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SUMMARY

The objective of the proposed work is to analyze and study the use of i-vectors for

Anomalous Detection of Sounds (ADS) in Machines. ADS is a very hot research area

because of its widespread practical usage in audio surveillance, product inspection and

maintenance among many other areas. It has applications in both supervised and unsuper-

vised tasks. Supervised ADS tasks incorporate known structure for anomalous data while

unsupervised tasks operate on outlier detection methods. In either scenario, anomalous

data is often scarce and restricts the confidence in performance metrics of a model.

ToyADMOS is a recently released database that provides a solution by making a database

using toys. Since toys are cheap it is easier to introduce defects and generate sound sam-

ples. This provides an opportunity to work with different kinds of models and test their

applicability to machine sounds.

I-vectors were released in 2011 by Dehak et. al for speaker recognition tasks. They

have since been used in music recognition, accent classification, age regression, and many

other acoustic based problems. To the best of our knowledge they have not been studied for

ADS tasks in machines, which provides an exciting opportunity for researching their use

for a new domain of problems. Our contribution in this research work can be divided into

three parts. First, we demonstrate i-vectors’ suitability for modelling the acoustic features

of machines. Second, we analyze different methods of training the Universal Background

Model for i-vectors and discuss the results. Lastly, we show both supervised and outlier-

based detection techniques and discuss their results.

xii



CHAPTER 1

INTRODUCTION

Anomalous Detection of Sounds (ADS) has received a lot of attention because of it’s di-

verse and practical applications. ADS has been used for surveillance [1], gun-shot detection

[2], product inspection [3] and product maintenance [4]. ADS is used both as an inde-

pendent measure or in addition to visual/other information. Prompt response to changes

observed in equipment sounds can increase reliability and safety with expensive and dan-

gerous machinery.

ADS is divided into two broad categories, supervised ADS and unsupervised ADS.

Supervised ADS comprises of tasks where anomalous sounds and their acoustic structures

are defined and can then be used to train the models. This includes environment detection,

gun shot detection, audio tagging etc. These models are specific to the type of anomalies

being studied and may perform badly or unexpectedly in case of unexpected anomaly.

Unsupervised ADS tasks are more common in situations where anomalies are not de-

fined but there is an ample information of the type of normal or expected acoustic structure

expected. An anomaly is defined as anything which is significantly outside this normal

or expected structure, or an outlier. Therefore, unsupervised ADS problems are popularly

dealt with outlier detection techniques. The distance between a model trained on normal

sounds and the given anomalous (or test) sound is taken. This difference is known as

anomaly score, and it determines whether the test sample is an outlier or not based on a

threshold [5]. Figure (1.1) shows the difference between the two techniques.

ToyADMOS [6] is a recently released database in which different toys are used to model

machinery sounds. Each toy data is further divided by using different combinations of me-

chanical components like motors and gears. In each toy, and each mechanical combination,

intentional defects and mechanical problems are produced. These sounds are then recorded

1



Figure 1.1: Unsupervised vs Supervised Detection of anomalies

in a low-noise environment. With a decent data size of anomalous sounds is possible to

study different techniques in both supervised and unsupervised ADS acoustic modeling

techniques and classification.

The basic steps to our ADS detection are pre-processing of data, i-vector generation

and classification, both supervised and unsupervised. Pre-processing of audio files consists

of several steps of extracting relevant information from its structure. This may consist

of time domain based features like RMSE or zero crossing rate, frequency domain based

features like dominant frequency or spectral centroid, and perceptual features like MFCs

(Mel frequency ceptrums).

In 2011, Dehak et. al [7] published I-vectors as an improvement on Joint Factor Anal-

ysis for speaker classification. I-Vectors are a compact and low dimensional representation

of an audio signal based on a Universal Background Model.

I-vectors have been used for various applications like accent classification [8], age clas-

sification [9], infant crying detection [10] and acoustic scene classification [11, 12]. I-

vectors have been used to achieve very strong results in capturing acoustic similarities or

differences within acoustic or sound data.

2



To the best of our knowledge I-Vectors have not been studied with Machine based

Anomalous Detection of Sounds. ADS systems based on auditory input are highly depen-

dant on the representation, feature extraction and pre-processing of the input. I-vectors

which work well in capturing the intra-speaker dissimilarities and provide a low dimen-

sional representation to work with, are a good candidate for researching in ADS. As ADS

is researched from both unsupervised and supervised point of view, we are also going to

study this from both perspective.

The thesis is structured as follows. Chapter 2 details relevant literature review of both

ADS and i-vector. Mathematical techniques and details are discussed for calculation of i-

vectors. We also discuss why we opted for i-vectors, how the models will be trained using

i-vectors based on ADS methodologies and why these methodologies are employed for our

case. In Chapter 3 current methods for ADS and popular techniques of using i-vectors for

classification and outlier detection methods are discussed. Chapter 4 details in length our

proposed solution, the system setup, and performance metrics used. It includes different

techniques of training the UBM, the metrics used in training and generating i-vectors, met-

rics and techniques used in supervised classification and outlier detection methods. Chapter

5 provides a lengthy detail of all results and a discussion of the outputs. Finally Chapter 6

wraps up the thesis in a concise conclusion of our solution and future proposed work.

3



CHAPTER 2

BACKGROUND STUDY

In this section we go over technical background and concepts in Anomalous Detection

of Sounds, the process of i-vector generation, principal component analysis and super-

vised/unsupervised classification models.

2.1 Anomalous Detection of Sound

Anomalous Detection of Sound (ADS) is a very hot field because of it’s vast implemen-

tation in physical and practical scenarios. Various sensors are used to detect sound and

vibration input for detection of faults and maintenance requirement in machines [3]. The

most basic method is to employ an expert who listens to the sounds and provides an esti-

mate of the machine’s condition. However, this is severely limited by a human’s physical

capacity, prone to over looks and has gaps of no surveillance. [13].

2.1.1 What are Anomalies?

Anomalies are data samples that do not conform to the defined structure of normal data.

Anomalies can be introduced in the data through many different reasons. It could be in-

tentional like hacking a system, credit card fraud etc, or through unintentional unwanted

sources like break down of a machine, a sick animal etc. Some applications of anomaly

detection include surveillance [14], animal husbandry [15, 16] and in air crafts. [17].

Information taken through audio input have several benefits. (1) Audio is much cheaper

to record, analyze and store. It is much more feasible to have a high quality audio micro-

phone running 24/7 than, for example, a high quality camera. On the other hand audio

input, in some cases, can suffer from low accuracy. Therefore, often a low/medium quality

visual input is incorporated with audio input for classification. In [18] a vehicle detection

4



Figure 2.1: Flow of Unsupervised ADS

system is proposed using both audio and visual input. (2) Many scenarios do not have the

option of visual information. For example, in environmental detection for security pur-

poses, such as scream or gunshot detection [2], audio is the only input available.

