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Abstract 

The Yukon-Alaska Highway corridor in southern Yukon is subject to geohazards ranging from 

landslides, to floods, and earthquakes on faults in the St. Elias Mountains and Shakwak Valley. 

Here we discuss the late Holocene seismic history of the Denali fault, located at the eastern front 

of the St. Elias Mountains and one of only a few known seismically active terrestrial faults in 

Canada. Holocene faulting is indicated by scarps and mounds on late Pleistocene drift and by 

tectonically deformed Pleistocene and Holocene sediments. Previous work on trenches 

excavated against the fault scarp near Duke River reveals paleoseismic sediment disturbance 

dated to ca. 300-1200, 1200-1900, and 3000 years ago. Re-excavation of the trenches indicate a 

fourth event dated to 6000 years ago. The trenches are interpreted as a negative flower structure 

produced by extension of sediments by dextral strike-slip fault movement. Nearby Crescent 

Lake is ponded against the fault scarp. Sediment cores reveal four abrupt sediment and diatom 

changes reflecting seismic shaking at ca. 1200-1900, 1900-5900, 5900-6200, and 6500-6800 

years ago. At Duke River, the fault offsets sediments, including two White River tephra layers 

(ca. 1900 and 1200 years old). Late Pleistocene outwash gravel and overlying Holocene aeolian 

sediments show in cross-section a positive flower structure indicative of postglacial contraction 

of the sediments by dextral strike-slip movement. Based on the number of events reflecting 

~M6, we estimate the average recurrence of large earthquakes on the Yukon part of the Denali 

fault to be about 1300 years in the last 6500-6800 years.  

 

 

1. Introduction 

Natural Resources Canada through its Public Safety Geoscience program carries out geologic 

research to identify natural hazards in Canada. A component of this program is the study of 

faults on the Canadian landmass that might be seismically active and thus pose a potential 

hazard to life and the built environment. To date, few faults, aside from those offshore of the 

coast of British Columbia near active plate boundaries, have been shown to be active and thus 
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capable of producing damaging earthquakes. Recently, the Leech River fault, located in 

southern Vancouver Island, southwestern British Columbia, has been documented as a 

seismically active fault (Morell et al., 2018). Another seismically active fault is the Denali, a 

major intracontinental dextral strike-slip fault that has been active since the Early Cretaceous. It 

is more than 2000 km long, extending from northwest British Columbia to southwest Alaska 

(Figure 1; Grantz, 1966; Eisbacher, 1976; Lanphere, 1978; Dodds, 1995; Lowey, 1998). The 

Alaska section of this fault generated a Mw 7.9 earthquake in November 2002 and subsequently 

was well studied (Eberhart-Phillips et al., 2003; Haeussler et al., 2004, 2017; Matmon et al., 

2006; Haeussler, 2008, 2009). The Yukon section of the fault, in contrast, is less well studied 

(Clague, 1979; Haeussler et al., 2017) and historically has produced only a few small 

earthquakes. Bender and Haeussler (2017), however, have recently published a map showing the 

surface trace of the eastern Denali fault in Alaska and Yukon. 

The 2002 earthquake ruptured the central section of the Denali fault, which has the 

highest late Quaternary average slip rate (~13 mm/yr) west of its intersection with the 

Totschunda fault (Figure 1, red arrow and thick red line; Matmon et al., 2006; Hauessler et al., 

2017). To the west of the 2002 epicenter, over a distance of 575 km, the average slip rate has 

been estimated at ~5 mm/year and to the east, i.e., roughly 280 km southeast of the Tochunga-

Denali intersection (Figure 1), ~2 mm per year (Haeussler et al., 2017). Marechal et al. (2018) 

estimated dextral strike-slip motion reducing to less than 1 mm/yr along the eastern Denali fault, 

approximately 80 km south of the Denali-Totschunda junction.   

In this paper, we report evidence for Holocene seismic activity and displacements on the 

eastern portion of the Denali fault, i.e., the Shakwak segment, in the vicinity of Kluane Lake, 
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Yukon (Figure 2). We document geomorphic evidence of these displacements; describe and re-

interpret paleoseismic trenches excavated by scientists from the U.S. Geological Survey, Yukon 

Geological Survey, and Simon Fraser University (Seitz et al., 2008; Lipovsky et al., 2009); 

describe and interpret sediment cores collected from a small lake impounded by the fault scarp; 

and finally describe deformation of sediments intersected by a strand of the fault in a bluff along 

the Duke River. We attempt to correlate inferred paleoseismic events in three different, but 

spatially close settings, subject to the limits of radiocarbon dating (sites D, E, and F, Figure 2c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Denali fault system, the tectonic plates that control it, and the study area near Kluane 

Lake. The Pacific Plate is subducting beneath the North America Plate at a rate of ~50 mm/yr. 

The Denali and Totschunda faults are located at the northeastern edge of the Wrangell subplate. 

The red arrow marks the intersection of the Denali and Totschunda faults and the division 

between the western and eastern segments of the Denali fault. The average slip rate on the 

Denali fault east of this intersection is less than half that to the west (Haeussler et al., 2017). 

Diagram modified from Fuis and Wald (2003) and Elliott et al. (2010).  
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Figure 2. a) Study sites A, B, and C (black letters). The red line is the approximate trace of the 

Denali fault. b) Location of study area (red rectangle) in Yukon. c) Locations of sites D, E, and 

F (black letters) near Duke River (Google Earth image). 

