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SUMMARY

Seismic inversion, and more generally geophysical exploration, aims at better under-

standing the earth’s subsurface, which is one of today’s most important challenges. Firstly,

it contains natural resources that are critical to our technologies such as water, minerals

and oil and gas. Secondly, monitoring the subsurface in the context of CO2 sequestration,

earthquake detection and global seismology are of major interests with regard to safety and

the environment hazards. However, the technologies to monitor the subsurface or find re-

sources are scientifically extremely challenging. Seismic inversion can be formulated as a

mathematical optimization problem that minimizes the difference between field recorded

data and numerically modeled synthetic data. The process of solving this optimization

problem then requires to numerically model, thousands of times, wave-propagation in

large three-dimensional representations of part of the earth subsurface. The mathemati-

cal and computational complexity of this problem, therefore, calls for software design that

abstracts these requirements and facilitates algorithm and software development.

My thesis addresses some of the challenges that arise from these problems; mainly the

computational cost and access to the right software for research and development. In the

first part, I will discuss a performance metric that improves the current runtime-only bench-

marks in exploration geophysics. This metric, the roofline model, first provides insight at

the hardware level of the performance of a given implementation relative to the maximum

achievable performance. Second, this study demonstrates that the choice of numerical dis-

cretization has a major impact on the achievable performance depending on the hardware

at hand and shows that a flexible framework with respect to the discretization parameters

is necessary. In the second part, I will introduce and describe Devito, a symbolic finite-

difference DSL that provides a high-level interface to the definition of partial differential

equations (PDE) such as the wave equation. Devito, from the symbolic definition of PDEs,

then generates and compiles highly optimized C code on-the-fly to compute the solution
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of the PDE. The combination of the high-level abstractions and the just-in-time compiler

enable research for geophysical exploration and PDE-constrainted optimization based on

the paradigm of separation of concerns. This allows researchers to concentrate on their

respective field of study while having access to computationally performant solvers with a

flexible and easy to use interface to successfully implement complex representations of the

physics. The second part of my thesis will be split into two sub-parts; first describing the

symbolic application programming interface (API), before describing and benchmarking

the just-in-time compiler. I will end my thesis with concluding remarks, the latest develop-

ments and a brief description of projects that were enabled by Devito.



CHAPTER 1

INTRODUCTION

1.1 Introduction and Background

Understanding the physics of our surrounding has driven science and technology for a long

time and while some part of the earth is well know and understood, its subsurface is mostly

unknown. The subsurface is one of today’s most important challenges. Firstly, it con-

tains natural resources that are critical to our technologies such as water, minerals, gas and

oil. Secondly monitoring of the subsurface such as CO2 sequestration [1, 2], earthquake

monitoring and prediction [3] and global seismology [4, 5] are major problems for safety

and environments. However, the technologies to monitor or find these resources are sci-

entifically extremely challenging. My thesis addresses some of the challenges that arise

from these problems, mainly the computational cost and the access to the right software for

research and development.

Seismic imaging estimates subsurface parameters such as the velocity of sound waves

or the rock’s density from pressure measurements recorded at the surface of the earth or the

ocean. This parameter estimation problem can be formulated as a mathematical optimiza-

tion problem that is usually the minimization of a data misfit between the field recorded

data, and numerically generated synthetic data [6]. The optimization problem and its

minimization algorithm therefore involves solving the wave-equation, a partial differen-

tial equation (PDE), either in the frequency domain via iterative solvers [7, 8, 9, 10] or in

the time domain via time-steppers [11, 12, 13]. In practice, the type of seismic sources

used in the field to record the data are bandwidth-limited, and, unlike other fields such as

Medical Imaging, seismic measurement can only be recorded at the surface and/or at very

limited number of well locations. These two physical constraints render the mathematical
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data fitting problem ill-posed and non-convex in most cases. As a consequence, extensive

research has been directed towards finding algorithms to solve seismic inversion and imag-

ing problems with good or less good success depending on the situation and the quality of

available datasets, e.g. [6, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. For these reasons,

this is a field that is still in active development.

While the mathematical difficulty to solve the data-fitting optimization is complex,

one of its main requirement is to have access to computationally efficient wave-equation

solvers. The problem formulation requires solutions of thousands of wave-equations in or-

der to achieve an acceptable (inversion) results for large scale domains. A standard seismic

problem involves an unknown (discrete representation of the subsurface) typically with up

to a billion unknowns:

minimize
x

O(1e4)∑

i=1

fi(x), x ∈ R1e9. (1.1)

However, this computational complexity and cost cannot become a burden to mathemati-

cians or geophysicist whose domains of expertise and interest are optimization algorithms,

subsurface parameters estimation, and imaging and not high-performance computing to

carry out the wave simulations. For these reasons, well designed software including an

interface to PDE solvers are necessary to provide a workflow that allows separation of con-

cerns and rapid innovation. In addition to the computational demand of having to solve

the wave-equation many times for thousands of times steps, gradient calculations of inver-

sion algorithms often require solutions of the adjoint equation. As I will explain below,

the derivation of the adjoint wave equation itself including its interaction with the forward

wavefield is challenging since it is generally impossible to store this state variable in mem-

ory. In practice, storage of this variable may require terabytes of memory because of our

model size and number of time steps (O(1e9) grid points and O(1e4) time-steps). This

model size calls for advanced methods such as optimal checkpointing [26, 27, 28, 29] or
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compression methods [30].It is clear that this type of additional requirements add com-

plexity to the wave-equation solver and requires special care in the design of the interface

so that these additional requirements can be accommodated and implemented by domain

specialists.

The concept of separation of concerns in computational physics has led to numerous

projects that motivated my core contribution: Devito [13]. Devito is a finite-differences

domain-specific language (DSL) that provides a symbolic interface to define partial differ-

ential equations (PDE) and implements its own just-int-time compiler. High-level inter-

faces such as symbolic DSLs and just-in-time compilers are gaining attention and earlier

work in computational fluid dynamics (CFD) provided a strong basis and justification for

it. The need for a high-level interface for CFD led to the design of symbolic DSLs such as

FEniCS [31] or Firedrake [32] that provide a symbolic interface to define the weak form

of variational problems. Both of these two frameworks implement the same DSL known

as UFL [33]. The success of these DSL laid the ground for Devito’s high-level user in-

terface. Moreover, Devito also relies on just-in-time code generation and compilation to

provide state-of-the-art computational performance. A thorough overview of the literature

is detailed in each of the Chapters constituting my thesis.

The main aim of my thesis is to find an answer to the extreme computational challenges

of seismic inversion while providing an interface that enables rapid code development, with

a carefully designed DSL, and performance tools such as automatic roofline performance

benchmark [34]. My introduction is organized as follows. First, I introduce the seismic

inversion problem in more detail including its mathematical formulation. Next, I provide a

motivating example that highlights the complexities that arise when dealing with realistic

physical models that describe wave motion in the Earth subsurface. After discussing this

example, I will define the objectives of my thesis and detail my contributions and conclude

with an outline of the three main chapters of my thesis.
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1.2 Wave-equation based geophysical exploration

Wave-equation based seismic inversion, including Full-Waveform Inversion (FWI), aims

to estimate one or more physical properties of the Earth subsurface by minimizing the mis-

fit between multiple observed shot records (field recorded data) of a seismic survey and

their numerically modeled counterparts. To model these predicted shot records, I solve

the wave-equation for each individual source location. These simulated shot records them-

selves depend on the parametrization m of the wave propagator in terms of physical rock

parameters that include the compressional wavespeed, density of mass and potentially other

parameters. During seismic inversion, we are interested in obtaining estimates for gridded

spatial distributions of these parameters.