2.1.2 Supervised vs Unsupervised ADS

As mentioned before ADS operates on two fronts. If there is enough information available

for the type of anomalous sounds expected, than a model can be trained to detect them

specifically. Such systems are able to detect anomalies with high accuracy but require both

normal and anomalous data to recognize the properties of anomalous data points [19].

Methods to detect anomalies without utilizing anomalous data have also evolved to

cater to situations where anomalous data is either extremely scarce or it has no expected

structure. Therefore, they are tackled through unsupervised one-class classification tech-

niques [20]. Such methods have been used in machine health inspection [21, 22], security

[23] and non-speech detection [24].

Any test signal that deviates from this developed model or structure is regarded as

anomalous or abnormal. Selecting audio features which maximize this difference is very

5



important in developing a robust model, which is also a very difficult task. This difficulty

increases if the differences between normal and anomalous data are present in only a small

subset of features. An anomalous “score” is calculated as the distance between the trained

model and the test signal. This score is compared to a threshold and a binary decision of

“normal or anomalous” is given. Figure (2.1) shows the basic flow of this process.

2.2 Performance Metrics

In a good anomalous event detection system True Positive Rate (TPR), the anomalies cor-

rectly identified as outliers, is maximized while False Positive Rate (FPR), normal sounds

classified as outliers, is minimized. Figure (2.2) shows an average situation of medium

overlap between the distributions of normal and anomalous samples. Let the green peak

represent normal samples and the blue peak represent anomalous samples. A boundary

defined by the overlay aims at capturing the maximum anomalous samples while trying to

minimize the normal samples in its range. Anomalous samples in this range are the “True

Positives” while the normal samples in this range are “False Positives”. True positive rate

and false positive rate are thus defined as

TPR =
TruePositive

TotalPositive
(2.1)

FPR =
FalsePositive

TotalNegative
(2.2)

We also have True Negative Rate (TNR) and False Negative Rate (FNR)

TNR =
TrueNegative

TotalNegative
(2.3)

FNR =
FalseNegative

TotalPositive
(2.4)

6



Figure 2.2: TPR vs FPR

Figure 2.3: Area under ROC Curve

2.2.1 Accuracy

Accuracy is the number of samples that have been correctly identified. In other words it is

Accuracy =
TrueNegative+ TruePositive

Total
(2.5)

Accuracy is the most primitive and simple to apply performance metric. But if the

classes are imbalanced it can be misleading.

7



2.2.2 Area Under ROC Curve

Area under ROC curve (AUC) is another common performance metric and a representation

of the trade-off between FPR and TPR. The higher the AUC the better the model is in

differentiating between normal and anomalous samples. An AUC of 1.0 is a perfect model

while an AUC of 0.5 represents a model randomly guessing. An AUC of 0.5 is usually

considered the worst a model can perform. Anything below 0.5 is often an issue in the way

data has been labelled prior to training or testing. Figure (2.3) shows this trade-off between

FPR and TPR.

Limitations of Accuracy and AUC

Accuracy and AUC are suitable in situations where the positive and negative samples have

comparable number of samples. For ADS cases this is not always the case, in fact in most

cases we have far more normal samples as compared to abnormal. AUC also requires that

the models give probability to each sample based on a varying threshold of boundary. Some

one class classifiers used in ADS unsupervised detection do not assign a probability, but

rather give a defined label of 1 or 0. In such a situation AUC is also not a suitable metric to

utilize.

2.2.3 F1 Score

In ADS test cases we are often left with very few anomalous samples to deal with. Consider

the scenario in Figure (2.4). If we calculate accuracy we getAcc = TruePositive+TrueNegative
Total

=

982
990+20

= 97%

This may lead to a false interpretation of the models capacity. However looking at True

Positive Rate we get TPR = TrueNegative
Total

= 2
20

= 10% and FPR = FalsePositive
Total

= 10
990

=

1%. Very low TPR shows the model failed in recognizing anomalies completely. However

with Accuracy we get an inflated sense of accomplishment. AUC which depends on both

TPR being high and FPR being low, will be biased due to very low FPR. Which again is

8



Figure 2.4: Precision and Recall

dependant on the high skew of class samples in both classes and is not a representation of

the models capability.

Therefore we need another performance measure to append to our list of performance

metrics. F1 score is a good measure in such a case. It depends on Precision and Recall.

Precision and Recall

Precision and Recall are another two metrics which aim to understand the individual per-

formance of both normal and anomalous classification. They are defined as

Precision =
TruePositive

TruePositive+ FalsePositive
(2.6)

Recall =
TruePositive

TruePositive+ FalseNegative
(2.7)

Precision shows how many samples detected as anomalous are actually anomalous,

while Recall shows how many anomalous samples were correctly identified. Finally F1

score is defined as

F1Score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.8)

F1 Score is used to have a balance between Precision and Recall. It is a suitable measure

to use in cases of large difference between class sizes, and to give a priority to anomalous

samples being identified correctly.

9



2.3 Speaker Recognition and i-vector

In [7] i-vector were proposed as an improvement over Joint Factor Analysis (JFA) for

speaker recognition. Speaker recognition is the task of determining whether an audio sam-

ple comes from a specific speaker or not. It is used to determine identity of a speaker,

determine a change in speaker, group segments belonging to the same speaker, remove

segments belonging to speakers not in question etc.

The process of i-vector generation is lined out in Figure (2.5). It consists of extract-

ing features from audio, training a Universal Background Model (UBM), calculating the

Baum-Welch (BW) statistics, training a Total Variability Subspace (TVS) and calculating

the i-vector. After i-vector have been calculated, dimension reduction techniques and nor-

malization may be applied if needed.

2.3.1 Feature Extraction

There are three ways of extracting features from an audio file [25]. Frame level, block level,

and file level. Frame level divides the audio into small chunks and then extracts features

for each chunk. Every chunk is uniquely classified and aggregated results over the entire

file are used to provide a final comment or label through scoring [26]. Block level features

generation analyzes the audio in a block wise manner. Each block is comprised of multiple

frames (as previously discussed). Features extracted from one block are combined over a

file to form a complete representation.

File level feature extraction has become a very popular technique. It is suitable for

applications where there is not a time based information to be captured. In [12] the au-

thors present a fusion of i-vector generated using file-level cepstral features and a deep

convolutional network. A major advantage of file level features is that dimension reduction

techniques like Principal Component Analysis, Linear Discriminant Analysis and similar

projection techniques can be used.

10



File based features can be used to train Gaussian Mixture Models which produce a

representation of the audio input. These representations can then be used for similarity

scoring and classification. For example in [27] a Gaussian model is trained with MFCCs

and FP and the similarity between songs is found using Kullback Leibler divergence.

2.3.2 Universal Background Model

Audio features like MFCCs or spectral features like spectral centroid, spectral density etc,

are used to train a Universal Background Model (UBM). MFCCs have become a favourite

and have been used in many audio applications like music [25], turbine engines [28] and

DC machines [29]. MFCCs provide a compact representation of the spectral envelope of

the audio. Perceptual Linear Prediction (PLP) is another feature very similar to MFCCs. It

is motivated by hearing perception. PLP is shown to have some improved noise robustness,

but MFCCs are generally thought of as safer choice specifically for speech tasks.

