English Channel. The embayment consists of four interconnected coarse 95 

gravel barriers (D50 = 2 - 10mm), backed by freshwater lagoons and separated at high tides by 96 

protruding rocky headlands and wave cut platforms. Aligned from south-west to north-east, 97 
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its wave climate is bi-directional, consisting of predominantly diminished Atlantic swell 98 

waves from the south-west and short fetch easterly wind waves from the English Channel. 99 

Offshore wave angles are modulated by the presence of Skerries Bank (McCarroll et al., 100 

2020) and Start Point (Figure 1), which refract and attenuate south-westerly waves to become 101 

southerly at the shoreline, whilst easterly waves maintain their angle as they propagate into 102 

the bay.  103 

 104 

Figure 1. Location map of Start Bay with bathymetric contours (UKHO, 2013) and WWIII (Met Office) model 105 

node location. Topographic profile survey line locations are displayed as black arrows. The locations of two 106 

abandoned villages are displayed by the coloured polygons located towards the northern and southern ends of 107 

the embayment. 108 
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The southerly and easterly wave angles drive northward and southward sediment transport 109 

respectively, and the embayment is continually in a state of dynamic equilibrium, with the 110 

planform shape rotating in response to the current wave approach. The full embayment 111 

sediment cell as a whole, was demonstrated to be closed by Wiggins et al. (2019a), bounded 112 

by significant northern and southern headlands; however, beach rotation and exchange of 113 

sediment between the individual sub-embayments was observed through headland bypassing 114 

under extreme wave conditions (McCarroll et al., 2019) and sustained periods of a particular 115 

wave direction (Wiggins et al., 2019a). 116 

Both full-embayment and sub-embayment beach rotation has long been a concern within 117 

Start Bay, with significant historical and contemporary examples being the subject of 118 

numerous scientific studies (Chadwick et al., 2005; Hails, 1975; McCarroll et al., 2019; 119 

Robinson, 1961; Ruiz de Alegria-Arzaburu and Masselink, 2010; Wiggins et al., 2019a, 120 

2019b, 2017). The loss of the old village of Hallsands in 1917 is one of the highest profile 121 

cases of coastal erosion impacts in the United Kingdom. Lying at the southern corner of Start 122 

Bay (Figure 1), its collapse into the sea during a severe easterly storm followed a sustained 123 

lowering of the beach level in the years earlier, largely attributed to the dredging of subtidal 124 

beach material between 1897 and 1902 (Worth (1904), cited in May and Hansom (2003)). In 125 

addition to the dredging, evidence suggests that beach lowering at this end of the embayment 126 

was exacerbated due to a coincidental shift in winter NAO to a sustained positive phase for 127 

almost 30 years from the commencement of dredging (1898), leading to increased southerly 128 

waves, and clockwise rotation of the beach under prolonged northward sediment transport 129 

(Wiggins et al., 2017). Historical accounts of an earlier lost village at the opposite end of 130 

Start Bay, suggests the local community may have formed settlements based on the rotation 131 

and planform of the beach. Strete Undercliff, a small fishing village formed during the early 132 

17th century (Goodall, 2007) and located at the northern end of Slapton Sands (Figure 1), was 133 
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documented on early nautical maps (Denbigh, 2017), until its subsequent disappearance by 134 

1780 (Stranack, 2017; Waterhouse, 2009), around the time the village of Hallsands (in the 135 

south) became more established. Despite the lack of quantitative data from this period, it 136 

could be suggested that due to the closed nature of the sediment budget within Start Bay 137 

(Wiggins et al., 2019a), variations in multi-decadal phases of wave direction may have 138 

influenced the settlement locations of the past and present communities of Start Bay. 139 

More recently, during the winter of 2013/14, Start Bay’s beaches experienced significant 140 

clockwise rotation under a single winter season characterized by unprecedented south-141 

westerly storm events (Masselink et al., 2015; Scott et al., 2016; Wiggins et al., 2019a), 142 

leaving the southern ends of embayments depleted of sediment. This increased the 143 

vulnerability of coastal defences at southern beach extremities, and in the following winter 144 

years (2015 and 2016), lack of beach volume resulted in the undermining and collapse of sea 145 

walls at Torcross, Slapton Sands, and loss of infrastructure including the car park at 146 

Hallsands (BBC, 2016).  147 

3. Materials and methods 148 

 149 

3.1. Wave data 150 

WaveWatchIII modelled wave data was obtained for a coastal node offshore of Start Bay 151 

(Figure 1) in approximately 20m water depth. Total winter wave power was computed at 152 

each year for the period of December through March (DJFM), and subsequently split into 153 

contributions of the primary (south westerly) and secondary (easterly) directions, designated 154 

