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SUMMARY

Despite the impressive performance of Deep Neural Networks (DNNs), they usually

lack the explanatory power of disciplines such as logic programming. Even though they

can learn to solve very difficult problems, the learning is usually implicit and it is very

difficult, if not impossible, to interpret and decipher the underlying explanations that is

implicitly stored in the weights of the neural network models. On the other hand, standard

logic programming is usually limited in scope and application compared to the DNNs. The

objective of this dissertation is to bridge the gap between these two disciplines by presenting

a novel paradigm for learning algorithmic and discrete tasks via neural networks. This novel

approach, uses the differentiable neural network to design interpretable and explanatory

models that can learn and represent Boolean functions efficiently. We will investigate the

application of these differentiable Neural Logic (dNL) networks in disciplines such as

Inductive Logic Programming, Relational Reinforcement Learning, as well as in discrete

algorithmic tasks such as decoding LDPC codes over Binary erasure Channels.

Inductive Logic Programming (ILP) is an important branch of machine learning that

uses formal logic to define and solve problems. Compared to the DNNs, ILP provides

high degree of interpretability and can learn from small number of examples and has

superior generalization ability. However, standard ILP solvers are not differentiable and

cannot benefit from the impressive power of DNNs. In this dissertation, we reformulate

the ILP as a differentiable neural network by exploiting the explanatory power of dNL

networks. This novel neural based ILP solver (dNL-ILP) is capable of learning auxiliary and

invented predicates as well as learning complex recursive predicates. We show that dNL-ILP

outperforms the current state of the art ILP solvers in a variety of benchmark algorithmic

tasks as well as larger scale relational classification tasks. In particular, the application of

the dNL-ILP in classification of relational datasets such as MovieLens, IMDB, UW-CSE,

CORA and Mutagenesis is investigated.

xiv



Relational Reinforcement Learning (RRL) focuses on the application of logic program-

ming in reinforcement learning. In particular, RRL describes the environment in terms

of objects and relations and uses predicate language to describe the state of the environ-

ment as well the agent’s policies. Despite their great potential and the promise of learning

generalized and human readable policies, the traditional RRL systems are not applicable

to a variety of the problems that the modern RL framework addresses. This is mainly

because the typical RRL systems require explicit representation of the state and cannot

directly learn from complex visual scenes. In this dissertation, we show how the proposed

differentiable ILP solver can effectively combine the standard deep learning techniques such

as convolutional networks with ILP and can learn the intermediate explicit representations

that the ILP systems requires. Through various experiments, we show how the proposed

deep relational policy learning framework can combine human expertise to learn efficient

policies directly from images and outperform both the traditional RRL systems and the

current deep RL by incorporating background knowledge effectively.

Despite the impressive performance of DNNs in a variety of tasks, there has been limited

success in using DNNs for learning discrete algorithmic problems. Via various experiments,

we show that even in discrete algorithmic tasks that do not require the explanatory power

of dNL networks, they are more efficient and can learn faster and generalize better than

the standard DNNs. In particular, we investigate their application in designing an itera-

tive decoding approach for LDPC codes over binary erasure channels and compare their

performance to the state of the art.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

Deep Neural Networks (DNNs) based on Convolution Neural Networks (CNNs) and Recur-

rent Neural Networks (RNNs) have improved the state of the art in various areas such as

natural language processing [1], image and video processing [2], and Speech recognition [3]

just to name a few. In recent years, successful reports such as Neural Turing Machine [4]

have inspired the machine learning community to apply neural networks for learning algo-

rithmic tasks. The development of several principles such as memory, memory controllers,

and recurrent sequence to sequence networks in [4] and many other follow up papers [5, 6]

led to the increased capacity of the regular RNNs for learning tasks. Further, [7] proposed

to employ several layers of GRU units and process the data as a whole vector; unlike the

typical sequence to sequence models. This new design produced excellent performance for

binary addition and multiplication tasks. In most typical networks (e.g., MLPs, RNNs), the

model is designed using successive applications of a basic atomic layer which computes

the weighted sum of the inputs followed by a non-linear function. More precisely, if vector

x ∈ Rn is the n dimensional vector, the ith element of output, i.e., yi, can be expressed as

yi = η(
∑n

j=1 xjw
(i)
j + bias(i)), where η(.) is a scalar nonlinear mapping such as sigmoid,

tanh or relu function and w(i) is the weight vector for the ith neuron. While in theory,

using sufficient number of weights and (hidden) layers, we could approximate any function

with this design, in practice this is not always possible. Additionally, MLP based models

come with some limitations. These models, in general, do not construct any explicit and

symbolic representation of the algorithm they learned and the algorithm is implicitly stored

in thousands or even millions of weights, which is typically impossible to be deciphered and

verified by human agents. Further, MLP networks are usually suitable for cases where there

are many training examples, and usually do not generalize well where there are only limited
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training examples.

One of the alternative machine learning approaches that addresses the shortcomings

of DNNs for learning discrete algorithmic tasks is Inductive Logic Programming (ILP).

Logic programming uses the language of formal logic to express the relation between

objects in some problem domain. These relations are stated by using Boolean functions

called predicates. For example, consider a family tree example, where tom is the

parent of john and jane. In logic programming, the facts about this system can be ex-

pressed using the predicate language. For example, using predicates such as female(X),

male(X), father(X,Y), we may express our knowledge regarding this family in terms

of some Boolean clauses such as: father(tom, john), father(tom, jane),

female(jane), male(john). Inductive logic programming, explores inductive

learning in first order logic. An inductive system tries to learn a general description of a

concept from a set of instances. The main goal of ILP is then the development of theory and

hypothesis for inductive reasoning in first-order (predicate) logic. In other words, ILP uses

the logic programming to uniformly express the examples, background knowledge and the

target hypothesis for a machine learning task. In ILP, explicit rules and symbolic logical

representations can be learned using only a few training examples and these models are

usually able to generalize well. Further, the explicit symbolic representation that is obtained

via ILP can be understood and verified by human, and can also be used to write programs in

any conventional programming language.

Over the last two decades, machine learning systems based on ILP has been widely

used in various domain including the knowledge discovery from relation databases as well

as robotics. However, in recent years and with the impressive progress of deep learning

techniques, the ILP discipline has been largely overlooked. While the application of ILP and

DNN based systems do not always overlap, we can crudely compare these two discipline

from the perspective of the trade-of between the interpretability and the performance as

shown in Fig. 1.1. Generally speaking, DNNs are able to tackle much harder learning tasks

2



involving difficult reasoning and learning from multidimensional data. Comparatively, ILP

systems are usually limited in scope and complexity. On the other hand, the learning in

DNNs is usually implicit and hard (if not impossible) to interpret, while ILP models offer a

high degree of interpretability.

Figure 1.1: Interpretability vs performance trade-off

In this dissertation, we seek new methods and techniques that could bridge the gap

between these two disciplines. Our aim is to design a differentiable approach to learning

Boolean logic and to use these differentiable Neural Logic (dNL) networks in designing

a differentiable neural based ILP solver. We will then study the application of such an

approach in learning tasks involving relational databases. We further extend this framework

to design a relational reinforcement learning framework. The outline of the contribution of

this dissertation are presented below.

1.1 Differentiable Neural Logic Networks

The ability to learn Boolean logic in an explicit and interpretable manner is at the heart

of our framework. Our aim is to design a differentiable neural networks dedicated to

learn and represent Boolean functions in an explicit and efficient way. The general idea
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of representing and learning Boolean functions using neural networks is not new. There is

significant body of research from the early days of machine learning using neural networks

that is focused on the theoretical aspects of this problem. Some special Boolean functions

such as parity-N and XOR has been the subject of special interest, as benchmark tasks for

theoretical analysis. Minsky and Papert [8, 9], for example, showed the impossibility of

representing all functional dependence and proved this for XOR logic function while other

works demonstrate the possibly of representing XOR by adding hidden layers. From the

practical standpoint, as was suggested by many works (for example [10]), any Boolean

function can be learned by a multi-layer neural network equipped with proper activation

functions. However, as we will demonstrate in the following chapters, this approach is not

always applicable for two main reasons:

• Since these networks are not specifically designed for learning Boolean functions,

the rate of convergence is not always acceptable. Moreover, in various problems they

do not fully converge. Specially, in cases with small batch sizes, the weights of the

network tend to fluctuate and do not fully converge as training continues. As we will

show later, this behavior can result in degrading performance for some applications

including the learning of discrete algorithmic tasks.

• Even if the MLP based approaches fully converge and could perfectly learn a Boolean

function, their internal representation is not usually interpretable by human. The actual

learned Boolean function is implicitly stored in the weights and biases of additive

neurons in a complex manner. As such, they are not suitable for applications where

the interpretability is desirable.

As an alternative to typical additive neurons, we propose a set of differentiable and

multiplicative neurons which are designed with the specific function of learning Boolean

functions efficiently and in an explicit manner which can be read and verified by human.

Even though these models, referred as differentiable Neural Logic (dNL) networks hereafter,

4



are designed for Boolean functions, their domain of applicability is not limited to the

learning of Boolean logic. Many algorithmic learning tasks that were addressed in the

recent literature, e.g., addition, copying, reverse sequence, grammar checking, can indeed

be expressed by a Boolean functions of the binary inputs with arbitrary complexity. As an

example, consider a very simplistic case, e.g., the binary addition of the two binary digits x

and y which can be expressed using Boolean algebra as:

r = x+ y ⇒


r0 = x

∧
y

r1 = (x
∧
ȳ)
∨

(x̄
∧
y)

, (1.1)

where r1 and r0 are two Boolean elements of the vector r. Here, x̄ is the compliment of

the Boolean variable x, and
∧

and
∨

represent conjunction (AND) and disjunction (OR)

operators respectfully. Consequently, a network which is designed with dNL network is

capable of efficiently learning various discrete algorithmic tasks as we will show in this

work.

In chapter 2, we present an alternative approach to the traditional MLP design for

learning Boolean functions (dNL) that aim to address some of the shortcoming of the MLP

for learning discrete-algorithmic tasks. We demonstrate the effectiveness of the proposed

general purpose dNL layers by various empirical experiments in sections 2.4, 2.5 and 2.6.

1.2 Inductive Logic Programming

Inductive Logic Programming (ILP) is one of the most successful machine learning ap-

proaches that addresses the shortcomings of MLPs for learning discrete algorithmic tasks.

In the following we give a short introduction on ILP before reviewing the literature on ILP

and discussing our contributions.
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1.2.1 Introduction to ILP

ILP is a machine learning discipline that uses logic programming both for internal rep-

resentation of the system as well as representing and learning the target hypothesis. As

such, before discussing various ILP systems we need to introduce the basic notations used

in logic programming. A logic program consists of a set of clauses. We may think

of a clause as an if-then rule. These if-then rules consist of a conclusion which is

called head and a condition which is called the body of the rule. For example, the rule

q ← p reads as: if p is True, then q is True, where q is the head and p is the body of the

rule. Logic programming is also referred to as predicate language. In logic programs, the

relation between objects are expressed using Boolean functions called predicate. For

example, the fatherhood relation between two persons may be expressed by the predicate

father(X,Y). For instance, the term father(Tom,John) is evaluated to True if Tom

is the father of John. Similar to other programming paradigms, in logic programming we

can talk about general rules using variables (i.e., X, Y) or about specifics (i.e., instances

such as tom, john). The atomic Boolean expressions in logic programming are created by

applying a predicate to some arguments. For example, both expressions father(X,Y)

and father(Tom,John) are called atoms. An atom that contains no variables (e.g.,

father(Tom,John)) is called ground atom. Most ILP systems use a restrictive form

of rules which are called Horn clauses. In this format, an if-then rule is a clause of this

form:

H ← B1, B2, . . . , Bm (1.2)

where the head of rule, i.e., H contains one atom and the body of rule is made of conjunction

of atoms B1 to Bm. As an example, consider the following rule that defines the daughter

relation using the parent and female relations:

daughter(X,Y)← parent(Y,X), female(X) (1.3)
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It is read as ”if Y is the parent of Y and X is female, then X is the daughter of Y”. Here,

the body consists of two atoms parent(Y,X) and male(X) and the conclusion, i.e.,

the head of rule consists of the atom daughter(X,Y). The goal of the ILP is to use

the language of the logic programming to describe the known facts about the system and

then, to find generalized hypothesis that could explain those facts. In order to illustrate

this, consider the program consists of the background facts and some training examples

for learning the daughter relation as shown in table 1.1. Here, ⊕ and 	 represent the

positive and negative training examples, respectively. In ILP, we are interested in techniques

Table 1.1: Program definition of learning daughter relation [11]

Training Examples Background knowledge

daughter(mary, ann). ⊕ parent(ann, mary). female(ann).
daughter(eve, tom). ⊕ parent(ann, tom). female(mary).
daughter(tom, ann). 	 parent(tom ,eve). female(eve).
daughter(eve, ann). 	 parent(tom, ian).

that given a program in Table 1.1, can generate a valid hypothesis such as the one in (1.3).

Generally speaking, there are two approaches for solving ILP problems as discussed. In

the buttom up approaches, we start from the positive examples and by starting from the

most specifics examples we try to find generalization. For example, consider the positive

example of daughter(mary,ann). We can find facts that are relevant to this example

by looking at the partial matching of arguments. For example, we can pick two relevant

facts of parent(ann, mary) and female(mary) and generate a hypothesis such as:

daughter(mary,ann)← parent(ann, mary), female(mary) (1.4)

We can then generalize the above hypothesis by replacing the specifics with variables to

arrive at the desired hypothesis in (1.3). In most practical problems we usually cannot

immediately find the general hypothesis as easy as this one. In practice, the button-up

approaches iteratively generate and test the candidate hypothesises to find the desired target
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hypothesis. To reduce the possible clauses to consider, they reduce the space of possible

clauses by introducing declarative biases. For example, such bias declaration may state that

the target hypothesis is obeying the transitive form of P (X, Y )← Q(X,Z), R(Z, Y ).

The other technique for solving ILP is the top-down approach. In this method we

start from an empty set of clauses, and construct a clause explaining some of the positive

examples, add this clause to the hypothesis, and remove the positive examples explained.

These steps are repeated until all positive examples have been explained. Variations of this

top-down approach to ILP is used by most neural ILP solvers as well as other ILP systems

dealing with classification tasks. Most traditional approaches to ILP search the space of

possible clauses iteratively to find a hypothesis that satisfy examples. On the other hand, the

neural approaches to ILP usually needs to enumerate all the possible clauses based on some

templates and score them using some techniques to find the hypothesis. In these systems

we needs to find the consequences of applying those hypothesis and compare that with the

provided examples. These consequences are found by forward-chaining algorithm.

In this iterative approach, we start by background facts and iteratively generate new facts by

applying the rules to the current set of facts, until no further new consequences is found.

1.2.2 Previous Works

Since the early 2000’s, a variety of algorithms for solving ILP have been proposed. Most

notably, the introduction of Metagol [12] based on meta interpretive learning [13] was one

of the recent breakthroughs in solving ILP problems. As shown by a series of publications

(e.g. [14, 15]), the impressive performance of Metagol is due to its ability to learn recursive

predicates (which is vital for learning many algorithmic tasks) as well as its ability to

invent/learn auxiliary predicates. To see the importance of recursion in learning algorithms

we can consider a simple program for learning the concept of connectedness in directed

graphs. Consider a program that describes a connected graph using the relation (i.e.,
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predicate) edge. For example, graph in Fig. 1.2 can be described as:

B = {edge(a,b), edge(b,d), edge(d,a), edge(b,c), edge(b,e), edge(e,f), edge(e,h), edge(f,g)}

In a directed graph, two nodes are considered connected if there is a direct path from one to

Figure 1.2: Learning connectedness in directed graphs

another. For example, in graph of Fig. 1.2, while a is connected to e (i.e., connected(a,e) is

True), e is not connected to a since there is no path from e to the node a. It is easy to verify

that a simple recursive definition for the target predicate connect via the following two

rules can satisfy all the examples:

connected(X,Y)← egde(X,Y)

connected(X,Y)← egde(X,Z), connected(Z,Y)

On the other hand, it is not possible to find such a hypothesis without allowing recursive (or

mutually recursive) predicates. Without recursion, we can find hypothesis for one or two

or any other particular level of connected nodes but it is impossible to solve for the most

general form:

connected(X,Y)← egde(X,Y)

connected(X,Y)← egde(X,Z), edge(Z,Y)

connected(X,Y)← egde(X,Z), edge(Z,T), edge(T,Y)

. . .
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In recent years, there has been some attempts to use deep learning methods in solving the

ILP problems [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. The connectionist model [20]

uses a recurrent neural network to implement a differentiable forward chaining approach.

However, the connectionist model only considers acyclic logic programs. Moreover, once

the program is learned, it is hidden in the weights of the network and is not explicitly

available. Logic Tensor Network [26] is another recently proposed ILP solver that uses the

extension of Boolean values to real values in the range of [0, 1] to learn an approximation to

the ILP’s satisfiability problem. However, their approach is limited in scope and does not

support predicate invention or self/mutual recursion among predicates. Another important

contribution is the CLIP++ algorithm proposed in [22]. This is a powerful approach for

learning first-order logic programs efficiently which uses the button clause ⊥e introduced by

Muggleton [28]. For each positive example, the bottom clause ⊥e is the most specific clause

whose head unifies with e. Since the clauses form a lattice, there is always a most specific

clause for a particular language bias. [22] uses the set of bottom clauses generated from the

examples as a set of features: each clause is applied to every tuple of individuals, generating

a list of features for each tuple. Even though CLIP++ is fast and scales well to the larger

problems, similar to the previously mentioned methods it does not support recursion and

hence its application for learning the algorithmic tasks is limited.

While these past neural ILP solvers are shown to learn some specific tasks, until the in-

troduction of differentiable ILP (dILP) by [27], they were not capable of predicate invention

and learning the recursive predicates (in an explicit manner). The main limitation of dILP is

that it cannot scale well to the more complex problems. In fact, the explosion of parameters

in their model, led to a very restrictive approach for choosing rule templates. As such, dILP

limits the model to learn clauses with at most two terms (atoms) and to the predicates with at

most two arguments, which is a very restrictive approach. In fact, as stated in [27], the need

for using program templates to generate a limited set of viable candidate clauses in forming

the predicates is the key weakness in all existing (past) ILP systems (neural or non-neural),
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severely limiting the solution space of a problem. Metagol [12], mitigates this problem by

introducing meta-rule templates to define a family of possible clauses. While this approach

allows the system to learn more complex solutions compared to dILP, the design of these

rules for any particular problem is itself a complicated task and requires expert knowledge

and possibly many trials. Moreover, although many of the neural ILP solvers provide a way

to learn the inductive rules, these learned knowledge is not necessarily explicit and human

readable (e.g., [29]) or require arbitrary cutoff values for choosing the candidate rules (e.g.,

dILP).

In Chapter 3 we demonstrate that the explicit representational power of the proposed

dNL allows us to transform the inductive logic programming into a differentiable problem

and solve it using gradient optimizers more efficiently than the existing neural ILP solvers.

We evaluate the performance of our proposed ILP solver in some benchmark ILP tasks

and compare the performance of dNL-ILP to the state of the art ILP systems in learning

algorithmic tasks such as learning arithmetic and sorting.

1.3 Learning from Uncertain Data via dNL-ILP

In Chapter 4 we study the application of dNL-ILP in learning from uncertain data. In

particular, we will study the application of the dNL-ILP in tasks involving the reasoning and

extracting knowledge from relational databases.

ILP is concerned with the development of techniques and tools for relational data

mining. In relational databases, data is typically resides in multiple tables. Because of the

relational nature of ILP, it can directly find patters from multi table databases and other

structured data. In contrast, most other machine learning approaches can only deal with

data that resides in a single table. As such, they require reprocessing using various types

of join and aggregation operations before they can be applied. However as shown

by [30, 31, 11], integrating data trough joining and aggregating tables can lead to the loss

of meaning or information. We consider an example similar to the one presented in [11]
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for instance. Suppose we are given a database with two tables as shown in Fig. 1.3, and

the task is to characterize customers that spend a lot. Please note that each customer can

have multiple purchases. Integrating the two relations (each table defines one relation)

using join will create a new relation where each row corresponds to a purchase and not to a

customer. Alternatively, two tables can be integrated into aggregate customer1(customer id,

age, number of purchases, total value). In this case, however, some information is lost. For

example, the following hypothetical hypothesis that an ILP system may learn cannot be

directly achieved using either of those integration techniques:

big spender(CID)←customer(CID, PID, date, value, payment mode)∧

age > 30∧

payment mode=credit card ∧ value > 100,

where CID and PID are short for customer id and purchase id, respectively.

Figure 1.3: An example of relational database

Standard ILP systems such as Metagol are usually not able to directly tackle the problems

involving ambiguous and missing data. In classification problems involving relational

datasets, no single hypothesis is usually able to classify all the examples correctly. As such,

for tackling these tasks, a probabilistic extension of ILP (e.g. probabilistic ILP (PILP) [19]

and Markov Logic Networks (MLN) [32]) are usually employed. These models are then

usually used to create an ensemble learning algorithm (e.g., via boosting techniques). There
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are two downsides to this approach. First, by using ensemble techniques and employing

many logical search trees, the interpretability decreases significantly. Moreover, the same

probabilistic ILP solvers cannot be employed for other algorithmic tasks involving recursion

and predicate invention which limits the applicability of such ILP solvers. In Chapter 4,

we use real-world relational datasets including Mutagenesis [33], UW-CSE [32] as well

as IMDB, MovieLens (1M) and Cora datasets and we demonstrate the unified design of

the dNL-ILP solver makes it possible to seamlessly extend its application to ambiguous

and uncertain tasks. Moreover, via experiments we show how the differentiable design of

dNL-ILP makes it possible to combine it with standard neural network models to handle

continuous data, either by learning boundary decisions or by adopting a probabilistic

approach to model the continuous signals.