UBM is a Guassian Mixture Model (GMM) that is composed of hundreds of Guassians

which aim to model the feature distribution of all input audio files. In [30] audio evaluation

methods are discussed using Gaussian Mixture Models for diagnosis and classification of

asthma attacks based on frequency analysis of breathing sounds. [31] also proposes a

gender classification system based on GMMs which classifies based on gender. A GMM

based UBM is a set of super-vectors of means, standard deviations, and weights. These

means, standard deviations, and weights correspond to each Guassian in the model.

2.3.3 Baum-Welch Statistics

File-level features are used alongside UBM to train a set of statistics for each set of features

[32]. These statistic are called Baum-Welch (BW) statistics. For anM length feature vector

the 0th (N ) and 1st (F ) order BW stats are calculated as follows

N(i) =
M∑
n=1

γn(i) (2.9)

11



Figure 2.5: i-vector Generation

F (i) =
M∑
n=1

γn(i) ∗ Yn (2.10)

Where γ(i) is the posterior probabilities of Guassian component of GMM, and Y is

MFCC feature vector.

2.3.4 MAP Adaptation and i-vector Extraction

I-vector model both speaker and channel variability and are used for speaker verification

and classification. Total Variability Space (TVS) is a subspace trained using UBM and BW

Stats. TVS assumes that the super-vectors which represent a set of features in GMM can

be decomposed as

µ = m+ Tw (2.11)

Here m is the mean super-vector in GMM corresponding to UBM. T is the low

dimensional TVS space. Subspace T is calculated using factor analysis. w is normally

distributed N(0, 1) vector, known as the i-vector.

Maximum A-Posteriori (MAP) Adaptation

The process of adapting the super-vector in GMM to a specific feature set is called MAP

adaptation. Target training data is aligned to the current GMM model, with sufficient statis-

tics the model learns to adapt the internal model to the current complete training feature
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Figure 2.6: MAP Adaptation

set. This adaptation is captured in the subspace TVS. Individual i-vector then represent

each file separately as mentioned above. This process can be seen in Figure (2.6). The blue

ellipses represent the GMM peaks in a 2D representation. The orange crosses show the

training data.

I-vector is a compact representation of the audio input, which is then used in place of

the audio file for classification, regression or any other modelling technique. A method for

calculating T and w is detailed in [33].

2.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) [34] is a supervised linear transformation technique

used to remove irrelevant or unnecessary dimensions. LDA is popularly employed in re-

ducing the dimension of i-vector which are often very high. It projects the i-vector into

a new sub-space that is tuned to optimize inter-class separability while minimizing intra-

class separability. The dimensions of LDA output is one less than the number of classes.

It is commonly used for i-vector, however it is more suitable in places where number of

speakers is high as otherwise resulting dimension can be too low to be of use.
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Figure 2.7: PCA vs LDA

2.5 Principal Component Analysis

Principal Component Analysis [35] is a feature extraction and dimension reduction tech-

nique. It finds a set of dimensions that are all orthogonal to each other, that is they are all

linearly independent to each other. Eigenvectors and eigenvalues corresponding to the co-

variance matrix of data are calculated. Eigenvalues are then sorted from high to low, and so

are their respective eigenvectors. Top k sorted eigenvectors are taken where k is the desired

dimension of the output. If the number of samples are n and m is the original dimension,

then the resulting transformation can be seen as

Outputk∗n = EigenV ectorsk∗m · Inputm∗n (2.12)
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CHAPTER 3

METHODS AND TECHNIQUES

In this chapter we will discuss some current methods of approaching ADS problems. This

will provide some insight of the kinds of approaches currently being employed. We will

also detail some popular techniques employed in i-vectors based classification and regres-

sion. After this section, we will be at a position to make our case of using i-vectors for

ADS cases.

3.1 Anomalous Detection of Sound

Our problem consists of detecting anomalous machine sounds, which is traditionally ac-

complished using unsupervised techniques. As mentioned previously, this is because the

structure of anomalous sounds is not defined. ADS, event detection, or anomaly detection

is an immense field with many applications in niche domains. In this section we focus more

on unsupervised techniques and their challenges.

3.1.1 The Challenge

In theory, anomaly detection is to define a region of interest and declare any outlier as

anomaly. However in practise this introduces a lot of challenges and difficulties. [20]

• Normal region boundaries are hard to define, as normal behavior is not completely

predictable as well. Anomalous sounds may also be very close to the structure of

normal, which makes it even more challenging to define a boundary.

• Availability of labeled data to test systems response to anomalies is usually low.

• If anomalies have been maliciously introduced, they may have masking making it

harder to differentiate from normal data.
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• Noise can sometimes mask or make it harder to define an anomaly from a noisy

normal sample.

• The definition of anomaly changes from task to task. This depends on the expected

fluctuation in normal data and the severity of missing anomalous samples. For eg. it

is acceptable to reject a finger print for security at a military base over the slightest

deviation from the normal. However, for personal phones and tablets, it would not

be desirable to have an average user input their finger prints a couple of times before

logging in.

Due to these reasons anomaly detection is often narrowed to the task, database, situation

and severity.

3.1.2 Traditional Methods for Unsupervised ADS

An anomaly score A(x, θ) is calculated as the distance of the test sample from a normal

model. Here, x is the the test sample and θ is our set of parameters of the normal model.

[5]. x is often a processed version of raw audio composed of a set of extracted features.

3.1.3 Guassian Mixture Models

A PDF-based process may use Gaussian Mixture Model (GMM) [36] to model the normal

data and separate outliers based on aposterior likelihoods. The GMM is trained on the

normal data and anomaly score is calculated as follows

A(x, θ) = −ln p(x/θ, y = 0) (3.1)

where y is the label of the data, and y=1 is an outlier. The p or probability measure is

calculated using

p(x) =
K∑
k=1

πkG(X/µk, σk) (3.2)
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Figure 3.1: Guassian PDF Models

µk and σk are the mean and standard deviation of the kth Gaussian of the model. Figure

(3.1) shows a simplified 2D three peak Gaussian model with some outliers.

If the anomaly score is above a threshold, the test sample is categorized an outlier.

Accuracy or performance metrics in this case depend on calculating the true positive rate,

outliers correctly identified as outliers; and false positive rate, normal sounds incorrectly

identified as outliers. Figure (2.2) shows the trade-off relationship between the two factors.

There is a limit to how much a well chosen threshold can increase the model performance. It

is essential to have the model parameters θ optimized to reduce the area of overlap between

TPR and FPR. [3]

GMMs have also been used for supervised anomaly detection. In [2] the authors use a

parallel set of two GMMs independently trained on audio inputs of screams and gunshots.

As the structure of the ’anomaly’ is determined or expected, a supervised technique works

well in detecting it.