P1 and P2, respectively.  155 

The wave directionality index (WDI) was computed for each winter from 1980 to 2018 using 156 

equation (1) as set out in (Wiggins et al., 2019a); 157 
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WDI = ((P1 − P2) − (P1 − P2)  ) / σ(P1 − P2)   (1) 158 

where (P1 − P2) is the difference in wave power between the primary and secondary wave 159 

directions, (P1 − P2)  is the long-term mean and σ(P1 − P2) is the long-term standard 160 

deviation of that difference. Positive (negative) values of the WDI represent winter periods 161 

where the wave climate was more southerly (easterly) than average. 162 

3.2. Atmospheric indices 163 

Winter averaged (DJFM) atmospheric index values for the station-based NAO (based on the 164 

difference of normalized sea level pressure (SLP) between Lisbon, Portugal and 165 

Stykkisholmur/Reykjavik, Iceland since 1864) were obtained from The Climate Data Guide 166 

(downloaded from the National Center for Atmospheric Research, 167 

https://climatedataguide.ucar.edu/). Additionally, values of the West Europe Pressure 168 

Anomaly (WEPA) were obtained via hindcasts of SLP between s Valentia (Ireland) and 169 

Santa Cruz de Tenerife (Canary Islands), as developed by Castelle et al (2017) from 170 

Twentieth Century Reanalysis data (https://www.esrl.noaa.gov/psd/). Despite SLP derived 171 

NAO records being available as far back as the mid to late 1800s, and proxy reconstructions 172 

(described later in section 5) going even further up to 3000 years before present, records of 173 

WEPA only date back to 1906 due to limited SLP records and inconsistent hindcasts beyond 174 

this.  175 

Previous studies along the entire length of the south coast of England (Wiggins et al., 2019b) 176 

have shown that individual wave power contributions from the primary and secondary wave 177 

directional modes are well correlated with WEPA and NAO respectively. Winter values of 178 

the WDI for Start Bay are positively correlated with both NAO and WEPA, suggesting that a 179 

combination of the two indices may improve the predictive skill at this location. To assess 180 



9 
 

this further, an empirical stepwise multiple linear regression (SMLR) model was constructed 181 

using both NAO and WEPA.  182 

3.3. Modelled longshore sediment flux 183 

A look-up table modelling approach was applied by McCarroll et al. (2020), for the period 184 

1980 – 2018, to transform offshore wave conditions to breakpoint values in order to estimate 185 

alongshore wave power and potential longshore sediment flux within the Start Bay 186 

embayment. The estimated flux is ‘potential’ as the model assumes unlimited sediment 187 

availability. Bathymetry for the model was obtained using inshore multibeam (Wiggins et al., 188 

2019a), combined with offshore multibeam from 2013 (UKHO, 2013). To generate the 189 

inshore wave conditions for the look-up model, Delft3D-WAVE was run in stationary mode 190 

for ~400 scenarios, covering the full range of naturally occurring boundary wave conditions. 191 

Boundary conditions for a 1980-2018 wave time series were obtained from a coarse-grid 192 

hindcast model (WaveWatchIII, Met Office). These boundary conditions were transferred to 193 

points along the 14-m depth contour using the look-up table approach. A simple refraction-194 

shoaling parameterisation (Van Rijn, 2014) was used to transform waves from 14-m depth to 195 

the break point, with nodes at 25-m spacing. The breaking wave conditions were used to 196 

estimate alongshore wave power using linear wave theory. Alongshore sediment flux was 197 

estimated using the CERC equation (USACE, 2002), for a range of K-value coefficients (0.04 198 

to 0.26). The output from the look-up model is a 38-year time series of longshore wave power 199 

and potential sediment flux, which was validated against prior model results and field 200 

observations (McCarroll et al., 2019). A detailed description of the model setup and forcing 201 

can be found within McCarroll et al. (2020). Total winter transport was summed for the 202 

DJFM months, and at each location, correlations were drawn between both the observed WDI 203 

and the predicted WDI.  204 
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3.4. Topographic data and rotation index 205 

Since 2006, monthly RTK-GPS cross-shore profile surveys of Slapton Sands have been 206 

conducted by the University of Plymouth, labelled from south to north as “P1” to “P20”, with 207 

average spacings of 250m (Figure 1). Pre-winter autumn and post-winter spring surveys 208 

along the length of the beach provide alongshore averaged volume change at the southern (P1 209 

to P3) and northern (P18 to P20) ends, both of which have been shown to linearly correlate 210 

with winter values of the WDI (Wiggins et al., 2019a). A rotation index, shown in equation 211 

(2), was computed for winter change as per the methodology in Wiggins et al. (2019b), by 212 

subtracting the normalized winter volume change (dVi) from the southern end of the beach 213 

from the northern end, such that;  214 

Rotation Index = dVi (north) − dVi (south)     (2) 215 

Positive values of the rotation index represent periods of clockwise northwards rotation and 216 

negative values indicate winters where anti-clockwise southward rotation has occurred. 217 

