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 

Abstract—The successful development of amyloid-based 

biomarkers and tests for Alzheimer’s disease (AD) represents an 

important milestone in AD diagnosis. However, two major 

limitations remain. Amyloid-based diagnostic biomarkers and 

tests provide limited information about the disease process and 

they are unable to identify individuals with the disease before 

significant amyloid-beta accumulation in the brain develops. The 

objective in this study is to develop a method to identify potential 

blood-based non-amyloid biomarkers for early AD detection. The 

use of blood is attractive because it is accessible and relatively 

inexpensive. Our method is mainly based on machine learning 

(ML) techniques (support vector machines in particular) because 

of their ability to create multivariable models by learning patterns 

from complex data.  Using novel feature selection and evaluation 

modalities we identified 5 novel panels of non-amyloid proteins 

with the potential to serve as biomarkers of early AD. In 

particular, we found that the combination of A2M, ApoE, BNP, 

Eot3, RAGE and SGOT may be a key biomarker profile of early 

disease.  Disease detection models  based on the identified panels 

achieved sensitivity (SN) > 80%, specificity (SP) > 70%, and area 

under receiver operating curve (AUC) of at least 0.80 at 

prodromal stage (with higher performance at later stages) of the 

disease. Existing ML models performed poorly in comparison at 

this stage of the disease suggesting that the underlying protein 

panels may not be suitable for early disease detection. Our results 

demonstrate the feasibility of early detection of AD using non-

amyloid based biomarkers. 

 
Index Terms—Alzheimer’s disease, blood biomarker, dementia, 

machine learning, support vector machine. 

I. INTRODUCTION 

LZHEIMER’S disease (AD) is the leading cause of 

dementia and poses a significant social and economic 

challenge. It  is  responsible  for more  than  half of all cases of  
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dementia [1]. Over 50 million individuals currently suffer from 

dementia worldwide with a projected increase to 152 million by 

2050 [2].  

No cure for AD has been discovered, but there is intense 

effort to develop new clinical interventions that may slow or 

halt the disease. Such interventions are aimed at early 

(including preclinical and prodromal [3]) stages of the disease 

prior to extensive cell damage, when it is thought treatment is 

more likely to be effective.  

To facilitate early diagnosis [4-6], the use of established 

biomarkers such as those based on amyloid-beta in cerebral 

spinal fluid (CSF) and molecular imaging of brain amyloid 

deposition using positron emission tomography (PET) is 

recommended [4-6]. 

However, despite progress with the development of amyloid-

based biomarkers and tests for early AD diagnosis, they have 

two major constraints [7-9]. Amyloid-based biomarkers 

provide limited information about disease pathological 

aetiology and pathways [10-12]. In addition, tests based on 

these biomarkers are unable to identify individuals at risk of AD   

prior to a significant amyloid-beta deposition in the brain. 

There is a need for biomarkers that have the potential to 

detect biological processes that precede brain amyloid-beta 

accumulation (amyloid pathology) during the disease 

development. Such biomarkers may advance understanding of 

the disease, aid identification of individuals at the early disease 

stages and the development of new interventions. 

Studies suggest that AD is characterised by metabolic 

alterations [4] that may precede amyloid pathology [12]. 

Signatures of such metabolic abnormalities may therefore serve 

as biomarkers of earlier stages of the disease than amyloid 
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biomarkers.  Such biomarkers may be obtained from blood 

since blood has rich metabolic information content. The use of 

blood is also attractive because blood biomarker-based test is 

relatively non-invasive compared to CSF and may be more 

cost-effective than PET imaging. A number of studies have 

attempted to find non-amyloid biomarkers of disease by 

profiling a large array of non-amyloid proteins in blood and 

examining their association with the disease [13-15], but this 

approach is difficult to apply in practice.  

A promising approach is the use of machine learning (ML) 

techniques to find appropriate combinations of   non-amyloid 

proteins to detect AD as no single non-amyloid protein has been 

shown to reliably detect the disease. ML makes it possible to fit 

multivariable data to a model by learning complex patterns 

from data. Several studies [16-24] have applied ML to develop 

classifiers to differentiate between AD subjects and healthy 

controls. For example, O’Bryant et al. [19] developed a model 

with a panel of 30 serum proteins that classified Alzheimer’s 

disease dementia (ADD) subjects and HCs with sensitivity 

(SN), specificity (SP), and area under receiver operating curve 

(AUC) of 88%, 82%, and 0.91, respectively. Similarly, with 14 

plasma proteins, a classifier model constructed by Llano et al. 

[22] classified ADD and HC subjects with 86.5% SN, 84.2% 

SP and AUC of 0.85. More recently, a panel of inflammatory 

markers in plasma was identified that classified ADD and HC 

with 84% SN, 70% SP, and AUC of 0.79 using a logistic 

regression model [25]. In another study, a 12-marker panel 

classified ADD and HC with 90% SN and 66.7% specificity, 

and higher performance in post-mortem confirmed AD cases 

[26]. Furthermore, a study [27] that explored the use of deep 

learning, random forest, and XGBoost algorithms for 

classification of ADD and HC achieved AUC of 0.88 with 

XGBoost algorithm and 0.85 with deep learning and random 

forest. Despite the promising results from these studies, most of 

the models were developed and evaluated using data from 

cognitively healthy controls and subjects at the later stages of 

the disease. The models were not evaluated in individuals at the 

early stages of the disease. Therefore, the panels underlying 

such models may not be suitable as biomarker signatures of 

early AD.   

