
VERIFICATION AND SYNTHESIS FOR STOCHASTIC SYSTEMS WITH
TEMPORAL LOGIC SPECIFICATIONS

A Dissertation
Presented to

The Academic Faculty

By

Maxence Dominique Henri Dutreix

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2020

Copyright c©Maxence Dominique Henri Dutreix 2020



VERIFICATION AND SYNTHESIS FOR STOCHASTIC SYSTEMS WITH
TEMPORAL LOGIC SPECIFICATIONS

Approved by:

Dr. Samuel Coogan, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Fumin Zhang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Ye Zhao
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Yorai Wardi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Kyriakos Vamvoudakis
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: February 25, 2020
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SUMMARY

The objective of this thesis is to first provide a formal framework for the verification of

discrete-time, continuous-space stochastic systems with complex temporal specifications.

Secondly, the approach developed for verification is extended to the synthesis of controllers

that aim to maximize or minimize the probability of occurrence of temporal behaviors in

stochastic systems. As these problems are generally undecidable or intractable to solve,

approximation methods are employed in the form of finite-state abstractions arising from

a partition of the original system’s domain for which analysis is greatly simplified. The

abstractions of choice in this work are Interval-valued Markov Chains (IMC) which, unlike

conventional discrete-time Markov Chains, allow for a non-deterministic range of proba-

bilities of transition between states instead of a fixed probability.

Techniques for constructing IMC abstractions for two classes of systems are presented.

Due to their inherent structure that facilitates estimations of reachable sets, mixed mono-

tone systems with additive disturbances are shown to be efficiently amenable to IMC ab-

stractions. Then, an abstraction procedure for polynomial systems that uses stochastic

barrier functions computed via Sum-of-Squares programming is derived.

Next, an algorithm for computing satisfaction bounds in IMCs with respect to so-called

ω-regular properties is detailed. As probabilistic specifications require finding the set of

initial states whose probability of fulfilling some behavior is below or above a certain

threshold, this method may yield a set of states whose satisfaction status is undecided.

An iterative specification-guided partition refinement method is proposed to reduce conser-

vatism in the abstraction until a precision threshold is met.

Finally, similar interval-based finite abstractions are utilized to synthesize control poli-

cies for ω-regular objectives in systems with both a finite number of modes and a contin-

uous set of available inputs. A notion of optimality for these policies is introduced and a

partition refinement scheme is presented to reach a desired level of optimality.

xiii



CHAPTER 1

INTRODUCTION

Reliance on complex systems, incorporating a myriad of interacting components and sub-

ject to growingly demanding tasks, continues to increase exponentially. Their applications

to safety-critical environments have driven a great deal of interest in the implementation

of dependable verification and control apparatus. Indeed, failure of automated equipment

may engender catastrophic financial, human and ecological consequences [1]. Avoiding

such scenarios is evidently conditional on the fidelity of the available models with respect

to the actual behavior of the physical systems of interest.

While control theory has established a rich, mathematically grounded foundation for

the study of purely deterministic dynamics, many real-life processes exhibit random be-

haviors which can drastically interfere with intended operations if not properly reckoned

with. Stochasticity traditionally manifests itself in systems models in the form of quantifi-

able disturbances. As the evolution of these systems throughout time cannot be predicted

exactly, their analysis requires a distinct framework from their deterministic counterparts

and raises an abundance of open questions.

To address the latter, this thesis provides theoretical contributions to the formal verifica-

tion and synthesis of stochastic dynamical systems. We focus on large classes of stochastic

system models with specific, physically-motivated structures amenable to efficient formal

verification and control, and contrive algorithms that are applicable to a wide range of

pertinent system properties.

1.1 Verification and Control of Stochastic Systems

Stochastic systems theory can be regarded as a fairly young field of study. Whereas control

theory emerged towards the middle of the 19th century, a modern and rigorous formulation
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of probability theory materialized only in the second quarter of the 20th century, enabled

by the axiom system of Kolmogorov. This coherent mathematical framework became the

long-awaited standard for reasoning about real-world uncertainties, and opened the door to

a plethora of new opportunities for theoretical scientists and engineers alike.

Despite its somewhat recent apparition, the field of stochastic system analysis and con-

trol flourished for the past five decades, unsurprisingly driven by its numerous and lucrative

applications to finance. Often lagging their deterministic analog, specialized areas such as

stochastic optimal control, stochastic network control and stochastic adaptive control natu-

rally came into existence as the necessity to account for the intrinsic randomness in natural

phenomena became apparent for many technological purposes. For examples, weather

events, message losses in communication channels, machine sensors and social structures

like traffic networks, all exhibit some degree of measurable stochasticity. The tremendous

increase in computers’ capabilities has helped in the physical manifestation of the theo-

retical developments of the field, culminating with the implementation of now ubiquitous

practical instruments such as Kalman filters. Yet, many crucial challenges still remain un-

resolved for state-of-the-art tools. In particular, the very nature of stochastic problems,

which imposes the consideration of multiple possible future scenarios, renders the study of

high-dimensional random systems particularly prone to computational complications like

the curse of dimensionality.

The recent advent of systems comprising a mixture of continuous and discrete dynam-

ics, often referred to under the broad umbrella term of cyber-physical systems, has further

complexified the accommodation of uncertain stochastic events. Traditional control tech-

niques have encountered limited success with both the prediction and command of cyber-

physical behaviors characterized by an intertwining of continuous quantities and discrete

inputs, outputs and mode switches. Paradigm examples of such systems include auto-

mobiles, aeroplanes, medical monitors, fleets of robots and smart electricity grids. The

unavoidable presence of internal and external random disturbances clearly poses additional
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obstacles to the complete automation of cyber-physical systems.

Not only are systems becoming more complex, but the tasks they are expected to per-

form are growing more exigent as well. Fundamental system properties, such as safety and

stability, often need to be enforced alongside additional crucial performance objectives. For

instance, an intelligent agent may be required to navigate a rough environment with sev-

eral obstacles in order to sequentially and repeatedly transport an object to multiple target

regions. Formal symbolic languages known as temporal logics are particularly well-suited

for reasoning about time and expressing complex behaviors in an unambivalent manner.

Classical control theory fell short of delivering the adequate machinery for handling

convoluted temporal specifications. Engineers eventually turned to advanced techniques

relying on finite-state representations of continuous dynamics to tackle the verification of

systems against such properties. These finite-state models, or abstractions, aim to capture

all possible behaviors of a system using a finite set of transitions, often at the cost of in-

troducing conservatism and nondeterminism. In addition, both deterministic and stochastic

dynamics can be abstracted using finite transition systems, making this approach very ver-

satile. The finite number of configurations of these abstractions enables the utilization of

brute-force verification methods commonly referred as model checking, characterized by

their high computational effort but also their formidable reliability.

1.2 Model Checking and its Applications to Stochastic Systems Analysis

The concept of model checking emerged as the need for highly reliable hardware and soft-

ware became increasingly pressing due to the tremendous costs of potential technological

failure. Model checking is an automated process for verifying whether a system possesses

a desired property. Given an unambiguous mathematical description of the system, a model

checker provides a trustworthy positive or negative answer upon an exhaustive examina-

tion of all possible states and behaviors of the model. Intensive research in this area in

the past three decades led to the development of dependable verification tools, and to the
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deployment of these tools in the design loop of numerous technologies, such as computer

hardware [2] [3], communication protocols [4], airplanes [5] and spacecrafts [6], with un-

equivocal success.

The applicability range of model checking has recently been extended to the study of

probabilistic transition systems, which led to the development of extremely dependable

tools for the verification of Markov Chains with complex temporal objectives [7]. Sub-

stantial work has been conducted in parallel on the efficient construction of Markov Chain

abstractions for stochastic dynamical systems to leverage the power of model checking

towards the verification of such systems [8] [9]. Unfortunately, these abstraction meth-

ods suffer from a restrictive conservatism due to the fact that continuous-state stochastic

systems cannot, in general, be abstracted exactly by a Markov Chain. To this day, the

verification of such systems is therefore limited to low-dimensional models for which the

required computational effort is not prohibitive. Moreover, a unified approach for all “in-

teresting” system properties has yet to be erected, as specifications coming from different

temporal logics sometimes demand distinct verification frameworks. All these shortcom-

ings equally hindered the implementation of robust and scalable synthesis procedures for

controlled stochastic dynamical systems.

Building on the most recent results drawn from the model checking literature, this dis-

sertation focuses on enhancing the scalibility and versatiliy of existing techniques to en-

able a computationally efficient verification and synthesis for stochastic dynamical systems

with complex temporal objectives. To this end, we investigate a largely unexplored type

of stochastic finite-state abstractions known as Interval-valued Markov Chains (IMC). We

conduct a thorough analysis of efficient abstraction techniques for wide classes of systems,

and detail the appropriate theory for performing verification against the highly-expressive

ω-regular temporal properties in IMCs. Automated procedures for reducing the conser-

vatism of IMC abstractions with the least possible computational impact are set forth. We

introduce equivalent interval-valued transition systems to serve as abstractions of controlled
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stochastic systems, and derive novel synthesis algorithms for computing optimal controllers

in these abstractions for ω-regular specifications. Finally, we contrive an automated refine-

ment process to decrease conservatism in these abstractions and achieve a desired level of

controller optimality.

1.3 Preview of Thesis

The objective of this thesis is the implementation of efficient verification and synthesis

techniques for discrete-time, continuous-state stochastic systems with complex temporal

logic objectives. In Chapter 2, we review the main literature on the topic of verification

and synthesis for stochastic systems. In Chapter 3, we introduce the preliminaries of our

approach which relies on finite-state stochastic abstractions of the continuous dynamics in

the form of interval-valued Markov chains, bounded-parameter Markov decision processes

and controlled interval-valued Markov chains arising from a partition of the system’s do-

main. In Chapter 4, we present a methodology for constructing interval-valued Markov

chain abstractions and bounded-parameter Markov decision process abstractions for two

classes of systems, namely affine-in-disturbance mixed monotone systems and polyno-

mial systems. In Chapter 5, we detail an algorithm used to conduct verification of IMCs

against ω-regular specifications. Applying this algorithm on IMC abstractions allows to

obtain probabilistic guarantees with respect to the abstracted continuous states. We study a

so-called specification-guided refinement method of the domain partition may the conser-

vatism of the abstraction need to be reduced. In Chapter 6, we extend the theory developed

in Chapter 5 to the synthesis of controllers for stochastic systems with both a finite number

of modes and a continuous set of available inputs using bounded-parameter Markov de-

cision process abstractions and controlled interval-valued Markov chain abstractions. We

introduce a metric for quantifying the optimality of the designed controllers with respect

to the abstracted continuous states and present an algorithm for enhancing the controller

optimality through a specification-guided refinement of the domain partition. In Chapter 7,
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we demonstrate the results obtained in the previous chapters in several case studies.

IMC and BMDP Abstraction of Stochastic Mixed Monotone Systems and Polynomial

Systems

In Chapter 4, we treat the problem of abstracting discrete-time, continuous-state stochas-

tic systems with finite-state models. The construction of such abstractions is tradition-

ally achieved by partitioning the domain of the system and determining the possible tran-

sitions between the resulting discrete regions using reachable set computations. How-

ever, in the case of stochastic systems, a quantitative component—namely, a probability—

characterizes each transition, which adds an extra layer of complexity to this problem.

Furthermore, standard probabilistic transition systems such as Markov chains cannot, in

general, exactly abstract the behavior of continuous-state stochastic dynamical systems.

Indeed, two distinct continuous states from a given discrete partition state may yield dif-

ferent probabilities of transition to other regions of the state-space. In order to encapsulate

all feasible behaviors of the system in a finite number of states and transitions, we consider

augmented Markov chains, known as Interval-valued Markov Chains (IMC), where the

transition probabilities are constrained to a nondeterministic range of values, as depicted in

Figure 1.1. Given an arbitrary stochastic system, finding non-trivial transition probability

intervals between all discrete states is a complicated task. Hence, we focus on two specific

classes of systems that are efficiently amenable to IMC abstractions.

In Section 4.1, we propose an IMC abstraction technique for discrete-time affine-in-

disturbance mixed monotone systems. A system with governing equation

x[k + 1] = F(x[k]) + w[k] (1.1)

belongs to the aforementioned class of systems if F is mixed monotone and w[k] is a ran-
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Figure 1.1: A finite-state IMC abstraction I of a stochastic system over a continuous do-
mainD. A partition P ofD is generated and bounds on the transition probabilities between
states are estimated.

dom variable. Generalizing the well-known concept of monotonicity, a functionF is mixed

monotone if there exists a decomposition function g(x, y) which is increasing in its first ar-

gument, decreasing in its second argument, and if the original dynamics are recovered by

evaluating g with the same value in both arguments, that is, F(x) = g(x, x). Many rel-

evant systems were shown to possess mixed monotone properties, such as transportation

networks [10], [11] and biological processes [12].

It was shown in previous works that an over-approximation of the one-step reachable

set from any hyperrectangular region under a mixed-monotone map F can be efficiently

computed by evaluating a corresponding decomposition function g at the least and greatest

point of the hyperrectangle [13]. Moreover, these approximations were proved to be tight

in some instances. Supposing the domain of (1.1) admits a rectangular partition, an over-
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approximation of the deterministic reachable set from any discrete state is therefore easily

calculated with only two function evaluations, regardless of the dimension of the system.

Due to the additive nature of the disturbance, an upper and lower bound on the prob-

ability of transition from one state in the partition to another are determined by finding

the positions of the probability density function of the disturbance inside the deterministic

reachable set of the origin state that respectively maximize and minimize the probability

overlap with the destination state. We derive closed-form solutions for these constrained

minimizing and maximizing disturbance shifts under additional symmetry and unimodal-

ity assumptions on the disturbance term, which allow to compute the desired bounds upon

evaluation of two integrals. Therefore, our abstraction procedure grows linearly in the

number of dimensions of the system. Furthermore, we suggest an alternate formulation for

the bounds when the symmetry assumption on the disturbance is relaxed. This formula-

tion nonetheless assumes that the disturbance can be reasonably approximated by another

disturbance which is symmetric.

The results of this section appear in [14].

In Section 4.2, we present an IMC abstraction method for polynomial systems of the

form

x[k + 1] = F(x[k], w[k]) , (1.2)

where F is a polynomial function in both x[k] and w[k]. Stochastic barrier functions

emerged as promising tools for providing probabilistic guarantees amenable to IMC ab-

stractions for polynomial dynamical systems. Stochastic barrier functions are used as a

probabilistic certificate of set invariance for stochastic dynamical systems. Specifically,

one can derive an upper bound on the probability that a system will reach some region of

the domain if one can show the existence of a barrier function whose expectation against
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the system dynamics behaves in a certain way over the domain.

First, we present the main properties of stochastic barrier functions for discrete-time

systems which allow to compute guarantees of set invariance over a finite-time horizon.

Then, we introduce a formulation of the stochastic barrier function discrete-time frame-

work over a single transition where two barrier functions are computed. By means of this

formulation, we show that an IMC abstraction of stochastic polynomial systems is created

from a finite partition of its domain by finding two stochastic barrier functions per transi-

tion.

Enabled by (1.2) being a polynomial system, the search of stochastic barrier functions is

cast as optimization problems in the form of Sum-of-Squares Programs (SOSP). Existing

tools can convert SOSPs to semidefinite programs, which are conveniently convex and

therefore efficient to solve. Thus, a lower bound and and an upper bound on the probability

of transition between any two states in the domain partition are determined by solving two

SOSPs. Each SOSP involves the computation of two barrier functions providing one-step

probabilistic guarantees of reachability. Applying this procedure to all pairs of states in the

partition generates an IMC abstraction of (1.2).

The results of this section appear in [15] and [16].

The theory developed in this chapter is straightfowardly extended to the abstraction of

switched stochastic systems of the form

x[k + 1] = Fa(x[k], wa[k]) , (1.3)

where a belongs to a finite set of distinct modes. Such systems are abstracted by Bounded-

parameter Markov Decision Processes (BMDP) where a finite number of actions represent-

ing the modes of the original system is available at each state, with each action inducing

a different transition profile characterized by intervals of transition probabilities. Assum-
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ing each mode of the system results in a state update map Fa belonging to one of the two

aforementioned classes, we can construct an IMC abstraction for each mode of the system

which is equivalent to a BMDP abstraction of the overall system.

IMC-based Verification of Stochastic Systems with ω-regular Objectives

In Chapter 5, we present an IMC abstraction-based verification procedure for stochastic

systems subject to probabilistic ω-regular specifications. Formally, considering a stochastic

system with dynamics

x[k + 1] = F(x[k], w[k]) , (1.4)

our objective is to find the set of initial states of (1.4) satisfying a probabilistic specification

of the form

φ = P./psat [Ψ] , (1.5)

where ./ ∈ {≤, <,≥, >}, psat ∈ [0, 1], and Ψ is an ω-regular property. An initial state x of

(1.4) satisfies (1.5) if a trajectory generated by (1.4) from x has a probability of satisfying

Ψ which is greater or less than psat, depending on the choice for ./.

To address this problem, we assume that an IMC abstraction of (1.4) is constructed

from a finite partition of its domain. Any probabilistic guarantees computed for the discrete

IMC states with respect to Ψ can be mapped to the continuous abstracted states of (1.4).

Because the transition probabilities in IMCs are constrained to intervals, the probability of

satisfying a property Ψ has to be specified as an interval as well from all discrete states of

the abstraction.

First, in Section 5.1, we derive an algorithm for computing the tightest interval on the

probability of satisfying an ω-regular property Ψ for all initial states of an IMC. The pro-
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posed solution extends the theory of verification of standard discrete-time Markov chains

against ω-regular properties. In the latter case, the Cartesian product between the Markov

chain and a Deterministic Rabin Automaton (DRA) encoding the property of interest is

constructed. Then, the probability of reaching special sets of states— namely, the accept-

ing Bottom Strongly Connected Components (BSCC) of the product Markov chain which

are a function the acceptance conditions of the DRA—is computed from the initial states of

the product. These reachability probabilities correspond to the probabilities of satisfaction

for the Markov chain states.

In a similar way, we define the Cartesian product between an IMC and a DRA. However,

we show that, in general, the set of accepting BSCCs in a product IMC is not fixed and

depends on the assumed transition values for each interval. Instead, we demonstrate that

any product IMC induces a largest losing component and a largest winning component. We

establish that an interval on the probability of satisfying the desired property is found by

solving a reachability problem on these components. We devise graph-based algorithms

for finding the largest components of a product IMC.

Applying this verification procedure on an IMC abstraction of (1.4) yields an interval

on the probability of satisfying Ψ for all continuous states of (1.4). Therefore, some of

these states may be undecided with respect to (1.5) if the threshold psat belongs to their

satisfaction interval. In order to reduce the conservatism of the IMC abstraction of (1.4)

and achieve a lower volume of undecided states, the standard approach consists in refining

the domain partition of (1.4) and construct a new, less conservative IMC abstraction from

the refined partition.

To mitigate the state-space explosion phenomenon caused by excessive refinement, we

suggest a heuristical scoring procedure to target the states in the partition which are most

likely to reduce conservatism under refinement. The procedure relies on a quantitative

and qualitative comparison of the paths reaching an accepting BSCC in the product IMC

between the worst-case and best-case assignment of the transition probabilities computed
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at the time of verification.

The results of this chapter appear in [17].

Synthesis of Controllers for Stochastic Systems using Interval-Valued Probabilistic

Abstractions

In Chapter 6, we present an interval-valued abstraction-based approach to the synthesis

of control policies for stochastic systems with ω-regular objectives. Given the controlled

stochastic system

x[k + 1] = F(x[k], u[k], w[k]) , (1.6)

where u[k] denotes a control input, our goal is to devise a control strategy that either max-

imizes or minimizes the probability of satisfying an ω-regular property Ψ for any initial

state of the system.

In Section 6.1, we study the simplified case where only a finite number of inputs, or

modes, are available, that is,

x[k + 1] = Fa(x[k], wa[k]) , (1.7)

where a ∈ {1, 2, . . . ,m} denotes the discrete modes of the system, and the noise term wa

is allowed to be mode-dependent. Here, we aim to find a switching policy that, at each time

step, selects the best mode a so as to maximize or minimize the probability of satisfying Ψ

for the subsequent execution of the system.

We undertake this problem via approximation methods, and assume that a BMDP ab-

straction B of (1.7) constructed from a finite partition of the system’s domain is available.

In other words, an IMC abstraction of (1.7) is created for every mode a of (1.7). As BMDPs

are interval-valued transition systems, minimizing the probability of satisfying a property
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Ψ in B is equivalent to minimizing the upper bound probability of satisfying Ψ from all

initial states of B. Likewise, maximizing the probability of satisfying Ψ corresponds to

maximizing the lower bound probability of satisfying Ψ from all initial states.

To devise optimal switching policies in a BMDP B, we use an automaton-based ap-

proach. We define the Cartesian product between a BMDP B and a DRA representing the

specification Ψ. Next, we show that computing optimal switching policies in a BMDP with

respect to Ψ amounts to solving both a qualitative problem and a quantitative problem in

the product BMDP: first, we construct the so-called greatest permanent winning compo-

nent of the product BMDP for maximization, or the greatest permanent losing component

of the product BMDP for minimization. Then, for all states outside of these components,

the optimal policy is computed by maximizing the lower bound probability of reaching

these components. We detail graph-based algorithms for finding the latter components and

determine the corresponding control actions for generating them.

The computed switching policy in the BMDP abstraction B is likely to be suboptimal

when mapped onto the continuous abstracted states of (1.7). We propose a methodology

for quantitatively assessing the optimality of the designed policy for every discrete state

of the product BMDP, and for identifying the modes which are certaintly optimal or not

optimal at each state. To reduce the suboptimality of the switching policy down to a user-

defined threshold, we present a partition refinement technique inspired from the refinement

algorithm for verification in Chapter 5.

In Section 6.2, we treat the case where the input u[k] takes values in a continuous set

and where system (1.6) is affine in disturbance and input, that is,

x[k + 1] = F(x[k]) + u[k] + w[k] . (1.8)

The problem of computing an optimal control policy for such systems is addressed in a
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similar fashion as in the finite-mode case. First, we construct a finite-state abstraction of

(1.8) from a partition of its domain in the form of a Controlled Interval-valued Markov

Chain (CIMC) C, where the probabilities of transition between all states are also given as

an interval which is dependent on an input drawn from a continuous set.

Then, we synthesize an optimal controller in the CIMC abstraction C in two steps: first,

we show that a greatest permanent winning component and a greatest permanent losing

component can be constructed in the Cartesian product between C and the DRA represent-

ing the specification of interest Ψ as in a BMDP. We demonstrate that this qualitative step

is achieved by converting the CIMC C into a BMDP B through the selection of a finite

number of actions from the continuous set of available inputs. We discuss how to find the

required finite set of actions under certain assumptions on the noise term and the geometry

of the domain partition. Next, for the states which do not belong to the greatest permanent

components, an optimal input is computed by maximizing the lower bound probability of

reaching these components through the iterative resolution of optimization problems.

Finally, a similar domain partition refinement scheme as in the finite-mode problem is

proposed so as to attain a user-defined level of optimality for the devised control policy.

The results of this chapter appear in [18].
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CHAPTER 2

LITERATURE REVIEW

Numerous techniques for the verification of continuous-state stochastic systems have been

put forth in the literature. These can be classified into two fundamentally different ap-

proaches commonly referred to as abstraction-free and abstraction-based, which are re-

spectively reviewed in Section 2.1 and Section 2.2. Related literature on the synthesis of

controllers for stochastic systems with temporal logic objectives, which is the focus of

Section 2.3, almost exclusively employ abstraction-based approaches.

2.1 Abstraction-Free Verification for Stochastic Systems

Abstraction-free techniques use a thorough analysis of a system’s vector field in order to

derive probabilistic properties without having to directly generate any trajectory. The work

in [19] introduces stochastic Lyapunov functions which, in the same spirit as in the de-

terministic case, serve as a certificate of stability for the equilibrum points of stochastic

differential equations. In particular, if there exists a stochastic Lyapunov function whose

value decreases in expectation in some neighborhood of an equilibrium point, then the latter

is guaranteed to be stable in probability.

The notion of stochastic barrier certificate is presented in [20] and provides a Lyapunov-

like framework to compute an upper bound on the probability of some continuous-time

stochastic process to exit a safe region of the state-space over an infinite-time horizon. This

upper bound is found by showing the existence of a function whose infinitesimal generator

with respect to the stochastic process is strictly negative over the safe region, i.e. this barrier

function has to be a supermartingale and decreases everywhere in expectation. The search

of such a function is carried out via a Sum-of-Squares (SOS) program and its maximum

value over the set of initial conditions determines the probability bound. Unfortunately,
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the supermartingale requirement is often overly restrictive for a large number of systems,

making it impossible to find a barrier function fulfilling this criterion.

As an extension to this work, [21] introduces the concept of c-martingale stochastic

barrier functions, whose infinitesimal generator is now restricted to be less than a positive

constant over the safe region of interested. An SOS problem is again solved in order to find

an appropriate function which is used as a certificate for bounding the probability of the

system being unsafe on a finite-time horizon. However, this bound is likely to be conser-

vative as it assumes a “worst-case scenario” for the generator value over the whole domain

and thus fails to fully capture the system’s dynamics. C-martingales are further utilized by

[22] in the context of discrete-time stochastic barrier functions. In this work, the authors

manage to decompose any finite-time safety Linear Temporal Logic (LTL) specification

into a sequence of reachability objectives in the automaton corresponding to the comple-

ment property. An upper bound probability on these reachability objectives is computed

by solving an SOS program and translates into a lower bound probability of satisfying the

original LTL specification.

A common observation from all the mentioned papers is that the computed bounds

appear to be quite conservative when validated against Monte Carlo simulations, espe-

cially for large noise values. Calculating tighter bounds usually requires solving a higher

order SOS problem, which can dramatically impact the computational complexity of the

discussed procedures in a negative way and even more so in high-dimensional systems.

Additionally, it is still unclear how these abstraction-free techniques could be applied to

more involved temporal logic specifications beyond safety and simple reachability.

2.2 Abstraction-Based Verification for Stochastic Systems

Abstraction-based verification methods rely on explicit computations of the system’s tra-

jectories over a finite partition of the domain of interest. In a discrete-time setting, these

trajectories are typically estimated via under- or over-approximation of one-step reachable
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sets. A state-of-the-art tool for the verification of stochastic systems against complex spec-

ifications is the FAUST2 model checker [8]. In FAUST2, the system’s continuous domain

is partitioned into a finite number of discrete states, each of them being reduced to a single

representative point. Propagating the system’s dynamics from these points generates an

approximate Markov chain representation of the original continuous-domain system [23],

which can then be easily verified for a large number of specifications with off-the-shelf soft-

wares such as PRISM [7]. Probabilistic guarantees obtained on the approximate MC can

in turn be mapped back to the original abstracted states in the form of a probability interval

when some characteristics of the underlying dynamics, such as global or local Lipschitz

constants, are known.

The work in [24] also suggests a methodology to compute a gridding parameter for

the domain partition that ensures an upper bound on the size of the interval of satisfac-

tion for all discrete initial states and for all specifications from the class of Probabilistic

Computation Tree Logic (PCTL) properties. One advantage of this approach is that the

approximate Markov chain abstraction does not need to be recomputed if the specification

of interest is changed. However, these techniques generally rely on a conservatively fine

gridding of the continuous state-space making the verification process computationally in-

tractable. Additionally, this approach overlooks qualitative aspects that are important to

certain specifications, e.g. the creation of absorbing states as pointed out in [25], making

these dynamics-guided partitioning techniques inadequate for high-dimensional systems.

In [26], the authors address the problem of verifying discrete-time stochastic systems

against PCTL specifications using Interval-valued Markov Chains (IMC) abstractions. IMCs

are Markovian transition systems wherein the probability of transition between states is

given to lie within an interval rather than being a single, well-defined number. The com-

plexity of verifying such models is naturally increased compared to standard MCs model-

checking algorithms. First, the authors create a polytopic partition of the system’s domain,

which induces a finite-state abstraction of the system in the form of an IMC. Then, any
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PCTL specification can be converted into a reachability problem in the IMC abstraction

and a polynomial-time algorithm from computing the lower and upper bound probabilities

of reaching the accepting states from any initial state is presented. This results in a lower

and an upper bound probability of satisfying the specification for any continuous state ab-

stracted by the IMC. If this interval of satisfaction is too large for a significant volume of

the state-space, the polytopic partition is refined using one-step pre and post operations on

the most uncertain states of the partition. Subsequent partitions may be refined as well until

some precision threshold is met. This specification-guided approach to state-space partition

and refinement differs from the one previously discussed in [24]. At each refinement step,

the most uncertain states with respect to the specification at hand are targeted, avoiding

some unnecessary refinement arising in the dynamics-guided approach. However, the main

drawback is that verification has to be carried out every time a finer partition is created, as

opposed to being performed only once in the dynamics-guided case. Although this paper

introduces critical verification tools, it suffers from a number of shortcomings: first, the

IMC abstractions are built using sampling methods which negatively impact the robustness

of the verification procedure; then, the proposed method is only suited for specifications

in the logic PCTL, which cannot express important behaviors such as liveness properties,

persistence properties or implications [27]; finally, the refinement technique only considers

one-step transitions and fails to truly account for the overall structure of the system paired

with the specification at hand.

The verification of IMC abstractions for more expressive specifications from the class of

ω-regular properties is discussed in [28], where the authors convert an IMC into a Markov

Decision Process (MDP) which only accounts for the extreme values of the transition prob-

ability intervals; however, the suggested method has a computational complexity which

grows exponentially in the size of the abstraction, making it unsuitable for the verification

of complex systems.

Other forms of abstractions for discrete-time stochastic systems include Markov Set-

18



Chains [29] [24]. Markov Set-chains non-deterministically select a transition matrix from

a set defined by two bounding transition matrices at each time step and evolve accordingly.

Although Markov Set-chains abstractions provide useful information such as the asymp-

totic behavior of stochastic systems, it is unclear from these publications how they could

be used for the verification of highly complex behaviors.

2.3 Controller Synthesis for Stochastic Systems

The design of controllers for stochastic systems also comes with its unique challenges.

Indeed, due to the intrinsic non-determinism of random dynamics, synthesizing optimal

control laws for stochastic systems amounts to maximizing or minimizing the probability

of occurrence of some behavior. The literature on stochastic controller synthesis for tem-

poral logic specifications is sparse and, in general, restricts its scope to a finite number of

available inputs. Related papers almost exclusively employ finite-state abstractions of the

original dynamics.

One exception to this is the work in [16], which uses stochastic control barrier func-

tions to achieve a user-defined probability of system safety in both a continuous-time and

discrete-time framework in an abstraction-free manner. The system dynamics and con-

troller expressions are both assumed to be polynomials in order to convert the synthesis

procedure to an SOS optimization program whose objective is to ensure a given upper

bound on the probability of the system reaching an unsafe region with a low control effort.

The work in [26] addresses the problem of finding an optimal switching policy in

continuous-state, discrete-time switched stochastic systems with a finite number of modes

and with respect to PCTL specifications. The proposed approach consists in partitioning

the continuous domain and compute an IMC abstraction for each possible mode, generating

a Bounded-Parameter Markov Decision Process (BMDP) abstraction of the switched sys-

tem. Then, a probability maximizing switching policy is found by maximizing the lower

bound probability of reaching an accepting state in the BMDP from the desired initial
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state; likewise, a minimizing policy can be established by minimizing the upper bound

probability of reaching an accepting state. However, as explained previously, PCTL lacks

in expressiveness compared to other logic systems.

The problem of verifying BMDPs against co-safe LTL specifications is discussed in

[30] where synthesis is reduced to a reachability maximization task in the product of the

BMDP with an automaton representation of the property. Again, restricting to the co-safe

LTL class significantly reduces the scope of this technique in terms of expressiveness.

The more recent verification and synthesis tool StocHy [9], which exploits the tech-

niques presented in [31], very efficiently performs synthesis for stochastic switched linear

systems with additive Gaussian noise, but is limited to co-safe LTL as well.

In [32], a synthesis algorithm is presented for uncertain Markov Decision Processes

(MDP) subject to LTL specifications. Uncertain MDPs are similar to BMDPs with the

difference that the non-deterministic transition probabilities are drawn from an arbitrary

set of valid transition matrices for each mode and not necessarily from a Cartesian prod-

uct of probability intervals. Such stochastic models are of interest to us as they can serve

as systems abstractions. Unfortunately, [32] makes strong simplifying and unrealistic as-

sumptions on the connectivity structure of the product between the uncertain MDP and the

Deterministic Rabin Automaton (DRA) corresponding to the specification. The synthesis of

control strategies for interval Markov decision processes with multi-objectives that include

ω-regular properties was discussed in [33]; however, the qualitative structure of the tran-

sition system is again assumed to be invariant, which alleviates key difficulties associated

with the problem.

Other publications such as [34] rely on standard MDP abstractions of stochastic systems

in order to carry out synthesis for more advanced LTL specifications. However, MDP

abstractions from a domain partition can only be approximate, which causes issues with

respect to the robustness of the designed controllers.

The problem of synthezing controllers was extended to continuous-input stochastic sys-
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tems subject to subsets of ω-regular properties in few related works. For instance, the

theory developed in [35] uses abstraction-based methods for approximating the maximal

winning region of discrete-time continuous-input systems with Büchi objectives. Approx-

imate abstractions are employed in [36] for synthesizing controllers from a continuous set

of input maximizing the probability of satisfying syntactically co-safe LTL specifications.

A thorough investigation of the reachability problem for similar systems was conducted in

[37].

In summary, this literature survey provides evidence that current controller synthesis

techniques for stochastic systems against complex specifications are still in a nascent stage

of development. Existing tools lack in scalability — it takes several days for [26] to design a

controller for 2D linear dynamics with simple reachability objectives — and are restricted

to very specific classes of objectives. In addition, synthesis problems in the discussed

papers mostly consider systems with a finite number of modes and, to the best of our

knowledge, similar problems allowing for continuous sets of inputs have been only scarcely

treated. These observations motivate the work presented in the following chapters.
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CHAPTER 3

VERIFICATION AND SYNTHESIS FOR STOCHASTIC SYSTEMS: A

FINITE-STATE ABSTRACTION APPROACH

The study of stochastic systems involves a technical machinery that is distinct from that

commonly employed in the context of deterministic systems. Consequently, we use this

chapter to establish some necessary preliminaries before expounding our contributions in

the remainder of the dissertation.

The first objective of this chapter is to introduce the mathematical framework used to

describe stochastic systems throughout this work in Section 3.1. Then, in Section 3.2, the

wide class of ω-regular system specifications, which are the focus of this document, is

presented. In Section 3.3, the verification and controller synthesis problems against such

specifications are subsequently defined in the context of stochastic systems. Lastly, in

Section 3.4, we review three types of stochastic transition systems, namely Interval-valued

Markov Chains (IMC), Bounded-Parameter Markov Decision Processes (BMDP) and Con-

trolled Interval-valued Markov Chains (CIMC), which can serve as finite-state abstractions

of stochastic systems and are the main verification and synthesis tools discussed in the next

chapters.

3.1 Stochastic Systems Models

Systems are typically represented as a set of quantities, also known as a state, evolving in

time from an initial condition. Throughout this dissertation, we make the assumption that

systems evolve in discrete-time, that is, the state of the system has well-defined values only

at discrete instances of time.

Given the state of an uncontrolled stochastic system at a time k, its state at the next

time step k + 1 is determined by both its current state and a stochastic realization of some
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random quantity. Mathematically, such a system takes the form of a Stochastic Difference

Equation (SDE)

x[k + 1] = F(x[k], w[k]) , (3.1)

where x[k] ∈ D ⊂ Rn is the state of the system on a domain D at time k ∈ N, w[k] ∈

W ⊂ Rm is a random variable living on a support W and sampled at each time step k,

and F : D × W → D is a function. At time k = 0, the system is set to an initial

state x[0] and thereafter evolves according to (3.1). An infinite sequence of states π =

x[0]x[1]x[2] . . . generated by (3.1), where x[1] = F(x[0], w[0]), x[2] = F(x[1], w[1]) . . .,

is called an infinite path. As the sequence of stochastic realizations w[0]w[1] . . . may be

different for each execution of the system, (3.1) may produce different paths from the same

initial condition x[0]. We assume throughout this work that the set of all possible initial

conditions is the entire domain D.

For complex systems, it is generally not possible to find a closed-form solution of (3.1)

where x[k] is written explicitly in terms of k, w[k] and x[0], and one must rely on the

analysis of F in the recursive system equation in order to make inferences on the behavior

of (3.1).

When an external agent interacts with the stochastic system under consideration, af-

fecting the state transitions throughout time, the model additionally incorporates a control

parameter and the resulting SDE becomes

x[k + 1] = F(x[k], u[k], w[k]) , (3.2)

where w[k] is a random variable, u[k] ∈ U ⊆ R` is a time-dependent control input, and

everything else is defined as in (3.1). The set of all finite paths of (3.2) is denoted by

Pathsfin. A function µ : Pathsfin → U assigning an input to each finite path in (3.2) is

called a control policy and the set of all control policies of (3.2) is denoted by U = {µ |
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µ : Pathsfin → U}. Although the paths generated by (3.2) under a sequence of inputs

u[0]u[1]u[2]... are still stochastic in general, a well-designed control policy can influence

the random evolution of the system and in turn maximize the probability of occurrence of

some desired performance objective.

In this work, we distinguish the case where the set of available inputs U is uncountably-

infinite from the case where U is a countably finite set of possible actions. In the latter case,

we can view (3.2) as a finite-mode switched stochastic system with equation

x[k + 1] = Fa(x[k], wa[k]) , (3.3)

where a ∈ A := {0, 1, . . . , N} is a finite set of modes. At each time step, the external agent

chooses a mode a and the system performs a transition according to the dynamics defined

by Fa and a random realization of wa. Note that, in this framework, we allow the noise

term to be a function of the selected mode a.

3.2 ω-regular Specifications

We are interested in studying the behavior of stochastic systems which is fully characterized

by the sequences of states produced according to the SDE models. Important behaviors

are, for example, safety specifications, for which a path generated by a system must remain

indefinitely inside a “safe” subset of the considered domain, or reachability specifications,

where the path must reach a desired subset of goal states.

Expressing high-level system objectives is accomplished through the use of various

symbolic temporal logic systems which allow to reason about the occurrence of events

throughout time. Each logic structure possesses its own set of operators and syntactic rules

for constructing temporal properties over a set of possible events. Different temporal logics

usually display distinct levels of expressiveness, where certain properties can be enunciated

in one logic and not in the other, or vice versa. Frequently utilized temporal logics include
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Linear Temporal Logic (LTL) [38] and Computation Tree Logic (CTL) [39], whose most

common temporal operators are

• The ’Always’ operator �, which enforces an event to hold for all time (e.g. �a means

that event a is always true),

• The ’Eventually’ operator ♦, which enforces an event to hold at some point in time (e.g.

♦a means that event a has to occur at least once in the future),

• The ’Next’ operator©, which asks for a specific event to occur next,

• The ’Until’ operator U , which requires some event to be true until another event occurs

(e.g. aUb means that event a has to hold true as long as b hasn’t occurred),

• The ’Implication’ operator→, which indicates that the occurrence of some event implies

the occurrence of another event (e.g. a→ b means that event b has to occur if event a is

triggered).