3.5. Photographic rotation index 218 

Despite the availability of high accuracy beach surveys from 2007 onwards, prior to this date, 219 

quantitative records of beach volume change are scarce. Any surveys that have been found 220 

lack consistency in both temporal and spatial frequency as well as method. As such, metrics 221 

for beach rotation have been obtained via proxy records of historic photographs, Ordnance 222 

Survey (OS) topographic maps and limited aerial photography. For the purposes of this study, 223 

beach width at Torcross (at the southern end of the Slapton Sands embayment, Figure 1) was 224 

chosen based on the availability of historical photographs taken from the same location (a 225 

prominent headland just south of the sea wall), and the significant negative correlation 226 

between measured beach width/volume and the WDI over the period of 2007 to 2018 227 

(Wiggins et al., 2019a). Additionally, this location of the beach was identified in Wiggins et 228 



11 
 

al. (2019a) as being indicative of beach rotation, with a significant negative correlation with 229 

the northern end of Slapton Sands, implying beach width at one end of the embayment can be 230 

used as an indicator of beach rotation. In total, 32 oblique photographs were used, taken from 231 

the same location (dating from 1875 to 2019), without the need for rectification. In addition, 232 

seven sets of aerial photography (1944 to 2017), and three geo-rectified OS maps with high 233 

and low water contours (1887, 1852 and 1983) were also used. 234 

To assess historical changes in beach width with the limited dataset available, an integer scale 235 

of -2 (“Very Narrow”) to +2 (“Very Wide”) was assessed qualitatively (as shown in Figure 236 

7), based on manual interpretation of the entire dataset, providing a simple, categorical metric 237 

of relative beach width for each dated photograph and map for this location. The range of 238 

observed beach widths was taken into account in devising the scale, from the most accreted in 239 

1890, to most eroded in 2016.  240 

4. Results 241 

 242 

4.1. WDI predictions from atmospheric indices 243 

Initial exploration of the relationships between the WaveWatchIII derived WDI (WDIWW3) 244 

with NAO and WEPA, for a 38 year timeseries between 1980 and 2018 show statistically 245 

significant (p < 0.05) positive correlations (Figure 2); however, relative skill in predicting the 246 

WDIWW3 is low for both indices (R2 < 0.31). 247 

 248 
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 249 

Figure 2. Correlations between winter averaged atmospheric indices NAO, WEPA and the WDIWW3 for the 250 

period of 1980 to 2018. 251 

A SMLR model was created using both NAO and WEPA as predictor variables, with results 252 

suggesting that a regression model computed from a combination both NAO and WEPA 253 

variables provide improvement in the skill of predicted WDI (WDIPred). First and second 254 

order polynomial models were tested, in addition to two-term exponential regressions, with a 255 

linear fit offering the most explanatory power in predicting the WDIPred, such that; 256 

WDIPred = β0 + β1NAO + β2WEPA     (3) 257 

Where β0 represents the intercept and β1 to β2 are coefficients of the predictor variables, with 258 

their estimates, confidence bounds and statistics shown in Table 1.  259 

Table 1: SMLR model statistics for the predictor variables used for modelling winter values of the WDI. 260 

Coefficient Predictor Estimate Lower (95%) Upper (95%) SE tStat pValue 

 (Intercept) -0.19 -0.41 0.03 0.11 -1.78 0.083 

 NAO 0.29 0.19 0.38 0.05 6.11 5.54 x 10-7 

 WEPA 0.69 0.48 0.90 0.10 6.74 8.36 x 10-8 
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 261 

Overall improvements to the predictive skill of combining the indices are shown in Table 2, 262 

with the RMSE reducing from 0.9 when using NAO alone, to 0.60 when using NAO and 263 

WEPA. Similar improvements are seen when assessing the R2 value, with an improvement of 264 

from 0.23 to 0.66 (p = 4.71 x10-10). The coefficients for the two indices (Table 1) show that 265 

WEPA contributes more (0.69) to the overall predicted values of the WDIPred than NAO 266 

(0.29). 267 

Table 2: Improvements to the SMLR models statistics for a range of input variables and sum index used for 268 

predicting winter values of the WDIPred. 269 

Predictor Terms RMSE R-squared P-value 

NAO 0.90 0.23 2.39 x 10-3 

WEPA 0.86 0.31 3.15 x 10-4 

NAO + WEPA 0.60 0.66 5.08 x 10-9 

 270 

Outputs of WDIPred for the period of the modelled wave data (Figure 4) show the addition of 271 

both indices reproduce the winter WDIWW3 values with an R2 value of 0.66.  272 
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 273 