1.4 Relational Reinforcement Learning

Relational Reinforcement Learning (RRL) is formed in the early 2000s as the intersection

of Reinforcement Learning (RL) and Inductive Logic Programming (ILP) and by works

such as [34, 35, 36] among others. The main idea behind RRL is to upgrade the typical

propositional representation used in reinforcement learning to the first-order relational

form. As such, the environment can be described more naturally in terms of objects and

relations. As an example, consider an agent playing the simple BoxWorld game. In this

game, the three boxes {a, b, c} can be on top of each other or on the floor. Assume

the final goal of the agent be to stack all of the boxes on top of each other. The state of

this environment can be completely explained in a relational form via groundings of the

predicate On(X,Y), implying that the box labeled by X is on top of box Y. For example, if

St = {on(a, b), on(b, f loor), on(c, f loor)}, the agent can reach the final goal by performing

the action move(c,a), i.e., placing box c over box a. Here, St represents the relational

state of the system in time t. The first practical implementation of this idea was proposed

by [35] and later was improved in [36] which was based on a modification to the famous
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Q-Learning algorithm [37] via the standard relational tree-learning algorithm TILDE [38].

The traditional RRL model learns through exploration of the state-space in a way similar

to normal Q-learning algorithms. It starts with running a normal episode but uses the

encountered states, chosen actions and the received rewards to generate a set of examples

that can then be used to build a Q-function generalization. As shown in [36], the RRL

system allows for a very natural and human readable decision making and policy evaluation.

More importantly, the use of variables in ILP system, makes it possible to learn generally

formed policies and strategies. Since these policies and actions are not directly associated

with any particular instance and entity, this approach leads to a generalization capability

beyond what is possible in most typical RL systems.

In recent years and with the advent of the new deep learning techniques, significant

progress has been made to the classical Q-learning RL framework and via algorithms such

as deep q-learning and its variants [39, 40], more complex problems are tackled. The

classical RRL framework can not be easily employed to tackle the more complex scenes

available in recent RL problems. While it is still possible to use the representational power

of RRL in the deep RL framework, the explicit relational representation of states, actions and

policies and specially the use of variables are lacking in these systems. Since the proposed

dNL-ILP solver is a differentiable neural network, it can be combined with the standard deep

learning technique. In chapter 5, we formulate a deep relational policy learning algorithm by

employing the differentiable dNL-ILP. The various features of this novel RRL system will

be studied. To evaluate the performance of this new approach to reinforcement learning, we

will use it in RL environments such as BoxWorld, GridWorld and Asterix games. We will

also show how this general framework can be used to learn and extract relational information

in other benchmark tasks including the visual reasoning tasks for the Sort-of-CLEVR [41]

dataset.
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1.5 Decoding LDPC codes over Binary Erasure Channels

Unlike the standard DNNs, the dNL networks are specifically designed for learning Boolean

functions and are naturally better suited for learning discrete algorithmic tasks. In Chapter

6, we study the generalization performance of the dNL by considering their application

in learning a practical algorithmic task. Over the last few years, the application of deep

recurrent neural networks in decoding various communication codes, such as LDPC over

Gaussian channels, have been extensively studied. For example in [42], the authors success-

fully employed RNNs to design a very efficient decoder for convolutional and turbo codes

over additive white Gaussian noise (AWGN) channels and in [43] the authors proposed

a framework for soft decoding of linear codes of arbitrary length. However, as shown in

chapter 6, typical neural network layers often fail to learn the exact logical flow in discrete

(Binary) arithmetic. This is specially true for decoding LDPC codes over BEC. In Chapter 6,

we will demonstrate how the proposed dNL framework can be successfully used to design an

LDPC decoder over BEC channels [44]. More specifically, we compare their performance

and their generalization ability to the standard neural networks.

1.6 Independent Component Analysis

One of the biggest challenges in unsupervised machine learning is finding nonlinear fea-

tures from unlabeled data. In the general nonlinear case, there has been some successful

applications of the deep neural networks in recent years. Multi-layer deep belief networks,

Restricted Boltzmann Machine (RBM) and most recently, variational Autoencoders are

some of the most promising new developments. Independent component analysis (ICA)

is one of the most basic and successful classical tools in unsupervised learning which has

been studied extensively during the early years of 2000s. For the simplest case of linear

ICA without the presence of noise, this problem has been solved and the conditions for the

identifiability of independent components has been well established [45]. However, for the
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more general form of the problem where the independent features (sources) are mixed using

nonlinear functions and specifically in the presence of noise, there has been little success. In

recent years, the problem of learning ICA from the nonlinear mixtures (and similar related

problems) has been addressed in works such as [46, 47]. In particular, in [47] the Adversarial

Nonlinear Independent Component Analysis (Anica) algorithm was proposed which is an

unsupervised learning method based on Generative Adversarial Networks (GAN) [48].

The problem of linear ICA in the presence of noise has been studied in [49, 50, 51,

52, 53] among others. Some of the most successful approaches (e.g. [52, 53]) use the

Mean-Field variational Bayesian framework to solve the linear ICA in a Bayesian setting.

However, these approaches are usually very slow and have very limited applicability even

for the linear case. In Chapter 7, we formulate the general non-linear ICA with the additive

Gaussian noise via employing a variational autoencoder framework [54]. The properties of

the new proposed ICA framework will be analyzed and its robustness to the noise compared

to the previous methods will be examined.
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CHAPTER 2

DIFFERENTIABLE NEURAL LOGIC NETWORKS

2.1 Introduction

Although a simple single perception layer equipped with a threshold (e.g., sign) function

as the nonlinearity can mimic the behavior of the OR and AND operators, these models

are very difficult to train in general. Consider the conjunction operator as an example. Let

assume we have an input vector x ∈ {0, 1}n and a fully connected layer, consisted of n

weights and a bias term, is used to learn the logical function s = x1

∧
x2. It is clear that by

setting w1 = w2 = 1, wi>2 = 0, and using a suitable bias term (i.e., bias = −1) followed by

the sigmoid(cz) activation function, where c > 1, the output resembles the desired Boolean

function s = x1

∧
x2. Consider now the case for s = x1

∧
x2

∧
x3. In this case, the bias

should be set as -2. A good example of these types of differentiable Boolean functions can

be found in [10]. We found that however, in general these models are very difficult to train

in more difficult problems specially since they are dependent on a bias term. Further, their

flexible weights make it difficult to extract the underlying explicit Boolean representation in

a simple and intuitive way. This is specially true when combining multiple layers in order to

learn more complex Boolean functions in a general Disjunctive Normal Form (DNF) as an

example.

In this chapter, we introduce a new design for the logical operators by using membership

weights without the use of an adjustable bias terms[55]. First, we design a general purpose

conjunction and disjunction layers. Then, we introduce the exclusive OR layer which

enhances the capacity of the network significantly. We would then demonstrate the properties

and characteristics of the proposed model in three areas :

• Learning Boolean functions efficiently: In Section 2.4, we demonstrate how the
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proposed method compares to the MLP design in learning Boolean functions using

two simplistic and synthetic examples.

• Generalization: In Chapter 6, we show how well the proposed dNL based models

can generalize in discrete iterative algorithms compared to the traditional MLP by

comparing their performance in learning a message passing decoder for Low Density

Parity Check Codes (LDPC) over erasure channels.

• Explicit symbolic representation: Unlike MLP, the learned Boolean functions in dNL

can be expressed explicitly. In Chapter Inductive Logic Programming via dNL, we

propose a new paradigm for solving ILP problems efficiently by exploiting the explicit

representational power of dNL networks. The proposed method is able to use features

such as predicate invention, recursion and functions while using a remarkably small

number of training weights.

2.2 Neural Conjunction and Disjunction Layers

Let {x1, . . . , xn} be the input vector consists of n Boolean variables and consider the case

of conjunction function. To each variable xi we associate a Boolean flag mi such that it

control the inclusion or exclusion of the term xi in the resulting conjunction function. To

this end, we define the following Boolean function:

fconj = (m1 ∨ x1) ∧ · · · ∧ (mn ∨ xn) (2.1)

It is easy to see that when mi is True, the corresponding term simplifies to xi and when mi

is False, xi term is excluded from the expression. We can similarly design a parameterized

disjunction function:

fdisj = (m1 ∧ x1) ∨ · · · ∨ (mn ∧ xn) (2.2)
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xi mi Fc

0 0 1
0 1 0
1 0 1
1 1 1

(a)

xi mi Fd

0 0 0
0 1 0
1 0 0
1 1 1

(b)

Figure 2.1: Truth table of Fc(·) and Fd(·) functions

As an example, if m1 and m2 are True and for i > 2, mi = False, the corresponding

functions reduce to fconj = x1 ∧ x2 and fdisj = x1 ∨ x2, respectively.

In order to design a differentiable network, we use the continuous relaxation of Boolean,

i.e., we assume fuzzy Boolean values are real values in the range [0, 1] and we use 1 (True)

and 0 (False) representations for the two states of a binary variable. We also define the fuzzy

unary and dual Boolean functions of two Boolean variables x and y as:

x̄ = 1− x , ȳ = 1− y (2.3a)

x ∧ y = xy (2.3b)

x ∨ y = x̄ ∧ ȳ = 1− (1− x)(1− y) (2.3c)

This algebraic representation of the Boolean logic allows us to manipulate the logical

expressions via Algebra. Let xn ∈ {0, 1}n be the input vector in a typical logical neuron. To

implement the fuzzy conjunction function, we would like to select a subset in xn and apply

the fuzzy conjunction (i.e. multiplication) to the selected elements. One way to accomplish

this is to use a softmax function and select the elements that belong to the conjunction

function similar to the concept of pointer networks [56]. This requires knowing the number

of items in the subset (i.e. the number of terms in the conjunction function) in advance.

Moreover, in our experiment we found that the convergence of model using this approach is

very slow for larger input vectors. Alternatively, inspired by the equations (2.2) and (2.1),

we associate a trainable Boolean membership weight mi to each input elements xi from
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vector xn. Further, we define a Boolean function Fc(xi,mi) with the truth table as in Fig.

2.1a which is able to include (exclude) each element in (out of) the conjunction function.

This design ensures the incorporation of each element xi in the conjunction function only

when the corresponding membership weight is 1. Consequently, the neural conjunction

function can be defined as:

Oconj(x) =
n∏
i=1

Fc(xi,mi)

where, Fc(xi,mi) = ximi = 1−mi(1− xi) , (2.4)

where Oconj is the output of conjunction neuron. To ensure the trainable membership

weights remain in the range [0, 1] we use a sigmoid function, i.e. mi = sigmoid(cwi)

where c ≥ 1 is a constant. Similar to perceptron layers, we can stack m neural conjunction

neurons to create a conjunction layer of size m. This layer has the same complexity as a

typical perceptron layer without incorporating any bias term. More importantly, this way

of implementing the conjunction layer makes it possible to interpret the learned Boolean

function directly from the values of the membership weights.

The disjunctive neuron can be defined similarly by introducing membership weights but

using the function Fd with truth table as depicted in Fig. 2.1b. This function ensures an

output 0 from each element when the membership is zero which correspond to excluding

the xi element from the neuron outcome. Therefore, the neural disjunction function can be

expressed as:

Odisj(x) =
n∏
i=1

Fd(xi,mi) = 1−
n∏
i=1

(1− Fd(xi,mi)) ,

where, Fd(xi,mi) = ximi (2.5)

By cascading a conjunction layer with a disjunctive layer, we can create a multi-layer

structure which is able to learn and represent Boolean functions using the Disjunctive
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Normal Form (DNF). Similarly we can construct the Conjunctive Normal Form (CNF)

by cascading the two layers in the reverse order. The total number of possible logical

functions over a Boolean input vector x ∈ {0, 1}n is very large (i.e. 22n). Further, in some

cases, a simple clause in one of those standard forms can lead to an exponential number of

clauses when expressed in the other form For example, it is easy to verify that converting

(x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn) to DNF leads to 2
n
2 number of clauses. As such,

using only one single form of Boolean network for learning all possible Boolean functions

is not always the best approach. The general purpose design of the proposed conjunction

and disjunction layers allows us to define the appropriate Boolean function suitable for the

problem.

2.3 Neural XOR Layer

Exclusive OR (XOR) is another important Boolean function which has been the subject

of many researches over the years, especially in the context of parity-N learning problem.

It is easy to verify that expressing XOR of an n-dimensional input vector in DNF form

requires 2n−1 clauses. Although, it is known that it cannot be implemented using a single

perceptron layer [8, 57], it can be implemented, for example, using multi-layer perceptron or

multiplicative networks combined with small threshold values and sign function activation

[58]. However, none of these approaches allow for explicit representation of the learned

XOR functions directly. Here we propose a new algorithm for learning XOR function (or

equivalently the parity-N problem). To form the logical XOR neuron, we first define k

functions of the form:

f1(x) = x1 + x2 + · · ·+ xk −xk+1 − · · · − xn

f2(x) = x1 + x2 + . . . −xk − · · · − xn−1 + xn

...
...

...
...

...

fk(x) = x1 −x2 − · · · − xk − xk+1 + · · ·+ xn

(2.6)
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where k = n
2

(assuming n is even). Then, we define the XOR function as in Theorem 1.

Theorem 1. Given the set of k functions as defined in (2.6) we have:

XOR(x) = g1(x)
∧

g2(x)
∧
· · ·
∧

gk(x) , (2.7a)

where, gi(x) =


0 if fi(x) = 0

1 else

(2.7b)

Proof. See Appendix A.

Inspired by the Theorem.1, we design our XOR neuron as:

OXOR(x) =
k∏
i=1

hs

( ∣∣x× (Mi �w)T
∣∣) (2.8)

Here, hs(·) is the hard-sigmoid function, and × and � denote matrix and element-wise

multiplication correspondingly. Further, vector Mi ∈ {−1, 1}n is the set of coefficients used

in fi(x) and w is the vector of membership weights. The resulting XOR logical neuron uses

only one weight variable per input element for learning. However, its complexity is k times

higher than the conjunction and disjunction neurons for an input vector of length n = 2k.

2.4 dNL vs MLP

To evaluate the proposed dNL model in learning Boolean functions we compare their

performance to the standard MLP networks for the task of learning Boolean functions

using two synthetic experiments. It is worth noting that in these experiments we are

not concerned with the interpretability. Needless to say, while dNL network generates

an easily interpretable Boolean functions, the MLP counterpart does not provide explicit

representation of the Boolean formulas.
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Learning DNF form

For this experiment, we randomly generate some Boolean functions over a 10 bits input

vectors and a randomly generated batches of 50 samples as training data. We train two

models; one designed via our proposed DNF network (with 200 disjunction functions)

and another designed by two layers MLP network with hidden layer of size 1000 and

relu activation and use sigmoid activation function for the output layer. We use ADAM

optimizer [59] with learning rate of 0.001 for both models and count the number of errors

in 1000 randomly generated test samples. When we used a Bernoulli distribution with

parameter p = 0.5 (i.e. fair coin toss) for generating the bits of each training samples, both

models quickly converge and the number of test error drops to zero for both. However, in

many realistic discrete problems, the 0’s and 1’s are not usually equiprobable. As such, next

we use Bernoulli with parameter p = 0.75. Fig. 2.2a depicts the comparative performance

of the two models. The proposed DNF model converges fast and remains at 0 error. On the

contrary, the MLP model continues to generate errors. In our experiments, while the number

of errors decreases as training continues for an hour, the MLP model never fully converges

to the true logical function and occasionally generates some errors. While for some tasks,

this may be a negligible error, in some logical applications such as the ILP learning task,

this behavior prevents the model from learning.

Learning XOR function

Next, we compare the two models for a much more complex task of learning the XOR

logic. We use a multi layer MLP with relu as activation functions in the hidden layers and

sigmoid function in the output layer as usual. As for dNL, we use a single XOR neuron

as described in (2.8). For the small size inputs both models quickly converge. However, for

larger size input vectors (n > 30) the MLP model fails to converge at all. Fig. 2.2b shows

the average bit error over the number of training samples. We tried various setups for MLP,

including different number of hidden layers (from 1 to 3) and different sizes of the hidden

23



layers. For both models we evaluated the performance for 100 randomly seeded runs and

we report the best results for each model. The error rate for MLP was around .5, which

indicates it failed to learn the XOR function. On the contrary, the XOR logic layer was able

to converge and learn the objective in most of the runs. This is significant considering the

fact that the number of parameters in our proposed XOR layer is equal to the input length,

i.e., one membership per input variable. In conclusion, although a typical MLP structure is

very powerful and can encode many complex functions using the adjustable weights, it lacks

the rigidness and specificity of our proposed Logical Layers. As such, often it is difficult

to combine MLP layers effectively and simply adding more layers will not increase the

network performance in many problems. On the contrary, the logical layers, by design, are

forced to learn describable logical relationship between their inputs. As such, combining

them in various arrangements enables the network to learn very complex logical flows.

2.5 Binary Arithmetic

Binary arithmetic tasks are among the widely used experiments in the topic of algorithm

and pattern learning via DNNs. While binary operations are quite easy to learn for small

size binary numbers, learning becomes very difficult as the size increases. This problem has

been tackled in two different ways. In the feed-forward approach, the models are designed

such that the complete input stream of symbols is processed sequentially through multiple

layers and the output of the last layer generates the stream of symbols corresponding to the

desired result of the arithmetic operation all at once (e.g., [7]). Alternatively, this problem

can be looked at as a case of the sequence-to-sequence learning problem [4] where we

first process the input symbols one by one using a recurrent cell (e.g., an LSTM cell) and

then another recurrent cell generates the output sequence of symbols sequentially while

accessing all the outputs of the first recurrent layer generated at each time stamp. Various

attention mechanisms and memory access models have also been proposed to improve the

performance of these recurrent networks [60]. To evaluate our proposed logical layers in
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Figure 2.2: Comparing MLP vs dNL for learning Boolean functions
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Figure 2.3: Feed-Forward and recurrent models used in our experiments

such a standard task, we first consider the addition of two long binary numbers. We represent

each digit in a one-hot vector with depth = 4 to denote {0, 1,+, space} symbols, where

space is used for padding the sequences to have identical lengths. Among the existing

models in the literature, Neural GPU model [7] proved to be the most successful approach

in solving such problems using a feed-forward network. In [7], the authors proposed a

model consisted of a multi-layer feed-forward network where each layer is designed using a

recurrent convolutional GRU cell [61]. This model (combined with curriculum learning) is

reported to attain 100% accuracy for the addition of up to 2000 long binary numbers. In our

experiments, we were also able to achieve 100% accuracy in binary addition of any lengths

we tested (we did not test above 200 long sequences though).

We trained the Neural GPU using its default set of parameters but for our model we used

two layers of XOR logic with length 100 each followed by a set of DNF-CNF layers each

with a hidden layer of size 50 in our feed-forward model (as shown in Fig. 2.3a). Table 6.1

compares the speed of the convergence for the two models by displaying the number of the

training samples required to reach a certain level of accuracy for n = 10 and n = 20 digits

inputs. As Table 6.1 suggests while both models are capable of reaching 100% accuracy,

our proposed model converges much faster. Our experiments show that our model reaches

99% accuracy for various lengths in less than 200k training samples. However, it usually

requires much more training samples to reach the 100% accuracy level.
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Table 2.1: Size of required training samples to reach certain levels of accuracy

Model
Accuracy

75% 90% 100%

Neural GPU (n=10) 77k 400k 490k
Logic CNF-DNF (n=10) 4k 25k 260k

Neural GPU (n=20) 400k 448k 830k
Logic CNF-DNF (n=20) 8k 45k 610k

2.6 Grammar Verification

In many of the works related to the algorithm learning tasks, the models are claimed to

reach 100% accuracy whenever they attain perfect accuracy on the validation set during

the training. However, we confirmed via many experiments that even though such models

reduced the error rate significantly on the average, they rarely learn the underlying logical

flow of the problem fully. In other words, even after achieving the perfect accuracy, these

models usually continue to fluctuate. In contrast, the proposed logical layer model is usually

able to learn the underlying logical flow. Here, we compare the efficiency of the Long Short

Term Memory (LSTM)[62] recurrent cell with our proposed LVRNN recurrent cell for the

problem of understanding Palindrome grammar. The language of Palindrome grammar

contains all strings in the form WcW ′ where W is an arbitrary string of symbols from some

alphabet, W ′ is the reverse of the string W , and c is a divider symbol. For example, in the

binary alphabet system, ”11001c10011” is a legal Palindrome string but ”11000c11000” is

not. Because the number of illegal phrases is much larger than the legal phrases, we ensure

that around 5% of the training samples for each training batch are legal phrases. We use the

model depicted in Fig. 2.3b and use only the last output of the recurrent network to create a

discriminator network with the help of a dense layer. We train the network for the phrases

of length 41 binary symbols using an ADAM optimizer [63] with the learning rate of 0.001.