These operators can be combined with each other to express even richer properties, such as

persistence specifications — e.g. ♦�a, for which event a eventually holds true forever —

or liveness specifications — e.g. �♦a, for which event a has to occur infinitely often.

To employ these symbolic systems in the context of system analysis, a label is assigned

to all states of the system domain of interest. These labels associate each transition per-

formed by the system to an event. Hence, we define a labeling function L : D → Π

mapping every state in the domain D to an element of Π, where Π is a finite alphabet

of atomic propositions. Any infinite path π = x[0]x[1]x[2] . . . generated by a system in-

duces an infinite word called a trace L(π) = L(x[0])L(x[1])L(x[2]) . . . from which the

satisfaction of a specification can be assessed.

A temporal property φ defined over a finite alphabet Π can be viewed as a subset of (Π)ω,

the set of all infinite words constructed from a concatenation of the elements in Π [40,

Chapter 3]. Thus, φ is a set of infinite words representing admissible behaviors with respect
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to a system of interest. We introduce the satisfaction relation |= between an infinite path π

and a property φ ⊆ (Π)ω as

π |= φ⇔ L(π) ∈ φ . (3.4)

If the trace of a path π does not belong to φ, then π violates φ, denoted by π 6|= φ.

Example 1. Consider a labeled system with alphabet Π = {a, b} and the LTL specification

φ = ♦a. A path inducing a trace L1 = bbbba . . . satisfies φ, while a path inducing a trace

L2 = bbbbb . . . without ever reaching an “a” state does not satisfy φ.

Verification and synthesis tools for stochastic systems found in the recent literature

often restrict their scope to specifications belonging only to LTL or only to CLT, or to a

subset of these two logics. Here, we aim to develop a set of techniques that are directly

applicable to all “interesting” system specifications.

The class of ω-regular properties, which is a strict superset of both LTL and CTL in

expressiveness [27], stands out as a good candidate for fulfilling this criterion. Informally

speaking, this class encompasses all infinite-time temporal properties whose satisfaction

can be assessed using a finite amount of memory. Any ω-regular properties Ψ over alphabet

Π has an ω-regular expression form GΨ

GΨ = E1.F
ω
1 + . . .+ En.F

ω
n , (3.5)

where n ≥ 1 andE1, . . . , En, F1, . . . Fn are regular expressions over Π such that ε 6∈ L(Fi),

for all 1 ≤ i ≤ n, with ω being the infinite repetition operator, ε being the empty word and

. being the concatenation operator [40, Section 4.3.1]. A regular expression is semantically

interpreted as a set of finite words exhibiting some pattern described using a finite number

of symbols. For in-depth definitions of a regular expression and the aforementioned oper-

ators, we refer the interested reader to [40, Section A.2]. The ω-regular property Ψ is the
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set of all words L(GΨ) induced by the ω-regular expression GΨ, that is,

Ψ = L(GΨ) = L(E1).L(F ω
1 ) ∪ . . . ∪ L(En).L(F ω

n ) , (3.6)

where L(Ei) and L(F ω
i ) are the sets of all words induced by Ei and F ω

i respectively, for

all 1 ≤ i ≤ n.

Example 2. The LTL specification ♦a over alphabet Π has an ω-regular expression (Π)∗.a.

(Π)ωr , where ∗ denotes the finite repetition operator and ωr denotes the infinite repetition

operator. The LTL specification �♦a has an ω-regular expression ((Π)∗.a)ωr .

3.3 The Probabilistic Verification Problem and the Probabilistic Synthesis Problem

As discussed in Section 3.1, stochastic systems can produce different paths from the same

initial state due to their random nature, as opposed to deterministic systems, for which a

path generated from a given initial condition will always be the same. This fact calls for a

distinct framework for assessing the fulfillment of a specification in a stochastic sense.

In this context, we are most interested in determining whether the probability that a

stochastic system satisfies a specification from some initial condition is above or below a

fixed threshold. This probability quantifies the frequency of “success” of the system when

executed several times with the same initial state. Furthermore, if the system admits a

control input, a natural objective consists in devising a control policy that increases the

probability of fulfilling a goal specification, or reduces the risk of an unwanted behavior.

It is therefore necessary to carefully define a probability measure over the paths of

(3.1). We denote by B(D) the σ-algebra generated by the domain D ⊂ Rn of (3.1), and

introduce the Borel-measurable stochastic kernel T : D×B(D)→ [0, 1], whereA ∈ B(D)

is a Borel set of D, induced by the stochastic dynamics, that is, T (x,A) = Pr(x′ =

F(x,w) ∈ A | x). The function T quantifies the probability of making a transition from

any state x to any (Borel) subset of D. Additionally, we denote the set of all paths of
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(3.1) by Paths = Pathsfin ∪ Pathsω, where Pathsfin and Pathsω refer to the sets of all

finite and infinite paths of (3.1) respectively. The cylinder set Cyl(x0A1A2 . . . Ak), with

Ai ∈ B(D) ∀i ≤ k, is the set of all paths π ∈ Paths such that x[0] = x0 ∈ D and

x[i] ∈ Ai, i = 1, 2 . . . k, where x[i] is the state in the i-th position of π [25]. Cylinder

sets can be viewed as the set of all (finite and infinite) paths starting at x0 and making a

transition to the set Ai at time step i, ∀i ≤ k. For a chosen initial state x0, a probability

measure on the σ-algebra B(Paths) is derived from probabilities on cylinder sets given by

Pr(Cyl(x0A1A2 . . . Ak)) =

∫
A1

∫
A2

· · ·
∫
Ak

T (xk−1, dxk) . . . T (x1, dx2)T (x0, dx1) .

(3.7)

Now, consider an ω-regular property Ψ. Let Φx0
Ψ denote the set of all satisfying paths

with respect to Ψ starting from initial state x0, that is Φx0
Ψ = {π ∈ Paths | L(π) ∈

Ψ, x[0] = x0}. It can be shown that Φx0
Ψ is a measurable set and that the measure on Φx0

Ψ

corresponds to the probability for the system to satisfy Ψ from x0, denoted by px0
Ψ . The

labeling function L of (3.1) induces a partition of D such that, for all elements Li ∈ Π,

ALi = {x ∈ D | L(x) = Li} and D =
|Π|⋃
i=1

ALi . We make the further assumption that

ALi ∈ B(D), ∀i. As discussed in [40, Remark 10.57], the set Φx0
Ψ arises as a countable

union and intersection of cylinder sets Cyl(x0AL1 . . . ALk) starting in x0 and ranging over

acceptable sequences of Borel sets AL1 . . . ALk with respect to the property Ψ, where each

ALi is a set with a fixed label from the finite partition induced by L. As per (3.7), Φx0
Ψ is

therefore measurable and px0
Ψ is consequently well-defined.

Identical probability measures on paths can be established for controlled stochastic sys-

tems of the form (3.2) under a fixed control policy µ ∈ U . We denote the transition kernel

of such systems by T (x, u,A), with x ∈ D, u ∈ U andA ∈ B(D). Additionally, we denote

by (px0
Ψ )µ the probability of satisfying property Ψ from initial state x0 under policy µ.

To formally inquire about the probabilistic behavior of (3.1), we introduce a probability
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operator P./psat over ω-regular properties, with ./ ∈ {≤, <,≥, >}, psat ∈ [0, 1]. The latter

allows us to construct probabilistic ω-regular specifications of the form

φ = P./psat [Ψ] , (3.8)

where Ψ is an ω-regular specification. For any initial state x0 ∈ D, we define the satisfac-

tion relation |= over such specifications, where

x0 |= P./psat [Ψ]⇔ px0
Ψ ./ psat , (3.9)

with px0
Ψ being the probability that a random path starting in x0 satisfies property Ψ. In

brief, x0 satisfies φ if the probability of satisfying Ψ from x0 is above or below a threshold

psat.

We now have all the tools to state the first main problem treated in this dissertation,

which is the Probabilistic Verification Problem.

Probabilistic Verification Problem

“Given a stochastic system (3.1) and a probabilistic ω-regular formula of the form (3.8),

find the set of initial states of (3.1) satisfying (3.8).”

For system (3.2) allowing a control action at each time step, our objective is to design

probability maximizing or minimizing control policies µ̂Ψ and µ̂Ψ with respect to some

ω-regular specification Ψ, that is,

µ̂Ψ = arg min
µ∈U

(px0
Ψ )µ (3.10)

µ̂Ψ = arg max
µ∈U

(px0
Ψ )µ (3.11)

for any initial state x0 ∈ D, where (px0
Ψ )µ is the probability that a random path starting in
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x0 satisfies property Ψ under policy µ. This second main problem explored in this work is

referred to as the Probabilistic Synthesis Problem.

Probabilistic Synthesis Problem

“Given a stochastic system (3.2) and an ω-regular specification Ψ, find a control policy µ̂Ψ

(µ̂Ψ) that maximizes (minimizes) the probability of satisfying Ψ for any initial state x0.”

In the next section, we discuss our suggested approach for addressing these two problems.

3.4 Finite-State Abstractions: Interval-valued Markov Chains, Bounded-Parameter

Markov Decision Processes and Controlled Interval-valued Markov Chains

The probabilistic verification and synthesis problems were shown to be, in general, infea-

sible to solve exactly [23, 41]. This means that, for most systems and specifications of

interest, it is not possible to find a closed-form classifier that separates initial states satis-

fying (3.8) from those that do not. Likewise, it is usually equally impossible to compute

closed-form functions corresponding to the optimal control policies (3.10) and (3.11). Nev-

ertheless, it is common to resort to approximation methods for tackling these problems.

A prevalent technique consists in constructing a finite-state abstraction of the stochas-

tic system at hand in the form of a probabilistic transition system. Performing verification

and controller synthesis on such abstractions yields bounded-error probabilistic guarantees

which are mapped onto the original continuous system states. These finite-state abstrac-

tions typically arise from a finite partition P of the continuous domain D of the system.

Definition 1 (Partition). A finite partition P of a domain D ⊂ Rn is a finite collection of

discrete states P = {Qj}mj=1, Qj ⊂ D, satisfying

• ⋃m
j=1Qj = D,

• int(Qj) ∩ int(Q`) = ∅ ∀j, `, j 6= ` ,
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where int denotes the interior. For any continuous state x belonging to a state Qj , we write

x ∈ Qj .

3.4.1 Solving the Verification Problem using Interval-valued Markov Chain Abstractions

Let us first consider the uncontrolled system (3.1). For such a partition P of the domain D

of (3.1), the likelihood of transitioning from a state Qj of P to another state Q` generally

varies with the continuous state abstracted by Qj from which the transition is actually

taking place, that is, T (x,Q`) and T (x′, Q`) may be different for two continuous states

x and x′ in Qj . Therefore, we cannot use partition P to exactly abstract the system into

a standard finite Markov Chain. Instead, we aim to produce an Interval-valued Markov

Chain (IMC) abstraction of the system where the transition probabilities between states are

constrained within some bounds. Such an abstraction is depicted in Figure 1.1.

Definition 2 (Interval-Valued Markov Chain). An Interval-Valued Markov Chain (IMC)

[14] is a 6-tuple I = (Q, T̂ , T̂ , q0,Π, L) where:

• Q is a finite set of states,

• T̂ : Q × Q → [0, 1] maps pairs of states to a lower transition bound so that

T̂Qj→Q` := T̂ (Qj, Q`) denotes the lower bound of the transition probability from

state Qj to state Q`,

• T̂ : Q × Q → [0, 1] maps pairs of states to an upper transition bound so that

T̂Qj→Q` := T̂ (Qj, Q`) denotes the upper bound of the transition probability from

state Qj to state Q`,

• q0 ⊆ Q is a set of initial states,

• Π is a finite set of atomic propositions,

• L : Q→ Π is a labeling function from states to Π,
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and T̂ and T̂ satisfy T̂ (Qj, Q`) ≤ T̂ (Qj, Q`) for all Qj, Q` ∈ Q and

∑
Q`∈Q

T̂ (Qj, Q`) ≤ 1 ≤
∑
Q`∈Q

T̂ (Qj, Q`) (3.12)

for all Qj ∈ Q.

In the interest of clarity, we assume in this work that any state of an IMC I can serve as an

initial state.

An IMC I is interpreted as an Interval Markov Decision Process (IMDP) [42] if, at

each time step k, the environment non-deterministically chooses a transition matrix Tk

where each entry satisfies the bounds defined by the transition bound functions of I and

the next transition occurs according to Tk. A mapping ν from a finite path π = q0q1 . . . qk in

I to a transition matrix Tk is called an adversary. The behavior of I under some adversary

ν reduces to that of a Markov chain denoted by I[ν]. The set of all adversaries of I is

denoted by νI . The IMDP interpretation of IMCs is assumed throughout this work. For

more details on possible semantic interpretations of an IMC, see [42].

Definition 3 (IMC Abstraction). Given the system (3.1) evolving on a domainD ⊂ Rn and

a partition P = {Qj}mj=1 of D, an IMC I = (Q, T̂ , T̂ , q0,Π, L) is an abstraction of (3.1)

if:

• P = Q, that is, the set of states of the IMC is the partition P ,

• For all Qj, Q` ∈ P ,

T̂Qj→Q` ≤ inf
x∈Qj

T (x,Q`), and (3.13)

T̂Qj→Q` ≥ sup
x∈Qj

T (x,Q`), (3.14)

• P = q0, i.e., the set of initial states of the IMC is the partition P ,
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• For all Qj ∈ P and for any two states xi, x` ∈ Qj , it holds that L(Qj) := L(xi) =

L(x`), that is, the partition conforms to the boundaries induced by the labeling func-

tion,

• I is interpreted as an IMDP.

The fact that two continuous states within the same discrete state of the abstraction may

engender different transition probabilities is captured by interpreting the IMC as an IMDP.

Performing verification on an IMC abstraction, which is an over-approximation of all

possible continuous-state behaviors of (3.1), provides probabilistic guarantees with respect

to the original system’s states. A consequence of model checking an IMC I, whose transi-

tions are characterized by transition probability intervals, is that the probability of satisfying

property Ψ from any of its initial statesQj must be specified as an interval Ij = [pjmin, p
j
max]

as well, where PI[ν](Qj |= Ψ) ∈ Ij, ∀ν ∈ νI , that is, pjmin is a lower bound on the proba-

bility of satisfying Ψ from state Qj over all possible adversaries of I and pjmax is an upper

bound on the probability of satisfying Ψ from state Qj over all possible adversaries of I.

For any initial state Qj in an IMC I, we define the satisfaction relation |= for formulas of

the type (3.8) where

Qj |= P./psat [Ψ]⇔ (p
Qj
Ψ )ν ./ psat ∀ν ∈ νI , (3.15)

with (p
Qj
Ψ )ν being the probability that the word generated by a random path starting in Qj

satisfies property Ψ under adversary ν. We denote the set of initial states satisfying φ in

I by (Qyes
φ )I , while states that do not satisfy φ are in (Qno

φ )I . Note that any Qj such that

psat ∈ ]pjmin, p
j
max[ if ./ ∈ {≤,≥}, or psat ∈ [pjmin, p

j
max] if ./ ∈ {<,>}, is undecided with

respect to φ in (3.8) and we write Qj ∈ (Q?
φ)I . The remaining states either satisfy φ or do

not satisfy φ.

Fact 1. Let I be an IMC abstraction of (3.1) induced by a partition P = {Qj}mj=1 of D.

For any formula of the form (3.8), it holds that:
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• Qj ∈ (Qyes
φ )I ⇒ x ∈ Qyes

φ ∀x ∈ Qj

• Qj ∈ (Qno
φ )I ⇒ x ∈ Qno

φ ∀x ∈ Qj .

Given an IMC abstraction I of (3.1) generated from a partition P ofD, our approach for ad-

dressing the stochastic verification problem is thus to implement a technique for determin-

ing non-trivial values of pjmin and pjmax and sort all states of P into the sets (Qyes
φ )I , (Qno

φ )I

and (Q?
φ)I .

3.4.2 Solving the Synthesis Problem using Bounded-Parameter Markov Decision Processes

Abstractions and Controlled Interval-valued Markov Chain Abstractions

Next, we consider systems of the form (3.3) with a finite number of modes. Recall that, at

each time step, an external agent chooses a mode and the next stochastic transition of (3.3)

takes place according to the dynamics defined by the selected mode. As in the uncontrolled

case, for a fixed mode a of (3.3), the probability of making a transition from a discrete

state Qj of a given partition P to another state Q` is not uniquely defined as T (x, a,Q`)

and T (x′, a,Q`) may not be the same for two continuous states x, x′ ∈ Q`. Hence, sys-

tems of the form (3.3) are abstracted by Bounded-parameter Markov Decision Processes

(BMDP) from a partition P of the domain D, where the probability of transition between

any two states is given as an interval of possible probabilities for any action of the BMDP

representing a mode of the original system, as illustrated in Figure 3.1.

Definition 4 (Bounded-parameter Markov Decision Process). A Bounded-parameter Markov

Decision Process (BMDP) [43] is a 7-tuple B = (Q,Act, T̂ , T̂ , q0,Π, L) where:

• Q is a finite set of states,

• Act is a finite set of actions,

• T̂ : Q × Act × Q → [0, 1] maps pairs of states and an action to a lower transition
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bound so that T̂
Qj

a−→Q`
:= T̂ (Qj, a,Q`) denotes the lower bound of the transition

probability from state Qj to state Q` under action a ∈ A(Qj),

• T̂ : Q× Act×Q→ [0, 1] maps pairs of states and an action to an upper transition

bound so that T̂
Qj

a−→Q`
:= T̂ (Qj, a,Q`) denotes the upper bound of the transition

probability from state Qj to state Q` under action a ∈ A(Qj),

• q0 ⊆ Q is a set of initial states,

• Π is a finite set of atomic propositions,

• L : Q→ Π is a labeling function from states to Π,

and T̂ and T̂ satisfy T̂ (Qj, a,Q`) ≤ T̂ (Qj, a,Q`) for all Qj, Q` ∈ Q, all a ∈ A(Qj), and

∑
Q`∈Q

T̂ (Qj, a,Q`) ≤ 1 ≤
∑
Q`∈Q

T̂ (Qj, a,Q`) (3.16)

for all Qj ∈ Q and all a ∈ A(Qj).

Denoting the set of all finite paths of a BMDP B by (Pathsfin)B, a switching policy

µ : (Pathsfin)B → Act for B is a function assigning an action to all finite paths in B.

The set of all switching policies of B is denoted by UB = {µ | µ : (Pathsfin)B → Act}.

Under a switching policy µ, the available actions in BMDP B reduce to a single possibility

at each time step, namely, that prescribed by the switching policy µ, inducing an (possibly

countably infinite-state) IMC. As will be discussed further, only finite-memory policies

need to be considered in this work, which induce finite-state IMCs. The IMC induced by

policy µ in BMDP B is denoted by B[µ].

Definition 5 (BMDP Abstraction). Given the system (3.3) evolving on a domain D ⊂ Rn

and a partition P = {Qj}mj=1 of D, a BMDP B = (Q,Act, T̂ , T̂ , q0,Π, L) is an abstraction

of (3.3) if:

• P := Q, that is, the set of states of the BMDP is the partition P ,
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• Act := A, that is, the set of actions of the BMDP are the modes of (3.3),

• For all Qj, Q` ∈ P and action a ∈ Act,

T̂
Qj

a−→Q`
≤ inf

x∈Qj
T (x, a,Q`), and (3.17)

T̂
Qj

a−→Q`
≥ sup

x∈Qj
T (x, a,Q`), (3.18)

• P = q0, i.e., the set of initial states of the BMDP is the partition P ,

• For all Qj ∈ P and for any two states xi, x` ∈ Qj , it holds that L(Qj) := L(xi) =

L(x`), that is, the partition conforms to the boundaries induced by the labeling func-

tion,

• Any IMC Ia induced by an action a ∈ Act is interpreted as an IMDP.

Model checking a BMDP B under switching policy µ against specification Ψ is equiva-

lent to verifying an IMC. Because the probability of satisfying a specification Ψ in an IMC

is not uniquely defined and depends on the instanciation of a non-deterministic adversary,

the verification of an IMC induced by a policy µ in a BMDP does not result in a fixed

probability but in an interval of satisfaction (Ij)µ = [(pjmin)µ, (p
j
max)µ] for all initial states

Qj , where PB[µ][ν](Qj |= Ψ) ∈ (Ij)µ, ∀ν ∈ νB[µ]. A policy µ for a BMDP abstraction of

(3.3) maps to a policy for (3.3) in the natural way, i.e., at state x ∈ Qj , the control action

prescribed by µ at discrete state Qi is applied to (3.3). It then holds that the exact proba-

bility of satisfying Ψ from any initial state x ∈ Qj for (3.3) is contained within the bounds

(Ij)µ [26]. Therefore, given a BMDP abstraction B of (3.3) generated from a partition P

of the domain D, our approach to the stochastic synthesis problem for finite-mode systems

is to find policies µ̂lowΨ and µ̂upΨ that respectively maximize the lower bound probability and

minimize the upper bound probability of satisfying Ψ for all initial states Qj of B. Specifi-

cally, given a system of the form (3.3), a partition P of its domain D, a BMDP abstraction

B of (3.3) arising from P , any initial state Qj ∈ Q of B and an ω-regular property Ψ, we
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Figure 3.1: A finite-state BMDP abstraction B over a continuous domain D. A partition P
of D is generated and bounds on the transition probabilities between states are estimated
for two actions a1 and a2 of B.

want to compute switching policies µ̂upΨ ∈ UB and µ̂lowΨ ∈ UB that respectively minimize

the upper bound probability and maximize the lower bound probability of satisfying Ψ in

B, i.e.,

µ̂
up
Ψ = arg min

µ∈UB
P̂B[µ](Qj |= Ψ) (3.19)

µ̂lowΨ = arg max
µ∈UB

P̂B[µ](Qj |= Ψ) . (3.20)

Then, we focus our attention on controlled stochastic systems of the general form (3.2)

where an input is drawn from a continuous set at every time step. Solving the stochastic

synthesis problem for an arbitrary property Ψ again involves a partition P of the domain

D from which a finite-state abstraction of the system is constructed and analyzed. We
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introduce new abstraction tools called Controlled Interval-valued Markov Chains (CIMC)

which differ from BMDPs in that the set of available actions is uncountably infinite. CIMCs

are the abstractions of choice for systems of the form (3.2).

Definition 6 (Controlled Interval-valued Markov Chain). A Controlled Interval-valued

Markov Chain (CIMC) is a 7-tuple C = (Q,U, T̂ , T̂ , q0,Π, L) defined similarly to a BMDP

with the difference that a continuous set of inputs U ⊆ Rm replaces the finite set of actions

Act.

Definition 7 (Controlled Interval-valued Markov Chain Abstraction). Given the system

(3.2) evolving on a domain D ⊂ Rn and a partition P = {Qj}mj=1 of D, a CIMC C =

(Q,U, T̂ , T̂ , q0,Π, L) is an abstraction of (3.2) if it satisfies the same conditions as a BMDP

abstraction with the difference that a continuous set of inputs U ⊆ Rm replaces the finite

set of actions Act.

Denoting the set of all finite paths in a CIMC C by (Pathsfin)C , a control policy µ :

(Pathsfin)C → U for C is a function assigning an input to all finite paths in C. The set

of all control policies of C is denoted by UC = {µ | µ : (Pathsfin)C → U}. A policy µ

applied to a CIMC C induces an IMC denoted by C[µ]. As in the finite-mode case, for all

possible finite paths in C, the goal is to find the input in the uncountable set U that yields

the most favorable IMC abstraction with respect to the desired objective. Note that, unlike

in a BMDP abstraction, this problem offers an infinite set of available inputs to select from,

ruling out the possibility of using an exhaustive search. Formally, given a system of the

form (3.2), a partition P of its domain D, a CIMC abstraction C of (3.2) arising from P ,

any initial state Qj ∈ Q of C and an ω-regular property Ψ, we want to compute control

policies µ̂upΨ ∈ UC and µ̂lowΨ ∈ UC that respectively minimize the upper bound probability
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and maximize the lower bound probability of satisfying Ψ in C, i.e.,

µ̂
up
Ψ = arg min

µ∈UC
P̂C[µ](Qj |= Ψ) (3.21)

µ̂lowΨ = arg max
µ∈UC

P̂C[µ](Qj |= Ψ) . (3.22)

In light of the proposed approaches, the remainder of this dissertation will first fo-

cus on the development of efficient finite-state abstraction techniques for specific classes of

discrete-time stochastic dynamical systems. Then, verification and synthesis algorithms for

ω-regular specifications applicable to these abstractions are developed in subsequent chap-

ters and used to provide solutions to the stochastic verification problem and the stochastic

synthesis problem.
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CHAPTER 4

IMC AND BMDP ABSTRACTION TECHNIQUES

In this chapter, we discuss several techniques for constructing IMC and BMDP abstractions

applicable to specific classes of stochastic dynamical systems. These finite abstractions are

amenable to formal verification and synthesis, and therefore serve as the main instruments

to address the stochastic verification problem and the stochastic synthesis problem enun-

ciated in Chapter 3. Unlike sampling techniques employed in related works, our objective

is to compute transition probability intervals that are guaranteed to be correct while being

non-trivial — that is, ranging from 0 to 1 for all transitions.

First, in Section 4.1, we present an efficient IMC abstraction procedure for the wide

class of mixed monotone systems with additive disturbance. Mixed monotonicity general-

izes the property of monotonicity for dynamical systems for which trajectories maintain a

partial ordering on states [44], [45], [46]. Many physical systems have been shown to be

monotone or mixed monotone such as biological systems [12] and transportation networks

[10], [47], [11].

Next, in Section 4.2, we detail an IMC abstraction method for polynomial stochastic

systems which is based on so-called stochastic barrier functions. Stochastic barrier func-

tions are used to provide probabilistic guarantees of set invariance and reachability without

requiring explicit computations of reachable sets. In particular, we show that an IMC ab-

straction of polynomial systems can be constructed from a discrete partition of the contin-

uous domain by solving two Sum-of-Squares (SOS) optimization programs per transition.

Note that any finite-mode system whose individual modes belong to one of the above

classes of systems can be abstracted by a BMDP using the techniques presented in this

chapter.

40



4.1 Abstraction of Mixed Monotone Systems with Additive Disturbance

In this section, we suggest an efficient and scalable IMC abstraction technique for affine-

in-disturbance stochastic mixed monotone systems. Systems with mixed monotone state

update maps exhibit considerable structure useful for analysis and control. As formally

defined further, mixed monotone functions are order-preserving with respect to a so-called

decomposition function. This property allows us to compute tight over-approximation of

reachable sets from rectangular sets by evaluating the decomposition function at only two

points, regardless of the dimension of the domain. Therefore, given a rectangular parti-

tion of the domain of a mixed monotone system, we can efficiently over-approximate the

reachable set of any state in the partition. By restricting the additive disturbance to such

reachable sets, lower and upper bounds on the probability of transition between any two

state are efficiently determined under certain assumptions on the structure of the noise and

the partition.

Consider the affine-in-disturbance stochastic system

x[k + 1] = F(x[k]) + w[k] , (4.1)

where x[k] ∈ D ⊂ Rn is the state of the system on a domain D at time k, F : D → D

is a mixed monotone function and w[k] ∈ W ⊆ Rm is a unimodal, symmetric random

disturbance with a diagonal covariance matrix as defined below. In the following definitions

and throughout this section, all inequalities between vectors are interpreted element-wise.

Definition 8 (Mixed monotone function). [14] A function F : D → D is mixed monotone

if there exists a decomposition function g : D ×D → D satisfying [48, 13]:

• ∀x ∈ D : F(x) = g(x, x)

• ∀x1, x2, y ∈ D : x1 ≤ x2 implies g(x1, y) ≤ g(x2, y)

• ∀x, y1, y2 ∈ D : y1 ≤ y2 implies g(x, y2) ≤ g(x, y1) .
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Mixed monotonicity generalizes the notion of monotonicity in dynamical systems, which

is recovered when g(x, y) = F (x) for all x, y.

Assumption 1. F in (4.1) is mixed monotone with decomposition function g(x, y).

Definition 9 (Unimodal distribution). [14] For a random disturbance ω ∈ Ω ⊂ R with Ω

an interval, its probability density function fω : R → R is unimodal if fω is differentiable

on Ω and there exists a unique number c ∈ R, referred as the mode of the distribution, such

that, for x ∈ Ω:

• x < c⇒ f ′ω(x) ≥ 0,

• x = c⇒ f ′ω(x) = 0, and

• x > c⇒ f ′ω(x) ≤ 0.

Definition 10 (Symmetric distribution). [14] For a random disturbance ω ∈ Ω ⊂ R with

Ω an interval, its probability density function fω : R → R is symmetric if there exists a

number d ∈ R such that fω(d− x) = fω(d+ x) for all x.

Assumption 2. The random disturbance w[k] in (4.1) is of the form w[k] = [ w1[k], w2[k],

. . . , wn[k] ]T , where each wi ∈ Wi ⊂ R has probability density function fwi(xi), Wi is an

interval, and the collection {wi}ni=1 is mutually independent. Furthermore, the probability

density function fwi for each random variable wi is symmetric and unimodal with mode ci.

For mixed monotone F with decomposition function g, for x, y, z ∈ D satisfying x ≤

z ≤ y, we have g(x, y) ≤ F(z) ≤ g(y, x). This leads to the following proposition.

Proposition 1 ([13, Theorem 1]). Let F : D → D be mixed monotone with decomposition

function g : D ×D → D, and let a, b ∈ D satisfy a ≤ b. Then

{F(x) : a ≤ x ≤ b} ⊆ {z : g(a, b) ≤ z ≤ g(b, a)} . (4.2)
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Proposition 1 implies that the one-step reachable set from the rectangular region bounded

between a and b is over-approximated by the rectangular region bounded by the two points

g(a, b) and g(b, a). This property will prove key for efficient computation of IMC abstrac-

tions.

To exploit the mixed monotonicity property of F , we make the additional assumption

that the domain D of (4.1) admits a rectangular partition P .

Definition 11 (Rectangular Partition). A rectangular partition P of the domain D ⊂ Rn is

a collection of discrete states P = {Qj}mj=1, Qj ⊂ D, satisfying

• Qj = {x : aj ≤ x ≤ bj} for some aj, bj ∈ Rn such that aj ≤ bj, ∀j = 1, . . . ,m,

• ⋃m
j=1Qj = D,

• int(Qj) ∩ int(Q`) = ∅ ∀j, `, j 6= ` ,

where int denotes interior.

Assumption 3. The partition P of the domain D of (4.1) is rectangular.

We decompose our procedure for bounding the transition probability from a state Q1 ∈

P to a state Q2 ∈ P in two steps: first, we compute the rectangular over-approximation

of the F-reachable set from state Q1 by exploiting the mixed monotonicity property of

F . Next, we determine the positions of fw within this rectangular over-approximation that

respectively minimize and maximize its overlap with state Q2. In the next section, we

exploit the characteristics of w previously evoked to streamline the calculation of these

extremum points.

Proposition 2. Consider system (4.1) under Assumptions 1–2. LetQ1 = {x : a1 ≤ x ≤ b1}

and Q2 = {x : a2 ≤ x ≤ b2} be two nonempty rectangular sets with least point aj and

greatest point bj for j = 1, 2. Then
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min
x∈Q1

Pr(F(x) + w ∈ Q2) ≥
n∏
i=1

min
zi∈[gi(a

1,b1),gi(b
1,a1)]

∫ b2i

a2
i

fwi(x− zi)dx (4.3)

and

max
x∈Q1

Pr(F(x) + w ∈ Q2) ≤
n∏
i=1

max
zi∈[gi(a

1,b1),gi(b
1,a1)]

∫ b2i

a2
i

fwi(x− zi)dx (4.4)

where gi denotes the i-th element of g(x, y), the decomposition function of F .

Proof. By Proposition 1, we observe

{F(x) : x ∈ Q1} ⊆ {z : g(a1, b1) ≤ z ≤ g(b1, a1)} . (4.5)

To prove (4.3), we have

min
x∈Q1

Pr(F(x) + w ∈ Q2)

≥ min
z:g(a1,b1)≤z≤g(b1,a1)

Pr(z + w ∈ Q2) (4.6)

= min
z:g(a1,b1)≤z≤g(b1,a1)

n∏
i=1

Pr(zi + wi ∈ [a2
i , b

2
i ]) (4.7)

=
n∏
i=1

min
zi:gi(a1,b1)≤zi≤gi(b1,a1)

Pr(zi + wi ∈ [a2
i , b

2
i ]) (4.8)

where (4.6) follows from (4.5), (4.7) follows from the mutual independence of all com-

ponents of w in Assumption 1, and (4.8) holds because g(a1, b1) ≤ z ≤ g(b1, a1) if

and only if gi(a1, b1) ≤ zi ≤ gi(b
1, a1) for all i = 1, . . . , n. Then (4.3) holds because

Pr(zi + wi ∈ [a2
i , b

2
i ]) =

∫ b2i
a2
i
fwi(x− zi)dx. Finally, (4.4) holds by a symmetric argument

as above, replacing min with max.

Before generalizing to higher dimensions, we treat a 1-dimensional version of our orig-

inal problem. In Lemma 1, we prove that for a fixed interval [a, b] ⊂ R, there exists a
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Figure 4.1: Schematic depiction of the procedure for computing an upper bound on the
probability of transition from Q1 to Q2. First, the one-step reachable set R1 from Q1 is
over-approximated by evaluating the decomposition function at only two extremal points,
regardless of the state-space dimension. Then, the distribution of z + w is positioned as
close to the center of Q2 as possible under the restriction that z ∈ R1. A lower bound on
the transition probability is achieved by positioning the distribution as far from the center
of Q2 as possible.

unique position for a unimodal and symmetric distribution which maximizes its integral

over [a, b].

Lemma 1. Let ω ∈ Ω ⊂ R with Ω an interval be a random variable with symmetric and

unimodal probability density function fω : R → R and mode c ∈ R. For any a, b ∈ R

satisfying a ≤ b and any r1, r2 ∈ R satisfying r1 ≤ r2, let

smax =
a+ b

2
− c (4.9)
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and define

srmax = arg min
s∈[r1,r2]

|smax − s| =


smax, if smax ∈ [r1, r2]

r2, if smax > r2

r1, if smax < r1 ,

(4.10)

srmin = arg max
s∈[r1,r2]

|smax − s| =


r1, if smax > r1+r2

2

r2, otherwise .
(4.11)

Then

max
s∈[r1,r2]

∫ b

a

fω(x− s) dx =

∫ b

a

fω(x− srmax) dx (4.12)

min
s∈[r1,r2]

∫ b

a

fw(x− s) dx =

∫ b

a

fω(x− srmin) dx . (4.13)

Proof. For s ∈ R, define H(s) =
∫ b
a
fω(x− s) dx. We claim

H(smax) = max
s∈R

H(s) , (4.14)

and, moreover, for all s1, s2 ∈ R such that |smax− s1| ≥ |smax− s2|, it holds that H(s1) ≤

H(s2), that is, H(s) monotonically decreases as |smax − s| increases. Assuming the claim

to be true, it follows that maxs∈[r1,r2] H(s) = H(srmax) and mins∈[r1,r2] H(s) = H(srmin),

i.e., (4.12) and (4.13), completing the proof.
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To prove the claim, we have, for all s ∈ R,

H(smax)−H(s)

=

∫ b

a

fω(x− smax) dx−
∫ b

a

fω(x− s) dx (4.15)

=

∫ b−smax

a−smax
fω(x) dx−

∫ b−s

a−s
fω(x) dx (4.16)

=

∫ a−s

a−smax
fω(x) dx−

∫ b−s

b−smax
fω(x) dx (4.17)

=

∫ smax−s

0

[
fω(x+ a−b

2
− c)− fω(x+ b−a

2
− c)

]
dx . (4.18)

Moreover, because fω is symmetric and unimodal with mode c, fω(x+ a−b
2
− c)− fω(x+

b−a
2
−c) is an odd function of x and is negative for x > 0 and positive for x < 0. Therefore,

the integral in (4.18) is nonnegative and monotonically decreases as |smax − s| increases,

thus proving the claim.

When smax ∈ [r1, r2] in Lemma 1, the lemma confirms the intuitive idea that the integral

of a unimodal, symmetric distribution over some interval I = [a, b] is maximized when

the peak of its probability distribution lies at the center of I . However, for the type of

systems considered in this work, the shift of such distributions will always be restricted to

take values within a given rectangular set [r1, r2] so that, when smax 6∈ [r1, r2], the shift

s ∈ [r1, r2] maximizing the overlap of the density function over I is the one closest to the

global maximizing shift smax. Conversely, a shift s ∈ [r1, r2] minimizing this overlap is the

one furthest from smax.

Theorem 1 combines Lemma 1 and Proposition 2 in order to provide a procedure for

efficiently constructing an IMC abstraction for (4.1) given a rectangular partition of its

domain D.

Theorem 1. Consider system (4.1) under Assumptions 1–2 and let P = {Qj}mj=1 be a

rectangular partition of D with each Qj = {x : aj ≤ x ≤ bj} for some aj, bj ∈ Rn
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satisfying aj ≤ bj . For all Qj, Q` ∈ P , let

s`i,max =
a`i + b`i

2
− ci for i = 1, . . . , n, (4.19)

r̂
j

= g(aj, bj) , (4.20)

r̂j = g(bj, aj) , (4.21)

and define

T̂Qj→Q` =
n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,max) dxi , (4.22)

=
n∏
i=1

(
Fwi(b

`
i − sj→`i,max)− Fwi(a`i − sj→`i,max)

)
, (4.23)

T̂Qj→Q` =
n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,min) dxi (4.24)

=
n∏
i=1

(
Fwi(b

`
i − sj→`i,min)− Fwi(a`i − sj→`i,min)

)
(4.25)

where Fwi is the cumulative distribution function for wi and

sj→`i,max =


s`i,max, if s`i,max ∈ [̂r

j
i , r̂

j
i ]

r̂ji , if s`i,max > r̂ji

r̂
j
i , if s`i,max < r̂

j
i ,

(4.26)

sj→`i,min =


r̂
j
i , if s`i,max >

r̂
j
i+r̂

j
i

2

r̂ji , otherwise .
(4.27)

Then I = (P, T̂ , T̂ ) is an IMC abstraction of (4.1).
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Proof. For all Qj, Q` ∈ P and i = 1, . . . , n, by Lemma 1,

min
zi∈[gi(a

j ,bj),gi(b
j ,aj)]

∫ b`i

a`i

fwi(x− zi)dx

=

∫ b`i

a`i

fwi(xi − sj→`i,min) dxi , (4.28)

max
zi∈[gi(a

j ,bj),gi(b
j ,aj)]

∫ b`i

a`i

fwi(x− zi)dx

=

∫ b`i

a`i

fwi(xi − sj→`i,max) dxi , (4.29)

Then, by Proposition 2,

min
x∈Qj

Pr(F(x) + w ∈ Q`) ≥
n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,min) dxi (4.30)

max
x∈Qj

Pr(F(x) + w ∈ Q`) ≤
n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,max) dxi , (4.31)

so that (4.22)–(4.24) implies (3.13)–(3.14). Furthermore, (4.30)–(4.31) implies T̂ (Qj, Q`) ≤

T̂ (Qj, Q`) and (3.13)–(3.14) implies (3.12) so that I = (P, T̂ , T̂ ) is a valid IMC, conclud-

ing the proof.