In this study, the main objective is to develop a ML-based 

method (support vector machines (SVM) in particular – see 

later) to identify blood biomarkers of early AD based on non-

amyloid proteins with the potential to identify the disease prior 

to accumulation of amyloid-beta in the brains. 

 We also assess the potential of existing ML-based methods 

to achieve early disease detection. 

The rest of this paper is structured as follows. The materials 

and methods are described in Sections II and III. The results are 

presented in Section IV, and the discussion and conclusions are 

provided in Sections V and VI.  

II. MATERIALS  

A. Blood proteomic data 

Blood proteomic data used in this study were obtained from the 

Alzheimer’s  disease  neuroimaging   initiative  (ADNI)  portal 

 

 

 

 

 

 

 

 

 

 

(http://adni.loni.ucla.edu). The quality-controlled data consist 

of 146 plasma proteins derived from 58 and 54 healthy controls 

(HCs) at baseline and 12 months later respectively, 136 

individuals with mild cognitive impairment due to AD (MCI) 

at 12 months from baseline, and 108 Alzheimer’s dementia 

(ADD) patients at baseline. The MCI subjects were later 

diagnosed with AD dementia within about 10-year follow-up. 

A list of the 146 proteins are shown in the supplementary 

material. Mild dementia was diagnosed according to NINCDS-

ADRDA criteria for probable ADD. A detailed description of 

the protocol may be found on the ADNI database. The 

demographic information of the subjects is shown in Table I. 

The subjects were age matched, over 70 years old and had about 

16 years of education on average. 

III. METHODS 

A. Data pre-processing 

All study data were standardized as indicated in (1) to ensure 

that proteins with high numeric values relative to others would 

not cause bias in subsequent ML operations. Given a feature 

instance 𝑥, the standardised value 𝑧 is given as, 

  𝑧 =  
𝑥 − 𝜇

𝜎
 (1) 

 Where 𝜇 and 𝜎 are the sample mean and standard deviation of 

the feature distribution, respectively.  

To make optimal use of available data while minimizing 

susceptibility of our approach to overfitting problems, the pre-

processed data were partitioned into two non-overlapping 

datasets; Datasets 1 and 2. Dataset 1 consists of baseline data 

from the ADDs and HCs. All existing methods evaluated in this 

study except [20]   were originally developed based on Dataset 

1. In our approach, Dataset 1 was used to conduct a robust 

feature preselection (a key aspect in ML) and model 

development. 

The resulting models were further evaluated with Dataset 2. 

Dataset 2 consists of month-12 data from MCIs and HCs. It was 

used to assess the performance of the developed models (trained 

on the entirety of Dataset 1) for MCI vs. HC classification. 

Models were trained with only Dataset 1 during model 

development using the entirety of it or its subsamples (in the 

case of cross-validation which is subsequently described). 

B. Replication and evaluation of existing methods 

We replicated the ML models reported in previous studies for 

classification  of  ADD  and  HC subjects  (Dataset 1)  using 10- 

TABLE I 

DEMOGRAPHIC INFORMATION OF SUBJECTS IN STUDY DATA 

Clinical 

groups 

Sample 

size 
Ave. age in 

years (SD) 

Ave. years of 

education (SD) 

% 

Female 

HC 58(54) 75(6) 16(2.8) 48(50) 

MCI 136 75(7) 16(3.0) 45 

ADD 108 75(8) 15(3.2) 46 

SD: standard deviation; HC: healthy control; MCI: mild cognitive impairment; 

ADD: Alzheimer’s dementia 
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Fig. 1. Overall framework for identification of novel putative biomarker panels and model development for early AD detection. K: Different kernels of SVM 

including linear, 2 and 3 -degree polynomials, and radial basis function (RBF), respectively. MSK: Most stable kernel. A stable kernel is one that showed most 

moderate to high performance for most panels. CV: Cross-validation (CV). CP: Candidate panel. A candidate panel is one that meets our performance criteria (SN 

and SP of at least 70%) in the model training and CV step. Sensitivity and specificity have been described elsewhere [28].  

 

fold cross-validation with the average performance of the 

models taken after 10 repetitions. In 10-fold cross-validation, 

the dataset D is randomly split into 10 mutually exclusive 

subsets (the folds) D1, D2, ..., D10 of approximately equal size. 

The classifier is trained and tested 10 times; each time t ∈ {1, 

2, … , 10}, it is trained on D\Dt and tested on Dt [29]. The cross-

validation estimate of the classifier performance is the overall 

performance over all the folds. Repeated cross-validation was 

implemented to ensure a robust estimation of performance [29]. 