In its most basic form, the misfit function used to compare measured and predicted data

in the `2 − norm reads [35, 6]:

minimize
m

f(m) =
ns∑

i=1

1

2

∥∥∥dpred
i (m,qi)− dobs

i

∥∥∥
2

2
, (1.2)

where f(m) is the objective function as a function of the discretized model parameters

(slowness squared with slowness = velocity−1 ) collected in the vector m. The index i runs

over the total number of shots ns. The predicted data dpred
i is represented by the solution

of the wave equation as follows:

dpred
i (m,qi) = Pru(m)

u(m) = A(m)−1P>s qi.

(1.3)

In this expression, the matrix A(m) represents the discretized wave-equation parameter-

ized by the unknown model vector m. The vector qi is the time-dependent source distri-

bution for the ith shot record. This sourcetime function is injected into the grid of wave

equation solver by the adjoint (denoted by the ·> symbol) of the restriction operator Ps.
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This latter operator restricts the wavefield to the source location. After applying the inverse

of the wave operator, we simulate observed data by restricting the wavefield to locations of

the receivers via the restriction operator Pr.

In this thesis, I concentrate on wave simulations with time-domain finite differences for

the following reasons. First, I am interested in inversion in highly heterogeneous media.

While mesh-based methods [36, 37, 38, 39] may be more accurate, including a mesh may

make the inversion more complicated as this mesh needs to be updated during the itera-

tive inversion. And, secondly, (spectral) finite element methods often require expensive

implicit solvers, which rapidly becomes too expensive for the large models of interest in

this thesis. I will motivate this choice more in each chapter in relation to the computational

performance and the accuracy of the wave-equation solver for large scale seismic inverse

problems.

Optimization problems of the form listed in Equation 1.2 are known as non-linear para-

metric least-squares problems, since the predicted data simulated with the forward model-

ing propagator depends nonlinearly on the unknown parameters m. The aim is to minimize

the objective function with respect to the model parameter m. Because the dimensionality

of m is high, we have to rely on local derivative based optimization methods to minimize

Equation 1.2. We obtain the gradient by applying the chain rule and taking the partial

derivative of the inverse wave-equation A(m)−1 with respect tom. This yields the follow-

ing expression for the gradient [40, 41, 17, 7]:

∇f(m) = J>(m)
[
PrA(m)−1P>s q− dobs

]
, (1.4)

where J(m) is the Jacobian:

J(m) =
∂

∂m

[
PrA(m)−1P>s q

]

= PrA(m)−1∂
2u(m)

∂t2

(1.5)
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This gradient of the objective function in Equation 1.2 can be rewritten as

∇f(m) = −
nt∑

t=1

u[t]� v̈[t]. (1.6)

In this expression for the gradient, the sum over the element-wise product (denoted by the

symbol �) runs over the number of computational time-steps nt. The vector v̈ denotes

the second time derivative of the adjoint wavefield v. Physically, this sum corresponds to

the zero-lag correlation between the forward and second time derivative of adjoint wave-

field. While the above expression for the gradient looks simple, there is an important

complication that stems from the fact that the adjoint wave equation is solved backwards

in time. This means that one can not simply compute the above sum. Moreover, the need

for an adjoint wave equation may complicate things in situations where the wave equa-

tion at hand is for physical and mathematical reasons, not self adjoint. The latter situation

arises when dealing with unphysical but numerical feasible discretizations of wave motion

in anisotropic media where the wavespeed depends on the propagation direction.

To be more specific, I will illustrate the main challenges of seismic imaging and why

Devito is the right tool to tackle these challenges that include the fact that

• wave equations associated with realistic representations of the physics, such as anisotropy,

are mathematically complex and computationally extremely demanding (Add foot-

note and say how many floats per grid point for TTI) [42, 43] (Chapter 2 and 4).

Therefore, the implementation of anisotropic wave propagators in low level lan-

guages such as C or FORTRAN can take large amounts of human-time and typically

results in monolithic codebases that are inflexible and difficult to maintain. Because

Devito provides a high-level symbolic interface, it allows for automatic code genera-

tion that are computationally performant without relying on low-level manual coding.

Instead, Devito derives its performance from modern state-of-the-art compiler tech-

nology and design that takes abstract symbolic expressions for wave equations as
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input and produces highly optimized low-level C code as output.

• derivations of realistic representations for the physics can also lead to non self-adjoint

systems [44]. Unfortunately, this lack of being self-adjoint is often overlooked due to

the sheer amount of work it takes to implement the forward wave-equation. Instead,

systems are erroneously assumed to be self-adjoint. I will demonstrate what the

consequences are of this wrong assumption regarding wave propagation itself and

inversion, which relies on computing the gradient.

Throughout my thesis, I demonstrate that the above complexities can be handled by the

right tools; modern automatic code generation in combination with proper abstractions in

the form of a domain-specific language (DSL). Devito combines these two aspects into a

finite-difference DSL with its own symbolic compiler and code generation. As I mentioned

above, Devito implements a symbolic finite-difference DSL based on sympy [45] that

allow to define PDEs in terms of mathematical expressions. This high level interface is

designed to drastically shorten the turn around time for the implementation of a new wave

equation to weeks (or days) rather than months, which are usually necessary for a by-hand

implementation. The definition of the equation at a mathematical level also negates the

complexity associated with the implementation of code associated with the adjoint PDE.

Second, because Devito uses state-of-the art code generation tools [46, 47, 48, 49], the

computational performance matches, and in some cases even surpasses, hand-tuned codes.

With these two feature satisfied, Devito is a flexible and complete DSL that offers the right

high-level interface for rapid development in the context of complex wave physics, and

provides the computational performance needed for large scale inverse problems through

its code generation and just-in-time compiler and ability to properly handle adjoints.
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1.3 Motivational example1

As stated before, my main motivation is wave-equation based seismic inversion. In this

section, I highlight why high-level interfaces are extremely important for easy and rapid

development of simulation and inversion codes in exploration geophysics. The example

I choose is an anisotropic representation of the physics called Transverse Tilted Isotropic

(TTI) [50]. This representation for wave motion is one of the most widely used in explo-

ration geophysics since it captures the leading order kinematics and dynamics of acoustic

wave motion in highly heterogeneous elastic media where the medium properties vary more

rapidly in the direction perpendicular to sedimentary strata [baysal1983, 51, 52, 53, 54, 55,

56, 57, 58, 44, 59, 60, 61, 62, 63, 64]. The TTI wave equation is an acoustic, low dimen-

sional (4 parameters, 2 wavefields) simplification of the 21 parameter and 12 wavefields

tensorial equations of motions [65]. This simplified representation is parametrized by the

Thomsen parameters ε(x), δ(x) that relate to the global (many wavelength propagation)

difference in propagation speed in the vertical and horizontal directions, and the tilt and

azimuth angles θ(x), φ(x) that define the rotation of the vertical and horizontal axis around

the cartesian directions.

However, unlike the scalar isotropic acoustic wave-equation itself, the TTI wave equa-

tion is extremely computationally costly to solve and it is also not self-adjoint. The TTI

wave-equation reads as follows:

m(x)
d2p(x, t)

dt2
− (1 + 2ε(x))Hx̄ȳp(x, t)−

√
1 + 2δ(x) Hz̄r(x, t) = q,

m(x)
d2r(x, t)

dt2
−
√

1 + 2δ(x) Hx̄ȳp(x, t)−Hz̄r(x, t) = q,

(1.7)

where p(x, t) and r(x, t) are the two component of the anisotropic wavefield and Hz̄ and

Hx̄ȳ = Gx̄x̄ +Gȳȳ are the rotated second order differential operators that depend on the tilt,

1This introductory example is a detailed extension to the work I presented at the SEG annual conference
in 2018 [44].
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azimuth (θ(x), φ(x)) and the conventional (isotropic) cartesian spatial derivatives d
dx
, d
dy

and d
dz

.