Figure 3. WDIWW3 for the winter periods of 1980 to 2018 plotted against WDIPred predicted using a SMLR 274 

model of winter atmospheric indices. The regression fit is shown as the bold line, whilst the 1:1 fit is displayed 275 

as the dashed grey line. 276 

Using the regression model, values of NAO and WEPA are used to hindcast the WDIPred back 277 

to the beginning of the record of atmospheric indices (1906). The predicted output can be 278 

seen in the top panel of Figure 4, with the accumulated value of the WDIPred plotted in the 279 

middle panel. 280 

Clear inter-annual variation can be seen within the long-term WDIPred values (Figure 4 a); 281 

however, there are periods of sustained negative or positive winter values, persisting for up to 282 

five years in a row (e.g. 2008 to 2013). Despite the high R2 value between the WDIWW3 and 283 

the WDIPred hindcast from atmospheric indices (for the overlapping period of 1980 to 2018, 284 

Figure 3), there are some years where the sign of the WDIPred is opposite to the WDIWW3, e.g. 285 
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2000 to 2003. This can be attributed to years where winter averaged values of NAO and 286 

WEPA are low (close to zero) or opposite in sign, leading to the larger of the two indices 287 

impacting the WDIPred. In addition, although the regression analysis was conducted using a 288 

linear relationship, the fit between winter averaged climate indices and WDIWW3 is not 289 

perfectly linear, especially for extremely high values of NAO and WEPA within the limited 290 

37-year timeseries (Figure 2a and b). This explains why the regression model under predicts 291 

the value of the WDIPred for some years; however, in the majority of cases where the WDIWW3 292 

is either highly positive or negative, hindcast values of the WDIPred share the same sign and 293 

are also larger in magnitude relative to the overall time series average. 294 

The annual hindcast WDIPred values have a limited trend over the last 113 years; however, the 295 

cumulative WDIPred values (Figure 4b) show a negative trend of -0.165 yr -1. Hindcast 296 

cumulative WDIPred was detrended by removing the linear mean trend using a least-squares 297 

regression, to highlight the fluctuations in the cumulative WDIPred
 values over time. The 298 

detrended values of the cumulative WDIPred (Figure 4c, bottom panel) indicate that there is 299 

potential periodicity in phases of positive and negative WDIPred.  300 

 301 
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 302 

Figure 4. a) SMLR modelled WDIPred values from atmospheric indices NAO and WEPA, predicted back to 303 

1906, as well as the values of WDIWW3 as obtained from the WaveWatchIII model. b) The cumulative WDIPred 304 

values from 1906 to 2018, as predicted by the SMLR model of NAO and WEPA. c) The detrended cumulative 305 

values of WDIPred from 1906 to 2018. 306 

4.2. Modelled longshore sediment flux 307 

To examine the relationship between the two different offshore WDI parameters (WDIWW3 308 

and WDIPred) and transport rates within the embayment, potential along-shore sediment flux 309 

was computed for a series of six fixed shoreline positions (Figure 5.a), using an inshore wave 310 
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transformation model comprising real bathymetry (see further, McCarroll et al. (2020)). Total 311 

potential winter transport totals (Figure 5.b, e, h, k, n, q) were compared with WDIWW3 values 312 

for the period of 1980 to 2018. In all locations, significant positive correlations are observed 313 

between the WDIWW3 and directional sediment transport (Figure 5.c, f, i, l, o, r), with the 314 

strongest correlation being at Strete (R2 = 0.84), the northern end of Slapton Sands (Figure 315 

5.f). Other nodes located in the northern sections of the embayment show a balance of 316 

northward (southward) transport under highly positive (negative) WDIWW3 winters, whereas 317 

almost all winter WDI WW3 conditions drive northward transport at Hallsands in the far south 318 

of the embayment. 319 

The positive correlations throughout the bay suggest that the WDIWW3 calculated at the 320 

offshore model node is an adequate proxy of the balance of inshore wave directions, 321 

responsible for driving sediment transport and beach rotation within the embayment. 322 

 323 

 324 
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Figure 5. a) location map of inshore nodes at which total potential winter sediment flux has been calculated, b) 325 

total potential winter alongshore sediment flux at Blackpool Sands, e) Strete, h) Middle car park, k) Torcross, n) 326 

Beesands North and q) Hallsands. Panels c), f), i), l), o) and r) show the correlation between the WDIWW3, and 327 

longshore sediment transport at the six locations, whilst panels d), g), j), m), p) and s) show the same 328 

correlations but with values of WDIPred. 329 

In addition to the comparisons between modelled sediment transport and WDIWW3, the same 330 

comparison was conducted against values of the WDIPred, as produced by the SMLR (Figure 331 

5 d, g, j, m, p and s). At all sites, weaker but similarly positive correlations were observed, 332 

with all results being significant at the 95% confidence interval, highlighting that the WDIPred 333 

computed from climate indexes is a suitable proxy for estimating flux at the shoreline. 334 