Given a system of the form (4.1) satisfying Assumptions 1 to 2, and a rectangular parti-

tion P of its domainD, Theorem 1 shows that an IMC abstraction of (4.1) can be computed

efficiently. Specifically, for any state in P , we establish an over-approximation of its one-

step reachable set by evaluating the system’s decomposition function at only two points.

Likewise, finding the maximizing and minimizing shifts inside the reachable sets decou-

ples along each coordinate and involves a number of operations and conditional statements

that is linear in the dimension n of the state-space, according to (4.26) and (4.27). Finally,

we see in (4.22) and (4.24) that n integral evaluations are needed per transition bound. Pre-

suming the cumulative distribution function Fwi for each wi is available to us, this last step

amounts to 2n function evaluations per bound. The practical implications of Theorem 1 are
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implemented in Algorithm 1.

Algorithm 1 Computation of an IMC abstraction for a rectangular partition P
1: Input: Partition P = {Qj}mj=1, probability density functions fwi and modes ci ∈ R for

each component of disturbance, cumulative distribution functions Fwi of fwi , system
decomposition function g

2: Output: IMC abstraction I of (4.1)
3:
4: for j = 1, 2, . . . , n do
5: Set r̂j = g(bj, aj) and r̂j = g(aj, bj)
6: for ` = 1, 2, . . . , n do
7: for i = 1, 2, . . . , n do
8: Compute s`i,max according to (4.19)
9: Compute sj→`i,max and sj→`i,min according to (4.26) and (4.27)

10: end for
11: Compute T̂Qj→Q` and T̂Qj→Q` according to (4.22) and (4.24)
12: end for
13: end for
14:
15: return I = (P, T̂ , T̂ )

In Theorem 1, we exploited the crucial facts that each component of the random dis-

turbance w of system (4.1) was unimodal and symmetric in order to efficiently construct

an IMC approximation. Unfortunately, real-world systems rarely encounter disturbances

displaying these two properties. In such instances, one could resort to purely numerical

techniques to generate an IMC. We instead develop an alternate solution by approximating

the original distribution with another one which is unimodal and symmetric. Then, the tools

previously derived can be utilized on the approximation distribution. Now, we introduce a

method for generating an IMC abstraction of the original system: we first compute an IMC

using the approximation distribution, and then adjust its transition bounds appropriately.

To that end, consider random disturbance w ∈ Rn of (4.1) and suppose the collection

{wi}ni=1 remains mutually independent, but we no longer assume that each wi is unimodal

and symmetric, i.e., the second part of Assumption 2 no longer holds. However, we as-

sume that each wi is reasonably approximated by a unimodal and symmetric distribution.

To this end, many metrics exist to quantify the similarity between two probability distribu-
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tions. Here, the maximum absolute difference between the original distribution w and its

approximation v is our metric of choice, and we replace Assumption 2 with the following

assumption.

Assumption 4. There exists a mutually independent collection of random variables {vi}ni=1

and constants {δi}ni=1 such that vi ∈ Vi, the probability density function fvi for each vi is

unimodal and symmetric with mode c̃i, and

δi ≥ max
xi∈R
|fvi(xi)− fwi(xi)| . (4.32)

In Assumption 4, recall that fwi is the probability density function of wi ∈ Wi, the i-th

component of the random disturbance w.

The main result of this section, Theorem 2 below, states that we are able to determine an

upper and a lower bound on the probabilities of transition between any two states in system

(4.1) subject to disturbance w through an efficient computation of the bounds assuming

instead that the system is subject to the random disturbance v.

Theorem 2. Consider system (4.1) under Assumptions 1 and 4, and let P = {Qj}mj=1 be

a rectangular partition of D with each Qj = {x : aj ≤ x ≤ bj} for some aj, bj ∈ Rn

satisfying aj ≤ bj . For all Qj, Q` ∈ P , let

s̃`i,max =
a`i + b`i

2
− c̃i (4.33)

and let r̂j = g(aj, bj) and r̂j = g(bj, aj). Define

T̂ ∗Qj→Q` =
n∏
i=1

(∫ b`i

a`i

fvi(xi − s̃j→`i,max) dxi + δi(b
`
i − a`i)

)
, (4.34)

T̂ ∗Qj→Q` =
n∏
i=1

(∫ b`i

a`i

fvi(xi − s̃j→`i,min) dxi − δi(b`i − a`i)
)

(4.35)
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where

s̃j→`i,max =


s̃`i,max, if s̃`i,max ∈ [̂r

j
i , r̂

j
i ]

r̂ji , if s̃`i,max > r̂ji

r̂
j
i , if s̃`i,max < r̂

j
i ,

(4.36)

s̃j→`i,min =


r̂
j
i , if s̃`i,max >

r̂
j
i+r̂

j
i

2

r̂ji , otherwise .
(4.37)

Then I = (P, T̂ ∗, T̂ ∗) is an IMC abstraction of (4.1).

Although similar to Theorem 1, Theorem 2 relaxes Assumption 2 and considers an

arbitrary disturbance w to system (4.1). It assumes the existence of a random disturbance

v that is unimodal, symmetric and characterized by its maximum absolute difference with

w as stated in Assumption 4. This allows us to efficiently compute an IMC abstraction for

(4.1) by applying the equations in Theorem 1 to disturbance v with the addition of an error

term in the bounds (4.34) and (4.35). The error terms solely involve the multiplication of

two known quantities and do not significantly affect the complexity of computing the IMC

as compared to Theorem 1. However, it should be noted that the conservatism of an IMC

generated from Theorem 2 strongly depends on the δi parameters. The latter are scaled

by the size of the destination states and added to the IMC bounds, meaning that a large

maximum absolute distance betweenw and v can only be compensated by a reduction of the

states’ size and an increase in the number of states in the partition. Therefore, excessively

large δi are susceptible to cause a curse of dimensionality. As such, even though this

method can be applied to arbitrary disturbances, it is most practical if w originally displays

a probability density profile that is almost symmetric and unimodal.

The proof of Theorem 2 requires the following lemma in which we first restrict ourselves

to a one-dimensional framework.
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Lemma 2. Let ω ∈ Ω ⊂ R with Ω an interval be a random variable with probability

density function fω : R→ R. Let ν ∈ Ω ⊂ R be another random variable with symmetric

and unimodal probability density function fν : R → R with mode c̃, and let δ satisfy

δ ≥ max
x∈R
|fω(x)− fν(x)|. For any a, b ∈ R satisfying a ≤ b and any r1, r2 ∈ R satisfying

r1 ≤ r2,

max
s∈[r1,r2]

∫ b

a

fω(x− s) dx

≤ max
s∈[r1,r2]

∫ b

a

fν(x− s) dx+ δ(b− a) (4.38)

min
s∈[r1,r2]

∫ b

a

fω(x− s) dx

≥ min
s∈[r1,r2]

∫ b

a

fν(x− s) dx− δ(b− a) . (4.39)

Proof. Let sωmax and sωmin satisfy

∫ b

a

fω(x− sωmax) dx = max
s∈[r1,r2]

∫ b

a

fω(x− s) dx , (4.40)∫ b

a

fω(x− sωmin) dx = min
s∈[r1,r2]

∫ b

a

fω(x− s) dx . (4.41)

(4.42)

Since |fω(x)− fν(x)| ≤ δ ∀x, we have

fω(x− sωmax) ≤ fν(x− sωmax) + δ ∀x
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and it follows that

∫ b

a

fω(x− sωmax) dx

≤
∫ b

a

fν(x− sωmax) dx+ δ(b− a)

≤ max
s∈[r1,r2]

∫ b

a

fν(x− s) dx+ δ(b− a) .

Similarly,

fω(x− sωmin) ≥ fν(x− sωmin)− δ ∀x

so that

∫ b

a

fω(x− sωmin) dx (4.43)

≥
∫ b

a

fν(x− sωmin) dx− δ(b− a) (4.44)

≥ min
s∈[r1,r2]

∫ b

a

fν(x− s) dx− δ(b− a) . (4.45)

Lemma 2 is the enabling step in the proof Theorem 2.
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Proof. For all Qj, Q` ∈ P and i = 1, . . . , n, by Lemma 1 and Lemma 2,

min
zi∈[gi(a

1,b1),gi(b
1,a1)]

∫ b2i

a2
i

fwi(x− zi)dx

≥
∫ b`i

a`i

fvi(xi − s̃j→`i,min) dxi − δi(b`i − a`i) , (4.46)

min
zi∈[gi(a

1,b1),gi(b
1,a1)]

∫ b2i

a2
i

fwi(x− zi)dx

≤
∫ b`i

a`i

fvi(xi − s̃j→`i,max) dxi + δi(b
`
i − a`i) . (4.47)

The theorem then follows from Proposition 2 by following the same argument as in the

proof of Theorem 1

4.2 Abstraction of Polynomial Systems

We now present an IMC abstraction method for polynomial stochastic systems. These

systems are relevant to numerous applications in a wide array of fields such as biology

[49], physics [50], kinematics [51] and geology [52]. Furthermore, many nonlinear sys-

tems with intricate dynamics can be approximated by polynomial state updates [53] [54],

which renders the study of polynomial systems especially attractive. Our proposed solution

utilizes so-called stochastic barrier functions to compute bounds on the probability that a

polynomial system transitions from one region of the state-space to another in one time

step. Stochastic barrier functions are versatile tools that do not require explicit computa-

tions of reachable sets and serve as Lyapunov-like probabilistic certificates of forward set

invariance. We show further that polynomial dynamics enable the search for stochastic

barrier functions to be converted to Sum-of-Squares (SOS) optimization programs, which

are known to be convex. Finding stochastic barrier functions for every possible transition

between the discrete states of a domain partition effectively constructs a non-trivial IMC

abstraction of a stochastic polynomial system.
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Consider the stochastic system with dynamics

x[k + 1] = F(x[k], w[k]) , (4.48)

where x[k] ∈ D ⊂ Rn is the state of the system on a domain D at time k, F : D → D

is a function and w[k] ∈ W ⊆ Rm is a random disturbance. In this section, we focus on

systems with polynomial dynamics in x and w.

Assumption 5. The function F in (4.48) is a polynomial in x and w.

Hence, the main problem of this section consists in devising an IMC abstraction procedure

for (4.48) under Assumption 5.

4.2.1 Stochastic Barrier Functions

In order to propose a solution to this problem, we first introduce the concept of stochastic

barrier function.

Stochastic barrier functions are utilized as a probabilistic certificate of set invariance

for stochastic systems. Specifically, by showing the existence of a non-negative function

satisfying a particular set of constraints over the domain of the system, one can ensure that

the probability of reaching a given set of states from a set of initial conditions is no greater

than some bound. The following general theorem is a corollary of [55, Chapter 3, Theorem

3] and quantitatively demonstrates how stochastic barrier functions provide a bound on the

probability of set invariance for discrete-time processes over a finite-time horizon.

Theorem 3. Given the stochastic difference equation (4.48) and the sets X ⊂ Rn, Xu ⊆

X ,X0 ⊆ X \ Xu. Consider the process x[k] evolving according to (4.48). Suppose there
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exists a function B such that

B(x) ≤ γ ∀x ∈ X0 (4.49)

B(x) ≥ 1 ∀x ∈ Xu (4.50)

B(x) ≥ 0 ∀x ∈ X (4.51)

Ew[B(F (x,w)) | x] ≤ B(x)

α
+ β ∀x ∈ X \ Xu (4.52)

for some α ≥ 1, 0 ≤ β < 1 and γ ∈ [0, 1), where Ew denotes the expectation with respect

to random variable w. Define

ρu := Pr{x[k] ∈ Xu for 0 ≤ k ≤ N | x[0] ∈ X0} , (4.53)

ρB := Pr

{
sup

0≤k≤N
B(x) ≥ 1 | x[0] ∈ X0

}
. (4.54)

Then

• If α > 1 and βα
α−1
≤ 1,

ρu ≤ ρB ≤ 1−
(

1− γ
)N−1∏

0

(
1− β

)
. (4.55)

• If α > 1 and βα
α−1

> 1,

ρu ≤ ρB ≤ γα−N +
(1− α−N)αβ

(α− 1)
. (4.56)

• If α = 1,

ρu ≤ ρB ≤ γ + βN . (4.57)

If a function B(x) satisfies the conditions of Theorem 3, then B(x) is called a stochastic
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barrier function.

While this theorem applies to stochastic systems over an arbitrary finite time-horizon,

one-step transition guarantees are sufficient for creating an IMC abstraction of (4.48). In

(4.52), the condition that the expectation of B evaluated against the stochastic process

(4.48) is less than a function of B itself captures the fact that different regions of the safe

set X \ Xu have different probabilities of reaching the unsafe set Xu, which is factored in

the bounds on the probability of reaching Xu over multiple transitions from some initial

condition. When focusing on a single transition, such considerations are irrelevant as the

transition probabilities for the whole initial set X0 does not influence the probability of

attaining the unsafe set in one transition from some particular x0.

In light of these facts, we can make some simplifications on the conditions and bounds

of Theorem 3 which are amenable to more efficient implementations in the following sub-

section. We now study stochastic barrier functions over a finite-time horizon of two time

steps, i.e., the current time and the next time. Let X0 ⊆ X be a set of possible initial

conditions, and X1 ⊆ X be a compact set of the domain. The following theorem estab-

lishes that the probability of reaching set X1 from any initial state x0 ∈ X0 in one time step

can be upper-bounded by finding a function B(x) whose expectation against the stochastic

dynamics is upper-bounded by a constant over the set X0.

Theorem 4. Given the stochastic differential equation in (4.48) and the sets X ⊂ Rn,

X0 ⊆ X ,X1 ⊆ X . Consider the process x[k] evolving according to (4.48). Suppose that

there exists a function B : X → R, such that

B(x) ≥ 1 ∀x ∈ X1 , (4.58)

B(x) ≥ 0 ∀x ∈ X , (4.59)

Ew
[
B(F(x,w)) | x

]
≤ α ∀x ∈ X0 (4.60)

for some α ≥ 0, where Ew denotes the expectation with respect to w. Given x0 := x[0],
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define ρu(x0) := Pr{x[1] ∈ X1 | x0}. Then, for any initial state x0 ∈ X0,

ρu(x0) ≤ Pr {B(x[1]) ≥ 1 | x0} ≤ α . (4.61)

Proof. This theorem follows from Markov’s inequality:

ρu(x0) ≤ Pr {B(x[1]) ≥ 1 | x0} ≤
Ew
[
B(F(x0, w)) | x0

]
1

≤ α .

A function B satisfying the conditions of Theorem 4 is a special-case of stochastic

barrier function over the set of initial conditions X0 for a single transition. Numerical

procedures for finding such functions for particular polynomial systems under Assumption

5 are developed in the next subsections.

4.2.2 Barrier Function-based IMC Abstraction

Now, we present a stochastic barrier function-based approach to the IMC abstraction prob-

lem for general systems of the form (4.48).

We first define the exact transition bounds on the probability of transition between any

two states in a domain partition P .

Definition 12 (Exact Transition Bounds). Let P be a partition of the domain D of (4.48).

For allQi, Qj ∈ P , the exact transition lower bound T̂ ex(Qi, Qj) and upper bound T̂ex(Qi,

Qj) on the transition from Qi to Qj are given by

T̂ ex(Qi, Qj) = inf
x∈Qi

T (x,Qj) ,

T̂ex(Qi, Qj) = sup
x∈Qi

T (x,Qj) ,

where T denotes the stochastic transition kernel of system (4.48).
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Remark that, in an IMC abstraction of (4.48), it must hold that, for all Qi, Qj ∈ P ,

T̂Qi→Qj ≤ T̂ ex(Qi, Qj) ≤ T̂ex(Qi, Qj) ≤ T̂Qi→Qj . (4.62)

Consider two states Qi and Qj from a partition P of the domain D of (4.48). Our goal

is to determine a lower bound T̂ (Qi, Qj) and an upper bound T̂ (Qi, Qj) on the probability

of making a transition from any continuous state in Qi to a state in Qj . Then, an IMC

abstraction of (4.48) can be constructed by applying this methodology to all possible pairs

of states in P .

We assume henceforth that an over-approximation and an under-approximation of any

discrete state in P can be represented as the zero-superlevel set of some polynomial func-

tion, as well as the domainD itself. This assumption is reasonable in many examples found

in the literature where the discrete states arise from polytopic or rectangular partitions of

the domain. For instance, a technique for computing such approximations with arbitrary

precision for hyperrectangular states is presented in [15].

Assumption 6. For any state Qi in a partition P of domain D, there exists an over-

approximation X̂Qi ⊃ Qi and an under-approximation X̂Qi ⊂ Qi such that X̂Qi =

{x ∈ Rn | sX̂Qi (x) ≥ 0} and X̂Qi = {x ∈ Rn | sX̂Qi (x) ≥ 0}, where sX̂Qi and

sX̂Qi
are polynomials. Also, there exists an over-approximation X̂ ⊃ D of D such that

X̂ = {x ∈ Rn | sX̂ (x) ≥ 0}, where sX̂ is a polynomial.

Finding bounds on the probability of making a transition fromQi toQj in one time step

can be converted to two reachability problems over a one time step time horizon. Indeed,

by viewing Qi as the set X0 in Theorem 4, determining upper bounds on the probability of

reaching X1 = Qj and X1 = D \ Qj induces an interval on the probability of making a

transition from Qi to Qj . We formalize this in terms of the over and under-approximation

representations of these states in the following lemma.
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Lemma 3. Let X0 and X1 be the sets as defined in Theorem 4. Recall the exact bounds on

the probability of transition from Qi to Qj are T̂ ex(Qi, Qj) and T̂ex(Qi, Qj), where Qi and

Qj are states in the partition P . Let ρ̂u be an upper bound on the probability for system

(4.48) to reach X1 when X0 = X̂Qi and X1 = X̂Qj , and let ρ̂u be a similarly defined upper

bound when X0 = X̂Qi and X1 = D \ X̂Qj . Then,

ρ̂u ≥ T̂ex(Qi, Qj) , (4.63)

1− ρ̂u ≤ T̂ ex(Qi, Qj) . (4.64)

Proof. By assumption, the probability of making a transition to X̂Qj from any state x ∈ X̂Qi
in one time step is upper bounded by ρ̂u. Since Qj ⊂ X̂Qj , the probability of making a

transition from X̂Qi to Qj cannot be greater than ρ̂u as well. As Qi ⊂ X̂Qi , the latter also

holds true for all x ∈ Qi, proving (4.63).

Furthermore, the probability of making a transition to D \ X̂Qj from any state x ∈ X̂Qi
in one time step is upper bounded by ρ̂u. Therefore, the probability of making a transition

to X̂Qj is at least 1 − ρ̂u. Since X̂Qj ⊂ Qj , the probability of making a transition to Qj

from X̂Qi cannot be less than 1− ρ̂u as well. As Qi ⊂ X̂Qi , the latter also holds true for all

x ∈ Qi, proving (4.64).

In the next subsection, we describe a numerical procedure for computing polynomial

barrier functions fulfilling the requirements of Theorem 4 for systems satisfying Assump-

tion 5.

4.2.3 Numerical Procedure for Barrier Function Computation

This section proposes a numerical algorithm based on the equations in Theorem 4 for com-

puting the bounds discussed in Lemma 3. As an example, in this subsection, we assume

the dynamics of the system under consideration to satisfy Assumption 5. As we wish to

find transition bounds that are as tight as possible, we seek to formulate an optimization
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problem that minimizes the computed upper bound probability of system (4.48) making a

transition to a set X1 in one time step as established in Theorem 4. Specifically, for a given

initial set X0 and a set X1, we are interested in finding the minimum upper bound α on ρu

such that a barrier function B satisfying conditions (4.58) – (4.60) exists.

Imposing the restriction that B is a polynomial function, this problem is converted to a

Sum-of-Squares Program (SOSP) as defined below.

Definition 13 (Sum-of-Squares Polynomial). Define R[x] as the set of all polynomials in

x ∈ Rn. Then

Σ[x] :=

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

gi(x)2, gi(x) ∈ R[x]

}

is the set of Sum-of-Squares polynomials. It is noted that if s(x) ∈ Σ[x], then s(x) ≥ 0 ∀

x.

Definition 14 (Sum-of-Squares Program). Given pi(x) ∈ R[x] for i = 0, . . . ,m, the prob-

lem of finding qi(x) ∈ Σ[x] for i = 1, . . . , m̂ and qi(x) ∈ R[x] for i = m̂ + 1, . . . ,m such

that

p0(x) +
m∑
i=1

pi(x)qi(x) ∈ Σ[x]

is a Sum-of-Squares Program (SOSP). SOSPs can be efficiently converted to semidefinite

programs, which are convex, using tools such as SOSTOOLS [56].

Finding an SOS polynomial barrier functions B fulfilling constraints (4.58) – (4.60) over

the sets X0 and X1 can be encoded as an SOSP. Assume X0 = {x ∈ Rn | sX0(x) ≥ 0},

X1 = {x ∈ Rn | sX1(x) ≥ 0} and X = {x ∈ Rn | sX (x) ≥ 0}, where sX0 , sX1 and

sX are polynomials. The SOSP S(sX0 , sX1 , sX ) in Algorithm 2 finds an upper bound on

the probability of making a transition from X0 to X1 in one time step by setting α to be

the objective function to minimize. Note that the optimization program resulting from this

barrier function formulation is convex and therefore amenable to efficient resolution.
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Algorithm 2 Upper bounding SOSP S(sX0 , sX1 , sX )

1: Input: Polynomial representations sX0 , sX1 , sX of regions X0, X1 and domain D
2: Output: Upper bound α∗ on the probability of making a transition from X0 to X1 in

one time step
3: Solve

α∗ = min
α, B(x),

λX (x), λX0
(x), λX1

(x)

α

subject to

B(x)− λX (x)sX (x) ∈ Σ[x]

B(x)− λX1
(x)sX1

(x)− 1 ∈ Σ[x]

−Ew[B(F(x,w)) | x] + α− λX0
(x)sX0

(x) ∈ Σ[x]

λX (x), λX0
(x), λX1

(x) ∈ Σ[x]

4: return α∗

The constraints of the SOSPs are derived from the Positivstellensatz condition for con-

verting constraints on sets to SOSPs as detailed in [56]. The expectation term in the SOSP

is computed by expanding B(F(x,w)) and determining the moments of the noise terms,

which can be accomplished efficiently for certain classes of disturbance, such as Gaussian

or Poisson random variables, and results in a polynomial in x when F is a polynomial. An

important hyperparameter of this algorithm is the degree of the barrier and λ polynomials.

Searching for high degree polynomials allows to find tighter bounds, at a cost of increased

computational complexity.

According to Lemma 3, an upper and lower bound on the probability of transition

between any two states in a partition P of the domain D can be found using function S.

Algorithm 3 summarizes the IMC abstraction procedure for system (4.48) with a given

domain partition P .

Theorem 5. Given a system of the form (4.48) and partition P of its domain D, an IMC

abstraction of (4.48) is computed via Algorithm 3.

Proof. For any states Qi and Qj of a partition P of the domain D of (4.48), Algorithm 3

computes an upper bound and a lower bound on the probability of making a transition from

any continuous state in Qi to Qj in line 6 to 10, from Lemma 3. Moreover, Algorithm 3
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Algorithm 3 Barrier function-based IMC Abstraction
1: Input: Domain D, Domain partition P
2: Output: IMC Abstraction I
3: Compute an over-approximation representation sX̂ of the domain D
4: for Qi ∈ P do
5: for Qj ∈ P do
6: Compute the over and under-approximation representations sX̂Qi

, sX̂Qj
and

s
D\X̂Qj

7: ρ̂ := S(sX̂Qi
, sX̂Qj

, sX̂ )

8: ρ̂ := S(sX̂Qi
, s
D\X̂Qj

, sX̂ )

9: T̂Qi→Qj := ρ̂

10: T̂Qi→Qj := 1− ρ̂
11: end for
12: end for
13: return I = (Q, T̂ , T̂ )

applies this bounding procedure to every pair of states in P , proving the theorem.

In brief, we implement IMC abstraction techniques that ensure the correctness of the

computed transition bounds for two classes of stochastic systems. For affine-in-disturbance

mixed monotone systems, we show that these bounds are found by evaluating a decomposi-

tion function at only two points of the origin state and performing a number of integrations

which grows linearly with the system dimensions for each transition. For polynomial sys-

tems, we cast the computation of each bound to an SOSP which is converted to a convex

optimization problem as a semidefinite program.

The techniques developed in this chapter are naturally extended to switched stochastic

systems with state update equation x[k + 1] = Fa(x[k], wa[k]) with a ∈ A, where A is a

finite set of modes. Indeed, assuming that this system is of the form (4.1) or (4.48) for all

modes a, one can construct an IMC abstraction for each individual mode from the same

partition P of the domain using the algorithms devised in Section 4.1 and Section 4.2. As

per Definition 4, concatenating the resulting outgoing transition probability intervals for

each state of the partition under all possible modes produces a BMDP abstraction of the
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switched stochastic system, where each action of the BMDP corresponds to a mode of the

abstracted system.
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CHAPTER 5

SPECIFICATION-GUIDED VERIFICATION AND ABSTRACTION

REFINEMENT FOR STOCHASTIC SYSTEMS WITH OMEGA-REGULAR

OBJECTIVES

The verification of stochastic systems against complex temporal tasks is generally ad-

dressed by constructing finite-state abstractions of the dynamics for which probabilistic

guarantees are derived using formal analysis. In Chapter 4, we elaborated procedures

for abstracting affine-in disturbance mixed monotone systems and polynomial systems as

IMCs from a partition of their continuous domain. In this chapter, we leverage IMC ab-

stractions to provide a solution to the stochastic verification problem.

In Section 5.1, we develop a technique for computing an interval on the probability

of satisfying an arbitrary ω-regular property for any initial state of an IMC. We employ

an automaton-based approach and build a Deterministic Rabin Automaton (DRA) repre-

senting the property of interest. A transition system satisfies an ω-regular property if it

generates a trajectory which induces an accepting run in the corresponding DRA. For stan-

dard Markov Chains (MC), the probability of generating an accepting run in a DRA is

computed by constructing the Cartesian product between the MC and the DRA, finding a

special set of states known as accepting Bottom Strongly Connected Components (BSCC),

and determining the probability of reaching an accepting BSCC from the initial states of

the product construction. However, we show that the set of accepting BSCCs in the prod-

uct between an IMC and a DRA is not fixed and depends on the assumed transition values

for the intervals of the IMC, preventing us from applying the same machinery as for stan-

dard MCs. Instead, we prove that a product IMC generates a largest winning component

and a largest losing component. A winning and a losing component in a MC are sets of

states which respectively reach an accepting and a non-accepting BSCC with probability
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1. We show that an interval on the probability of satisfying the desired property from any

initial state of the IMC is found by computing the upper bound probability of reaching

these largest components from the corresponding initial state of the product IMC. Solving

these reachability problems effectively produces the worst and best-case instantiations of

the probability intervals of the IMC with respect to the property at hand.

The intervals of satisfactions computed in an IMC abstraction directly apply to the con-

tinuous abstracted states. As explained in Chapter 3, because these guarantees are specified

as intervals, it may not be possible to determine whether a probabilistic ω-regular specifica-

tions is satisfied or violated for some subsets of states. In Section 5.2, in order to decrease

the total volume of these undecided states, we present a partition refinement algorithm

whose goal is to reduce conservatism in the resulting abstraction. Because partition re-

finement can substantially enlarge the number of states in the IMC abstraction, we have to

carefully select the states which are most likely to decrease the overall uncertainty under

refinement so as to lessen the state-space explosion effect. To select the states to be refined,

we adopt a specification-guided approach, that is, the regions selected for refinement are

the ones causing the most uncertainty with respect to the particular specification at hand.

Specifically, we implement a heuristical scoring procedure that quantitatively captures how

much uncertainty is generated by each state in the IMC with respect to the uncertain states.

This score is assigned by exploring and comparing the paths generated by the best and

worst-case adversary of the IMC abstraction from the uncertain states, and the states with

the greatest scores are chosen for refinement. The subsequent finer partition may be itera-

tively refined as well until the fractional volume of uncertain states reaches a user-defined

threshold of precision.

Our refinement-based verification procedure is illustrated in Figure 5.1.
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Initial Partition P

Refined Partition P ′

Abstraction Verification
Yes

No

DRA A of Ψ

Required
Precision?

IMC Abstraction I

Figure 5.1: Depiction of our refinement-based verification procedure. First, an IMC ab-
straction I of the system is constructed from an initial partition P of the domain. Then,
verification is performed on I. If the computed probabilistic guarantees satisfy a user-
defined precision criterion, the procedure terminates. Otherwise, the partition undergoes
a refinement step where specific regions of the state-space are targeted, and a finer IMC
abstraction is constructed and analyzed.

5.1 Verification of IMCs against ω-regular Specifications

Consider the stochastic system

x[k + 1] = F(x[k], w[k]) (5.1)

evolving on a domainD and subject to a probabilistic ω-regular specification φ = P./psat [Ψ]

defined in (3.8) in Section 3.3. Recall the objective of the probabilistic verification problem

which is to find the set of initial states of (5.1) satisfying φ. To this end, we assume that an

IMC abstraction I of (5.1) constructed from a partition P of D is available to us.

Now, for all initial states Qj of I, we require a lower bound and an upper bound on the

probability of satisfying the ω-regular property Ψ to assess their satisfaction with respect

to φ, and by extension the satisfaction of the continuous abstracted states of (5.1). We thus

seek to compute the greatest lower bound P̂I(Qj |= Ψ) and least upper bound P̂I(Qj |= Ψ)
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such that, for any adversary ν ∈ νI ,

P̂I(Qj |= Ψ) ≤ PI[ν](Qj |= Ψ) ≤ P̂I(Qj |= Ψ) . (5.2)

Our approach draws from the verification of regular Markov Chains (MC) against ω-

regular properties using automata-based methods [40, Section 10.3].

Definition 15 (Markov Chain). A Markov Chain (MC) M = (Q, T, q0,Π, L) is defined

similarly to an IMC with the difference that the transition probability function or transi-

tion matrix T : Q × Q → [0, 1] satisfies 0 ≤ T (Qj, Q`) ≤ 1 for all Qj, Q` ∈ Q and∑
Q`∈Q T (Qj, Q`) = 1 for all Qj ∈ Q.

The probability of satisfying a temporal specification Ψ from initial state Qj in a Markov

ChainM is denoted by PM(Qj |= Ψ).

First, we generate a Deterministic Rabin Automaton (DRA)A that recognizes the language

induced by property Ψ.

Definition 16 (Deterministic Rabin Automaton). A Deterministic Rabin Automaton (DRA)

[40] is a 5-tuple A = (S,Π, δ, s0, Acc) where:

• S is a finite set of states,

• Π is an alphabet,

• δ : S × Π→ S is a transition function,

• s0 is an initial state,

• Acc ⊆ 2S × 2S . An element (Ei, Fi) ∈ Acc, with Ei, Fi ⊂ S, is called a Rabin Pair.

A DRA A reads an infinite string or word over alphabet Π as an input and transitions

from state to state according to δ. The resulting sequence of states or run is an accepting run
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if it contains an infinite number of states belonging to Fi and a finite number of states in Ei

for some i. A word is said to be accepted byA if it produces an accepting run inA. We call

a set of words a property. The property accepted byA is the set of all words accepted byA.

Note that a property is ω-regular if and only if it is accepted by a DRA. Therefore,

a DRA representation always exists for any ω-regular property. Several algorithms can

efficiently generate a DRA for a large subset of ω-regular expressions [57] [58]. Then, we

construct the Cartesian product between the IMC abstraction I and the DRA A encoding

the specification of interest Ψ. This product IMC is denoted by I ⊗ A.

Definition 17 (Product Interval-valued Markov Chain). Let I = (Q, T̂ , T̂ , q0,Π, L) be

an Interval-valued Markov Chain and A = (S,Π, δ, s0, Acc) be a Deterministic Rabin

Automaton. The product I⊗A = (Q×S, T̂ ′, T̂ ′, q⊗0 , Acc′, L′) is an Interval-valued Markov

Chain where:

• Q× S is a set of states,

• T̂ ′〈Qj ,s〉→〈Q`,s′〉 =


T̂ ′Qj→Q` , if s′ = δ(s, L(Q`))

0, otherwise

• T̂ ′〈Qj ,s〉→〈Q`,s′〉 =


T̂ ′Qj→Q` , if s′ = δ(s, L(Q`))

0, otherwise

• q⊗0 = {(Qj, s0) : Qj ∈ q0} is a set of initial states,

• Acc′ = {E1, E2, . . . , Ek, F1, F2, . . . , Fk} is a set of atomic propositions, where Ei

and Fi are the sets in the Rabin pairs of Acc,
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• L′ : Q× S → 2Acc
′

such that H ∈ L′(〈Qj, s〉) if and only if s ∈ H , for all H ∈ Acc′

and for all j.

We further introduce the notion of induced Markov Chain which will prove key for our

proposed solution.

Definition 18 (Induced Markov Chain). A Markov ChainM = (Q, T, q0,Π, L) is said to

be induced by IMC I = (Q, T̂ , T̂ , q0,Π, L) if they share the same Q, q0, Π and L, and for

all Qj, Q` ∈ Q, T̂ (Qj, Q`) ≤ T (Qj, Q`) ≤ T̂ (Qj, Q`). A transition matrix T satisfying

this inequality is said to be induced by I.

A MC induced by I ⊗ A is called a product Markov Chain, and we use the notationMA
⊗

to denote such an induced MC. In general, we cannot view an induced MC as a product of

a MC withA,M⊗A. Regular MCs are interpreted as memoryless adversaries of I, while

induced MCs represent a larger class of memory-dependent adversaries of I.

It is known that the probability of satisfying Ψ from initial state Qj in a MC equals that

of reaching an accepting Bottom Strongly Connected Component (BSCC) from initial state

〈Qj, s0〉 in the product MC with A [40].

Definition 19 (Bottom Strongly Connected Component). Given a Markov ChainM with

states Q, a subset B ⊆ Q is called a Bottom Strongly Connected Component (BSCC) of

M if

• B is strongly connected: for each pair of states (q, t) in B, there exists a path

q0q1 . . . qn such that T (qi, qi+1) > 0, i = 0, 1, . . . , n − 1, and qi ∈ B for 0 ≤ i ≤ n

with q0 = q, qn = t,

• no proper superset of B is strongly connected,

• ∀s ∈ B, Σt∈BT (s, t) = 1.
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In words, every state in a BSCC B is reachable from any state in B, and every state

in B only transitions to another state in B. Moreover, B is accepting when at least one

of its states maps to the accepting set of a Rabin pair, while no state in B maps to the

non-accepting set of that same pair as formalized next.

Definition 20 (Accepting Bottom Strongly Connected Component). A Bottom Strongly

Connected Component B of a product Markov ChainMA
⊗ is said to be accepting if:

∃i :

(
∃ 〈Qj, s`〉 ∈ B . Fi ∈ L′(〈Qj, s`〉)

)
∧
(
∀ 〈Qj, s`〉 ∈ B . Ei 6∈ L′(〈Qj, s`〉)

)
.

Definition 21 (Non-Accepting Bottom Strongly Connected Component). A Bottom Strongly

Connected Component B of a product Markov ChainMA
⊗ is said to be non-accepting if it

is not accepting.

We denote by UA and UN the set of states that respectively belong to an accepting and

a non-accepting BSCC in a product MC.

Note that each product MCMA
⊗ induced by I ⊗ A simulates the behavior of I under

some adversary ν ∈ νI . Indeed, for any two states Qj and Q` in I and some states s, s′, s′′

and s′′′ in A, we allow T〈Qj ,s〉→〈Q`,s′〉 and T〈Qj ,s′′〉→〈Q`,s′′′〉 to assume different values in

MA
⊗, which means that the transition probability betweenQj andQ` is permitted to change

depending on the history of the path in I as encoded in the state of A.

Also note that the adversary is history-independent or memoryless in the product au-

tomaton, that is, the adversary’s chosen transition probability only depends on the current

state of the IMC and the current state of the DRA A. For reachability problems in IMCs,

it was shown in [59] that memoryless adversaries yield the same bounds as the memory-

dependent ones. The following facts establish that, therefore, such memoryless (in the

product) adversaries are sufficient for IMC verification.

Fact 2. [40, p. 792, Theorem 10.56] [59] We denote the set of adversaries of I that are
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induced by memoryless adversaries in the product IMC I ⊗A by (νI)A⊗ ⊆ νI . It holds that

inf
ν∈νI
PI[ν](Qi |= Ψ) = inf

ν∈(νI)A⊗

PI[ν](Qi |= Ψ) (5.3)

sup
ν∈νI
PI[ν](Qi |= Ψ) = sup

ν∈(νI)A⊗

PI[ν](Qi |= Ψ) . (5.4)

Fact 3. For any adversary ν ∈ (νI)A⊗ in I, it holds that PI[ν](Qi |= Ψ) = P(MA⊗)ν (〈Qi, s0〉

|= ♦UA), where (MA
⊗)ν denotes the product MC induced by I ⊗ A corresponding to

adversary ν.

Consequently, computing P̂I(Qi |= Ψ) and P̂I(Qi |= Ψ) amounts to finding the prod-

uct MCs induced by I ⊗ A that respectively minimize and maximize the probability of

reaching an accepting BSCC from 〈Qi, s0〉. Such reachability problems in IMCs were

solved when the destination states are fixed for all induced MCs [26] [28].

However, in general, the sets UA and UN are not fixed in product IMCs and vary as a

function of the assumed values for each transition. Specifically, UA and UN are determined

by transitions that can be turned “on” or “off”, i.e. those whose lower bound is zero and

upper bound is non-zero, as seen in the example in Figure 5.2. In the product MC (MA
⊗)1

induced by I ⊗ A, the set UA is {Q0, Q1} while {Q2} is non-accepting. However, in

(MA
⊗)2, another product MC induced by I ⊗ A, all states are in UN .

First, we show that a product IMC always induces a largest Losing Component and

Winning Component. These components contain states that reach a BSCC with probability

1. Upper and lower bounds on Ψ are computed by solving a reachability problem for these

sets. We further introduce the notion of Permanent Losing Components and Permanent

Winning Components. These components are those which cannot be ’destroyed’ for any

product MC induced by a product IMC and play a crucial role in the refinement algorithm

discussed in the next section. Second, we describe a graph search algorithm to find these

components.
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Figure 5.2: Two product MCs (MA
⊗)1 and (MA

⊗)2 induced by a product IMC I ⊗ A.
Accepting BSCCs are shown in green; non-accepting BSCCs are red. In (MA

⊗)1, UA =
{Q0, Q1} and UN = {Q2}; in (MA

⊗)2, UA = ∅ and UN = {Q0, Q1, Q2}.