Fig. 2.4 compares the performance of the two models, in terms of the number of mismatches

per 5000 samples processed during training of each epoch, versus the epoch number. We

observed that although the MLP based network approaches to the perfect accuracy and can
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Figure 2.4: Accuracy results for Palindrome grammar check

produce perfect results in a few epochs, it fails to fully learn the underlying pattern and

continues to fluctuate and generate a few errors. On the contrary, our proposed logical layers

cell (LVRNN) converges faster and reaches the perfect accuracy level without any further

fluctuations afterwards.
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CHAPTER 3

INDUCTIVE LOGIC PROGRAMMING VIA DNL

3.1 Introduction

In the previous chapter the performance of dNL networks in learning binary arithmetic tasks

was evaluated using a variety of algorithmic tasks involving discrete and binary data. In

those problems, instead of focusing on interpretability of the learned relations, we were

mainly concerned with the learning performance. One of the main characteristics of dNL

networks is that while they can efficiently learn discrete and binary tasks, they also provide

an intuitive and easy way of interpreting the underlying Boolean function. This becomes

clear by observing the design of any logical neuron from dNL. For instance, consider the

conjunction function defined as fconj = (m1 ∨ x1) ∧ · · · ∧ (mn ∨ xn). Since in the fuzzy

implementation of this function, we are associating a (fuzzy Boolean variable mi to each

element of the input vector, i.e., xi, we can directly create a valid fuzzy Boolean formula

from the weights of the dNL networks. As an example, it is easy to see that if m1 = 1

and m3 = 1 and other membership weights of the conjunctive neuron are equal to 0, the

resulting Boolean function can be interpreted as the Boolean function of fconj = x1 ∧ x3.

This is also the case for multi-layer design. Since the representation in each layer is explicit,

if we cascade two conjunction and disjunction layers to form a dNL-DNF structure, the

resulting multi-layer network still represents the Boolean logic in an explicit manner which

is easily interpretable and human-readable.

Inductive Logic Programming (ILP) is an important branch of machine learning that uses

formal logic to define and solve problems. Since in this framework the ability to express and

learn symbolic Boolean functions is usually required, standard DNN models are not easy to

use. Indeed, most of the neural implementations of ILP provide no explicit representation of
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the learned logic. In this chapter we demonstrate how to exploit the explicit representational

power of dNL to design a neural based differentiable ILP solver which unlike most neural

based approaches provides interpretable hypothesis.

3.2 Logic Programming

Logic programming is a programming paradigm in which we use formal logic (and usually

first-order-logic) to describe relations between facts and rules of a program domain. In this

framework, a definite clause is a rule of the form:

H ← B1, B2, . . . , Bm (3.1)

where H is called head of the clause and B1, B2, . . . , Bm is called body of the clause.

This rule expresses that if all the atoms in the body are true, the head is necessarily true. We

assume each of the termsH andB are made of atoms. Each atom is created by applying an

n-ary Boolean function called predicate to some constants or variables. A predicate

states the relation between some variables or constants in the logic program. Throughout this

chapter we will use small letters for constants and capital letters (A,B,C, . . . ) for variables.

In ILP, a problem can be defined as a tuple (B, P , N ) where B is the set of background

assumptions and P and N are the set of positive and negative examples, respectively. Given

this setting, the goal of the ILP is to construct a logic program (usually expressed as a set of

definite clauses,R) such that it explains all the examples. More precisely,

B,R |= e,∀e ∈ P , B,R 6|= e, ∀e ∈ N , (3.2)

where, |= and 6|= are the logical entailment operator and its negation, respectively. Let’s

consider the logic program for learning the lessThan predicate over natural numbers and

assume that our constants contains the set C = {0, 1, 2, 3, 4} and the ordering of the natural

numbers is defined using the predicate inc (which defines increments of 1). The set of
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background atoms which describe the known facts about this problem is:

B = {inc(0, 1), inc(1, 2), inc(2, 3), inc(3, 4)} (3.3)

Further, we can easily provide the positive and negative examples as:

P = {lt(a, b) | a, b ∈ C, a < b}

N = {lt(a, b) | a, b ∈ C, a ≥ b} (3.4)

It is easy to verify that the program with rules defined in the following entails all the positive

examples and rejects all the negative ones:

lessThan(A,B)← inc(A,B)

lessThan(A,B)← inc(A,C), lessThan(C,B) (3.5)

We can view the ILP as a supervised learning problem that generates a valid set of

rules such as (3.5), given the input facts in (3.3) and the training labels provided as in (3.4).

The consequences of applying the rules of the program are obtained via forward

chaining. Following the notation used in [27], define cnR(X) as immediate consequence

of applying rules R on the set of ground atoms in X , i.e.:

cnR(X) = X
⋃
{γ | γ ← γ1, . . . , γm ∈ Ground(R), γi ∈ X}, (3.6)

where Ground(R) are the ground rules of R. If we start from the set of background facts,

we can iteratively obtain all the consequences of the rules. As an example, for the logic
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program lessThan we can obtain the consequences of the two defined rules in (3.5) as:

Cn
(0)
R = B = {inc(0, 1), inc(1, 2), inc(2, 3), inc(3, 4)}

Cn
(1)
R = Cn

(0)
R

⋃
{lt(0, 1), lt(1, 2), lt(2, 3), lt(3, 4)}

Cn
(2)
R = Cn

(1)
R

⋃
{lt(0, 2), lt(1, 3), lt(2, 4)}

Cn
(3)
R = Cn

(2)
R

⋃
{lt(0, 3), lt(1, 4)}

Cn
(4)
R = Cn

(3)
R

⋃
{lt(0, 4)}, (3.7)

where, we use lt as shorthand for lessThan and the Cn(t)
R denotes the consequences at time

stamp t. Notice that applying the rules after the time stamp t = 4 does not yield any new

consequences.

In general, there are two main approaches used by various ILP solver systems to generate

a valid hypothesis:

• In the bottom-up family of approaches (e.g., Progol), the solver starts by examining

the provided examples and extracts specific clauses from those and tries to generalize

from those specific clauses.

• In the top-down approaches (e.g., most neural implementations such as dILP [27] as

well as Metagol), the possible clauses are generated via a template and the generated

clauses are tested against positive and negative examples.

Since the space of possible clauses are vast, in most of these systems, very restrictive

template rules are employed to reduce the size of the search space. For example, dILP [27]

allows for rules with at most two atoms in the body and only two rules per each predicate.

Metagol [12] employs a more flexible approach by allowing the programmer to define the

rule templates via some meta-rules. However, in practice, this approach does not resolve

the issue completely. Even though it allows for more flexibility, defining those templates is

itself a complicated task which requires expert knowledge and possible trials and it can still
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lead to exponentially large space of possible solutions.

Alternatively, we propose a novel approach which allows for learning an arbitrary

complex Boolean functions as rules. Here, we describe the intuition behind our proposed

approach. In most ILP systems the rules are restricted to Horn clauses. A Horn clause is a

clause with at most one positive literal (atom). For example, (3.1) defines a generic horn

clause in the implication form (if-then form). In our system, instead of restricting the rules

to the Horn clauses, we can consider a more general form of clause where the body could be

defined as a DNF (disjunctive normal form) Boolean function. In this view, multiple Horn

clause rules involving each predicate can be viewed as disjunctive terms in a single DNF

rule. For example, the two rules in (3.5) can be combined into a single rule described as:

lessThan(A,B)← inc(A,B) ∨ (lessThan(A,C) ∧ inc(C,B)) (3.8)

where ∨ and ∧ represent Boolean disjunction and conjunction functions, respectively. It is

easy to see that the consequences of these two forms (i.e., (3.5) and (3.8)) are equivalent. We

recall that the differentiable dNL-DNF functions introduced in Chapter 2 are able to learn

and represent any arbitrary DNF functions. We associate a dNL-DNF function to each DNF

rule in our logic programs. We can view any dNL-DNF function, as a differentiable symbolic

Boolean function, parameterized by φ. Here, φ represents the set of all membership weights

for the conjunctive and disjunctive neurons used in designing a dNL-DNF function. We

notice that each instance of φ corresponds to a distinct Boolean function. At each point

in the learning, given the current parameters φ, we can apply the forward chaining and

obtain all the consequences of the rules iteratively. By comparing the obtained consequences

against the provided examples (i.e., P and N ), we can adjust φ. Moreover, since this

parameterization is differentiable, this approach leads us to reformulating the ILP as a

differentiable problem which can be learned by a gradient based optimization technique.
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3.3 Formulating the dNL-ILP

We assume that for each predicate we can define Np rules. We do not restrict the rules to

Horn clauses. We assume the body of rules can be represented by a (fuzzy) Boolean function

from the dNL, i.e., F i
p and the head of each rule contains only one atom. If we allow for

num vari(p) variables in the body of the ith rule for the predicate p, the set of possible

(symbolic) atoms in the body of that rule is given by:

Iip =
⋃
p∗∈P

T(p∗, V i
p ) , where (3.9)

T(p, V ) = {p(arg) | arg ∈ Perm(V, arity(p) ) } (3.10)

where V i
p is the set of variables (|V i

p | = num vari(p)) for the ith rule and P is the set of all

the predicates in the program. Further, the function Perm(S, n) generates the set of all the

permutations of tuples of length n from the elements of a set S and the function arity(p)

returns the number of arguments in predicate p.

As an example, assume that in the lessThan program, we allow for one rule for

learning the predicate lessThan, and we set num var1(lt) = 3, i.e., V 1
lt = {A,B,C}.

Consequently, the set of possible atoms that can be used in the definition of the predicate

lessThan can be enumerated as:

I1
lt = {inc(A,A), inc(A,B), inc(A,C), . . . , inc(C,C)}⋃
{lt(A,A), lt(A,B), . . . , lt(C,C)}

Please note the neural dNL functions are parameterized by membership weights but they are

not symbolic functions themselves. For each substitution θ (of constants into variables), the

actual fuzzy Boolean vector that is passed to a dNL network during the program runtime, is

the Boolean vector (Iip|θ) generated by the substitution θ of constants into the variables in Iip.
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In other words, Iip|θ is the vector corresponding to the groundings of the atoms in set Iip.

3.3.1 Forward Chaining

We are now able to formulate the ILP problem as an end-to-end differentiable neural network.

Let G be the set of all ground atoms and Gp be the subset of G associated with predicate p.

We associate a (fuzzy) value vector to each predicate p at time-stamp t as X(t)
p which holds

the (fuzzy) Boolean values corresponding to the groundings of p. We set the initial values of

the valuation vectors via the background atoms. i.e.,

∀p, ∀e ∈ Gp, X(0)
p [e] =


1 if e ∈ B

0 else

(3.11)

For the example in consideration (i.e., lessThan), we will have two valuation vectors

corresponding to the two predicates in the program; the vector X(t)
inc includes the Boolean

values for the atoms in {inc(0, 0), inc(0, 1), . . . , inc(4, 4)} and similarly, the vector X(t)
lt

includes the Boolean values for the atoms in {lt(0, 0), lt(0, 1), . . . , lt(4, 4)}.

For every ground atom e ∈ Gp, let Θi
p(e) be the set of all the substitutions which would

result in the atom e. For example, in the lessThan program, for the ground atom lt(0, 2)

we have Θ2
lt( lt(0, 2) ) = {{A 7→ 0, B 7→ 2, C 7→ 0}, . . . , {A 7→ 0, B 7→ 2, C 7→ 4}},

where, X 7→ x denotes the substitution of constant x into variable X . For every predicate p,

we can now define the one step forward inference at time stamp t as:

∀e ∈ Gp,

X(t+1)
p [e] = X(t)

p [e]
∨( Np∨

i=1

∨
θ∈Θip(e)

F i
p|θ
)

(3.12)

To define forward chaining, we must distinguish among predicates, as explained in

the following. In general there are two types of predicates. extensional predicates
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Table 3.1: Some of the notations used in this chapter

Notation Explanation

p/n a predicate p of arity n
C the set of constants in the program
B the set of background atoms
P the set of positive examples
N the set of negative examples
Gp the set of ground atoms for predicate p
G the set of all ground atoms
P the set of all predicates in the program
X

(t)
p the fuzzy values of all the ground atoms for predicate p at time t

A 7→ a substitution of constant a into variable A
R the set of all the rules in the program
perm(S, n) the set of all the permutations of tuples of length n from the set S
T(p, V ) the set of atoms involving predicate p and using the variables in the set V
Cn

(t)
R the consequences of applying rules in R at timestamp t

Iip the set of all atoms that can be used in the body of ith rule for predicate p

are those predicates that are solely defined by the background facts. On the other hand,

intensional predicates use other predicates and also variables in their definition. In

the lessThan example, predicate inc in extensional and the target predicate lessThan

is an intensional predicate. Please note that the forward chaining is only applied for the

intensional predicates. For the extensional predicates, the groundings of the predicate is not

changing during the forward chaining and is given by the background knowledge. Further,

For brevity, we did not introduce the indexing notations in (3.12). By X(t)
p [e], we actually

mean the entry in X t
p corresponding to the grounding e. Algorithm 1 shows the outline

of the tmax steps of forward chaining in the proposed dNL-ILP via the application of the

equation (3.12).

To understand the equation (3.12) and the Algorithm 1, we use our lessThan example

once again. Assume that we use a dNL-DNF function with hidden layer of size 4 (i.e., apply-

ing a disjunction neuron to the output of 4 conjunction neurons). Fig. 3.1 shows the internal

representation of the symbolic predicate function F 1
lt = inc(A,B) ∨ (lessThan(A,C) ∧

inc(C,B)) in the corresponding dNL-DNF functions. Here, only the membership weights
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corresponding to the atoms used in F 1
lt (i.e., conjunction membership weights mc

1,2, mc
4,3

and mc
4,17 as well as two disjunction membership weights md

1,1 and md
1,4 ) are equal to 1 and

the rest of the membership weights are zero. Fig. 3.2 shows one step forward chaining via

(6.4) for the predicate lt. Steps 4 through 8 in the Algorithm 1 show how the values in Xlt

corresponding to each grounding e are updated at each time stamp t. For example, consider

the case of e = lt(1, 2) at the first time stamp t = 1. Initially, according to (3.11), all entries

in Xlt will be zero. To find all the consequences, we need to apply the rules (i.e., predicate

functions) for each possible substitutions (all possible groundings) and aggregate all the

resulting consequences. Steps 4 to 7 in Algorithm 1 simply aggregate (via disjunction) those

consequences that have the same grounding. For instance, when e = lt(1, 2), this includes

all the substitutions θ = {A 7→ 1, B 7→ 2, C 7→ 0} through θ = {A 7→ 1, B 7→ 2, C 7→ 4}

(see Fig. 3.2). It is easy to verify that F 1
lt|θ returns 1 (True) for each of these substitution.

As such, the new calculated consequence containing the grounding e = lt(1, 2) will be

evaluated as 1 ∨ 1 ∨ 1 ∨ 1 ∨ 1 = 1. After obtaining the new value, we have to aggregate it

with previous consequence (similar to the role of
⋃

in (3.6) and (3.7)) according to step 8

in the algorithm. By following the same process for all the groundings, we can obtain all

consequences similar to (3.7).

Algorithm 1: Outline of the forward chaining in the proposed dNL-ILP solver
Data: Np : number of rules used for defining predicate p
Data: X0

p for p ∈ P
Result: X tmax

p for ∈ P
1 for t ∈ {1, . . . , tmax} do
2 for p ∈ P do
3 for e ∈ Gp do
4 new value = 0
5 for i ∈ {1, 2, . . . , Np} do
6 for θ ∈ Θi

p do
7 new value = new value

∨
F i
p|θ

/* Updating the groundings */
8 X t

p[e] = X t−1
p [e]

∨
new value
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3.3.2 Training

We interpret the final values of X(tmax)
p [e] (after tmax steps of forward chaining) as the

conditional probability of the value of ground atoms given the model’s parameters. We

define the loss as the average cross-entropy between the ground truth (provided by the

positive and negative examples for the corresponding predicate p) and X(tmax)
p :

L = − E
p∈P

E
(e,λp)∈Λp

{
λ logX(tmax)

p [e] + (1− λ) log(1−X(tmax)
p [e])

}
, (3.13)

where, Λp = {(γ, 1)|γ ∈ P
⋂
Gp}

⋃
{(γ, 0)|γ ∈ N

⋂
Gp}. We train the model using

ADAM [59] optimizer to minimize the loss function with the learning rate of 0.001 (in some

cases we may increase the rate for faster convergence). After the training is completed, a

zero cross-entropy loss indicates that the model has been able to satisfy all the examples in

the positive and negative sets.

3.3.3 Pruning

There might exist a few atoms with membership weights of ’1’ in the corresponding dNL

network for a predicate which are not necessary for the satisfiability of the solution. For

example, consider the predicate function with two rules in (3.5). It is easy to see that if

we replace the first rule with (lessThan(A,B)← inc(A,B), inc(A,C)), the resulting rules

still satisfy the examples. This is because in this example we can always find a substitution

that generates the same consequences (e.g., substitutions with B = C) for the first rule.

Since such a solution also leads to a zero loss function, we cannot remove the redundant

atom (inc(A,C)) via the training objective function (3.13). We consider two approaches

to deal with these situations. In the first approach, we consider adding a penalty term

corresponding to the number of terms in each clause. For each predicate function F i
p we

add a corresponding penalty term as:
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Lagg = L+ λprnLprn

Lprn =
∑
p∈P

relu(
∑
mi∈F i

p

mi −Nmax), (3.14)

where subscript prn is short for pruning and Nmax is the number of allowed terms in the

F i
p. We usually use a very small λprn to make sure it only affects the learning at the latter

stages of conversion where P is very small.

Alternatively, we can use a simpler approach to remove those necessary atoms from

solutions. In the final stage of algorithm, we remove each remaining atom from a rule if by

switching its membership variable from 1 to 0, the loss function does not change.

3.3.4 Lack of Uniqueness

In general, the solutions that the dNL-ILP finds are not unique. In addition to the cases that

we discussed in pruning section, there can be various correct answer for a problem. For

example, by replacing the body of second rule in (3.5) with inc(C,B), lessThan(A,C), we

can obtain another valid solution to the ILP problem. Since the membership weights are

randomly initialized, in different runs of the algorithm we may obtain different, yet still

valid solutions. Hence, in the rest of this chapter, the provided solutions are only one of the

possible obtained solutions during a run of the algorithm.

3.3.5 Predicate Rules (F i
p)

In the majority of the ILP systems, the rules are restricted to Horn clause, i.e., the body of

each rule is made of the conjunction of some atoms. Even though we can still use the same

convention, in our model it is sometimes easier and more efficient to combine all the rules

involving a predicate via learning the body of rule as a dNL-DNF function. Alternatively,

we can also restrict the program to Horn clauses by using a set of dNL-CONJ functions as
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the body of predicate rules instead.

Moreover, compared to the most ILP systems, our approach allows for more flexible

way of learning predicates. Let L = |Iip| be the number of all distinct atoms that can be

used in the body of a rule. The neural ILP solver, dILP [27], limits the search space for the

choices in the body of each rule to the
(
L
2

)
combinations of two atoms. This is indeed a very

small fraction of 2L total possibilities that our model considers. While the ability to restrict

the space of possible clauses is sometimes desirable and may speed up the learning, in most

systems this approach significantly reduces the possible formulas. In our proposed approach,

the space of possible clauses can still be restricted to speed up the learning. For example,

we can exclude certain predicates form a clause. However, we do not need to explicitly

specify the form of possible formula similar to Metagol [12] and dILP. Finally, we can easily

allow for including the negation of each atom in the formula by concatenating the vector

Ip|θ and its fuzzy negation, i.e., (1.0 − Ip|θ) as the input to the F i
p function. This would

only double the number of parameters of the model assuming Horn clause rules. In contrast,

in most other implementations of ILP, this would increase the number of parameters and the

problem complexity at much higher rates.

3.4 ILP as a Satisfiability Problem

In our model, we associate a dNL function F i
p to the ith rule of every intensional predicate

p. We can view the membership weights in the dNL function corresponding to each F i
p

as Boolean flags that indicates whether each atom in a rule is off or on. In this view, the

problem of ILP can be seen as finding an assignment to these membership Boolean flags

such that the resulting rules applied to the background facts, entail all positive examples

and reject all negative examples. Moreover, by allowing these membership weights to be

learnable weights, we are formulating a continuous relaxation of the satisfiability problem.

This approach is in some ways similar to the approach in dILP [27], but differs in how we

define Boolean flags. In dILP, a Boolean flag is assigned to each of the possible combinations
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of two atoms from the set Iip. In contrast, in our approach the membership weights of the

conjunction (or any other logical function from dNL) can be directly interpreted as the flags

in the satisfiability interpretation. As such, we can learn any arbitrary Boolean function of

the atoms in vector Iip instead of a limited set of possibilities defined by restrictive templates.

3.5 Interpretability

Since our formulation is based on the fuzzy notion of Boolean logic, in general, the mem-

bership weights of the dNL networks do not necessarily converge to 0 or 1 and hence the

learned formula may be difficult interpret. Fortunately, in problems that a definite solution

can be found, as we will show via experiments (e.g. experiments in sections 3.7.1 and 3.7.3),

the membership weights converge to 0 and 1 and as such, the solution is a valid Boolean

formula. On the other hand, in cases where there is ambiguity in data and no exact Boolean

function can describe all the background facts (e.g., the task of classification of relational

datasets such as Mutagenesis (section 4.2)), there is a trade-off between the interpretability

and the performance of the learning task. To be able to control this trade-off we have added

an optional penalty term to the loss function, i.e.

Lagg = L+ λprnLprn + λintLint, where,

Lint = E
p∈P

E
m∈Fp

m(1−m) (3.15)

where subscript int stands for interpretability and m represent each of the membership

weights used in predicate functions. It is easy to see that m(1−m) is at minimum (0) when

membership weights are at 0 or 1 and the constant λint controls the trade-off.

3.6 Implementation Details

For the dNL-DNF functions associated to each learnable predicate we need to initialize the

membership weights in the start of the training. During the experiments, we realized that
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in general, the models are not sensitive to the initial weights of membership weights wi.

While the speed of convergence somewhat depends on the initial values, in the presented

experiments the network is able to find the optimal settings and converges to the desired

output when weights are initialized using random Gaussian functions. In cases where

the dimension of the input vector is very large, extra care may be needed. Due to the

multiplicative design of the neurons in dNL functions, when many of the membership

variables have values between zero and one, the gradient can becomes very small. To avoid

this situation, we must ensure that most of the membership variables are almost zero in the

beginning of training. As such, we usually initialize weights by a normal distribution with

negative mean, (e.g., mean of -1 or -2 depending on the size of input vector).