Although the WDIPred values are consistently lower than the WDIWW3 (in part due to the 335 

standardized nature of the WDI wave power parameter)  336 

4.3. Validation against beach surveys and historical records 337 

To demonstrate the potential application of WDIPred in predicting beach rotation, correlations 338 

with contemporary and historical beach rotation are presented. Similar to previous studies of 339 

both Slapton Sands and other locations in the south west, values of the WDIWW3 are well 340 

correlated with the rotation index (defined in eq. 2) for the period of 2008 to 2019, derived 341 

from topographic survey data. The sign of the rotation index tracks well with the sign of 342 

WDIWW3 (Figure 6.a), whilst the linear correlation of the two is significant and strong (R = 343 

0.77, p =0.00, Figure 6.b). Similarly, the correlation between the WDIPred and rotation index 344 

is positive (R = 0.47), despite not being statistically significant at the 95% confidence limit; 345 

however, it is observed that the correlation is much stronger and statistically significant (R = 346 

0.74, p=0.01), if the winter change from 2017/18 (due to a single easterly event) is removed 347 

as an outlier (discussed further in Section 5).  348 

 349 
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 350 

Figure 6. a) Time series of short term (~20 years) WDIWW3 values, shown by the red and blue bars, overlaid with 351 

WDIPred from the NAO and WEPA SMLR model, shown as the black line. The rotation index (green line) over 352 

the period of 2008 to 2019, derived from measured winter change (November to March) in beach volume at 353 

opposing ends of Slapton Sands, with positive (negative) values indicating northward clockwise (southward 354 

anticlockwise) beach rotation. b) Correlation between WDIWW3 and winter rotation index for the period of 2008 355 

to 2019. c) Correlation between winter WDIPred and the winter rotation index for the period of 2008 to 2018. 356 

The lack of consistent high-quality shoreline data before 2006 means proxy records are the 357 

only possibility for validation of the longer-term WDIPred values. Time series of the 358 

qualitative beach width assessment for Torcross and the detrended cumulative WDIPred values 359 

for the period spanning 1906 to 2019 are shown in Figure 7.a. The beach appears widest 360 

during the last decade of the 1800s, then beginning to narrow up to the 1920’s, remaining a 361 

similar width in photographs and maps until around 1945. A period of beach widening then 362 
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occurs until the early 1970’s, before narrowing again until 2016, the lowest beach volume in 363 

both the short-term surveys, and photo archive. 364 

 365 

 366 

Figure 7. a) Detrended cumulative values of the WDIPred (left axis) from 1906 to 2018, overlaid on the right axis 367 

is a qualitative assessment of beach width at Torcross (southern end of Slapton Sands), with positive values 368 

indicating a wide beach, suggesting southward sediment transport and anticlockwise beach rotation, whilst 369 

negative values indicate a narrower beach, signifying a period of potential northward sediment transport and 370 

clockwise beach rotation. b) Photos of Torcross taken in 1890, c) 1920, d) 1960 (Copyright The Francis Frith 371 

Collection) e) 2016 (Copyright G. Masselink), showing different beach widths throughout the last 200 years. 372 

Both beach width and detrended cumulative WDIPred values display low frequency 373 

fluctuations over the last 113 years, with beach width appearing to narrow during periods of 374 
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cumulative positive WDIPred and widen during sustained negative phases (Figure 7.a). Long-375 

term detrended cumulative values for the WDIPred as well as the NAO and WEPA were 376 

computed and the results are displayed in Figure 8. 377 

 378 

Figure 8. Detrended cumulative values of winter averaged a) WDIPred, b) NAO and c) WEPA. 379 

For the WDIPred values (Figure 8.a), the data appears to show a multi-decadal variation in 380 

cumulative positive and negative phases, whilst the NAO (Figure 8.b) and WEPA (Figure 381 

8.c) display similar scale variations (Figure 8.c). 382 

5. Discussion  383 

This study has shown that combining two major winter-averaged climate indices, NAO and 384 

WEPA, in a SMLR model significantly improves skill when trying to predict winter-averaged 385 

offshore directional wave climate (WDI), when compared to using the individual indices. 386 

Given that the WDI is key predictor of the magnitude and direction of beach rotation at this, 387 

and many similar sites along the length of the southern UK coastline (Wiggins et al., 2019b), 388 

the ability to forecast its value from two significant indices represents a step forward in 389 

assessing the accuracy in historical records of beach rotation, and the future potential to 390 

predict wave climate and morphological behaviour at seasonal to centurial timescales. Whilst 391 

previous studies have been able to link changes in atmospheric variability to deviations in 392 

wave height or direction (Barnard et al., 2015; Burvingt et al., 2018; Castelle et al., 2018, 393 
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2017; Dodet et al., 2010; Harley et al., 2017; Ranasinghe et al., 2004), the combination of 394 

multiple indices for direct calculation of a bi-directional wave climate parameter for opposing 395 

directions is unique.  396 

Both the WDIWW3 and WDIPred were shown to correlate with winter integrated potential 397 

longshore transport rates throughout the embayment (McCarroll et al., 2020). Statistically 398 

significant (p < 0.05) correlation coefficients for WDIWW3 and WDIPred ranging from 0.67 to 399 