After discretization, the TTI wave-equation can be rewritten in a linear algebra form:

m




d2p
dt2

d2r
dt2


 =




(1 + 2ε)Hx̄ȳ

√
1 + 2δ Hz̄

√
1 + 2δ Hx̄ȳ Hz̄






p

r


+ P>s q (1.8)

where the bold font represents discretized version of the wavefield and physical parameters.

With this expression, we can rewrite the solution of the anisotropic wave equation as the

solution of a linear system u(m) = A(m)−1P>s similarly to Equation 1.3 where in this

case u(m) is a two component vector (p(m)>, r(m)>)>. Like before, the matrix P>s

injects the source in both wavefield components.

As discussed in [63] and [56], I choose a finite-difference discretization of the three

differential operators Hz̄, Gx̄x̄, Gȳȳ that is self-adjoint to ensure numerical stability. For

example, we define Gx̄x̄ as a function of the discretized tilt θ and azimuth φ as:

Gx̄x̄ = DT
x̄Dx̄

Dx̄ = cos(θ) cos(φ)
d

dx
+ cos(θ) sin(φ)

d

dy
− sin(θ)

d

dz
.

(1.9)

Because of the very high number of floating-point operations (FLOP) needed per grid point

for the weighted rotated Laplacian, this anisotropic wave-equation is extremely challenging

to implement. As I show in Chapter 2, an estimate of the computational cost with high-

order finite-difference is in the order of thousands of FLOPs per grid point. Consequently,

the implementation of a solver for this wave-equation can be time-consuming and can lead

to thousands of lines of code and the verification of its result becomes challenging as any

small error is effectively untrackable and any change to the finite-difference scheme or to

the time-stepper is nearly impossible to achieve without substantial re-coding. Another

complication stems from the fact that practitioners of seismic inversion are often geoscien-
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tists and not computer scientists/programmers. Unfortunately, this background often either

results in poorly written low performant codes or it leads to complications when research

codes are handed off to computer scientists who know how to write fast codes but who

often miss the necessary geophysical domain knowledge. Neither situation is conducive to

addressing the complexities that come with implementing codes based on the latest geo-

physical insights in geophysics and high-performance computing. Devito with its high

level interface and state-of-the art just-in-time compiler addresses these complications by

enabling geophysical domain experts to express themselves while offering sufficient flex-

ibility to make the code suitable for industrial applications. Aside from these practical

industrial considerations, obtaining correct and numerically stable implementations for the

adjoint TTI wave-equation also has proven to be challenging in the past. Add refs. In the

next section, we will demonstrate the importance of having correct adjoints and how Devito

enables the correct implementation.

1.4 Modeling for inversion

Simulation of wave motion is only one aspect of solving problems in seismology. During

wave-equation based imaging, we also need to compute sensitivities (gradient) with respect

to the quantities of interest. This imposes additional constraints on the design and imple-

mentations of our simulation codes as outlined in [17]. Among several factors, such as

fast setup time etc., we will focus mainly on correct and testable implementations for the

adjoint wave equation and the gradient (action of the adjoint Jacobian).

1.4.1 Adjoint modeling

While the true physics of tensorial wave motion in elastic is self-adjoint, its numerical

implementation on realistic model sizes is unfeasible because it requires a parameterization

in terms of 21 spatially varying elastic constants and 12 wavefields [66, 67, 68, 65]. To

make the problem computationally feasible, different approximate formulations have been
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proposed that are computationally feasible but unfortunately often no longer self-adjoint.

Consequently, time reversing the solution of the forward problem, which is often common

practice, may lead to erroneous results because the time-reversed wavefield is no longer

equivalent to the solution of the adjoint equation. While this practice may have a physical

justification, it can lead to less accurate or even incorrect results in certain cases.

To illustrate potential pitfalls associated with the use of wrong adjoints, let us consider

the above TTI formulation (cf. Equation 1.9) where the spatially varying finite-difference

operatorsG are self-adjoint by construction but the overall system itself is not because these

operators are multiplied by terms that contain the spatially varying Thomsen parameters.

The provably correct (see adjoint test below) adjoint system of equations corresponding to

the TTI forward wave-equations (Equation 1.7) is given by [44]:

m




d2pa

dt2

d2ra
dt2


 =



Hx̄ȳ(1 + 2ε) Hx̄ȳ

√
1 + 2δ

Hz̄

√
1 + 2δ Hz̄






pa

ra


+ P>s qa (1.10)

where pa, ra are the two components of the adjoint anisotropic wavefield. The vector qa

is the adjoint source. For seismic imaging, a form of computing the gradient for a good

starting model for the slowness squared m, this adjoint source is given by the residual (dif-

ference between the recorded field and numerically modeled data). Compared to the for-

ward TTI wave-equation, the adjoint system differs fundamentally. Contrary to the forward

system, which consists of two coupled PDEs made of two rotated and weighted acoustic

wave-equations, the adjoint system consists of two fully decoupled equations where the

horizontal and vertical derivatives appear separately. To illustrate the differences between

solutions yielded by solving the true adjoint wave-equations (cf. Equation 1.7) or by time

reversing the solution of the forward equation (cf. Equation 1.10 ). I include in Figure 1.1

the impulse responses for these two approaches for comparison.

As we can see from these plots, the impulse responses differ significantly in the dynam-

ics (amplitudes) and in some instances even in sign. Because the adjoint wavefield consists
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Time reversed pa Time reversed ra

Adjoint pa Adjoint ra

pa difference ra difference

Figure 1.1: Impulse response of the time-reversed and adjoint wave-equation in a TTI
medium (BP synthetic model 2007). The top row shows the wavefields of the time-reversed
forward wave-equations, while the wavefields of the true adjoint equations are shown in
the centre row. The bottom row shows the component-wise difference between the time-
reversed and adjoint wavefields. All snapshots and differences are displayed at the same
scale.
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of purely vertical and horizontal components while the time-reversed wavefields is made

of a combination of both the amplitudes yielded by the adjoint and time-reversed wave

equations differ as we can observe from the bottom row of plots in Figure 1.1. Aside these

amplitude differences, which can be significant as we can see from the plots in Figure 1.2

extracted at the location of the red cross in Figure 1.1, there are occasional sign flips, which

means that the phase is modeled incorrectly. Both phase [41, 40, 17] and amplitudes need

to be modeled correctly if we want to correctly implement sensitivities that involve multi-

dimensional cross correlations between the solution of the forward wave equation acting

on the source and the adjoint wave equation acting on the residual wavefield. While at first

sight the kinematics may be modeled accurately by time reversal, the aforementioned dif-

ferences in amplitude and sign can result in significant differences in the sensitivities and

therefore in the resulting image as I will show below.

The observed differences between the impulse response of the time-reversed forward

and adjoint TTI wave equation underline the importance of having access to correct a for-

ward/adjoint pair when computing sensitivities to the parameters of the wave equation,

which are our object of interest. When the gradients of our data misfit objectives contain

errors, we can not expect gradient based inversion algorithms to converge [69, 70, 71, 35].

Getting these sensitivities correct is challenging certainly when dealing with involved wave

physics requiring complex parametrization such as the in the TTI wave equation. Below, I

will discuss techniques I have used to deal with these complexities.