The ability of the models to classify MCI and HC was then 

tested with Dataset 2 to assess their potential and hence the 

underlying protein panels to detect early AD. 

C. Novel panel identification and model development 

Fig. 1 shows the methodological framework that we used to 

identify novel blood protein panels and to develop the new ML 

models for early detection of AD. The framework is described 

in detail in the following subsections. Briefly, the framework 

consists of three major procedures which include feature subset 

preselection, protein panel formation, and ML-based model 

development and evaluation. A feature subset preselection 

process was performed to identify protein subsets that may have 

strong discriminatory power between disease subjects (ADD) 

and HCs. A brute force search was applied to the preselected 

feature subset to form several protein panels. Each of the panels 

was then used to develop and cross-validate SVM classifiers of 

different kernels (K) using Dataset 1. Data from ADD subjects 

were used in these initial procedures on the basis that dementia 

subjects are more likely to exhibit the metabolic alterations that 

are associated with the disease. The most stable kernel and 

candidate panels (promising models) trained on Dataset 1 were 

further evaluated for classification of individuals with MCI and 

HCs using Dataset 2. The promising models with best 

performance at this stage were selected as final. The protein 

panels that underlie the selected models are reported as 

potential blood-based non-amyloid biomarker signature of 

early disease.  

1) Feature (protein) subset preselection 

A feature subset preselection procedure was implemented 

with Dataset 1 using correlation-based feature subset selection 

(CFS) method  [30]. The goal of this task was to make an initial 

selection of the most relevant and non-redundant features for 

classification of ADD and HC subjects and consequently 

reduce the dimension of the study data prior to model 

development. Reduction of the dimension of the study data was 

necessary because it would otherwise be computationally 

expensive to implement an exhaustive search to evaluate the 

classification performance of all possible feature subsets with 

ML algorithms. For N-dimensional data (where N is 146 in this 

case) there are 2𝑁 possible feature subsets. 

The CFS approach comes under the broad category of filter-

based feature subset evaluation methods that attempt to remove 

irrelevant and redundant features from data by using 

correlation-based heuristic to determine the worth (merit) of a 

feature subset. This technique has been shown to compare 

favourably with wrapper-based approaches in selecting the best 

feature subsets that achieve high classification accuracy while 

incurring far less computational cost [31]. It is based on a 

heuristic that evaluates the merit of feature subsets following 
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the hypothesis that a good feature subset consists of features 

highly correlated with the class, yet uncorrelated with each 

other. Correlation in this sense refers to the predictability of one 

variable by another. Equation (2) shows the mathematical 

formulation of the CFS heuristics, a concept borrowed from test 

theory [32]. 

 𝑀𝑒𝑟𝑖𝑡 =
𝑘𝑟𝑓𝑐

√𝑘 + 𝑘(𝑘 − 1)𝑟𝑓𝑓

 (2) 

𝑀𝑒𝑟𝑖𝑡 is the heuristic merit of a feature subset consisting of 𝑘 

features, 𝑟𝑓𝑐 is the mean feature-class correlation and 𝑟𝑓𝑓 is the 

mean feature-feature inter-correlation. The parameters, 𝑟𝑓𝑐 and 

𝑟𝑓𝑓 are measures of feature relevance and redundancy, 

respectively, based on the proposition that a feature is relevant 

if it is correlated with the class, otherwise it is irrelevant. 

Redundant features are correlated with one or more other 

features. 

To determine the correlations, continuous features were firstly 

discretized using the discretization method proposed in [33] to 

ensure that all features were uniformly handled. The 

correlations were calculated in terms of modified information 

gain known as symmetrical uncertainty (SU) [34] to cater for 

the bias of information gain in favour of features with more 

values. Values were normalised to the range [0, 1] to ensure that 

they were comparable and had similar effect.  

 SU = 2.0 [
𝑔𝑎𝑖𝑛

𝐻(𝑌) + 𝐻(𝑋)
] (3) 

Where 𝑔𝑎𝑖𝑛 is the information gain [35] for nominal features 𝑋 

and 𝑌, 𝐻(𝑋) and 𝐻(𝑌) are the entropy [36] of 𝑋 and 𝑌, 

respectively. The gain is formulated as, 

 
𝑔𝑎𝑖𝑛 = 𝐻(𝑌) − 𝐻(𝑌|𝑋) 

           = 𝐻(𝑋) − 𝐻(𝑋|𝑌). 
      (4) 

Where, 

 𝐻(𝑌) = − ∑ 𝑝(𝑦) 𝑙𝑜𝑔2 𝑝(𝑦)

𝑦∈𝑌

; (5) 

 𝐻(𝑌|𝑋) = − ∑ 𝑝(𝑥) ∑ 𝑝(𝑦|𝑥) 𝑙𝑜𝑔2 𝑝(𝑦|𝑥)

𝑦∈𝑌𝑥∈𝑋

. (6) 

2) Novel panel formation and SVM-based evaluation 

Firstly, feature panels were formed from the CFS-preselected 

proteins based on a brute force approach. Each panel was then 

evaluated using a wrapper-based method to identify the ML 

algorithm and panels with best performance for classification of 

ADD and HC subjects. Using each panel, several SVM [37] 

classification models were constructed with different kernels 

including linear, 2nd  and 3rd degree polynomials, and radial 

basis function (RBF) using Dataset 1. Average performance of 

each model to classify ADD and HC subjects was obtained 

using a 10-fold cross-validation [29] scheme repeated 10 times. 