3.1.4 Simple Auto Encoder

An Auto Encoder (AE) is a deep learning technique to learn the core structure of a set of

data. There has been a lot of work in using an AE to construct a normal model [5]. An AE

uses two neural networks termed encoder (E) and decoder (D). The E task is to encode or
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Figure 3.2: Auto Encoder Outlier Detection

convert the training data to a latent vector z. The D attempts to reconstruct the input using

this latent representation producing x̃. In this way a set of latent features representing the

input data is trained.

z = E(x/θE) (3.3)

x̃ = D(z/θD) (3.4)

The models are trained to reduce the reconstruction error ||x − x̃||2 . For making a

normal model the parameters are trained on normal samples only. Afterwards test samples

are fed into the AE and compared to their reconstructed version.

Theoretically if the model is able to reconstruct it well, the sample most likely follows

the normal configuration and therefore is classified as normal. If the reconstruction is poor,

the sample most likely is an outlier. Figure (3.2) shows an overview of this method of

outlier detection. Care needs to be taken in training the AE, if it is too generalized it would

not be able to detect the outliers.

3.1.5 Advanced Auto Encoder

There are many variations of the classic Auto Encoder employed for specific tasks. Two

versions used for ADS outlier detection are detailed below.

Denoising AE

As mentioned earlier Auto Encoders can suffer from over generalization or over fitting.

Denoising Auto Encoders bypass this issue by training the AE on a corrupted version of
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the input. This forces the latent feature layer to learn more robust features of the training

data. This can be specially useful in case of anomaly detection where anomalies may

share many features with normal data, and a simple AE may not be able to understand the

difference on its own. The input x is corrupted using an additive Guassian noise

xnoisy = x+N(x, σ ∗ I) (3.5)

Afterwards the Auto Encoder is used to train the latent feature layer with xnoisy as the input

and x as the target. The process discussed in Figure (3.2) is then used to check for outliers.

In [37] the authors use auditory spectral features with a bidirectional Long Short-Term

Memory (LSTM) denoising autoencoder. Auditory spectral features are extracted using

Short Time Fourier Transform. As both the encoder and decoder are neural networks,

a variety of different types of neural networks can be utilized here. Traditional neural

networks do not have a concept of context. Recurrent neural networks employ loops to

deal with this short coming. LSTMs are a type of recurrent neural network that have shown

to work very well with long term dependencies. Bidirectional LSTMs involve making a

copy of the first recurrent layer in the network, and providing the input sequence as-is to

one layer, and reversing it for the other layer. Using Bidirectional LSTMs give a strong

sense of context and completeness to the analysis of audio signals.

Variational AE

Vartional Autoencoder defer from the traditional AE on the fact that they are used to gen-

erate new data, without an input to reconstruct. Variational AEs learn the parameters of

the probability distribution representing the training data. We can then model from this

probability distribution and generate new and unique data samples, similar to Generative

adversarial network (GANs).

An anomaly detection method is proposed in [38] using reconstruction probability from
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a variational autoencoder. Reconstruction probability includes the probablistic properties

of the variational autoencoder, which makes it a better measure than reconstruction error.

They also focus on using the variational autoencoder’s generative capabilities to analyze

the cause of the anomaly. In [39] a variational autoencoder based anomaly detector is

presented that is able to incorporate both supervised and unsupervised cases. Thereby im-

proving results with known anomalies through supervised classification but not degrading

performance with unknown anomalies through unsupervised detection.

3.1.6 Support Vector Machine

Support Vector Machines (SVMs) are a type of supervised machine learning algorithm,

used in binary classification problems. An SVM takes input data for both classes and

generates a decision boundary that best separates them. This boundary, known as the hyper-

plane, is one which maximizes the margins from both classes. That is, the boundary is as far

as possible from both classes. This gives higher robustness to the classifier. Kernels are also

frequently used with SVMs for non-linear and complicated data sets by effectively mapping

the input data into a higher-dimensional space prior to finding a decision boundary. In [1]

the authors use an SVM based model for road surveillance, to detect emergency situations

of tire skidding and car crashes.

One-Class SVM

One-class SVM is a classification method for detecting anomalies. Unlike the traditional

SVM which is trained with samples from both classes One-class SVM is trained with one

class samples which is the “normal” class. It makes a models based on the properties of

normal cases and from this it can predict which test samples are unlike the normal training

samples. This is useful for detecting anomalies which are typically scarce and varied in

nature.
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3.2 I-vectors for Classification and Regression

i-vectors are a feature-modelling technique that builds upon acoustic features extracted

from the audio input. To the best of our knowledge i-vectors have not been used with

machine sounds. Therefore, in this section we discuss some other popular applications

they have been used in and that were referred to while researching this project.

3.2.1 Speaker Verification

This is a broad section covering all elements of detecting a speaker. This could be based

on individual identification, age or gender identification, accent classification or any other

aspect that can be used. In [7] i-vectors are presented for use in speaker verification.Two

datasets NIST 2006 with 350 males, 461 females, and 51,448 test utterances, and 2008 SRE

with 1140 females, 648 males and 37,050 files, are used to train and test the model respec-

tively. Channel compensation techniques, within-class covariance normalization (WCCN),

linear discriminate analysis (LDA), and nuisance attribute projection (NAP) were used.

Within Class Covariance Normalization (WCCN) uses information from class labelled

training data to find orthonormal directions in feature space that maximize task-relevant

information. Two classification methods were used to test the model, SVM with cosine

kernel, and a cosine similarity measure.

Distinct features of an individual beyond their identity, can be extracted from their

voice. This includes age, gender, accent etc. [9] use Least Squares Support Vector Regres-

sion to estimate age of speakers. Speaker age regression means estimating age of a speaker

from an unknown utterance. They also employ supervised classification with Cosine Dis-

tance Scoring which relates the unseen utterance to the model parameters and finds the

closest class corresponding to the speakers age. The database “aGender” with seven age-

gender classes was used for testing. In [40] an accent recognition model based on i-vectors

is presented. They used Support Vector Machine (SVM), the Naive Bayesian Classifier
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(NBC) and the Sparse Representation Classifier (SRC). The accents are differentiated by

speakers native to Hindi, Russian, Thai, Vietnamese, American English, and Cantonese,

speaking English language. SVM and SRC are shown to perform best with i-vectors.

3.2.2 Language Detection

Language Identification (LID) is the task of recognizing the language being spoken in an

audio, given that only one language is being spoken. In [41] a language recognition system

based on i-vectors is presented. In this paper, the authors trained an SVM for each indi-

vidual class (or language). The number of boundaries thus match the number of classes

of languages. WCCN is used alongside LDA and Neighborhood component analysis, two

dimension reduction techniques, to show improvement over baseline methods.

In [42] an i-vector-based out-of-set LID system is presented. LID is usually trained with

a set of known languages that are labelled. However, in cases where a language sample

was not in the training set, LID systems tend to perform very poorly. The authors of [42]

present an out of set (OOS) data detection method using a combination of two models.