1.4.2 Verification of sensitivities

Without having accurate and verifiable access to how the solution of the wave equation

changes to an infinitesimal change in it parameterization we are not in a position to min-

imize our data-misfit objectives. I use the so-called adjoint or dottest to verify that I am

computing the correct adjoint anisotropic wavefield. This test is designed to numerically

guarantee that the forward-adjoint pair of PDEs are numerically adjoints [10]. The adjoint
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Figure 1.2: Vertical and horizontal traces, extracted from the two-dimensional adjoint and
time-reversed wavefields.

test verifies that the following equality stands:

〈A(m)−1P∗sq, (p
>, r>)>〉 = 〈q,PsA(m)−∗(p>, r>)>〉. (1.11)

The term on the left computes the inner product between the wavefield everywhere whereas

the inner product on the right involves the source wavefield that lives at the source locations

alone. It is important that we consider the wavefield everywhere, rather than restricted

to the receiver positions alone, because our gradient calculations involve the wavefield

everywhere. To arrive at a practical test, I recast Equation 1.11 as:

adjoint-error = 100

(〈A(m)−1P∗sq, (p
>, r>)>〉

〈q,PsA(m)−∗(p>, r>)>〉 − 1

)
. (1.12)

This equation measures the relative error between the left hand-side and right-hand side

of Equation 1.11. Ideally, the error (difference between the two terms) should be exactly

zero. Due to numerical discretization errors and boundary effects, I measure the relative

percentage error between the two inner products. This error should be close to zero for
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Table 1.1: Adjoint test for the different wave-equation and their respective adjoint/time-
reverse. We show the normalized error, i.e the error w.r.t the wave-equation. The results
for the two layer model are as expected good for all kernel as it only measures the isotropic
first layer while the transmission experiment and the 2007 BP model [72] demonstrates that
only the true adjoint passes the dot-test for a strongly anisotropic media.

Wave-equation Two layer Transmission BP2007

Adjoint .16% 1.6% .5%
Time reversed 2.97% 2.1% 11.6%

a correct adjoint. Table 1.1 list the adjoint-errors according to Equation 1.12 for three

different anisotropic models, namely a simple two layers model with limited anisotropy

variations, a model with smoothly varying anisotropy parameters, and finally a section of

the highly complex and realistic 2007 BP TTI model [72]. By design, these three models

are increasingly more anisotropic illustrating the increased need for exact adjoints as the

TTI wave-equation 1.7 can only be considered a self-adjoint when the medium is close

to homogeneous. As the errors in Table 1.1 confirms, we can no longer consider the TTI

equation as self adjoint when the medium properties vary realistically and we need in that

case to rely on the true adjoint to control the error in the above adjoint test. If this error

becomes too large, the gradient of the data misfit objective will not pass the gradient test

and we can expect to produce inaccurate images as I show below.

1.4.3 Imaging

As I mentioned above, the error incurred by the time-reversed waver-equation carries

through the inversion and this can lead to incorrect images where reflectors are mispo-

sitioned, blurry, and of wrong amplitude. These effects can be explained because the time-

reverse wave equation leads to wavefields that are of wrong amplitude with events that

may have to wrong sign. Because the gradients for each source experiment themselves are

based on multi-dimensional cross-correlations between the forward and adjoint wavefields

(reduced adjoint state gradient from Equation 1.4), these errors can lead to errors in the im-
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age as illustrated in the enclosed images of parts of the BP 2007 TTI model [72] depicted in

Figure 1.3. These three images show the difference between imaging with correct adjoint

(left column) and the incorrect time-reversed “adjoint” (right column). When comparing

the images obtained with these two methods, we find that overall the images for the correct

adjoint are crisper while the corresponding images with time-reversal are less focused and

blurry. This effect is most prominent for the plots at the bottom. More importantly, we

observe major mispositioning of the imaged reflectors compared to the ground truth ve-

locity model plotted in color. These errors are most prominent on the boundary between

the high-velocity salt (depicted in pink) and the sediments. Reflectors that do not exist in

reality appear in the salt when we use the incorrect time reversal. While these misposition-

ings may seem minor, they correspond to errors in the order of the wavelength that can be

detrimental when delineating oil & gas reservoirs. We observe these errors in areas where

the model is strongly anisotropic with strong tilt angles.

It is clear that at all times we want to avoid making errors of the kind I just described.

For that reason, we need to implement correct pairs of forward and adjoint wave equa-

tions effectively doubling the amount of programming if these equations are implemented

by hand. This explains why the industry seldomly implements these equations with the

possible detrimental consequences as I outlined above.

However, when using automatic code generation we overcome these problems and this

provides the main motivation for my thesis. The above example clearly highlights the

need for a sophisticated computational and development framework designed to carry out

simulations for inversion which included modeling of complex (anisotropic) wave mo-

tion, correct adjoints, and sensitivities. Devito allowed me to implement this introductory

anisotropic example in a matter of weeks while the implementation and comparison of dif-

ferent TTI discretization could have taken up months or even years if done by hand in a

low level language.
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Adjoint Time-reverse

Adjoint Time-reverse

Adjoint Time-reverse

Figure 1.3: Selected areas of the RTM image of the BP model overlaid with the back-
ground velocity model. The left column is the image with the true adjoint wavefield and
the right column with the time-reversed as the adjoint. These selected areas are the areas
of the model that are the most complicated to image due to strong anisotropy and strong
anisotropy variations.
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1.5 Objectives

In light of the above motivational example in conjunction with the scientific problems I de-

scribed, the objectives of my research are oriented towards computational software design

for seismic inverse problems, and more generally PDE constrained optimization.

The first objective is to design a performance metric that is portable and does not rely

on relative measures or self-comparison. To do so, that performance metric requires not to

be associated with code-to-code comparison but with an absolute measure of performance.

This measure is the hardware usage that is representable on a roofline model plot [34, 73].

This measure provides two main outputs. First, the design of finite-difference software

can be driven by the roofline model as it provides theoretical estimates of the maximum

achievable performance based on the choice of hardware and discretization. Moreover, the

use of roofline models avoids poor or non-improvable performance after months of coding

due to early choices. Finally, benchmarks obtained with the roofline model are absolute,

portable and unbiased.

With a performance metric in place, the second objective is to develop software that

enables research for domain specialists. The turnaround time for research and development

is conventionally hindered by the lack of computational software targeting research and

development rather than production. As the implementation of new PDE solver can be

extremely time-consuming, research and development needs to have access to high-level

interfaces to computationally performant finite-difference propagators.

The second objective is to provide an interface at user level that allows easy implemen-

tation of complex PDEs so that domain specialists such as geophysicists and mathemati-

cians have the tools necessary to focus on algorithms, geophysical modeling, inversion, and

acquisition design. As I show in Chapter 3, dedicated to Devito’s Application Programming

Interface (API), high-level interfaces already exist or have been in development for years.

However, these frameworks usually focus only on finite-difference discretization, which is
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not enough for measurement-based inverse problem such as seismic inversion that involve

the minimization of data objectives using local derivative information (sensitivities).The

objective is to enable not only finite-difference propagators but to also provide a high-level

interface to non-standard finite-difference operations such as source injection, measure-

ment interpolation, on the fly Fourier transform and more generally any stencil operations

on a structured grid or part of it. Moreover, adjoint based inverse problems usually require

to store the history of the forward wavefield. For large scale problems, such as seismic

inversion, the size of this wavefield can reach Terabytes and requires advanced methods to

store it such as checkpointing [29] or Fourier compression [30]. The high-level interface is

also meant to be general enough to allow the definition and implementation at a symbolic

level of these methods.