Secondly, the performance of most stable models (SVM 

algorithm and feature panels) that met the performance criteria 

of average SN and SP ≥ 70% for classification of ADD and HC 

subjects  was  tested  with  Dataset 2  for  discrimination of  MCI 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Mechanism of SVM classification 

and HC groups. Finally, the models and underlying protein 

panels with best performance in classifying MCI and HC 

groups were selected as putative models and non-amyloid 

biomarker panels for early detection of AD.  

3) Classification with kernelized SVM 

The choice of SVM for the model development task was 

informed by the fact that it is robust even with limited training 

data, and not prone to local extremum [38], as well as our 

previous experience [24]. It is a very powerful tool widely 

applied in similar biomedical applications [39]. SVM classifies 

training instances belonging to either of two classes by fitting a 

separation boundary (hyperplane) between the classes such that 

the margin between the boundary and either class is maximized. 

The class of a new instance is decided depending on which side 

of the hyperplane it lies. Fig. 2 illustrates a 2-class SVM 

classifier.   

Given a 2-class problem with training data consisting of  𝑁 

examples (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁−1, 𝑦𝑁−1), (𝑥𝑁 , 𝑦𝑁), with 

input features 𝑥𝑖 ∈ ℝ𝑑 and class 𝑦𝑖 ∈ {−1,1}, the goal of SVM 

is to define a hyperplane h(x) that is given by, 

 ℎ(𝑥) = 𝑥𝑇𝑤 + 𝑏 = 0, (7) 

so as to induce a classification decision rule 𝐷(𝑥) that 

maximises the margin 𝑀(= 2𝑚).  

 𝐷(𝑥) = 𝑠𝑖𝑔𝑛(𝑥𝑇𝑤 + 𝑏) (8) 

Finding such a hyperplane involves optimizing 𝑀as,  

 𝑚𝑎𝑥
𝑤,𝑏

𝑀 ≡ 𝑚𝑖𝑛
𝑤,𝑏

1

2
‖𝑤‖2  (9) 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝑤 + 𝑏) ≥ 1,  where 𝑏 is a constant, 𝑑 is the 

dimension of the data, 𝑤 is a vector of unknown length with 𝑑 

dimension pointing from the origin and normal to the margin, 

and 𝑚  is shown to be equal to 
1

‖𝑤‖
. 

The resulting 𝑤 from the optimization in (9) is of the form 

shown in (10), with 𝛼𝑖 being nonzero for instances 𝑖 (known as 

support vectors) where the constraint 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 is met.  

𝑤 = ∑ 𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝑥𝑖, (10) 

With (10), 𝑏 may be determined from (7), and following from 

(8), the decision rule for a new sample 𝑢 of unknown class may  
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be stated as, 

  𝐷(𝑢) = 𝑠𝑖𝑔𝑛 [𝑢𝑇 (∑ 𝛼𝑖

𝑁

𝑖=1

𝑦𝑖𝑥𝑖) + 𝑏].   (11) 

 Where 𝛼𝑖 are Lagrangian multipliers resulting from the 

optimization of (9). 

When the training data are not linearly separable by a 

hyperplane, SVM may transform the data to new space where 

they become linearly separable by using kernel functions. The 

kernel function simply computes dot products of features in the 

transformed space. One of such kernels is the polynomial kernel 

[40]. For example, given feature vectors 𝑣 and 𝑧, a polynomial 

kernel 𝐾 is formulated as, 

 𝐾(𝑣, 𝑧) = (1 + 𝑣𝑇𝑧)𝑟 .   (12) 

Where r is the degree of the polynomial. 

Thus, for a SVM classifier with a polynomial kernel, the 

solution for the hyperplane (formally determined by 

substituting (10) in (7)) and decision rule for a new sample of 

unknown class are modified as shown in (13) and (14). 

 ℎ̅(𝑥) = ∑ 𝛼̅𝑖

𝑁

𝑖=1

𝑦𝑖𝐾(𝑥, 𝑥𝑖) + 𝑏̅   (13) 

 𝐷̅(𝑢) = 𝑠𝑖𝑔𝑛[ℎ̅(𝑢)] (14) 

However, because a standard SVM seeks to fit a margin 

separating all positive and negative training instances without 

any error which is not often practicable, a concept known as soft 

margin [37] which permits minimum misclassification error is 

implemented in practical SVM algorithms with a slight 

modification of (9).  

D. Implementation and performance evaluation 

Feature selection using CFS as discussed earlier was 

conducted with attribute selection toolbox in Weka software 

package [41]. All classification tasks were conducted with 

MATLAB and Weka software packages. MATLAB codes are 

available on https://github.com/chimastan/earlydetectionofAD. 