5.1.1 Computation of Satisfiability Bounds in IMCs

Previous works highlighted the crucial role of BSCCs in product MCs [40, Theorem 10.56].

As the probability of reaching an accepting BSCC in a product MC determines the proba-

bility of satisfying some property in the original abstraction, we now further introduce the

notions of winning and losing components. These components include states that may not

belong to a BSCC but from which any path is bound to reach a BSCC.

Definition 22 (Winning/Losing Component). [60] A winning (losing) componentWC (LC)

of a product MCMA
⊗ is a set of states satisfying PMA⊗(WC |= ♦UA) = 1 ( PMA⊗(LC |=

♦UN) = 1 ) , where UA (UN ) is the set of states belonging to an accepting (non-accepting)

BSCC inMA
⊗.

It naturally follows that the probability of eventually reaching a BSCC from some initial

state is equal to that of reaching a winning or losing component.

Corollary 1. In any product MCMA
⊗,

PMA⊗(〈Qi, s0〉 |= ♦UA) = PMA⊗(〈Qi, s0〉 |= ♦WC) (5.5)

PMA⊗(〈Qi, s0〉 |= ♦UN) = PMA⊗(〈Qi, s0〉 |= ♦LC) . (5.6)
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For any initial state in a product IMC, our goal is thus to find induced product MCs that

minimize and maximize the probability of reaching a winning component.

We refer to the technical appendix for all lemmas and proofs leading to the proposed

solution. The key observation is that any product IMC induces a largest winning component

and a largest losing component. The largest winning component is the set of states of the

product IMC belonging to a winning component for at least one induced product MC,

while the largest losing component is the analogous set for losing components. Definitions

of permanent and potential components follow directly from that of largest components.

Definition 23 (Largest Winning/Losing Components). A state 〈Qi, sj〉 ∈ Q×S of a product

IMC I ⊗A is a member of the Largest Winning (Losing) Component (WC)L
(

(LC)L
)

if

there exists a product MC induced by I⊗A such that 〈Qi, sj〉 belongs to a winning (losing)

component.

Definition 24 (Permanent Winning/Losing Components). A state 〈Qi, sj〉 ∈ Q × S of a

product IMC I ⊗ A is a member of the Permanent Winning (Losing) Component (WC)P(
(LC)P

)
of I ⊗ A if 〈Qi, sj〉 belongs to a winning (losing) component for all product

MCs induced by I ⊗ A.

Definition 25 (Potential Winning/Losing Components). A state 〈Qi, sj〉 ∈ Q × S of a

product IMC I ⊗ A is a member of the Potential Winning (Losing) Component (WC)?(
(LC)?

)
of I ⊗ A if 〈Qi, sj〉 ∈ (WC)L \ (WC)P

(
〈Qi, sj〉 ∈ (LC)L \ (LC)P

)
.

Note that the sets (WC)? and (LC)? may intersect, and by extension (WC)L and

(LC)L, while (WC)P and (LC)P are disjoint. An important result established in this paper

is that any product IMC induces a set of product MCs where all members of the largest win-

ning component belong to a winning component simultaneously. A product IMC induces

an analogous set of product MCs for the largest losing component. We provide proofs in

Lemmas 8 to 11 of the Appendix.
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We now state the main result of this section, which establishes that bounds on the

probability of satisfying an ω-regular property in an IMC can be computed by solving a

reachability maximization problem on a fixed set of states in a product IMC. These sets are

the largest components of the product IMC. Furthermore, solving these problems induce

sets of best and worst-case product MCs where the probabilities of reaching a winning

component are respectively maximized and minimized for all initial states of the product

IMC. The lemmas used in the proof of this theorem are found in the technical Appendix.

Theorem 6. Let I be an IMC andA be a DRA corresponding to ω-regular property Ψ. Let

(WC)L and (LC)L be the largest winning and losing components and (WC)P and (LC)P

be the permanent winning and losing components of the product IMC I ⊗A. Then for any

initial state Qi of I,

P̂I(Qi |= Ψ) = 1− P̂I⊗A( 〈Qi, s0〉 |= ♦(LC)L ) (5.7)

P̂I(Qi |= Ψ) = P̂I⊗A( 〈Qi, s0〉 |= ♦(WC)L ) . (5.8)

Moreover, there exists a set of induced product MCs (MA
⊗)worst, where, ∀Mi ∈ (MA

⊗)worst,

the sets of all losing and winning components ofMi are (LC)L and (WC)P respectively,

and, ∀ 〈Qi, s0〉 ∈ (Q × S), PMi
(〈Qi, s0〉 |= ♦(LC)L) = P̂I⊗A(〈Qi, s0〉 |= ♦(LC)L) .

Likewise, there exists a set of induced product MCs (MA
⊗)best, where, ∀Mi ∈ (MA

⊗)best,

the sets of all losing and winning components ofMi are (LC)P and (WC)L respectively,

and, ∀ 〈Qi, s0〉 ∈ (Q× S), PMi
(〈Qi, s0〉 |= ♦(WC)L) = P̂I⊗A(〈Qi, s0〉 |= ♦(WC)L).

Proof. P̂I(Qi |= Ψ) is equivalent to a lower bound on the probability of reaching an ac-

cepting BSCC from 〈Qi, s0〉 in I ⊗ A. Equation (5.7) follows from Lemma 7 and the

following reasoning: assume (5.7) is not true. This implies that there exists an induced

product MC where the probability of reaching an non-accepting BSCC from 〈Qi, s0〉 is

greater than the highest probability of reaching (LC)L, which is a contradiction to Lemma
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9 and 13. Next, we denote by D the set of induced product MCs with set of winning com-

ponents (WC)P and set of losing components (LC)L constructed in Lemma 14. Lemma

12 and Lemma 13 guarantee that the probability of reaching an accepting BSCC from all

〈Qi, s0〉 is minimized in induced product MCs with the smallest set of winning components

and the largest set of losing components respectively. Therefore, (MA
⊗)worst ⊆ D. Equation

(5.8) and the existence of (MA
⊗)best are proved identically.

The equalities highlighted by this theorem are central to the elaboration of our verifica-

tion procedure. We first solve a qualitative problem, which is to find the largest components

of the product IMC. This can be achieved via graph search and will be the focus of the next

section. Then, we compute upper and lower bound probabilities of reaching these compo-

nents from all states in the product IMC using existing algorithms found in the literature

[26] [28]. By doing so, we construct a best-case product MC (MA
⊗)u ∈ (MA

⊗)best and a

worst-case product MC (MA
⊗)l ∈ (MA

⊗)worst which respectively maximizes and minimizes

the probability of reaching an accepting BSCC from all initial states. Note that the transi-

tion values between states inside the components do not affect the reachability probabilities

and do not need to be considered.

5.1.2 Components Graph Search Algorithm

We present a graph-based algorithm for finding (WC)P , (WC)L, (LC)P and (LC)L in

a product IMC, divided into Algorithm 4 and Algorithm 5. We define the sets of potential

and permanent BSCCs (UA)?, (UA)P , (UN)? and (UN)P analogously to the potential and

permanent winning and losing components. Algorithm 4 takes a product IMC as input and

returns its potential and permanent BSCCs. Algorithm 5 takes as inputs a product IMC and

its permanent and potential BSCCs and outputs (WC)P , (WC)L, (LC)P and (LC)L. The

potential components are the set difference between the largest and permanent components.

We employ the following notations: a digraph G is said to be generated by an in-
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Algorithm 4 Find Potential and Permanent BSCCs
1: Input: Product IMC I ⊗ A
2: Output: Potential and permanent BSCCs (UA)?, (UA)P , (UN)?, (UN)P
3: Initialize: (UA)?, (UA)P , (UN)?, (UN)P := ∅
4: Construct G = (V,E) with a vertex for each state in I ⊗A and an edge between states
Qi and Qj if T̂ (Qi, Qj) > 0

5: Find all SCCs of G and list them in S
6: for Sk ∈ S do
7: C0 := ∅, i := 0
8: repeat
9: Ri := Sk \ ∪i`=0C`; Tri := V \Ri; Ci+1 := At?(Tri, Ri); i := i+ 1

10: until Ci = ∅
11: if i 6= 1 then
12: Find all SCCs of Ri and add them to S
13: else
14: if Sk is accepting then
15: In C, list all states in Sk mapping to some accepting set Fi if no other state in

Sk maps to Ei. Find all SCCs of Sk \ At?(C, Sk) and add them to S.
16: else
17: For all sets Fi to which at least one state in Sk is mapped, set S ′k = Sk, list all

states mapping to Ei in C, find all SCCs of S ′k \At?(C, S ′k) and add them to S.
18: end if
19: if AtP (V \ Sk, Sk) 6= ∅ then
20: (UA)? := (UA)?∪{Sk} or (UN)? := (UN)?∪{Sk} depending on the acceptance

status of Sk.
21: else
22: (UA)P := (UA)P ∪ {Sk} or (UN)P := (UN)P ∪ {Sk} depending on the ac-

ceptance status Sk and if no other state in Sk belongs to a potential BSCC of
the opposite acceptance status. Else, (UA)? := (UA)? ∪ {Sk} or (UN)? :=
(UN)? ∪ {Sk}.

23: end if
24: end if
25: end for
26: return (UA)?, (U

A)P , (U
N)?, (U

N)P

duced MCMA
⊗ with transition matrix T and states Q× S if G has a representative vertex

for all states in MA
⊗, and an edge exists between two such vertices if T (Qi, Qj) > 0,

Qi, Qj ∈ Q × S. Reach(S,G) denotes the set of vertices in graph G from which there

exists a path to the set of vertices S; At?(S,G) denotes the set of vertices in G from which

there exists a path to S for all graphs G′ generated by an induced product MC of I ⊗ A,
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where G and G′ share the same set of vertices; and AtP (S,G) denotes the set of vertices

in G from which there exists a path to S for at least one graph G′ generated by an induced

product MC of I ⊗ A. A detailed description of the algorithms is found below.

Algorithm 4:

Line 4: We first assume all transitions with a non-zero upper bound to be “on” and

generate a graph G = (V,E) with a vertex for all states and an edge for all transitions in

I ⊗ A.

Line 5: Next, we find all strongly connected components (SCC) of G and list them in

S.

Line 6 to 10: For all SCC Sk ∈ S, we want to determine if there exists an induced MC

where Sk is a BSCC. To this end, for all the states Sjk in Sk, we check whether all outgoing

transitions to states not in Sk can be turned “off” for some induced product MC, that is if

the transition lower bounds from Sjk to states in Tri = V \ Ri are 0 and the sum of the

transition upper bounds from Sjk to states in Sk is greater than 1, which is captured by the

use of the function At?. Otherwise, Sjk is said to be leaky in all induced product MCs and

Sjk is added to the set Ci, which contains all leaky states of Sk found at iteration i. Note that

R0 = Sk and that all leaky states previously found are removed from Sk at each iteration

via variable Ri. The loop terminates when all states have been checked and no more leaky

states are found, that is Ci = ∅.

Line 11 to 13: If Sk contained leaky states that were previously removed, we compute

all SCCs formed by the remaining states in Ri and add them to the list of SCCs of G. If Sk

did not contain any leaky state, it is a member of a largest set of BSCCs and the mapping

of the states in Sk with respect to the Rabin Pairs decides whether Sk is accepting and

Sk ∈ (UA)L or non-accepting and Si ∈ (UN)L.

Line 14 to 15: If Sk ∈ (UA)L, it could still contain potential non-accepting BSCCs,

since (UA)L and (UN)L may comprise intersecting sets. Treat all states causing Sk to be
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accepting as leaky (states mapping to some Fi in the Rabin pairs when no states in Sk maps

to Ei), remove from Sk all states that have a permanent path to the leaky states, compute

all SCCs formed by the remaining states and add them to S.

Line 16 to 17: If Sk ∈ (UN)L, potential accepting BSCCs may lie inside Sk. For all

sets Fi in the Rabin pairs to which at least one state in Sk is mapped, create a “copy” S ′k of

Sk where all states causing Sk to be non-accepting are considered leaky (the states mapping

to Ei), remove from S ′k all states that have a permanent path to the leaky states, compute

all SCCs formed by the remaining states and add them to S.

Line 19 to 22: We check whether some state in B leaks outside of B for at least one

induced MC. If so, the BSCC is not permanent. Otherwise, B is permanent if and only if

no BSCC of the opposite acceptance status is found inside of B.

Algorithm 5:

Inspired by the Classical Algorithm for Buchi MDPs [61], we perform a graph search

to find the permanent and largest winning and losing components of I⊗A. The permanent

components only arise from permanent BSCCs, while the largest components stem from

both potential and permanent BSCCs.

Line 3: We generate a graph G = (V,E) where transitions with a non-zero upper

bound are assumed to be “on”.

Line 4 to 11: To find the largest winning component of the product IMC I ⊗ A, we

find the set Ri of all states from which there is a path to (UA)? ∪ (UA)P in G. Other states

in G are “trap states” denoted by Tri. Then, we iteratively remove the set of states Ci from

Ri that “leak” to Tri for all induced MCs, and compute the new set Ri+1 of states that

have a path to (UA)?∪ (UA)P once the leaky states are discarded. The iteration stops when

no more leaky states are found, that is Ci = ∅. The remaining states belong to the largest

winning component (WC)L. The same procedure is applied with respect to (UN)?∪(UN)P

to find the largest losing component (LC)L.

Line 12 to 20: To find the permanent winning component of the product IMC I ⊗ A,
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Algorithm 5 Find Largest and Permanent Components
1: Input: Product IMC I ⊗ A and its potential and permanent BSCCs

(UA)?, (U
A)P , (U

N)?, (U
N)P

2: Output: Largest and permanent components (WC)L, (LC)L, (WC)P , (LC)P
3: Construct G = (V,E) with a vertex for each state in I ⊗A and an edge between states
Qi and Qj if T̂ (Qi, Qj) > 0

4: for B ∈ {(UA)? ∪ (UA)P , (U
N)? ∪ (UN)P} do

5: C0 := ∅, V0 := V , i := 0
6: repeat
7: Ri := Reach(B∩Vi, Vi); Tri := Vi\Ri; Ci+1 := At?(Tri, Vi) ; Vi+1 := Vi\Ci+1

i := i+ 1
8: until Ci = ∅
9: W := V \ ∪ik=1Ck

10: (WC)L := W if B = (UA)? ∪ (UA)P or (LC)L := W if B = (UN)? ∪ (UN)P
11: end for
12: for B ∈ {(UA)P , (U

N)P} do
13: In D, list the states of V belonging to the largest component of the opposite accep-

tance status from B
14: C0 := ∅, V0 := V \D, i := 0
15: repeat
16: Ri := Reach(B∩Vi, Vi); Tri := Vi\Ri; Ci+1 := AtP (Tri, Vi); Vi+1 := Vi\Ci+1

i := i+ 1
17: until Ci = ∅
18: W := V0 \ ∪ik=1Ck
19: (WC)P := W if B = (UA)P or (LC)P := W if B = (UN)P
20: end for
21: return (WC)L, (LC)L, (WC)P , (LC)P

we first discard all states which belong to the largest losing component (LC)L from the set

of edges V to be analyzed. Then, we repeat the same procedure as in Algorithm 4 with

respect to (UA)P until no more leaky states are found, that is Ci = ∅, except that leaky

states are now those which have a path to the trap states Tri in at least one induced MC

of the product IMC. The remaining states upon completion of this iterative removal belong

to (WC)P . The same procedure is applied with respect to (UN)P to find the permanent

losing component (LC)P .

To summarize, it is known that verification against temporal logic specifications in

discrete-time MCs can be accomplished by solving a reachability problem on a product MC

constructed from a Rabin automaton corresponding to the specification to be verified. The
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heart of this approach relies on analyzing winning and losing components of the product

MC. These ideas do not directly extend to IMCs because BSCCs are not uniquely deter-

mined in this case; this is because some transitions can have a lower transition bound equal

to 0 but an upper transition bound that is non-zero. Instead, we introduced the concepts

of largest winning and losing components. In Theorem 6, we show that upper and lower

bounds on the probability of satisfaction are obtained from these components. Algorithms

4 and 5 provide means for computing these components. Note that the proposed algorithm

allows to perform verification of IMCs without constructing an exponentially large Markov

decision process, as done in [28].

5.2 Refinement of the Domain Partition

Given a partition P of the domain D and a specification φ = P./psat [Ψ], the verification

procedure derived in Section 5.1 assigns each discrete state of P to one of the sets Qyes
φ ,

Qno
φ or Q?

φ as seen in Subsection 3.4.1. One aims to find a partition P that yields a low

volume of undecided states in Q?
φ. To this end, we suggest a specification-guided iterative

partition refinement method. Specifically, we first generate a rough partition P of D and

successively refine P into finer partitions by targeting the best candidate states for reducing

the uncertainty in the abstraction with respect to the transition intervals and, consequently,

to the probability of satisfying Ψ.

Definition 26 (Partition Refinement). A partition P ′ is a refinement of a partition P if, for

all states Qj ∈ P , there exists a set of states {Qk
j′}

mj
k=0 in P ′ such that Qj = ∪mjk=0Q

k
j′ .

The states to refine are chosen after comparing the behavior of the system in the best and

worst-case probability assignment scenarios computed during verification. The procedure

stops when a user-defined criterion is reached. Here, we terminate when the fractional

volume of uncertain states is less than a threshold Vstop ∈ [0, 1].

We seek to analyze the behavior of accepting paths in the best= and worst-case product

MCs (MA
⊗)u and (MA

⊗)l obtained at the time of verification and illustrated in Figure 5.3.
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Algorithm 6 State-Space Refinement Scoring Procedure
1: Input: Worst-case product MC (MA

⊗)l and best-case product MC (MA
⊗)u induced by

the product I ⊗ A
2: Output: Scores σ = [σ0, . . . , σN ] for all states in I
3: Initialize: σi = 0, with σi the score of the i-th state of I, pstop ∈ (0, 1) user-defined

probability threshold
4: for Q` ∈ Q?

φ do
5: π := q0 := 〈Q`, s0〉 in (MA

⊗)u
6: repeat
7: if P(π) < pstop or Exp(π) = R(π) then
8: π := π−

9: else
10: if Exp(π) 6= ∅ then
11: qi → Exp(π), where qi is any state in R(π) \ Exp(π); π := π+(qi)
12: else
13: Exp(π) := ∪iπi
14: if Last(π) ∈ (WC)? ∪ (LC)? then
15: σj := σj +P(π)(pmax−pmin) for all states 〈Qj, si〉 in the potential BSCC

of Last(π) with an outgoing transition which can be either zero or non-
zero, pmax and pmin are the probabilities of reaching an accepting BSCC
from Last(π) in (MA

⊗)u and (MA
⊗)l respectively; π := π−

16: else if Last(π) ∈ (WC)P ∪ (LC)P then
17: π := π−

18: else
19: σj := σj + P(π)(pmax − pmin), where j corresponds to 〈Qj, si〉 :=

Last(π), pmax and pmin are as in line 15;
20: π := π+(qi) where qi is any state in R(π)
21: end if
22: end if
23: end if
24: until π = ∅
25: end for
26: return σ

In particular, for every undecided state Qj in Q?
φ, we look at all paths starting from 〈Qj, s0〉

in (MA
⊗)u and assign a score to the states encountered along them depending on how these

states behave in (MA
⊗)l. We inspect a path until it reaches a state that belongs to either

(WC)L or (LC)L, or when its probability of occurrence in (MA
⊗)u falls below a threshold

pstop. States with high scores are targeted for refinement.

We introduce some notation: for a finite path π = q0q1 . . . qk in (MA
⊗)u, Last(π) de-
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notes the last state qk of π; πi denotes the i-th state of π; P(π) = T (q0, q1) · T (q1, q2) · . . . ·

T (qk−1, qk), P(q0) = 1, is the probability of path π in (MA
⊗)u; R(π) is the set of states

that are one-step reachable from Last(π) in (MA
⊗)u; Exp(π) denotes all continuations of

π from R(π) that have been explored and is initialized to the empty set for all π; π− is the

path obtained by removing the last state of π and π+(qi) is the path with qi appended to π.

V? is the fractional volume of uncertain states and is equal to the sum of the volume of all

states in Q?
φ divided by the volume of the domain D. Our procedure is as follows:

1. Compute a refinement score for all states in I according to Algorithm (6), which is

described below:

Line 6 to 24: This loop terminates when π = ∅, that is, when all paths starting

from 〈Qj, s0〉 have been explored.

Line 7 to 8: IfP(π) < pstop orExp(π) = R(π), the probability of the path is below

the pre-defined exploration threshold or all continuations of π have been explored.

Thus, we return to the previous state in the path.

Line 10 to 13: lf Exp(π) 6= ∅, add qi to Exp(π), where qi is some unexplored

state in R(π) and extend the path to qi. Else, π is a path fragment which has not been

explored yet. Add all states in π to Exp(π) to avoid loops.

Line 14 to 15: If Last(π) ∈ (WC)? or Last(π) ∈ (LC)?, the path reached a state

in a potential component. We want to target the states which can either confirm or

refute that Last(π) belongs to such a component. These states are the ones inside the

potential BSCCs that Last(π) belongs to (or makes a transition to with probability

1) that have outgoing transitions which can be either “on” or “off”, as depicted in

Figure 5.4. A potential ”certainty gain” is added to the score of all such states and

the path is returned to its previous state. If Last(π) belongs to both (WC)? and

(LC)?, then the scoring scheme is applied to all intersecting potential BSCCs related

to Last(π). This heuristical gain quantifies a potential reduction in the width of the
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satisfaction interval of Q` in the scenario that the refinement of the considered states

provides perfect information, i.e., the probability of reaching an accepting BSCC

from Last(π) becomes a fixed number.

Line 16 to 17: If Last(π) ∈ (WC)P or Last(π) ∈ (LC)P , the path reached a

region of the state-space that does not require refinement as it belongs to a permanent

component. The path returns to its previous state.

Line 18 to 20: Else, Last(π) does not belong to a winning or losing component

for any refinement of the product IMC. The potential “certainty gain” one can hope

for by refining 〈Qj, si〉 = Last(π) is added to the score of Qj . The path is continued

to an unexplored state.

2. Refine the states in Pk with scores above a user-defined threshold to generate Pk+1.

3. Generate an IMC abstraction of the system with respect to Pk+1, perform model-

checking and compute V?.

4. If V? > Vstop, return to step 1. Else, terminate.

It is not difficult to construct examples demonstrating that the volume of uncertain

states V? need not decrease monotonically at each step of the refinement algorithm using

our abstraction technique. This is because, when a parent state is refined to two children

states, the sum of the upper transition bounds for the children states may be greater than

the upper transition bound of the original parent state. Nevertheless, when F is continuous,

the size of the reachable sets, and consequently the error in the transitions, approaches zero

as the grid size decreases. Thus, in the limit, the volume of uncertain states V? decreases to

zero.

A common refinement approach consists in splitting the chosen states in the partition in

half along their greatest dimension. As the scoring procedure in Algorithm 6 may select the
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I ⊗ A Verification

(MA
⊗)u

(MA
⊗)l

Figure 5.3: Our IMC verification algorithm generates a best- and worst-case product MC
(MA

⊗)u and (MA
⊗)l. Winning and losing components are respectively in red and green; per-

manent and potential components are circled in bold and dotted lines respectively. Compar-
ing the behavior of the paths in the two scenarios is the basis of our refinement algorithm.

entire state-space of IMC I for refinement, the worst-case growth of the size of the product

IMC I ⊗A is exponential and scales in O(|S| · 2|Q|), where |S| and |Q| are the number of

states of automaton A and IMC I respectively. However, because this path-based scoring

procedure aims to target states which are most likely to reduce the volume of undecided

states in the partition with respect to the specification under consideration, our refinement

algorithm tends to focus on specific regions of the state-space with the effect of mitigating

state-space explosion.

In summary, we develop an abstraction-based verification procedure for discrete-time

stochastic systems with probabilistic ω-regular objectives. Given a partition of the system

domain, an IMC abstraction of the dynamics is generated, and bounds on the probability of

satisfying the property from all initial states of the IMC are computed by solving a graph-

based qualitative problem and a value iteration quantitative problem in the product between

the abstraction and an automaton. We implement a heuristical partition refinement tech-
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b b b

〈Qj, s0〉

π1

Figure 5.4: For all undecided states Qj of the IMC abstraction I, we inspect all paths
starting from 〈Qj, s0〉 in (MA

⊗)u to determine which states to refine. Above is an example
of a path π1. A score is assigned to all states along π1 as detailed in Algorithm 6. In
particular, if π1 reaches a member of a potential BSCC, a score is assigned to the states
which could possibly destroy the BSCC under refinement. These states are shown in blue
and have outgoing transitions with lower bound 0.

nique that compares the two extreme non-deterministic scenarios induced by the product

between the abstraction and the automaton and targets specific partition states accordingly

in order to reduce the conservatism of the derived bounds if necessary.
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CHAPTER 6

CONTROLLER SYNTHESIS FOR STOCHASTIC SYSTEMS WITH

OMEGA-REGULAR OBJECTIVES

This chapter addresses the synthesis of controllers for stochastic dynamical systems with

temporal logic objectives as defined by the probabilistic synthesis problem, building on

the automaton-based verification methodology delineated in Chapter 5. We distinguish

the instance where a finite number of inputs or modes is available with that offering a

continuous set of possible inputs, as the two situations necessitate different solutions.

In Section 6.1, we investigate the synthesis of switching policies for finite-mode sys-

tems subject to ω-regular specifications. The proposed strategy employs interval-valued

finite-state abstractions, known as Bounded-Parameter Markov Decision Processes (BMDP),

constructed from a partition of the continuous system domain. A BMDP is a probabilistic

transition system allowing a finite set of actions at each state and induces an IMC for a fixed

switching policy. A BMDP abstraction can alternatively be viewed as a collection of IMC

abstractions, each one of them corresponding to a mode of the underlying continuous-state

system. Devising an optimal switching in the BMDP abstraction engenders a near-optimal

policy with respect to the abstracted continuous states.

Therefore, we present a technique for computing optimal switching policies in BMDPs

with ω-regular objectives. A maximizing policy aims at maximizing the lower bound prob-

ability of satisfying an objective for all initial states of the BMDP, whereas a minimizing

policy minimizes the upper bound probability of satisfying the objective. We show that this

task is decomposed into a qualitative problem and a quantitative problem. The qualitative

problem requires building the greatest possible permanent winning or losing component in

the product between the BMDP and a DRA encoding the ω-regular property. In the case

of maximization, the greatest permanent winning component is constructed, while in the
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case of minimization, the greatest permanent losing component is constructed. We detail

graph-based algorithms for finding these components and their associated control actions.

For every state of the product BMDP that do not belong to these components, the quanti-

tative problem demands to compute a policy that maximizes the lower bound probability

of reaching the permanent components, which is accomplished through a value iteration

scheme.

As the efficacy of the computed policy with respect to the abstracted system depends

on the quality of the domain partition from which the BMDP abstraction originates, we

suggest an approach for quantitatively assessing the optimality of the policy. First, we

design another switching policy that maximizes the upper bound probability of reaching a

winning or losing component for each state of the product BMDP, instead of maximizing

the lower bound probability as previously done. As opposed to accommodating the worst-

case scenario with respect to the objective (minimization or maximization), this policy

creates the most favorable best-case scenario. Then, a suboptimality factor comparing

the probabilities of satisfaction resulting from the two policies is assigned to each state

of the product BMDP. This technique is also used to detect actions which are necessarily

optimal or suboptimal at each state of the product BMDP. To proceed to a refinement of the

domain partition, the worst-case and best-case product MCs induced by the two policies

are provided as inputs to a refinement algorithm inspired by the one in Section 5.2 for the

purpose of verification. The synthesis procedure terminates once the suboptimality factor

of every state reaches a user-defined precision threshold.

In Section 6.2, we treat the problem of computing control policies for stochastic sys-

tems with a continuous set of available inputs when the specification is ω-regular. We

focus on the class of systems which are affine in input and in disturbance. The type of

finite-state abstractions used for such systems is the Controlled Interval-valued Markov

Chain (CIMC), where an input drawn from a continuous set determines an interval on the

probability of transition between any two states. As in the finite-mode case, computing
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an optimal control policy in a CIMC abstraction results in a near-optimal policy for the

original abstracted system.

Finding an optimal control policy in a CIMC is similarly divided into a qualitative and

quantitative problem. These problems are tackled in the Cartesian product between the

CIMC and a DRA representing the ω-regular specification of interest. First, we show that

the qualitative problem is addressed by constructing a BMDP through the selection of a

finite number of actions from the continuous set of inputs. This is due to the fact that, be-

cause CIMCs are endowed with a finite number of states, the number of possible qualitative

transition configurations between these states is also finite. Then, the greatest permanent

winning and losing components of the product between the CIMC and the DRA are built

by applying the finite-mode algorithm to the constructed BMDP. Correctly choosing the

necessary finite set of actions from the continuous set of inputs depends on the dynamics

at hand and the geometry of the partition states. We show how to select these actions under

certain assumptions on the dynamics and on the structure of the noise. Then, for the states

which are not a member of the greatest permanent components, we show that an optimal

input is computed through an iterative resolution of optimization problems.

The optimality of the computed controller with respect to the original abstracted states

is quantitatively measured for this case as well, and an iterative, targeted partition refine-

ment algorithm inspired from the finite-mode case is proposed with the aim of reaching a

user-defined level of optimality.

6.1 Synthesis for Finite-mode Switched Stochastic Systems

Recall the general SDE for discrete-time, continuous-state stochastic systems with a finite

number of modes presented in Section 3.1 as

x[k + 1] = Fa(x[k], wa[k]) , (6.1)
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where a ∈ A, with A being a finite set of modes.

As stated in the probabilistic synthesis problem, our objective is to determine switching

policies µ̂Ψ and µ̂Ψ that respectively minimize and maximize the probability of satisfying

property Ψ for any path in system (6.1) and, by extension, for any initialization to x of (6.1).

Problem 1: Given a system of the form (6.1), any initial state x ∈ D and an ω-regular

property Ψ, find switching policies µ̂Ψ ∈ U and µ̂Ψ ∈ U that respectively minimize and

maximize the probability of satisfying Ψ from x, i.e.,

µ̂Ψ = arg min
µ∈U

(pxΨ)µ (6.2)

µ̂Ψ = arg max
µ∈U

(pxΨ)µ . (6.3)

For complex specifications and dynamics, devising these exact optimal policies is likely

to be intractable or infeasible due to the uncountably infinite number of states of the sys-

tem’s domain. To determine a policy which is close to optimal, we consider an abstraction-

based approach that consists in partitioning the domain D of (6.1) into a finite collection

of states P to construct a finite-state abstraction of the stochastic dynamics in the form of

a BMDP abstraction, defined in Definitions 4 and 5 in Subsection 3.4.2. Techniques for

constructing non-trivial BMDP abstractions for certain classes of stochastic systems are

presented in Chapter 4.

Given a BMDP abstraction B of (6.1) generated from a partition P of the domain D,

our approach to Problem 1 is to find policies µ̂lowΨ and µ̂upΨ that respectively maximize the

lower bound probability and minimize the upper bound probability of satisfying Ψ for all

initial states Qj of B.

Subproblem 1.1: Given a system of the form (6.1), a partition P of its domain D,
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a BMDP abstraction B of (6.1) arising from P , any initial state Qj ∈ Q of B and an

ω-regular property Ψ, compute the switching policies µ̂upΨ ∈ UB and µ̂lowΨ ∈ UB that respec-

tively minimize the upper bound probability and maximize the lower bound probability of

satisfying Ψ in B, i.e.,

µ̂
up
Ψ = arg min

µ∈UB
P̂B[µ](Qj |= Ψ) (6.4)

µ̂lowΨ = arg max
µ∈UB

P̂B[µ](Qj |= Ψ) . (6.5)

If B is a BMDP abstraction of (6.1), then a unique control action is assigned to all con-

tinuous states abstracted by some Qi in B. In this case, the optimality of the policies µ̂lowΨ

and µ̂upΨ heavily depends on the quality and fineness of the partition P of the domain D. In-

deed, because these policies only accommodate the extreme behaviors of all discrete states

of B, it is reasonable to assume that the computed policies may be suboptimal for a collec-

tion of continuous states abstracted by some Qi. We address this problem by starting with

a coarse partition of the system’s domain; then, we iteratively and selectively refine this

partition so as to target discrete states that are at a higher risk of containing suboptimally

controlled continuous states or are responsible for considerable uncertainty in the control

of other states. As finer partitions result in larger abstractions to be analyzed, it is crucial

to avoid performing unnecessary refinement in order to alleviate the state-space explosion

phenomenon. The procedure terminates once a precision threshold which will be defined

in further sections has been reached.

Subproblem 1.2: Given a system of the form (6.1) with a BMDP abstraction B arising

from a partition P of the domain D and an ω-regular property Ψ, refine the partition P of

D until the computed switching policy reaches a user-defined threshold of optimality with

respect to the objective of minimizing or maximizing the probability of satisfying Ψ in (6.1).
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6.1.1 BMDP Controller Synthesis

In this subsection, we present the theory for addressing Subproblem 1.1. We adopt an

automaton-based approach for computing maximizing and minimizing switching policies

in a BMDP B with respect to an ω-regular property Ψ. As seen in Chapter 5, for every such

property, there exists a corresponding DRA representation A which is used to determine

whether a sequence of states visited by a transition system satisfies the encoded property.

Similar to Chapter 5 where the Cartesian product of an IMC with a DRA is introduced, we

define the Cartesian product B ⊗A between a BMDP and a DRA.

Definition 27 (Product Bounded-Parameter Markov Decision Process). Let B = (Q,Act,

T̂ , T̂ , q0,Π, L) be a BMDP and A = (S,Π, δ, s0, Acc) be a DRA. The product B ⊗ A =

(Q× S,Act, T̂ ′, T̂ ′, q⊗0 , Acc′, L′) is a BMDP where:

• Q× S is a set of states,

• Act is the same set of actions of B, where A(〈Qj, si〉) = A(Qj) for all Qj ∈ Q and

for all si ∈ S,

• T̂ ′〈Qj ,s〉 a−→〈Q`,s′〉 =


T̂ ′

Qj
a−→Q`

, if s′ = δ(s, L(Q`))

0, otherwise

• T̂ ′〈Qj ,s〉 a−→〈Q`,s′〉 =


T̂ ′

Qj
a−→Q`

, if s′ = δ(s, L(Q`))

0, otherwise

• q⊗0 = {(Qj, s0) : Qj ∈ q0} is a finite set of initial states,

• Acc′ = {E1, E2, . . . , Ek, F1, F2, . . . , Fk} is a set of atomic propositions, where Ei

and Fi are the sets in the Rabin pairs of Acc,
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• L′ : Q× S → 2Acc
′

such that H ∈ L′(〈Qj, s〉) if and only if s ∈ H , for all H ∈ Acc′

and for all j.

In this product construction, the DRA A is used as a finite-memory instrument that

monitors all transitions occurring in B and assesses whether the resulting path satisfies Ψ.

Indeed, any random path π = q0q1 . . . inB generates a unique path πA⊗ = 〈q0, s0〉 〈q1, sj〉 . . .

in B⊗A which depends on the labels of the states of B as per Definition 27. It follows that

a switching policy in B can be induced by inspecting the sequences of states generated in

B ⊗A and choosing control actions accordingly.

Definition 28 (Generated Path in Product BMDP). Consider a BMDP B with set of states

Q and labeling function L and a DRA A with set of states S and transition function δ. A

path πA⊗ = 〈q0, s
′
0〉 , 〈q1, s

′
1〉 . . . , qi ∈ Q, s′i ∈ S, in the product BMDP B ⊗ A is said to

be generated by the path π = q0, q1 . . . in B if it holds that s′i+1 = δ(s′i, L(qi+1)),∀i =

0, 1, 2, . . . .

Definition 29 (Induced Switching Policy). Consider a BMDP B, a DRAA and a switching

policy µ ∈ UB. Let π ∈ (Pathsfin)B be any finite path in B. We denote by πA⊗ the path

generated by π in the product BMDP B ⊗ A. The switching policy µ is said to be induced

by a switching policy µ⊗ of B⊗A if, for all π ∈ (Pathsfin)B, it holds that µ(π) = µ⊗(πA⊗).

For a fixed switching policy µ of B, we asserted in Chapter 5 that the probability of

satisfying Ψ in the induced IMC B[µ] from some initial states is equal to the probability

of reaching an accepting BSCC from the corresponding initial states in the product IMC

B[µ]⊗A. The probability of reaching an accepting BSCC in B[µ]⊗A is not uniquely de-

fined and depends on the assumed transition values within the probability intervals selected

by a non-deterministic adversary ν ∈ νB[µ]⊗A which induces a product MC B[µ][ν]A⊗.

A key observation is that, for any policy µ in B induced by a policy µ⊗ in the product

B⊗A, the bounds on the probability of reaching an accepting BSCC from the initial states

of B[µ]⊗A are identical to the bounds on the probability of reaching an accepting BSCC
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from the initial states of (B⊗A)[µ⊗] according to Definitions 17 and 27 which ensure that

the elements in the defining tuples of B[µ]⊗A and (B⊗A)[µ⊗] are the same. Consequently,

an analysis of the product B ⊗A is sufficient for approaching the synthesis problem.

Our objective consists in computing policies that maximize the lower bound proba-

bility and minimize the upper bound probability of reaching an accepting BSCC from all

initial states of the resulting product IMC B[µ] ⊗ A. Furthermore, as discussed in [59]

and Chapter 5, reachability probabilities in IMCs are minimized and maximized by mem-

oryless adversaries which depend solely on the current state of the IMC. Therefore, only

adversaries, and by extension switching policies, that are memoryless in the product B⊗A

(thus finite-memory in B) need to be considered for solving Subproblem 1.1.

Definition 30 (Memoryless Policy). A policy µ ∈ UB of a BMDP B is said to be memory-

less if, for all finite paths π = q[0]q[1] . . . q[k] of B, it holds that µ(π) = µ(q[k]).

Definition 31 (Memoryless Adversary). An adversary ν ∈ Iν of an IMC I is said to be

memoryless if, for all finite paths π = q[0]q[1] . . . q[k] of I, it holds that ν(π) = ν(q[k]).

Fact 4. We denote the set of policies of a BMDP B which are induced by memoryless

policies in the product B ⊗ A by (Uind)A⊗ ⊆ UB. For any IMC B[µ] induced by a policy

µ ∈ (Uind)A⊗, we denote the set of adversaries which are induced by memoryless adversaries

in the product IMC B[µ]⊗A by (νB[µ],Ind)
A
⊗ ⊆ νB[µ]. For any initial state Qj of B, it holds

that

sup
µ∈UB

inf
ν∈νB[µ]

PB[µ][ν](Qj |= Ψ) = sup
µ∈(Uind)A⊗

inf
ν∈(νB[µ],Ind)A⊗

PB[µ][ν](Qj |= Ψ) ,

inf
µ∈UB

sup
ν∈νB[µ]

PB[µ][ν](Qj |= Ψ) = inf
µ∈(Uind)A⊗

sup
ν∈(νB[µ],Ind)A⊗

PB[µ][ν](Qj |= Ψ) .