 

2. Setting  

The Denali fault separates the Kluane Ranges, located within the St. Elias Mountains, from the 
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Ruby Range in the Yukon Plateau (Figure 2; Mathews, 1986; Huscroft et al., 2004). Bedrock 

comprises volcanic, volcaniclastic, and sedimentary rocks ranging in age from Permian to 

Jurassic (Dodds and Campbell, 1992). 

Permafrost in the area is sporadic and discontinuous, with less than 10% ground ice to 

depths of 10-20 m below the ground surface (Heginbottom and Radburn, 1992; Heginbottom, 

1995). At the three sites that we studied (D, E, and F, Figure 2c), no obvious permafrost features 

were observed at the surface or during trenching and coring. 

 The study area is characterized by a subarctic continental climate with long cold winters 

and short warm summers. The climate has is semiarid, with an average of 340 mm of 

precipitation per year. The average monthly temperatures in January are -22°C and in July, 13°C 

(Huscroft et al., 2004; Northern Climate ExChange, 2013).  

 The area has undergone several Quaternary glaciations, the last of which was the 

McConnell Glaciation (~22-12.5 ka), during which glaciers filled the Shakwak Trench and 

flowed towards the northwest (Figure 3; Rampton, 1981; Duk-Rodkin 1999; Huscroft et al., 

2004).  

Two explosive volcanic eruptions occurred 1900 and 1200 years ago from a source near 

Mt. Bona and Mt. Churchill in the St. Elias Mountains in eastern Alaska (McGimsey et al., 

1990; Clague et al., 1995; Lerbekmo, 2008). The older eruption left a thin tephra layer that 

extends to the north along the Yukon-Alaska boundary, whereas the younger eruption produced 

a larger tephra layer that covers southern Yukon and areas to the east and south (McGimsey et 

al., 1990; Lerbekmo, 2008). Together, the two White River tephras are found over an area of 

about 340,000 km2 and have a volume of 25-30 km3. Where the two lobes overlap, the tephra 
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layers are commonly separated by a thin layer of organic sediment or loess. Typically, the older 

tephra is finer and thinner than the younger one (McGimsey et al., 1990; Lerbekmo, 2008).   

3. Methods 

We used aerial photographs, Google Earth satellite imagery, and lidar images to document 

surface displacements along the Denali fault (sites A, B, and C; Figures 2a and c). Seitz et al. 

(2008) excavated three trenches perpendicular to the fault (site D, Figure 2c). 

We revisited and deepened U.S. Geological Survey trenches T2 and T3 in 2011 and 

2013. Trench 1(T1) was not re-excavated due to a high water table. Trench T3 was the largest 

and deepest of the three and is the focus of this study. It measured up to 7 m long and 2 m deep. 

Age control is provided by 1) the two late Holocene White River tephra layers; 2) non-faulted 

300 year-old shorelines of Kluane Lake (Clague et al., 2006; Brahney et al., 2010) crossed by 

the Denali fault; and 3) AMS radiocarbon ages on plant remains in the trench sediments, in 

Crescent Lake cores, and the Duke River bluff. The two samples at Duke River were collected 

as follows: one just below the younger tephra and the other, just above the older tephra. 

Elevations of the Duke River samples (Table 1) appear inverted, but this is due to the irregular 

surface at the top of the bluff.     

We affixed strings on the vertical faces of the hand-excavated trench walls to establish a 

grid (0.5 m2) to facilitate mapping of sediments and structures. We photographed the trench 

walls and created a georeferenced orthophoto of the wall that we used for mapping. Two 

samples of wood and charcoal from trench T3 were radiocarbon-dated to supplement the 

radiocarbon ages reported by Seitz et al. (2008).  

We collected four 7.5 cm-diameter sediment cores from Crescent Lake (site E, Figure 
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2c), a shallow pond ~200 m southeast of the trenches (site D). Crescent Lake has an area of 

about 1.7 ha and a maximum depth of about 4 m. We made two attempts to core the lake. A 

single short (73 cm) percussion core (labeled core 2) was collected from the center of the lake in 

the summer of 2008. An additional three vibracores up to 106 cm in length were collected from 

the frozen surface of the lake in March 2010 along a transect perpendicular to the fault scarp 

(labeled cores 1, 3, and 4). 

A fibrous rooty peat that prevented core penetration in 2008 also stopped the vibracorer 

in 2010. We transported all cores to the University of Northern British Columbia in Prince 

George, British Columbia, where they were split, photographed, and logged. Radiocarbon ages 

on eight samples of subfossil plant remains from the cores were determined at the University of 

California Irvine Keck Carbon Cycle AMS Laboratory.   

We analyzed two of the four Crescent Lake cores (nos. 2 and 4) for diatom 

concentrations and species composition. Prior to the preparation of each slide, 5 mg of dry 

sediment were digested in 20% hydrogen peroxide solution and placed in a water bath for 2 

days. The digested sediment was rinsed with de-ionized water and left to settle for at least 24 

hours before being aspirated and further rinsed (Battarbee et al., 2001). Diatom slides were 

mounted in Battarbee trays to allow for counts of microfossils per gram of sediment. Diatom 

species were identified from taxonomic literature (Patrick and Reimer, 1966, 1975; Krammer 

and Lange-Bertalot, 1985, 1986, 1988, 1991, 2000; Kelly et al., 2005) and internet resources 

(Spaulding et al., 2010). Diatoms were identified and counted using an Olympus® BX51 

Photomicroscope with DIC optics.  

We described and photographed deformed Late Pleistocene and Holocene sediments in a 
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bluff on the north side of Duke River, just upstream of the Alaska Highway (site F, Figure 2c).  