The third and final objective is to provide a framework that, while implementing a high-

level user interface, gives state-of-the-art computational performance. The performance

optimization is enabled through code generation and just-in-time compilation. The idea of

code generation is fairly new but has gained a lot of attention thanks to recent improve-

ments in the performance of automatically generated code. These improvements come

from the automation of modern high performance computational methods such as vector-

ization, memory padding, cache-blocking and shared/distributed memory computation [46,

48, 49]. Code-generation also enables portability in the sense that the same code can be

executed on multiple computer platforms as the code-generation framework and compiler

takes care of the translation to code for the new hardware. While conventional in house

hand-coded solvers may be efficient on one specific computer architecture, its portability is

very limited as the low-level code is usually hand-tune for the specific hardware at hand (on

top of being hard to modify as pointed out earlier). The objective is to implement a code

generation framework under the high-level use interface that implements and automates all

the methods known to improve the computational performance of the generated code. This

automation also contains platform specific details for portability. This framework renders
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the high-level interface usable for any users for academic teaching, research and devel-

opment and production through a high-level user interface to large scale production that

still benefits from low-level optimized C-code from the code-generation framework and

compiler.

As I will show in each chapter, my work also focuses on improving verifiability and

reproducibility of research. Reproducibility is one of the main requirements for the dis-

semination of knowledge. Low level and hand-coded software tend to not be portable as

the code is platform specific or not easily installable and executable. Even though some

framework (such as [12]) went through the massive effort to make hand-coded software re-

producible, the hardware specific implementation limits its potential portability to similar

computer architectures. Devito, with its high-level interface and code-generation frame-

work, provides a fully reproducible documentation and set of example that only requires

the installation of standard packages such as Python. Second, Devito uses the roofline

model to benchmark its performance (and automatically generates the necessary runtimes

and parameters) and does not rely on a comparison against a reference homemade code

and allows users to easily benchmark Devito and its generated code on any hardware in

hand. the high-level interface and the roofline together provide a reproducible and portable

software for both examples and performance benchmark.

1.6 My contributions

I now describe my scientific contribution with regards to the computational and software

challenges related to wave-equation based geophysical exploration, and more generally

computational modeling.

• My first contribution is theoretical performance estimation of finite-difference solvers

with the roofline model [43, 34]. This work is presented in Chapter 2 of the thesis.

In this work, I looked at how finite-differences stencils can be theoretically studied

to infer the optimal achievable performance associated with its computational imple-
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mentation on specific hardware. First, I show that the choice of discretization can

be decided before implementation based on the hardware available and the estimate

of arithmetic and operational intensity [34]. Doing so allows me to make informed

decisions rather than post-implementation benchmarking of a code that may not be

a fit for the available hardware architecture. Secondly, I show that traditional run-

time based benchmarking does not necessarily reflect the efficiency of a code nor

how much improvement can be made, while the roofline model provides an absolute

measure of computational performance that is not artificially boosted by comparing

against a known slow code. The roofline model also provides insights on how much

improvement can be achieved.

• My second contribution is Devito, and more specifically its symbolic API, presented

in Chapter 3. Devito is a generic domain-specific language (DSL) for finite-difference

based on explicit time stepping. At its core, Devito implements a generic struc-

tured grid stencil DSL. It uses sympy[45] to provide a high-level symbolic API,

which allows users to mathematically, by basically writing out the PDE, define finite-

difference propagators. The original design and motivation behind Devito is seismic

inverse problems, but is extends to more general time-dependent PDE-constrained

optimization problems. Because Devito provides a symbolic interface that allows to

write complex mathematical representations of the physics such as TTI in a simple

way, my work enables and improves turn around times of research and development

for domain-specialists. Even though other high-level symbolic interfaces exist, such

as sympy [45], these approaches do not necessarily provide adequate computational

performance to be appealing for users. For example, sympy offers a wide variety

of tools for symbolic manipulation but the (numerical) evaluation of a symbolic ex-

pression relies on computationally inefficient symbol replacement rules that scale

exponentially with the number of symbols in the expression. Devito, on the other

hand, possesses a code generation framework with its own just-in-time compiler that
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comes with computational performance in par with hand-coded low-level propaga-

tors. I designed and mostly implemented the symbolic API, which is a central part,

but the larger Devito project has contributions from other researchers and different

institutions, principally Imperial College London.

• My third contribution involves work I have done on the Devito compiler itself and is

presented in Chapter 4. While I have designed the high-level symbolic core API and

implemented the majority of it, with Dr. Luporini providing me substantial feedback

and contribution, I only contributed to the development of the Devito compiler that

was designed, and largely implemented, by Dr Luporini. I provided substantial feed-

back on what needed to be supported and partially implemented and designed how

to interface it with high-level API. The Devito compiler is designed to be portable

and therefore supports multiple backends(targeted hardware and/or compiler). My

main contributions to this part of the development of Devito involved development

and implementation of the core backend that targets CPUs (Intel, AMD, ARM). I

mainly contributed to the part of Devito responsible for the symbolic manipulations

of the generated finite-difference stencils and to the overall integration of Devito and

sympy. I made sure that the compiler would always understand and process the

symbolic expressions to generate efficient code. Finally, I ensured that the generated

code always produces the correct result and wrote a major part of the extensive auto-

mated testing framework designed to make sure that results produced by Devito are

correct. As can be seen from Devito’s contributors list, I am one of the two main con-

tributors of Devito with Dr Luporini (and the recent addition of R. Nelson that made

major contributions to the MPI APIs and ‘numpy‘’ interface), and the commit his-

tory highlights my involvement in the compiler side and design and implementation

of the symbolic API.

My first contribution is highlighted in Chapter 2 while Chapter 3 and 4 present Devito’s

API, compiler, its testing framework and details the benchmarking results on realistic prob-
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lems.

1.7 Outline

My thesis is organized as follows:

The first chapter presents my work on the roofline model for finite-difference solver for

different wave-equations [43]. This work is published in Computer and Geoscience. The

roofline model is a broadly used tool in the computer science community [34, 74, 75, 73]

and offers hardware level performance measurement and prediction. In this work, I provide

a theoretical study of the optimal performance achievable for finite-difference solver for a

range of wave-equation. This theoretical study highlights the computational complexities

and potential of these wave-equations and shows that careful design choices have to be

made depending on the problem. This work allows to extend the conventional runtime

only performance in geophysics to a more portable and absolute measure. I also link in this

work the roofline performance metric to the conventional runtime performance based on

the theoretical estimates of hardware usage.

The second chapter presents Devito and its API [13]. This chapter is published in Geo-

scientific Model Development (GMD) and was selected as one of their highlight papers.

In this chapter, the core design principle and implementation of a domain-specific lan-

guage for finite-difference solver are presented. I present in detail the implementation and

specifics of Devito’s symbolic interface and how I inherited sympy symbolic capabilities

to design a user interface that allows the mathematical definition of finite-difference propa-

gators. This work describes step-by-step the API and how I designed its testing framework.

I will show that every part of Devito is tested such as a complete verification of the numer-

ical accuracy of the generated code. I also detail its usage over a range of seismic and

computational fluid dynamics examples. Two hands-in tutorials of Devito in the context

of seismic inversion have been published in The Leading Edge (TLE) as part of a tuto-

rial series on full-waveform inversion (FWI) [76, 77, 78].Devito, now in use in research
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and production, provides the high-level interface necessary to allow domain specialists to

concentrate on research and development.

