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Abstract 
Thermal engines based on pressure gain combustion offer new opportunities to generate thrust with enhanced efficiency 
and relatively simple machinery. The sudden expansion of detonation products from a single-opening tube yields thrust, 
although this is suboptimal. In this article, we present the complete design optimization strategy for nozzles exposed to 
detonation pulses, combining unsteady Reynolds-averaged Navier-Stokes solvers with the accurate modeling of the 
combustion process. The parameterized shape of the nozzle is optimized using a differential evolution algorithm to maxi
mize the force at the nozzle exhaust. The design of experiments begins with a first optimization considering steady-flow 
conditions, subsequently followed by a refined optimization for transient supersonic flow pulse. Finally, the optimized 
nozzle performance is assessed in three dimensions with unsteady Reynolds-averaged Navier-Stokes capturing the 
deflagration-to-detonation transition of a stoichiometric, premixed hydrogen-air mixture. The optimized nozzle can 
deliver 80% more thrust than a standard detonation tube and about 2% more than the optimized results assuming 
steady-flow operation. This study proposes a new multi-fidelity approach to optimize the design of nozzles exposed to 
transient operation, instead of the traditional methods proposed for steady-flow operation. 
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Introduction 

Pressure gain combustion, and in particular detonation
based thermal engines, offers increased thermal effi
ciency compared to the traditional Joule-Brayton 
cycle.1•2 In a pulsed detonation combustor, the combus
tion process evolves from deflagration to detonation 
along a tube, resulting in a very energetic detonation 
front moving at supersonic velocities toward the open 
end of the tube. Already in 1998, Cambier3 had identi
fied the importance of optimizing the nozzle geometry 
to maximize the potential engine thrust. Because the 
detonation process is characterized by supersonic flows, 
one would conclude that divergent nozzles would out
perform other types of nozzles, allowing the further 

expansion of the supersonic combustion gas. Daniau 
et al.4 demonstrated experimentally that a nozzle with a 
short, abrupt expansion increases the impulse and the 
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refilling frequency. In contrast, R uhul et al. 5 investi
gated numerically three nozzle geometries including 
straight, converging/diverging, and diverging and con
cluded that for all of them, long nozzles should be 
selected to sustain detonation for a longer duration, 
allowing longer periods with positive thrust. 
Kailasanath6 noted that an increase in the impulse is 
achievable by reshaping the nozzle, without penalizing 
the detonation tube refilling frequency. Based on the 
experimental comparisons of several supersonic nozzles, 
Falempin et al.7 concluded that a bell-shaped nozzle 
delivers the maximum thrust. 

Levin and Manulovich8 performed a nozzle-shape 
optimization of conical and parabolic nozzle shapes 
using analytical expressions based on infinitely thin 
detonation waves. Billings9 parameterized a two
dimensional (2D) nozzle using cubic functions and per
formed the optimization using a genetic algorithm and 
inviscid evaluations, concluding that supersonic diver
ging nozzles are the best to maximize the thrust. 
However, the previous literature on supersonic nozzle 
design relies fundamentally on steady-flow assumptions. 

As the open literature on pulse detonation nozzles 
focuses on simple geometries and inviscid solvers, a 
new design approach for pulsed regime and evaluations 
of the reacting flow was needed. The aim of this work 
is to optimize nozzles exposed to low-frequency detona
tion pulses with a multi-stage methodology. The first 
step of the optimization process is based on steady 
assumptions to reduce the number of parameters in the 
design of experiments. A subsequent full unsteady opti
mization is performed and followed by a detailed anal
ysis under reacting flow conditions. The emphasis of 
this work is on single-cycle and low-frequency (below 
1 Hz) unsteady nozzle behavior and performance. It is 
worth noting that according to Ma et al., 10 at frequen
cies above 100 Hz, the nozzle performance may be sub
stantially altered; hence, we invite the readers to test 
the present approach to design and assess nozzles oper
ating at higher frequencies. 

2 Advances in Mechanical Engineering 

Numerical approach to optimize the 
nozzle 

Geometry parameterization and mesh generation 
The nozzle geometry is defined by a Bezier curve, which 
is parameterized by the coordinates of the control 
points. Once the optimizer selects the coordinates of the 
control points, a MATLAB script generates the nozzle 
geometry. The geometry is subsequently imported into 
the meshing software GAMBIT to generate the compu
tational grid. 