One model was trained on target data and another model was trained with unlabeled data

for OOS detection. The Kolmogorov-Smirnov test is used to select candidates for OOS

from unlabelled data set. Every test sample is then fed into both models and per-class

outlier score is determined. This outlier score determines the confidence of the current i-

vector not belonging to any of the trained data. Three OOS detection methods are used (1)

One-Class SVM (2) kNN and (3) Distance to cluster centroid.

3.2.3 Music Classification

Music is an integral part of the human experience. Digital music has now almost completely

replaced all other forms of music; and therefore, technology for efficiently retrieving digital

music data is desired. Identification of music automatically from either artists or genre is an

interesting application of i-vectors. Firstly, modelling the characteristics and features of the
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music is essential. Different audio features are employed for this purpose; for example a

Fluctuation Pattern which captures the variability in the rhythms. MFCCs show the timbrel

aspect of a song and also work well in modelling the human voice. In [25] the authors

develop both supervised and unsupervised classification and identification models using

i-vectors for music similarity and artist classification.

For music similarity they use a block level similarity measure, which includes a set

of block features including spectral pattern, delta spectral pattern, variance delta spectral

pattern, correlation pattern, and spectral contrast pattern along with rhythm and timbre

information and the first derivative of a cent-scaled spectrum (SD). This set of features is

used with MFCCs to generate the i-vectors. A KNN distance classification algorithm is

then used for music similarity measures.

For supervised artist classification they employ MFCCs with SD. They use LDA to

reduce dimension of the i-vectors from 400 to 19, with 20 distinct artists to classify. Finally

probabilistic linear discriminant analysis (PLDA), KNN, and discriminant analysis (DA)

classifiers are used to test the system.

3.2.4 Environment Detection

Environment detection is a challenging application of i-vectors. Data is normally noisy, has

less structure, is more diverse, and spans a larger frequency range. With an increasingly

technological world with everyone owning smart devices an acoustic digital understand-

ing of the environment can have many benefits. These include handicapped assistance,

surveillance, and educational purposes. In [43] the authors present the argument that tradi-

tional methods like SVM and GMM are not enough to understand the very diverse nature

of environment sounds. Therefore, they use deep learning architectures including deep

neural networks (DNN), recurrent neural networks (RNN) and convolutional deep neural

networks (CNN).

As discussed before i-vectors are generated using utterance level features. In [43]
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the authors use a combination of features including Mel-frequency cepstral coefficients

(MFCC), log Mel-Spectrum, pitch, energy, zero-crossing rate, mean crossing rate etc. A

database from the DCASE challenge with fifteen unique locations is used to test the sys-

tem. Their findings show that DNN, RNN and CNN perform competitively with i-vectors,

though no system among GMM, i-vectors, DNN, RNN or CNN consistently performs bet-

ter over all fifteen scenarios. A fusion of temporal specialized models (CNNs, RNNs)

with resolution specialized models (DNNs,i-vectors) are shown to improve the accuracy

significantly.

3.2.5 Concluding Remarks

Anomalous Sound Detection is shown to be primarily outlier detection techniques. This is

because ADS databases often have more normal sounds as opposed to anomalous sound.

Even with anomalous sounds available the anomalous data is either scarce or difficult to

analyze, which is why outlier techniques work well. However supervised classification is

also used in some cases and can provide interesting insights into the type of outliers or

anomalous data present.

I-vectors are a very powerful tool for use in speaker recognition in both supervised

and unsupervised domains. In our case we aim to use i-vectors to differentiate between

‘normal’ and ‘anomalous’ sound samples within one toy using both supervised and outlier-

detection techniques. Following the research on current methods, we use SVMs, KNNs,

Discriminant Analysis and Naive Bayes as the supervised classifiers. We also use One-

Class SVM as an outlier detection method. The system is discussed in Chapter 4, and

results in Chapter 5.
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CHAPTER 4

PROPOSED SYSTEM AND SOLUTION

Our system is made up of five steps. (1) Extraction of PLP features (2) Training the UBM

model either by case or all-inclusive (3) Generating i-vectors (4) Normalization and (5)

Classification, supervised and unsupervised. PLP features are extracted using rastamat

toolbox [44] and UBM model and i-vectors generated using MSR Identity Toolbox [45].

Classification is done in both supervised and unsupervised ways. For supervised classi-

fication KNN-Cosine distance, Discriminant Analysis, Naive Bayes and SVM classifiers

are used. For unsupervised outlier-detection a one-class SVM is used. An overview of the

process is shown in Figure (4.1)

4.1 Database

The database ToyADMOS released by Koizumi et al. [6] is being used to test our system.

ToyADMOS provides a decent amount of anomalous samples with diversity and variety.

Operational sounds of the toys are recorded in both their normal state and with intentional

defects. The database has three toys, ToyCar, ToyConveyor, and ToyTrain. Every toy is

then further divided into ’cases’ with unique mechanical components like gears, motors

and pulleys, etc. Within each case there is a further sub division of normal to anomalous

sounds. Anomalous sounds have a variety of defects for each case.

Figure 4.1: Proposed System Flow Chart
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Four cases are provided for both ToyCar and ToyTrain, while three cases are given

for ToyConveyor. There are two types of files, IND and CNT. We will be using IND

files which include the entire duration from starting and stopping a toy, and are each 10-

11 seconds long. There are 1350 normal sounds and around 260 anomalous sounds for

each case for both ToyCar and ToyTrain. There are 1800 normal sounds and about 400

anomalous sounds for ToyConveyor per case. A more detailed description of the database

is provided in Appendix A.

Following the authors experiment in [6], only channel 1 is taken for each ToyCar and

ToyConveyor recording. For ToyTrain, since it is moving, all channels have been com-

bined. The audio is then mixed with environment sound provided with the database. A

random chunk of 11 seconds of environmental sound is extracted and mixed with the target

sound. A 10dB boost is given to noise samples for ToyCar and ToyConveyor, and to target

sound in ToyTrain. This is also following the authors experiment to balance the noise-

signal ratio. The audio files are then down-sampled to 16kHz before being fed into feature

extractor.

4.2 Feature extraction

Perceptual Linear Prediction (PLP) features were used to train UBM and extract i-vectors.

It has been used in speaker recognition [31], audio segmentation and clustering [46] and

music classification [47]. We take 12th order PLP features, their deltas and double deltas

and append them in a super-vector.

A remark on MFCCs

We also tested Mel-frequency cepstral coefficients (MFCCs) for our utterance level fea-

tures in training the UBM and extracting i-vectors. However we realized that MFCCs

while working well for stationary toys, Car and Conveyor, did not work for non-stationary

toy, Train. Analyzing models made through Guassian Mixtures there was little to no differ-

26



ence between structures of abnormal and normal data from Train made through MFCCs,

therefore it was discarded.

4.3 UBM training and i-vector generation

Each toy and its subsequent case is treated as a separate speaker. This gives eight speakers

each for ToyCar and ToyTrain, and six speakers for ToyConveyor. For each speaker, every

11 second IND file is taken as a separate channel. For each speaker-channel combination

there is one PLP representation vector. The UBM is trained on this aggregated PLP super-

vector for each toy separately.