Before presenting a solution to Subproblem 1.1, we first recall some basic results es-

tablished in Chapter 5 for the purpose of verification in IMCs which we then extend to

compute switching policies in BMDPs.
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For a given policy µ of B and automaton A, the sets of accepting and non-accepting

BSCCs of the resulting product IMC B[µ] ⊗ A depend on the assumed values for the

transitions with zero lower bound and non-zero upper bound which cause certain edges to

be either “on” or “off”. To resolve this, we showed that, for any product IMC, there exists

a largest winning component and a largest losing component which can be created among

all combinations of “on” and “off” transitions allowed by the transition bound functions of

the product IMC.

Moreover, it was shown in Theorem 6 that the upper bound probability of satisfying

Ψ in the IMC I from state Qj is equal to the upper bound probability of reaching the

largest winning component (WC)L of the product I⊗A from state 〈Qj, s0〉. Likewise, the

lower bound probability of satisfying Ψ is found by solving a reachability problem on the

largest losing component (LC)L. These results naturally apply to product IMCs B[µ]⊗A

constructed from an IMC B[µ] induced by a policy µ of a BMDP B.

The intuitive interpretation of this theorem is that any IMCB[µ] has a “best-case” adver-

sary and a “worst-case” adversary in the product B[µ]⊗A that respectively maximizes and

minimizes the probability of reaching an accepting BSCC for all initial states of B[µ]⊗A

simultaneously, since reachability probabilities are maximized by memoryless adversaries.

These probabilities are equal to the upper bound and lower bound probabilities of satisfying

Ψ from the initial states of B[µ]. In the induced product MC corresponding to the best-case

scenario, the set of winning components is as large as it can possibly be while the set of

losing components is reduced to the smallest possible set of permanent losing components;

the opposite holds true in the induced product MC corresponding to the worst-case sce-

nario.

Recall our objective which is to find switching policies µ̂upΨ and µ̂lowΨ that respectively

minimize the upper bound probability and maximize the lower bound probability of sat-

isfying property Ψ from initial state Qj in a BMDP B. In light of the above facts, this
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amounts to enforcing the best possible worst-case scenario with respect to the probability

of reaching an accepting BSCC in the product B ⊗ A for the maximization case, or the

worst possible best-case scenario with respect to the probability of reaching an accepting

BSCC in the product B ⊗ A for the minimization case. To this end, we first state in the

following lemma that there exist sets of switching policies of B⊗A resulting in the greatest

possible set of permanent winning components and the greatest possible set of permanent

losing components in the corresponding induced product IMCs.

Lemma 4. Let B be a BMDP and Ψ be an ω-regular property with corresponding DRA

A. The set of memoryless switching policies of the product B ⊗ A is denoted by UA⊗ .

There exists a set of switching policies U(WC)GP
⊆ UA⊗ generating the set (WC)GP in B ⊗A

such that, for all µ ∈ UA⊗ , (WC)P ⊆ (WC)GP where (WC)P is the permanent winning

component of (B ⊗ A)[µ], and, for all µ ∈ U(WC)GP
, the permanent winning component

of (B ⊗ A)[µ] is (WC)GP . Likewise, there exists a set of switching policies U(LC)GP
⊆

UA⊗ generating the set (LC)GP in B ⊗ A with the same properties with respect to losing

components.

A constructive proof of this lemma is provided in the Appendix. The sets (WC)GP and

(LC)GP are respectively called the Greatest Permanent Winning Component and the Great-

est Permanent Losing Component of the product BMDP B ⊗A.

From Lemma 4, we infer that a maximizing policy with respect to Ψ in BMDP B

is induced by a policy (µ̂lowΨ )⊗ in the product BMDP B ⊗ A that effectively generates

the set (WC)GP and, for all states not in (WC)GP , maximizes the lower bound probability

of reaching this set; on the other hand, a minimizing policy with respect to Ψ in B is

induced by a policy µ̂
up
Ψ in B ⊗ A that generates the set (LC)GP and, for all states not

in (LC)GP , maximizes the lower bound probability of reaching this set. Because optimal

switching policies for reachability objectives are memoryless, it follows that the policy

(µ̂lowΨ )⊗ maximizing the lower bound probability of reaching an accepting BSCC is the

same for all initial states of B ⊗ A. Likewise, the policy (µ̂lowΨ )⊗ minimizing the upper
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bound probability of reaching an accepting BSCC is the same for all initial states of B⊗A.

Theorem 7. Let B be a BMDP and Ψ be an ω-regular property with corresponding DRA

A. Let (WC)GP and (LC)GP be the greatest permanent winning and losing component, re-

spectively, of the product BMDP B⊗A, and U(WC)GP
and U(LC)GP

be the policies generating

these sets as defined in Lemma 4. A lower bound maximizing and upper bound minimizing

switching policy µ̂lowΨ and µ̂upΨ in B with respect to Ψ are respectively induced by switching

policies (µ̂lowΨ )⊗ and (µ̂
up
Ψ )⊗ in B ⊗A such that

(µ̂lowΨ )⊗ = arg max
µ∈U

(WC)G
P

P̂(B⊗A)[µ]

(
〈Qj, s0〉 |= ♦(WC)GP

)
(6.6)

(µ̂
up
Ψ )⊗ = arg max

µ∈U
(LC)G

P

P̂(B⊗A)[µ]

(
〈Qj, s0〉 |= ♦(LC)GP

)
(6.7)

for all initial states Qj of B.

Proof. We first prove equation (6.6). For all states belonging to (WC)GP , the lower bound

probability of reaching an accepting BSCC under the defined policy (µ̂lowΨ )⊗ is equal to 1,

since (µ̂lowΨ )⊗ ∈ U(WC)GP
, and is therefore maximized. Next, in Theorem 6, it is shown

that a lower bound on the probability of reaching an accepting BSCC in a product IMC

I ⊗ A is achieved in an induced product MC (MA
⊗) with the smallest possible set of

winning components admissible by I ⊗ A, which is the permanent winning component

(WC)P of I ⊗ A, for all states of I ⊗ A. Furthermore, it is shown in Lemma 13 in

the Appendix that the probability of reaching an accepting BSCC in an induced product

MC (MA
⊗) increases for all states of (MA

⊗) as more states are added to the set of winning

components of (MA
⊗) while keeping all other transition probabilities identical. Therefore,

for all states of B ⊗ A which are not in (WC)GP , a policy µ maximizing the lower bound

probability of reaching a winning component has to belong to the set U(WC)GP
and generates

the largest possible permanent winning component in (B ⊗ A)[µ]. Due to the properties

of reachability problems, whose optimal policies are memoryless, there exists a policy in
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U(WC)GP
maximizing the lower bound probability of reaching (WC)GP simultaneously for

all states not in (WC)GP , and, in particular, for all initial states 〈Qj, s0〉 of B ⊗ A that do

not belong to (WC)GP , concluding the proof of (6.6). A symmetric argument with respect

to non-accepting BSCCs and losing components can be used to prove (6.7).

This theorem shows that the desired policies are computed by solving a lower bound

reachability maximization problem on a fixed set of states, which can be accomplished us-

ing the value iteration scheme presented in [26]. An algorithm for finding the sets (WC)GP

and (LC)GP as well as their associated control actions are presented in the next subsection.

We additionally consider the policies (µ̂upΨ )⊗ and (µ̂
low
Ψ )⊗ that respectively maximize the

upper bound and minimize the lower bound probability of reaching a winning component

for all states in a product BMDP B ⊗ A. While these policies are not mapped onto the

original system states, they will prove useful for assessing the optimality of µ̂lowΨ and µ̂upΨ

in further sections. These are found by solving an upper bound reachability maximization

problem on the Greatest Winning Component (WC)GL and Greatest Losing Component

(LC)GL in B ⊗A, whose existence is established in the lemma below.

Lemma 5. Let B be a BMDP and Ψ be an ω-regular property with corresponding DRAA.

The set of memoryless switching policies of the product B ⊗ A is denoted by UA⊗ . There

exists a set of switching policies U(WC)GL
⊆ UA⊗ generating the set (WC)GL in B ⊗ A such

that, for all µ ∈ UA⊗ , (WC)L ⊆ (WC)GL where (WC)L is the largest winning component

of (B ⊗ A)[µ], and, for all µ ∈ U(WC)GL
, the largest winning component of (B ⊗ A)[µ] is

(WC)GL . Likewise, there exists a set of switching policies U(LC)GL
⊆ UA⊗ generating the set

(LC)GL in B ⊗A with the same properties with respect to losing components.

Proof. Lemma 5 follows from a similar constructive argument as the one in the proof of

Lemma 4.

The sets (WC)GL and (LC)LP are respectively called the Greatest Winning Component

and the Greatest Losing Component of the product BMDP B ⊗A.
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Theorem 8. Let B be a BMDP and Ψ be an ω-regular property with corresponding DRA

A. Let (WC)GL and (LC)GL be the greatest winning and losing component, respectively, of

the product BMDP B⊗A, and U(WC)GL
and U(LC)GL

be the policies generating these sets as

defined in Lemma 5. An upper bound maximizing and lower bound minimizing switching

policy µ̂upΨ and µ̂lowΨ in B with respect to Ψ are respectively induced by switching policies

(µ̂upΨ )⊗ and (µ̂
low
Ψ )⊗ in B ⊗A such that

(µ̂upΨ )⊗ = arg max
µ∈U

(WC)G
L

P̂(B⊗A)[µ]

(
〈Qj, s0〉 |= ♦(WC)GL

)
(6.8)

(µ̂
low
Ψ )⊗ = arg max

µ∈U
(LC)G

L

P̂(B⊗A)[µ]

(
〈Qj, s0〉 |= ♦(LC)GL

)
(6.9)

for all initial states Qj of B.

Proof. As shown in Theorem 6, an upper bound on the probability of reaching an accepting

BSCC in a product IMC I ⊗ A is achieved in an induced product MC (MA
⊗) with the

largest possible set of winning components allowed by I ⊗A, which is the largest winning

component (WC)L of I⊗A, for all initial states of I⊗A. Hence, the same arguments as in

the proof of Theorem 7 proves (6.8). A symmetric argument with respect to non-accepting

BSCCs and losing components proves (6.9).

We remark that replacing (WC)GL and (LC)GL in (6.8) and (6.9) by the greatest accepting

and non-accepting BSCCs (UA)GL ⊆ (WC)GL and (UN)GL ⊆ (LC)GL respectively does not

change the validity of (6.8) and (6.9). The set (UA)GL (respectively, (UN)GL ) contains all

states which belong to an accepting (respectively, non-accepting) BSCC for at least one

induced product MC under at least one policy in B ⊗ A. The proof of the existence of

a set of control policies generating these sets is similar to the first part of the proof of

Lemma 4. This substitution can be done because, by definition, P̂(B⊗A)[(µ̂upΨ )⊗]

(
(WC)GL |=

♦(UA)GL

)
= P̂

(B⊗A)[(µ̂
low
Ψ )⊗]

(
(LC)GL |= ♦(UN)GL

)
= 1, and leads to algorithmic simplifi-

cations as the full sets (WC)GL and (LC)GL may not need to be computed explicitly. The
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components (WC)GL and (LC)GL as well as the control actions generating these components

are found via a graph search, as detailed in the next subsections.

6.1.2 Winning and Losing Components Search Algorithms

Now, we present graph-based algorithms for finding the greatest permanent winning com-

ponent (WC)GP and the greatest permanent losing component (LC)GP of a product BMDP

B ⊗ A defined in Lemma 4. Furthermore, we show how to design a switching policy that

effectively generates these greatest permanent components.

The search is decomposed in two parts: first, we determine a superset of the greatest

permanent accepting BSCC, denoted by (UA)GP , and the greatest permanent non-accepting

BSCC, denoted by (UN)GP , of B ⊗ A following Algorithm 7 and Algorithm 8. The sets

(UA)GP and (UN)GP contain all states which belong to a permanent accepting and non-

accepting BSCC respectively for some control policy in B ⊗ A, and all such states are

a part of (WC)GP and (LC)GP as seen in the proof of Lemma 4. We call the supersets of

(UA)GP and (UN)GP returned by these algorithms an extended greatest permanent accept-

ing BSCC and an extended greatest permanent non-accepting BSCC, denoted by (UA
+ )GP

and (UN
+ )GP respectively. These sets additionally satisfy (UA)GP ⊆ (UA

+ )GP ⊆ (WC)GP and

(UN)GP ⊆ (UN
+ )GP ⊆ (LC)GP . Although Algorithm 7 and Algorithm 8 are driven by a search

of the sets (UA)GP and (UN)GP , our implementation allows us to find additional members of

(WC)GP and (LC)GP in some instances.

Then, by using an iterative technique which alternates between a graph search and a

reachability maximization step in Algorithm 9 and Algorithm 10, one can find the set of

states which are not members of (UA
+ )GP or (UN

+ )GP but for which the lower bound probability

of reaching an accepting BSCC is equal to 1 nonetheless for some control policy, and

effectively create (WC)GP and (LC)GP .
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GREATEST PERMANENT BSCC SEARCH ALGORITHMS

We now detail an algorithm for finding an extended greatest permanent accepting BSCC

(UA
+ )GP , and an extended greatest permanent non-accepting BSCC (UN

+ )GP of a product

BMDP B ⊗A.

We introduce the following notations and terminology: a set of states in a product B⊗A

is said to be accepting if it satisfies the acceptance condition in Definition 20 and is said

to be non-accepting otherwise. A state 〈Q`, sj〉 of B ⊗ A with labeling function L′ is

said to be Rabin accepting with respect to the ith Rabin pair of A if Fi ∈ L′(〈Q`, sj〉);

〈Q`, sj〉 is said to be Rabin non-accepting with respect to the ith Rabin pair of A if Ei ∈

L′(〈Q`, sj〉). A Rabin accepting state with respect to the ith pair is said to be unmatched

in a set of states C if, for all 〈Q`, sj〉 ∈ C, Ei 6∈ L′(〈Q`, sj〉), and it is said to be matched

otherwise. Act(C) is a set containing all sets of actions allowed for each state in a set C,

that is, if C = {q0, q1, . . . , qk}, qi ∈ Q × S, then, Act(C) = {A(q0), A(q1), . . . , A(qk)}.

AtP (B,C,Act(C)) is a function which outputs the set of states in C which have a non-

zero probability of transition to B for at least one adversary under all actions in Act(C). In

addition, this function removes all actions from the sets in Act(C) for which a transition

to B is possible under at least one adversary and returns the updated set of allowed actions

for each state of C.

We provide a short description of the algorithms: Algorithm 7 and 8 first find the largest

possible set of Strongly Connected Components (SCC), denoted by S, that can be con-

structed in the product BMDP in line 4 and 5 assuming all actions are available, as the

greatest permanent BSCCs are a subset of these by Definition 19. Set S is determined by

applying a standard SCC search techniques on the graph G defined in line 4.

Then, the algorithms iteratively remove the actions and states which prevent these SCCs

from being a permanent BSCC, that is, actions and states which allow for a transition

outside of the SCCs, as captured by line 9. Note that a state is discarded in set Ci once its

action set is empty. Then, new SCCs are computed with the remaining states and actions in
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line 12. If the algorithm finds an SCC Sk which does not allow any transition outside of Sk

for any state and action available, then it is potentially a member of (UA
+ )GP or (UN

+ )GP (line

13).

Next, the acceptance status of SCC Sk is checked at line 14. This is done by inspecting

the states belonging to the SCC and comparing them with Definition 20. If Sk does not

have the desired acceptance status, states which can revert the acceptance status of Sk are

removed and new SCCs are computed with the remaining states in line 23 of Algorithm 7

and line 27 of Algorithm 8. Otherwise, the algorithm enters the if-statement in line 14 for

a further analysis of Sk.

An additional condition for Sk to be a part of (UA
+ )GP (respectively, (UN

+ )GP ) is that no

subset of states of Sk can form a non-accepting BSCC (respectively, accepting BSCC)

under any scenario allowed by the transition intervals of the product BSCC. To verifiy this,

the approach is slightly different for both algorithms:

• In Algorithm 7, to make sure that no subset of Sk can form a non-accepting BSCC, we

choose control actions for the states in Sk that maximize the lower bound probability

of reaching the unmatched Rabin accepting states contained in Sk in line 14 to 17.

If this lower bound is zero for some subset of Sk, then these states could potentially

form a non-accepting BSCC inside Sk for some assignment of the probabilities under

all available actions. The set of all such states is denoted byAbad. IfAbad is empty, the

algorithm found a control policy that guarantees Sk to be accepting for all possible

adversaries of the induced product IMC, since no state of Sk can form a BSCC which

doesn’t contain at least one of the unmatched accepting states, and Sk is added to

(UA
+ )GP in line 18. Otherwise, the SCCs which can be formed by the states in Abad

and by the states in Sk \ Abad with the remaining actions are computed and added to

S in line 20.

• In Algorithm 8, to make sure that no subset of Sk can form an accepting BSCC, we

first check whether Sk contains Rabin accepting states. If it does not, then Sk is a
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member of (UN
+ )GP as explicitly shown in line 16. If Sk contains Rabin accepting

states, for all sets of Rabin accepting states with respect to pair i, we sequentially

solve reachability problems and choose control actions for the states in Sk that max-

imize the lower bound probability of reaching the Rabin non-accepting states with

respect to pair i contained in Sk in line 17 to 19. If this lower bound is zero for some

actions at some state, we discard these actions for this state and start again from the

first set of Rabin accepting states. The process continues until all the Rabin pairs

have been considered without removing any action or until a state has an empty ac-

tion set. A state with an empty action set could potentially form a BSCC which does

not contain a Rabin non-accepting i for some matched Rabin accepting state in Sk,

and therefore which could potentially be accepting. If no state has an empty action

set, the algorithm found a control policy which guarantees that all states in Sk reach

a Rabin non-accepting state with respect to pair i for all matched Rabin accepting

states in Sk with respect to pair i with lower bound probability 1, therefore no state

of Sk can form an accepting BSCC and Sk is added to (UN
+ )GP in line 20 to 21. Oth-

erwise, the SCCs which can be formed by the states in Sk \ Ai for all sets of Rabin

accepting pairs with respect to pair i are computed with the original set of actions of

Sk and added to S in line 23.

We offer the following reasoning as a proof sketch for the correctness of the algorithms:

for a set of states Sk to belong to a permanent BSCC of a given kind in a product IMC, its

constituents are not allowed to transition outside of Sk under any adversary, its constituents

have to fulfill the requirements for accepting and non-accepting BSCCs defined in Defini-

tion 20, and no subset of Sk is allowed to form a BSCC of the opposite acceptance status

under any adversary. The first condition is guaranteed by lines 7 to 10 in both algorithms;

the second condition is enforced by the if-statement in line 14 in both algorithms and the

corresponding else-statements of lines 22 to 24 in Algorithm 7 and lines 26 to 28 in Al-

gorithm 8; the third condition is imposed by the remainder of the main for-loop in both
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Algorithm 7 Find Extended Greatest Permanent Accepting BSCC
1: Input: Product BMDP B ⊗A
2: Output: Extended greatest permanent accepting BSCCs (UA+ )GP with corresponding policy (µ̂lowΨ )⊗ for the states in this set
3: Initialize: (UA+ )GP := ∅
4: Initially allow all actions for all states. Construct G := (V,E) with a vertex for each state in B ⊗ A (V = Q × S) and an edge

between states 〈Qi, sj〉 and 〈Qi′ , sj′ 〉 if T̂ (〈Qi, sj〉 , a, 〈Qi′ , sj′ 〉) > 0 for some a ∈ A(〈Qi, sj〉)
5: Find all SCCs of G and list them in S
6: for Sk ∈ S do
7: C0 := ∅, i := 0
8: repeat
9: Ri := Sk \ ∪i`=0C`; Tri := V \Ri; (Ci+1, Act(Ri)) = AtP (Tri, Ri, Act(Ri)); i = i+ 1

10: until Ci = ∅ and no action is removed from Act(Ri)
11: if i 6= 1 then
12: Find all SCCs of Ri (with the remaining actions) and add them to S
13: else
14: if Sk is accepting then
15: Find the set A of all unmatched Rabin accepting states of Sk
16: For all states in Sk , maximize the lower bound probability of ♦A. Find the set of states Abad whose lower bound

probability of reaching A is zero after the maximization step
17: if Abad = ∅ then
18: (UA+ )GP := (UA+ )GP ∪ Sk and save the actions computed in the maximization of ♦A to (µ̂lowΨ )⊗ for all states of Sk
19: else
20: Compute the SCCs formed by the states in Abad and the states in Sk \ Abad with the remaining actions and add

them to S
21: end if
22: else
23: If Sk does not contain any Rabin accepting state, continue. Otherwise, for all Rabin accepting set of states Ai with

respect to pair i in Sk , find the set Anoni of all states in Sk which are non-accepting with respect to the same pair as Ai.
Compute the SCCs formed by the states in Sk \Anoni with the remaining actions and add them to S

24: end if
25: end if
26: end for
27: return (UA+ )GP , (µ̂lowΨ )⊗ for states in (UA+ )GP

algorithms. Lastly, the algorithms iteratively remove the minimum number of actions and

states causing a set Sk to violate one of these conditions and analyze all of the remaining

states, ensuring that the procedures do not skip any permanent component. Note that none

of the removed states could form a permanent BSCC between each other under any policy.

Indeed, if these states did not belong to a common SCC in S, this would be a contradiction.

These algorithms can be adapted to determine an extended greatest accepting (UA
+ )GL

and an extended greatest non-accepting BSCCs (UN
+ )GL by replacing all instances of the

functionAtP (B,C,Act(C)) with the functionAt?(B,C, Act(C)), whereAt?(B,C,Act(C))

returns the set of states of C which have a non-zero probability of transition to B for all

adversaries under all allowed actions. This function also removes all actions from Act(C)

for which a non-zero probability of transition to B exists under all adversaries of the in-

duced IMC and returns the updated set of allowed actions. In addition, all mentions of the

term “lower bound” have to be replaced with “upper bound”. The extended sets are such
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Algorithm 8 Find Extended Greatest Permanent Non-Accepting BSCC
1: Input: Product BMDP B ⊗A
2: Output: Extended greatest permanent non-accepting BSCC (UN+ )GP with corresponding policy (µ̂

up
Ψ )⊗ for the states in this set

3: Initialize: (UN+ )GP := ∅
4: Initially allow all actions for all states. Construct G := (V,E) with a vertex for each state in B ⊗ A (V = Q × S) and an edge

between states 〈Qi, sj〉 and 〈Qi′ , sj′ 〉 if T̂ (〈Qi, sj〉 , a, 〈Qi′ , sj′ 〉) > 0 for some a ∈ A(〈Qi, sj〉)
5: Find all SCCs of G and list them in S
6: for Sk ∈ S do
7: C0 := ∅, i := 0
8: repeat
9: Ri := Sk \ ∪i`=0C`; Tri := V \Ri; (Ci+1, Act(Ri)) = AtP (Tri, Ri, Act(Ri)); i = i+ 1

10: until Ci = ∅ and no action is removed from Act(Ri)
11: if i 6= 1 then
12: Find all SCCs of Ri (with the remaining actions) and add them to S
13: else
14: if Sk is non-accepting then
15: if Sk does not contain Rabin accepting states then
16: (UN+ )GP := (UN+ )GP ∪ Sk and save any remaining action to µ̂upΨ for the states in Sk
17: else
18: For all sets of Rabin accepting state Ai with respect to pair i in Sk , find the set Anoni of all states in Sk which are

non-accepting with respect to the same pair as Ai. Initialize Abad = ∅
19: For all states in Sk , maximize the lower bound probability of ♦Anon1 , and remove the set of actions leading a lower

bound of zero. Repeat this process for all Anoni and restart from A1 every time a new action is removed. If a state
has an empty action set, add it to Abad, and stop the process

20: if Abad = ∅ then
21: (UN+ )GP := (UN+ )GP ∪ Sk and save any of the actions remaining after the maximization steps to (µ̂

up
Ψ )⊗ for the

states in Sk
22: else
23: For allAi, compute the SCCs formed by the states in Sk \Ai with the remaining actions before the maximization

steps and add them to S
24: end if
25: end if
26: else
27: Find the set A of all unmatched Rabin accepting states in Sk . Compute the SCCs formed by the states in Sk \ A with

the remaining actions and add them to S
28: end if
29: end if
30: end for
31: return (UN+ )GP , (µ̂

up
Ψ )⊗ for states in (UN+ )GP

that (UA)GL ⊆ (UA
+ )GL ⊆ (WC)GL and (UN)GL ⊆ (UN

+ )GL ⊆ (LC)GL .

GREATEST PERMANENT COMPONENTS SEARCH ALGORITHMS

Next, we present an algorithm which constructs the greatest permanent winning and los-

ing components (WC)GP and (LC)GP in a product BMDP B ⊗ A once extended greatest

permanent BSCCs (UA
+ )GP and (UN

+ )GP have been found.

In a product IMC I ⊗ A, some states which are not in a permanent BSCC can still

be a part of the permanent winning or losing component of I ⊗ A, as discussed in the

second part of the proof of Lemma 4. These states are those which belong to a set of states

C such that no transition outside the union of C and the permanent BSCCs of I ⊗ A is
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possible for any adversary, and such that no subset of C can form a BSCC of the “wrong”

acceptance status under any adversary. We can further classify these states into permanent

sink states, which cannot be a part of a BSCC under any scenario but transition to another

winning (or losing) set of state with lower bound probability 1, and states which allow non-

deterministic scenarios where the state is sometimes a sink state with respect to another

permanent winning (respectively, losing) set of states and sometimes a part of a winning

(respectively losing) component that reaches a non permanent accepting (respectively, non-

accepting) BSCC with probability one. The examples below presents situations where these

scenarios can occur.

Example 3. Consider three states Q1, Q2 and Q3 of a product IMC such that Q1 and Q2

form a permanent BSCC, with T̂ (Q1, Q2) = T̂ (Q2, Q1) = 1. Furthermore, T̂ (Q3, Q1) =

T̂ (Q3, Q2) = 0.5. Clearly, Q3 is not a member of the BSCC encompassing Q1 and Q2; yet,

Q3 always transitions to either Q1 or Q2 with probability probability 1 and is therefore a

permanent sink state.

Now, consider two statesQ1 andQ2 such that T̂ (Q1, Q1) = 1, T̂ (Q2, Q1) = T̂ (Q2, Q2) =

0 and T̂ (Q2, Q1) = T̂ (Q2, Q2) = 1. While Q1 is a permanent BSCC, Q2 is neither a per-

manent sink state nor a permanent BSCC. However, all adversaries of the product IMC

make Q2 either a sink state with respect to Q1 or a BSCC with itself.

Consequently, we describe a procedure in Algorithm 9 and Algorithm 10 that finds all

states in a product B ⊗ A for which a control policy induces one of the aforementioned

scenarios given extended greatest permanent BSCCs (UA
+ )GP and (UN

+ )GP respectively.

We explain the main features of these algorithms: first, the greatest permanent com-

ponents
(
(WC)GP in Algorithm 9, (LC)GP in Algorithm 10

)
are initialized to the extended

greatest permanent BSCCs in line 3. Then, in line 5, the lower bound probability of reach-

ing these components is maximized in the product BMDP to reveal the states which can be

rendered permanent sinks with respect to (WC)GP in Algorithm 9 and with respect to (LC)GP

in Algorithm 10, as these states yield a lower bound of 1 of reaching the components. The
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Algorithm 9 Find Greatest Permanent Winning Components
1: Input: Product BMDP B⊗A, extended greatest permanent accepting BSCC (UA+ )GP , extended greatest accepting BSCCs (UA+ )GL
2: Output: Greatest permanent winning component (WC)GP with corresponding policy (µ̂lowΨ )⊗ for the states in this set
3: Initialize: (WC)GP := (UA+ )GP , (UA)G? := (UA+ )GL \ (UA+ )GP , (WC)GP,prev := (WC)GP
4: repeat
5: Maximize the lower bound probability of ♦(WC)GP for all states 〈Qi, sj〉 in B ⊗A
6: Construct the set L of all states with a lower bound equal to 1 that are not in (WC)GP
7: for Q ∈ L do
8: (WC)GP := (WC)GP ∪Q, save the action (µ̂lowΨ )⊗(Q) computed during maximization step
9: end for

10: Find the greatest accepting BSCC of (UA)G? \ L using Algorithm 7 and set (UA)G? to this new set of states
11: Construct the set N of all accepting BSCCs constructed in (UA)G? under some policy
12: for Sk ∈ N do
13: Construct G := (V,E) with a vertex for each state in B ⊗ A (V = Q × S) and an edge between states 〈Qi, sj〉 and

〈Qi′ , sj′ 〉 if T̂ (〈Qi, sj〉 , a, 〈Qi′ , sj′ 〉) > 0 for some a ∈ A(〈Qi, sj〉)
14: C0 := ∅, i := 0
15: repeat
16: Ri := Sk \ ∪i`=0C`; Tri := V \ (Ri ∪ (WC)GP ); (Ci+1, Act(Ri)) := AtP (Tri, Ri, Act(Ri)); i := i+ 1
17: until Ci = ∅ and no action is removed from Act(Ri)
18: if i 6= 1 then
19: Find the greatest accepting BSCC of Ri (with remaining actions) using Algorithm 7, enumerate all accepting BSCCs

constructed in this set under some policy, and add them to N
20: else
21: Find the set A of all unmatched Rabin accepting states of Sk
22: For all states in Sk , maximize the lower bound probability of ♦A. Find the set of states Abad whose lower bound

probability of reaching A is zero after the maximization step
23: if Abad = ∅ then
24: (WC)GP := (WC)GP ∪ Sk , save corresponding actions in (µ̂lowΨ )⊗ for the states in S
25: (UA)G? := (UA)G? \ Sk
26: else
27: Compute the greatest accepting BSCC of Abad and Sk \ Abad using Algorithm 7, enumerate all accepting BSCCs

constructed in this set under some policy, and add them to N
28: end if
29: end if
30: end for
31: Y := (WC)GP \ (WC)GP,prev
32: (WC)GP,prev := (WC)GP
33: until Y = ∅
34: return (WC)GP , (µ̂lowΨ )⊗ for states in (WC)GP

sink states are added to the greatest permanent components in line 8.

Next, we define the greatest potential accepting and non-accepting BSCC (UA)G? and

(UN)G? of a product BMDP, which are computed by taking the set difference between the

greatest BSCC and the greatest permanent BSCC. States in (UA)G? and (UN)G? are those

which could engender the second type of permanent components previously discussed. If

(UA)G? and (UN)G? happened to contain a permanent sink state found in line 8, we compute

the greatest accepting and non-accepting BSCC as well as their associated allowed actions

with the remaining states in line 10 of both algorithms to update (UA)G? and (UN)G? .

Then, in lines 12 to 17, for all BSCCs S which can be created in (UA)G? in Algorithm

9 and in (UN)G? in Algorithm 10, we check whether there exists a policy such that no
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Algorithm 10 Find Greatest Permanent Losing Components
1: Input: Product BMDPB⊗A, extended greatest permanent non-accepting BSCCs (UN+ )GP , extended greatest non-accepting BSCCs

(UN+ )GL
2: Output: Greatest permanent losing component (LC)GP with corresponding policy (µ̂

up
Ψ )⊗ for the states in this set

3: Initialize: (LC)GP := (UN+ )GP , (UN )G? := (UN+ )GL \ (UN+ )GP , (LC)GP,prev := (LC)GP
4: repeat
5: Maximize the lower bound probability of ♦(LC)GP for all states 〈Qi, sj〉 in B ⊗A
6: Construct the set L of all states with a lower bound equal to 1 that are not in (LC)GP
7: for Q ∈ L do
8: (LC)GP := (LC)GP ∪Q, save the action (µ̂

up
Ψ )⊗(Q) computed during maximization step

9: end for
10: Find the greatest non-accepting BSCC of (UN )G? \ L using Algorithm 8 and set (UN )G? to this new set of states
11: Construct the set N of all non-accepting BSCCs constructed in (UA)G? under some policy
12: for S ∈ N do
13: Construct G := (V,E) with a vertex for each state in B ⊗ A (V = Q × S) and an edge between states 〈Qi, sj〉 and

〈Qi′ , sj′ 〉 if T̂ (〈Qi, sj〉 , a, 〈Qi′ , sj′ 〉) > 0 for some a ∈ A(〈Qi, sj〉)
14: C0 := ∅, i := 0
15: repeat
16: Ri := Sk \ ∪i`=0C`; Tri := V \ (Ri ∪ (LC)GP ); (Ci+1, Act(Ri)) := AtP (Tri, Ri, Act(Ri)); i := i+ 1
17: until Ci = ∅ and no action is removed from Act(Ri)
18: if i 6= 1 then
19: Find the greatest non-accepting BSCC of Ri (with remaining actions) using Algorithm 8, enumerate all non-accepting

BSCCs constructed in this set under some policy, and add them to N
20: else
21: if Sk does not contain Rabin accepting states then
22: (LC)GP := (LC)GP ∪ S, save corresponding actions in (µ̂

up
Ψ )⊗ for the states in Sk

23: (UN )G? := (UN )G? \ Sk
24: else
25: For all sets of Rabin accepting state Ai with respect to pair i in Sk , find the set Anoni of all states in Sk which are

non-accepting with respect to the same pair as Ai. Initialize Abad = ∅
26: For all states in Sk , maximize the lower bound probability of ♦Anon1 , and remove the set of actions leading a lower

bound of zero. Repeat this process for all Anoni and restart from A1 every time a new action is removed. If a state
has an empty action set, add it to Abad, and stop the process

27: if Abad = ∅ then
28: (LC)GP := (LC)GP ∪ Sk , save remaining actions in (µ̂

up
Ψ )⊗ for the states in Sk

29: (UN )G? := (UN )G? \ Sk
30: else
31: For allAi, compute the greatest non-accepting BSCC of Sk \Ai using Algorithm 8 and remaining actions before

the maximization steps, enumerate all non-accepting BSCCs constructed in this set under some policy, and add
them to N

32: end if
33: end if
34: end if
35: end for
36: Y := (LC)GP \ (LC)GP,prev
37: (LC)GP,prev := (LC)GP
38: until Y = ∅
39: return (LC)GP , (µ̂

up
Ψ )⊗ for states in (LC)GP

state of S can transition outside of the union of S and the current version of the greatest

permanent component for any instantiation of the resulting transition intervals. If such a

policy does not exist, states and actions for which a transition outside of the aforementioned

set is possible are removed from S and the BSCCs which can be created inside the greatest

BSCC of the remaining states are added to the listN of BSCCs to inspect in line 19. On the

other hand, if S only contains valid states and corresponding actions, the algorithms enter
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the else-statement in line 20, where we need to choose a policy for the states in S which

additionally does not allow the existence of a BSCC of the opposite acceptance status from

the desired one within S under any adversary.

This step is done similarly as in Algorithm 7 and Algorithm 8 by maximizing the lower

bound probability of reaching the unmatched Rabin accepting states in S in 9 and the

matched Rabin non-accepting states in 10, and removing the states yielding a lower bound

probability of 0. If no such state is found, then we designed a policy that effectively makes

S either a set of sink states or a BSCC of the appropriate acceptance status for all adver-

saries, and the states of S are added to the greatest permanent component. This process is

described in line 21 to 28 in Algorithm 9 and in line 21 to 31 in Algorithm 10.

In the case that new states were added to (WC)GP or (LC)GP upon execution of the

reachability maximization step and the graph search, which is checked in line 31 to 33 in

Algorithm 9 and line 36 to 38 of Algorithm 10, we return to the beginning of the while-loop

and repeat this process with the augmented version of the greatest permanent components,

as these could now allow previously discarded states to become permanently winning or

losing. Otherwise, the loop is exited and the algorithms return the true sets (WC)GP and

(LC)GP with their associated control actions.

A slight modification of Algorithm 9 and Algorithm 10 can be employed to compute

the greatest sets (WC)GL and (LC)GL defined in Lemma 5. However, in this paper, we

solely use the greatest BSCCs (UA
+ )GL and (UN

+ )GL as our target sets for computing the upper

bound maximizing and lower bound minimizing policies (µ̂upΨ )⊗ and (µ̂
low
Ψ )⊗, as explained

in Subsection 6.1.1.

In summary, we develop a procedure for computing policies that either maximize the

lower bound probability or minimize the upper bound probability of satisfying an arbitrary

ω-regular property in a BMDP. To this end, we show that these policies are induced by poli-

cies in the product between a BDMP and the DRA encoding the specification of interest.

In Lemma 4, we remarked that a product BMDP always possesses a greatest permanent
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losing component and a greatest permanent winning component. In Algorithms 7 to 10,

we devise graph-based techniques for determining these components as well as the corre-

sponding control actions for the states composing them. Finally, we show in Theorem 7

that, for the remaining states in the product BMDP, the optimal policy is found by carry-

ing out a lower bound reachability maximization computation on the greatest permanent

components.

6.1.3 Refinement of the Domain Partition

OPTIMALITY OF COMPUTED POLICY

In the previous subsections, we implemented a technique for computing an optimal switch-

ing policy in a BMDP subject to an ω-regular specification. However, recall that, in the

problem at hand, BMDPs are used as abstractions of the underlying system (6.1) with re-

spect to a partition of the system’s continuous domain. Therefore, as each state of the

BMDP abstracts the behavior of an infinite number of continuous states of (6.1), the switch-

ing policy derived in the BMDP abstraction is likely to be suboptimal when mapped onto

the original system.

Here, we provide a measure of the suboptimality of the control strategy computed in

a BMDP abstraction with respect to the abstracted system. We first focus on the case

when the objective is to maximize the probability of satisfying specification Ψ. The value

iteration algorithm used to design the policies (µ̂lowΨ )⊗ and (µ̂upΨ )⊗ discussed in Theorem

7 and Theorem 8 provides useful information amenable to a quantitative measure of the

suboptimality of the lower bound maximizing policy (µ̂lowΨ )⊗. In particular, for all states

〈Qj, si〉, the algorithm determines a lower bound on the maximum lower bound probability

of reaching an accepting BSCC achievable from 〈Qj, si〉 over all memoryless policies of

B ⊗ A choosing the lower bound maximizing action a`,max = (µ̂lowΨ )⊗(〈Qj, si〉) at state

〈Qj, si〉, and an upper bound on the maximum upper bound probability of reaching an

accepting BSCC achievable from 〈Qj, si〉 over all memoryless policies of B ⊗A choosing
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action a` at state 〈Qj, si〉 for all actions a` ∈ A(〈Qj, si〉). Denoting these lower and upper

bounds by p̂` and p̂` respectively for action a`, this is formally stated as

p̂`,max ≤ max
µ∈UA⊗
s.t.

µ(〈Qj ,si〉)=a`,max

P̂(B⊗A)[µ](〈Qj, si〉 |= ♦R) , (6.10)

and, for all actions a` ∈ A(〈Qj, si〉),

p̂` ≥ max
µ∈UA⊗
s.t.

µ(〈Qj ,si〉)=a`

P̂(B⊗A)[µ](〈Qj, si〉 |= ♦R) , (6.11)

where ♦R is a slight abuse of notation denoting the objective of reaching an accepting

BSCC — which is generally not a fixed set of states as discussed in previous sections — in

the product IMC (B ⊗A)[µ].