We have implemented1 the dNL-ILP solver model using python and Tensorflow [64]. In

the previous sections, we have outlined the process in a sequential manner. However, in the

actual implementation we first create index matrices using all the background facts before

starting the optimization task (Gather operation in Fig. 3.2). Further, at each time-stamp

and for each intensional predicate, all instances of applying (executing) the neural function

F i
p are carried in a batch operation and in parallel. In our approach, usually there is no

need for any tuning and parameter specification other than the signature of each predicate

rule (arity and the number of additional variables). On the other hand, since we use a

propositionalization step (typical to almost all neural ILP solvers), special care may be

required when the number of constants in the program is very large.

In general, we have found that the program is not sensitive to the learning rate and we

have set the default learning rate to 0.001. In some of the problems we may increase the

learning rate to speed up the convergence. For example, for the case of the classification of

IMDB dataset, we needed more than 200 epochs for convergence when learning rate was set

to 0.001, compared to only 5 epochs that was needed for the learning rate of 0.1. Further, in

all the experiments presented in this chapter, we assume the interpretability penalty term

1Available at https://github.com/DemoRep79/dNLILP
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(i.e., λint) is zero unless stated otherwise. For all the intensional predicates we need to

specify the number of variables as well as the type of dNL function that is used to represent

F 1
p . Since in most cases we use only one rule with body of the rule defined as a dNL-DNF

function, the size of the hidden layer for the DNF must be specified This corresponds to the

maximum number of Horn clauses that are allowed for a learnable predicate. Since we may

not know this parameter in advance, we usually start by choosing a number based on the

complexity of the problem. For example, in case of the lessThan example in Fig. 3.1, we

started with hidden layer of size 4 but the program needed only two conjunction neurons

and the membership weights in the disjunction function corresponding to the two other rules

was found to be zero. In the provided experiments we have used tmax from 1 to 8 depending

on the task. Increasing the maximum number of forward chaining linearly increases the

runtime of the program. This is due to the fact that the forward chaining steps cannot be

parallelized and should be calculated sequentially. As such we do not increase this number

beyond necessity to speed up the programs.

3.7 Experiments

Different ILP systems can be compared in various ways. ILP systems such as Metagol

and dILP are able to learn the logical relationships in an explicit manner and as such are

good candidates for learning recursive and algorithmic tasks. Many other ILP systems are

mainly focused on larger scale tasks of learning from relational datasets and are usually

evaluated by their performance in relational classification tasks. It suffices to say that no

single ILP system can outperform all others in every single task. The proposed dNL-ILP

system offers explicit representation of the learned logic and is capable of learning recursive

predicates of arbitrary complex form without the need to specify the meta-rules similar to

Metagol [12] and dILP [27]. Further, unlike the Metagol, because of the fuzzy nature of

membership weights, it can also used for the classification tasks similar to approaches based

on probabilistic ILP frameworks. Additionally, the differentiable aspect of this solver makes

45



it possible to combine with deep learning models such as convolutional network to directly

learn relational information from images. In the Chapter 5 we exploit this characteristic of

the dNL-ILP to formulate a policy learning relational reinforcement learning framework

which can directly learn from images. On the other hand, since our proposed model

works by propositionalization, it cannot naturally handle partially defined clauses and is

not suitable for such applications. In the following, we first examine the performance of

dNL-ILP in learning algorithmic tasks and specially tasks involving recursion and compare

its performance to the Metagol and dILP. Next, we will consider the classification tasks

involving real-life and large scale datasets and compare its performance to the other ILP

systems that are mainly based on the probabilistic approach to ILP [19].

3.7.1 Benchmark ILP Tasks

We tested the proposed algorithm on the 20 symbolic tasks described in [27] which are taken

from 4 domains: arithmetic, lists, graphs and family tree. The details of these experiments

can be found in Appendices G.1 to G.20 of [27]. Even though some of these tasks require

predicate invention and recursion (e.g., the task of learning the circular predicate in

graph domain), all of these tasks are still considered simple algorithmic tasks as they would

only involve predicates with arity of at most 2 and small number of constants. However,

as reported in [27], dILP cannot always find the right solutions (e.g. only 49% of time

it can solve even/odd problem). Further, Metagol, if not provided with the exact form of

meta rules, is not able to solve some of the tasks involving recursion (e.g. Learning the

connectedness and also circular predicates in graph domain). In contrast, as shown

in Table 3.2, our proposed algorithm can always find a solution to these problems. The

implementation of many of these tasks as well as some additional experiments are provided

in the accompanying source code. Here we briefly describe a few tasks and the results of

our algorithm.

• Circular predicate. In this experiment, the goal is to learn the circular property of a node
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in a directed graph. A node is called circular if there exist a connected path from that node

to itself. In this and other graph related tasks, the background knowledge consists of the

groundings of predicate edge(A,B) which defines a directed graph between nodes. The

constants in this example is the set of nodes labeled as C = {a, b, c, d, e, f, g, h, i, u, v}.

In addition to the predicate edge, we define two intensional predicates; a learnable

auxiliary predicate of arity 2 (i.e., aux/2) and the target predicate circular/1.

We allow for one additional variable in definition of each of these predicates. The set

of positive and negative example corresponding to the graph depicted in Fig. 3.3, i.e.

P = {b, c, d, e, u, v}, N = {a, f, g, h, i}. For F 1
aux we allow 3 variables and we use

dNL-DNF function with hidden layer of size 4. For F 1
circular we allow for 3 variables and

we use dNL-DNF function with hidden layer of size 2. One of the obtained solutions is:

aux(A,B)← edge(A,B)

aux(A,B)← edge(A,C), aux(C,B)

circular(A)← aux(A,A)

This simple example uses predicate invention and involves recursive predicates. Even

though we did not specify any example for the predicate aux, the learned formula for this

auxiliary predicate is meaningful and represents the connectedness relation. It is worth

mentioning that these solutions are not unique. In a different run, we obtained the below

solution for this problem:

aux(A,B)← edge(A,B)

aux(A,B)← edge(A,C), aux(C,B)

circular(A)← edge(A,B), aux(B,A)

Even though these two sets of rules appear to be different, It is easy to verify that the two
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solutions are logically equivalent.

• Family Tree: Grandparent In this subset of English royals family tree, consist of the

background relations such as ’son’,’father’,... and including 25 constants, the task is to

learn the grandparent relation. One of the obtained solutions is:

grandparent(A,B)← son(C,A), uncle(C,B)

grandparent(A,B)← son(C,A), father(C,B)

Obviously, different background knowledge would have resulted a different definition for

the target predicate. For instance, in another problem formulation, we add an auxiliary

predicate of arity 2 with no additional variables. One of the solutions found by dNL-ILP

is:

aux(A,B)← mother(A,B)

aux(A,B)← father(A,B)

grandparent(A,B)← aux(A,C), aux(C,B)

Even though no definition was provided for the auxiliary predicate, it is noteworthy to

observe that just by introducing the auxiliary predicates into learning, the model learns

higher level concepts and use that to define the target predicate. In the above example,

clearly the auxiliary predicate resembles the concept of parenthood and was used as the

building block define the target predicate grandparent.

3.7.2 Learning Decimal Multiplication

As was discussed in Chapter 2, neural based approaches based on sequence to sequence

recurrent networks and GRU networks such as [7] are able to learn arithmetic to some

degrees and for example neural GPU can learn binary multiplications of two 20 bits number
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Figure 3.3: Background graph used in learning circular predicate .

after training over millions of samples and in general those methods are not able to generalize

well above the length of training samples. In contrast, here we demonstrate how the proposed

dNL-ILP can efficiently learn difficult algorithmic tasks such as multiplications of decimal

numbers by using only a few examples. Moreover, the learned recursive formula can

be applied to any number and can perfectly generalize to all natural numbers since it

captures the logical operations required to perform decimal multiplication. We use dNL-ILP

solver for learning the predicates mul/3 for decimal multiplication using only the positive

and negative examples. We use C = {0, 1, 2, 3, 4, 5, 6} as constants and our background

knowledge consists of the extensional predicates {zero/1, inc/2, add/3}, where zero/1

define the decimal number 0, inc/2 defines increment of one and add/3 defines the

addition.

It is worth noting that the dNL-ILP solver does not consider constants in learning

predicates and the predicate formula can only contain other predicates and variables. Thus,

when there is a need for referring to any specific constant in the formula, we should define

a corresponding predicate as part of background knowledge. Here for example, since we

need to distinguish the special number, zero, we need to define an extensional predicate

zero/1. In this case, the background fact corresponding to this predicate is the ground

atom zero(0) which states that the predicate zero/1 is evaluated as True when its

argument is the decimal number, 0.

The target predicate is mul/3 and we allow for using 5 variables (i.e., num vari(mul) =

5) in each rule. We use a dNL-DNF network with 4 disjunction terms (4 conjunctive rules)
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Table 3.2: dNL-ILP vs dILP and Metagol in benchmark tasks

Domain Task dILP Metagol dNL-ILP
Arithmetic Predecessor 100 100 100
Arithmetic Even 100 100 100
Arithmetic Even-Odd 49 100 100
Arithmetic Less than 100 100 100
Arithmetic Fizz 10 100 100
Arithmetic Buzz 35 100 100
List Member 100 100 100
List Length 93 100 100
Family Tree Son 100 100 100
Family Tree GrandParent 97 100 100
Family Tree Husband 100 100 100
Family Tree Uncle 70 100 100
Family Tree Relatedness 100 0 100
Family Tree Father 100 100 100
Graph Undirected Edge 100 100 100
Graph Adjacent to Red 51 100 100
Graph Two Children 95 100 100
Graph Graph Colouring 95 100 100
Graph Connectedness 100 0 100
Graph Cyclic 100 0 100

for learning Fmul. It is worth noting that since we do not know in advance how many rules

would be needed, we should pick an arbitrary number and increase in case the ILP program

cannot explain all the examples. Further, we set the tmax = 8. One of the solutions that our

model finds is:

mul(A,B,C)← zero(B), zero(C)

mul(A,B,C)← mul(B,A,C)

mul(A,B,C)← mul(A,D,E), inc(D,B), add(E,A,C)

Please note that the two last rules are learned as recursive rules. Furthermore, the first rule

has learned that if one of the operands is zero the answer would be zero.
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3.7.3 Sorting

In this experiment we consider the task of sorting an ordered list via ILP. Our goal is to

find a recursive formula for sort predicate such that sort(A,B) is true only if list B

is the sorted version of list A. The sorting task is more complex than the previous tasks

since it requires not only the list semantics, but also many more constants compared to

the arithmetic problem. We implement the list semantic by allowing the use of functions

in defining predicates. For a data of type list, we define two functions H and t which

allow for decomposing a list into head and tail elements, i.e A = [AH |At]. We use elements

of {a, b, c, d} and all the ordered lists made from permutations of up to three elements as

constants in the program (i.e., |C| = 40). We use extensional predicates such as gt (greater

than), eq (equals) and lte (less than or equal) to define ordering between the elements of

lists as part of the background knowledge. We use a dNL-DNF with hidden layer of size 4

for F 1
sort and we allow for using 4 variables (and their head and tail functions). One of the

solution that our model finds is:

sort(A,B)← sort(AH , C), lte(Ct, At), eq(BH , C), eq(At, Bt)

sort(A,B)← sort(AH , C), gt(Ct, At), sort(D,BH), eq(Bt, Ct), eq(DH , CH), eq(At, Dt)

We may observe that the first two atoms in the body of each learned rules, act like an if/then

instruction. If the tail element of sorted part of AH is less than the tail of A the first recursive

rule applies and otherwise the second rule applies. Even though the above examples involve

learning tasks that may not seem very difficult on the surface, and deal with relatively small

number of constants, they are far from trivial. To the best of our knowledge, learning a

recursive predicate for a complex algorithmic task such as sort which involves multiple

recursive rules with 6 atoms and includes 12 variables (by counting two functions head and

tail per variables) is beyond the power of any existing ILP solver. Here for example, the

total number of possible atoms to choose from is |I2
sort| = 176. For comparison, consider
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template based approaches such as dILP. In such an approach, all the possible combinations

with 6 atoms in the body, i.e.,
(

176
6

)
> 3× 1010 should be considered. This shows that the

algorithms that require enumerating the possible candidates via templates (such as dILP and

Metagol) are not able to directly tackle problems with this level of complexity.
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CHAPTER 4

LEARNING FROM UNCERTAIN DATA VIA DNL-ILP

4.1 Introduction

The experiments in previous chapter showcased the performance of the proposed ILP solver

model in learning algorithmic tasks such as learning arithmetic and sorting. Since the dNL-

ILP is a differentiable model, implemented via neural networks and uses fuzzy membership

weights to form Boolean functions, it can also be used in ambiguous problems where

data is either noisy or in cases where no single hypothesis may satisfy all the examples.

Classification of relational datasets is one of these tasks which has many applications in

a wide variety of fields. Standard ILP systems, e.g. Metagol, are not usually suited for

handling these kind of tasks. On the other hand, most neural ILP solvers are either incapable

of learning complex and recursive predicates or in the case of dILP [27], cannot handle

large scale problems. Alternatively, a probabilistic extension of ILP ([19]) and its variants

are usually employed in these tasks. In this chapter we study the application of dNL-ILP

in scenarios where we are dealing with uncertain data. First, in Section 4.2 we explore

the application of dNL-ILP in the classification of benchmark relational databases and we

compare its performance to the state of the art algorithms based on probabilistic notion of

ILP. Next, we will consider scenarios where by combining differentiable dNL-ILP with

standard neural networks we can learn from continuous data; either by learning decision

boundaries (Section 4.3) or by learning the distribution of data via fitting probabilistic

models (Section 4.4).

4.2 Classification for Relational Data

Standard classification algorithms such as regression techniques as well as methods based

on decision trees usually require one feature vector for each data-point and are not able to
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Figure 4.1: Internal structure of MovieLens dataset

exploit the intricate relations within various tables in a relational dataset. Fig. 4.1 depicts the

internal table structure for one of the datasets used in our experiments. Here for example, one

of the benchmark classification tasks is defined as predicating the sex of a movie reviewer

(male or female) based on the reviewer’s data. This includes all the information available for

each movie the reviewer has reviewed, such as director’s and actor’s information as shown

in Fig. 4.1. Classical approaches usually require joining all the tables to create a feature

vector which may lead to the explosion of the records and the need for handling missing

values. In practice, techniques based on ILP are usually employed for extracting knowledge

and reasoning tasks involving relational datasets.

In this experiment, we evaluate the performance of our proposed ILP solver in some

benchmark ILP classification tasks. We use real-world relational datasets Mutagenesis [33],

UW-CSE [32] as well as IMDB, MovieLens (1M) and Cora datasets1. Table 4.1 summarizes

the features of these datasets. In all the cases we used the original full-size dataset instead

of subsets that are sometime used in various reports (e.g. Movielens 60K, Mutagenesis1,

Mutagenesis2, . . . ). For the cases involving unary target predicates (e.g Mutagenesis and

Cora) we create a separate background knowledge for each possible groundings of the

1Publicly-available at https://relational.fit.cvut.cz/
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target predicate. For other cases we create only one background knowledge for each fold

in cross validation scheme that consists of all the groundings in that portion of training

data. As baseline, we are comparing dNL-ILP with the state of the art algorithm based on

Table 4.1: Dataset Features

Dataset Constants Target Predicate

Mutagenesis 7045 active(A)
UW-CSE 1158 advisedBy(A,B)
Cora 3079 sameBib(A,B)
IMDB 316 workingUnder(A,B)
MovieLens 2627 female(A)

Table 4.2: Some of the learned rules for classification tasks

IMDB Task

workedUnder(A,B)← director(B), actor(A),movie(C,A),movie(C,B),¬actor(B)
workedUnder(A,B)← isFemale(B),movie(C,A),¬actor(B),¬movie(C,A)

UW-CSE task

advisedBy(A,B)← publication(A,C), publication(B,C),
hasanyPosition(B), inanyPhase(A)

inanyPhase(A)← inPhase(A,B)
hasanyPosition(A)← hasPosition(A,B)

Markov Logic Networks such as GSLP [65], Problog [66], MLN-B (Boosted MLN)[67].

Ideally, we would liked to include all the recent published works, however for many cases

the source codes are not publicly available. Further, since in most of these datasets, the

number of negative examples are significantly greater than the positive examples, we

report the Area Under Precision Recall (AUPR) curve as a more reliable measure of the

classification performance. We use 5-fold cross validations except for the Mutagenesis

dataset which we have used 10-fold and we report the average AUPR over all the folds.

Table 4.3 summarizes the classification performance for the 4 relational datasets. As the

results show, dNL-ILP outperforms the previous algorithms in most cases. The end-to-end

design of our differentiable ILP solver makes it possible to combine some other forms of
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Table 4.3: AUPR score for the 5 relational classification tasks

Dataset GSLP MLN-B problog dNL-ILP

Mutagenesis 0.77 NA 0.99 0.99
UW-CSE 0.46 0.22 0.28 0.51
Cora 0.89 0.96 0.90 0.96
IMDB 0.79 0.90 0.92 1.00
MovieLens 0.70 0.80 0.82 0. 78

learnable functions with the dNL networks. For example, while handling continuous data is

usually difficult in most ILP solvers, we can directly learn some threshold values to create

binary predicates from the continuous data (see Section 4.3). We have used this method in

the Mutagenesis task to handle the continuous data in this dataset.

In previous experiments in Sections 3.7.1 to 3.7.3, when learning is complete (i.e., zero

cross entropy loss), all the membership weights are either zero and one and as such we

did not incorporate any interpretability loss (i.e. λint = 0). However, in complex and

ambiguous datasets, this is not the case and we usually never obtain zero cross entropy loss

during training. Hence, we need to incorporate the λint if we want to interpret the learned

hypothesis as a valid Boolean function. The result presented in Table 4.3 are obtained

λint = 0. We can trade some performance and achieve better interpretability by adjusting

the λint parameter. In IMDB task, adding penalty term did not decrease the classification

accuracy, while in case of the UW-CSE task, setting the λint = 0.1 decreased the AUPR

from 0.51 to 0.49 but resulted in a valid Boolean function (i.e., all the membership weights

converged to 0 and 1). Table 4.2 displays the learned rules for these two tasks after setting

λint = 0.1.

Because of the difference in hardware, it is difficult to directly compare the speed of

algorithms. In our case, we have evaluated the models using a 3.70GHz CPU, 16GB RAM

and GeForce GTX 1080TI graphic card. Using this setup, the problems such as IMDB,

Mutagenesis are learned in just a few seconds. For Cora, the model creation takes about one

minute and the whole simulation for any fold takes less than 3 minutes.
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4.2.1 Implementation Details:

In our implementation, an ILP program consists of these elements:

1. the list of all the variables from each data type

2. the definition of the auxiliary predicates

3. the background facts

4. the signature for learning the target predicate

5. the positive and negative examples

Fig. 4.2 shows a screen shot of a python definition of the graph/connected problem using

dNL-ILP.

In the remaining of this section we summarize the details of each experiments and we

explain the choice of parameters used in each dataset:

• Cora: In this task our background knowledge contains facts involving predicates: Has-

WordAuthor/2, HasWordTitle/2, HasWordVenue/2, SameAuthor/2, SameTitle/2, Author/2

, Title/2. We also define an auxiliary predicate sameWA as:

sameWA(A,B)← HasWordAuthor(A,C),HasWordAuthor(B,C)

For the target predicate SameBib/2 we allow for two rules, each consists of a DNF with

hidden layer of size 1 (i.e., just one conjunction function). For each of these two learnable

rules we allow for tree variables. For one of them, the extra variable is of type ’Author’

and for the other one it is of data type ’Title’. In learning, we use 5 fold cross validations.

Given 5 different sets of background facts, at each training step, we use data from one of

the background fact sets randomly and we test the performance on the held-out portion of

data.
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• MovieLens: In this task our background contains facts involving predicates: age/1, occu-

pation/1, rate/1, genre/2, d quality/2, avg revenue/2, isEnglish/2 and movie year/2. For

efficiency reasons, we define auxiliary predicates corresponding to each of the possibilities

for some of the multi valued data types. For example, if there are three ratings of 1, 2 and

3, we can define three auxiliary predicates such as:

rate1(A)← rate(A,B), is 1(B)

rate2(A)← rate(A,B), is 2(B)

rate3(A)← rate(A,B), is 3(B)

For the target predicate isFemale/0, we define 10 DNF rules (each with hidden layer of 4),

and we allow for one extra variable in defining each of those rules. Please note that if we

had not defined auxiliary predicates such as rate1/1, rate2/1, rate3/1, we would needed

many more variables in the body of the target predicates which would be more difficult for

our models to handle. Further, unlike the previous dataset, we create separate background

facts corresponding to each movie rater. In our training, for every training step, each

training batch is consisted of randomly selected background facts of 500 users from all

the total user in the training set. Again, we are using 5-fold cross validation and report the

result on the held-out group of users during each fold.

• MovieLens: Here, our background predicates are director/1, actor/1, genre/2, isFemale/1,

movie/2 and our target predicate is workedUnder/2. We allow for 4 variables and we use

one rule of type DNF with conjunction neurons.

• UW-CSE: Here, our background predicates are student/1, professor/1, publication/2,

tought by/2, ta/2, courseLevel/2, has position/2, projectMember/2. Similar to the Cora

dataset case, we create multiple predicates for each distinct value of multi-valued quantities

such as position (i.e., position faculty, position professor, . . . ). We also define these two
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auxiliary predicates using transitive relation:

sameProj(A,B)← projectMember(A,C), projectMember(B,C)

samePublications(A,B)← publication(A,C), publication(B,C)

Please note that by introducing these two auxiliary predicates we may eliminate the need

for adding a variable of type ProjectID for leaning the target predicate. This can reduces

the complexity of the problem. We allow for 2 variables and we use one rule of type DNF

with hidden layer of size 6 to learn the target predicate advisedBy/2.