We employ two methods of training UBM. All-UBM and Case-UBM. In All-UBM,

the UBM is trained on training data comprising of all cases within one toy. Then it is

used to extract i-vectors for all cases within that toy. In Case-UBM, the UBM is trained

separately on each case and i-vectors are extracted for that case specifically. In All-UBM

about twenty hours of data is taken for training the UBM for each toy. ToyCar and ToyTrain

have about five hours of data per case, while ToyConveyor have about six hours of data per

case. In Case-UBM about five hours of data is used for training the UBM for ToyCar

and ToyTrain, and six hours of data is used for ToyConveyor. As only one case is used

to train the UBM, only one case is used for training the BW stats, T-space and i-vector

generation. A similar amount of data is used to train the BW Stats, T-Space and subsequent

steps leading to i-vector generation. For All-UBM, even though all cases are used to extract

the i-vectors, for further tests of classification, each case i-vectors are extracted separately

for testing. Afterwards they may be fed to the classifiers independently or combined into

one all inclusive set. Figure (4.3) shows the process of UBM training and extracting the

i-vectors graphically.

Total Variability Space (TVS) is trained with 250 dimensions, which produces 250

dimension i-vectors.

27



Figure 4.2: UBM Training Methods

Training-Testing Split

An 80/20 split is taken for training the UBM and generating training/testing i-vectors. Ran-

dom 80 % data is taken for training making sure to maintain ratio of the normal/anomalous

samples. This process is repeated 3 times with individual random data and the whole pro-

cess up to classification is also performed 3 times. In end the classification results are

averaged over the 3 trials.

4.4 Supervised classification

Different classifiers are used to classify between normal and abnormal sample points. (1)

K-Nearest Neighbor (KNN), (2) Discriminant Analysis (DA), (3) Naive Bayesian Clas-

sifier (NBC), and (4) SVM Quadratic. Classification is done on either case wise, that is

classifying normal and anomalous within one case only, or with all cases combined. Case

wise can be done in two ways, either through a UBM trained on that case specifically or

with a UBM trained on all cases.
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KNN-Cosine

Cosine distance (equation 4.1) has been successfully used with i-vectors in [7] to calculate

the similarity between two vectors. Therefore we use KNN-Cosine for supervised classifi-

cation purposes for one of our test conditions.

k(w1, w2) =
wt

1.w2

||w1||||w2||
(4.1)

Discriminant Analysis

i-vectors are assumed to have a normal distribution of N(0, 1). This makes Discriminant

Analysis, which assumes classes have Gaussian distributions,a very suitable method for

our purposes. This is the second classifier we tested.

Naive Bayes Classifier

Naive Bayes Classifier are a collection of classifiers based on Bayes Theorem (equation

4.2). Bayes Theorem finds the probability of an event or outcome, given another event or

evidence. In equation 4.2 let y be the outcome or label, and X the feature set. P (X/y)

gives the probability of a set of features given a specific class label. P (y) is the probability

of a specific class and P (X) is probability of a specific feature set.

P (y/X) =
P (X/y)P (y)

P (X)
(4.2)

The ’Naive’ part of Naive Bayesian Classifier assumes all features are independent of

each other. This makes solving the equation 4.2 much easier, and it can be reduced to

equation 4.3.

P (y/x1, x2...xn) =
P (y)

∏
P (xi/y)

P (x1)P (x2)..P (xn)
(4.3)

Removing the constant denominator and converting to a classifier model, we get
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Figure 4.3: One Class SVM

y = argmaxyP (y)
∏
P (xi/y) (4.4)

Which is the definition of Naive Bayes Classifier. It has also been shown to work well

with i-vectors [40]. This is the third classifier we tested.

Support Vector Machine

A Support Vector Machine (SVM) is a binary classifier, which is defined by a separating

hyperplane. With labeled training data, the algorithm finds the best hyperplane to separate

the two classes. Our two classes are ‘normal’ and ‘anomalous’. An SVM with a quadratic

kernel worked best with our data overall so this was used as the fourth classifier. SVMs

have been used extensively with both i-vectors e.g. in [41, 48, 49] and ADS cases [1].

4.5 Unsupervised Classification

For unsupervised or outlier detection we have used the one-class SVM. The one-class SVM

is an unsupervised algorithm which is tuned to learn novelty or outlier detection. It is

trained on the normal data and classifies every test sample as belonging to the trained data

or an outlier to the trained data. Figure (4.4) shows a one-class SVM trained on normal

data.
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Using the training i-vectors, only the normal i-vectors are used to train the model. This

process is repeated 3 times using 3 different random training i-vectors generated through

UBM training. The testing data normal and anomalous samples are used to test the model.

The f1-score is tuned to pick the labels of anomalous as the target.
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CHAPTER 5

RESULTS AND DISCUSSION

In this section performance of i-vectors classification for both supervised and unsupervised

cases is discussed under both types of UBM training. We also compare results between

unbalanced and balanced data in supervised classification.

5.1 Baseline

For our baseline we compare our results to the experiments of the author in [6]. A total of

1000 random samples were picked from normal samples of each toy and each case. The

rest of normal samples and anomalous samples were used to test. This gave around 350

normal samples and 260 anomalous test samples for each ToyCar and ToyTrain, and around

800 normal samples and 400 anomalous test samples for ToyConveyor.

An unsupervised auto encoder structure was used, and trained with random 1000 sam-

ples of each case. One case was tested at a time. The encoder and decoder had one fully

connected neural network (FCN) layer. Four hidden FCN layers with 512 hidden units

were used with RelU connection. The encoder output had 128 dimensions. The recon-

structed output from the decoder was compared to the input and a reconstruction error was

calculated. If this error exceeded a threshold for even one frame, the whole audio input was

considered anomalous. In the paper the authors had given result for area under ROC curve,

for case 1 of each toy. We have used their provided code to get results for other cases. In

Table 5.1 and Table 5.2, the results of the authors auto encoder structure are detailed.
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Table 5.1: Baseline Results: AUC

ToyCar ToyConveyor ToyTrain

Case 1 87.4 98.1 84.3

Case 2 94.6 96.2 84.7

Case 3 86.4 98.2 62.6

Case 4 97.5 66.3

Table 5.2: Baseline Results: F-Measure

ToyCar ToyConveyor ToyTrain

Case 1 83.8 89.4 75.2

Case 2 90.7 86.5 73.4

Case 3 77.8 89.4 15.7

Case 4 90.7 27.1

5.2 Performance Metric

An F1 score is calculated as the performance metric. This is preferred over the plain accu-

racy metric or area under curve of the ROC because of the mismatch of normal to abnormal

class size. Normal samples are on average 5-6 times more numerous as compared to ab-

normal samples.

For unsupervised, one-class SVM area under curve is also not a suitable measure so F1

score is used here as well. For unsupervised tests 80% random values from normal data are

taken to train the model and the model is tested with the remaining normal samples and all

anomalous samples. This process is repeated three times and the output F1 score averaged.