Therefore, when the objective is to maximize the probability of satisfying a specifica-

tion Ψ, we introduce the suboptimality factor ε〈Qj ,si〉 of state 〈Qj, si〉 with respect to the

lower bound maximizing policy (µ̂lowΨ )⊗ in the product BMDP B ⊗A which is defined as

ε〈Qj ,si〉 = max
` 6=`,max

p̂` − P̂(B⊗A)[(µ̂lowΨ )⊗]

(
〈Qj, si〉 |= ♦(WC)GP

)
. (6.12)

The quantity ε〈Qj ,si〉 represents an upper bound on the maximum improvement in the prob-

ability of satisfying Ψ any continuous state in Qj could achieve by choosing another fixed

action from the one prescribed by (µ̂lowΨ )⊗ when the product state is 〈Qj, si〉, as the maxi-

mum satisfaction probability attainable when applying a different action is upper bounded

by max` 6=`,max p̂`. Therefore, the smaller ε〈Qj ,si〉 is, the more certain we are that (µ̂lowΨ )⊗ is

close to optimal for all states in Qj when the automaton state is si.

Furthermore, the bounds computed by the value iteration algorithm can additionally

be used to show that certain actions are suboptimal or optimal at a given state of a product

BMDP B⊗A and, by extension, that the modes represented by these actions are suboptimal
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or optimal for some continuous states of the abstracted system. By comparing these bounds

for all actions in an action space of a given state of the product BMDP B⊗A, some of these

actions may appear to surely perform worse or better than others at that particular state, as

illustrated in the example below.

Example 4. Consider a state 〈Qj, si〉 of the product BMDP B ⊗ A with a set of actions

A(〈Qj, si〉) = {a1, a2, a3}, and (µ̂lowΨ )⊗(〈Qj, si〉) = a1. Suppose the probabilities of reach-

ing an accepting BSCC from 〈Qj, si〉 under all 3 actions are described by the following

intervals:

• (I〈Qj ,si〉)a1 = [0.5, 0.8],

• (I〈Qj ,si〉)a2 = [0.0, 0.7],

• (I〈Qj ,si〉)a3 = [0.0, 0.45],

where the lower bounds correspond to a lower bound on the maximum lower bound prob-

ability of reaching an accepting BSCC from state 〈Qj, si〉 achievable over all memoryless

policies of B⊗A choosing the corresponding action at state 〈Qj, si〉, and the upper bounds

correspond to an upper bound on the maximum upper bound probability of reaching an ac-

cepting BSCC from state 〈Qj, si〉 achievable over all memoryless policies ofB⊗A choosing

the corresponding action at state 〈Qj, si〉.

Although action a1 maximizes the lower bound probability of reaching an accepting

BSCC at 0.5, it appears that some continuous states of Qj could potentially produce a

higher probability — up to 0.7 — of reaching an accepting BSCC under action a2, since a

non-deterministic scenario of the product BMDP allows for this probability to occur under

some policy choosing a2. However, under no memoryless policy and adversary can action

a3 generate a higher probability of reaching an accepting BSCC than action a1, since

0.45 < 0.5, and can therefore be discarded. Note that the suboptimality factor of 〈Qj, si〉

with respect to (µ̂lowΨ )⊗ in this case is ε〈Qj ,si〉 = 0.7− 0.5 = 0.2.

113



Definition 32 (Optimal/Suboptimal Action). Consider a state 〈Qj, si〉 of a product BMDP

B ⊗ A with a set of actions A(〈Qj, si〉). Let us denote by p̂` a lower bound on the maxi-

mum (respectively, minimum) lower bound probability of reaching an accepting BSCC from

〈Qj, si〉 achievable over all memoryless policies of B⊗A choosing action a` ∈ A(〈Qj, si〉)

at state 〈Qj, si〉, and by p̂` an upper bound on the maximum (respectively, minimum) upper

bound probability of reaching an accepting BSCC from 〈Qj, si〉 achievable over all mem-

oryless policies of B ⊗ A choosing action a` at state 〈Qj, si〉. When the objective is to

maximize (respectively, minimize) the probability of reaching an accepting BSCC, an ac-

tion a` is said to be suboptimal for state 〈Qj, si〉 with respect to A(〈Qj, si〉) if there exists

an action ak ∈ A(〈Qj, si〉), k 6= `, such that p̂` < p̂k (respectively, p̂` > p̂k). An action a` is

said to be optimal for state 〈Qj, si〉 with respect to A(〈Qj, si〉) if, for all ak ∈ A(〈Qj, si〉),

k 6= `, p̂` ≥ p̂k (respectively, p̂` ≤ p̂k).

Definition 33 (Optimal/Suboptimal Mode). Let π = x[0]x[1]x[2] ... x[k] be any finite path

of (6.1) such that the word L(x[0])L(x[1])L(x[2]) ... L(x[k]) produces a run s[0]s[1]s[2] . . .

s[k] in automaton A corresponding to property Ψ, where x[k] =: x ∈ D and s[k] =

si ∈ S. Let us denote by p̂` a lower bound on the maximum (respectively, minimum)

probability of an infinite path with prefix π to satisfy Ψ in (6.1) over all policies of (6.1)

choosing mode a` ∈ A for path π, and by p̂` an upper bound on the maximum (respectively,

minimum) probability of an infinite path with prefix π to satisfy Ψ in (6.1) over all policies

of (6.1) choosing mode a` ∈ A for path π. When the objective is to maximize (respectively,

minimize) the probability of satisfying Ψ, a mode a` is said to be suboptimal for state x

with respect to automaton state si and the set of modes A if there exists a mode ak ∈ A,

k 6= `, such that p̂` < p̂k (respectively, p̂` > p̂k). A mode a` is said to be optimal for state x

with respect to automaton state si and the set of modes A if, for all ak ∈ A, k 6= `, p̂k ≤ p̂`

(respectively, p̂` ≤ p̂k).

If the set of actions A(〈Qj, si〉) of state 〈Qj, si〉 contains an optimal action, then the sub-

optimality factor ε〈Qj ,si〉 is set to 0.
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For the case of minimization, for all states 〈Qj, si〉, the value iteration algorithm used to

compute (µ̂
up
Ψ )⊗ and (µ̂

low
Ψ )⊗ returns an upper bound on the minimum upper bound proba-

bility of reaching an accepting BSCC achievable from 〈Qj, si〉 over all memoryless policies

of B ⊗ A choosing the upper bound minimizing action a`,min = (µ̂
up
Ψ )⊗(〈Qj, si〉) at state

〈Qj, si〉, and a lower bound on the minimum lower bound probability of reaching an ac-

cepting BSCC achievable from 〈Qj, si〉 over all memoryless policies of B ⊗ A choosing

action a` at state 〈Qj, si〉 for all actions a` ∈ A(〈Qj, si〉), that is,

p̂`,min ≥ min
µ∈UA⊗
s.t.

µ(〈Qj ,si〉)=a`,min

P̂(B⊗A)[µ](〈Qj, si〉 |= ♦R) , (6.13)

and, for all actions a` ∈ A(〈Qj, si〉),

p̂` ≤ min
µ∈UA⊗
s.t.

µ(〈Qj ,si〉)=a`

P̂(B⊗A)[µ](〈Qj, si〉 |= ♦R) , (6.14)

with ♦R denoting the objective of reaching an accepting BSCC in B ⊗ A. Hence, for the

objective of minimizing the probability of satisfying Ψ, the suboptimality factor ε〈Qj ,si〉

with respect to the upper bound minimizing policy (µ̂
up
Ψ )⊗ is instead given by

ε〈Qj ,si〉 = (1− min
6̀=`,min

p̂`)− P̂B⊗A[(µ̂
up
Ψ )⊗]

(
〈Qj, si〉 |= ♦(LC)GP

)
. (6.15)

The bounds computed by the value iteration algorithm also allow to identify control actions

which are suboptimal or optimal at given state of B ⊗A as detailed in Definition 32.

REFINEMENT PROCEDURE

Now that a quantitative measure for the optimality of the computed switching policy has

been introduced, our next objective is to design a domain partition refinement scheme to
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address Subproblem 1.2 and achieve a user-defined level of optimality. In order to mitigate

the state-space explosion phenomenon, the refinement algorithm should specifically target

the states causing the most uncertainty in the domain partition.

We define the greatest suboptimality factor εmax as

εmax = max
〈Qj ,si〉∈(Q×S)

ε〈Qj ,si〉 (6.16)

which can be used as a natural precision criterion for a given domain partition P . A low fac-

tor εmax ensures that no state in the original system is poorly controlled under the switching

policy computed in the BMDP abstraction arising from P . Looser notions of optimality,

such as the average suboptimality factor or the fraction of states below a fixed optimality

threshold, are less sensitive to outliers and can alternatively be considered. We denote the

desired suboptimality target by εthr. Note that a target εthr equal to 0 requires to find an

optimal action for all states in B ⊗A.

Formally, as defined in Definition 26, a partition P ′ is a refinement of a coarser partition

P if all states in P is equal to the union of a set of states in P ′. In the general case, abstrac-

tions constructed from a refinement P ′ of P will exhibit a lesser degree of non-determinism

than abstractions constructed from P , allowing for the computation of more optimal con-

trollers with respect to the abstracted system.

The proposed refinement procedure to achieve a target precision εthr is inspired by our

technique in Section 5.2 where refinement was conducted for the purpose of verification

in an IMC. This procedure is based on a heuristical scoring of the states in a partition P

which highlights the regions of the state-space causing the most uncertainty with respect to

the specification of interest and the set of actions at hand. Specifically, this score aims to

capture how differently a partition state behaves between the extreme cases induced by the

two maximizing (or minimizing) policies previously discussed, as well as how much this
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state influences other states which are known to be suboptimaly controlled.

Our scoring algorithm is presented in Algorithm 11 and is summarized as follows: first,

we take as input a “best-case” product MC (MA
⊗)u and a “worst-case” product MC (MA

⊗)l.

For the case of maximization, the worst-case product MC (MA
⊗)l is the worst-case product

MC induced by the IMC (B ⊗ A)[(µ̂lowΨ )⊗] with respect to the objective of reaching an

accepting BSCC, while the best-case product MC (MA
⊗)u is the best-case product MC in-

duced by the IMC (B⊗A)[(µ̂upΨ )⊗]. Similarly, for the case of minimization, the worst-case

product MC (MA
⊗)l is the worst-case product MC induced by the IMC (B ⊗ A)[(µ̂

low
Ψ )⊗]

with respect to the objective of reaching an accepting BSCC, while the best-case prod-

uct MC (MA
⊗)u is the best-case product MC induced by the IMC (B ⊗ A)[µ̂

up
Ψ ]. Again,

the aforementioned MCs are automatically constructed when applying the value iteration

algorithm used for designing the two maximizing (or minimizing) policies.

Next, for all state 〈Qj, si〉 of the product BMDP B ⊗ A whose suboptimality factor is

greater than the target εthr, we compute the probability p〈j,i〉→〈j′,i′〉 of reaching any state

〈Qj′ , si′〉 from 〈Qj, si〉 in the MC (MA
⊗)u on line 7 using the results in [62]. Then, for

all states 〈Qj′ , si′〉 of the product BMDP that do not belong to a permanent component (as

these do not require refinement), the quantity p〈j,i〉→〈j′,i′〉 · ||T u〈j′,i′〉 − T `〈j′,i′〉||2 is added to

the score σj′ of the partition state Qj′ on line 9, where T u〈j′,i′〉 and T `〈j′,i′〉 are the rows cor-

responding to state 〈Qj′ , si′〉 in the transition matrices of (MA
⊗)u and (MA

⊗)l respectively.

The term ||T u〈j′,i′〉 − T `〈j′,i′〉||2 aims to capture how differently state 〈Qj′ , si′〉 behaves in the

two extreme MCs, while p〈j,i〉→〈j′,i′〉 is a term associated with how much state 〈Qj′ , si′〉 af-

fects state 〈Qj, si〉. Finally, from line 10 to 13, we additionally increment the score of states

which have the potential of changing the qualitative connectivity structure of the “best” and

”worst” case scenarios. These states are those which belong to a BSCC that is present in

one of the scenarios and not in the other and have the potential of confirming or invalidating

the existence of these BSCCs, that is, states which have an outgoing transition with a zero

lower bound and a non-zero upper bound for at least one available control action.

117



Algorithm 11 Refinement Scoring Algorithm
1: Input: Product BMDP B ⊗A, best-case product MC (MA

⊗)u, worst-case product MC
(MA

⊗)l, threshold suboptimality factor εthr, suboptimality factors ε〈Qj ,si〉 for all states
〈Qj, si〉 of B ⊗A

2: Output: Refinement scores σ =
[
σ0, σ1, . . . , σ|Q|−1

]
for all states of partition P

3: Initialize: σ =
[
σ0, σ1, . . . , σ|Q|−1

]
where σi = 0

4: In U ?, list all states of B ⊗ A belonging to a BSCC that exists in (MA
⊗)u and not in

(MA
⊗)l, or vice-versa

5: In G, list all states of B ⊗A with a probability of reaching an accepting BSCC of 0 in
both (MA

⊗)u and (MA
⊗)l or of 1 in both (MA

⊗)u and (MA
⊗)l

6: for 〈Qj, si〉 ∈ B ⊗A do
7: if ε〈Qj ,si〉 ≥ εthr then
8: Compute the probability p〈j,i〉→〈j′,i′〉 of reaching 〈Qj′ , si′〉 from 〈Qj, si〉 in (MA

⊗)u,
for all 〈Qj′ , si′〉 ∈ B ⊗A, using the technique in [62]

9: for 〈Qj′ , si′〉 ∈ B ⊗A such that 〈Qj′ , si′〉 6∈ G do
10: σj′ = σj′ + p〈j,i〉→〈j′,i′〉 · ||T u〈j′,i′〉 − T `〈j′,i′〉||2, where T u〈j′,i′〉 and T `〈j′,i′〉 are the

rows corresponding to state 〈Qj′ , si′〉 in the transition matrices of (MA
⊗)u and

(MA
⊗)l respectively

11: if 〈Qj′ , si′〉 ∈ U ? then
12: for 〈Qj′′ , si′′〉 ∈ B⊗A such that 〈Qj′ , si′〉 and 〈Qj′′ , si′′〉 belong to a common

BSCC in (MA
⊗)u or (MA

⊗)l do
13: if 〈Qj′′ , si′′〉 has an outgoing transition with a zero lower bound and a non-

zero upper bound for at least one available control action then
14: σj′′ = σj′′ + p〈j,i〉→〈j′,i′〉 · ||T u〈j′,i′〉 − T `〈j′,i′〉||2
15: end if
16: end for
17: end if
18: end for
19: end if
20: end for

Once a score is attributed to each state of P via Algorithm 11, states with a score above

a user-defined threshold are refined to generate a finer partition P ′. A new switching policy

is computed in a BMDP abstraction constructed from P ′, and more refinement steps are

subsequently applied if necessary. The procedure terminates once the optimality factor

εmax becomes less than the target εthr.

The fact that a partition P ′ is a refinement of a partition P allows us to make infer-

ences about the properties of the states in P ′ from the synthesis computations previously

performed on the states in P . First, as discussed in the previous subsection, not all actions
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allowed in P may need to be considered in the refined partition P ′ when computing a new

switching policy. Indeed, given a partition Qj = ∪mjk=0Q
k
j′ of a state Qj ∈ P , it follows

that a certainly suboptimal action with respect to the action set of a product state 〈Qj, si〉

will also be suboptimal with respect to all
〈
Qk
j′ , si

〉
and can be eliminated in the synthesis

procedure applied to P ′.

Proposition 3. Let B be a BMDP abstraction constructed from a partition P of the domain

D of (6.1), A be a DRA corresponding to specification Ψ, and P ′ be a refinement of P .

Let {Qk
j′}

mj
k=0 ⊆ P ′, be a partition of state Qj ∈ P . If action a ∈ A(〈Qj, si〉) is suboptimal

for state 〈Qj, si〉 with respect to A(〈Qj, si〉) in the product BMDP B ⊗ A, then the mode

of (6.1) represented by action a is suboptimal for all x ∈ Qj with respect to the automaton

state si and the set of available modes, and, in particular, for all x ∈ Qk
j′ , k = 0, 1 . . . ,mj .

Proof. The proof assumes the objective of synthesis to be the maximization of the prob-

ability of satisfying Ψ. We denote by p̂ an upper bound on the maximum upper bound

probability of reaching an accepting BSCC in B ⊗ A from 〈Qj, si〉 achievable over all

memoryless policies choosing action a ∈ A(〈Qj, si〉) at state 〈Qj, si〉. The assumption that

a is suboptimal with respect to A(〈Qj, si〉) in B ⊗ A implies that there exists an action

a′ ∈ A(〈Qj, si〉) with a known a lower bound p̂′ on the maximum lower bound probability

of reaching an accepting BSCC in B ⊗ A from 〈Qj, si〉 achievable over all memoryless

policies choosing action a′ ∈ A(〈Qj, si〉) and such that p̂ < p̂
′. Therefore, by virtue of

B being an abstraction of (6.1), ∀x ∈ Qj , it follows that p̂mode < p̂
′
mode, where p̂mode

and p̂′mode are a lower bound and an upper bound on the maximum probability that an in-

finite path of (6.1) with prefix π = x[0]x[1]x[2] ... x[k], x[k] =: x, such that the word

L(x[0])L(x[1])L(x[2]) ... L(x[k]) produces a run s[0]s[1]s[2] . . . s[k], with s[k] = si, sat-

isfies Ψ over all the policies of (6.1) choosing the modes represented by actions a and a′

respectively at path π. It follows that the mode represented by action a is suboptimal for all

x ∈ Qj with respect to automaton state si and the set of available modes. In particular, this

statement is true for all x ∈ Qk
j′ , k = 0, 1 . . . ,mj , since Qk

j′ ⊆ Qj , proving the proposition.
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Symmetric arguments prove this proposition in the case of minimization.

Furthermore, out of the remaining actions, only a subset of them may be retained for

the qualitative problems of constructing the largest and permanent components in P ′ using

Algorithms 7 to 10. Indeed, all actions in A(〈Qj, si〉) which were discarded during the

graph search for (WC)GL (or (LC)GL ) could not, under any policy and adversary, generate a

winning (or losing) component in B⊗A. Therefore, based on this fact, we can define the set

of actionsAqual(
〈
Qk
j′ , si

〉
) ⊆ A(

〈
Qk
j′ , si

〉
) used specifically for the component graph search

and containing all actions which, at state 〈Qj, si〉, allowed for the existence of (WC)GL (or

(LC)GL ) with respect to the partition P .

Proposition 4. Let B be a BMDP abstraction constructed from a partition P of the domain

D of (6.1), A be a DRA corresponding to specification Ψ, and P ′ be refinement of a

partition P . If state 〈Qj, si〉 is not a member of (WC)GL (respectively, (LC)GL ) in the

product BMDP B ⊗ A under any memoryless policy µ of B ⊗ A such that µ(〈Qj, si〉) =

a ∈ A(〈Qj, si〉), then, for all x ∈ Qj , the probability that an infinite path with prefix

π = x[0]x[1]x[2] ... x[k], x[k] =: x, such that the word L(x[0])L(x[1])L(x[2]) ... L(x[k])

produces a run s[0]s[1]s[2] . . . s[k], with s[k] = si in automaton A, satisfies Ψ is strictly

less than 1 (respectively, strictly greater than 0) for all policies of (6.1) choosing the mode

represented by action a at state x. In particular, this statement is true for all x ∈ Qk
j′ ,

k = 0, 1 . . . ,mj , where {Qk
j′}

mj
k=0, Qk

j′ ∈ P ′, is a partition of state Qj ∈ P .

Proof. The proof assumes the objective of synthesis to be the maximization of the prob-

ability of Ψ. If state 〈Qj, si〉 is not a member of (WC)GL under any memoryless policy µ

such that µ(〈Qj, si〉) = a, then it must be true that p̂ < 1, where p̂ is an upper bound on the

probability of 〈Qj, si〉 to reach an accepting BSCC in B⊗A under all memoryless policies

µ such that µ(〈Qj, si〉) = a. Therefore, by virtue of B being an abstraction of (6.1), it fol-

lows that the probability of an infinite path with prefix π = x[0]x[1]x[2] ... x[k], x[k] =: x,

such that the word L(x[0])L(x[1])L(x[2]) ... L(x[k]) produces a run s[0]s[1]s[2] . . . s[k],
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with s[k] = si in automaton A to satisfy Ψ is upper bounded by p̂ for all policies of (6.1)

choosing the mode represented by action a for the path π and is thus strictly less than 1. In

particular, this statement is true for all x ∈ Qk
j′ , k = 0, 1 . . . ,mj , since Qk

j′ ⊆ Qj , proving

the proposition. Symmetric arguments prove the proposition with respect to (LC)GL .

An analogous proposition can be established with respect to the greatest BSCCs (UA)GL

and (UN)GL in order to further reduce Aqual(
〈
Qk
j′ , si

〉
) for Algorithm 7 and 8 specifically.

We also remark that any state 〈Qj, si〉 belonging to the greatest permanent components

(WC)GP or (LC)GP of a BMDP abstraction B ⊗ A constructed from a partition P has to

belong the greatest permanent components with respect to a refined partition P ′ if the same

control action applied to all 〈Qj, si〉 ∈ (WC)GP or (LC)GP in the abstraction resulting from

P is applied to all their refinement states
〈
Qk
j′ , si

〉
.

Proposition 5. Let B be a BMDP abstraction constructed from a partition P of the do-

main D of (6.1), A be a DRA corresponding to specification Ψ, and P ′ be refinement of a

partition P . A policy µ of B induced by a policy in B ⊗ A generating the greatest perma-

nent winning component (WC)GP (respectively, the greatest permanent losing component

(LC)GP in the case of minimization) of B ⊗ A selects an optimal mode (with the appropri-

ate mode/action correspondence) for all x ∈ Qj such that 〈Qj, si〉 ∈ (WC)GP (respectively,

(LC)GP ) with respect to the automaton state si and the set of available modes, and, in par-

ticular, for all x ∈ Qk
j′ , k = 0, 1 . . . ,mj , where {Qk

j′}
mj
k=0, Qk

j′ ∈ P ′, is a partition of state

Qj ∈ P .

Proof. The proof assumes the objective of synthesis to be the maximization of the prob-

ability of Ψ. A policy (µ)⊗ generating (WC)GP in B ⊗ A ensures that P̂(〈Qj, si〉 |=

♦(WC)GP ) = 1 for all 〈Qj, si〉 ∈ (WC)GP . The policy µ in B induced by (µ)⊗ ap-

plied to all x ∈ Qj such that 〈Qj, si〉 ∈ (WC)GP when the automaton state is si with

the appropriate mode/action correspondence guarantees that, for all such x, the probabil-

ity of an infinite path with prefix π = x[0]x[1]x[2] ... x[k], x[k] =: x, such that the word
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L(x[0])L(x[1])L(x[2]) ... L(x[k]) produces a run s[0]s[1]s[2] . . . s[k], with s[k] = si in au-

tomatonA to satisfy Ψ is equal to 1, by virtue of B being an abstraction of (6.1). Therefore,

µ selects an optimal mode for all such x. In particular, this statement is true for all x ∈ Qk
j′ ,

k = 0, 1 . . . ,mj , since Qk
j′ ⊆ Qj , proving the proposition. Symmetric arguments prove the

proposition with respect to (LC)GP .

Therefore, by pruning all states which were a member of (WC)GP or (LC)GP in an ab-

straction constructed P , since an action engendering a fixed probability of reaching an

accepting BSCC equal to 1 or 0 is known for such states, we can reduce the effective set of

states for which a controller has to be synthesized in the abstraction arising from a refined

partition P ′ after each refinement step.

This iterative approach which removes suboptimal actions at each refinement step is

promising in terms of scalability compared to single gridding tools such as StocHy [9]

and FAUST2 [8] where all possible actions and states have to be considered on very fine

partition grids, potentially causing intractability issues when the action space is large. Here,

the action space to be analyzed is likely to shrink for a lot of states as the partition is

progressively rendered finer and finer.

Finally, additional crucial information can be exploited to tremendously reduce the

number of operations performed in a refined partition. For example, in the numerical ex-

amples presented further, all states which were shown to be reachable from a given state

Qj under some action in partition P are stored in memory, and only these states or their

subsets are inspected for computing the transitions from Qj in the abstraction arising from

a refined partition P ′. This is justified by the fact that, if T̂ (Q1, Q2) = 0 for any Q1 and Q2

in partition P , then it follows that T̂ (Qk
1, Q

k
2) = 0 for any Qk

1 ⊆ Q1 and Qk
2 ⊆ Q2. Finding

other structural properties which are transmitted from one partition to its refined versions

will be the focus of future research.

Our specification-guided, refinement-based synthesis procedure for finite-mode sys-

tems is summarized in Algorithm 12. We assume that states selected by the scoring scheme
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Algorithm 12 Controller Synthesis for Finite-mode Systems
1: Input: Partition P0 of domain D of (6.1), ω-regular property Ψ and corresponding

DRA Ψ, target controller precision εthr
2: Output: Maximizing (minimizing) switching policy µ̂lowΨ (µ̂upΨ ), final partition Pfin
3: Initialize: εmax := 1, i := 0
4: while εmax > εthr do
5: Compute the sets (WC)GP and (WC)GL

(
(LC)GP and (LC)GL

)
of the product BMDP

B ⊗A constructed from Pi using Algorithms 7 to 10
6: Compute the policies µ̂lowΨ and µ̂upΨ (µ̂upΨ and µ̂

low
Ψ ) of the BMDP B according to

Subsections 6.1.1
7: Compute εmax using (6.16)
8: if εmax > εthr then
9: Compute the best-case and worst-case product MC (Mu)

A
⊗ and (Ml)

A
⊗ as dis-

cussed in Subsection 6.1.3
10: Apply the scoring procedure in Algorithm 11 and refine all states above a user-

defined threshold score to produce Pi+1

11: Update the set of actions of all states in Pi+1 for the component search and reach-
ability problem as discussed in Subsection 6.1.3

12: i := i+ 1
13: end if
14: end while
15: return µ̂lowΨ (µ̂upΨ ), Pfin := Pi

are split in half along their greatest dimension. In this case, the worst-case growth of the

BDMP abstraction throughout this refinement-based synthesis procedure is O(|S| · |Act| ·

2|Q|) when every state in the partition is refined. However, the iterative removal of con-

sidered actions, coupled with the scoring algorithm targeting only specific regions of the

domain, mitigates this exponential growth in practice.

MONOTONICITY AND CONVERGENCE OF SYNTHESIS PROCEDURE

As pointed out in [17], it is possible to construct scenarios where, for two states Qi and Qj

in a given partition, and two states Q′j and Q′′j generated from a refinement of Qj , that is,

Qj = Q′j ∪ Q′′j , the inequality T̂ex(Qi, a,Qj) < T̂ex(Qi, a,Q
′
j) + T̂ex(Qi, a,Q

′′
j ) holds for

some mode a of system (6.1), where T̂ex(Qi, a,Qj) returns the least upper bound on the

probability for any continuous state x ∈ Qi to transition to a state in Qj under mode a. As

a consequence, because the current implementations of the graph search and reachability

123



maximization algorithms view the abstractions created from a partition and its refinements

as being independent from one another, our synthesis algorithm may assign a larger amount

of probability to the transition from state Qi to the total refined states constituting Qj in the

refined abstractions than was allowed in the coarser ones. This phenomenon may cause:

• The sets (LC)GL and (WC)GL to increase and the sets (LC)GP and (WC)GP to decrease

upon refinement. Specifically, given a state 〈Qj, si〉 of a product BMDP B ⊗ A

constructed from a partition P , and a state 〈Q′j, si〉 of a product BMDP B′ ⊗ A

constructed from a refinement P ′ of P , where Q′j ⊂ Qj , it is possible for 〈Q′j, si〉 to

belong to (LC)GL or (WC)GL in B′⊗A while 〈Qj, si〉 does not belong to these sets in

B ⊗A, and it is possible for 〈Qj, si〉 to belong to (LC)GP or (WC)GP in B ⊗A while

〈Q′j, si〉 does not belong to these sets in B′ ⊗A,

• The lower bound probabilities of reaching (WC)GP and (LC)GP to decrease from some

states of the product BMDP for a fixed policy, and the upper bound probability of

reaching (LC)GL and (WC)GL to increase from some states of the product BMDP for

a fixed policy.

Therefore, a finer partition could provide “less certainty” and result in the synthesis of a

switching policy yielding a smaller satisfaction lower bound for some states of the refined

BMDP abstraction. This means that a monotone decrease of the greatest suboptimality

factor εmax is not guaranteed under the proposed iterative refinement method. We address

the first bullet point by saving the states that belong to the aforementioned components

in the coarser abstraction before each refinement step and using the facts enunciated in

Propositions 4 and 5; however, the second bullet point affects the monotonicity of the value

iteration algorithm of [26] in its current state.

Nonetheless, under a continuity assumption on the dynamics and using adequate BMDP

abstraction techniques, it seems that having the size of all discrete states which are not in a

permanent component approach zero in the limit is sufficient for guaranteeing convergence
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of Algorithm 12, as seen in related case studies using iterative refinement [26], [17] and the

case study presented further. We conjecture that the scoring and refinement procedure ap-

plied in Algorithm 12 satisfies this condition and therefore ensures convergence; however,

we leave a thorough investigation and potential formal proof of these facts for future work.

Modifying the value iteration algorithm in [26] to exploit all information obtained from

coarser partitions and enforce monotonicity of the overall procedure is another immediate

research direction.

In brief, we introduce a quantitative measure of the suboptimality of the devised switch-

ing policy in a BMDP abstraction with respect to the original continuous abstracted states.

This suboptimality factor defined through (6.12), (6.15) and (6.16) corresponds to an upper

bound on the potential improvement any continuous state of the system could experience

in the probability of satisfying the specification by choosing a different control action from

the one prescribed by the computed policy. This factor is established in the BMDP abstrac-

tion through a comparison between the worst-case assignment of the probability intervals

under the computed policy and the best-case assignment of these probabilities under a pol-

icy assuming the most optimistic outcome of the transition intervals. Furthermore, these

worst-case and best-case scenarios are used to identify control actions that are certainly

suboptimal for a given state as formalized in Proposition 3. Lastly, in Algorithm 12, we

presented an iterative partition refinement scheme which selectively targets certain regions

of the state-space by comparing these two extreme scenarios to achieve a user-defined

precision threshold. Some structural properties transmitted from coarser abstractions to re-

fined ones are identified in Proposition 4 and 5, allowing to reduce the number of required

computations after each refinement step.
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6.2 Synthesis for Stochastic Systems with Continuous Set of Inputs

We next investigate stochastic systems with a continuous set of inputs U ⊆ R` of the form

x[k + 1] = F(x[k], u[k], w[k]) (6.17)

as defined in equation (3.2) in Section 3.1.

The difficulty of establishing policies aiming to maximize or minimize the probability

of satisfying a temporal property in (6.17) is highly dependent on the structure of the con-

sidered system. In this dissertation, we restrict our attention to systems which are affine in

input and disturbance, that is

x[k + 1] = F(x[k]) + u[k] + w[k] . (6.18)

As in the finite-mode case, we are interested in the design of a control policy that max-

imizes or minimizes the probability of satisfying an ω-regular property Ψ from the initial

states of system (6.18).

Problem 2: Given a system of the form (6.18), any initial state x ∈ D and an ω-regular

property Ψ, find control policies µ̂Ψ ∈ U and µ̂Ψ ∈ U that respectively minimize and max-

imize the probability of satisfying Ψ from x.

Solving this problem for an arbitrary property Ψ again involves a partition P of the

domain D from which a finite-state CIMC abstraction of the system is constructed and

analyzed. As formally defined in Definitions 6 and 7 in Subsection 3.4.2, CIMCs differ

from BMDP in that the set of available actions U of a CIMC is uncountably infinite. Then,

computing an optimal policy in a CIMC abstraction translates to computing a near-optimal

policy when the former is applied to the original abstracted system.
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Thus, for all possible finite paths in C, the goal is to find the input in the uncountable

set U that induces the most favorable IMC abstraction with respect to the desired objective.

Note that, unlike in a BMDP abstraction, this problem offers an infinite set of available

inputs to select from, ruling out the possibility of using an exhaustive search.

Subproblem 2.1: Given a system of the form (6.18), a partition P of its domain D,

a CIMC abstraction C of (6.18) arising from P , any initial state Qj ∈ Q of C and an

ω-regular property Ψ, compute the control policies µ̂upΨ ∈ UC and µ̂lowΨ ∈ UC that respec-

tively minimize the upper bound probability and maximize the lower bound probability of

satisfying Ψ in C, i.e.,

µ̂
up
Ψ = arg min

µ∈UC
P̂C[µ](Qj |= Ψ) (6.19)

µ̂lowΨ = arg max
µ∈UC

P̂C[µ](Qj |= Ψ) . (6.20)

As our approach relies on an analysis of finite-state abstractions, finer partitions of the

domain D generally yield more optimal control policies. Therefore, partition refinement

for the continuous input set case is discussed as well.

Subproblem 2.2: Given a system of the form (6.18) with a CIMC abstraction C arising

from a partition P of the domain D and an ω-regular property Ψ, refine the partition P of

D until the computed control policy reaches a user-defined threshold of optimality with re-

spect to the objective of minimizing or maximizing the probability of satisfying Ψ in (6.18).

We note that the results presented in the lemmas and theorems of Section 6.1 for BM-

PDs are not altered if the set of available actions is infinite and consequently apply iden-

tically to CIMCs. Therefore, our approach is similar to the synthesis method for BMDPs,
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that is, a DRA representation A of the specification of interest Ψ is computed, and the

problem is converted to a component search and a reachability maximization step in the

product CIMC C ⊗ A.

Definition 34 (Product Controlled Interval-valued Markov Chain). Let C = (Q,U, T̂ , T̂ ,

q0, Π, L) be a CIMC and A = (S, 2Π, δ, s0, Acc) be a DRA. The product C ⊗ A = (Q ×

S, U, T̂ ′, T̂ ′, q⊗0 , Acc′, L′) is a CIMC defined similarly to product BMDP with the difference

that a continuous set of inputs U ⊂ Rm replaces the finite set of actions Act.

However, because the number of “modes” of (6.18) corresponding to different choices

of input u can be viewed as being uncountably infinite, the techniques established in Sec-

tion 6.1, which rely on exhaustive searches over all possible actions at all states of the

abstraction, cannot be applied directly in this context. Instead, we need to consider the un-

derlying continuous dynamics of the abstracted system and exploit their relationship with

the bounds of the CIMC abstraction C.

To propose a solution to this problem, we first make the following additional assump-

tions on (6.18) which allow to derive closed-form expressions for the lower and upper

bound transition maps T̂ and T̂ as a function of the input parameter u.

Assumption 7. The partition P of the domain D of system (6.18) is rectangular (see Defi-

nition 11), that is, ∀Qj ∈ P , Qj = [aj1, b
j
1]× [aj2, b

j
2]× . . .× [ajn, b

j
n].

Assumption 8. For every discrete state Qj in the partition P of D, a rectangular over-

approximation of the one-step reachable set from Qj under F , denoted by RQj = [̂r
j
1, r̂

j
1]×

[̂r
j
2, r̂

j
2]× . . .× [̂r

j
n, r̂

j
n], is available.

Assumption 9. The random disturbance w[k] in (6.18) is of the form w[k] =
[
w1[k] w2[k]

. . . wn[k]
]T

, where each wi ∈ Wi ⊂ R has probability density function fwi(xi), Wi is

an interval, and the collection {wi}ni=1 is mutually independent. We denote by Fwi(x) =∫ x
−∞ fwi(σ)dσ the cumulative distribution function forwi. Moreover, the probability density

function fwi for each random variable wi is symmetric and unimodal with mode ci.
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Assumption 8 is relevant for wide classes of systems, such as mixed monotone systems as

seen in Chapter 4. We remark that, under this assumption, an over-approximation of the

reachable set of state Qj under F with an additive input u ∈ U is a shifted version of the

rectangular set RQj , denoted by Ru
Qj

.

Remark 1. Let RQj = [̂r
j
1, r̂

j
1] × [̂r

j
2, r̂

j
2] × . . . × [̂r

j
n, r̂

j
n] ⊇ {F(x) : x ∈ Qj} be an over-

approximation of the one-step reachable set from discrete state Qj ∈ P under the state

update mapF(x). Then,Ru
Qj

= [̂r
j
1+u1, r̂

j
1+u1]×[̂r

j
2+u2, r̂

j
2+u2]×. . .×[̂r

j
n+un, r̂

j
n+un] ⊇

{F (x)+u : x ∈ Qj} is an over-approximation of the one-step reachable set fromQj under

the state update map F(x) + u.

From Theorem 1 in Section 4.1, it follows that under Assumptions 7 to 9 and for a fixed

u, an upper bound on the probability of transition from state Qj to state Q` is computed

by placing the mode c of disturbance w, restricted to the reachable set Ru
Qj

, as close as

possible to the center of Q`. A lower bound on this probability is computed by placing the

mode of w as far as possible from the center of Q`.

Fact 5. For system (6.18) under Assumptions 7 to 9, an upper and lower bound on the prob-

ability of transition from stateQj to stateQ`,Qj, Q` ∈ P , under input u = [u1, u2, . . . , un] ∈

U , are given by

T̂
Qj

u−→Q`
=

n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,max) dxi, (6.21)

=
n∏
i=1

(
Fwi(b

`
i − sj→`i,max)− Fwi(a`i − sj→`i,max)

)
, (6.22)

T̂
Qj

u−→Q`
=

n∏
i=1

∫ b`i

a`i

fwi(xi − sj→`i,min) dxi (6.23)

=
n∏
i=1

(
Fwi(b

`
i − sj→`i,min)− Fwi(a`i − sj→`i,min)

)
(6.24)
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Qj RQj

uyuyuy

ux

Figure 6.1: 2D depiction of the synthesis problem for system (6.18). Every state Qj has
a reachable set RQj under F which is shifted when an input u is applied. The permanent
component construction problem requires positioning RQj such that all instances of noise
inside RQj ensures the satisfiability of the specification. If no input can achieve this, the
lower bound reachability maximization problem amounts to finding a position forRQj such
that the probability of reaching a permanent component is maximized in the worst instance
of noise inside RQj .

where Fwi is the cumulative distribution function for wi and

sj→`i,max =


s`i,max, if s`i,max ∈ [̂r

j
i + ui, r̂

j
i + ui]

r̂ji + ui, if s`i,max > r̂ji + ui

r̂
j
i + ui, if s`i,max < r̂

j
i + ui,

(6.25)

sj→`i,min =


r̂
j
i + ui, if sj→`i,max >

r̂
j
i+r̂

j
i

2
+ ui

r̂ji + ui, otherwise ,

(6.26)

with s`i,max =
a`i+b

`
i

2
− ci.

According to Remark 1, given a CIMC abstraction C of (6.18), for every state 〈Qj, si〉 of

the product CIMC C⊗A, the goal is to shift the reachable set RQj of Qj via the application

of an input u so as to maximize the lower bound probability of reaching a permanent

winning component from 〈Qj, si〉 (or a permanent losing component when the objective is

to minimize the probability of satisfying Ψ), as illustrated in Figure 6.1.