4. Results and Discussion  

4.1  Geomorphic expression of the fault 

Clague (1979, 1982) identified a nearly continuous Holocene offset along the Denali fault from 

near the Alaska-Yukon boundary to the southern end of Kluane Lake (Figure 2a). The fault 

displaces drumlins and flutings produced by northwest-flowing glacier ice during the 

McConnell Glaciation (Marine Isotope Stage 2; Rampton, 1979, 1981; Klassen, 1987; Duk-

Rodkin, 1999; site A, Figure 2a; and Figure 3). The fault trace is locally marked by elongate 

mounds that were interpreted by Seitz et al. (2008) and Hauessler et al. (2017) to be tectonic 

push-ups formed by shortening between en échelon left-stepping fault strands (Figure 4). Here, 

we interpret the mounds as positive flower structures and the depressions as negative flower 

structures that formed, respectively, at sites of local compression and extension between en 

échelon fault strands during strike-slip movement (Harding, 1985; Woodcock and Fischer, 1986; 

see section 4.2). We identified and measured 538 mounds over a distance of about 110 km along 

the length of the fault in Yukon. The mounds average 90 m in length, 60 m in width, and are up 

to 10 m in height; the average spacing between mounds is about 125 m.   

Very few fault mounds show measurable lateral displacement. However, at site B, Figure 

2a, mounds are offset by 20-30 m (Figure 4; Seitz et al., 2008; Haeussler et al., 2017). 

Examination of aerial photographs (1980s National Air Photo Library) and Google Earth 

imagery (DigitalGlobe 2016) shows that the mounds and depressions lie within a fault zone, the 

strands of which penetrate both bedrock and overlying Late Pleistocene and Holocene 

sediments.  
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Fault displacement is also visible on a lidar hill shade image of the floodplain of Duke 

River just southwest of the Alaska Highway (Figure 5a). There it extends across a low terrace 

less than 1 m above the active braidplain of the river, a surface that is likely less than 1000 years 

old (Clague et al., 2006). Marechal et al. (2018) documented a line of fault mounds crossing the 

floodplain of Koidern Creek, ~70 km northwest of Duke River.  The southernmost 

 

Figure 3. Trace of the Denali fault mounds in the vicinity of site A. The fault cuts late 

Pleistocene glacier flutings oriented towards the northwest (white curved arrows). 
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Figure 4. Google Earth image showing inferred offsets of mounds along the Denali fault at site 

B. Seitz et al. (2008) documented offsets at this site, and Haeussler et al. (2017) estimated the 

total displacements to be 20-30 m.   

morphological expression of the Denali fault in our study area is a series of mounds truncating 

the surface of a postglacial alluvial fan south of Kluane Lake (site C in Figure 2a; Figure 6).    

All fault displacements east of the Alaska-Yukon border postdate terminal Pleistocene 

deglaciation of the Kluane Lake area, which has been dated at about 12,500 years ago 

(Rampton, 1981). This date and offsets of mounds yield an average horizontal slip-rate over 

the Holocene of 2 mm/yr. Haeussler et al. (2017) provided a range of 1.5-2.3 mm/yr for the 

Yukon segment of the Denali fault, but noted that the average slip rate for the Holocene is 

probably closer to the upper end of this range because the mounds may have started to form 

well after deglaciation. Our findings support these previously reported slip rate estimates. 
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Figure 5.  a) Lidar image of a fault-offset fluvial terrace at Duke River just upstream of the 

Alaska Highway. Also shown are the locations of sites D, E, and F (see also Figure 2c for 

locations). b) Close-up of lidar image showing the locations of the three trenches. Source: 

Yukon Geological Survey. 
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Figure 6. Fault mounds on a postglacial alluvial fan just south of Kluane Lake (site C, Figure 

2a). This site is the southernmost geomorphological expression of the fault. 

 

4.2  Palesoseismic evidence in trenches 

Two of the three trenches (T2 and T3) at site D (Figures 2c, 5a and b, 7a and b) record three 

large earthquakes in the past 3000 years (Seitz et al., 2008). To recapitulate, T2 and T3 show 

evidence of coseismic deformation, including faulted and folded strata forming the fill within 

the depression adjacent to the fault scarp (see Appendix 1). The evidence includes the two 

deformed White River tephra layers, fissure fills, upward truncations on inferred faults, 

stratigraphic mismatches, and colluvial wedges that likely formed soon after three large 

earthquakes (Figures 7a and b). The green and blue lines are discontinuous and faulted horizons 

and the red lines are faults and/or fissures (Figure 7a). The orange line in Figure 7a was labeled 

free face (i.e., slope profile) or fault (Figure 7a). In Figure 7b, it is interpreted as a fault. We 

recognized a fourth potential seismic event in faulted sediments exposed when we deepened 

trench T3 (event 4, black fault line in Figure 7b; Table 1). A fourth event was also documented 

in T2 (Seitz et al., 2008). Further details on all the paleoseismic features in the trenches are 

provided by Seitz et al. (2008) and included Appendix 1.  

The older White River tephra is present as small scattered and stretched blebs, which we 

interpret to record coseismic sediment deformation. The younger White River tephra layer is 

thickest in the center of the trench and is discontinuous and has a bleb-like structure adjacent to 

the scarp. It is offset by a fault strand in trench T2 (Seitz et al., 2008; Appendix 1). We interpret 

the sediments within the trenches to show extensional deformation in a negative flower structure 
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produced by dextral strike-slip movement (red dashed lines in Figure 7b; Figure 7c).  