In the first stage, the nozzle was optimized for 
steady-flow conditions. Figure l(a) outlines the parame
terization during this steady aerodynamic optimization 

(a) 

Step 1: Steady Aerodynamic optimization 

time 

(b) 

Step 2: Unsteady Aerodynamic optimization 

Po,To 

lH_ 
time 

(c) 

Step 3: unsteady detonation evaluation 

Thrust wall 

\----

Figure I. Three-level optimization approach: (a) steady-flow 
optimization, (b) optimization considering unsteady flow, and 
(c) detonation combustion modeling. 

phase, which consists of five control points. The nozzle 
geometry design space was allowed to change widely, 
allowing the generation of convergent, convergent
divergent, and divergent shapes. The use of convergent
divergent, straight, or divergent nozzles for pulsed 
detonation requires compromises regarding the different 
objectives: refilling frequency, specific thrust, and ther
mal aspects. In this research, at the very low frequencies 
considered, the objective is focused only on aerody
namic aspects. 

In the second optimization step, presented in Figure 
l(b), the geometry is further refined considering a tran
sient pulse. This stage is based on the previous results 
in terms of nozzle type (convergent, divergent, and so 
on), and only four control points are used to define the 
geometry. Interestingly, the optimizer discarded some 
common geometries employed as baseline shapes in 
several prior studies, selecting smoothly profiled con
tours of divergent nozzles that ensure best aerodynamic 
performance. 

In the third phase, the optimized geometries are eval
uated considering the combustion process. During this 
phase, the steady- and unsteady-optimized geometries 
are compared to two baseline cases considering reacting 
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flows (Figure l(c)), namely, a straight duct and a con
toured nozzle designed with the method of characteris
tics (MOC). 11 

Optimization tool 
The nozzle optimization is based on the computer
aided design optimization (CAOO) tool, an in-house 
optimization code based on evolutionary algorithms, 
developed at the von Karman Institute. 12 Evolutionary 
algorithms are population-based methods where indi
viduals evolve over a search space and are altered by 
mechanisms such as mutation, crossover, and selection. 
The individuals, namely, the set of parameters that 
characterize the nozzle shape, associated with a higher 
performance (fitness) have more chance to survive and 
get reproduced. The optimization loop automatically 
generates the new individuals, assessing their perfor
mance with computational fluid dynamics (CFO), by 
combining the geometrical features of the superior per
forming nozzles. The optimization aimed to maximize 
the nozzle exit force: F = muexit + PexitAexit, where Uexit 

and Pexit are the mass-averaged exit velocity and pres
sure, respectively. This objective was preferred, instead 
of the thrust, to obtain a solution that would be inde
pendent of the phase delay between inlet and outlet. 
The mass-flow averaging was accomplished by multi
plying the local velocity and pressure in each cell at the 
outlet by the local mass flow across the corresponding 
cell, summing all the values, and finally dividing by the 
overall mass flow. The time-averaged results were 
obtained by adding all the instantaneous forces and 
then dividing by the total time. The proposed optimiza
tion approach could be extended to perform an engine 
optimization, using the "specific impulse" for space 
access applications and the "specific fuel consumption" 
for gas turbine engines. 

The optimizer changed the geometry by selecting the 
coordinates of control points of the Bezier curves 
(Figure l(a) and (b)). A wide design space was explored 
via a differential evolution algorithm. A CFO simula
tion was performed for each design selected by the opti
mizer. No surrogate models were used during the 
optimization, allowing convergence in fewer iterations. 