The third chapter, published in TOMS(ACM Transactions on Mathematical Software),

details the Devito compiler [42] that makes Devito a computationally efficient solution for

large scale and industry size problems instead of a small scale development tool. This

chapter describes each layer of the compiler, from the symbolic definition of the stencil to

the compilation of the generated C-code with all the layers of symbolic and C-level opti-

mizations. The computational performance of the generated code on realistic problems is

studied as well and its portability is demonstrated with the benchmark of Intel accelerators

(Xeon Phi).

Finally, the conclusions give a summary of my work, as well as a brief outlook of the

research that was enabled by my work and my contributions to it. I also briefly describe

my latest developments in Devito, more specifically the support for vectorial equations,

and finally discuss future work and remaining open questions.

24



CHAPTER 2

PERFORMANCE PREDICTION OF FINITE-DIFFERENCE SOLVERS FOR

DIFFERENT COMPUTER ARCHITECTURES

2.1 Introduction

The increasing complexity of modern computer architectures means that developers are

having to work much harder at implementing and optimizing scientific modelling codes for

the software performance to keep pace with the increase in performance of the hardware.

This trend is driving a further specialization in skills such that the geophysicist, numeri-

cal analyst and software developer are increasingly unlikely to be the same person. One

problem this creates is that the numerical analyst makes algorithmic choices at the mathe-

matical level that define the scope of possible software implementations and optimizations

available to the software developer. Additionally, even for an expert software developer it

can be difficult to know what are the right kind of optimizations that should be considered,

or even when an implementation is ”good enough” and optimization work should stop. It is

common that performance results are presented relative to a previously existing implemen-

tation, but such a relative measure of performance is wholly inadequate as the reference

implementation might well be truly terrible. One way to mitigate this issue is to establish

a reliable performance model that allows a numerical analyst to make reliable predictions

of how well a numerical method would perform on a given computer architecture, before

embarking upon potentially long and expensive implementation and optimization phases.

The availability of a reliable performance model also saves developer effort as it both in-

forms the developer on what kind of optimizations are beneficial, and when the maximum

expected performance has been reached and optimization work should stop.

Performance models such as the roofline model by [74] help establish statistics for best

25



case performance — to evaluate the performance of a code in terms of hardware utilization

(e.g. percentage of peak floating point performance) instead of a relative speed-up. Per-

formance models that establish algorithmic optimality and provide a measure of hardware

utilization are increasingly used to determine effective algorithmic changes that reliably

increase performance across a wide variety of algorithms [75]. However, for many scien-

tific codes used in practice, wholesale algorithmic changes, such as changing the spatial

discretization or the governing equations themselves, are often highly invasive and require

a costly software re-write. Establishing a detailed and predictive performance model for

the various algorithmic choices is therefore imperative when designing the next-generation

of industry scale codes.

We establish a theoretical performance model for explicit wave-equation solvers as used

in full waveform inversion (FWI) and reverse time migration (RTM). We focus on a set of

widely used equations and establish lower bounds on the degree of the spatial discretization

required to achieve optimal hardware utilization on a set of well known modern computer

architectures. Our theoretical prediction of performance limitations may then be used to

inform algorithmic choice of future implementations and provides an absolute measure of

realizable performance against which implementations may be compared to demonstrate

their computational efficiency.

For the purpose of this paper we will only consider explicit time stepping algorithms

based on a second order time discretization. Extension to higher order time stepping

scheme will be briefly discussed at the end. The reason we only consider explicit time step-

ping is that it does not involve any matrix inversion, but only scalar product and additions

making the theoretical computation of the performance bounds possible. The performance

of other classical algorithm such as matrix vector products or FFT as described by [34] has

been included for illustrative purposes.

26



a) b)

c) d)

Figure 2.1: Stencil for the acoustic and anisotropic wave-equation for different orders of
discretization. A new value for the centre point (red) is obtained by weighted sum of the
values in all the neighbor points (blue). a) 2nd order laplacian, b) second order rotated
Laplacian, c) 16th order Laplacian, d) 16th order rotated Laplacian

2.2 Introduction to stencil computation

A stencil algorithm is designed to update or compute the value of a field in one spatial

location according to the neighboring ones. In the context of wave-equation solver, the

stencil is defined by the support (grid locations) and the coefficients of the finite-difference

scheme. We illustrate the stencil for the Laplacian, defining the stencil of the acoustic

wave-equation (Equation 2.8), and for the rotated Laplacian used in the anisotropic wave-

equation (Equation 2.10, 2.11) on Figure 4.4 - 2.2. The points colored in blue are the value

loaded while the point colored in red correspond to a written value.
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a) b)

Figure 2.2: Stencil for the 16th order acoustic and anisotropic wave-equation with distance
to centre highlighting a) Laplacian, b) rotated Laplacian

The implementation of a time stepping algorithm for a wavefield u, solution of the

acoustic wave-equation (Equation 2.8) is straightforward from the representation of the

stencil. We do not include the absorbing boundary conditions (ABC) as depending on the

choice of implementation it will either be part of the stencil or be decoupled and treated

separately.

Algorithm 1 Time-stepping
for t = 0 to t = nt do

for (x, y, z) ∈ (X, Y, Z) do

u(t, x, y, z) = 2u(t− 1, x, y, z)− u(t− 2, x, y, z) +
∑

i∈stencil

aiu(t− 1, xi, yi, zi)

end for
Add Source : u(t, ., ., .) = u(t, ., ., .) + q

end for

In Algorithm 1, (X, Y, Z) is the set of all grid positions in the computational domain,

(x, y, z) are the local indices ,(xi, yi, zi) are the indices of the stencil positions for the centre

position (x, y, z) and nt is the number of time steps and q is the source term decoupled

from the stencil. In the following we will concentrate on the stencil itself, as the loops in

space and time do not impact the theoretical performance model we introduce. The roofline
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model is solely based on the amount of input/output (blue/red in the stencils) and arithmetic

operations (number of sums and multiplication) required to update one grid point, and we

will prove that the optimal reference performance is independent of the size of the domain

(number of grid points) and of the number of time steps.

2.2.1 Notes on parallelization:

Using a parallel framework to improve an existing code is one of the most used tool in

the current stencil computation community. It is however crucial to understand that this

is not an algorithmic improvement from the operational intensity. We will prove that the

algorithmic efficiency of a stencil code is independent of the size of the model, and will

therefore not be impacted by a domain-decomposition like parallelization via OpenMP or

MPI. The results shown in the following are purely dedicated to help the design of a code

from an algorithmic point of view, while parallelization will only impact the performance

of the implemented code by improving the hardware usage.

2.3 Roofline Performance Analysis

The roofline model is a performance analysis framework designed to evaluate the float-

ing point performance of an algorithm by relating it to memory bandwidth usage [74]. It

has proved to be very popular because it provides a readily comprehensible performance

metric to interpret runtime performance of a particular implementation according to the

achievable optimal hardware utilization for a given architecture [79]. This model has been

applied to real-life codes in the past to analyze and report performance including oceanic

climate models [80], combustion modeling [81] and even seismic imaging [82]. It has also

been used to evaluate the effectiveness of implementation-time optimizations like auto-

tuning [83], or cache-blocking on specific hardware platforms like vector processors [84]

and GPUs [85]. Tools are available to plot the machine-specific parameters of the roofline

model automatically [86]. When more information about the target hardware is available,
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it is possible to refine the roofline model into the cache-aware roofline model which gives

more accurate predictions of performance [87]. The analysis presented here can be ex-

tended to the cache-aware roofline model but in order to keep it general, we restrict it to the

general roofline model.