Although we do not know how much slip happened during each earthquake, the fact that 

the fault ruptured the surface suggests that the events were large, in range of magnitude 6-7 or 

larger (Eberhart-Phillips et al., 2003; Haeussler et al., 2004; Matmon et al., 2006). The relatively 

small number of events in the past several thousand years, however, is consistent with the 

regional tectonic model that hypothesizes much lower slip rates on the Yukon segment of the 

Denali fault than on the Alaska segment (Matmon et al., 2006; Haeussler et al., 2017).  

The most recent rupture occurred after deposition of the 1200 year-old White River 

tephra, but prior to the formation of the raised Kluane Lake shorelines less than 300 years ago 

(Clague et al., 2006). Based on the radiocarbon ages from the trenches, Seitz et al. (2008) 

assigned ages of 300-1200 (event 1), ca. 2200 (event 2), and 3000 (event 3) cal yr BP to 

earthquakes. A fourth inferred earthquake, mentioned above, is assigned an age of ca. 5900-

6200 cal yr BP. Uncertainties are inherent in dating paleoseismic events owing to potential 

errors in calibrated radiocarbon ages and to the stratigraphic relationship of dated sediments to 

earthquake events. Moreover, deformation is likely driven, not only by fault slip at depth, but 

also by gravitational movements from the fault scarp in an extensional setting, i.e., a negative 

flower structure (Figure 7c; Woodcock and Fisher, 1986).       

4.3  Paleoseismic evidence from Crescent Lake cores 

Basal sediments in three of the four Crescent Lake sediment cores consist of dark brown, 

woody, fibrous peat (Figures 8a and b; Table 1). In two of the cores (1 and 4), this peat is 

abruptly overlain by a terrigenous silt unit (blue unit in Figure 8a), which is in turn overlain by 

an organic-rich silt (olive grey). Gyttja (beige unit in Figure 8a) is the dominant sediment in   
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Figure 7. Stratigraphy of trench T3 (Figure 2c, site D). a). Photomosaic of the trench from Seitz 

et al. (2008), view to the north. Seismic events (Ev) 1, 2, and 3 (ca. 0.3-1.2, 2.2, and 3.0 ka) are 

labeled; Cl-13, Cl-14, and Cl-16 (in red) are 14C ages reported by Seitz et al. (2008) (Table 1). b) 

Interpreted stratigraphy of the same trench showing a fourth seismic event and the full set of 

radiocarbon ages. The older White River tephra (1.9 ka) is shown as small scattered white blebs 

in the center of the trench and the younger tephra (1.2 ka) is colored bright yellow. c) The trench 

face is interpreted as a negative flower structure with red dashed lines indicating inferred faults 

and arrows showing a downward direction of movement.  
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Table 1. Radiocarbon ages. 

 

*Calibrated age ranges (2σ) were calculated using OxCal v. 4.3.2 (Bronk Ramsey, 2017) and the 

IntCal13 atmospheric curve (Reimer et al., 2013).  

Crescent Lake. It overlies the clastic organic-rich silt layer near the base of the cores. Subtle  

differences in lithology are indicated by color differences and by the amount of clay, silt, and 

sand in the gyttja. The two White River tephra layers are present in three of the four cores; only 

the younger tephra was found in core 4 (Figure 8a).  

Diatom data allowed us to refine stratigraphic correlations between cores 2 and 4 (color-

coded dots in Figure 8). They also revealed that the upper and lower radiocarbon ages in core 4 

are too young, likely due to sediment mixing, possibly by bioturbation (Figure 8a; Table 1; 

Ages from USGS trench 3 (Seitz et al., 2008)

Sample # Radiocarbon age Calibrated age range yrs 

(BP)*

Trench depth 

(m)

Dated material

CL-13 2010±35 1880-2054 0.25 plant fibers/peat

CL-14 2810±30 2844-2999 0.4 plant fibers/peat

CL-16 3515±40 3650-3895 0.5 plant fibers/peat

Ages from revisited USGS trench #3

UCIAMS 134801 3240±20 3556-3495 1 wood

UCIAMS 134803 5280±15 5960-6178 1.5 charcoal

Ages from Crescent Lake sediment cores

Sample # Radiocarbon age Calibrated age range yr 

(BP)*

Core depth 

(cm)

Dated material

UCIAMS 83763 5210±150 5660-6290 Core 1,76 plant fibers

UCIAMS 83764 5820±170 6290-7150 Core 1, 80 plant fibers

UCIAMS 83765 5880±30 6640-6780 Core 1, 82.5 plant fibers

UCIAMS 83766 5795±25 6500-6660 Core 1, 85 plant fibers

UCIAMS 79274 2040±15 1940-2050 Core 2, 48 plant fibers

UCIAMS 109492 430±20 471-520 Core 4, 43 plant fibers

UCIAMS 109493 1840±15 1722-1821 Core 4, 54 plant fibers

UCIAMS 109494 3735±40 3975-4233 Core 4, 98 plant fibers

Ages from Duke River bluff

Depth from 

surface (m)

UCIAMS 134799 1460±15 1310-1380 0.6 wood

UCIAMS 134800 1805±15 1700-1800 0.3 wood
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Appendix 2, Supplementary Figure 1). Dominant diatom species at the base of the two cores 

(core 2: 69 cm; core 4: 90-96 cm) are pioneering benthic species (Pseudostaurosira brevistriata, 

Staurosirella pinnata, and Staurosira construens), which commonly constitute the bulk of initial 

diatom communities in early Holocene subarctic sediments (Appendix 2, Supplementary Figures 

2 and 3; Lotter et al., 2010). This assemblage is followed by a sudden rise in planktonic species 

that require deeper waters to achieve active lake mixing (Aulacoseirs spp.). The transition from 

species characteristic of wetlands (peat) to planktonic species is consistent with sudden 

deepening of a wetland into a lake (organic-rich silt). We attribute the deepening to the 

formation of a sag pond due to subsidence along a fault scarp during an earthquake (McCalpin et 

al., 2009). We ruled out climatic or hydrologic factors as potential causes of sudden deepening 

of the wetland because there is no evidence of surface flow into the lake or thermokarst 

subsidence at this site. The age of this event (6500-6800 cal yr BP) was estimated from the 

radiocarbon ages of samples collected from the top of the peat and from the overlying silt layer 

in core 1 (Figure 8a, Table 1).     