Difference to baseline

The baseline results are provided as area under curve (AUC) of ROC curve and F-measure

score at 10% false positive rate. Because of our limitations with difference in sample sizes
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of test, and also the classification technique of one-class SVM, we have only provided F1

score (or F-Measure). F1 score is a specific point on the ROC Curve. For F1 score to be

high both precision and recall need to be high. On average the F1 score is a more strict

parameter of performance as compared to AUC. To maintain comparability we will discuss

AUC scores but will directly compare our F1 score to baseline F1 score separately.

5.3 UBM - All

In this section UBM trained on all cases from one toy are noted which makes around 20

hours of data per toy.

5.3.1 Supervised Results

Results of F1 Score from KNN, Bayes, DA and SVM for both unbalanced and balanced i-

vectors are noted. Table 5.3, 5.4 and 5.5 give results for ToyCar, ToyConveyor and ToyTrain

respectively. For every test we have results from each case independently, their average and

also a test for all cases. In ’All’ normal values are compiled into one normal data set and

all anomalous samples for one anomalous data set.

Table 5.3: Toy Car Supervised Results UBM-All

Classification Case 1 Case 2 Case 3 Case 4 Avg All

KNN Cosine 0.1 21.3 38.3 65.3 31.2 0.0

Discriminant Analysis 71.2 72.7 88.7 90.6 80.8 0.0

Bayes 96.8 99.3 97.8 100 98.4 0.0

SVM 95.1 98.7 97.3 99.7 97.7 0.0

Baseline FMeasure 83.8 90.7 77.8 90.7 85.6

Baseline AUC 87.4 94.6 86.4 97.5 91.4
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Table 5.4: Toy Conveyor Supervised Results UBM-All

Classification Case 1 Case 2 Case 3 Avg All

KNN Cosine 100 93.4 99.5 97.6 97.4

Discriminant Analysis 98.3 90.7 96.3 95.1 85.9

Bayes 100 98.3 100 99.4 97.2

SVM 100 99.2 99.7 99.6 98.7

Baseline FMeasure 89.4 86.5 89.4 88.4

Baseline AUC 98.1 96.2 98.2 97.5

Table 5.5: Toy Train Supervised Results UBM-All

Classification Case 1 Case 2 Case 3 Case 4 Avg All

KNN Cosine 51.3 8.8 24.6 16.6 25.3 0.0

Discriminant Analysis 78.9 67.6 41.9 44.9 58.3 6.3

Bayes 95.7 90.9 96.2 95.8 94.4 1.9

SVM 88.8 81.0 90.9 91.7 88.1 1.4

Baseline FMeasure 75.2 73.4 15.7 27.1 47.8

Baseline AUC 84.3 84.7 62.6 66.3 74.5

5.3.2 Unsupervised One-class SVM Results

Tables 5.6 - 5.8 show results from one-class SVM for all three toys. Values of parameters

gamma and nu are swept over ranges [0.01,10] and [0.01,0.5] and the set with best results

is chosen for each test.
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Table 5.6: Toy Car One-class SVM Results UBM-All

Method Case 1 Case 2 Case 3 Case 4 Avg All

One-Class SVM i-vector 83.3 96.6 97.3 99.7 94.2 32.3

Baseline FMeasure 83.8 90.7 77.8 90.7 85.6

Baseline AUC 87.4 94.6 86.4 97.5 91.4

Table 5.7: Toy Conveyor One-class SVM Results UBM-All

Method Case 1 Case 2 Case 3 Avg All

One-Class SVM i-vector 99.7 80.6 99.2 93.1 91.6

Baseline FMeasure 89.4 86.5 89.4 88.4

Baseline AUC 98.1 96.2 98.2 97.5

Table 5.8: Toy Train One-class SVM Results UBM-All

Method Case 1 Case 2 Case 3 Case 4 Avg All

One-Class SVM i-vector 80.4 57.7 59.2 57.26 63.6 25.7

Baseline FMeasure 75.2 73.4 15.7 27.1 47.8

Baseline AUC 84.3 84.7 62.6 66.3 74.5

5.3.3 Discussion UBM-All Results

The difference, improvement or depreciation in results, are shown in Tables 5.9 and 5.10.

Car and Train show very poor results when all cases have been combined into one. This

may be due to high differences between the mechanical components within cases for these

two toys. Overall the supervised results are good and consistent for individual cases, with

Naive Bayes and SVM showing the best results. In Unsupervised one case of Car and

one case of Train do not perform better than baseline. However, over the other cases the

improvement is high.
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Table 5.9: UBM-All: Improvement of Supervised Best Result relative to Baseline F-
Measure

ToyCar ToyConveyor ToyTrain

Case 1 13.0 10.6 20.5

Case 2 8.6 12.7 17.5

Case 3 20.0 10.6 80.5

Case 4 9.3 68.7

Average 11.3 11.6 46.8

Table 5.10: UBM-All: Improvement of Unsupervised One-class SVM relative to Baseline
F-Measure

ToyCar ToyConveyor ToyTrain

Case 1 -0.5 10.3 5.2

Case 2 5.9 -5.8 -15.7

Case 3 19.5 9.8 43.5

Case 4 9.0 30.1

Average 8.5 4.7 15.8

5.4 UBM -Case

In this experiment, the UBM is trained on one case at a time, and the same case is used for

extracting i-vectors. As before, results for both balanced and unbalanced data are provided

for supervised results.

5.4.1 Supervised Results

Results of F1 Score from KNN, Bayes, DA and SVM for both unbalanced and balanced

i-vectors for UBM-Case are given in Table 5.11, 5.12 and 5.13. For every test we have

results from each case and their average.
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Table 5.11: Toy Car Supervised Results UBM-Case

Classification Case 1 Case 2 Case 3 Case 4 Avg

KNN Cosine 88.9 12.4 97.9 99.3 74.6

Discriminant Analysis 88.7 70.3 98.6 99.3 89.2

Bayes 96.6 94.5 98.9 99.6 97.4

SVM 95.9 92.1 98.7 100 96.7

Baseline FMeasure 83.8 90.7 77.8 90.7 85.6

Baseline AUC 87.4 94.6 86.4 97.5 91.4

Table 5.12: Toy Conveyor Supervised Results UBM-Case

Classification Case 1 Case 2 Case 3 Avg

KNN Cosine 99.5 95.7 99.7 98.3

Discriminant Analysis 98.5 87.3 98.5 94.7

Bayes 100 97.8 100.0 99.3

SVM 100 99.1 99.7 99.6

Baseline FMeasure 89.4 86.5 89.4 88.4

Baseline AUC 98.1 96.2 98.2 97.5

Table 5.13: Toy Train Supervised Results UBM-Case

Classification Case 1 Case 2 Case 3 Case 4 Avg

KNN Cosine 29.5 3.9 12.4 7.6 13.4

Discriminant Analysis 84.9 70.7 70.3 66.7 73.1

Bayes 97.7 93.7 94.7 98.9 96.3

SVM 91.4 85.9 92.1 90.0 89.9

Baseline FMeasure 75.2 73.4 15.7 27.1 47.8

Baseline AUC 84.3 84.7 62.6 66.3 74.5
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5.4.2 Unsupervised One-class SVM Results

Same as before, a one-class SVM is trained on 80% of normal sounds randomly selected.