The roofline model has also been used to compare different types of basic numerical

operations to predict their performance and feasibility on future systems [88], quite similar

to this paper. However, in this paper, instead of comparing stencil computation to other

numerical methods, we carry out a similar comparison between numerical implementations

using different stencil sizes. This provides an upper-bound of performance on any hardware

platform at a purely conceptual stage, long before the implementation of the algorithm.

Other theoretical models to predict upper-bound performance of generic code on hy-

pothetical hardware have been built [89, 90, 91, 92] but being too broad in scope, can not

be used to drive algorithmic choice like choosing the right discretization order. Some of

these models have also been applied to stencil codes [93, 94], however the analysis was

of a specific implementation and could not be applied in general. There are many tools to

perform performance prediction at the code-level [95, 96, 97, 98]. However, any tool that

predicts performance based on a code is analyzing the implementation and not the algo-

rithm in general. Although performance modeling is a deep and mature field, most work is

restricted to modeling the performance of specific implementations in code.Hofmann, Fey,

Riedmann, Eitzinger, Hager, and Wellein makes a comparison quite similar to the one we

do here where two algorithmic choices for the same problem are being compared with a

performance model.

In this section we demonstrate how one creates a roofline model for a given computer

architecture, and derives the operational intensity for a given numerical algorithm. This

establishes the theoretical upper-bound for the performance of a specific algorithm on that

architecture. A general roofline performance analysis consists of three steps:

• The memory bandwidth, bytes per second, and the peak number of floating point op-
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erations per second (FLOPS) of the computer architecture are established either from

the manufacturers specification or through measurement using standard benchmarks.

• The operational intensity (OI) of the algorithm is established by calculating the ra-

tio of the number of floating point operations performed to memory traffic, FLOPs

per byte. This number characterizes the algorithmic choices that affect performance

on a computer system. In combination with the measured memory bandwidth and

peak performance of a computer architecture, this provides a reliable estimate of the

maximum achievable performance.

• The solver is benchmarked in order to establish the achieved performance. A roofline

plot can be created to illustrate how the achieved performance compares to the maxi-

mum performance predicted by the roofline for the algorithms OI. This establishes a

measure of optimality of the implementation, or alternatively the maximum possible

gain from further optimization of the software.

2.3.1 Establishing the Roofline

The roofline model characterizes a computer architecture using two parameters: the max-

imum memory bandwidth, Bpeak, in units of bytes/s; and the peak FLOPS achievable by

the hardware, Fpeak. The maximally achievable performance Fac is modelled as:

Fac = min (IBpeak, Fpeak) , (2.1)

where I is the OI.

As illustrated in Figure 2.3 this limitation defines two distinct regions:

• Memory-bound: The region left of the ridge point constitutes algorithms that are

limited by the amount of data coming into the CPU from memory. Memory-bound

codes typically prioritize caching optimizations, such as data reordering and cache

blocking.
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Figure 2.3: Roofline diagram showing the operational intensity of three well-known algo-
rithms as reported by [74]: sparse matrix-vector multiplication (SpMV), stencil computa-
tion and 3D Fast Fourier Transform (3DFFT). The hardware limits are taken from [100]
and the compute-limited area is highlighted through shading.

• Compute-bound: The region right of the ridge point contains algorithms that are

limited by the maximum performance of the arithmetic units in the CPU and thus

defines the maximum achievable performance of the given architecture. Compute-

bound codes typically prioritize vectorization to increase throughput.

It is worth noting that changing from single to double-precision arithmetic halves the OI

because the volume of memory that must be transferred between the main memory and the

CPU is doubled. The peak performance will be impacted as well, since the volume of data

and the number of concurrently used floating point units (FPU) changes. As commonly

employed by industry, we assume single precision arithmetic for the examples presented

here, but it is straightforward to extend to double precision.

Andreolli, Thierry, Borges, Skinner, and Yount illustrates an example of deriving the

theoretical performance for a system that consists of two Intel Xeon E5-2697 v2 (2S-E5)

with 12 cores per CPU each running at 2.7 Ghz without turbo mode. Since these processors
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support 256-bit SIMD instructions they can process eight single-precision operations per

clock-cycle (SP FP). Further, taking into account the use of Fused Multiply-Add (FMA)

operations (two per cycle), this yields

Fpeak = 8(SPFP )× 2(FMA)× 12(cores)× 2(CPUs)× 2.7Ghz

= 1036.8 GFLOPS.

Clearly, this assumes full utilization of two parallel pipelines for Add and Multiply opera-

tions.

A similar estimate for the peak memory bandwidth Fpeak can be made from the memory

frequency (1866 GHz), the number of channels (4) and the number of bytes per channel

(8) and the number of CPUs (2) to give Fpeak = 1866× 4× 8× 2 = 119 GByte/s.

It is important to note here that there is an instruction execution overhead that the above

calculations did not take into account and therefore these theoretical peak numbers are not

achievable (' 80% is achievable in practice [100]). For this reason, two benchmark al-

gorithms, STREAM TRIAD for memory bandwidth [101, 102] and LINPACK for floating

point performance [103], are often used to measure the practical limits of a particular hard-

ware platform. These algorithms are known to achieve a very high percentage of the peak

values and are thus indicative of practical hardware limitations.

2.3.2 Performance Model

The key measure to using the roofline analysis as a guiding tool for algorithmic design

decisions and implementation optimization is the operational intensity, I, as it relates the

number of FLOPs to the number of bytes moved to and from RAM. I clearly does not

capture many important details about the implementation such as numerical accuracy or

time to solution. Therefore, it is imperative to look at I in combination with these measures

when making algorithmic choices.

Here we analyze the algorithmic bounds of a set of finite-difference discretizations of
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the wave-equation using different stencils and spatial orders. We therefore define algorith-

mic operational intensity Ialg in terms of the total number of FLOPs required to compute a

solution, and we assume that our hypothetical system has a cache with infinite size and no

latency inducing zero redundancy in memory traffic [79]. This acts as a theoretical upper

bound for the performance of any conceivable implementation.

We furthermore limit our theoretical investigation to analyzing a single time step as

an indicator of overall achievable performance. This assumption allows us to generalize

the total number of bytes in terms of the number of spatially dependent variables (e.g.

wavefields, physical properties) used in the discretized equation as Bglobal = 4N(l + 2s),

where l is the number of variables whose value is being loaded, s is the number of variables

whose value is being stored,N is the number of grid points and 4 is the number of bytes per

single-precision floating point value. The term 2s arises from the fact that most computer

architectures will load a cache line before it gets overwritten completely. However, some

computer architectures, such as the Intel Xeon Phi, have support for stream stores, so that

values can be written directly to memory without first loading the associated cache line, in

which case the expression for the total data movement becomes Bglobal = 4N(l + s). It is

important to note here that limiting the analysis to a single time step limits the scope of the

infinite caching assumption above.

Since we have assumed a constant grid size N across all spatially dependent variables,

we can now parametrize the number of FLOPs to be computed per time step as Ftotal(k) =

NFkernel(k), where Fkernel(k) is a function that defines the number of flops performed to

update one grid point in terms of the stencil size k used to discretize spatial derivatives.

Additional terms can be added corresponding to source terms and boundary conditions but

they are a small proportion of the time step in general and are neglected here for simplicity.