0.92, and 0.56 to 0.68, respectively, show that the WDI calculated for a single point offshore 400 

is a robust proxy for the inshore wave climate and sediment transport. Similar to this study, 401 

significant correlations were found by Splinter et al. (2012) between yearly modelled net 402 

longshore transport rates and positive phases of the Inter-decadal Pacific Oscillation (IPO) 403 

and the Southern Oscillation Index (SOI); however, regression models combining both 404 

indices required a five-year smoothing average of both predictor and response variables, in 405 

addition to separate model equations for positive and negative phases of the IPO, 406 

incorporating different coefficients and predictor values at different time lags. The simplicity 407 

of the SMLR model used in this study, suggests that where WDI calculations are well 408 

correlated with beach rotation (Wiggins et al., 2019a, 2019b), similar analysis can be 409 

conducted at other rotation dominated sites.  410 

The results of Section 4.3 show the rotation index of Slapton Sands (as calculated from >10 411 

year topographic survey record) is well correlated with values of the WDIWW3, but not 412 

significantly correlated with the atmospheric index based WDIPred values predicted by the 413 

model over a 10-year period of observations. Further investigation into the limited dataset 414 

showed that the winter of 2017/18 featured a large single easterly storm event (Storm Emma, 415 

further description in (McCarroll et al., 2019)) which caused a significant counter clockwise 416 

rotation of the beach at the end of the winter season (March 2nd 2018). The morphological 417 

response was observed in the anti-clockwise rotational beach record and the observed 418 



23 
 

negative WDIWW3 value (– 0.51); however, it was not reflected in the positive winter 419 

averages of NAO and WEPA (0.30 and 1.17 respectively). As a result, such values of 420 

atmospheric indices resulted in the model predicting a positive WDIPred value (+ 0.70), 421 

suggesting a more southerly than average dominance of wave power. That winter also stands 422 

out as having the highest anti-clockwise rotation index during the observational period, so its 423 

impact on reducing the strength of the correlation coefficient is substantial. 424 

Clearly single extreme events such as this can cause significant beach rotation and substantial 425 

damage to infrastructure, and whilst the WDIPred is shown to correlate well with beach 426 

rotation when the 2017/18 winter is removed from the analysis (R = 0.74 p = 0.01), ignoring 427 

potential outliers of the general trend presents problems in application within a coastal 428 

management setting. If a longer period of accurate morphological survey data was available, 429 

better understanding of the skill and limitations of the relationship between WDIPred and 430 

beach rotation could be obtained.  431 

Beyond the immediate correlations between both winter WDI values and recent multi-annual 432 

beach rotation, it is interesting to examine the detrended cumulative record of WDIPred as 433 

conceptually it provides insights into the rotational state of the embayment. Using the SMLR 434 

model a hindcast record of WDIPred shows low frequency (~60-70 years) multi-decadal 435 

fluctuations over the last century (Figure 8), driven by combined changes in the cumulative 436 

values of winter NAO and WEPA. Although the methodology for constructing a proxy record 437 

of observed beach rotation is quantitatively limited (i.e. manual interpretation of southern 438 

beach width from photography and topographic maps), it does present a qualitative coherence 439 

with the periodicity in the long-term cumulative WDIPred values (Figure 7a). Temporal gaps 440 

and lack of consistency in the seasonal timing of photographs may lead to aliasing of higher 441 

frequency variations in beach width, but the longer-term signal presented in the historical 442 

record shows a clear coherence with the detrended cumulative WDIPred values, providing 443 
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some validation for using detrended cumulative WDIPred in this context. Several decades of 444 

the last century which show a positive phases in detrended cumulative WDIPred values (e.g. 445 

1900 to 1930; sustained southerly winter waves) coincide with periods of beach narrowing 446 

(clockwise rotation), whilst phases of sustained negative detrended cumulative WDIPred 447 

values (e.g. 1940 to 1970; higher percentage of easterly winter waves) coincide with beach 448 

widening (anti-clockwise rotation). Current improvements to shoreline detection from 449 

satellite images dating back to the 1980s, could provide the extended datasets required (e.g. 450 

Vos et al., 2019), and would further assist in validating regression models of atmospheric 451 

indices and their control on wave climates and beach response. 452 

Successive winters of the same WDIPred sign (positive or negative) may drive cumulative 453 

beach rotation in a particular direction or maintain the planform shape if already rotated. 454 