Marked increases in diatom flux, albeit with decreases in species richness, characterize 

several levels in the gyttja above the basal sediments in core 4 (88, 55, and 41 cm; Appendix 2; 

Supplementary Figure 3). These intervals likely represent intermittent disturbances of the lake 

system, perhaps accompanied by a sudden increase in nutrients or a shift in benthic habitat 

affecting diatom production; we infer that they are responses to seismic shaking and movements 

on the nearby fault. As we have argued for the older subsidence event, it is unlikely climatic and 

hydrologic factors are responsible for these disturbances due to the cold dry climate and the 

absence of streams flowing into the lake. We infer that the silt layer at 88 cm in core 4 correlates 

with the silt layer in core 1 (5900-6200 cal yr BP) and the clay layer in core 2. The silt layer at 
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55 cm in core 4 is not easily correlated with silt layers in the other cores due to uncertainties in 

its age.  

The silt layer between the two White River tephras in cores 1, 2, and 3 and below the 

youngest tephra in core 4 has an age range of 1900 to 1200 years ago. Diatoms are rare in this 

layer in cores 2 and 4, indicating rapid sedimentation of terrigenous rather than organic material. 

The only diatom species that is present (Eunotia panda), albeit in low numbers, is characteristic 

of shallow water or bog habitats (Veselá, 2015), indicating that it was likely transported to the 

lake floor. Nitzschia amphibia, a benthic species that is sensitive to turbidity and is otherwise 

common in cores 2 and 4, is absent in the silty layers sampled, whereas other pioneering benthic 

species increase in abundance in these layers (Appendix 2; Supplementary Figure 2). We infer 

that this silt layer is the result of seismic shaking. It may correlate with event 2 (ca. 2200 cal yr 

BP) of Seitz et al. (2008); if so, event 2 is younger than 2200 cal yr BP. 

Core 4 is closest to the fault scarp and thus most likely to record influxes of sediment 

from the scarp (e.g., sandy layers colored orange in Figures 8a and b). These coarse layers could 

also have formed during earthquakes by the partitioning and redeposition of the clastic 

component of gyttja within the lake, as documented in Lake Témiscaming (northern Québec) 

following a magnitude 6.3 earthquake in 1935 (Doig, 1991).  
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Figure 8. a) Stratigraphy of Crescent Lake sediment cores collected in 2008 and 2010. Stippled 

black and blue lines indicate inferred correlations of units. Comparable diatom assemblages are 

color coded (see Appendix 2). b) Locations of the four sediment cores; white dashed line is the 

Denali fault trace. Based on lithostratigraphic and biostratigraphic correlations, the upper and 

lower radiocarbon ages in core 4 (italicized) are thought to be too young. Refer to Appendix 2 

for color coded peaks in concentrations of specific diatom species; the color reflects the 

dominant species.  

 

4.4  Paleoseismic evidence from the Duke River bluff 

Late Pleistocene sediments are exposed continuously over a distance of about 800 m along the 

north side of Duke River upstream from the Alaska Highway bridge (site F, Figure 2c; Figures 5 

and 9). Two Pleistocene outwash gravel units and an overlying blanket of aeolian sand are 

exposed in cliffs up to 20 m high. The upper gravel unit dates to the McConnell Glaciation. It 

unconformably overlies a lower gravel unit, which predates the McConnell Glaciation (Rampton, 

1981; Duk-Rodkin 1999). The two gravel units are locally separated by a thin unit of laminated to 
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bedded silt (Figure 9a).  

Three types of paleoseismic evidence are apparent in the river bluff. First, strata in the 

two outwash gravel units are disturbed at the trace of the Denali fault (Figure 9a). The gravel has 

been uplifted and the bedding disturbed near the top of the bluff. The ground surface where the 

fault reaches the top of the bluff shows a positive flower structure/mound produced by upward 

displacement of sediment due to compression from dextral slip movement during one or more 

earthquakes (Figures 9a, b). Second, several pebbles and cobbles in the two gravel units within 

the fault zone are fractured and displaced along the fault trace (Figure 10). Third, the aeolian 

blanket at the top of the bluff contains the older and younger White River tephras, both of which 

are faulted and folded (Figure 11). It is likely that many paleo-earthquakes have produced the 

deformation in the Duke River bluff. At least one of them happened after 1200 years ago, 

because the younger White River tephra is deformed.  

 

 

 

 

 

 

 

 

 

 



 

 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. a) Bluff exposing Late Pleistocene outwash gravel on the north side of Duke River 

west of the Alaska Highway (site F, Figure 2c; Figure 5a). The thicker white dashed line is the 

approximate trace of the Denali fault plane. Note the difference in the color and structure of the 

gravel on opposite sides of the fault. The large half arrows indicate fault movement directions. 

The small half arrows next to the thinner white dotted lines indicate the upward movement of the 

petals. The red dot indicates the location of the photos in Figure 10, and the blue dot is the 

location of the photo in Figure 11. b) Block diagram showing a positive flower structure with 

petals along a dextral strike-slip fault (from Woodcock and Fisher, 1986).  