As in the finite-mode case, this is achieved by first solving a qualitative problem, which
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we call component construction problem, where the greatest permanent components of

C ⊗ A are created; then, a quantitative problem is solved where an input maximizing the

lower bound probability of reaching these components is computed for all states of C ⊗A.

In the following sections, we first provide a solution to Subproblem 2.1 and show that,

although the input space U of a CIMC C is uncountably infinite, the qualitative problem can

be converted to a finite-mode component search by carefully selecting a finite number of

inputs ofU , which are identified geometrically under the stated assumptions. Subsequently,

we derive an optimization problem for solving the quantitative problem and obtain the

desired policies for the CIMC abstraction C of the system. Finally, the refinement of the

partition P , from which the CIMC abstraction C arises, is addressed so as to reach a set

level of optimality for the control policies with respect to the abstracted system.

6.2.1 Components Construction

In this subsection, we discuss the problem of generating the greatest permanent components

(WC)GP and (LC)GP in a product CIMC C ⊗A when C abstracts (6.18) under Assumptions

7 to 9, that is, the transition bounds between the states of C are given as in Fact 5.

First, we remark that if all density functions fwi of the disturbance vector w[k] have

infinite support, the probability of making a transition between any two states of C has a

non-zero lower bound for all choices of input. In this case, the IMC abstraction induced

by some policy of C always induces MCs where all possible transitions have a non-zero

probability, greatly simplifying the component construction problem. Here, we remove

this restriction and alternatively assume that each wi has a probability density function

living on a finite interval support.

Assumption 10. All probability density functions fwi of the disturbance vector w[k] =[
w1[k] w2[k] . . . wn[k]

]T
of system (6.18) have a finite support, that isWi = [ŵi, ŵi] ⊂

R and fwi(xi) = 0 ∀xi 6∈ Wi.

Recall that, in an IMC, a transition between two states Qj and Qi can be classified into
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three different categories:

• An “off” transition if T̂ (Qj, Qi) = 0,

• An “on” transition if T̂ (Qj, Qi) > 0,

• A transition which could be either “on” or “off” depending on the assumed transition

values if T̂ (Qj, Qi) = 0 and T̂ (Qj, Qi) > 0.

The connectivity properties of an IMC I dictate which states belong to a permanent win-

ning and losing component or a largest winning and losing component in the product be-

tween I and an automaton A. Provided that the partition P of the system’s domain is

finite, the number of possible connectivity structures of an IMC abstraction arising from

this partition is finite as well. Therefore, in the case of a CIMC abstraction, the objective

is to find all connectivity structures which are achievable with the set of inputs U , choose

an input u ∈ U for all such structures and for all states Qj of C, and feed the resulting

finite-input BMDP B into the component search algorithms introduced in Section 6.1 in

order to compute the greatest permanent components of the product CIMC C ⊗ A, where

C is the CIMC abstraction of (6.18) with domain partition P . The same procedure can be

applied to find the greatest winning and losing components (WC)GL and (LC)GL of C ⊗ A.

Fact 6. The problem of computing the greatest permanent winning and losing components

(WC)GP and (LC)GP as well as the greatest winning and losing components (WC)GL and

(LC)GL of a product CIMC C ⊗ A can be converted to a component search in a product

BMDP.

Finding the appropriate actions for state Qj is done by partitioning the input space U

into regions such that the resulting IMCs upon application of an input in different regions

are qualitatively different, as illustrated in Figure 6.2. We achieve this by first finding the

subsets of U where, for each stateQi reachable byQj under some input, the transition from

Qj to Qi behaves differently (“on”, “off” or either), formalized below as trigger regions.
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Q1

RQj

Q2 Q3

U

Figure 6.2: Sketch example of the component construction problem. The reachable set
RQj of state Qj induces a partition of the input space U where each region produces a
qualitatively different set of transitions. Dashed lines separate regions of U where the
transition to some state is turned “on” or “off”, solid lines separate regions where the lower
bound probability of transition to some state is zero and non-zero. Blue lines correspond to
state Q1, green to Q2 and orange to Q3. Dark red regions highlight inputs causing several
transitions to have a zero lower bound and a non-zero upper bound; such regions may need
to be further partitioned.

Definition 35 (Trigger Region). For any states Qj and Qi of P , the trigger regions of Qj

with respect to Qi are subsets of the input space U defined as follows:

• The “off” trigger regionU f
Qj

(Qi) ⊆ U is the set of inputs such that T̂ (Qj, u,Qi) = 0,

∀u ∈ U f
Qj

(Qi),

• The “on” trigger regionU o
Qj

(Qi) ⊆ U is the set of inputs such that T̂ (Qj, u,Qi) > 0,

∀u ∈ U o
Qj

(Qi),

• The “undecided” trigger region U ?
Qj

(Qi) ⊆ U is the set of inputs such that T̂ (Qj, u,

Qi) = 0 and T̂ (Qj, u,Qi) > 0, ∀u ∈ U ?
Qj

(Qi).

Note that some of these triggers regions may evaluate to the empty set for some choices

of partition P . In addition, the union of all trigger regions of state Qj with respect to

state Qi is equal to the input space U . For system (6.18) with Assumptions 7 to 10, these

trigger regions for state Qj are geometrically identifiable due to the structure of both the

disturbance and the over-approximation of the one-step reachable state of Qj highlighted

in Remark 1. The “off” trigger region corresponds to shifted reachable sets of Qj where
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disturbancew cannot reachQi, the “on” trigger region corresponds to shifted reachable sets

where any position of the disturbance results in an overlap with Qi, and the “undecided”

trigger region corresponds to shifted reachable sets where some positions of the disturbance

cause an overlap with Qi and some do not.

Proposition 6. The trigger regions of state Qj ∈ P with respect to state Qi ∈ P and input

space U under dynamics (6.18) with partition P and satisfying Assumptions 7 to 10 are

given by

U f
Qj

(Qi) = {u ∈ Rn : ∃k r̂jk + uk + ŵk ≤ aik (6.27)

or r̂
j
k + uk + ŵk ≥ bik} ∩ U ,

U o
Qj

(Qi) =
{
u ∈ Rn : ∀k

( r̂jk + r̂
j
k

2
+ uk ≥

aik + bik
2

− ci (6.28)

and r̂jk + uk + ŵk ≤ bik

)
or
( r̂jk + r̂

j
k

2
+ uk ≤

aik + bik
2

− ci

and r̂
j
k + uk + ŵk ≥ aik

)}
∩ U ,

U ?
Qj

(Qi) =
(
Rn \ ( U o

Qj
(Qi) ∪ U f

Qj
(Qi) )

)
∩ U . (6.29)

It follows that different overlaps of the trigger regions of state Qj induce qualitatively

different profiles for the outgoing transitions of Qj .

Definition 36 (Trigger Regions Overlap). A Trigger Regions Overlap H ⊆ U of state

Qj ∈ P is a subset of the input space U such that

H =
⋂

i∈{1,2,...,|P |}
U ti
Qj

(Qi) ,

where ti ∈ {f, o, ?}, ∀i.

It should be noticed that an overlap of two or more undecided trigger regions could

produce qualitatively different transitions for several subset of its inputs and have to be

further examined, as demonstrated in the following example.
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Example 5. Consider the following two transition profiles from state Q1 to three states Q2,

Q3 and Q4:

• T (Q1, Q2) = [0, 0.5], T (Q1, Q3) = [0, 0.3] and T (Q1, Q4) = [0.2, 0.8],

• T (Q1, Q2) = [0, 0.4], T (Q1, Q3) = [0, 0.6] and T (Q1, Q4) = [0.1, 1].

Although all three transitions are in the same categories in both cases, namely, undecided,

the two profiles are qualitatively different. In the first case, no probability assignment can

simultaneously turn off the transitions from Q1 to Q2 and from Q1 to Q3; however, in the

second case, it is possible to turn off these two transitions at the same time by assigning a

probability of 1 to the transition from Q1 to Q4.

For all states Qj ∈ P , we denote the set of overlaps with 2 or more undecided trigger

regions byH?
Qj

, and all other overlaps byHS
Qj

.

In summary, we remark that the components construction problem in a product CIMC

C ⊗ A is solved by converting it to a component search in a finite-action product BMDP

B ⊗ A. The construction of B is achieved by partitioning the input space of all states Qj

of C into trigger region overlaps yielding qualitatively different transition profiles, and by

choosing one control action per overlap inHS
Qj

, and possibly more than one control actions

per overlap inH?
Qj

. Indeed, we observed in Example 5 that, for every overlap in the setH?
Qj

of a state Qj , we have to distinguish the sets of inputs allowing for different combinations

of inactive uncertain transitions. We show that the overlaps are geometrically identified for

system (6.18) under Assumption 7 to 10.

The input selection procedure is detailed in Algorithm 13. This algorithm chooses the

minimum energy input in all overlaps inHS
Qj

and performs a search over from the overlaps

in H?
Qj

in order to find control inputs allowing for different combinations of inactive un-

certain transitions. We emphasize that the optimization problem on line 20 is non-convex

under our system assumptions and is in general hard to solve. Note that Algorithm 13

in its current state may select more actions than needed from the overlaps in H?
Qj

. This
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Algorithm 13 Input Selection for State Qj

1: Input: Sets of overlapsHS
Qj

andH?
Qj

of state Qj

2: Output: Finite set of actions A(Qj)
3: Initialize: A(Qj) := ∅
4: forHi ∈ HS

Qj
do

5: u∗ := minu∈Hi ||u||22
6: A(Qj)← u∗

7: end for
8: forHi ∈ H?

Qj
do

9: L := ∅, O := ∅, Y := ∅
10: For all states Qk such that U o

Qk
∩Hi 6= ∅, O ← Qk

11: For all states Qk such that U ?
Qk
∩Hi 6= ∅, Y ← Qk

12: L← Y
13: for S ∈ L do
14: for u ∈ A(Qj) do
15: Check if

∑
q∈O T̂ (Qj, u, q) +

∑
q∈Y \S T̂ (Qj, u, q) ≥ 1

16: end for
17: if Feasible for some u ∈ A(QJ) then
18: Continue for-loop (Line 13)
19: end if
20: Solve u∗ = minu∈Hi ||u||22 s.t.

∑
q∈O T̂ (Qj, u, q) +

∑
q∈Y \S T̂ (Qj, u, q) ≥ 1

21: if Feasible then
22: A(Qj)← u∗

23: else
24: Add the

( |S|
|S|−1

)
combinations of |S| − 1 states of S (which are not already in L

and for which no superset of states previously returned a feasible solution) to L
25: end if
26: end for
27: end for
28: return A(Qj)

is due to the fact that our procedure is likely to choose different actions for two distinct

combinations of achievable “off” uncertain transitions S and S ′, where none of these com-

binations is a strict subset of the other, while a single action may be able to accommodate

these two combinations at once. A consequence is that the resulting BMDP B may have a

larger action space than necessary. This could be addressed by considering multiple such

combinations at once in the constraints on line 20, at the cost of having to potentially solve

a greater number of optimization problems.

Algorithm 14 summarizes the component construction procedure and outputs the great-
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Algorithm 14 Component Construction Method for (6.18)
1: Input: Domain Partition P , input Space U , DRA A of specification Ψ
2: Output: Greatest Permanent Components (WC)GP , (LC)GP and (WC)GL , (LC)GL of

product CIMC C ⊗ A constructed from P
3: Create a BMDP B with the same states as P and with each action set A(Qj) initialized

to the empty set
4: Compute the overlap sets for all Qj ∈ P using Proposition 6 and according to Defini-

tion 36
5: for Qj ∈ P do
6: Compute the set of actions A(Qj) using Algorithm 13 as well as their corresponding

transition profiles
7: end for
8: return (WC)GP , (LC)GP (WC)GL and (LC)GL and their corresponding control actions

by applying the component search in Algorithm 7, 8, 9 and 10 to B ⊗A

est permanent winning and losing component (WC)GP and (LC)GP of a product CIMC

C ⊗ A, as well as its greatest winning and losing component (WC)GL and (LC)GL , where C

serves as a CIMC abstraction of system (6.18).

6.2.2 Reachability Maximization

To devise an optimal control policy for system (6.18) abstracted by a CIMC C, we now have

to find the control inputs in the continuous set U maximizing the lower bound probability

of reaching (WC)GP or (LC)GP in a product CIMC according to Theorem 7.

Our approach is inspired from the lower bound reachability maximization algorithm for

BMDPs in [26]. In this algorithm, the procedure for computing a control policy maximizing

the lower bound probability of reaching a target set of states G in a finite-action BMDP is

based on value iteration and is as follows:

1. Initialize a probability vector W 0 = [p0
1, p

0
2, . . . , p

0
m] where p0

i = 1 if pi ∈ G and 0

otherwise.

2. At each time step k, construct an ascending ordering Ok = q1q2 . . . qm, qi ∈ Q, of

the states such that pk1 ≤ pk2 ≤ . . . ≤ pkm.

3. For each state Qj and for each action in A(Qj), allocate as much probability mass zj1
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as possible to state q1, then allocate as much probability mass zj2 as possible to state

q2 with the amount of probability left, etc., in order to construct the worst possible

assignment of the probabilities allowed by the IMC under each action with respect to

the objective of reaching G.

4. For each state, pick the action from A(Qj) that yields the highest worst-case proba-

bility pk+1
i =

∑m
j=1 p

k
j z

i
j of reaching G.

5. Update the probability vector W k+1 such that pk+1
i =

∑m
j=1 p

k
j z

i
j , with pk+1

i being

the computed probability under the chosen action at state Qi, and construct a new or-

dering Ok+1. Repeat this process until vector W converges [63] and the last selected

actions are the lower bound reachability maximizing actions for all states.

We propose to follow the same procedure for computing lower bound maximizing poli-

cies in the product CIMC C ⊗ A. However, while finite-mode systems rely on exhaustive

search over every possible action to choose the most optimal one at each step k of the

above algorithm, systems with a continuous set of inputs U require solving an optimization

problem at Step 3 of the above algorithm to find the reachability maximizing input u for all

states 〈Qj, si〉 of the product CIMC C ⊗ A.

We first note that the transition bound functions in C⊗A are determined by the transition

bound functions in C, as seen in the definition of a product CIMC. We formulate an opti-

mization problem that outputs the best action u ∈ U for state 〈Qj, si〉 at some time step k

of the aforementioned algorithm. Consider the set of states {q`}m`=1 which are reachable by

〈Qj, si〉 under some input, that is ∃u ∈ U such that T̂ (〈Qj, si〉 , u, q`) > 0, i = 1, 2, . . . ,m.

We denote the probability of reaching the desired component from state q` at the current

time step of the algorithm by p`. Consider an ascending ordering O = q1q2q3 . . . qm of the

states reachable by 〈Qj, si〉 such that p1 ≤ p2 ≤ . . . ≤ pm. Step 3 and 4 of the reachability

maximization algorithm for the continuous input case are formulated as the optimization

program
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max
u∈U

m∑
`=1

p`z` (6.30)

s.t. z` = min

{
T̂
(
〈Qj, si〉 , u, q`

)
, 1−

`−1∑
k=1

zk −
m∑

k=`+1

T̂
(
〈Qj, si〉 , u, qk

)}
,

` = 1, 2, 3, . . . ,m ,

where the upper and lower bound terms are given by (6.21) and (6.23) for the specific case

of system (6.18) under Assumption 7 to 9, rendering this problem non-convex in some

instances. The constraints ensure that, for a given input u, each state in O is allocated

either its upper bound probability of transition or the maximum probability mass allowed

by the lower bound transition probability of the following states in O and the probability

mass distributed to the preceding states in O. In the case study section of this manuscript,

we tackle optimization problem (6.30) using numerical heuristics.

A more thorough analysis of this optimization problem as well as the implementation of

an efficient solver, which could exploit spatial state correlation for enhanced computations

and potentially ensuring global optimality, is left for future research.

Unlike in the finite-mode case, this value iteration procedure for continuous input sets

is not guaranteed to converge in a finite number of steps. Therefore, we suggest computing

the maximum change in the reachability probability among all states of C ⊗A at each step

of the algorithm, and terminating the procedure once this change reaches a user-defined

convergence threshold.

6.2.3 Refinement of the Domain Partition

Finally, we discuss partition refinement for system (6.18) to address Subproblem 2.2.

The optimality of the controller designed in the CIMC abstraction C with respect to

continuous states of (6.18) can be assessed as in Section 6.1 for the finite-mode system case.
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In light of Subsection 6.1.3, we need to construct a best-case and a worst-case product MC

induced by the product CIMC C ⊗A to determine the suboptimality factor of each state of

C ⊗A. In particular, when devising a maximizing control policy, the best-case MC (MA
⊗)u

is constructed by solving an upper bound reachability maximization problem on the greatest

winning component (WC)GL of the product CIMC C ⊗A, where C is the CIMC abstraction

of (6.18) under the current partition P . When devising a minimizing control policy, the

worst-case MC (MA
⊗)l is constructed by solving an upper bound reachability maximization

problem on the greatest losing component (LC)GL of the product CIMC C ⊗ A, where C is

the CIMC abstraction of (6.18). These upper bound reachability maximization problems

are addressed using a similar procedure as in Subsection 6.2.2, with the difference that the

ordering O = q1q2q3 . . . qm in the optimization program (6.30) is now descending with

respect to the probability of reaching the target set G, that is p1 ≥ p2 ≥ . . . ≥ pm.

Propositions 3 to 5, which discuss some properties that are passed from a partition to its

refinements for the finite-mode case, are also valid in this continuous input framework. In

particular, as in the finite-mode case, subsets of the input space U which can be shown to be

certainly suboptimal may be removed. To find such subsets, we suggest building a partition

U(〈Qj, si〉) = {Un(〈Qj, si〉)}kn=1 of the input space for all states 〈Qj, si〉 of C ⊗ A. Then,

for all subsets Un, an upper bound maximization step on (WC)GL (respectively, (LC)GL ) is

conducted; subsets yielding an upper bound on the maximum upper bound probability of

reaching an accepting BSCC from〈Qj, si〉which is lower than the lower bound produced by

(µ̂lowΨ )⊗(〈Qj, si〉) (respectively, a lower bound on the minimum lower bound probability of

reaching an accepting BSCC from〈Qj, si〉 which is greater than the upper bound produced

by (µ̂
up
Ψ )⊗(〈Qj, si〉) are suboptimal with respect to the entire input set of 〈Qj, si〉 and are

removed from U(〈Qj, si〉), as depicted in Figure 6.3.

140



U Uupdated

Maximize

Upper Bound

of (WC)G
L

(or (LC)G
L )

Figure 6.3: Sketch of an input space update before refinement of the domain partition. The

original input space U of the considered state is gridded and the upper bound probability

of reaching (WC)GL (or (LC)GL ) is maximized for all subsets of the grid. The subsets

producing suboptimal bounds are shown in gray and are discarded.

Finally, once (MA
⊗)u and (MA

⊗)l are generated and all input sets are updated, the scor-

ing and refinement procedure are performed identical to the finite-mode case.

The controller synthesis algorithm for continuous input systems is summarized in Al-

gorithm 15.

Future improvements of this procedure could aim to better exploit the common struc-

tures of the original CIMC abstraction and its refined versions so as to limit the state-space

explosion phenomenon. For example, by saving which combinations of “off” states are

achievable in the input selection scheme in Algorithm 13 for overlaps with 2 or more un-

decided trigger regions, one could drastically reduce the number of state combinations

considered in the refined partitions and mitigate the combinatorial blowup affecting our

current implementation.
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Algorithm 15 Controller Synthesis for Continuous Input Systems
1: Input: Partition P0 of domain D of (6.1), ω-regular property Ψ and corresponding

DRA A, target controller precision εthr
2: Output: Maximizing (minimizing) switching policy µ̂lowΨ (µ̂upΨ ), final partition Pfin
3: Initialize: εmax := 1, i := 0
4: while εmax > εthr do
5: Compute the sets (WC)GP and (WC)GL ((LC)GP and (LC)GL ) of the product CIMC

C ⊗ A constructed from Pi using Algorithm 14
6: Compute the policies µ̂lowΨ and µ̂upΨ (µ̂upΨ and µ̂lowΨ ) of the CIMC C according to Sub-

section 6.2.2
7: Compute εmax using (6.16)
8: if εmax > εthr then
9: Compute the best-case and worst-case product MC (MA

⊗)u and (MA
⊗)l as dis-

cussed in Subsection 6.2.3.
10: Construct a partition {Un(〈Qj, sm〉)}kn=1 of the input space U(〈Qj, sm〉) of all

states 〈Qj, sm〉 of the product CIMC C ⊗ A
11: for Un(〈Qj, sm〉) ∈ U(〈Qj, sm〉) do
12: Maximize the upper bound probability of ♦(WC)GL (♦(LC)GL ) from 〈Qj, sm〉

with the set of inputs Un(〈Qj, sm〉)
13: end for
14: Apply the scoring procedure in Algorithm 11 and refine all states in Pi with a

score above a user-defined threshold to produce Pi+1

15: Update the set of inputs of all states in the product CIMC C ⊗A constructed from
Pi+1 as discussed in Subsection 6.2.3.

16: i := i+ 1
17: end if
18: end while
19: return µ̂lowΨ (µ̂upΨ ), Pfin := Pi

142



CHAPTER 7

CASE STUDIES

In this chapter, we put the theoretical contributions established in Chapter 4, 5 and 6 into

practical use through several case studies. In Section 7.1, we perform verification on a

linear mixed monotone system with additive disturbance against two “simple” Probabilis-

tic CTL (PCTL) specifications and compare the performance of our abstraction technique

derived in Section 4.1 with previous works. In Section 7.2, verification against a PCTL

specification is applied to a 3-dimensional model of a merging traffic junction, which is

known to be mixed monotone, with a nonsymmetric additive disturbance. In Section 7.3,

verification of a nonlinear mixed monotone system with additive disturbance is conducted

for two probabilistic LTL specifications using the verification algorithm detailed in Chapter

5. In Section 7.4, we demonstrate the same verification algorithm on a stochastic polyno-

mial system for which the abstraction method derived in Section 4.2 is applied. A synthesis

example using the theory developed in Section 6.1 is presented as well. In Section 7.5,

we apply the synthesis algorithms presented in Section 6.1 and Section 6.2 to a nonlinear

mixed monotone system and demonstrate our refinement strategy to achieve a desired level

of controller optimality. Conclusions regarding the strengths and potential improvements

of our techniques are drawn from these illustrative examples.

We use Python 2.7 as our programming language for all case studies. The numerical ex-

amples shown in Section 7.1 to Section 7.4 were conducted on a OS X computer endowed

with 8 GB of memory and a 3.3 GHz Intel Core i7 processor, while all computations in

Section 7.5 were conducted on the Partnership for an Advanced Computing Environment

(PACE) Georgia Tech cluster [64] which offered 120 GB of memory. Moreover, the exam-

ples in Subsection 7.5.1 were performed on a single core, while those in Subsection 7.5.2

were distributed over 4 cores.
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7.1 Verification of Linear Mixed Monotone System with Probabilistic CTL Specifi-

cations

We investigate two case studies proposed in [26, Section VIII-A]. This section employs the

IMC abstraction technique from Section 4.1, but uses the verification technique from [26]

for Probabilistic CTL formulas and the naive partition refinement method in [14] to better

assess the effect of the abstraction procedure on the runtimes. The refinement method in

[14] systematically refines all undecided states in Q? and only looks at one-step transitions

to assign a refinement score to each state in the partition instead of inspecting entire paths

as done in Section 5.2. Selected states for refinement are split into two rectangles along

their largest dimension to keep the new partition rectangular. In addition, the termination

criterion for refinement in these examples, denoted by Id, is the maximum size of the

interval of satisfaction of all states in Q?, with respect to the properties of interest.

Consider the system

x[k + 1] = Ax[k] + w[k] (7.1)

with w[k] ∈ W where

A =

0.4 0.1

0 0.5

 ,
W =

x ∈ R2 :

−0.4

−0.4

 ≤ x ≤

0.4

0.4


 .

In addition, w is drawn from the truncated Normal distribution fw given by
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fw(y) =


N (y,0,0.09I)∫

W N (z,0,0.09I)dz
if y ∈ W

0 Otherwise

where I is the identity matrix andN (·, 0, 0.09I) is the zero-mean Normal distribution with

covariance matrix 0.09I . We note that this system is monotone—a special case of mixed

monotone systems—and the abstraction procedure derived in Section 4.1 can be applied to

it. In particular, we take g(x, y) = Ax as the decomposition function for F(x) = Ax.

Our goal is to find a set of initial states satisfying some specification written as a Prob-

abilistic CTL (PCTL) formula, and, following [26], we consider the two PCTL formulas

φ1 = P<0.05[©Obs] ,

φ2 = P≥0.90[¬Obs U Des] ,

where ¬ denotes the ‘Not’ operator, © is the “Next” operator, U is the “Until” operator,

Obs ⊂ R2 is the union of four rectangular “obstacle” regions, and Des ⊂ R2 is the union

of two “destination” regions as shown in Figure 7.1. Thus, φ1 states “the probability that

the state of the system in the next time step is within the obstacle region is less than 0.05,”

and φ2 states “the probability that the system remains outside of the obstacle region until

reaching the destination region is greater than or equal to 0.90”.

For both specifications, we initially perform model checking following the PCTL veri-

fication technique in [26] on an initial coarse partition P shown in Figure 7.1. The results

for this step are displayed in the top plots of Figure 7.2 and Figure 7.3. Next, we execute

the naive refinement algorithm of [14] on P until the interval of satisfaction for Ψi for all

Q? states has size smaller than Id = 0.05 where Ψ1 = ©Obs and Ψ2 = ¬Obs U Des

in accordance with φ1 and φ2; recall that Q? states are those partition regions for which

we cannot conclude with certainty whether the specification is satisfied or not because the
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Figure 7.1: Initial partition P of the state space displaying the Obstacle (Obs) and Desti-
nation (Des) regions for the case studies in Section 7.1.

interval of satisfaction contains psat (psat = 0.05 in the case of φ1 and psat = 0.90 in the

case of φ2).

The total computation times for the initial abstraction generation, verification and re-

finement all together were 1.14 and 14.3 seconds for φ1 and φ2 respectively. In [26], the

authors employed a sampling-based technique to construct an IMC abstraction, requiring

multiple expensive integral evaluations, and achieved the same level of precision in 4.8 and

51.4 hours respectively. Moreover, our refinement algorithm generated 210 states for φ1

and 452 states for φ2, while approximately twice as many states were produced in [26] for

the same level of precision. These computational improvements were due to both a more

efficient abstraction generation and a better targeted refinement.

In addition, we increase the precision of our results by a factor of 50 for the specification

φ1 by reducing the size of Id to 0.001. For specification φ2, we enhance the precision by

a factor of 10 and choose Id = 0.005. We show the final model-checked state-spaces in

Figure 7.2 (Bottom) and Figure 7.3 (Bottom). The algorithm terminated in 33.15 minutes

and produced 10388 states for the specification φ1, while verifying against φ2 took 15.5

hours to run and generated 15329 states.

We remark that our abstraction method is particularly powerful when the disturbance
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takes values from a compact set. Via the over-approximation of the reachable set, we

can quickly check whether the affine disturbance can attain a given state or not, avoiding

unnecessary integral evaluations.
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Verifying φ1 with Initial Partition
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Verifying φ1 after Refinement

Figure 7.2: Results for specification φ1 with the initial partition (Top) and the final partition

after refinement when Id = 0.001 (Bottom). Red states do not satisfy the specification,

green states satisfy the specification, while yellow states are undecided.
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Figure 7.3: Results for specification φ2 with the initial partition (Top) and the final partition

after refinement when Id = 0.005 (Bottom). Red states do not satisfy the specification,

green states satisfy the specification, while yellow states are undecided.

7.2 Verification of Merging Traffic Junction with Nonsymmetric Disturbance

We now present a 3-dimensional case study for a model of a merging traffic junction as dis-

played in Figure 7.4. This example demonstrates the practical relevance of the derivations

in Section 4.1. Traffic flow results in mixed monotone dynamics [65], and new vehicles

entering traffic networks can readily be interpreted as affine disturbances. The following

monotone discrete-time system describes the time evolution of the junction in Figure 7.4
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Figure 7.4: Sketch of a merging junction consisting of three links.

and is a slight modification of the model contained in [66]:

x1[k + 1] = x1[k]−min

{
D(x1[k]),

α

β
S(x3[k])

}
+ w1 (7.2)

x2[k + 1] = x2[k]−min{D(x2[k]), ᾱS(x3[k]), u[k]}+ w2

x3[k + 1] = x3[k] + min{βD(x1[k]), αS(x3[k])}

+ min{D(x2[k]), ᾱS(x3[k]), u[k]} −D(x3[k])− w3

where x1[k], x2[k], x3[k] are the queue lengths of links 1, 2 and 3 respectively at time

k; D(x) = min{c, vx} is a traffic demand function with c and v respectively denoting

the capacity and free-flow speed; S(x) = w̄(x̄ − x) is a traffic supply function where

w̄ is a coefficient relating the available space on a given link and the supply on that link

and x̄ stands for the jam occupancy; α and ᾱ denote supply weights for link 1 and 2 and

respectively; β determines the fraction of vehicles leaving link 1 to enter link 3 at each time

step; u[k] is a parameter representing the maximum number of cars allowed to drive from

link 2 to link 3 in one time step; w1 andw2 are disturbances corresponding to a random flow

of cars entering the system through link 1 and 2 at each time step, while w3 is a random

number of cars exiting the system along link 3.

In reality, the arrival rates at Link 1 and 2, as well as the departure rate at Link 3,

can only take integer values and are appropriately modeled by Poisson distributions. Al-

though unimodal, Poisson distributions are not symmetric and the techniques developed

in Theorem 1 do not directly apply. We thus choose to approximate each wi by a uni-

modal, symmetric distribution vi and use the facts highlighted in Theorem 2. We exploit

the property that, for large λ, Poisson(λ) ' N (λ, λ). We denote by λi the mean arrival
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(or departure) rate of Link i and make the following approximations:

w1 ∼ Poisson(λ1 = 100) ' v1 ∼ N (100, 100)

w2 ∼ Poisson(λ2 = 100) ' v2 ∼ N (100, 100)

w3 ∼ Poisson(λ3 = 60) ' v3 ∼ N (60, 60).

We determine that δ1 = 0.000895, δ2 = 0.000895 and δ3 = 0.0015 satisfies δi ≥ max
xi∈R
|vi(x)−

wi(x)|.

The initial partition P is shown in Figure 7.5 (Left). We aim to model-check system (7.2)

against the specification

φ = P≥0.90[true U≤3 Des]

where Des = {x ∈ R3 : 0 ≤ xi < 400 for i = 1, 2, 3} is the set of states that have all three

queue lengths strictly smaller than 400. We interpret φ as “What are the set of states that

reach a queue length shorter than 400 for all 3 links, within 3 time steps, with probability

greater than or equal to 0.90?”.

We evaluate φ over the initial partition P using these approximations. The refinement

strategy is the same as in the case study in Section 7.1. We stop the refinement process after

the volume of the uncertain states Q? falls below 5 percent. The runtime was 15 hours and

35 minutes. The final partition is shown in Figure 7.5 (Right) and contains 16403 states.

Green-colored states are certain to satisfy φ, red-colored stats are certain to not satisfy φ,

and yellow-colored may or may not satisfy φ.
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Parameter Value

c 100

v 0.5

α 1

ᾱ 5

β 0.75

x̄ 800

w̄ 0.5/3

u[k] = u 60

Table 7.1: Parameter values for system (7.2)
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Figure 7.5: The initial partition P of the state-space for system (7.2) (Left) and the re-

sults of verification against φ after refinement (Right). Refinement was interrupted when

the volume of Q? states reached 5 percent of the total state-space volume. Red states do

not satisfy the specification, green states satisfy the specification, while yellow states are

undecided.
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7.3 Verification of Nonlinear Mixed Monotone System with LTL Specifications

We now apply our verification and refinement procedure presented in Chapter 5 in a case

study. The code producing this case study is found at https://github.gatech.

edu/factslab/TacVerificationAlgorithm. We consider a nonlinear, mono-

tone bistable switch system with additive disturbance and governing equations

x1[k + 1] = x1[k] + ( −ax1[k] + x2[k] ) ·∆T + w1

x2[k + 1] = x2[k] +
( (x1[k])2

(x1[k])2 + 1
− bx2[k]

)
·∆T + w2 ,

(7.3)

where we assume w1 and w2 to be independent truncated Gaussian random variables sam-

pled at each time step. w1 ∼ N (µ = −0.3;σ2 = 0.1) and is truncated on [−0.4,−0.2]; w2

is identical. To keep the system self-contained in D, we assume that any time the distur-

bance would push the trajectory outside of D, it is actually maintained on the boundary of

D. This assumption reflects the behavior of systems with bounded capacity where the state

variables are restricted to some intervals. We choose a = 1.3, b = 0.25 and ∆T = 0.05.

The deterministic piece of the system has two stable equilibria at (0, 0) and (2.71, 3.52) and

one unstable equilibrium. We seek to verify (7.3) on a domain D, with initial rectangular

partition P depicted in Figure 7.6 (Top) and Figure 7.7 (Top), against the probabilistic LTL

specifications

φ1 = P≥0.80[�((¬A ∧©A)→ (©© A ∧©©©A))] , (7.4)

φ2 = P≤0.90[(♦�A→ ♦B) ∧ (♦C → �¬B)] . (7.5)

Specification φ1 translates in natural language to “trajectories that have more than a 80%

chance of remaining in an A state for at least 2 more time steps when entering an A state”.

Specification φ2 translates to “trajectories that have less than a 90% chance of reaching a

B state if it eventually always remain in A, and of always staying outside of B if it reaches
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Figure 7.6: Initial verification of a partition of domain D for specification φ1 (Top), and
verification of final partition (Bottom). States satisfying φ1 are in green, states violating φ1

are in red, undecided states are yellow.

a C state”. Their Rabin automaton representations contain 5 and 7 states respectively.

We perform verification with stopping criterion Vstop = 0.13 for φ1 and Vstop = 0.1 for

φ2. To construct IMC abstractions of this system, we use the technique shown in Section

4.1. Graph search is based on Section 5.1 and we compute reachability bounds applying the

algorithm in [26]. Upon verification, we select states with an uncertainty score as defined in

Section 5.2 that is greater than 10% of the highest score for refinement. Selected states are

split into two rectangles along their largest dimension to keep the new partition rectangular.

For φ1, the refinement algorithm produced 3531 states and terminated in 1h56min after

12 refinement steps. For φ2, it generated 4845 states and terminated in 3h15min after 13
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Figure 7.7: Initial verification of a partition of domain D for specification φ2 (Top), and
verification of final partition (Bottom). States satisfying φ2 are in green, states violating φ2

are in red, undecided states are yellow.

steps. The final partitions are shown in Figure 7.6 (Bottom) and Figure 7.7 (Bottom). Our

new method outperforms the algorithm we propose in [14] which refines all undecided

states at each refinement step: for instance, for φ1, [14] achieves V? = 0.2137 in 2 hours

58 min and 11 steps. Our algorithm non-uniformly refined the initial partition across the

state-space. In the first example, the boundary between regions which can and cannot reach

an A state are heavily targeted, as well as boundaries between regions which could keep

the system in an A state for one and two time steps. In the second example, the edges of

a region leading to A via B are refined the most, as this region is critical with respect to

φ2. Although these two examples share the same dynamics, our algorithm generates very
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different partitions depending on the specification. Therefore, specification-free gridding

approaches as in FAUST2 [8] are likely to perform conservatively for these examples.

7.4 Verification and Synthesis of Polynomial System with LTL Specification

The code used to generate the examples in this section is found at https://github.

com/gtfactslab/ACCBarrier.

We consider the 2-dimensional polynomial system

x1[k + 1] = 6.0x3
1x2

x2[k + 1] = 0.3x1x2 + w ,

(7.6)

with domain D = [−0.5, 0.5] × [−0.5, 0.5] and Gaussian additive noise w ∼ N (µ =

0, σ = 0.18). The probability of transition outside of D is negligible, thus we ignore the

possibility of transitioning outside of D in order to keep the system self-contained1. We

perform verification for these dynamics against the probabilistic specification

φ = P≥0.82[�¬B ∧ (♦C ∨©A ∨©© A)] ,

where the specification inside the probabilistic operator translates to “Never reach aB state

and either eventually reach a C state or reach an A state in 2 time steps”. The partition of

the domainD is assumed to be as in Figure 7.8 and contains 160 states. TheA states are lo-

cated in [−0.25, 0]× [0.25, 0.5]; the B states in [−0.5,−0.25]× [0.25, 0.5] and [0.25, 0.5]×

[−0.5,−0.25]; the C states in [−0.5,−0.25] × [0, 0.25] and [0.25, 0.5] × [−0.25, 0] . We

construct an IMC abstraction of system (7.6) using the procedure presented in Section 4.2.

Given an IMC abstraction, formal techniques developed in Chapter 5 are applicable for ver-

ification with respect to φ. Note that no SOS barrier function can ensure a transition upper

bound of exactly zero even if some states in the partition are unreachable from one other.

1Alternatively, a “sink” state can be used for all states outside the domain of interest D.
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Figure 7.8: Verification of system (7.6) against specification φ on a 160-state partition of
D. States in green satisfy φ, states in red violate φ, and states in yellow are undecided.

To address this issue, we apply a pre-processing step where states that are unreachable

from one another have their upper bound transition probability set to 0. These transitions

are identified by computing the range of reachable x1 values for each discrete state, which

can be done efficiently since the x1 dynamics are locally monotone in the regions delimited

by the partition, and by finding the states whose x1 coordinates are entirely outside this

range, as the disturbance only appears along the x2 dimension. We search for SOS poly-

nomials of degree 6 in the SOSP. To over and under-approximate the states in the domain

partition with polynomial superlevel sets, we use shifted and scaled versions of 4th order

polynomials approximating rectangular sets, as detailed in [15]. The result of verification

is displayed in Figure 7.8. States in green satisfy φ, states in red violate φ, and states in

yellow are undecided.
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We now consider the two-mode system

x1[k + 1] = aix
3
1x2

x2[k + 1] = bix1x2 + w ,

(7.7)

for i ∈ {1, 2}, where (a1, b1) = (6.0, 0.3) in the first mode, (a2, b2) = (7.0, 0.2) in the

second mode, and the domain D and noise term w are as in the verification case study.

Our goal is to find a switching policy minimizing the probability of satisfying the spec-

ification inside the probabilistic operator in φ. To compute a minimizing switching policy,

we build a BMDP abstraction of system (7.7) by constructing an IMC abstraction for each

mode using the tools from Section 4.2. Controller synthesis is performed according to

Chapter 6. The partition is the same as in the previous subsection. We check our results

against Monte-Carlo simulations with initial state x0 = [0.15,−0.2]. The computed switch-

ing policy guarantees a probability of satisfying the specification between [0, 0.81] from

x0, which is confirmed in simulations with a probability of 0.1008.