Event-scale wave action can cause rapid changes to the beach profile and planform shape, 455 

and reversals of wave direction have been shown to quickly counter-rotate the embayment’s 456 

of Start Bay (McCarroll et al., 2019; Ruiz de Alegria-Arzaburu and Masselink, 2010; 457 

Wiggins et al., 2019a); however, this study has identified that multi-decadal trends in the 458 

detrended cumulative WDIPred, are mirrored in beach rotation proxies over the last 113 years. 459 

Such multi-decadal beach rotation patterns have been identified in other locations over a 460 

comparable time period, such as the south coast of Pembrokeshire, Wales, UK, with similar 461 

correlations found between wave angle variations driving beach rotation under contrasting 462 

phases of the NAO (Thomas et al., 2013). The longer-term trends in cumulative WDI values 463 

appear to dictate the general planform state of Start Bay, indicating that within the next 100 464 

years, a continued upward trend in cumulative WDI values, or a potential phase shift into a 465 

sustained negative period may lead to sustained clockwise rotation or reversal and anti-466 

clockwise rotation.  467 
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To place the observed contemporary changes in context with long-term reconstructions of the 468 

NAO, detrended cumulative values of the WDIPred, NAO and WEPA from the current study 469 

are plotted on a log time scale in Figure 9. a, b, and c.  For comparison, detrended cumulative 470 

values of two extened NAO reconstructions are also presented. The first (Figure 9. d), dating 471 

back to 1400, is derived from tree-ring and ice-core proxies from Cook et al. (2002)The 472 

second (Figure 9. e) is presented as a ~3000 year record of detrended cumulative normalised 473 

stalagmite growth rates (Baker et al., 2015), inverted for ease of comparison, with high 474 

growth rates representative of drier conditions, reflective of negative NAO phases.  475 

 476 

Figure 9.  Detrended cumulative values of a) WDIPred, b) NAO from Hurrell et al., (2018) c) WEPA derived by 477 

Castelle et al., (2018), d) long-term NAO reconstructions from  Cook et al., (2002), e) normalised stalagmite 478 

growth rates (inverted) from Baker et al., (2015). Time in year date (A.D.) is presented on a log scale. 479 
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Both additional records demonstrate sustained multi-decadal to multi-centurial phases of 480 

significant magnitude which have been confirmed by several other authors (e.g. Faust et al., 481 

2016; Trouet et al., 2012). These observed fluctuations are of significantly greater scale and 482 

duration than those exhibited within the 113 years assessed in this study. Long-term 483 

variations in NAO have seen noticeable climate shifts identified in Europe over the last 2000 484 

years, including a relative warming during the MCA (~800 to 1300 A.D.) due to persistent 485 

positive NAO (Trouet et al., 2009), as well as a cooler period during the LIA (~1400 – 1850 486 

A.D.) linked to a persistent negative NAO phase (Luterbacher et al., 2002). European coastal 487 

response to these changes has been documented, with large-scale dune growth and inland 488 

sand migration evidenced during the LIA under negative NAO conditions, due to increased 489 

sand availability and stronger onshore winds (Clarke and Rendell, 2006), as well as cooler 490 

temperatures limiting vegetation growth and destabilising dunes (Jackson et al., 2019). 491 

Historical accounts of many settlements and agricultural land being abandoned due to wind 492 

driven sand migration throughout Europe (Clarke and Rendell, 2009), indicates that 493 

atmospheric effects on coastal communities have been always been apparent, driving a 494 

constant need for shoreline adaptation. Within the context of the present study site, the 495 

shoreline of Start Bay has likely undergone many previous sustained rotational states, 496 

evidenced by the loss of two historical settlements at opposing ends of the embayment 497 

(Figure 1), Strete Undercliff and Hallsands (Wiggins et al., 2017), within only the last 300 498 

years. Exact dates of Strete Undercliff’s formation are unclear, but it was well established by 499 

1652 A.D. at the northern end of the embayment, likely following a sustained positive phase 500 

of cumulative NAO winters (Figure 10), driving clockwise rotation and northward sediment 501 

transport, resulting in a wide beach. It’s eventual decline and demise 130 years later (1782 502 

A.D.) followed an opposing phase of cumulative negative NAO winters, possibly driving 503 

anti-clockwise rotation and southward sediment transport. Around the same time, early 504 
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records of the formation of Hallsands, in the southern corner of the embayment, suggest 505 

anticlockwise rotation produced a wider beach and encouraged settlement at this location, 506 

before dredging of beach shingle (Worth, 1904) and a reversal towards more positive NAO 507 

winters at the turn of the 20th century (Wiggins et al., 2017), depleted the protective beach 508 

and the village was abandoned in 1917. 509 

 510 

Figure 10. Detrended cumulative NAO reconstruction from Cook et al. (2002), with annotations describing the 511 

establishment and subsequent demise of two historic settlements within Start Bay, Strete Undercliff in the north, 512 

and Hallsands in the south. 513 

The observed low frequency variations in long-term NAO suggests that sustained 514 

morphological rotations may have been occurring over substantially longer timescales in 515 