The remaining normal sounds and anomalous sounds are used for anomaly or novelty de-

tection. Results of this experiment with UBM-Case are listed in Tables 5.14-5.16.

Table 5.14: Toy Car One-class SVM Results UBM-Case

Method Case 1 Case 2 Case 3 Case 4 Avg

One-Class SVM i-vector 96.3 97.6 98.0 99.2 97.8

Baseline FMeasure 83.8 90.7 77.8 90.7 85.6

Baseline AUC 87.4 94.6 86.4 97.5 91.4

Table 5.15: Toy Conveyor One-class SVM Results UBM-Case

Method Case 1 Case 2 Case 3 Avg

One-Class SVM i-vector 99.7 96.4 99.3 98.5

Baseline FMeasure 89.4 86.5 89.4 88.4

Baseline AUC 98.1 96.2 98.2 97.5

Table 5.16: Toy Train One-class SVM Results UBM-Case

Method Case 1 Case 2 Case 3 Case 4 Avg

One-Class SVM i-vector 90.1 77.1 62.8 77.2 76.8

Baseline FMeasure 75.2 73.4 15.7 27.1 47.8

Baseline AUC 84.3 84.7 62.6 66.3 74.5

5.4.3 Discussion UBM-Case Results

The comparison to baseline, the improvement or depreciation, is shown in Tables 5.17 -

5.18. Compared the UBM trained on all cases we see a significant improvement through

out the results, specifically for the unsupervised scenario.
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Table 5.17: UBM-Case: Improvement of Supervised Best Result relative to Baseline F-
Measure

ToyCar ToyConveyor ToyTrain

Case 1 12.8 10.6 22.5

Case 2 3.8 11.2 20.2

Case 3 21.1 10.5 79.0

Case 4 8.9 71.7

Average 11.7 10.8 48.3

Table 5.18: UBM-Case: Improvement of Unsupervised One-class SVM relative to Baseline
F-Measure

ToyCar ToyConveyor ToyTrain

Case 1 12.5 10.6 14.8

Case 2 6.9 12.5 3.7

Case 3 20.2 10.2 47.1

Case 4 8.5 50.0

Average 12.0 11.1 28.9

5.5 Concluding Remarks

Over all results show that i-vectors are a good method of capturing the features for machine

sounds. For supervised results we see good and improved results for all of the toys. With

supervised not only do we see a significant improvement over the baseline results, but we

also see very high accuracy results in themselves. Unsupervised results have also shown

improvement over the baseline results. UBM trained on a case wise basis performs better

than UBM trained on all cases.

The experiments point to i-vectors being a viable and dependable method for working

with machine sounds anomalous sound detection, in both supervised and unsupervised

scenarios.
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CHAPTER 6

CONCLUSION

In this research project we investigated the use of i-vectors for classification in ADS use

cases, which to the best of our knowledge has not been investigated before. We have

extensively researched methods which bridge the Anomalous Detection of Sounds (ADS)

in machines and popular classification methods used with i-vectors. We report our results

using different training techniques of Universal Background Model (UBM) for an in-depth

analysis. We have used the database ToyADMOS for our research work because it provides

a generous variety and number of anomalous samples to develop and test models on.

We have shown results for both supervised and unsupervised applications of ADS. For

each test in supervised we have used K-Nearest Neighbours, Naive Bayes, Discriminant

Analysis and Quadratic SVMs as classifiers. For unsupervised we have used one-class

SVM which is trained on normal samples only. All of these tests are done for UBM trained

two ways, i.e UBM-All and UBM-Case. UBM-All is a UBM trained on all data of one toy,

while UBM-Case is trained on one case of a toy.

Our results show that i-vectors are a good choice for using with Machine sounds. We

have achieved on average achieved high, robust and consistent results for both supervised

and unsupervised methods of classifying.

Further work on this project can include additional utterance features to be added along-

side PLP. We had reviewed a number of features like MFCCs, spectral centroid, zero cross-

ing rate and short time energy, and there is potential to incorporate them to improve the

models.
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APPENDIX A

DESCRIPTION OF DATA BASE

The ToyADMOS dataset [6] consists of three types of datasets for three different tasks, with

a different toy. Normal and anomalous sounds are collected for each. Normal sounds are

where the toy operates according to specifications, while anomalous sounds are when the

target machine is made to operate anomalously by adding extraneous objects or introducing

defects.

Toy Car

Intended for product-inspection tasks. A toy car called ’mini 4WD’ is used, which is driven

by a small motor and gears/shafts. The toy car moves on an inspection device. Sound data

is collected with four microphones set close to the inspect device. Each further case of toy

car is designed with a combination of two types of motors and bearings, giving a total of

four cases. Each IND normal and anomalous sound is 11 seconds long. There are 1350

normal samples and around 250 anomalous samples for each case. Anomalous sounds were

produced by damaging the shaft, gears, tires, and voltage.

Toy Conveyor

Intended for fault diagnosis tasks in a stationary machine. A toy conveyor is fixed on a desk,

and is used to transport a mini tin toy. Sound is again collected with four microphones, with

one attached to body of conveyor and rest on the table. Three different sizes of conveyors

produced by same manufacturer are used to create three cases of Toy Conveyor. There

are 1800 normal IND and about 350 anomalous samples, each 10 seconds long, per case.

Anomalous sounds were produced by damaging the tension pulley, trail pulley, and belt

and changing the voltage
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Table A.1: Types of Defects in Toys, taken from [6]

ToyCar ToyConveyor ToyTrain
Parts Anomaly Parts Anomaly Parts Anomaly
Shaft Bent Tension Pully Excessive tension First Carriage Chipped wheel axle
Gears Deformed,Melted Tail Pully Excessive tension, Removed Last Carriage Chipped wheel axle
Tires Coiled, plastic/steel ribbon Belt Attached three metal objects Straight railway track Broke, Obstruction, Disjointed
Voltage Over/Under Voltage Over/Under Curved railway track Broke, Obstruction, Disjointed

Toy Train

Intended for fault diagnosis tasks in a non-stationary machine. A toy train operates on a

railway track. Sound data is collected with four microphones. Each case of toy train is

through a combination of two types of trains (commuter and a bullet) and two types of

scales (HO-scale and N-scale). Giving a total of four cases. Each case has 1350 normal

samples and 270 anomalous samples. Anomalous sounds were produced by damaging the

first/last carriage and straight/curved railway track

Environmental Sounds

Environmental noise is provided with the database. It is intended to simulate a factory

environment and included noise samples collected at real factory locations. These include

collisions, drilling, pumping and airbrushing.
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