The strength of our IMC and BMDP abstraction method for polynomials lies in its ap-

plicability to the wide class of discrete-time polynomial stochastic systems. Such abstrac-

tions allow us to perform verification and synthesis for these systems against all ω-regular

specifications. On the other hand, the computational complexity of this method, which

depends heavily on the hyperparameters of the SOSP, as well as the conservatism of the

resulting bounds vary greatly with the dynamics of interest. As all transitions computa-

tions are parallelizable, the viability of this technique for verification and synthesis relies

on the available parallel computing capabilities. For instance, building the abstraction for

the verification case study on a 2-core machine took 14 hours.

7.5 Synthesis for Mixed Monotone System

We now present a numerical example to demonstrate the synthesis procedures derived in

Chapter 6. The code used to generate this example is available at https://github.
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com/gtfactslab/StochasticSynthesis.

We consider a stochastic model of a bistable switch with dynamics

x1[k + 1] = x1[k] + ( −ax1[k] + x2[k] ) ·∆T + u1 + w1

x2[k + 1] = x2[k] +
( (x1[k])2

(x1[k])2 + 1
− bx2[k]

)
·∆T + u2 + w2 ,

(7.8)

where w1 and w2 are independent truncated Gaussian random variables sampled at each

time step. w1 ∼ N (µ = −0.3;σ2 = 0.1) and is truncated on [−0.4,−0.2]; w2 is sim-

ilarly defined. We will consider two sets of inputs in this case study: the continuous set

U = [−0.05, 0.05]× [−0.05, 0.05] and the finite set Ufin = {[0, 0]T , [0.05, 0]T , [−0.05, 0]T ,

[0, 0.05]T , [0,−0.05]T} which is a subset of U . The domain D of (7.8) is [0.0, 4.0] ×

[0.0, 4.0]. To keep the system self-contained in D, we assume that any time the distur-

bance would push the trajectory outside of D, it is actually maintained on the boundary of

D. We choose the parameters a = 1.3, b = 0.25 and ∆T = 0.05. Our goal is to synthesize

a controller for (7.8) that maximizes the probability of satisfying the LTL specifications

φ1 = �((¬A ∧©A)→ (©© A ∧©©©A)) ,

φ2 = (♦�A→ ♦B) ∧ (♦C → �¬B) ,

where φ1 translates to “ always remain in an A state for at least 2 more time steps when

entering an A state” and φ2 translates to “reach a B state if the trajectory eventually always

remains in A, and never reach a B state if the trajectory reaches a C state” in natural lan-

guage. The DRA corresponding to specification φ1 contains 5 states and has 1 Rabin pair,

while the DRA representing φ2 contains 7 states and has 3 Rabin pairs. Initial partitions of

the domain D along with the labeling of the states are presented in the next subsections.

First, we synthesize controllers using the finite set of inputs Ufin. Second, we devise con-

trol policies from the continuous set of inputs U . Finally, we compile some observations

and concluding remarks in a discussion subsection.
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7.5.1 Finite-mode Synthesis

First, we synthesize a switching policy for maximizing the probability of satisfying φ1

and φ2 in (7.8) using the finite set Ufin, where each input corresponds to one mode, and

applying the synthesis Algorithm 12 for finite-mode systems with a target precision εthr =

0.30. At each refinement step, states of the current partition with a refinement score that is

greater than 5% of the maximum score are chosen to be refined and split in half along their

greatest dimension. The deterministic portion of the dynamics of system (7.8) are known

to be monotone. Therefore, BMDP abstractions of (7.8) for rectangular partitions of D

are efficiently computed using the technique in [14] for each mode. The initial partition

of the domain D for specification φ1 is given in Figure 7.9 (Left), and the initial partition

for specification φ2 is in Figure 7.10 (Left). At each refinement step, the states selected for

refinement are split in half along their greatest dimension.

The component search algorithm is conducted at each iteration of the while loop of Al-

gorithm 12 until the set of potential accepting BSCCs (UA)G? becomes empty, in which case

the component construction procedure is skipped and the lower bound maximization prob-

lem in Line 6 is performed on the latest known version of the greatest permanent winning

component (WC)GP . As no new permanent accepting BSCCs can be constructed anywhere

else in the state space in this scenario, an under-approximation of (WC)GP containing all

possible permanent BSCCs without all permanent sink states is sufficient for the reachabil-

ity problem. Note that (WC)GP can be updated if permanent sink states with a lower bound

of 1 are constructed during the lower bound maximization step.

The controller synthesis procedure for specification φ1 terminated in 13 hours and 27

minutes with a greatest suboptimality factor εmax = 0.2999, and created 18418 states in 18

refinement steps, corresponding to 92090 states in the product BMDP constructed from the

final partition. The final refined partition is shown in Figure 7.9 (Right). For specification

φ2, the procedure terminated in 38 minutes with a greatest suboptimality factor εmax =

0.2998 and created 7711 states in 15 refinement steps, corresponding to 53977 states in the
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product BMDP constructed from the final partition. The final refined partition is shown in

Figure 7.10 (Right).

The cumulative execution time against the number of refinement steps is plotted in

Figure 7.11 for specification φ1 (Left) and specification φ2 (Right). The average number

of actions left at each state of the product BMDP B ⊗ A after each refinement step is

displayed in Figure 7.12 for specification φ1 (Left) and specification φ2 (Right). Lastly,

three possible metrics of precision for the computed controller — namely, the greatest

suboptimality factor, average suboptimality factor of the product BMDP and fractions of

states above the target precision εthr — as a function of the number of refinement steps are

shown in Figure 7.13 for specification φ1 (Left) and specification φ2 (Right).
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Figure 7.9: Initial domain partition with state labeling (Left) and final domain partition

upon synthesis of a controller for maximizing the probability of satisfying φ1 in (7.8) using

the finite set of inputs Ufin after 18 refinement steps (Right). The final partition contains

18418 states, corresponding to 92090 states in the resulting product BMDP abstraction.
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Figure 7.10: Initial domain partition with state labeling (Left) and final domain partition

upon synthesis of a controller for maximizing the probability of satisfying φ2 in (7.8) using

the finite set of inputs Ufin after 15 refinement steps (Right). The final partition contains

7711 states, corresponding to 53977 states in the resulting product BMDP abstraction.
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Figure 7.11: Cumulative execution time of the synthesis procedure with the finite input

set Ufin as a function of the number of refinement steps for specification φ1 (Left) and

specification φ2 (Right). The synthesis procedure for φ1 terminated in 13 hours and 27

minutes; the synthesis procedure for φ2 terminated in 38 minutes
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Figure 7.12: Average number of actions left at each state of the product BMDP as a function

of the number of refinement steps for specification φ1 (Left) and specification φ2 (Right).
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Figure 7.13: Different metrics of precision for the controller computed from the finite

input set Ufin as a function of the number of refinement steps for specification φ1 (Left)

and specification φ2 (Right). The synthesis algorithm reaches the target εthr = 0.30 for

both specifications. This means that the probability of satisfying the specifications can

only increase by a maximum of 0.30 from all possible states of the abstracted system by

choosing another switching policy.
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7.5.2 Continuous Input Set Synthesis

Next, we generate a control policy from the set of continuous inputs U by applying Al-

gorithm 15. The desired threshold precision is chosen to be εthr = 0.30. At each refine-

ment step, states of the current partition with a refinement score that is greater than 1% of

the maximum score are chosen to be refined and split in half along their greatest dimen-

sion. Tight rectangular over-approximation of the deterministic reachable set of (7.8) are

obtained efficiently from the results in [13] thanks to the monotone property of the state

update map. The input space of all states in the product CIMC is stored as a union of

rectangles. When evaluating the optimality of the synthesized controller before every re-

finement step, we partition each rectangle of the input space of all states into 4 rectangles

of equal area. This allows the input spaces to always remain a union of rectangles in case

some sub-regions of the input space were removed, as in Figure 6.3, which facilitates the

computation of the overlaps in Algorithm 14.

The possibly non-convex optimization problem in Algorithm 13, line 14, and the possi-

bly non-convex optimization problem (6.30) are solved by gridding each rectangle Ui of the

input space of interest with anN -by-N meshgrid, whereN = max{Nmin, dNinit · Area(Ui)
Area(U)

e}

with Nmin = 3 and Ninit = 12, and using a convex solver from all points of the grid. The

component construction algorithm is conducted at each iteration of the while loop of Al-

gorithm 15 until the set of potential accepting BSCCs (UA)G? becomes empty, as in the

finite-mode examples. The threshold of convergence for the reachability value iteration

scheme is set to 0.01.

The controller synthesis procedure for specification φ1 was manually terminated after

12 refinement steps which lasted 22 hours and 32 minutes with a greatest suboptimality

factor εmax = 0.8705, and created 16079 states, corresponding to 80395 states in the prod-

uct BMDP constructed from the final partition. The final refined partition is displayed in

Figure 7.14 (Right). The procedure for specification φ2 was manually terminated after 14

refinement steps which lasted 73 hours with a greatest suboptimality factor εmax = 0.7754,
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and created 24607 states in 14 refinement steps, corresponding to 172249 states in the prod-

uct BMDP constructed from the final partition. The final refined partition is displayed in

Figure 7.15 (Right).

The cumulative execution time against the number of refinement steps is plotted in

Figure 7.17 for specification φ1 (Left) and specification φ2 (Right). The original input

space for all states of the system is shown in Figure 7.16, along with the reduced input space

with respect to specification φ1 and φ2 upon refinement for 2 states of the system. Finally,

the greatest suboptimality factor, average suboptimality factor of the product CIMC and

fractions of states above the target precision εthr as a function of the number of refinement

steps are shown in Figure 7.18 for specification φ1 (Left) and specification φ2 (Right).
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Figure 7.14: Initial domain partition with state labeling (Left) and final domain partition

upon synthesis of a controller for maximizing the probability of satisfying φ1 using the

continuous set of inputs U after 12 refinement steps (Right). The final partition contains

16079 states, corresponding to 80395 states in the resulting product CIMC abstraction.
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Figure 7.15: Initial domain partition with state labeling (Left) and final domain partition

upon synthesis of a controller for maximizing the probability of satisfying φ2 using the

continuous set of inputs U after 14 refinement steps (Right). The final partition contains

24607 states, corresponding to 172249 states in the resulting product CIMC abstraction.
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Figure 7.16: Plot of the initial input space U (Top) for all states of the state space. The

reduced input space of state [1.8125, 1.828125]× [2.21875, 2.234375] with automaton state

s2 with respect to specification φ1 upon refinement is shown in the bottom left plot. The

reduced input space of state [2.8125, 2.84375] × [1.484375, 1.5] with automaton state s0

with respect to specification φ2 upon refinement is shown in the bottom right plot.
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Figure 7.17: Cumulative execution time of the synthesis procedure with the continuous

input set U as a function of the number of refinement steps for specification φ1 (Left) and

specification φ2 (Right).
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Figure 7.18: Different metrics of precision for the computed controller with the continuous

input set as a function of the number of refinement steps for specification φ1 (Left) and

specification φ2 (Right). The synthesis algorithm is manually terminated before reaching

the target εthr = 0.30 for both specifications.

7.5.3 Discussion

The synthesis algorithms presented in Chapter 6 successfully designed controllers from

both the finite set of inputs Ufin and the continuous set of inputs U . Moreover, the al-
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gorithms conducted synthesis for two different complex specifications that existing tools

could not accommodate, and automatically produced a targeted domain refinement for the

two cases so as to achieve a higher level of optimality for the computed controllers. We

also consider our approach to be an improvement over related synthesis works in terms of

scalability; for instance, our finite-mode algorithm is orders of magnitude faster than the

technique used for the synthesis case study in [26], which designed a switching policy for a

3-mode 2D linear system with a simple reachability specification over the course of several

days.

To further demonstrate the synthesis procedure, in Figure 7.19 (Top), we display the

verification of system (7.8) against φ1 without any available input with respect to a satis-

faction threshold of 0.8 from Section 7.3, where the initial states in green have a probability

of satisfying the specification which is greater than 0.8, the states in red have a probability

which is below 0.8, and the states in yellow are undecided at the level of precision of the

available partition. In the bottom left, we display the verification of system (7.8) under the

computed switching policy in the finite-mode section, and in the bottom right, we show the

verification of system (7.8) under the computed control policy from the continuous set of

inputs. As expected, moving counter-clockwise through the plots, we observe that some

red regions of the state-space are converted to green regions.
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Figure 7.19: Verification of system (7.8) against φ1 with respect to a satisfaction threshold

of 0.8 without any input (Top), and under both the switching policy computed from the

finite input set Ufin (Bottom Left) and the control policy computed from the continuous

input space U (Bottom Right). The initial states in green have a probability of satisfying

the specification which is greater than 0.8, the states in red have a probability which is

below 0.8, and the states in yellow are undecided. The controlled versions of (7.8) convert

some red regions of the state-space in the uncontrolled case to green regions.

It is evident that computing controllers from a continuous set of inputs requires a more

significant amount of computational effort compared to the finite input case. The largest

portion of the continuous-input synthesis algorithm is expended solving the optimization

problems for the value iteration step of the procedure, which is the clear scalability bottle-
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neck of our current implementation. Moreover, we notice that the greatest suboptimality

factor decreases at a slower rate as a function of refinement steps in the continuous input

case than in the finite-mode case, which causes a much finer partition of the domain and is

the reason for the manual termination in the former example. We explain this phenomenon

by observing that the suboptimality factor is more dependent on the abstraction error when

using the continuous set of inputs. To see this, consider an optimal input u∗ computed for

a state of the product CIMC C ⊗ A, yielding an interval of satisfaction [a, b] for this state.

Now, consider another input u∗ + ε for a small disturbance ε. Assuming the dynamics

of interest are continuous, it follows that the interval of satisfaction under the disturbed

input is [a + εa, b + εb]. Therefore, the suboptimality factor for this state will be at least

b+ εb − a ≈ b− a, which is the size of the satisfaction interval of the considered state un-

der the computed optimal input. Nonetheless, the algorithm still results in overall progress

towards the goal optimality across all metrics as it performs more refinement steps.

Another observation is that a significant amount of time is spent on reaching the target

optimality when very few states are still above the goal threshold, as seen in the finite-mode

example. We first attribute this to the conservativeness of the scoring algorithm used in the

numerical examples. Second, the value iteration scheme from [26] is reinitialized “from

scratch” after each refinement step on the entire abstraction, which is inefficient as only a

small subset of the state-space is refined in the later stages of the algorithm. Adapting this

scheme to our targeted refinement-based method could tremendously reduce the run time

of the synthesis procedure, especially when using a continuous set of inputs which incurs

a computationally expensive value iteration step.

Third, the phenomenon described in Subsection 6.1.3 causing the algorithm to not be

monotone is particularly prevalent when states that are reachable from one another have

significantly different sizes. This situation occurs when the refinement technique selects

very small and specific regions of the state-space, as it is the case when only a small number

of states haven’t attained the objective, causing a slowdown in the overall progress towards
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the target goal. All these facts should be considered in future implementations to improve

the aforementioned algorithms.

Note that, in these case studies, we did not prune the product abstractions of the states

which were not reachable from the initial states or had a very low probability of ever being

reached. Therefore, the synthesis algorithms may attempt to find an optimal control for

product states that the system will never actually reach in practice. A pre-processing step

removing such states could be applied to the product constructions in order to decrease the

computational complexity of the procedures.

Lastly, we impute a lot of the computation time to the code implementation itself which

is still naive at this stage. In particular, a considerable amount of effort is spent on “book-

keeping” when passing relevant information from coarser partitions to refined ones, and

could be greatly reduced with the use of more adequate data structures tailored to this

problem.
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CHAPTER 8

CONCLUSIONS

The implementation of reliable formal tools tailored to the verification and control of sys-

tems experiencing random disturbances poses a unique set of challenges. This thesis pro-

vides results on the analysis of stochastic dynamical systems by means of finite-state ab-

stractions. We study efficient techniques for abstracting large classes of stochastic systems,

leverage the abstractions to conduct verification and controller synthesis for an expressive

set of system properties, and propose scalable, specification-guided abstraction refinement

techniques for reducing conservatism in the finite-state models.

8.1 Main Contributions

In Chapter 4, we described a procedure for constructing IMC abstractions of discrete-time,

affine-in-disturbance mixed monotone systems from a rectangular partition of their domain.

The discussed technique leverages mixed monotonicity to efficiently compute a rectangu-

lar over-approximation of the reachable set from every discrete state in the partition, and

geometrically determines the minimum and maximum probability overlap with any state

from these reachable sets under a symmetry and unimodality assumption on the distur-

bance. We also proposed an alternate method that relaxes the symmetry assumption on

the disturbance. Furthermore, we presented an IMC abstraction algorithm for discrete-time

polynomial systems from a partition of the domain. The proposed solution relies on a

search of polynomial stochastic barrier functions for each pair of states of the partition to

obtain one-step probabilistic guarantees. We showed that an upper and lower bound on the

probability of transition between any two states can be computed by solving two SOSPs

encoding the required properties of stochastic barrier functions as constraints.

In Chapter 5, we harnessed the IMC abstractions created in Chapter 4 to perform ver-
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ification of discrete-time stochastic systems against probabilistic ω-regular specifications.

We derived an algorithm for computing a range on the probability of satisfaction from any

initial state in the IMC for any ω-regular property. The algorithm relies on an analysis

of the Cartesian product between the IMC and a deterministic Rabin automaton encod-

ing the specification. In this product, we first perform a graph search to find two sets of

states known as the largest losing and winning components, and obtain the satisfaction in-

tervals by solving a reachability problem on these components. The intervals translate to

probability guarantees with respect to the abstracted continuous states. As probabilistic

specifications query for the set of states whose probability of satisfying a property is below

or above a fixed threshold, the verification procedure may yield a set of states which are

undecided with respect to the specification of interest. In order to reduce conservatism in

the IMC abstraction, we suggested a specification-guided refinement algorithm that targets

the states of the domain partition which are likely to cause the most uncertainty in regard to

the undecided states. The selection of states is carried out upon a quantitative and qualita-

tive comparison of the paths generated by the best and worst-case adversary in the product

IMC.

In Chapter 6, we designed an automated process for devising control strategies in

stochastic controlled systems subject to ω-regular objectives. For systems with a finite

number of modes, we employed BMDP abstractions constructed from a partition of the

continuous system domain and presented algorithms for maximizing the lower bound prob-

ability or minimizing the upper bound probability of satisfying ω-regular specifications for

any initial state in the abstraction. The propounded approach creates the greatest possible

permanent winning or losing components in the Cartesian product of the BMDP abstraction

with a deterministic Rabin automaton encoding the specification, and computes switching

policies maximizing the lower bound probability of reaching these components. We intro-

duced a measure of the optimality of the computed controllers with respect to the original

continuous system states, and developed an iterative partition refinement strategy aimed at

173



achieving a low suboptimality factor. We extended the theory developed for finite-mode

systems to systems with a continuous set of possible inputs for which exhaustive searches

cannot be performed, limiting ourselves to systems which are affine in disturbance and

input. We showed that such systems are abstracted by CIMCs that are constructed from

a finite partition of their domain and share similar properties with BMDPs. In particular,

we demonstrated that the greatest permanent winning or losing components of the prod-

uct between a CIMC and deterministic Rabin automaton can be constructed by carefully

partitioning the continuous input space of the CIMC to generate a finite-mode BMDP and

applying the component search algorithm to this BMDP. For the remaining states outside of

these components, the lower bound probability of reaching the components is maximized

by solving several optimization problems in an iterative fashion. A similar measure of the

suboptimality of the designed controller was presented for this case, as well as a targeted

partition refinement scheme.

In Chapter 7, we demonstrated our theoretical contributions in practical examples. We

applied our verification and synthesis strategies on various classes of systems with both

simple and complex specifications, and were able to highlight the strengths of our approach

compared to existing techniques in terms of computational efficiency as well as to identify

some of its current limitations.

8.2 Future Works

The results presented in this thesis confirm the potential of interval-valued abstractions as

reliable and versatile tools for the verification and synthesis of stochastic systems subject to

highly complex temporal tasks. While this dissertation proposes novel and promising ideas,

many challenges are left to be overcome to render this approach universal and completely

effective.

In particular, the iterative partition refinement procedures for both verification and syn-

thesis are still in a nascent stage of development, and substantial work remains to be accom-
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plished in this direction to achieve their full potential and attain higher levels of scalibility.

Specifically, current implementations do not sufficiently leverage the common structure be-

tween a given abstraction and its refined versions. For example, by storing all computed

information on a parent abstraction before refinement, one could drastically reduce the

number of operations performed on the children abstractions were that information fully

exploited. Capitalizing on previous computations from coarser abstractions could also help

enforcing important properties such a monotonicity for faster convergence. However, such

features would entail a significant modification of the graph searches and reachability al-

gorithms currently employed in the presented verification and synthesis techniques, which

consider all abstractions in isolation from one another. Other possible research directions

on state-space refinement include the elaboration of more advanced heuristics accounting

for additional factors such as spatial correlations or states volumes to better target the re-

gions to be refined, and a more in-depth investigation of the refinement itself which could

divide the selected states at specific locations according to the system’s dynamics instead

of naively splitting them in half, as done in this work. A formal analysis of the different

conditions required on the system dynamics and the abstraction procedure to ensure the

convergence of the refinement-based verification and synthesis algorithms should also be

conducted. From a technical standpoint, it is critical that future implementations of the

presented algorithms leverage the full capabilities of high-performance computing and par-

allelization, and also utilize optimized data structures customized to our refinement-based

approach to maximize its practical potential.

Furthermore, supplemental effort has to be dedicated to the efficient computation of

the interval-valued abstractions discussed in this dissertation. While abstraction techniques

for mixed monotone systems appear to be mature and scalable, dependable approaches for

other classes of systems remain to be developed. The barrier function-based abstraction

algorithm for polynomial systems presented in this document provides reliable transition

intervals between states but suffers from a prohibitive computational cost which still limits
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its applicability towards high-dimensional systems. It appears that abstraction techniques

exploiting rapid computations of reachable sets should be favored henceforth. Lastly, the

synthesis algorithm for stochastic systems with a continuous set of inputs assumes a lot

of structure on the dynamics in its current state; future works could attempt to make these

assumptions less restrictive in order to extend the scope of this technique to a wider range

of system models.
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APPENDIX A

LEMMAS FOR PROOF OF THEOREM 5

Lemma 6. [40] For any infinite sequence of states π = q0q1q2 . . . in a Markov Chain, there

exists an index i ≥ 0 such that qi belongs to a BSCC.

Corollary 2. For any initial state 〈Qi, s0〉 in an induced product MCMA
⊗,

PMA⊗(〈Qi, s0〉 |= ♦UA) + PMA⊗(〈Qi, s0〉 |= ♦UN) = 1 . (A.1)

Lemma 7. For any initial state 〈Qi, s0〉 in an induced product Markov ChainMA
⊗,

PMA⊗(〈Qi, s0〉 |= ♦WC) + PMA⊗(〈Qi, s0〉 |= ♦LC) = 1 . (A.2)

Proof. This lemma follows from Corollary 2 and the Definition 22 of winning and losing

components.

Lemma 8. Let I be an IMC and letM1 andM2 be two MCs induced by I where the setB

is a BSCC for both. If C1 and C2 are the sets of states such that PM1(C1 |= ♦B) = 1 and

PM2(C2 |= ♦B) = 1, then there exists a MCM3 induced by I such that PM3((C1∪C2) |=

♦B) = 1.

Proof. Let T1 and T2 denote the transition matrices of M1 and M2 respectively, and

Q denote the set of states in I. Consider an induced MC M3 where T3(Qi, Qj) =

T1(Qi, Qj) ∀Qi ∈ C1 and ∀ Qj ∈ Q, and T3(Qi, Qj) = T2(Qi, Qj) ∀Qi ∈ C2 \ (C1 ∩ C2)
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and ∀ Qj ∈ Q. By assumption, any state inC1 reachesB with probability 1, while all states

in C2\(C1∩C2) reachB∪(C1∩C2) with probability 1. Since PM3((C1∩C2) |= ♦B) = 1

by construction, we have PM3((C1 ∪ C2) |= ♦B) = 1.

Lemma 9. Let I⊗A be a product IMC and (LC)i be the losing components of any product

MC (MA
⊗)i induced by I ⊗ A. There exists a set of product MCs induced by I ⊗ A with

losing components (LC)L and such that (LC)i ⊆ (LC)L.

Proof. We proved in [67] that any product IMC induces a set of MCs with a largest set of

non-accepting BSCCs. Lemma 9 is deduced from this fact and Lemma 8.

Lemma 10. Let I ⊗ A be a product IMC. Let (MA
⊗)1 and (MA

⊗)2 be two product MCs

induced by I ⊗ A with sets of accepting BSCC UA
1 and UA

2 respectively. There exists a

set of product MCs induced by I ⊗ A with winning components (WC)3 and such that

(UA
1 ∪ UA

2 ) ⊆ (WC)3.

Proof. Let T1 and T2 denote the transition matrices of (MA
⊗)1 and (MA

⊗)2 respectively,

and Q denote the set of states in I ⊗ A. Assume UA
1 ∩ UA

2 = ∅. There exists a set of

product MCs induced by I ⊗ A such that UA
1 ∪ UA

2 are accepting BSCCs (see [67]), and

thus winning components. If UA
1 ∩ UA

2 6= ∅, consider the set of all product MCs (MA
⊗)i

induced by I ⊗ A such that, for all transition matrices Ti of the product MCs in this set,

Ti(Qi, Qj) = T1(Qi, Qj) ∀Qi ∈ UA
1 and ∀ Qj ∈ Q, and Ti(Qi, Qj) = T2(Qi, Qj) ∀Qi ∈

UA
2 \ (UA

1 ∩ UA
2 ) and ∀ Qj ∈ Q. Clearly, UA

1 is an accepting BSCC in all (MA
⊗)i. For all

(MA
⊗)i, it holds that P(MA⊗)i((U

A
2 \ (UA

1 ∩UA
2 )) |= ♦(UA

1 ∩UA
2 )) = 1, since UA

2 is a BSCC

for the same probability assignments in (MA
⊗)2. Thus, UA

1 ∪ UA
2 are winning components

with respect to all (MA
⊗)i.
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Lemma 11. Let I ⊗ A be a product IMC and (WC)i be the winning components of any

product MC (MA
⊗)i induced by I ⊗A. There exists a set of product MCs induced by I ⊗A

with winning component (WC)L and such that (WC)i ⊆ (WC)L.

Proof. This lemma follows from Lemmas 8 and 10.

Lemma 12. Let I ⊗ A be a product IMC. Let (MA
⊗)1 and (MA

⊗)2 be two product MCs

induced by I⊗A with winning components (WC)1 and (WC)2 respectively, and such that

(WC)2 ⊆ (WC)1. Also, their losing components (LC)1 and (LC)2 are such that (LC)1 =

(LC)2 = LC and their respective transition matrices T1 and T2 satisfy T1(Qi, Qj) =

T2(Qi, Qj) ∀Qi ∈ (Q × S) \ ((WC)1 ∪ LC) and ∀Qj ∈ (Q × S). The sets of accepting

BSCCs of (MA
⊗)1 and (MA

⊗)2 are denoted by UA
1 and UA

2 respectively. For any initial state

〈Qi, s0〉, it holds that

P(MA⊗)1
(〈Qi, s0〉 |= ♦UA

1 ) ≥ P(MA⊗)2
(〈Qi, s0〉 |= ♦UA

2 ) .

Proof. For any initial state 〈Qi, s0〉 ∈ LC, it holds that P(MA⊗)1
(〈Qi, s0〉 |= ♦UA

1 ) =

P(MA⊗)2
(〈Qi, s0〉 |= ♦UA

2 ) = 0. For any initial state 〈Qi, s0〉 ∈ ((WC)1 ∩ (WC)2), it

holds that P(MA⊗)1
(〈Qi, s0〉 |= ♦UA

1 ) = P(MA⊗)2
(〈Qi, s0〉 |= ♦UA

2 ) = 1. For any ini-

tial state 〈Qi, s0〉 ∈ ((WC)1 \ (WC)2), it holds that P(MA⊗)1
(〈Qi, s0〉 |= ♦UA

1 ) = 1 ≥

P(MA⊗)2
(〈Qi, s0〉 |= ♦UA

2 ). For any initial state 〈Qi, s0〉 ∈ (Q × S) \ ((WC)1 ∪ LC)
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(denoted by H for clarity), we have

P(MA⊗)1
(〈Qi, s0〉 |= ♦UA

1 ) =

T1(〈Qi, s0〉 , (WC)1 \ (WC)2) · P(MA⊗)1
( (WC)1 \ (WC)2 |= ♦UA

1 )

+ T1(〈Qi, s0〉 , (WC)2) · P(MA⊗)1
( (WC)2 |= ♦UA

1 )

+
∑
Qj∈H

T1(〈Qi, s0〉 , Qj) · P(MA⊗)2
( Qj |= ♦UA

2 )

≥ ∑
Qj∈(WC)1\(WC)2

T2(〈Qi, s0〉 , Qj) · P(MA⊗)2
( Qj |= ♦UA

2 )

+ T2(〈Qi, s0〉 , (WC)2) · P(MA⊗)2
( (WC)2 |= ♦UA

2 )

+
∑
Qj∈H

T2(〈Qi, s0〉 , Qj) · P(MA⊗)2
( Qj |= ♦UA

2 )

= P(MA⊗)2
(〈Qi, s0〉 |= ♦UA

2 )

based on the transition matrices assumptions.

Lemma 13. Let I ⊗A be a product IMC. Let (MA
⊗)1 and (MA

⊗)2 be two product MCs in-

duced by I ⊗ A with losing components (LC)1 and (LC)2 respectively, and such that

(LC)2 ⊆ (LC)1. Also, their winning components (WC)1 and (WC)2 are such that

(WC)1 = (WC)2 = WC and their respective transition matrices T1 and T2 satisfy

T1(Qi, Qj) = T2(Qi, Qj) ∀Qi ∈ (Q × S) \ ((LC)1 ∪ WC) and ∀Qj ∈ (Q × S). The

sets of non-accepting BSCCs of (MA
⊗)1 and (MA

⊗)2 are denoted by UN
1 and UN

2 respec-

tively. For any initial state 〈Qi, s0〉, it holds that

P(MA⊗)1
(〈Qi, s0〉 |= ♦UN

1 ) ≥ P(MA⊗)2
(〈Qi, s0〉 |= ♦UN

2 ) .

Proof. The proof is identical to the one of Lemma 12.
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Lemma 14. Let I ⊗A be a product IMC with permanent and largest sets (WC)P , (LC)P ,

(WC)L and (LC)L as previously defined. There exists a set of induced MCs of I ⊗ A

whose sets of winning and losing components are (WC)P and (LC)L, and a set of induced

MCs whose sets of losing and winning components are (LC)P and (WC)L.

Proof. Consider the set C of all induced MCs of I ⊗ A whose set of losing components is

(LC)L. For any 〈Qi, s0〉 ∈ ((WC)? \ (LC)L), consider an induced product MCM ∈ C

with transition matrix T such that 〈Qi, s0〉 is not a winning component of M. Such an

induced product MC always exists by the definition of (WC)? and Lemma 8. Denote

by (WC)M? the winning components of M which also belong to (WC)?. There exists

an induced product MC M′ with transition matrix T ′ such that, for all qi ∈ (WC)M? ,

PM′(qi |= ♦¬((WC)M? ∪ (WC)P )) > 0, otherwise qi ∈ (WC)P , which is a contradiction.

Consider the induced product MCM′′ ∈ C with transition matrix T ′′ such that T ′′(qi, qj) =

T ′(qi, qj) for all qi ∈ (WC)M? and qj ∈ (Q× S), and T ′′ = T for all other transitions. The

sets of winning and losing components ofM′′ are (WC)P and (LC)L, proving the claim.

The proof with respect to (LC)P and (WC)L is identical.
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APPENDIX B

PROOF OF LEMMA 3

We provide a constructive proof for this lemma. Consider a product BMDP B ⊗ A with

set of states Q× S and set of memoryless policies (U)A⊗. We define the greatest permanent

BSCC (UA)GP ⊆ Q × S as the set of all states of B ⊗ A such that, if q ∈ (U)GP , then there

exists a policy in (U)A⊗ such that q belongs to a permanent accepting BSCC in B ⊗A.

The first part of the proof consists in showing that there exists a set of policies U(UA)GP
⊆

(U)A⊗ such that, under all product IMCs induced by a policy in U(UA)GP
, all states in (UA)GP

belong to a permanent winning component simultaneously and, therefore, (UA)GP ⊆ (WC)GP .

The second part of the proof shows that, for any other states of B ⊗ A which can be

made a permanent winning component under some policy, there exists a set of policies

(which are a subset of U(UA)GP
), such that all these states are a permanent winning compo-

nent simultaneously, proving the lemma.

I] Proof of existence of policies generating the greatest permanent accepting BSCC as a

permanent winning component

First, we constructively show that, if there exists a policy µ1 ∈ (U)A⊗ generating a per-

manent accepting BSCC B1 ⊆ Q × S in (B ⊗ A)[µ1], and if there exists another policy

µ2 ∈ (U)A⊗ generating a permanent accepting BSCCB2 ⊆ Q×S in (B⊗A)[µ2], then there

has to exist a set of policies in (U)A⊗ causing the set B1 ∪ B2 to be a permanent winning

component in B ⊗A. Consider a policy µ3 ∈ (U)A⊗ such that:

1) For all state q ∈ B1, µ3(q) = µ1(q), and for all state q ∈ B2 \ (B1 ∩B2), µ3(q) = µ2(q),
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2) For all states q ∈ (Q× S) \ (B1 ∪B2), choose any action in Act(q) as µ3(q).

By assumption, B1 is a permanent accepting BSCC in (B ⊗A)[µ3]. Furthermore, because

B2 is a permanent accepting BSCC under policy µ2, any state q ∈ B2 \ (B1 ∩B2) satisfies

P̂(B⊗A)[µ3](q |= ♦(B1 ∩ B2)) = 1 under condition 1), since all states in a BSCC are

reachable from one another with probability 1. Therefore, according to Definition 22,

B1 ∪B2 has to belong to the permanent winning component in (B ⊗A)[µ3].

Iteratively applying this logic with B1∪B2 and any other member of (UA)GP shows that

there exists a set of policies in U(UA)GP
⊆ (U)A⊗ such that all states in (UA)GP belong to a

permanent winning component simultaneously.

II] Proof of existence of greatest permanent winning component

Now, we consider the set R = (Q × S) \ (UA)GP of all states of B ⊗ A which do not

belong to (UA)GP .

For a policy µ ∈ U(UA)GP
, the set of all states C ⊆ R that belong to the permanent

winning component (WC)P of (B ⊗ A)[µ] without being a member of (UA)GP — that is,

C ∪ (UA)GP = (WC)P and C ∩ (UA)GP = ∅— has to satisfy two conditions:

a) C does not allow a transition outside of C ∪ (UA)GP under any adversary of (B ⊗A)[µ],

that is, P̂(B⊗A)[µ]

(
q |= ♦

(
(Q× S) \

(
C ∪ (UA)GP

)))
= 0 for all q ∈ C,

b) No subset of C can form a losing component under any adversary of (B ⊗ A)[µ], that

is, no state in C is a member of the largest losing component (LC)L of the product IMC

(B ⊗A)[µ], or C ∩ (LC)L = ∅.
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With these two conditions fulfilled, all states in C either transition to (UA)GP or reach an

accepting BSCC formed within C under all adversaries of (B ⊗A)[µ], and therefore reach

an accepting BSCC with lower bound probability 1.

Now, we constructively show that, if there exists a policy µ1 ∈ U(UA)GP
inducing a

product IMC (B ⊗ A)[µ1] with permanent winning component (WC1)P and with a set

of states C1 ∈ R satisfying conditions a) and b) such that C1 ∪ (UA)GP = (WC1)P and

C1 ∩ (UA)GP = ∅, and if there exists a policy µ2 ∈ U(UA)GP
inducing a product IMC

(B ⊗A)[µ2] with permanent winning component (WC2)P and with a set of states C2 ∈ R

satisfying conditions a) and b) such that C2 ∪ (UA)GP = (WC2)P and C2 ∩ (UA)GP = ∅,

then there has to exist a policy µ3 ∈ U(UA)GP
inducing a product IMC (B⊗A)[µ3] with per-

manent winning component (WC3)P and with the set of states (C1 ∪ C2) ∈ R satisfying

conditions a) and b) such that (C1∪C2)∩ (UA)GP = ∅. Consider a policy µ3 ∈ U(UA)GP
such

that:

1) For all state q ∈ C1, µ3(q) = µ1(q), and for all state q ∈ C2 \ (C1 ∩C2), µ3(q) = µ2(q),

2) For all states q ∈ (Q× S) \ (C1 ∪ C2), choose any action in Act(q) as µ3(q).

By construction, the set C1 ∪ C2 satisfies condition b), as no subset of C1 could form a

losing component under the actions prescribed by µ1 and no subset of (C2 \ (C1 ∩ C2)

could form a losing component under the actions prescribed by µ2. Moreover, under policy

µ3, no adversary can generate a non-accepting BSCC A that has states in both C1 and

C2, that is A ∩ C1 6= ∅ and A ∩ C2 6= ∅, because, by construction, for all state q ∈ C1,

P̂(B⊗A)[µ3]

(
q |= ♦

(
C2 \ (C1 ∩ C2)

))
= 0, violating the definition of a BSCC. Therefore,

no adversary can generate a losing component in C1 ∪ C2.

Now, for all state q ∈ C1, P̂(B⊗A)[µ3]

(
q |= ♦

(
(Q × S) \

(
C1 ∪ (UA)GP

)))
= 0 by
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assumption, therefore P̂(B⊗A)[µ3]

(
q |= ♦

(
(Q × S) \

(
C1 ∪ C2 ∪ (UA)GP

)))
= 0, since(

(Q× S) \
(
C1 ∪ C2 ∪ (UA)GP

))
is a subset of

(
(Q× S) \

(
C1 ∪ (UA)GP

))
.

For all states q ∈
(
C2 \ (C1∩C2)

)
such that P̂(B⊗A)[µ3](q |= ♦(C1∩C2)) = 0 (states of

C2 which cannot reach the intersection of C1 and C2), we have P̂(B⊗A)[µ3]

(
q |= ♦

(
(Q ×

S) \
((
C2 \ (C1 ∩C2)

)
∪ (UA)GP

))))
= 0 by construction, and therefore P̂(B⊗A)[µ3]

(
q |=

♦
(

(Q× S) \
(
C1 ∪ C2 ∪ (UA)GP

)))
= 0 since the latter set is a subset of the former.

For all states q ∈
(
C2 \ (C1∩C2)

)
such that P̂(B⊗A)[µ3](q |= ♦(C1∩C2)) > 0 (states of

C2 which can reach the intersection of C1 and C2), we also have P̂(B⊗A)[µ3]

(
q |= ♦

(
(Q×

S) \
(
C1 ∪ C2 ∪ (UA)GP

)))
= 0 because this equality holds true for all states of C1 as

shown above.

Therefore, the set C1∪C2 satisfies conditions a) and b) and is a subset of the permanent

winning component (WC3)P of (B ⊗ A)[µ3]. Applying this process iteratively proves the

existence of a set (WC)PG satisfying the properties enunciated in the lemma and of a set of

policies U(WC)GP
generating (WC)PG.
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