In evaluating the models from previous studies, we used Weka 

where previous studies had used it for model development. 

Training of ML models and validation of performance for ADD 

vs. HC discrimination was based on 10-fold cross-validation 

scheme repeated 10 times. The data (Dataset 1) were randomly 

re-partitioned after each run to ensure that data subsets used for 

training and validation varied from the ones used in the 

preceding run. This way, a more robust average performance is 

obtained. Classification performance metrics of primary 

consideration were measures of SN and SP in accordance with 

international recommendations for clinically usable AD 

biomarkers [42]. A performance threshold of 70% for SN and 

SP was adopted in the model development task. This is on the 

grounds that the diagnostic accuracy of human experts reaches 

77% [43] with sensitivity and specificity reaching 81% and 

70% [5], respectively. Moreover, sensitivity and specificity 

greater than 80% is the target performance for ideal AD 

biomarkers [42]. No class imbalance handling procedure was 

applied to the training dataset (Dataset 1) in model development 

as minority to majority class distribution was 35:65% which is 

acceptable in ML-based classification problems [44, 45]. 

IV. RESULTS 

A. Replication and evaluation of existing models 

We successfully replicated 7 models for classification of 

ADD subjects and HCs. The model proposed by [20] could not 

be replicated because it was originally trained on a dataset not 

available to us. Nevertheless, we constructed a model with 

Dataset 1 based on the ML algorithm and blood protein panel 

proposed by the ([20]) study. Only existing models constructed 

with blood proteins available in our study dataset were 

investigated in this study. Table II shows the average cross-

validated performance of the models repeated over 10 runs for 

classification of ADD and HC subjects. Nearly all the models 

achieved SN, SP, and AUC greater than 80%, 60%, and 0.70, 

respectively. However, when evaluated for possible detection 

of early AD by classifying MCI and HC with Dataset 2, the SN 

values of the models remained moderately high while their SP 

values drastically dropped (with only  one model achieving up 

to 50%). This implies that the models may have undesirably 

high levels of false positives when applied for early disease 

detection.  Consequently, the underlying protein panels may not 

serve as good biomarker signatures of early disease.  

B. Feature subset preselection 

Using our new methodological approach, sixteen proteins 

with a merit (𝑀𝑒𝑟𝑖𝑡) of 0.36 were preselected with the CFS 

technique from the 146 proteins in the original study data. The 

16 proteins are shown in Table III together with their statistical 

significance 𝑃 as calculated with z-test. The z-test was used to 

estimate the statistical significance of the difference between 

the pair of clinical groups being considered together (AD vs. 

HC) and (MCI vs. HC) for the pre-selected features. All except 

a few features were statistically significant (p-value < 0.05) in 

the ADD vs. HC pair (Dataset 1). Most of the features were not 

statistically significant in the MCI vs. HC pair (Dataset 2). This 

may be due to the high imbalance between the samples sizes of 

MCI and the HC in the dataset.  

C. Novel panel formation and SVM-based evaluation 

From the 16 CFS-preselected protein subset, 216 different 

protein panels were formed. Results from wrapper-based 

evaluation of all the panels for classification of ADD and HC 

groups using Dataset 1 showed that models constructed with 2-

degree polynomial kernel had a better and more stable 

performance. Consequently, SVM with 2-degree polynomial 

kernel was selected as the algorithm of choice. Only (10,699) 

2-degree polynomial kernelized SVM models that met our 

performance benchmark (SN and SP ≥ 70%) for ADD and HC 

classification were further evaluated for their potential to detect 

early disease with Dataset 2. Two models constructed with six 

and eight protein panels (A1M, A2M, ApoA2, CD5L, IL3, 

SGOT and A1M, A2M, ApoA2, BNP, BTC, CD5L, IL3, 

SGOT, respectively)  achieved  a  remarkable   cross-validated   

https://github.com/chimastan/earlydetectionofAD
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A1M: alpha-1 microglobulin ; A2M: alpha-2 macroglobulin; ApoA2: apolipoprotein A2; ApoE: apolipoprotein E; BNP: brain natriuretic peptide; BTC: 
betacellulin; CD5L: CD5;  Eot3: Eotaxin 3; IGM: immunoglobulin M; IL3: interleukin 3; MCSF1: monocyte-colony stimulating factor 1; PAPPA: Pregnancy-

Associated Plasma Protein A; PLGF: placenta growth factor; PPP: Pancreatic Polypeptide; PYY – peptide YY; RAGE: receptor for advanced glycosylation 

end; SGOT: serum glutamic oxaloacetic transaminase. 