Numerical solver 
The aerodynamic flow evaluation was performed with 
the commercial CFO software CFO++ of Metacomp 
Technologies adapted to utilize an unsteady Reynolds
averaged Navier-Stokes (URANS) density-based sol
ver equipped with the Harten-Lax-van Leer-contact 
(HLLC) scheme. For numerical stability, the multi
dimensional total variation diminishing (TVO) polyno
mial interpolation was used. The time discretization was 
performed with a dual time-stepping procedure through 

Figure 2. The 2D axisymmetric computational domain for the 
steady and unsteady optimizations (bottom) and detail of the 
grid refinement along the outer wall (top). 

an automatic Courant-Friedrichs-Lewy (CFL) adjust
ment procedure (ACAP) which ensured the stability and 
convergence for large time steps. The two-equation k--w 
shear-stress transport (SST) turbulence closure was 
selected. This model combines the capability of k--w to 
predict regions with adverse pressure gradients and the 
accuracy of the k-e to model the turbulence level in free
stream regions. The actual real gas effects in the com
bustion process were considered in the final stage of the 
design, during the study of the detonation process, as 
described in the following sections. However, the ideal 
gas formulation with gas properties dependent on the 
flow temperature was used in the steady and unsteady 
optimization stages. 

Computational domain 
The numerical domain for the steady and unsteady 
optimization consisted of a structured grid composed 
of approximately 50,000 cells in a 20 axisymmetric 
domain. The y + was kept below 1 in the near wall 
region in order to resolve the viscous sublayer. The 
smallest grid closest to the wall had a thickness in the 
order of 10-6 m, and the expansion ratio for successive 
cell size was set to 1.2. The small grid size allowed to 
avoid the use of wall functions, which was preferred to 
resolve the actual flow physics. Figure 2 depicts the 
entire numerical domain used in the time-averaged 
analysis. The domain used for the unsteady optimiza
tion was further extended with a plenum connected to 
the nozzle exit. 

Aerodynamic optimization: steady and 
unsteady 

Steady-'(low optimization 

The nozzle geometry was parameterized by a fourth
order polynomial Bezier curve defined by five control 
points. An angle of 0° was imposed at the nozzle inlet 
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Figure 3. Optimization convergence history for the steady
flow optimization. 

(Figure l(a)) to ensure a smooth transition from the 
detonation tube to the nozzle section. The Bezier con
trol points were allowed to vary within wide bounds in 
order to enable the generation of convergent-divergent, 
divergent, and divergent-convergent nozzles. The inlet 
total pressure was 5.05 X 106 Pa and the inlet total 
temperature was 3869 K, and supersonic outflow condi
tions were set at the nozzle exit. The optimization 
objective in this phase is to maximize the steady force. 
Figure 3 presents the nozzle outlet force evaluated dur
ing the optimization procedure. After 88 iterations, or 
direct CFO evaluations, the force reached a level of 
5.69 kN and the optimization process was stopped once 
the force did not improve any further within 0.02% . 
Figure 3 shows the convergence history of the steady
flow optimization process. The optimal design was 
found to be a divergent nozzle with an exit radius cor
responding to the maximum allowed by the design 
space (Rexit = 0.0375 m). 

MOC for steady analysis 

Rao 11 developed an analytical method based on the 
MOC to optimize a nozzle shape for maximum thrust. 
The same author later developed a faster procedure that 
relies on tabulated charts of inlet and outlet angles of the 
nozzle profile. 13 The geometry designed with the MOC 
was approximated by a second-order quadratic polyno
mial as recommended by Rao. 13 The nozzle had length 
l = 0.150m, inlet radius R;nJet = 0.015m, and area ratio 
Aex;i/A;n/et = 6.25. The inlet conditions were imposed to 
be the same as the steady optimization case for a fair 
comparison. Figure 4(a) depicts the final geometry 
designed with MOC and the Mach number contours 
within the nozzle. The flow is submitted to a strong 
acceleration, reaching Mach 3.4 at the outlet. When com
pared with the steady flow-optimized geometry (Figure 
4(b)), we observe that the MOC actually has a less uni
form flow field. Interestingly, the MOC-based design 
and the steady-optimized configuration delivered the 
same mass-averaged exit force (5.689 kN for the MOC 
and 5.690 kN for the steady optimization), proving the 
validity of Rao's method for steady-flow optimizations. 