 

 

 

 

 

 

 

 

Figures 10. Fractured pebbles and cobbles within the Denali fault zone in the Duke River bluff 
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(see Figure 9a for location). 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Deformation of aeolian sediments at the top of the Duke River bluff (see Figure 9a 

for location). Sediments on the left side of the fault (red stippled line) were elevated during one 

or more earthquakes. Sediments to the right moved downwards, towards the viewer. The last 

earthquake responsible for this deformation happened after deposition of the younger White 

River tephra 1200 years ago.  

 

4.5  Geomorphology and seismicity 

Other researchers have documented surface displacements and the generation of positive 

flower structures during modern earthquakes in strike-slip tectonic settings. Mavroulis et al. 

(2017), for example, reported such features along the Cephalonia transform fault in western 

Greece, near Ateras village, after two strong (magnitude 5.9 and 6.0) crustal earthquakes in 

2014. Ulusay et al. (2002) documented fault displacements with flower structures along the 

North Anatolian fault in Turkey after the 1999 Kocaeli and Düzce earthquakes (magnitude 7.4 
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and 7.2, respectively). We are not aware of any earthquakes smaller than the 2014 Cephalonia 

events that have produced surface or near-surface deformation similar to that observed along the 

Yukon section of the Denali fault. We thus conclude that the displacements and deformation we 

describe are the product of moderate to large earthquakes.   

4.6  Timing of past seismic events 

The Crescent Lake sediment cores and the U.S. Geological Survey trenches provide evidence 

for at least five large earthquakes on the Denali fault over the past 6500-6800 years. Seitz et al. 

(2008) dated the last three earthquakes to ca. 300-1000 (event 1), 2200 (event 2), and 3000 

(event 3) years ago and linked two of the three events to documented prehistoric earthquakes in 

Alaska. Based on our deepening and re-examination of one of Seitz et al.’s (2008) trenches, we 

suggest that a fourth earthquake happened about 6000 years ago (event 4) (Figures 7b and 8a). 

We infer that the sudden formation of Crescent Lake and subsequent deposition of silt 6500-

6800 years ago records yet another large earthquake (event 5), and that silt and clay units and 

diatom changes in Crescent Lake cores (1, 2, and 4) provide evidence for an additional 

earthquake about 5900-6200 years ago (event 4). Silt beds deposited between 5900 and 1900 

years ago may correlate with event 3 of Seitz et al. (2008), which they dated to about 3000 years 

ago, although this correlation is tentative due to poor chronological constraints. We infer that an 

earthquake happened between 1900 and 1200 years ago (event 2) based on the silt unit present 

between the two White River tephras in three of the four cores (1, 2, and 3) and underlying the 

younger tephra in one core (4). This event may be linked to the 2200-year event proposed by 

Seitz et al. (2008), in which case their event 2 is less than 1900 years old. Deformation of the 

younger White River tephra in the trenches and the Duke River section indicates that the most 
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recent large earthquake on this portion of the Denali fault is less than 1200 years old (event 1).  

Table 2 summarizes our correlations of earthquakes inferred from the Crescent Lake 

sediment cores, U.S. Geological Survey trenches, and the Duke River bluff. Trench events 1-4 

can be linked to events in Crescent Lake, albeit with much uncertainty in the case of event 3 due 

to a lack of reliable radiocarbon ages. If trench event 2 correlates with the aforementioned dated 

silt layer in Crescent Lake, it must be younger than 1900 years old. Deformation associated with 

the most recent event (<1200 years ago) was not seen in the Crescent Lake cores, possibly 

because of the narrow diameter of the cores. However, in core 4 close to the fault scarp, coarser 

sandy layers above the younger White River tephra may represent disturbance due to seismic 

shaking in the past 1200 years.  

Sediment deformation in the trenches is cumulative and due to several large earthquakes, but also 

induced gravitationally from the edge of the fault scarp. At Crescent Lake, paleoseismic activity is 

displayed in the sudden change from a wetland to a lake and, subsequently, by pulses (or 

partitioning) of clastic sediment reflected in changes in diatom assemblages in the lake. Hence, 

closely spaced but different geological settings reveal recurrent paleoseismic activity over the 

past 6500-6800 years. Considered together, the data suggest an average recurrence of large 

earthquakes on the Yukon section of the Denali fault of about 1300 years, which is an order of 

magnitude lower than on the San Andreas fault in California, which has an average recurrence 

rate of large earthquakes every 150 years (Schulz and Wallace, 2016). 
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Table 2. Ages of inferred earthquakes (cal yr BP).  

Seismic 

event # 

USGS trench Crescent Lake 

sediment cores 

Duke River bluff 

1 300-1200 Post 1200 300-1200 

2 ~2200 1200-1900 Not observed 

3 ~3000 1700-5900 Not observed 

4 6000-6200 5900-6200 Not observed 

5 Not observed 6500-6800 Not observed 

 

5.  Conclusion 

Several independent lines of evidence indicate that the Yukon segment of the Denali fault 

produced many large earthquakes during the Holocene. Geomorphic observations show that the 

fault has been active since the area was deglaciated about 12,500 years ago. The active fault trace 

cuts across glacially streamlined landforms at a low angle and is marked by rectilinear mounds, 

some of which show right-lateral displacements. The fault also offsets a late Holocene terrace 

bordering the modern braid plain of Duke River near the north end of Kluane Lake and a 

Holocene alluvial fan south of the lake. 