TABLE IV 

PERFORMANCE OF NOVEL CANDIDATE BLOOD BIOMARKER PANELS FOR EARLY 

DETECTION OF AD 

Panel 

size 
Panel 

ADD vs. HC 

(Dataset 1) 

MCI vs. HC 

(Dataset 2) 

SN SP AUC SN SP AUC 

7 

 

A2M, ApoE, BNP, Eot3, PLGF, 
RAGE, SGOT 

 

88.5 70.4 0.87 80.1 70.4 0.80 

7 
A2M, ApoE, BNP, Eot3, PYY, 

RAGE, SGOT 
88.9 73.8 0.89 77.9 74.1 0.80 

8 

 
A2M, ApoE, Eot3, IGM, MCSF1, 

PYY, RAGE, SGOT 

 

85.3 71.6 0.86 83.8 70.4 0.83 

9 

 

A2M, ApoA2, ApoE, BNP, BTC, 

Eot3, PYY, RAGE, SGOT 
 

85.0 75.0 0.89 80.1 72.2 0.80 

10 
A1M, A2M, ApoE, BNP, BTC, Eot3, 

IGM, MCSF1, PAPPA, SGOT 
88.1 72.9 0.89 83.1 70.4 0.80 

        

 

TABLE III  
CFS-BASED PRESELECTED PROTEINS 

Protein  

 

𝑷 

ADD vs. HC  

(Dataset 1) 

MCI vs. HC  

(Dataset 2) 

 

A1M 

 

2.9E-6 

 

3.3E-1 

A2M 2.5E-3 3.2E-1 

ApoA2 3.2E-8 1.1E-1 

ApoE 1.1E-7 3.8E-4 

BNP 7.7E-7 5.2E-2 

BTC 4.4E-2 2.4E-1 

CD5L 1.0 E-1 8.6E-1 

Eot3 5.5E-5 6.2E-3 

IGM 9.7E-7 3.9E-5 

IL3 8.1E-3 6.9E-15 

MCSF1 4.0E-1 8.4E-2 

PAPPA 7.7E-4 1.6E-1 

PLGF 1.3E-5 3.2E-1 

PYY 2.7E-6 5.9E-1 

RAGE 6.5E-3 6.3E-1 

SGOT 9.2E-6 2.2E-6 

 

TABLE II 

PERFORMANCE OF EXISTING BLOOD BIOMARKER PANELS FOR AD DETECTION 

Study 

 

Panel 

size 

 

Panel 

 

ML model 

 

ADD vs. HC 

(Dataset 1) 

MCI vs. HC 

(Dataset 2) 

SN SP AUC SN SP AUC 

[20] 11 
Adip, B2M, CRP, FABP, FVII, IL18, MCP1, PPP, TLSP, 

TNC, VCAM 
Random forest 85.2 25.9 0.62 81.6 46.3 0.72 

[21] 5 A1M, ApoE, BNP, IL16, SGOT 
Logistic 

regression 
85.2 74.1 0.90 79.0 50.0 0.70 

[22] 

 

8 A1M, ApoA2, ApoE, BNP, Eot3, IGM, PLGF, SGOT 

Random forest 

88.0 72.4 0.87 80.9 46.3 0.69 

5 A1M, ApoA2, ApoE, BNP, SGOT 87.0 62.1 0.83 83.1 38.9 0.67 

13 
ApoA2, ApoE, BNP, Eot3, HBEGF, IGM, IL16, PLGF, 

PYY, SGOT, TNC, TTR, Vit 
92.6 60.3 0.87 85.3 42.6 0.72 

14 
A1M, A2M, ApoA2 ApoE, BNP, BTC, CRP, Eot3, IGM, 

IL16, MPO, PLGF, RAGE, SGOT 
92.6 67.2 0.91 83.1 44.4 0.70 

[23] 6 A1M, A2M, AAT, ApoE, CC3, PPP Naive Bayes 86.1 63.8 0.82 78.3 37.0 0.62 

[24] 5 A1M, A2M, CC3, IGM, TNC SVM 81.1 60.5 0.77 75.7 35.2 0.65 

* Use of apolipoprotein ε4 (APOE4) genotype as covariate in original model proposed in [24] was excluded as distribution of APOE4 status is highly uneven 

in HC group (less than 9% of HCs are positive).  
A1M: alpha-1 microglobulin; A2M: alpha-2 macroglobulin; Adip: adiponectin; ApoA2: apolipoprotein A2; ApoE: apolipoprotein E; B2M: Beta-2-

Microglobulin; BNP: brain natriuretic peptide; BTC: betacellulin; CC3: complement C3; CRP: c-reactive protein; Eot3: Eotaxin 3; FABP: fatty acid binding 

protein; FVII: factor VII; GCSF: granulocyte-colony stimulating factor; HBEGF: heparin-binding EGF-like growth factor; IGM: immunoglobulin M; IL: 
interleukin; MCP1: monocyte chemotactic protein 1 α; MPO: myeloperoxidase; PLGF: placenta growth factor; PPP: Pancreatic Polypeptide; PYY – peptide 

YY; RAGE: receptor for advanced glycosylation end; SGOT: serum glutamic oxaloacetic transaminase; TLSP: t-lymphocyte secreted protein 1.309; TNC: 

tenascin C; TTR: Transthyretin;  VCAM: Vascular Cell Adhesion Molecule-1; Vit: Vitronectin 
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performance (SN of 92% and 93%, SP of 81% and 83%, AUC 

of 0.90 and 0.94 respectively) in classifying ADD and HC 

subjects. This perhaps highlights a possible performance 

benefit of the CFS-based feature preselection technique. 