Unsteady-flow optimization 
During the unsteady force optimization, a flow step 
was implemented as an inlet boundary condition to the 
parameterized nozzle. The objective was to maximize 
the overall time-averaged exit force . A step in pressure 
and temperature was imposed at the nozzle inlet in order 
to simulate the aero-thermal features of the detonation 
flow conditions. The flow inside the nozzle was initially 
set to 0.63 X 106 Pa and 507K. The inlet air pulse had a 
maximum total pressure value of 4.20 X 106 Pa and 
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Figure 4. Mach number contours for three designs: (a) MOC nozzle, (b) steady-optimized geometry, (c) unsteady-optimized 
geometry at a given instant, and (d) geometry of the nozzle profiles obtained during this study. 
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Figure 5. (a) Total pressure and (b) total temperature inlet conditions for the unsteady optimization and (c) results of ratio 
between exit force and averaged inlet total pressure for the optimal shape. 

maximum total temperature value of 3700 K and was 
purged for a duration of 0.054ms. Figure 5(a) and (b) 
shows the transient total pressure and total temperature 
imposed at the nozzle inlet, respectively. 

During the steady optimization as well as in the 
MOC method, divergent nozzles were identified as the 
preferred geometries. Therefore, in this phase of the opti
mization, to defme divergent nozzles, the nozzle geome
try was parameterized with four Bezier control points 
(Figure l(b)). The optimization was completed when the 
difference in time-averaged force between two consecu
tive populations was less than 1.2%. In the final nozzle, 
the optimal time-averaged force reached F = 607 N. 
This led to an improvement of 7.8% compared to the 
starting geometry selected by the optimizer at the begin
ning of the process. Figure 5(c) depicts the ratio between 
the time-dependent force acting on the nozzle exit area 
and the averaged inlet total pressure for the optimal 
unsteady geometry. 

The Mach number contours of the aero-thermal 
pulse flowing through the exit (t = 0.1 ms) are depicted 
in Figure 4(c). The complex flow field behind the pulse 
front is shown to be uniform at the nozzle exit, reach
ing a Mach number of 3.2. Figure 4(d) compares the 
different nozzle geometries obtained during this study. 
Interestingly, both the MOC-based nozzle and the 
unsteady-optimized geometries have a similar shape for 
the first 30% of the axial length. 

Unsteady nozzle performance with 
detonation 

Description ofthe solver 
Deflagration-to-detonation transition (DDT) is a com
plex multi-physical phenomenon, involving gas 
dynamics, heat transfer, and flame instabilities.14--16 

Due to the high Reynolds number at which DDT 
occurs, the problem is challenging to resolve numeri
cally. However, the prior literature17 indicated that not 
all microscopic scale phenomena are strictly significant 
for an accurate representation of the macroscopic fea
tures of the DDT. The accuracy of the under-resolved 
DDT simulations was proven by Thomas. 18 In order to 
simulate the detonation phenomena, the DDTFoam sol
ver, developed by Ettner17 and available in the open
source platform OpenFOAM, was selected. DDTFoam 
is a density-based URANS solver for compressible 
reactive flows. The convective fluxes are computed with 
the HLLC scheme with multi-dimensional slope limit
ers. The reaction mechanism of hydrogen and air is 
modeled by the O'Conaire reaction scheme, 19 and the 
material properties are selected from the Chemkin 
Database20 via look-up tables. The Sutherland correla
tion21 is used for the evaluation of the molecular trans
port coefficients. The deflagration combustion is 
modeled through the Weller model (based on a reaction 
progress variable), and the detonation is modeled based 
upon the auto-ignition delay time. 

Numerical domain 

In order to simulate the three-dimensional (3D) flow fea
tures, a 3D domain of the nozzle geometry was gener
ated. The domain consisted of a quarter of the revolved 
nozzle contour and partially filled by H2-air mixture 
(Figure 6). One end of the detonation tube was closed 
(thrust wall) and the other end was connected to the exit 
nozzle. The tube was partially filled with stoichiometric 
H2-air mixture, whereas the contoured section was filled 
with water vapor and N2 at the relative concentrations of 
the combustion products, as sketched in Figure 6. Initial 
flow velocity, total pressure, and static temperature were 
set to 515m/s, 0.63 X 106Pa, and 388K, respectively, 

https://Thomas.18
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and were imposed to be uniform in the whole domain. 
The initial conditions were set to the levels delivered by 
the radial compressor located upstream of the detonation 
tube in the present research. The described set-up was 
chosen in order to simulate the engine configurations 
allowing the expansion of the detonation products in the 
nozzle (i.e. no chemical reactions occurred within the 
nozzle). A no-slip condition was applied to all walls, and 
a symmetry condition was set on the side faces of the 
nozzle quadrant. A supersonic outlet was imposed at the 
domain exit to avoid potential spurious reflections com
ing from the domain exit. To this end, no boundary con
ditions were needed at the outlet, and the flow properties 
were extrapolated from the internal field . A good numer
ical stability of the DDTFoam solver was ensured by 
imposing a CFL number lower than 1. More specifically, 
a CFL-sensitivity study was performed, and the solution 
was found to be unaffected for CFL numbers smaller 
than 0.5. Consequently, this value was used for all simu
lations with detonation. 