Sediments deposited in Crescent Lake, which is impounded against the west side of a 

Denali fault scarp, also contain evidence of coseismic disturbance. The lake formed about 6500-
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6800 years ago, from movement along the nearby fault. Silty layers record detrital sediment 

inputs from the adjacent fault scarp 6500-6800 and 5900-6200 years ago, possibly several times 

between about 5900 and 1900 years ago, and again between 1900 and 1200 years ago. 

Earthquakes inferred from sediment disturbance in nearby paleoseismic trenches date to 

ca. 6000, 3000, 1900-1200, and 1200-300 years ago. The sediments are interpreted as a negative 

flower structure resulting from extension by dextral strike-slip movement against the fault scarp.  

Paleoseismic disturbance of sediments is also present in a bluff on the north side of Duke 

River. Late Pleistocene outwash gravel is displaced horizontally and vertically in the form of a 

positive flower structure. Many cobbles and pebbles within the gravel along the trace of the fault 

are tectonically broken. A fault mound at the top of the exposure is capped by aeolian sediments 

including the two White River tephras, both of which are faulted and folded.  

The formation of positive flower structures in a strike-slip fault setting requires 

earthquakes with minimum magnitudes of ~6.0. Hence, the earthquakes that we have 

documented are assumed to be at least this size. The average recurrence of large earthquakes on 

the Yukon portion of the Denali fault is estimated to be ~1300 years. In comparison, recurrence 

estimates for the Alaska portion of the fault are ~1000 years. 

A more detailed study of fault mounds in Shakwak Trench using lidar or high-resolution 

drone imagery would improve understanding of average slip rates. There likely is better 

measurable evidence of horizontal and vertical displacements in flatter areas of the fault where 

slope processes have not modified the mounds. In addition, along streams, there may be mounds 

that are incised, exposing positive flower structures in the Late Pleistocene sediments. Finally, 

better age control on Crescent Lake cores would help refine the earthquake history that we infer 
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using this paleoseismic proxy.   
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Appendix 1: Photomosaics of U.S. Geological Survey trenches T2 and T3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Photomosaic of trench T2 looking north. 
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Figures 2 and 3. Photomosaic of the trenches T2 and T3, looking south.   

Reference:  

Seitz, G.C.; Haeussler, P.J.; Crone, A.J.; Lipovsky, P.; and Schwartz, D.P., 2008, Eastern 

Denali fault slip rate and paleoseismic history, Kluane Lake area, Yukon Territory, Canada. 

American Geophysical Union, San Francisco, CA, Poster T53B-1947. 

http://www.geology.gov.yk.ca/pdf/AGU_Denali_Fault_2009v1.pdf  
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Appendix 2: Supplementary figures, table, and interpretation of stratigraphic changes in 

diatom assemblages. 
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Supplementary Figure 1. Comparison of diatom community composition in cores 2 and 4, 

showing distinct communities associated with different time intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Diatom stratigraphy of core 2 as percent of community composition.  

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3. Diatom stratigraphy of core 4 as percent of community composition.  

 

 

 

 

 

 

 



 

 

36 

 

 

 

 

Appendix Table 1. Peak concentrations of diatom species in samples from cores 2 and 4; 
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Notes: Color-coded diatom species are plotted in Figure 8a to facilitate understanding of the 

stratigraphy. The biostratigraphic correlations indicate that the upper and lower ages in core 4 

(bold italics) are anomalously young. 

 

Core 4 biostratigraphic interpretations 

 

101.5-98 cm: Lake inception 

Lake inception, likely due to earthquake 

There are very few diatom frustules present below 98 cm and it is likely that this interval 

represents a change from a terrestrial environment to a lake.  

 

96-0 cm 

Diatoms cycle though dominant species, indicating a shift from a shallow saline system to a 

deeper freshwater lake. There are also shifts in dominant species type, which indicates a change 

in benthic habitat with changes in depth. 

 

96-92.5 cm: Dark brown peaty silt 

Lake is shallow, possibly brackish 

Several observations support this interpretation. 1) There is a peak in sponge spicules at 90 cm 

(60 cm in core 2). The presence of sponge spicules indicates that the core site was shallower 

during this period. 2) There are higher concentrations of large benthic species, in particular 

Stauroneis, a genus that often prefers brackish water, as well as the larger Sellaphora pupula 

and Pinnularia species. 3) The small benthic species Pseudostaurosira brevistriata, which is 

present in higher concentrations during this period, prefers shallow conditions in diatom 

calibration sets from the Yukon (Pienitz et al., 1995). This and other small benthic species are 

present during this interval and may represent pioneering benthic communities (Lotter et al., 

2010). 4) There is an absence of planktonic species throughout this period. 5) During slide-

making, the sediment was coarse, so much so that it interfered with the binding of the coverslip 

to the slide. These sediments required sieving prior to mounting on a slide. 6) A white salt-like 

precipitate formed on the coverslips, indicating a higher soluble salt content. 7) Core 2 contains 

high concentrations of Eunotia praerupta, which is commonly associated with near shoreline 

habitats, vegetation, or peat (Sawai et al., 2002). 

 

90.5-55 cm: Gyttja with laminae of olive gray mud; sharp lower contact 

1. Lake deepens and benthic habitat experiences some changes  
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2. Deepest period was probably 80-70 cm 

From approximately 88 cm to 78 cm, there are large increases in concentrations of the epiphytic 

and/or planktonic Tabellaria flocculosa and then the planktonic Aulacoseira lirata (80-70 cm). 