Nevertheless, the two models performed poorly when evaluated 

for classification of MCI and HC subjects. The implication is 

that an excellent model at later stages of the disease does not 

necessary imply a good disease detection model at the early 

disease stages. This may be attributed to subtle differences in 

the underlying patterns as well as noise in the data among other 

factors, thus highlighting the need for further evaluations. Five 

models constructed with panels shown in Table IV realized best 

performance  for classification of MCI and HC groups. All but 

one of the models detected AD subjects with SN and SP above 

80% and 70% respectively at dementia as well as MCI stage. A 

larger panel formed by combining all five panels in Table IV 

achieved a cross-validated SN, SP, and AUC of 85%, 70%, and 

0.88, respectively in classifying ADD vs. HC.  However, its 

specificity dropped drastically to 52% with 82% SN and 0.73 

AUC when tested for MCI vs. HC classification. The 

introduction of well-known risk factors of AD [46] such as age 

and level of education as covariates to the models did not 

improve performance significantly. APOE4 genotype was not 

used as a covariate to avoid bias since less than 9% of HC group 

have positive status. 

V. DISCUSSION 

In this study, we developed models and identified novel non-

amyloid biomarker panels for early detection of AD following 

a new approach, and demonstrated that existing ML methods 

may not be suitable for early detection. The models and panels 

were selected based on their performance at both the prodromal 

and dementia stages of the disease, thus improving the chance 

that signals about the disease were captured rather than noise 

resulting from individual variations between study participants. 

Ideally, the smaller the size of a panel, the better in terms of 

interpretability and cost of implementation in practical 

applications such as point of care technology. However, 

because our study was exploratory, it was important to flag all 

the panels that achieved reasonably good performance since it 

is unclear which panel or proteins are the most important. 

Gaining such clarification may require further investigation 

such as analysis of protein-protein interaction for the proposed 

panels (see later). We have also shown the performance of the 

larger panel derived by combining all five panels we identified, 

although it has a lower performance relative to the individual 

panels perhaps due to curse of dimensionality. 

Comparing our results (Table IV) with those of existing 

models we investigated (Table II); the best existing model 

identified AD subjects at MCI stage with high sensitivity and 

fairly good specificity (79% SN and 50% SP) while our model 

with the least panel size achieved a better performance with 

80% SN and 70% SP. At dementia stage, our proposed models 

achieved a performance that is comparable to the best model 

from the investigated studies. 

Comparing our results with  the  three recent relevant studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see Table V), we note that the panels identified in [25] and [26] 

classified ADD and HC with high performance, but the markers 

were reported by the authors to be poor at distinguishing 

between MCI and HC. Furthermore, while study [27] achieved 

high AUC of 0.88 with XGBoost model for classification of 

ADD and HC, the model’s performance has not been evaluated 

for disease detection at MCI stage. Due to unavailability of 

biomarkers used in the study in our study data, the performance 

of the models for MCI and HC classification was not 

investigated in this study. In contrast to the recent studies, our 

models achieved high performance for disease detection at 

ADD stage (with one of the models shown in the table realising 

best AUC, with high sensitivity and specificity) as well as the 

MCI stage. 

Our proposed panels differ significantly from those of 

existing methods. This may be due to significant differences in 

the approaches including feature preselection and evaluation 

modalities which were deliberately applied in this study. We are 

not aware of the use of CFS for feature preselection in previous 

studies. We have provided details of the ML algorithm used 

including the kernel type and order as well as their selection 

process to ensure transparency of approach and reproducibility. 

In future, the study will be validated in independent cohorts and 

extended to preclinical stages of the disease.   

It is noteworthy that no existing AD model based on non-

amyloid proteins has hitherto been evaluated for early disease 

detection using ADNI data. 

Regarding the proteins evaluated in this study, besides 

PAPPA, which is rather highly associated with depressive 

symptoms in older adults [47] other proteins preselected by 

CFS have been previously identified in several studies [16-24] 

to have classification value in discriminating between ADD and 

HC groups. From the five selected panels shown in Table IV, 

six proteins (i.e., A2M, ApoE, BNP, Eot3, RAGE, and SGOT) 

appear as most prominent, featuring in nearly all the panels. A 

combination of the six proteins therefore seem to play a 

significant role in the discrimination of disease (prodromal and 

dementia) subjects and healthy controls. The panel classified 

both groups with sensitivity and specificity > 80% and 65%, 

respectively and AUC of at least 0.80.  Several of these proteins 

are found in nearly all the previously reported models 

TABLE V 
COMPARISON OF OUR RESULTS WITH RECENT RELEVANT STUDIES 

Study 

 

ML model 

 

ADD vs. HC MCI vs. HC 

SN SP AUC SN SP AUC 

[25] 
Logistic 

regression 
84.0 70.0 0.79 poor 

[26] 
Random 

forest 
90.0 67.0 0.77 poor 

 XGBoost - - 0.88 - - - 

[27] 
Random 

forest 
- - 0.85 - - - 

 Deep learning - - 0.85 - - - 

Current 

study 
SVM 85.0 75.0 0.89 80.1 72.2 0.80 
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investigated in this study. Studies show that blood plasma levels 

of A2M are linked to mechanisms related to blood-brain barrier 

damage and neuronal injury as well as hippocampus 

metabolism in early AD [15, 48]. ApoE in blood is speculated 

as a dementia risk marker in preclinical AD [49]. BNP levels in 

plasma is associated with decline in cognitive function [50]. 