The computational domain was divided into two 
parts: a straight tube, where the combustion was mod
eled, and the shaped nozzle, where only gas products 
expanded. The straight nozzle was meshed with a struc
tured grid having maximum size of 1 mm. In the shaped 
nozzle, the mesh was further refined in order to predict 
the complex flow characteristics. This dual-mesh step 
was implemented in OpenFOAM by means of the func
tion MapFields. The sketch of the computational 
domain and mesh topology is shown in Figure 6. 

It is worth clarifying that the mesh size of 1 mm in 
the straight tube was sufficiently small to predict the 
energy release through the detonation process, as 
reported by Ettner22 and validated through the com
parison with the prior experiments as reported in the 
following section. 

Validation of the numerical model 

The numerical model was validated against experimen
tal measurements of DDT in a tube found in the 

Figure 6. Numerical domain for the combustion analysis and 
mesh topology. 

literature. 17 A 2D rectangular tube was simulated 
(Figure 7(a) and (b)). The tube had a length of 5.4m 
and a height of 60 mm and was equipped with squared 
obstacles of 9 mm height, spaced by 300 mm over 2.1 m 
length of the channel. On the left-hand side of the tube, 
a closed wall (thrust wall) was imposed, while the right
hand side was opened to atmosphere to allow the dis
charge of the detonation wave. A blockage ratio of 
30% was considered according to the value used in the 
experiments. The tube was filled with homogeneous 
Hrair mixture with a hydrogen concentration of 25% 
in volume. The mixture was ignited in a small region 
close to the thrust wall on the left (Figure 7(a)). The 
initial temperature of the mixture was 293 K and the 
initial pressure was 1 bar. 

Along the initial section of the tube, a low flame 
velocity indicated pure deflagration (Figure 7(c)). Due 
to the presence of the notches, the turbulent mixing led 
to the acceleration of the flame front. At a distance of 
2 m from the ignition wall, the flame speed showed a 
sudden increase, indicating that the full transition to 
detonation combustion was occurred (also visible in 
Figure 7(b)), and the Chapman-Jouguet conditions 
were established. The numerical results agreed with the 
experimental data with a maximum difference of 2% in 

( ) 5.4 m 
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(c) 
Prior work (Experiment) 

0.1 p [MPa] 0.4 

Figure 7. (a) Schematic of the channel geometry, (b) detailed view of the numerical domain, (c) comparison between 
experimental 17 and numerical results of the flame position in time, and (d) detail of the detonation cell structures for a test-case 
pipe of 0.4 m width. 
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Figure 8. (a) Axial velocity contours for seven different time steps for the unsteady flow-optimized profile, (b) details of density 
contours, and (c) Mach number contours at t =0.20, 0.26, and 0.32 ms. 

the Chapman-Jouguet velocity corresponding to the 
actual flow conditions. 

A further analysis concerning the capability of the 
solver of capturing complex detonation structures was 
performed for a pipe of0.4m width. The resultant pres
sure field at the outlet (3.3 m) around the detonation 
wave is shown in Figure 7(d). An established detona
tion front with typical cell structure involving Mach 
stem and oblique shocks interaction was observed to 
take place at the domain outlet. The predicted detona
tion cell width was 30 mm, which was found to be in 
agreement with Giurao et al.23 