4.3 Handling Continuous Data

Reasoning using continuous data has been an ongoing challenge for ILP. Most of the current

approaches either model continuous data as random variables and use probabilistic ILP

framework [19], or use some forms of discretization via iterative approaches. The former

approach cannot be applied to the cases where we do not have reasonable assumptions

for the probability distributions. Further, the latter approach is usually limited to small

scale problems (e.g. [68]) since the search space grows exponentially as the number of

continuous variables and the boundary decisions increases. Alternatively, the end-to-end

design of dNL-ILP makes it rather easy to handle continuous data. Recall that even though

we usually use dNL based functions, the predicate functions F′s can be defined as any

arbitrary Boolean function in our model. Thus, for each continuous variable x we define k

lower-boundary predicates gtxi(x, lxi) as well as k upper-boundary predicates ltxi(x, uxi)

where i ∈ {1, . . . , k}. We let the boundary values lxi’s and uxi’s be trainable weights and

we define the upper-boundary and lower-boundary predicate functions as:

Fgtxi = σ(c (x− uxi)) , Fltxi = σ(−c (x− lxi)),
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Figure 4.2: An example of dNL-ILP program definition in python
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where σ is the sigmoid function and c� 1 is a constant. To evaluate this approach we

use it in a classification task for two datasets containing continuous data; Wine and Sonar

from UCI Machine learning dataset [69] and compare its performance to the ALEPH [70],

a state-of-the-art ILP system, as well as the recently proposed FOLD+LIME algorithm

[71]. The wine classification task involves 13 continuous features and three classes and the

Sonar task is a binary classification task involving 60 features. For each class we define a

corresponding intensional predicate via dNL-DNF and learn that predicate from a set of

ltxi and gtxi predicates corresponding to each continuous feature. We set k = 6. Table 4.4

summarizes the results.

Table 4.4: Classification accuracy

Task
Algorithm

ALEPH+LIME FOLD+LIME dNL-ILP

Wine 0.92 0.93 0.98
Sonar 0.74 0.78 0.85

4.4 Dream4 Challenge Experiment (Handling Uncertain Data)

Inferring the causal relationship among different genes is one of the important problems in

biology. In this experiment, we study the application of dNL-ILP for inferring the structure

of gene regulatory networks using 10-genes time-series dataset from the DREAM4 challenge

tasks [72]. In the 10-gene challenge, the data consists of 5 different biological systems,

each composed of 10 genes. For each system a time-series containing 105 noisy readings

of the genes expressions (in range [0, 1]) is provided. The time-series is obtained via 5

different experiments, each created using a simulated perturbation in a subset of genes and

recording the gene expressions over time. To tackle this problem using dNL-ILP framework,

we simply assume that each gene can be in one of the two states: on (excited or perturbed)

or off. The key idea here is to model each gene’s state (off or On) using two different

approaches and then aim to get a consensus on the gene’s state using these two different

probes. To accomplish this, for each gene Gi we define the predicate offi which evaluates
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the state of Gi using the corresponding continuous values. We also use predicate inf offi

which takes the state of all the predicates offj’s (j 6= i) to infer the state of Gi. To ensure

that at each background data inf offi would be close to offi, we define another auxiliary

predicate auxi with predicate function defined as Fauxi = 1− |inf offi − offi|.

Since the state of genes are uncertain, we use a probabilistic approach and assume

that each gene state is conditionally distributed according to a Gaussian mixture (with

4 components), i.e., x|off ∼ GMMoff and x|on ∼ GMMon. As such, we design Finf offi

such that it returns the probability of the Gi gene being off, and let all the parameters

of the mixture models be trainable weights. For the FInf offi we use a dNL-CNF network

with only one term. Each data point in the time series corresponds to one background

knowledge and consists of the continuous value of each gene expression. For each gene,

we assign 5 percent of data points with the lowest and highest absolute distance from mean

as positive and negative examples for predicate offi, respectively. We interpret the values

of the membership weights in the trained dNL-CNF networks which are used in FInf-offi

as the degree of connection between two genes. Table 4.5 compares the performance of

dNL-ILP to the two state of the art algorithms NARROMI [73] and MICRAT [74] for

10-gene classification tasks of DREAM4 dataset.

Table 4.5: DREAM4 challenge scores

Metric
Method

NARROMI MICRAT dNL-ILP

Accuracy 0.82 0.87 0.86
F-Score 0.35 0.32 0.36
MCC 0.24 0.33 0.35

4.5 Comparing dNL-ILP to the Past Works

Addressing all important past contributions in ILP is a tall order and given the limited space

we will only focus on a few recent approaches that are in some ways relevant to our work.

Among the ILP solvers that are capable of learning recursive predicates (in an explicit and
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symbolic manner), the most notable examples are Metagol [12] and dILP [27]. Metagol is a

powerful method that is capable of learning very complex tasks via user-provided meta-rules.

The main issue with Metagol is that while it allows for some flexibility in terms of providing

the meta-rules, it is not always clear how to define those meta formulas. In practice, unless

the expert already has some knowledge regarding the form of the possible solution, it would

be very difficult to use this method. dILP, on the other hand, is a neural ILP solvers that

formulates a differentiable version of ILP. However, because of the way it define templates,

dILP is limited to learning simple predicates with arity of at most two and with maximum

two atoms in each rule and cannot handle large scale relational datasets [27]. CILP++ [22] is

another noticeable neural ILP solver which also uses propositionalization. CLIP++ is a very

efficient algorithm and is capable of learning large scale relational datasets. However, since

this algorithm uses the bottom clause propositionalization, it is not able to learn recursive

predicates. In dealing with uncertain data and specially in the tasks involving classification

of the relational datasets, the most notable frameworks are those based on the probabilistic

ILP (PILP) [19] and Markov Logic Networks (MLN) [32]. These types of algorithms extend

the framework of ILP to handle uncertain data by introducing a probabilistic framework. Our

proposed approach is related to PILP in that we also associate a real number to each atom

and each rule in the formula. In practice, as we have shown in Section 4.2, our approach

outperforms those ensemble techniques based on probabilistic ILP.

We have shown that for simple algorithmic tasks such as those in Section 3.7.1 dNL-ILP

is able to learn the rules. However, compared to the efficient and fast implementations such

as Metagol, our approach for these kind of problems is still relatively slow and dNL-ILP

usually needs a few second to solve most problems. The real advantage of our proposed

approach is apparent when dealing with ambiguous data as in the case of relational datasets

or when we need to learn a difficult recursive algorithmic task as in Section 3.7.3. More

notably, the differentiable implementation of forward chaining makes it possible to combine

dNL-ILP with deep learning models such as Convolutional Neural Networks (CNNs) to
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learn relational knowledge from complex visual scenes. In the next chapter we explore

this important application of dNL-ILP by introducing a relational reinforcement learning

framework which can directly learn the relational policy from the images.
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CHAPTER 5

RELATIONAL REINFORCEMENT LEARNING VIA DNL-ILP

5.1 Introduction

Relational Reinforcement Learning (RRL) has been investigated in early 2000s by works

such as [34, 35, 36] among others. The main idea behind RRL is to describe the environment

in terms of objects and relations. One of the first practical implementation of this idea was

proposed by [35] and later was improved in [36] based on a modification to Q-Learning

algorithm [37] via the standard relational tree-learning algorithm TILDE [38]. As shown in

[36], the RRL system allows for very natural and human readable decision making and policy

evaluations. More importantly, the use of variables in ILP system, makes it possible to learn

generally formed policies and strategies. Since these policies and actions are not directly

associated with any particular instance and entity, this approach leads to a generalization

capability beyond what is possible in most typical RL systems. Generally speaking RRL

framework offers several benefits over the traditional RL:

• It allows for the incorporation of higher level concepts and prior background knowl-

edge.

• The learned policy is usually human interpretable, and hence can be viewed, verified

and even tweaked by an expert observer.

• The learned program can generalize better than the classical RL counterpart.

• Since the language for the state representation is chosen by the expert, it is possible to

incorporate inductive biases into learning. This can be a significant improvement in

complex problems as it might be used to manipulate the agent to choose certain actions

without accessing the reward function. One of such areas is designing safer AIs where
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certain actions and state can be prohibited by the choice of state representation and

the allowed actions.

In recent years and with the advent of the new deep learning techniques, significant

progress has been made to the classical Q-learning RL framework. By using algorithms such

as deep Q-learning and its variants [39, 40], as well as the deep policy learning algorithms

such A2C and A3C [75], more complex problems are now been tackled.

Recently, some new methods for extracting relational information from the output of

Convolutional Neural Networks (CNNs) have been proposed [76, 77]. However, despite

their attempts in learning relational information, technically, they do not belong to the RRL

framework since they do not employ any explicit relational language. While these techniques

offer new methods for learning non-local information from the local features obtained by the

CNNs, their internal representation is purely implicit (similar to other typical deep neural

networks) and they cannot incorporate explicit relational biases.

On the other hand, the classical RRL framework cannot be easily employed to handle

complex visual scenes that exist in recent RL problems. Since standard RRL framework is

in not usually able to learn from complex visual scenes and cannot be easily combined with

differentiable deep neural, none of the inherent benefits of RRL have been materialized in

the deep learning frameworks thus far.

In previous chapter, a novel differentiable ILP solver, dNL-ILP, was introduced. The key

aspect of the dNL-ILP solver is a differentiable deduction engine that was designed based in

a differentiable forward chaining algorithm. In this chapter, we employ this engine to design

a new differentiable RRL framework. We show that this differentiable RRL framework can

be used similar to the deep RL in an end-to-end learning paradigm, trainable via the typical

gradient optimizers. Further, in contrast to the early RRL frameworks, this framework is

flexible and can learn from ambiguous and fuzzy information. Finally, it can be combined

with deep learning techniques such as CNNs to extract relational information from the visual

scenes.

66



5.2 Relational Reinforcement Learning via dNL-ILP

Early works on RRL [36, 78] mainly relied on access to the explicit representation of states

and actions in terms of relational predicate language. In the most successful instances

of these approaches, a regression tree algorithm is usually used in combination with a

modified version of Q-Learning algorithms. The fundamental limitation of the traditional

RRL approaches is that the employed ILP solvers are not differentiable. Therefore, those

approaches are typically only applicable the problems for which the explicit relational

representation of states and actions is provided.

In this chapter, we establish that differentiable dNL-ILP provides a platform to combine

RRL with deep learning methods, constructing a new RRL framework with the best of both

worlds. Although the dNL-ILP can also be used to formulate RL algorithms such as deep

Q-learning, we focus only on deep policy gradient learning algorithm. This formulation is

very desirable because it makes the learned policy to be interpretable by human. One of

the other advantages of using policy gradient in our RRL framework is that it enables us

to restrict actions according to some rules obtained either from human preferences or from

problem requirements. This in turn makes it possible to account for human preferences or to

avoid certain pitfalls, e.g., as in safe AI.

In our RRL framework, although we use the generic formulation of the policy gradient

with the ability to learn stochastic policy, certain key aspects are different from the tradi-

tional deep policy gradient methods, namely state representation, language bias and action

representation. In the following, we will explain these concepts in the context of BoxWorld

game. In this game, the agent’s task is to learn how to stack the boxes on top of each other

(in a certain order). For illustration, consider the simplified version of the game as in Fig.

5.1 where there are only three boxes labeled as a,b, and c. A box can be on top of another

or on the floor. A box can be moved if it is not covered by another box and can be either

placed on the floor or on top of another uncovered box. For this game, the environment state
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Figure 5.1: States representation in the form of predicates in BoxWorld game, before and
after an action

can be fully explained via the predicate on(X,Y). Fig. 5.1 shows the state representation

of the scene before and after an action (indicated by the predicate move(c,b)). In the

following we discuss each distinct elements of the proposed framework using the BoxWorld

environment. Fig. 5.2 displays the overall design of our proposed RRL framework.

5.2.1 State Representation

In the previous approaches to the RRL [35, 36, 79], state of the environment is expressed

in an explicit relational format in the form of predicate logic. This significantly limits the

applicability of RRL in complex environments where such representations are not available.

Our goal in this section is to develop a method in which the explicit representation of states

can be learned via typical deep learning techniques in a form that will support the policy

learning via our differentiable dNL-ILP. As a result, we can utilize the various benefits of the

RRL discipline without being restricted only to the environments with explicitly represented

states.

For example, consider the BoxWorld environment explained earlier where the predicate

on(X,Y) is used to represent the state explicitly in the relational form (as shown in Fig.

5.1). Past works in RRL relied on access to explicit relational representation of states,

i.e., all the groundings of the state representation predicates. Since this example has 4

constants, i.e. C ={a,b,c,floor}, these groundings would be the binary values (‘true’

or ‘false’) for the atoms on(a,a), on(a,b), on(a,c), on(a,floor), ...,

on(floor,floor). In recent years, extracting relational information from visual scenes

has been investigated. Fig. 5.4 shows two types of relational representation extracted from
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images in [41]. The idea is to first process the images through multiple CNN networks.

The last layer of the convolutional network chain is treated as the feature vector and is

usually augmented with some non-local information such as the absolute position of each

point in the final layer of the CNN network. This feature map is then fed into a relational

learning unit which is tasked with extracting non-local features. Various techniques have

been then introduced recently for learning these non-local information from the local feature

maps, namely, self attention network models [76, 41] as well as graph networks [80, 81].

Unfortunately, none of the resulting presentations from past works is in the form of predicates

needed in ILP.

In our approach, we use similar networks discussed earlier to extract non-local infor-

mation. However given the relational nature of state representation in our RRL model,

we consider three strategies in order to facilitate learning the desired relational state from

images. Namely:

1. Finding a suitable state representation: In our BoxWorld example, we used the

predicate on(X,Y) to represent the state of the environment. However, learning

this predicate requires inferring relation among various objects in the scene. As

shown by previous works (e.g., [41]), this is a difficult task even in the context of a

fully supervised setting (i.e., all the labels are provided) which is not applicable here.

Alternatively, we propose to use lower-level relations for state representation and build

higher level representation via predicate language. In the game of BoxWorld as an

example, we can describe states by the respective position of each box instead of the

relative location of boxes via predicate on. In particular, we define two predicates

posH(X,Y) and posV(X,Y) such that variable X is associated with the individual

box, whereas Y indicate horizontal or vertical coordinates of the box, respectively.

Fig. 5.3 shows how this new lower-level representations can be transformed into the
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higher level description by the appropriate predicate language:

on(X, Y)← posH(X, Z), posH(Y, T), inc(T, Z), sameH(X, Y)

sameH(X, Y)← posH(X, Z), posH(Y, Z) (5.1)

2. State constraints: When applicable, we may incorporate relational constraint in the

form of a penalty term in the loss function. For example, in our BoxWorld example

we can notice that posY(floor) should be always 0. In general, the choice of relational

language makes it possible to pose constraints based on our knowledge regarding

the scene. Enforcing these constraints does not necessarily speed up the learning as

we will show in the BoxWorld experiment in Section 5.3.1. However, it will ensure

that the (learned) state representation and consequently the learned relational policy

resemble our desired structure of the problem.

3. Semi-supervised setting: While it is not desirable to label every single scene that

may happen during learning, in most cases it is possible to provide a few labeled scene

to help the model to learn the desired state representation faster. These reference

points can then be incorporated to the loss function to encourage the network to learn

a representation that matches to those provided labeled scenes. We have used a similar

approach in Asterix experiment (see Section E) to significantly increase the speed of

learning.

5.2.2 Action Representation

We formulate the policy gradient in a form that allows the learning of the actions via one

(or multiple) target predicates. These predicates exploit the background facts, the state

representation predicates, as well as auxiliary predicates to incorporate higher level concepts.

In a typical Deep Policy Gradient (DPG) learning, the probability distribution of actions is

usually learned by applying a multi layer perception with a softmax activation function
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in the last layer. In our proposed RRL, the action probability distributions can usually be

directly associated with groundings of an appropriate predicate. For example, in BoxWorld

example in Fig. 5.1, we define a predicate move(A,B) and associate the actions of the

agent with the groundings of this predicate. In an ideal case, where there is deterministic

solution to the RRL problem, the predicate move(A,B) may be learned in such a way

that, at each state, only the grounding (corresponding to the correct action) would result 1

(’true’) and all the other groundings of this predicate become 0. In such a scenario, the agent

will follow the learned logic deterministically. Alternatively, we may get more than one

grounding with value equal to 1 or we get some fuzzy values in the range of [0, 1]. In those

cases, we estimate the probability distribution of actions similar to the standard deep policy

learning by applying a softmax function to the valuation vector of the learned predicate

move (i.e., the value of move(X,Y) for X,Y∈ {a,b,c,floor}).

5.3 Experiments

In this section we explore the features of the proposed RRL framework via several experi-

ments. We have implemented1 the models using Tensorflow [64].

5.3.1 BoxWorld Experiment

BoxWorld environment has been widely used as a benchmark in past RRL systems [36, 78,

79]. In these systems the state of the environment is usually given as an explicitly relational

data via groundings of the predicate on(X,Y). While ILP based systems are usually able

to solve variations of this environments, they rely on explicit representation of state and

they cannot infer the state from the image. Here, we consider the task of stacking boxes

on top of each other. We increase the difficulty of the problem compared to the previous

examples [36, 78, 79] by considering the order of boxes and requiring that the stack is

formed on top of the blue box (the blue box should be on the floor). To make sure the

1The python implementation of the algorithms in this chapter is available at https://github.com/
dnlRRL2020/RRL
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models learn generalization, we randomly place boxes on the floor in the beginning of each

episode. We consider up to 5 boxes. Hence, the scene constants in our ILP setup is the set

{a,b,c,d,e,floor}. The dimension of the observation images is 64× 64× 3 and no

explicit relational information is available for the agents. The action space for the problem

involving n boxes is (n+ 1)× (n+ 1) corresponding to all possibilities of moving a box (or

the floor) on top of another box or the floor. Obviously some of the actions are not permitted,

e.g., placing the floor on top of a box or moving a box that is already covered by another

box.

Comparing to Baseline: In the first experiment, we compare the performance of the

proposed RRL technique to a baseline. For the baseline we consider standard deep A2C

(with up to 10 agents) and we use the implementation in stable-baseline library [82].

We considered both MLP and CNN policies for the deep RL but we report the results for the

CNN policy because of its superior performance. For the proposed RRL system, we use two

convolutional layers with the kernel size of 3 and strides of 2 with tanh activation function.

We apply two layers of MLP with softmax activation functions to learn the groundings

of the predicates posH(X,Y) and posV(X,Y). Our presumed grid is (n+ 1)× (n+ 1)

and we allow for positional constants {0,1,...,n} to represent the locations in the grid

in our ILP setting. As constraint we add penalty terms to make sure posV(floor,0) is

True. We use vanilla gradient policy learning and to generate actions we define a learnable

hypothesis predicate move(X,Y). Since we have n + 1 box constants (including floor),

the groundings of this hypothesis correspond to the (n + 1) × (n + 1) possible actions.

Since the value of these groundings in dNL-ILP will be between 0 and 1, we generate

softmax logits by multiplying these outputs by a large constant c (e.g., c = 10). For

the target predicate move(X,Y), we allows for 6 rules in learning ( corresponding to

dNL-DNF function with 6 disjunctions). The complete list of auxiliary predicates and

parameters and weights used in the two models are given in Section B. As indicated in Fig.

5.3 and defined in (5.1), we introduce predicate on(X,Y) as a function of the low-level
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state representation predicates posV(X,Y) and posH(X,Y). We also introduce higher

level concepts using these predicates to define the aboveness (i.e., above(X,Y)) as well

as isCovered(X,Y). Fig. 5.5 compares the average success per episode for the two

models for the two cases of n = 4 and n = 5. The results shows that for the case of

n = 4, both models are able to learn a successful policy after around 7000 episodes. For the

more difficult case of n = 5, our proposed approach converges after around 20K episodes

whereas it takes more than 130K episodes for the A2C approach to converge, and even then

it fluctuates and does not always succeed.

Effect of background knowledge: Contrary to the standard deep RL, in an RRL approach,

we can introduce our prior knowledge into the problem via the powerful predicate language.

By defining the structure of the problem via ILP, we can explicitly introduce inductive biases

[83] which would restrict the possible form of the solution. We can speed up the learning

process or shape the possible learnable actions even further by incorporating background

knowledge. To examine the impact of the background knowledge on the speed of learning,

we consider three cases for the BoxWorld problem involving n = 4 boxes. The baseline

model (RRL1) is as described before. In RRL2, we add another auxiliary predicate which

defines the movable states as:

movable(X,Y)← ¬isCovered(X), ¬isCovered(Y), ¬same(A,B), ¬isfloor(X), ¬on(X,Y)

where ¬ indicates the negation of a term. In the third model (RRL3), we go one step further,

and we force the target predicate move(X,Y) to incorporate the predicate movable(X,Y)

in each of the conjunction terms. Fig. 5.6 compares the learning performance of these

models in terms of average success rate (between [0,1]) vs the number of episodes.
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Figure 5.5: Comparing deep A2C and the proposed model on BoxWorld task

Figure 5.6: Effect of background knowledge on learning BoxWorld
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Interpretability: In the previous experiments, we did not consider the interpretability of

the learned hypothesis. Since all the weights are fuzzy values, even though the learned

hypothesis is still a parameterized symbolic function, it does not necessarily represent a valid

Boolean formula. To achieve an interpretable result we add a small penalty as described in

(3.15). We also add a few more state constraints to make sure the learned representation

follow our presumed grid notations. The learned action predicate is found as:

move(X, Y)← moveable(X, Y), ¬lower(X, Y)

move(X, Y)← moveable(X, Y), isBlue(Y)

lower(X, Y)← posV(X, Z), posV(Y, T), lessthan(Z, T)

Details of the experiment is given in Appendix B.