Plasma levels of RAGE are altered in AD [51]. RAGE has been 

reported to play a critical role in AD and considered as a 

potential therapeutic target [52]. SGOT is a biomarker of 

peripheral inflammation and an essential metabolic enzyme. It 

is often used as a clinical measure of liver function [53]. 

Interestingly, a recent finding has implicated liver function as a 

potential significant confounding factor in the onset of AD 

(https://www.alz.org/aaic/releases_2018/AAIC18-Tues-gut-

liver-brain-axis.asp). 

However, this study has several limitations including the 

following:  

Sample size and ML method: In this work, the sample size of 

study data was small. This is because of the limited availability 

of relevant data due in part to the high cost of collection of such 

specialized data. As a result of the limited dataset, latest ML 

methods such as deep learning (DL) were not explored in this 

study owing to their requirement for large datasets. As more 

data become available, we shall explore DL methods such as 

convolutional and recurrent neural networks [54, 55].  

Nevertheless, conventional machine learning methods are still 

attractive in this domain given their relative simplicity, cheaper 

cost, and usefulness for data modeling [56]. However, despite 

the high classification performance  achieved by the traditional 

ML approach we applied, there are other methods such as 

ensemble learning [57] that have the potential to improve 

performance and therefore may be applied in future study. 

Demographics: Another limitation is that the study data only 

consist of older and educated subjects. Thus, our findings may 

not generalise well to other cohorts such as less educated 

individuals given that level of education is a well-known risk 

factor for AD.  

Feature selection method: Notwithstanding the usefulness of 

CFS feature preselection technique applied for dimensionality 

reduction and mitigation of model overfitting, some important 

markers with strong biological links to AD may have been 

eliminated as the process was blind to prior knowledge.  

Protein-protein interaction analysis: In this study, aspects such 

as protein-protein interaction were not investigated as these 

were beyond the scope of the study. Potentially, analysis of the 

interactions between proteins in the identified panels may 

facilitate understanding of their joint role in AD process and 

clarify which panel(s) are more clinically relevant. 

In view of the limitations above, there is a need to conduct 

additional follow-up studies and validation of our findings in 

large and independent cohorts considering that validation of 

findings is an important step for clinical acceptance and 

translation into clinical practice.  

Besides proteomics-based biomarkers, there are also other 

nonamyloid-based blood biomarkers such as mRNA [58, 59] 

and autoantibodies [60] where progress is being made in AD 

detection and improving understanding of disease. For instance 

in [58], three mRNA biomarkers that suggest important 

dysregulated pathways in AD pathogenesis have been 

identified. Therefore, future studies should consider the 

exploitation of a range of blood-based biomarkers including 

proteomics and mRNA. This may lead to a more accurate panel 

of blood biomarkers to detect AD and improve the 

understanding of its aetiology. 

  Overall, the results from this study suggest that it may be 

feasible to detect early AD using a profile of non-amyloid 

proteins in blood associated with the metabolic processes that 

accompany or precede the disease. Because the proteins are 

non-amyloid based, they have the potential to detect the disease 

even before amyloid pathology develops. It may be possible to 

develop new understanding of the disease through further 

studies of these proteins and their protein-protein interactions 

in the disease pathogenesis. Such understanding may aid the 

development of new interventions in response to current failure 

of clinical trials targeting amyloid clearance. The main 

contributions of this study include the potential biomarker 

signatures identified and the methodological approach adopted 

in the search for these signatures in an effort to bridge an 

important study gap of early detection of AD with proteomic-

based non-amyloid blood biomarkers.  

VI. CONCLUSION 

We have developed potential models and identified five novel 

candidate non-amyloid biomarker panels for early detection of 

AD utilizing a new approach. The developed models based on 

these panels classified prodromal AD as well as AD dementia 

and normal controls with sensitivity above 80%, specificity 

higher than 70%, and AUC of at least 0.80. A combination of 

A2M, ApoE, BNP, Eot3, RAGE and SGOT were identified as 

key protein profiles with significant contribution to the 

classifications performance. The results suggest that it may be 

feasible to detect early AD using a profile of non-amyloid 

proteins that identify the metabolic processes that accompany 

or precede the disease. It may be therefore possible to detect the 

disease with the proteins before amyloid pathology (the earliest 

signature current diagnostic biomarkers can detect) develops 

since they are not amyloid-based. This may aid identification of 

individuals at the earliest stages of AD who may benefit from 

early interventions. Furthermore, new insights about the disease 

may be gained from understanding the interactions between the 

proteins in disease subjects. Such enhanced understanding may 

contribute to the improvement of interventions in clinical trials. 
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