This shift in species composition likely indicates an increase in lake depth, such that mixing 

conditions can occur. Other Aulocaoseira species have been linked to strong mixing, as they are 

a heavily silicified diatom and require active mixing to stay afloat (Sherman et al., 1998). Thus, 

the presence of this species likely represents a deepening of the lake such that longer spring 

circulation occurs (Horn et al., 2011). Anderson et al. (2007) determined that this time period 

was wetter in southern Yukon based on a lake level reconstruction from a nearby lake. Core 2 

also shows an increase in Aulacoseira lirata at this time, although more generally an up-core 

increase in planktonic taxa. Because both cores show this upward increase in planktonic taxa, 

the lake may have further deepened.  

Following this period, from 78-60 cm (~51 in core 2), there is an increase in Humidophyla 

gallixa, and small benthic monoraphids (Sellaphora atomoides. Rossithidium pussillum, and 

Achnanthidium minutissiumum). In core 2, there is also an increase in small benthic species. In 

general, many Achnanthidium and benthic species (including Stauroseira, Stauorsirella, and 

Pseudostaurosira) are not motile and are attached either to sediment grains or to vegetation. 

Thus their increase in abundance through this period may indicate changes in substrate and 

nutrient availability. The shift from benthic to planktonic and then back to benthic suggests that 

the lake deepened and then perhaps shallowed.  

 

54 and 40 cm: Changes in diatom abundance and composition 

Possible earthquake intervals 

At both 54 and 40 cm in core 4, there are distinct changes in diatom abundance and 

composition, suggesting a shift in habitat and productivity following abrupt disturbances. 

Similarly, there is a silty layer with few diatoms at 41 cm in core 2, suggesting a disturbance that 

brought terrigenous sediment into the lake.  

Core 4 

• Spike in diatom concentrations 

• Drops in cryosophyte cysts 

• Loss of species richness (Simpson’s Index) 

• Declines in some benthic species, specifically Nitzschia spp. and Achnanthidium spp. 

Increases in benthic taxa that are more tolerant and are often ‘pioneers’ in new habitats 

(Lotter et al., 2010) 

Core 2  

• 41 cm has few diatoms, indicating the introduction of terrigenous material into the lake. 

• The main diatom found in this sample is Eunotia panda, which typically lives in shallow 

nearshore environments or bogs (Veselá, 2015) 
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It is possible that these intervals record earthquake disturbance. An earthquake might be 

expected to redistribute nearshore nutrient-rich sediments might introduce silt and clay in the 

water body. Larger benthic species that are sensitive to turbidity (e.g. Nitzschia amphibia) are 

replaced by small benthic species that are more tolerant of poor light conditions and quickly 

reproduce to colonize new benthic habitats. The decrease in cryosphyte stomatocysts may be a 

result of a temporary increase in nutrient concentrations due to the introduction of terrigenous 

sediment (Sandgren, 1991; Smol and Stoermer, 2010). 

 

40-0 cm: Dark brown organic rich sand silty mud (30-0 cm in core 2) 

Establishment of current conditions 

From 40 cm to the sediment surface, there is a transition to the modern lake. The slight increase 

in planktonic communities may suggest a minor deepening of the lake through this period. 

Throughout this part of core 4, there is a balance of planktonic (Discostella stelligera, Ulnaria 

ulna) and benthic species (Eunotids, Achnanthidium). Crysophyte cysts and Cocconeis 

placentula also increase through this period. Taken together, these changes suggest a deepening 

of the lake and lower nutrient conditions. Cocconeis placentula can rapidly colonize new areas 

(Kelly et al., 2005), which supports a deepening lake. In addition, a decrease in epiphytic species 

and an increase in Nitzschoid species, which are motile among sediment (Kelly et al., 2005), 

may indicate a reduction in the relative amount of benthic vegetation cover with deepening of 

the lake. Kingsbury et al. (2012) documented species distributions across depth gradients in a 

variety of boreal lakes. They found that Discostella stelligera is found predominantly in the 

deepest zone of the lakes they studied, which range from 7 to 25 m in depth. Naviculoids and 

small Fragillaria species (now reclassified as Stauroseira, Staurosirella, and Pseudostaurosira) 

were found at mid-depths (2-15m) and in shallower water (0-7 m).  

 

Summary of the interpreted changes in lake depth and water chemistry in core 4: 

1. 96-88 cm:  Shallow water, higher salinity/nutrients. Sponges, Pseudostaurosira 

brevistriata (mesotrophic), and Stauroneis and Sellaphora, which are large unattached 

motile diatoms. Pioneer species indicate inception of the lake. 

2. 86 cm:  Deepening, planktonic species emerge; Tabellaria flocculosa (either planktonic 

or benthic) and Aulacoseira lirata, which requires active mixing to remain afloat.  

3. 80-70 cm:  Dominance of Aulacoseira lirata in planktonic community. Lake perhaps 

deepest, and/or longer spring turnover. 

4. 70-60 cm:  Lake possibly shallower. Emergence of epiphytic species (Achnanthidium 

minutissiumum, Humidophila gallica (often aerophyllic), and Nitzschia spp). 

5. ~54 and 40 cm:  Loss of species richness, particularly epiphytes (e.g. Nitzschia spp. 

Achnanthidium minutissiumum); proliferation of the episammic pioneer species 

Staurosirellla pinnata, as well as Pseudostaurosira brevistriata. These intervals appear 
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to represent disturbances, suggesting that earthquakes caused increased sediment 

delivery to the lake. 

6. 40-0 cm: Establishment of current conditions; lake possibly deepens with a reduction in 

nutrients. Reemergence of epiphytic species (Achnanthidium minutissiumum, 

naviculoids, Nizschia, and Cocconeis spp,), as well as planktonic species and Discostella 

stelligera. Diversity increases again, and productivity decreases.  
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