Pulse detonation analysis 

The three nozzle geometries (Figure 4(d)) and the 
straight outlet were simulated under detonation condi
tions. A single detonation pulse was generated at the 
thrust wall in the straight section. Figure 8(a) shows the 
axial velocity contours at different time steps for the 
unsteady-flow optimization nozzle case. After the igni
tion, a shock-induced detonation wave was observed. A 
stable detonation front was generated and propagated 
through the fresh mixture. After 0.2 ms, the mixture 
was completely consumed and only gas products 
expanded within the nozzle with increased axial flow 
speed. At t = 0.26ms, a high-density pulse traveling at 
high Mach number was observed inside the divergent 
nozzle (Figure 8(b)). Subsequently, the high-velocity 
wave reached the exit of the nozzle at 0.32 ms. At the 
same instant, the passage of the shock wave resulted in 
a strong pressure gradient in the near wall region close 
to the outlet (Figure 8(c)) leading to a mild flow separa
tion (Figure 8(a), t = 0.38 ms). However, the separation 

was observed to take place at the end of the pulse, caus
ing a negligible contribution to the overall force. 

The performances of the three different configurations 
under detonation conditions in conjunction with the 
straight outlet were compared in terms of force at the 
nozzle exit surface. Figure 9(a) depicts traces of the mass
averaged force at nozzle exit for the three nozzle geome
tries simulated as well as the straight outlet. Figure 9(a) 
also shows that each nozzle configuration resulted in dif
ferent blowing periods. The MOC design and the opti
mized profile for unsteady flow showed a similar pulse 
period of about 0.3 ms, with a maximum transient exit 
force of 23 X 103 N. The steady flow-optimized config
uration showed narrower pulse time with higher peak in 
the transient exit force (27 X 103 N), while the straight 
duct could generate fluidic force during 0.4 ms with a 
maximum force of only 12 X 103 N. 

The performance of the detonation tube was 
enhanced by up to 80% in terms of time-averaged force 
by just adding a shaped nozzle with respect to the 
straight duct application. The MOC nozzle showed 
1.5% increase in the time-averaged exit force compared 
to the optimized nozzle for steady flow. Interestingly, 
the optimized nozzle for unsteady flow delivered about 
2% more time-averaged force than the MOC nozzle 
(Figure 9(b)). 

Conclusion 

This article addresses the void of optimization tools for 
nozzles exposed to transient supersonic flows. Prior lit
erature presented traditional shapes such as straight, 
conical, and parabolic nozzles or used steady assump
tions in the design methodology. The new design 
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Figure 9. Thrust generated by a straight duct, MOC design, optimized for steady flow and unsteady flow: (a) nozzle exhaust force 
evolution in time and {b) integrated force all along the detonation pulse. 

procedure consists of a multi-stage approach utilizing a 
single-objective optimization. In the first step, using 
inexpensive 2D steady Navier-Stokes evaluations, we 
explored a broad design of experiments, from 
converging-diverging nozzles to diverging-converging, 
to select optimal geometries in terms of delivered axial 
force. This step suggested that a divergent shape was 
preferable. In the second step, with a narrowed popula
tion, we optimized the nozzle to maximize the time
averaged force when the nozzle was exposed to a flow 
pulsation. The optimizer performed direct evaluations 
of the nozzle performance with 2D URANS simula
tions. The optimized design was subsequently assessed 
under detonation conditions with a 3D detonation flow 
solver. The optimized designs were compared with a 
simple tube and the geometry obtained with MOC, 
burning a stoichiometric, homogeneous hydrogen-air 
mixture. The design approach is shown to successfully 
enable increased thrust by 2% compared to the steady 
design. This article also presents the flow characteriza
tion in supersonic nozzles exposed to single pulses. A 
high-pressure and high-density pulse generated by the 
detonation was observed to flow through the nozzle 
with increasing axial velocity while interacting with the 
local boundary layer. This led to flow separation at the 
end of the pulse. 
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Appendix I 

Notation 

F 

m 

Pexit 

Rexit 

R;n/et 

Uexit 

Pexit 

Subscripts 

av 
0 

nozzle exit area (m2) 

nozzle inlet area (m2) 

transient force acting at the nozzle exit 
surface (N) 
time-averaged force acting at the nozzle 
exit surface (N) 
mass flow rate flowing in the nozzle 
during the pulse (kg/s) 
mass-averaged static pressure at the 
nozzle exit (Pa) 
nozzle exit radius (m) 
nozzle inlet radius (m) 
mass-averaged axial velocity at the exit of 
the nozzle (m/s) 
axial velocity (m/s) 

mass-averaged density at the nozzle exit 
(kg/m3) 

mass flow-averaged conditions 
total conditions 
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