5.3.2 GridWorld Experiment

We use the GridWorld environment introduced in [77] for this experiment. This environment

is consisted of a 12 × 12 grid with keys and boxes randomly scattered. It also have an

agent, represented by a single dark gray square box. The boxes are represented by two

adjacent colors. The square on the right represents the box’s lock type whose color indicates

which key can be used to open that lock. The square on the left indicates the content of

the box which is inaccessible while the box is locked. The agent must collect the key

before accessing the box. When the agent has a key, provided that it walks over the lock

box with the same color as its key, it can open the lock box, and then it must enter to

the left box to acquire the new key which is inside the left box. The agent cannot get the

new key prior to successfully opening the lock box on the right side of the key box. The

goal is for the agent to open the gem box colored as white. We consider two difficulty

levels. In the simple scenario, there is no (dead-end) branch. In the more difficult version,

there can be one branch of dead end. An example of the environment and the branching

77



Figure 5.7: GridWorld environment [77]

scenarios is depicted in Fig. 5.7. This is a very difficult task involving complex reasoning.

Indeed, in the original work it was shown that a multi agent A3C combined with a non-local

learning attention model could only start to learn after processing 5 × 108 episodes. To

make this problem easier to tackle, we modify the action space to include the location of

any point in the grid instead of directional actions. Given this definition of the problem,

the agent’s task is to give the location of the next move inside the rectangular grid. Hence,

the dimension of the action space is 144 = 12 × 12. For this environment, we define the

predicates color(X,Y,C), whereX, Y ∈ {1, . . . 12}, C ∈ {1, . . . , 10} and hasKey(C)

to represent the state. Here, variables X, Y denote the coordinates, and the variable C is for

the color. Similar to the BoxWorld game, we included a few auxiliary predicates such as

isBackground(X,Y), isAgent(X,Y) and isGem(X,Y) as part of the background

knowledge. The representational power of ILP allows us to incorporate our prior knowledge

about the problem into the model. As such we can include some higher level auxiliary helper
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Figure 5.8: Effect of background knowledge on learning GridWorld

predicates such as :

isItem(X, Y)← ¬isBackground(X, Y), ¬isAgent(X, Y)

locked(X, Y)← isItem(X, Y), isItem(X,Z), inc(Y, Z)

where predicate inc(X,Y) defines increments for integers (i.e., inc(n,n+1) is true for

every integer n). The list of all auxiliary predicates used in this experiment as well as the

parameters of the neural networks used in this experiment are given in Section C. Similar

to previous experiments we consider two models, an A2C agent as the baseline and our

proposed RRL model using the ILP language described in Section C. We listed the number

Table 5.1: Number of training episodes required for convergence

model Without Branch With Branch

proposed RRL 700 4500
A2C > 108 > 108

of episodes it takes to converge in each setting in Table 5.1. As the results suggest, the
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proposed approach can learn the solution in both settings very fast. On the contrary, the

standard deep A2C was not able to converge after 108 episodes. This example restates the

fact that incorporating our prior knowledge regarding the problem can significantly speed

up the learning process.

Further, similar to the BoxWorld experiment, we study the importance of our background

knowledge in the learning. In the first task (RRL1), we evaluate our model on the non-

branching task by enforcing the action to include the isItem(X, Y ) predicate. In RRL2, we

do not enforce this. As shown in Fig. 5.8, RRL1 model learns 4 times faster than RRL2.

Arguably, this is because, enforcing the inclusion of isItem(X, Y ) in the action hypothesis

reduces the possibility of exploring irrelevant moves (i.e., moving to a location without any

item). Details of the experiment is given in Appendix C.

5.3.3 Relational Reasoning

Combining dNL-ILP with standard deep learning techniques is not limited to the RRL

settings. In fact, the same approach can be used in other areas in which we wish to reason

about the relations of objects. To showcase this, we consider the relational reasoning task

involving the Sort-of-CLEVR [41] dataset. This dataset (See Fig. 5.4b) consists of 2D

images of some colored objects. The shape fo each object is either a rectangle or a circle

and each image contains up to 6 objects. The questions are hard-coded as fixed-length

binary strings. Questions are either non-relational (e.g, ”what is the color of the green

object?”) or relational (e.g., ”what is the shape of the nearest object to the green object?”).

In [41], the authors combined a CNN generated feature map with a special type of attention

based non-local network in order to solve the problem. We use the same CNN network

and similar to the GridWorld experiment, we learn the state representation using predicate

color(X,Y,C) (the color of each cell in the grid) as well as isCircle(X,Y) which

learn if the shape of an object is circle or not. Our proposed approach reaches the accuracy

of 99% on this dataset compared to the 94% for the non-local approach presented in [41].
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The details of the model and the list of predicates in our ILP implementation is given in

Appendix D.

5.3.4 Asterix Experiment

In Asterix game (an Atari 2600 game), the player controls a unit called Asterix to collect

as many objects as possible while avoiding deadly predators (see Fig. 5.9). Even though

it is a rather simple game, many standard RL algorithms score significantly below the

human level. for example, as reported in [84], DQN and A3C achieve the scores of 3170

and 22140 on average, respectively even after processing hundreds of millions of frames.

Here, our goal is not to outperform the current approaches. Instead, we demonstrate that

by using a very simple language for describing the problem, an agent can achieve scores

in the range of 30K-40K with only a few thousands of training scenes. For this game we

consider the active part of the scene as a 8x12 grid. For simplicity, we consider only 4 types

of objects; agent, left to right moving predator, right to left moving predator and finally

the food objects. The dimension of the input image is 128x144. We use 4 convolutional

layers with strides of [(2,3),(2,1),(2,2),(2,2)] and kernel size of 5 to generate a feature map

of size 8x12x48. By applying 4 fully connected layers with softmax activation function

we learn the groundings of the predicates corresponding to the four types of objects, i.e.,

O1(X,Y),. . . ,O4(X,Y).

The complete list of predicates for this experiment is listed in Appendix E.

We learn 5 nullary predicates corresponding to the 5 direction of moves (i.e., no move,

left,right,up,down) and use the same policy gradient learning approach as before. The notable

auxiliary predicates in the chosen language are the 4 helper predicates that define bad moves.

For example, badMoveUp() states that an upward move is bad when there is a predator

in the close neighborhood of the agent and in the top row. Similarly, badMoveLeft() is

defined to state that when a predator is coming from left side of an agent, it is a bad idea to

move left.
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Figure 5.9: Asterix game environment example

However, given the complexity of the scene and the existence of some overlappings

between the objects, learning the representation of the state is not as easy as the previously

explored experiments. To help the agent learn the presumed grid presentation, we provide a

set of labeled scene (a semi-supervised approach) and we penalize the objective function

using the loss that is calculated between these labels and the learned representation. Fig.

5.10 shows the learning curve for two cases of the using 20 and 50 randomly generated

labeled scenes. In the case of 50 provided labels, the agent finally learns to score around

30-40K each episodes. Please note that we did not include all the possible objects that

are encountered during later stages of the game and we use a simplistic representation

and language just to to demonstrate the application of RRL framework in more complex

scenarios.
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Figure 5.10: Score during training in Asterix experiment
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CHAPTER 6

DECODING LDPC CODES OVER BINARY ERASURE CHANNELS VIA DNL

6.1 Introduction

It is known that Maximum Likelihood (ML) decoding over a BEC channel can be reduced

to solving a set of linear equations; which can be implemented with the complexity O(ν3)

for ν erased bits in a general case. However, in most practical applications this approach is

infeasible even for moderate length codes. As a result, some forms of iterative algorithms

(based on a message passing algorithm) are often used to obtain a sub-optimal solution for

decoding Low Density Parity Check (LDPC) codes. These iterative algorithms can perform

very close to the optimal ML decoding bounds for sufficiently long LDPC codes. However,

for short length codes, they do not perform as well. Moreover, in real-time applications, it is

desirable to decode the messages in batches to increase the speed. As such, Deep Neural

Networks (DNN), if successful in learning how to decode, with their suitable structures for

batch processing in parallel can prove to be a viable alternative.

In decoding, we have virtually unlimited training examples. Since learning a decoder

is basically a supervised learning task, the application of DNN in designing an efficient

decoder may seem trivial at first. However, there exist several challenges. Even though we

have as many training examples as we need, there are 2m different possible codewords for

a message of length m; which is prohibitive even for a rather short message (e.g., ∼ 100

bits). Thus, the deep network should be able to learn the decoding algorithm instead of

learning just the non-linear approximation as in Multi-Layer Perceptron (MLP) layers.

In most deep algorithm learning tasks, auto-regressive models such as Recurrent Neural

Networks (RNNs) are deployed which allow for recursion through intermediate results, and

consequently learning some kinds of algorithms to solve the problem in an iterative fashion.

For example in [42], the authors successfully employed RNNs to design a very efficient
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decoder for convolutional and turbo codes over additive white Gaussian noise (AWGN)

channels and in [43] the authors proposed a framework for soft decoding of linear codes of

arbitrary length. However, as was shown in [85], typical neural network layers often fail

to learn the exact logical flow in discrete (Binary) arithmetic tasks. This is specially true

for decoding LDPC codes over BEC. In this Chapter, we study the application of the dNL

networks in learning a decoder for LDPC codes over BEC channels. The main idea is to

formulate an iterative message passing scheme for decoding LDPC codes in which, standard

RNN cells are replaced by a multi layer design from the dNL networks. At the end of this

chapter we also discuss another possibility of using dNL framework for decoding LDPC

codes. We will show how the maximum likelihood approach for solving the parity check

equations can be directly formulated via the use of dNL and in particular the differentiable

XOR neurons.

6.2 Message Passing Decoding

In most practical LDPC decoders, a variant of the iterative algorithm is often used. These

iterative algorithms are mainly based on the Message Passing (MP) algorithm. In MP,

a unique message from each variable node is sent to every connected check node in the

forward path. Likewise in the backward path, every check node computes a proper response

message which is sent back to each variable node it is connected to, and hence the name

message passing. Under certain simplifying assumptions, one can view the messages in

the MP algorithm as the belief (i.e., estimated probabilities) of the model regarding the

values of each particular variable node in the graph. Our objective is to employ deep neural

networks to learn an iterative (recurrent) algorithm by exploiting the structure of the parity

check matrix. While by iterating between variable nodes and check nodes, the model learns

some forms of the message passing scheme, we make no probabilistic assumptions and

we let the network learn an efficient iterative algorithm. This allows (at least in theory)

for learning a more complicated model with possible performance improvements over the
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belief propagation scheme. Let H ∈ {0, 1}r×n be the parity check matrix for a length

n regular LDPC code with parameters (dv, dc), i.e., H has dv and dc non-zero elements

in each column and row, respectively. We assign vector Vi ∈ Rdimv , i ∈ {1, . . . , n} to

each variable node and similarly vector Cj ∈ Rdimc , j ∈ {1, . . . , r} to each check node.

Corresponding to the ith variable node at the time stamp t where t ∈ {1, . . . , tmax}, we

define two sets of functions F (t)
i : Rdc×dimv 7→ Rdimc (from the variable node to the check

node) and G (t)
i : Rdv×dimc 7→ Rdimv (from the check node to the variable node). Here, dimv

and dimc denote the dimensions of the representation used in variable nodes and check

nodes, respectively. In soft decoding using belief propagation, the erasure bits are usually

represented by a real valued scalar (0.5). However, we choose the one-hot representations of

depth 3 for each variable node, which is more suitable for our model. In our representation,

the three bit positions in the one-hot vector are correspond to values of ’0’, ’1’, and ’e’

(erasure), respectively. For example, if the bit value is ’0’, the vector is [1, 0, 0]. The

dimension dimc of check-node vectors is a design parameter of the model which controls

the amount of information that can be sent from each check node to variable nodes. We

formulate the recursive formula for each variable node vi at time stamp t+ 1 as:

v
(t+1)
i = G (t)

i

(
V ec(C

(t+1)
i )

)
,where (6.1)

C
(t+1)
i = {C(t+1)

j |H(j, i) = 1, j ∈ {1, . . . , r} } (6.2)

also,

C
(t+1)
j = F (t)

i

(
V ec(V

(t)
i,j )
)

,where (6.3)

V
(t)
i,j = {V (t)

i′ |H(j, i′) = 1, i′ ∈ {1, . . . , n} } (6.4)

where V ec(S) generates a vector by concatenates all the vectors in set S. Further, we can

exclude the intrinsic information (the information that each node already possesses about
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Figure 6.1: Logical functions used in forward/backward operations

itself) as in the BP algorithm, i.e.

V
(t)
i,j = {V (t)

i′ |H(j, i′) = 1, i′ ∈ {1, . . . , n}, i′ 6= i } (6.5)

However, our experiments later showed that although using extrinsic information slightly

increases the speed of the convergence, it has no significant effect on the network perfor-

mance and the model can learn the desired algorithm regardless. we design the functions

F (t)
i (·)’s and G (t)

i (·)’s as it is depicted in Fig. 6.1.
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For training, we define the loss function at time t as the average softmax cross-entropy

between the estimated values of the variable nodes and the correct codeword vector, both

represented as one-hot vectors of length n and depth 3, i.e.

L(t) = − 1

n

n∑
i=1

3∑
b=1

xib log(v′
(t)
ib ) , v′i = softmax(vi) (6.6)

We may consider these options for designing the forward and backward function sets

(i.e. (6.4) and (6.2)):

• Option 1: Use the same two functions F (·) and G (·) for all the time stamps and

variable nodes, i.e. sharing the weights across both dimensions.

• Option 2: Share functions across the time dimension but use different functions

F i(·)’s and G i(·) for each variable node.

• Option 3: Do not share at all, i.e., choose different functions F (t)
i (·)’s and G (t)

i (·)’s

for different time stamps and different variable nodes.

Although Option 1 may seem to be the most rigid and inflexible of all, our experimental

results surprisingly show that its convergence speed is the fastest among the other options.

While it requires a significantly fewer number of trainable parameters, it offers the best

overall performance specially for the case of regular LDPC codes. For irregular LDPC codes,

Option 2 provides more flexibility over the first option and performs better. Sharing weights

across the time dimension facilitates learning a repetitive algorithmic task. In particular,

instead of training the model using a large number of iterations (time stamps), we can train

using only a few iterations and let the model learn a recursive algorithm. Consequently, both

Options 1 and 2 provide good generalizations. Moreover, it allows to limit the number of

iterations (to increase the training speed and reduce complexity) in the training phase while

running the model for many more iterations in the test time to obtain much improved results.

On the other hand, although Option 3 performs well when tested for the exact number
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of training iterations, its accuracy cannot be improved by iterating beyond the number

of training iterations because the weights are not shared across time. As such, Option 3

performs relatively poor.

When the number of iterations in the training phase is small (i.e. tmax < 3), we can

train the model by minimizing L(tmax). However, when the number of iterations is large,

this approach usually leads to no convergence or very slow convergence specially at the

beginning of the training. To cope with this problem, in the beginning of training, we must

include the loss functions from all the time stamps but then gradually remove the effect of

the earlier time stamps in the loss function:

L =
tmax∑
t=1

α(tmax−t)L(t) (6.7)

where the value of α is reduced from 1 to 0 gradually as we progress in the training.

6.3 Experiments

We use Gallagher algorithm[86] for creating random parity check matrices used in our

experiments. In order to avoid over-fitting, instead of repeating the training samples, for

each training batch we create a new set of randomly generated codewords in which each bit

is erased independently with the probability ε. In all the experiments we use batch size of

100 codewords and we train the model using ADAM [63] optimizer with the learning rate

of 0.003. The dimensions of XOR and AND (conjunction) layers in designing F (t)
i ’s and

F (t)
i ’s are set to 100 and we use dimc = 30.

6.3.1 Performance

Fig. 6.3 depicts the decoding performance in terms of the average number of decoding errors

per bit (BER) and also the average number of block (frame) errors (FER) for a half-rate

regular (3, 6) LDPC code of length 48, and compare it to the results of the belief propagation
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(BP) algorithm. Here, we train the model (by sharing all functions according to Option 1)

using only 3 iterations (i.e. tmax = 4). After the training finished (model converged), we

test the model using 10 iterations for the total of 100k randomly selected testing codewords.

For the BP algorithm, we evaluate the performance using 50 iterations. As it is apparent

from Fig. 6.3, our proposed model outperforms the BP algorithm for the (3,6) regular LDPC

code. While the results are shown for a typical randomly generated code, we obtained the

same level of performance improvements for all the test cases. As we increased the code

length from 48 to values above 132, we noticed that while our model achieves its optimal

results using significantly fewer iterations than BP, the performance gap between the two

methods reduces for higher lengths.

6.3.2 Generalizations

In most of approaches based on deep neural networks, while the models are usually able to

outperform the classical approaches, the generalization is limited and the models must be

re-trained for each particular different settings. In contrast, our proposed decoder model

using a recurrent neural logic layer scheme is able to generalize very well under various

settings and situations for which it has not been trained. To demonstrate this, we randomly

generate three half-rate codes with parity check matrices H1 and H2 of code length 48 and

H3 of code length 132. We trained the model using only H1 for erasure probability ε = 0.2.

Then, we tested the model generalization. Specifically, our model can generalize well for 3

variations:

1. Erasure Probability: We trained the model using only one specific erasure probability

and evaluate its performance under different erasure probability settings. As it is

apparent from the first row of Table 6.1, the decoder performance when tested for

ε = 0.3 does not depend on whether the model has been trained on ε = 0.3 or ε = 0.2.

2. Parity Check Matrix: More importantly, our model is not dependent on the specific

code that is used in the training as long as we are using codes with similar (dv, dc)
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(a) Convergence

(b) Bit Error

(c) Block Error

Figure 6.2: Performance comparison between the neural logic decoder and BP
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parameters. As it is depicted by the second row of Table 6.1, the model that has been

trained for H1 still provides very good performance when it is used for evaluating the

code associated with H2.

3. Code Length: This means that we can train the model using a smaller code size

and the model can generalize well under larger code lengths if other parameters of

the code remains the same. Since the dimension of the learnable functions only

depends on the weight degrees (i.e., (dv, dc)) of the LDPC code, the same model can

be used in different code lengths. In particular, as the third row of Table 6.1 shows the

performance of the model trained on a (48, 24) LDPC code when tested on a (132, 66)

code is only slightly less than the optimal performance for a model that is trained

specifically for the latter code.

Table 6.1: Evaluating the generalization performance of the model

Train Setting Test Setting
Test Generalization
Performance (BER)

Test Optimal
Performance (BER)

H1, ε = .2 H1, ε = .3 0.01480 0.01476
H1, ε = .2 H2, ε = .3 0.00891 0.00832
H1, ε = .2 H3, ε = .3 0.0014 0.0013

6.3.3 dNL vs MLP

To compare the performance of MLP and dNL we design the feed-forward functions F and

G first using a 3 layers MLP architecture (LDPC-MLP) and for the second model using dNL

architecture (LDPC-dNL). Table 6.2 summarizes the layers dimension and type/activation

functions used in each model. We tried various settings and dimensions and number of

layers and picked comparable settings in terms of the number of weights used in each model

(see Table. 6.2). In both models, we generated random codewords for a regular LDPC(3,6)

code of length 48 for each training epoch and set the number of message passing iteration to

2. (tmax = 2). For the test data, we ran the trained model for many more iterations to see

how much each model has generalized and learned the iterative algorithm. We used erasure
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probability of ε = 0.2 in training and we tested the models for different erasure probabilities.

Fig. 6.3 depicts the performance of each model in terms of bit error probability (BER)

of the two models for ε = 0.4. As one may expect, the model based on MLP performs

better and generate lower BER for the t = 2 since the models were trained using the same

setup and MLP is in general more flexible and can reduce the cost function more efficiently.

However, increasing the number of iterations in test time not only does not improve the

accuracy for MLP based model, it even degrades the performance for t > 3. On the other

hand, the model based on dNL performs only moderately for t = 0, however, as the number

of iterations increases, the performance improves significantly as one might expect from

a message passing algorithm. In other words, the rigid structures of the dNL architecture

while may seem limiting on the surface, it allows for learning discrete algorithms much

more efficiently and can generalize better.