Start Bay, and much of Europe, particularly in rotation prone sites where wave climates are 516 

bi-directional. 517 

The skill demonstrated in using combined NAO and WEPA for predicting the WDI and 518 

hence beach rotation, leads to the question of whether skilful forecasts of both indices can be 519 

obtained for either short-term (seasonal) or longer-term (multi-annual to decadal) timescales. 520 

Given that Castelle et al. (2017) have shown that NAO and WEPA are not correlated, 521 

independent forecasts of each index would need to be made well ahead of the coming winter 522 

season if the predictability of the WDI can be achieved at timescales useful to coastal 523 

managers. For example, Colman et al. (2011) made use of the NAO’s positive correlation 524 
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with wave height in the North Sea, to predict expected operational downtime of oil and gas 525 

rigs using season ahead forecasts of the NAO, made available several months in advance; 526 

however, our work presents the ability, and therefore enhanced application, of predicting the 527 

direction and magnitude of the wave power balance in a region where it significantly impacts 528 

coastal rotation and subsequent vulnerability. Improvements to seasonal NAO forecasts are 529 

currently being showcased by many authors (Baker et al., 2018; Dunstone et al., 2016; Scaife 530 

et al., 2015; Wang et al., 2017); however, hindcast predictions of the NAO over the last 100 531 

years has shown that forecast skill may be variable, with particular weakness during sustained 532 

phases of low magnitude negative NAO winters, and better skill during the stronger, positive 533 

phases during the beginning and end of the 20th century (Weisheimer et al., 2017). The results 534 

of the present study and several previous research efforts (Wiggins et al., 2019a, 2019b) 535 

highlight that the NAO’s strong negative correlation with easterly wave events is critical in 536 

the formulation of WDI values for the present location. In this case study, skilful prediction 537 

of negative NAO winters is crucial for identifying the anti-clockwise rotations observed 538 

during increased easterly waves. WEPA has been shown to have much greater skill in 539 

predicting the occurrence of the more dominant south-westerly waves but, as yet, is largely 540 

unpredictable at the season-ahead timescale, in part due to current climate models reliance on 541 

accurate predictions of winter mean SLP, which are weaker for the areas around the UK and 542 

Ireland (Scott et al., in prep.), leading to a lack of forecast skill in areas where NAO has little 543 

influence, and WEPA is unresolved. 544 

6. Conclusions 545 

This study has shown that a combination of two major atmospheric indices significantly 546 

improves the predictive skill for a SMLR model of the bi-directional winter wave power 547 

balance (WDI), which in turn has been shown to directly control morphological beach 548 

rotation on shorter to multi-annual timescales. The model was then used to hindcast WDIPred 549 
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using long-term records of NAO and WEPA, with the detrended cumulative values showing 550 

periodicity linked to similar fluctuations in detrended cumulative values of both indices. 551 

Further results showed that trends in the WDIPred are mirrored in the historic records of beach 552 

rotation for this site, suggesting that beyond seasonal and event-scale rotational events, the 553 

long-term planform of this, and many similar embayments may be controlled by multi-554 

decadal to centurial scale trends in phases of atmospheric indices. 555 

Application of this multi-index regression method suggests that the increased ability to 556 

predict climate indices some months in advance of the coming winter period, may allow for 557 

season-ahead forecasts of forthcoming wave climates, and hence potential rotational beach 558 

impacts. Practically, this would provide coastal managers with an informed forecast of likely 559 

risks in high-impact areas, enabling proactive decisions to be made regarding hard or soft 560 

engineering works within rotational sites.  561 

The following conclusions of this study are as follows; 562 

1. Increased skilful prediction (R2 = 0.66) of the WDIPred was be obtained from a 563 

regression model comprised of two atmospheric indices, when compared to the skill 564 

of individual indices alone. 565 

 566 

2. Modelled alongshore wave power and potential sediment flux at fixed shoreline 567 

positions were significantly correlated with observed and predicted WDI at a range of 568 

locations within the study site; suggesting that the WDI is a valid proxy for inshore 569 

sediment transport. 570 

 571 

3. Medium term (10-year) measured beach rotation correlates with the observed and 572 

model predicted WDI record (with the exception of an individual extreme event), 573 
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showing multiple atmospheric indices may hindcast beach rotational state at many 574 

other locations, given extensive and reliable records. 575 

 576 

4. Longer-term records of low frequency NAO phases suggest that larger scale rotational 577 

events may have occurred at multi-centurial timescales, driving shoreline adaptation 578 

of communities in response to variations in climate indices. 579 
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