Table 6.2: Design parameters for functions F and G

Function Dimensions Type/Activation
MLP : F 100,30 relu,sigmoid
MLP : G 100,100,60 relu,relu,sigmoid
dLN : F 100,30 XOR,CONJ
dLN : G 200,100,6 XOR,CONJ,DISJ

6.4 ML decoding of LDPC over BEC via dNL

It can be shown that the decoding of the LDPC codes over erasure channels such as BEC

can be reduced to solving a set of linear equations in GF(2). For a received codeword of

length n with ν erased bits, this problem can be solved by methods such as Gauss Jordan

elimination using GF(2) arithmetic. Let’s consider a regular LDPC code of length (n, k)

with parameters (dv, dc). The set of k parity check equations for a received codeword x can
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Figure 6.3: Performance comparison between the dNL and MLP for iteratively decoding
LDPC codes over BEC channel

be expressed as :

xi1 ⊕ xi2 ⊕ · · · ⊕ xidc = 0 for i = 1, . . . , k

where xij ∈ {x1, . . . , xn} (6.8)

Authors in [87] among others have shown that a set of nonlinear equations can be effectively

solved using neural networks by method of gradient descent. However, we cannot directly

use this method for solving the equation (6.8). In Chapter 1.1, we show that by introducing

a set of mask vectors comprised of the {−1, 1} elements, we can transform the parity check

equation from GF(2) into a real domain equation of degree dc. More precisely, we showed

that for a vector y of length l = 2p , we can define p mask vectors {M1, . . . ,Mp} such that
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:

M1 = {M11, . . . ,M1l} ,M1i =


1 , if i < p

−1 , else
(6.9)

Mj = Mj−1 ≪ 1 for j ∈ {2, 3, . . . , p} (6.10)

where ≪ 1 denotes a one element left circular shift operation. As such, the GF(2) equation

of y1 ⊕ y2 ⊕ · · · ⊕ yl = 0 is translated to real domain as:

p∏
i=1

(Mi � y) = 0 (6.11)

By combining the results of (6.11) and (6.8), we now have shown that the parity check

equations can be transformed into k equation of degree dv in real domain. For any received

codewords c of length n with ν erased symbol, we also have a set of n− ν equations of the

form xi − ci = 0. Let Vj be any of the k + n− ν described equations , similar to [87] we

can define a cost function of the form :

L =
k+n−ν∑
i=1

1

2
V 2
j (6.12)

and by methods such a gradient descent solve this erasure equation iteratively. Further,

because we know the solution of any of the erased bits would be from the set of 0 and 1

elements, we can add a penalty term to encourage the weight vectors to be close to either 0 or

1 to avoid unwanted solutions to the nonlinear set of equations. To compare the performance

of the proposed decoder (dNL-XOR decoder) to the standard BP algorithm, once again

we use a (3,6) regular LDPC code of length 48. As it is shown in Fig. 6.4, the proposed

dNL-XOR decoder outperforms the BP algorithm and reaches the accuracy of between 2 to

3 times of the BP decoder.
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(a) Bit Error

(b) Block Error

Figure 6.4: Performance comparison between the dNL-XOR decoder and BP
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CHAPTER 7

INDEPENDENT COMPONENT ANALYSIS USING VARIATIONAL

AUTOENCODER FRAMEWORK

7.1 Introduction

One of the biggest challenges in unsupervised machine learning is finding nonlinear fea-

tures from unlabeled data. In the general nonlinear case, there has been some successful

applications of the deep neural networks in recent years. Multi-layer deep belief networks,

Restricted Boltzman Machine (RBM) and most recently, variational autoencoders are some

of the most promising new developments. Independent component analysis (ICA) is one

of the most basic and successful classical tools in unsupervised learning which has been

studied extensively during the early years of 2000s. For the simplest case of linear ICA

without the presence of noise, this problem has been solved and the conditions for the

identifiability of independent components has been well established [45]. However, for

the more general form of the problem where the independent features (sources) are mixed

using nonlinear transforms and specifically in the presence of noise, there has been little

success. In recent years, the problem of learning ICA from the nonlinear mixtures (and

similar related problems) has been addressed in works such as [46, 47]. In particular, in[47]

the Adversarial Nonlinear Independent Component Analysis (Anica) algorithm was pro-

posed which is an unsupervised learning method based on Generative Adversarial Networks

(GAN)[48]. This method has shown to outperform the state of the art for the linear and

nonlinear source separation tasks. Anica uses a simple non-probabilistic encoder/decoder

network to obtain the components and the independence among components is encouraged

via a GAN objective. This adversarial network compares the samples from the encoder to

the output of a trainable generative model or alternatively to the samples obtained from

the approximate product of marginals. Despite presenting good results, Anica has some
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shortcomings. The main problem is the one common among most GAN based approaches.

It is usually very tricky to find a balance between the two objectives (corresponding to the

discriminator and generator network) for a GAN network. As such, this method requires

many trials and extensive parameter search to find the right balance for weights. Further,

the loss function does not always correspond to the independence and hence, the accuracy

of finding independent sources fluctuates almost constantly. As such, there is no obvious

method for picking the right answer in an unsupervised manner from the values of the loss

function. Thus, the reported maximum correlation found from the training is not a good

indicator for the performance of unsupervised method. Furthermore, the ICA model used

in Anica does not consider an additive noise. Thus, as we will also show by experiments,

Anica is not robust to noise and its performance drops significantly for noisy mixtures.

The problem of linear ICA in the presence of noise has been studied in [49, 50, 51,

52, 53] among others. Some of the most successful approaches (e.g. [52, 53]) use the

Mean-Field variational Bayesian framework to solve the linear ICA in a Bayesian setting.

However, these approaches are usually very slow and have very limited applicability even

for the linear case. In this chapter, we adopt the well established Variational AutoEncoder

(VAE)[88] framework to formulate the problem of nonlinear ICA in the presence of additive

independent Gaussian noise. We use a technique similar to the one proposed in [47] to obtain

approximate samples from the product of marginals. Further, we introduce an auxiliary

objective which encourages the independence of the components without the need to train a

separate GAN network. In the next section we will formulate the problem and propose a

new algorithm for solving nonlinear noisy ICA.

7.2 Proposed Method

We consider the nonlinear ICA in the presence of Gaussian noise. We formulate the problem

as follows: The observed measurements are M−dimensional signals x(t), t = 1, . . . N .

Similarly, let s(t), t = 1, . . . N be N data points from M mutually independent sources
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sj, j = 1, . . . ,M . We assume the measurement signals x(t) be the instantaneous nonlinear

mixing of the source components s(t)
j corrupted by an independently distributed white

Gaussian noise e,

x(t) = F(s(t)) + e(t), (7.1)

where F : <M → <M is a nonlinear mixing function. Even though we defined the problem

using the same number of components for the source and the mixture, it is easy to extend to

the more general form as well. In most probabilistic frameworks for solving ICA, a family

of super Gaussian distributions is used for the independent components. In our model, to

increase the flexibility, we use Gaussian mixture distribution to model the probability density

function of each independent components, i.e.

p(s) =
M∏
i=1

p(si) where, p(si) ∼
Ki∑
j=1

πijp(si|µij, σij),

p(si|µij, σij) =
1√

2πσij
2
e
− 1

2

(si−µ
i
j)

2

σi
j
2

,

where Ki is the number of components of i mixture and πij’s are the mixing proportions.

The linear case of the noisy ICA problem has been investigated in [53] among others.

Because of the intractability of the posterior, in these approaches, the approximate inference

is usually performed via variational mean-field techniques. However, such methods are

very slow and inefficient since there is a need for an iterative inference scheme such as

Markov Chain Monte Carlo (MCMC) per data point. Ideally, we would like to estimate the

source components s given the observed measurements x via maximum marginal likelihood

method, i.e.:

Θ̂ = argmax
Θ

log p(X) = argmax
Θ

N∑
t=1

log p(x(t)) (7.3)
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Assuming a latent variable model, the variational lower bound for p(x) can be written as:

log p(x) ≥ Eq(s|x)

[
log p(x, s)− log q(s|x)

]
= L(x; Θ), (7.4)

where Θ indicates the parameters of the model. In [88], it was shown that by using the

Stochastic Gradient Variational Bayes (SGVB) algorithm, the approximate inference can

be performed efficiently by maximizing the variational lower bound L via the reparam-

eterization trick. In this framework, the approximate posterior q(x|s) (which is usually

parameterized via neural networks) has to meet two requirements: 1) It should be easy

(efficient) to obtain samples from. 2) It should allow for reparameterization trick [88]. In

practice, usually a distribution from ’location-scale’ family and particularly the Gaussian

distribution is used to model the approximate posterior. The SGVB algorithm enables us to

tackle the noisy ICA problem as stated in (7.1), much more efficiently than the classical vari-

ational mean-filed techniques. In the following we show how to adopt the VAE framework

for the task of identifying independent components from a noisy nonlinear mixture.

7.2.1 Encoder

In the VAE framework, the prior distribution is usually assumed to be a parameter-less

standard Normal distribution and the posterior is approximated with a multivariate Gaus-

sian distribution. However, since in our model, the prior can be an arbitrary distribution

(approximated with mixtures of Gaussian), we need the posterior approximation q(s|x)

to be very close to the actual posterior p(s|x). One way to accomplish this, is to use the

framework of normalizing flows (e.g. Normalizing Flows[89], Inverse autoregressive flows

[90]) which provides a general strategy for flexible variational inference of posteriors over

latent variables. In these approaches, a simple base distribution is modified using an easily

invertible transformation. In our experiments though, this method did not yield any notice-

able improvements and in many cases degraded the performance. Alternatively, we use a

mixture of Gaussian latent variable scheme which is proved to be a viable solution for the
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proposed ICA framework. In particular, by introducing the latent variable y, we define the

variational model such that:

q(y, s |x) = q(y |x) q(s | y,x) (7.5a)

qφ(y |x) = Cat(y|πφ(x)) (7.5b)

qφ(s |x, y) = N
(
s
∣∣µφ(y,x), diag(Σφ(y,x)

)
, (7.5c)

where φ indicates the set of all the variational parameters. Similarly, θ indicates the set of all

generative parameters. Further, Cat is short for categorical distribution. It is worth nothing

that we incorporate the latent variable y only for the variational approximation model and

for the generative model we assume x only depends on s and e as we will see next.

7.2.2 Decoder

In a typical VAE framework, the generative model is usually defined as p(x) = pθ(s)pθ(x|s)

(see Fig. 7.1a). In this framework, pθ(x|s) (usually referred to as the decoder) is assumed

to be a function of the latent variable. For example, in cases where x is continuous data,

pθ(x|s) is modeled via a multivariate Gaussian distribution whose covariance matrix and

mean vector are neural functions of the latent variable. However, the generative model used

in our proposed noisy ICA (see Fig.7.1b) is different and we assume the observation vector

x is generated by two independent random processes s and e. Further, we have:

Pr(x = x(i)|s = s(i)) = Pr(x = F(s(i)) + e(i)|s = s(i)) (7.6a)

= Pr(e = x(i) −F(s(i))), (7.6b)

where F is the nonlinear mapping in (7.1). In the VAE framework, this can be interpreted

as learning a posterior distribution whose mean is a function of latent variable. However,

other parameters (for example the covariance matrix in the case of multivariate Gaussian
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(a) VAE model (b) Noisy ICA Model

Figure 7.1: Graphical Models used in VAE vs Noisy ICA

distribution) are trainable but are independent of the latent variables, i.e.

pθ(x|s) = N (x|µ = F(s),Σ = Σeθ),

where Σeθ is the covariance of additive Gaussian noise. The above feature is a very important

distinction of our model compared to the traditional VAE. Indeed, as we will show in the

experiments, if we do not restrict the covariance Σeθ to be fixed for all the data points

and let it be a function of latent variables (as in VAE), the model completely fails to learn

independent components.

7.2.3 Learning Algorithm

Given the proposed probabilistic framework, the variational lower-bound of the model can

be expressed as:

L(x, y) = -Eqφ(y,s|x)[log pθ(x|s) + log pθ(s)− log qφ(y, s|x)] (7.7a)

L(x) = −
∑
y

qφ(y|x)
[
L(x, y)

]
(7.7b)
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Even though we thus far have not explicitly enforced the independence among latent

components, our experiments show that simply by minimizing the variational objective

L(x), in most cases our model is able to find the independent components in a variety

of tasks. However, in some cases, specially in the presence of added noise, the model

may fail to converge. Further, in some cases, the model converges to a good result but

at some point it diverges from the desired objective even though the loss function is still

decreasing. As suggested by [47], we obtain approximate samples from the product of

marginals, i.e.
∏M

i=1 p(si), by uniformly sampling from the model’s estimate of the s

(maximum likelihood estimate). In this method, assuming we obtain a sample (s
(i)
1 , . . . , s

(i)
M )

from the joint distribution of the posterior, i.e., p(s1, . . . , sM)|x(i)), an approximate sample

from the marginal distribution p(si) can be obtained by discarding all other variables from

the joint sample. In summary, this resampling process involves:

• Let S ∈ <K×M be K samples from the joint distribution where K > M .

• Let u be a vector of M indices uniformly sampled from {1, . . . , K}.

• Construct the resampled ŝ such that ŝi = Sui,i.

To ensure the independence, we need to have
∏M

i=1 p(si) = p(s1, . . . , sM). Although,

all the samples and the resampled versions are obtained from a conditional distribution, if

we select a very large set of samples (in our experiments we use all available samples from

the training set), the samples can be approximately considered to be generated from the

prior distribution pθ(s). As such, we define an independence objective Lind as:

Lind =
1

N

∣∣∣∣ N∑
i=1

log pθ(s = s(i))−
N∑
i=1

log pθ(s = ŝ(i))

∣∣∣∣ (7.8)

We cannot combine this objective with the variational objective since the independence

criterion requires a much larger batch size. Further, we can optimize this objective separately

and less frequently than the variational objective and by excluding the parameters of the
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Figure 7.2: Block diagram of the noisy ICA model

prior distribution from the gradient. Algorithm 2 summarizes the proposed method for

learning the nonlinear noisy ICA.

Alternative, we can use an adversarial objective similar to Anica algorithm. In our

experiments both approaches resulted in similar performance. Fig. 7.2 shows the overall

diagram of the proposed algorithm.

7.3 Experiments

We have implemented1 the proposed noisy ICA model using the Python and Tensorflow [91]

library. In all the experiments, we set the number of components for the source mixtures

to 10 and for the posterior mixture we use 6 components. In most of the experiments, we

1The source code for the experiments is available at https://github.com/apayani/
NonLinearNoisyICA

Algorithm 2: Noisy nonlinear ICA (VAE-nICA)
Data: X ∈ <N×M
Result: S ∈ <N×M

1 for iter = 1 to itermax do
2 Sample small batch Xsmall from X
3 update φ and θ to minimize L
4 Sample large batch Xlarge from X
5 obtain S as the mean of posterior
6 Obtain Ŝ by uniform and independent resampling from S
7 update θ \ θprior to minimize Lind
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Figure 7.3: Six synthetic sources used in our experiments

found out that changing the number of components has little effect on the overall score but

using more components usually increases the speed of convergence. We trained the model

using ADAM [59] optimizer and we chose different learning rates for the two objectives;

0.001 for the L and 0.0001 for the Lind. In addition to the independence objective (7.8 we

also implemented a few similar objectives as well as the GAN objective used in [47]. In

most cases, the proposed variational noisy ICA approach (VAE-nICA) could read an optimal

solution even without the use of any independence objective. However, in cases where we

were dealing with noisy measurements, the independence objectives were beneficial. We

use batch size of 500 samples and we perform the experiments using the same synthetic data

that was used in [47]. This dataset contains 6 independent sources as shown in Fig. 7.3. We

use 3 different models for creating the mixtures:

• Linear Mixture: we form a linear mixing matrix by randomly drawing its elements

from [−5, .5]) and we apply a linear transformation.

• Post Non-Linear (PNL) Mixtures: this mixture is formed by applying a hyperbolic
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tangent activation function to the output of a linear mixture.

• Multi-Layer Nonlinear (MLP) Mixtures: formed by cascading multiple (two) PNL

mixtures.

Finally, similar to the [47], we report the maximum correlation score to evaluate the

performance of each ICA algorithm.

7.3.1 VAE-nICA vs VAE

As we stated in previous section, imposing the noisy ICA model would lead to a restriction

in formation of the decoder. In particular, for the conditional Gaussian encoder, unlike the

VAE, we have to learn the parameters of the covariance matrix, independent of the latent

variables. To demonstrate the importance of this simple distinction, we modify our model to

allow for learning the covariance matrix of the p(x|s) as a function of s similar to the VAE

model. In Fig. 7.4, we have compared the performance of the VAE-nICA to the VAE model.

The VAE-nICA easily converges to the correct solution. In contrast, the VAE model fails to

converge for this simple linear mixing problem.

7.3.2 Performance

Table 7.1, compares the performance of our proposed method to Anica as well as FastICA

for the three different mixture tasks. In all cases the proposed VAE-nICA outperforms the

other two.

7.3.3 Robustness to Noise

Fig. 7.5 shows the performance scores of Anica and VAE-nICA over training data. In this

experiment, we evaluated the performance of each model for the linear separation problem

in two cases; 1) without noise 2) with a white Gaussian noise (σ = 0.05). Although we

have not shown all the epochs, for the noiseless case, Anica reaches the optimal solution

after many more epochs. However, for the noisy case, it starts to learn but at some point
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Figure 7.4: Comparing the performance of standard VAE vs VAE-nICA

Table 7.1: Maximum correlation results for the 3 different types of mixings; Linear, PNL
and MLP.

Method Linear PNL MLP

Anica 0.9990 0.9793 0.9673
FastICA 0.9998 0.8327 0.9173

VAE-nICA 0.9999 0.9869 0.9834

the model diverges. In contrast, VAE-nICA reaches the optimal solution much faster in the

noiseless case. Further, for the noisy case, VAE-nICA outperforms the Anica. Table 7.2,

compares the overall best scores obtained by the two methods for the 3 different levels of

noise.

Table 7.2: Maximum correlation results for the linear mixing problem in the presence of
white Gaussian noise with three different σe.

Method σ2
e = 0.0 σ2

e = 0.03 σ2
e = 0.05

Anica 0.99 0.82 0.78
VAE-nICA 0.99 0.91 0.85
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(a) Anica

(b) VAE-nICA

Figure 7.5: Comparing the performance of VAE-nICA vs Anica in the presence of noise
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CHAPTER 8

CONCLUSION

8.1 Summary of Achievements

In this dissertation a novel paradigm for learning algorithmic and discrete tasks via Deep

Neural Networks (DNN) was introduced. The aim of this paradigm is to bridge the gap

between the standard DNNs and the explanatory AI disciplines such as logic programming.

While DNNs offer impressive performance, their learning is usually implicit and is hard to

decipher. On the other hand, logic programming provides easy to interpret hypothesises

but has a limited scope and cannot be easily applied to the more complex domains such

as images and other multidimensional data. At the heart of this proposed paradigm is a

new neural network model for learning and representing Boolean functions in an explicit

manner. Unlike traditional multi-layer neural networks, the differentiable Neural Logic

network (dNL) was specifically designed for learning Boolean functions. In this dissertation,

the applications of dNL in various domains, including inductive logic programming and

relational reinforcement learning, as well as discrete algorithmic tasks such as decoding

LDPC codes over binary erasure channels was studied. In the following, the contributions

of the thesis are summarized.

In Chapter 2, we introduced the basic design of the differentiable Neural Logic (dNL)

networks. In particular, we demonstrated how by introducing the concept of membership

weights and by using a minimal number of training weights, the logical conjunction and

disjunction functions can be implemented as multiplicative neurons. These novel neurons

can be stacked and arranged in a multi-layer design, similar to the perceptron neurons to

learn and represent the Boolean DNF (Disjunctive Normal Form) and CNF (Conjunctive

Normal Form) functions. We further introduced a novel multiplicative neuron for learning

and representing the exclusive-OR logical function and we proved the correctness of its
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mathematical model. Further, via experiments such as learning arbitrary Boolean DNF

functions, XOR logic, binary arithmetic and Grammar verification, we showed its superior

performance to the standard neural networks in certain Boolean and discrete algorithmic

tasks.

In Chapter 3, we focused on the explanatory aspect of the proposed dNL networks.

In particular, we demonstrated that by exploiting the explicit representation of Boolean

functions in dNL, we can formulate the ILP as a satisfiability problem. We showed that

by using the fuzzy relaxation of this satisfiability problem, we can translate ILP into a

differentiable neural networks which can be optimized via standard gradient based learning

techniques. It is well known that the need for using program templates to generate a limited

set of viable candidate clauses in forming the predicates is the key weakness in all the

past ILP systems, severely limiting the solution space of a problem. In this chapter, we

showed that unlike past solvers, the proposed differentiable neural ILP solver (dNL-ILP) can

learn arbitrary complex predicates without the need for specifying any rule template. Using

various experiments we showed that the proposed dNL-ILP outperforms past algorithms

for learning algorithmic and recursive predicates. In particular, we demonstrated that the

flexibility of dNL-ILP solvers makes it possible to learn very complex recursive formula for

algorithmic tasks such as sorting.

In Chapter 4 we examined the application of dNL-ILP in learning from uncertain and

ambiguous data. We demonstrated that unlike past neural solvers such as dILP [27], dNL-

ILP is scalable to handle large scale problems and is capable of learning from uncertain

and ambiguous relational data. In particular, we showed that dNL-ILP outperforms the

state of the art ILP solvers in classification tasks for relational datasets including benchmark

tasks such as Mutagenesis, Cora and IMDB. Moreover, via experiments we showed that

the differentiable aspect of dNL-ILP allows for combining standard neural network with

dNL-ILP to handle continuous data. We provided two approaches to handle continuous

data. In particular, we showed that we can learn the decision boundaries using an end-to-end
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framework to translate continuous data into a series of binary predicates. Alternatively,

we showed that using the dNL-ILP framework we can learn the distribution of continuous

data and we successfully applied this concept in the DREAM4 gene regulatory network

experiment.

Unlike past ILP solvers, the dNL-ILP is a differentiable neural network that can be

combined with other neural network layers and can be used in an end-to-end neural network

design. In Chapter 5, we proposed a novel deep Relational Reinforcement Learning (RRL)

model based on the differentiable dNL-ILP that can effectively learn relational information

from image. We showed how this model can take the expert background knowledge and

incorporate it into the learning problem using appropriate predicates. The differentiable ILP

allows for an end-to-end optimization of the entire framework for learning the policy in

RRL. We examined the performance of the proposed RRL framework using environments

such as BoxWorld and GridWorld. In particular, we demonstrated that by employing this

novel approach, we can solve some problems involving very complex reasoning orders of

magnitude faster than the state of the art reinforcement learning techniques such as A2C.

In Chapter 6, we studied the generalization performance of the dNL by considering

their application in decoding LDPC codes over binary erasure channels. In this chapter, we

formulated a general message passing algorithm and we employed functions consisting of

the elements from dNL as building blocks for transmitting messages between variable nodes

and check nodes. We demonstrated that the design via dNL leads to superior generalization

compared to the DNNs counterpart. We further exploited the differentiable exclusive-

OR function of dNL (i.e., dNL-XOR) to directly solve the parity check equations via

transforming it into a differentiable set of equations. The consequent equations are then

solved via standard gradient techniques.

Finally, in Chapter 7, we studied the application of variational autoencoders in learning

the Independent Component Analysis (ICA). ICA is one of the most basic and successful

classical tools in unsupervised learning which has many applications in various fields.
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While for the linear case there is an extensive body of research and a variety of successful

algorithms exist, there are very few effective algorithms that can tackle the problem for

the general nonlinear case in presence of noise. In this chapter, we formulated the general

non-linear ICA with the additive Gaussian noise via employing a variational autoencoder

framework. The properties of the new proposed ICA framework was analyzed. In particular,

we demonstrated that it has superior performance and is more robust to the noise compared

the state of the art algorithms such as Anica [47].

8.2 Future Research Directions

8.2.1 Incorporating Human Preference and Safe AI

Traditional RL depends on a well defined reward function that fully describes the objective

of a problem. This approach has been successfully applied in various game scenarios (e.g.

Atari games) where the reward is simply defined by the success at the end of an episode

(game) or by the scores gained during the game. Unfortunately, many tasks involve complex

goals for which it is difficult to define a reward function. This difficulty has raised concerns

about misalignment between our values (preferences) and the objectives of the RL systems

[92, 93, 94]. A viable but costly approaches have been proposed by [95, 96, 97, 98, 99];

using feedbacks from human overseers to define/modify the reward function. Apart from

the cost, these approaches have various limitations. For example, they do not necessarily

cover all the cases of preferences since rare phenomena may not be discovered during most

of the training episodes. Moreover, in the context of safe AI, the above approaches do

not prevent the agent from doing something harmful during the training or after. In other

words, an intermediately learned policy executed by a robot (or a self-driving car) may

break the system or harm the environment. Another example is Microsoft’s chatbot which

reproduced thousands of offensive tweets before being taken down. In general, the goal of

safe reinforcement learning is to maximize system performance while minimizing number

of safety constraint violations during the learning and deployment. Safe RL has been studied
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in the past [100, 101, 102, 103, 104, 105, 106] primarily using two types of approaches:

• Modifying the optimization criterion with a safety constraint.

• Incorporating external safety knowledge to avoid dangerous states in exploration

strategies.

However, these solutions are inadequate and are applicable to the systems with very simple

dynamics.

Given the expressiveness and explicit form of the relational language, our ILP based

RRL provides a natural platform for learning from human preferences. To clarify the above

concept, consider an abstract example where the human preference is defined as following.

The agent must take Action 1 if the current state is 1. Further, if the current state is 2, the

agent must take action 2. For all other states, the agent needs to learn the correct actions

according to the desired goal. To solve the above learning problem, traditional approaches

would need supplementary overseers feedbacks to enforce for human preferences in states

1 and 2, which is not only costly for implementation (in general learning problems) but

also possibly lacking some of the human preferred cases (e.g., the less frequent cases). In

contrast, in our ILP based RRL framework, we can use a relational program such as ’Action1

← (state=1) or (learnedAction=1)’, and also ’Action2← (state=2) or (learnedAction=2)’;

where the learnedAction is the target predicate that our ILP program learns. As such,

the above clauses will enforce the agent to take action 1 or action 2 when the current detected

states are 1 or 2, respectively. Otherwise (i.e., in other states), the agent will act according

to the learned predicate learnedAction. This abstract example demonstrates how by

using the explicit representation of an state, we could coerce the agent into learning specific

type of actions instead of indirectly learning such preferences from the ambiguous reward

functions.

In Chapter 5, we explained that the proposed RRL framework using dNL-ILP solver is

capable of incorporating biases through the use of language. As such, we will investigate
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(a) Distribution change[107] (b) Avoiding side
effects[107]

Figure 8.1: Grid World environments for safe AI

the application of the proposed framework in designing safe AI and also incorporating

human preferences through the use of predicate logic. We will explore various ways of

avoiding certain states, or taking particular actions based on the current state of the system

through designing appropriate predicate language to account for such circumstances. For

the evaluation, we may use the basic framework of the Grid World environment. As in

[107], we can evaluate several problems related to safe-AI and human preferences by

tweaking this simple environment and defining different objectives. Fig. 8.1 shows two

environments designed for evaluating the impacts of distribution change and avoiding side

effects. In Fig. 8.1a, the agent (i.e., denoted by A) is tasked to reach the goal (G) while

avoiding obstacles (red lava). In this task, the distribution of the lava on the grid in testing is

different from the training. The agent will be successful in testing only if it could learn the

concept of hazardous lava as blocks for red colored boxes instead of just relying on avoiding

certain locations based on the distribution of lava in the training data. Fig. 8.1b shows an

environment that evaluates the agent’s ability to avoid side effects. Here, the side effect is

quantified by relocation of the box X while agent A is approaching its goal G. The agent

may choose the shortest path by pushing the box X down. However, by choosing this path,

the box X cannot be pushed back to its original location. Agent needs to push the box X to

the right in order to push it back to the original position before heading to the goal. We will

investigate these tasks and other similarly defined tasks to investigate our solutions to safe

AI and incorporating human preferences via the proposed RRL framework.
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APPENDIX A

PROOF OF THEOREM 1

Proof. First consider that for the case where the number of ′1′s in x is odd (i.e. XOR(x) =

1), none of the functions fi(x) can be equal to zero since the sum of odd number of elements

from the set {−1, 1} cannot be zero. Therefore, the statement in (2.7a) is true due to (2.7b).

Now consider the case that XOR(x) is zero. We must show that at least one of the k

functions fi(x) would be equal to zero in this case. Let Mi ∈ {−1, 1}n be the vector of

coefficients for fi(x) and s be the number of ones in the input vector x. Further, for any

fi, let n(1)
i and n(−1)

i be the number of corresponding 1 and -1 coefficients that matches the

positions of elements of ’1’ in vector x. We notice that the sign of exactly two elements in

Mi and Mi+1 changes when we go from fi(x) to fi+1(x) and those signs remain unchanged

in the next set of functions. As we have k functions and s ≤ 2k, this would guarantee that

the sign of the coefficients corresponding to ’1’ elements changes exactly once in the set of k

functions. Thus, in one of the functions, let’s say the one corresponding to the jth coefficient

vector we would have n(1)
j = n

(−1)
1 and n(−1)

j = n
(1)
1 which means fj(x) = −f1(x). Since

the difference between each consecutive fi can be zero or ±2, this guarantees that at some

point one of the fi’s (1 ≤ i ≤ j) should be equal to zero.

In the above arguments we assumed n is an even number. However, if n is an odd

number, we can modify it to the n+ 1 problem by appending an extra ’0’ entry to the input

vector x. Since ’0’ has no effect on the results of XOR, the above arguments still hold.
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APPENDIX B

BOXWORLD EXPERIMENT DETAILS

For the problem consists of n box, we need n+1 constants of type box (note that we consider

the floor as one of the boxes in our problem definition). Additionally, we define numerical

constants {0, . . . , n} to represent box coordinates using in posH and posV predicates. For

the numerical constants we define orderings via extensional predicates lt/2 and inc/2.

For the box constants, we define two extensional predicates same/2 and isBlue/1.

Here, by p/N we mean predicate p of arity N (i.e., p has N arguments). Since these are

extensional predicates, their truth values are fixed in the beginning of the program via the

background facts. For example, for predicate inc/2 which defines the increment by one for

the natural numbers, we need to set these background facts the beginning: {inc(0,1),

inc(1,2),...,inc(n-1,n)}. Similarly, for the predicate lt (short for lessThan)

this set includes items such as {lt(0,1), lt(0,2),...,lt(n-1,n)}. It is worth

noting that introducing predicates such as isBlue for boxes does not mean we already

know which box is the blue one (the target box that needs to be first box in the stack). This

predicate merely provides a way for the system to distinguish between boxes. Since in our

learned predicates we can only use symbolic atoms (predicates with variables) and in dNL-

ILP implementation, no constant is allowed in forming the hypothesis, this method allows

for referring to an specific constant in the learned action predicates. Here, for example, we

make an assumption that box a in our list of constants corresponds to the blue box via the

background fact isBlue(a). Table B.1 explains all extensional predicates as well as those

helper auxiliary predicates that was used in our BoxWorld program.

So far in our discussions, we have not distinguished between the type of variables.

However, in the dNL-ILP implementation, the type of each variable should be specified in the

signature of each defined predicate. This allows the dNL-ILP to use only valid combination
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of variables to generate the symbolic formulas. In the BoxWorld experiment, we have two

types of constants Tb and Tp referring to the box and numeric constants, respectively. In

TableB.1, for each defined predicate, the list of variables and their corresponding types are

given, where for example X(Tp) states that the type of variable X is Tp.

For clarity, Table B.1 is divided into two sections. In the top section the constants are

defined. In the other section, 4 groups of predicates are presented: (i) state representation

predicates that their groundings are learned from image, (ii) extensional predicates which

are solely defined by background facts, (iii) auxiliary predicates and, (iv) the signature for

the target predicate that is used to represent the actions in the policy gradient scheme. To

learn the policy, we used discount factor of 0.7, and we use ADAM optimizer with learning

rate of 0.002. We set the maximum number of steps for each episode to 20. To learn the

feature map, we used two layers of CNNs with kernel size of 5 and strides of 3 and we

applied fully connected layers with softmax activation functions to learn the groundings

of the state representation predicates posH and posV.
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Table B.1: ILP definition of the BoxWorld

Constants Description Values
Tb box constants {a, b, c, d, floor}
Tp coordinate position constants {0, 1, 2, . . . , n}

Predicate Variables Definition

posH(X,Y) X(Tb), Y(Tp) learned from Image
posV(X,Y) X(Tb), Y(Tp) learned from Image

isFloor(X) X(Tb) isFloor(floor)
isBlue(X) X(Tb) isBlue(a)
isV1(X) X(Tp) isV1(1)
inc(X,Y) X(Tp), Y(Tp) inc(0,1), inc(1,2), . . . , inc(n-1,n)
lt(X,Y) X(Tp), Y(Tp) lt(0,1), lt(0,2), . . . , lt(n-1,n)

same(X,Y) X(Tb), Y(Tb) same(a,a), same(b,b), . . . , same(floor,floor)
sameH(X,Y) X(Tb), Y(Tb), Z(Tp) posH(X,Z), posH(Y,Z)
sameV(X,Y) X(Tb), Y(Tb), Z(Tp) posV(X,Z), posV(Y,Z)
above(X,Y) X(Tb), Y(Tb), Z(Tp), T(Tp) sameH(X,Y), posV(X,Z), posV(Y,T), lt(T,Z)
below(X,Y) X(Tb), Y(Tb), Z(Tp), T(Tp) sameH(X,Y), posV(X,Z), posV(Y,T), lt(Z,T)
on(X,Y) X(Tb), Y(Tb), Z(Tp),T(Tp) sameH(X,Y), posV(X,Z), posV(Y,T), inc(T,Z)
isCovered(X) X(Tb), Y(Tb) On(Y,X), ¬isFloor(X)

moveable(X,Y) X(Tb), Y(Tb)
¬isCovered(X),¬isCovered(Y),¬same(A,B),

¬isfloor(X),¬on(X,Y)

move(X,Y) X(Tb), Y(Tb), Z(Tp),T(Tp) Action predicate that is learned via policy gradient
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APPENDIX C

GRIDWORLD EXPERIMENT DETAILS

In the GridWorld experiment, we distinguish between constants used for vertical and

horizontal coordinates as shown Table C.1. This reduces the number of possible symbolic

atoms and makes the convergence faster. We also define 10 constants of type Tc to represent

each of the 10 possible colors for the grid cells in the scene. The complete list of all the

extensional and auxiliary predicates for this program is listed in Table C.1. In this task, to

incorporate our knowledge about the problem, we define the concept of item via predicate

isItem(X,Y). Using this definitionm, an item represents any of the cells that are neither

background nor agent. By incorporating this concept, we can further define higher level

concepts via locked and isLock predicates which define the two adjacent items as a

locked item and its corresponding key, respectively. The dimension of the observation image

is 112x112x3. We consider two types of networks to extract grid colors from the image. In

the first method, we apply three layers of convolutional network with kernel sizes of [5, 3, 3]

and strides of 2 for all. We use relu activation function apply batch normalization after

each layer. The number of features in each layer are set to 24. We take the feature map

of size 14 × 14 × 24 and apply two layers MLP with dimensions of 64 and 10 (10 is the

number of color constants) and activation functions of relu and softmax, to generate

the grounding matrix G (the dimension of G is 14x14x10). As can be seen in Fig. C.1, the

current key is located at the top left border. We extract the grounding for predicate hasKey

from the value of G[0, 0, :] and the groundings of the predicate color by discarding the

border elements from G (i.e., G[1..12, 1..12, :]).

Alternatively, and because of the simplicity of the environment, instead of using CNNs,

we may take the center of each box to directly create the feature map of size 14× 14× 3

and then apply the MLP to generate the groundings. In our experiments we tested both
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Figure C.1: An example GridWorld scene

scenarios. Using the CNN approach the speed of convergence in our method was around 2

times slower. For the A2C algorithm, we could not solve the problem using either of these

approaches. We set the maximum number of steps in an episode to 50 and we use learning

rate of .001. For our models, we use discount factor of 0.9 and for the A2C we tested various

numbers in range of 0.9 to 0.99 to find the best solution.
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Table C.1: ILP definition of the GridWorld

Constants Description Values
Tv vertical coordinates {0,1,2,. . . ,11}
Th horizontal coordinates {0,1,2,. . . ,11}
Tc cell color code {0,1,2,. . . ,9}

Predicate Variables Definition

color(X,Y,Z) X(Tv), Y(Th), Z(Tc) learned from Image
hasKey(X) X(Tc) Learned from Image

incH(X,Y) X(Th) incH(0,1),. . . ,incH(10,11)
isC0(X) X(Tc) isC0(0)
isC1(X) X(Tc) isC1(1)
isC2(X) X(Tc) isC2(2)

isBK(X,Y) X(Tv), X(Th), Z(Tc) color(X,Y,Z), isC0(Z)
isAgent(X,Y) X(Tv), X(Th), Z(Tc) color(X,Y,Z), isC1(Z)
isGem(X,Y) X(Tv), X(Th), Z(Tc) color(X,Y,Z), isC2(Z)
isItem(X,Y) X(Tv), X(Th) ¬ isBK(X,Y), ¬ isAgent(X,Y),
locked(X) X(Tv), X(Th), Z(Th) isItem(X,Y), isItem(X,Z), incH(Y,Z)
isLock(X) X(Tv), X(Th), Z(Th) isItem(X,Y), isItem(X,Z), incH(Z,Y)

move(X,Y) X(Tv), Y(Th), Z(Tc) Action predicate that is learned via policy gradient

122



APPENDIX D

RELATIONAL REASONING EXPERIMENT DETAILS

This task was introduced as a benchmark for learning relational information from images

in [41]. In this task, the objects of two types (circle or rectangle) and in 6 different colors

are randomly placed in a 4x4 grid and questions like ’is the blue object circle’ or ’what is

the color of nearest object to blue’ should be answered. To formulate this problem via ILP,

instead of using grid coordinates (vertical and horizontal positions as in past experiments)

we consider a flat index as can be seen in Table D.1. As such, we will have 16 positional

constants of type Tp to represent grid positions as well as 6 constants of type Tc to represent

the color of each object. In the original problem in [41], a question is represented as binary

vector of length 11. The first 6 bits represent the one-hot representation of the color of the

object in question. The next 5 bits represent one of the five possible types of questions, i.e.,

’is it a circle or a rectangle’ and ’the color of the nearest object?’ for example.

Table D.1: Flat index for a grid of 4 by 4 used in relational learning task

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

We define a nullary predicate for each of 11 possible bits in the question via predicates

isQ0(),. . . ,isQ10(). Similar to to the original paper we use 4 layers of CNNs with

relu activation function and batch normalizations to obtain a feature map of size 4×4×24.

We use kernel size of 5 and strides of [3,3,2,2] for each of the layers. By applying fully

connected layers to the feature map, we learn the groundings of predicates color(X,Y,Z),

isObject(X,Y) and isCircle(X,Y). We define some auxiliary predicates as shown

in Table D.2. For each of the 10 possible answers, we create one nullary predicate. The vector

of size 10 that is created by the groundings of these 10 predicates (i.e., isAnswer0(), . . . )
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are then used to calculate the cross entropy loss between the network output and the provided

ground truth. We need to mention that in the definition of the auxiliary predicate qa(X),

we exploit our prior knowledge regarding the fact that the first 6 bits of the question vector

correspond to the colors of the object. Without introducing this predicate, the convergence

of our model is significantly slower. For example, while by incorporating this predicate we

need around 30000 training samples for convergence, it would take than 200000 training

samples without this predicate.

124



Table D.2: ILP definition of the relational reasoning task

Constants Description Values
Tp Flat position of items in a 4 by 4 grid {0,1,2,. . . ,15}
Tc color of an item {0,1,2,. . . ,5}

Predicate Variables Definition

isQ0() Given as a binary value
. . . . . .
isQ10() Given as a binary value
color(X,Y) X(Tp), Y(Tc) Learned from Image
isCircle(X,Y) X(Tp) Learned from Image
isObject(X,Y) X(Tp) Learned from Image

equal(X,Y) X(Tp), Y(Tp) equal(0,0),. . . ,incH(15,15)

lt(X,Y) X(Tp), Y(Tp), Z(Tp)
true if distance between grid cells corresponding to X and Y
is less than distance between X and Z (see Table D.1)

left(X) X(Tp) left(0),left(1),. . . ,left(12),left(13)
right(X) X(Tp) right(2),right(3),. . . ,right(14),right(15)
top(X) X(Tp) top(0),left(1),. . . ,left(6),left(7)
bottom(X) X(Tp) bottom(8),left(9),. . . ,left(14),left(15)

closer(X,Y,Z) X(Tp), X(Tp), Z(Tp) isObject(X), isObject(Y), isObject(Z), lt(X,Y,Z)
farther(X,Y,Z) X(Tp), X(Tp), Z(Tp) isObject(X), isObject(Y), isObject(Z), gt(X,Y,Z)
notClosest(X,Y) X(Tp), X(Tp), Z(Tp) closer(X,Z,Y)
notFarthest(X,Y) X(Tp), X(Tp), Z(Tp) farther(X,Z,Y)

qa(X) X(Tp), Y(Tc)

isQ0(), color(X,Y), isC0(Y)
isQ1(), color(X,Y), isC1(Y)
isQ2(), color(X,Y), isC2(Y)
isQ3(), color(X,Y), isC3(Y)
isQ4(), color(X,Y), isC4(Y)
isQ5(), color(X,Y), isC5(Y)

isAnswer0() X(Tp), Y(Tp) The learned hypothesis : Is answer is 0
. . . . . . . . .
isAnswer9() X(Tp), Y(Tp) The learned hypothesis : Is answer is 9
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APPENDIX E

ASTERIX EXPERIMENT DETAILS
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Table E.1: ILP definition of the Asterix experiment

Constants Description Values
Tv vertical coordinates {0,1,2,. . . ,8}
Th horizontal coordinates {0,1,2,. . . ,12}

Predicate Variables Definition

O1(X,Y) X(Tv), Y(Th), learned from Image : objects of type agent
O2(X,Y) X(Tv), Y(Th), learned from Image : objects of type L2R predator
O3(X,Y) X(Tv), Y(Th), learned from Image : objects of type R2L predator
O4(X,Y) X(Tv), Y(Th), learned from Image : objects of type food

isV0(X) X(Tv) isV(0)
isV11(X) X(Tv) isV11(11)
isH0(X) X(Th) isH0(0)
isH7(X) X(Th) isH7(7)
incV(X,Y) X(Tv), X(Tv) incV(0,1), . . . ,incV(6,7)
ltH(X,Y) X(Th), X(Th) ltH(0,1),ltH(0,2), . . . ,ltH(11,12)
closeH(X,Y) X(Th), Y(Th) true if |X − Y | ≤ 2

agentH(X) X(Tv), Y(Th) O1(X,X)
agentV(X) X(Th), Y(Tv) O1(Y,X)

predator(X,Y) X(Tv), Y(Th)
O2(X,X)
O3(X,Y)

agent() X(Tv) agentV(X)
badMoveUp() X(Tv), Y(Th), Z(Tv), T(Th) O1(X,Y), predator(Z,T), incV(Z,X), closeH(Y,T)
badMoveDown() X(Tv), Y(Th), Z(Tv), T(Th) O1(X,Y), predator(Z,T), incV(X,Z), closeH(Y,T)
badMoveLeft() X(Tv), Y(Th), Z(Th) O1(X,Y), O2(X,Z), ltH(Z,Y), closeH(Z,Y)
badMoveRight() X(Tv), Y(Th), Z(Th) O1(X,Y), O3(X,Z), ltH(Y,Z), closeH(Z,Y)

moveUp() X(Tv), Y(Th), Z(Tv), T(Th), Action predicate that is learned via policy gradient
moveDown() X(Tv), Y(Th), Z(Tv), T(Th), Action predicate that is learned via policy gradient
moveLeft() X(Tv), Y(Th), Z(Tv), T(Th), Action predicate that is learned via policy gradient
moveRight() X(Tv), Y(Th), Z(Tv), T(Th), Action predicate that is learned via policy gradient
moveNOOP() X(Tv), Y(Th), Z(Tv), T(Th), Action predicate that is learned via policy gradient
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