This gives us the following expression for OI as a function of k, Ialg(k):

Ialg(k) = Ftotal(k)/Bglobal =
Fkernel(k)

4(l + s)
. (2.2)
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2.4 Operational intensity for finite-differences

We derive a general model for the operational intensity of wave-equation PDEs solvers with

finite-difference discretizations using explicit time stepping and apply it to three different

wave-equation formulations commonly used in the oil and gas exploration community: an

acoustic anisotropic wave-equation; vertical transverse isotropic (VTI); and tilted trans-

versely isotropic (TTI) [104]. The theoretical operational intensity for the 3D discretized

equations will be calculated as a function of the finite-difference stencil size k, which allows

us to make predictions about the minimum discretization order required for each algorithm

to reach the compute-bound regime for a target computer architecture. For completeness

we describe the equations in Appendix 2.A.1.

2.4.1 Stencil operators

As a baseline for the finite-difference discretization, we consider the use of a 1D symmetric

stencil of size k, which uses k values of the discretized variable to compute any spatial

derivatives enforcing a fixed support for all derivatives. Other choices of discretization

are possible, such as choosing the stencil for the first derivative and applying it iteratively

to obtain high order derivatives. Our analysis will still be valid but require a rewrite of

the following atomic operation count. The number of FLOPs used for the three types of

derivatives involved in our equation are calculated as:

• first order derivative with respect to xi ( du
dxi

): (k+1) mult +(k−1) add = 2k FLOPs

• second order derivative with respect to xi (d
2u

dx2
i
): (k + 1) mult + (k − 1) add =

2k FLOPs

• second order cross derivative with respect to xi, xj ( d2u
dxidxj

): (k2 − 2k) mult + (k2 −

2k − 1) add = 2k2 − 4k − 1 FLOPs
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where in 3D, xi for i = 1, 2, 3 correspond to the three dimensions x, y, z and u is the

discretized field.

Table 2.1: Derivation of FLOPs per stencil invocation for each equation.

Equation du
dxi

d2u
dx2

i

d2u
dxidxj

mult add duplicates
Acoustic: 0 3× 2k 0 3 5 −4
VTI: 2× ( 0 3× 2k 0 5 5 −2)
TTI: 2× ( 0 3× 2k 3× (2k2 − 4k − 1) 44 17 −8)

Computing the total wavefield memory volume Bglobal for each equation we have 4 ×

4N bytes for Acoustic (load velocity, two previous time steps and write the new time step),

9 × 4N bytes for VTI (load velocity, two anisotropy parameters, two previous time steps

for two wavefields and write the new time step for the two wavefields) and 15× 4N bytes

for TTI (VTI plus 6 precomputed cos/sin of the tilt and dip angles). Equation 2.2 allows us

to predict the increase of the operational intensity in terms of k by replacing Bglobal by its

value. The OI Ialg(k) for the three wave-equations is given by:

• Acoustic anisotropic: Ialg(k) = 3k
8

+ 1
4
,

• VTI: Ialg(k) = k
3

+ 4
9
,

• TTI: Ialg(k) = k2

5
− k

5
+ 5

3
,

and plotted as a function of k on Figure 2.10. Using the derived formula for the algo-

rithmic operational intensity in terms of stencil size, we can now analyze the optimal per-

formance for each equation with respect to a specific computer architecture. We are using

the theoretical and measured hardware limitations reported by [100] to demonstrate how

the main algorithmic limitation shifts from being bandwidth-bound at low k to compute-

bound at high k on a dual-socket Intel Xeon in Figure 2.4 - 2.6 and an Intel Xeon Phi in

Figure 2.7 - 2.9.

It is of particular interest to note from Figure 2.4 that a 24th order stencil with k =

25 provides just enough arithmetic load for the 3D acoustic equation solver to become
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Figure 2.4: Increase in algorithmic OI with increasing stencil sizes on a dual-socket Intel
Xeon E5-2697 v2 [100] for a 3D acoustic kernel. The 24th order stencil is coincident with
the ridge point — the transition point from memory-bound to compute-bound computation.

compute-bound, while k = 25 falls just short of the compute-bound region for the VTI

algorithm. On the other hand a 6th order stencil with k = 7 is enough for the TTI algorithm

to become compute-bound due to having a quadratic slope with respect to k (Figure 2.10)

instead of a linear slope.

At this point, we can define Imin, which is the minimum OI required for an algorithm

to become compute-bound on a particular architecture, as the x-axis coordinate of the ridge

point in Figure 2.4 - 2.6 and 2.7 - 2.9. Note that the ridge point x-axis position changes

between the two different architectures. This difference in compute-bound limit shows that

a different spatial order discretization should be used on the two architecture to optimize

hardware usage. As reported by [100] the Imin as derived from achievable peak rates is

9.3 FLOPs/byte for the Intel Xeon and 10.89 FLOPs/byte for the Intel Xeon Phi. This

entails that while the acoustic anisotropic wave-equation and VTI are memory bound for

discretizations up to 24th order, the TTI equation reaches the compute bound region with

even a 6th order discretization.
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Figure 2.5: Increase in algorithmic OI with increasing stencil sizes on a dual-socket Intel
Xeon E5-2697 v2 [100] for a 3D VTI kernel. Similarly to the acoustic model, the 24th

order stencil is coincident with the ridge point.
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Figure 2.6: Increase in algorithmic OI with increasing stencil sizes on a dual-socket Intel
Xeon E5-2697 v2 [100] for a 3D TTI kernel. The 6th order stencil is already compute-
bound.

38



0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

2

8

32

128

512

2,050
Theoretical SP performance

Th
eor

eti
cal

me
mo

ry
ban

dw
idt

h

LINPACK SP performance

ST
RE

AM
me

mo
ry

ban
dw

idt
h

2n
d
or
d
er

(k
=

3)

1
2t

h
or
d
er

(k
=

1
3
)

24
th

o
rd
er

(k
=

25
)

32
n
d
or
d
er

(k
=

33
)

Operational intensity (FLOPs/Byte)

P
er
fo
rm

a
n
ce

(G
F
L
O
P
S
)

Figure 2.7: Increase in algorithmic OI with increasing stencil sizes on a Intel Xeon Phi
7120A co-processor [100] for a 3D acoustic kernel. Unlike the Xeon E5-2697, the 30th

order stencil is the smallest one to be compute-bound (vs 24th order).
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Figure 2.8: Increase in algorithmic OI with increasing stencil sizes on a Intel Xeon Phi
7120A co-processor [100] for a 3D VTI kernel. 32nd is the minimum compute-bound
stencil. It is not equivalent to the acoustic on this architecture.
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Figure 2.9: Increase in algorithmic OI with increasing stencil sizes on a Intel Xeon Phi
7120A co-processor [100] for a 3D TTI kernel. The 6th order stencil is already compute-
bound similarly to the Xeon E5-2697.

From the analytical expression derived we can now generalize the derivation of mini-

mum OI values by plotting the simplified expressions for Ialg(k) against known hardware

OI limitations, as shown in Figure 2.10. We obtain a theoretical prediction about the min-

imum spatial order required for each algorithm to provide enough arithmetic load to allow

implementations to become compute-bound. Most importantly, Figure 2.10 shows that the

TTI wave-equation has a significantly steeper slope of I(k), which indicates that it will

saturate a given hardware for a much smaller spatial discretization than the acoustic wave

or the VTI algorithm.

Moreover, assuming a spatial discretization order of k − 1, we can predict that on the

Intel Xeon CPU we require a minimum order of 24 for the acoustic wave solver, 26 for

VTI and 6 for TTI. On the Nvidia GPU, with a slightly lower hardware I, we require a

minimum order of 22 for the acoustic wave solver, 24 for VTI and 6 for TTI, while even

larger stencils are required for the Intel Xeon Phi accelerator: a minimum order of 28

for the acoustic wave solver, 30 for VTI and 6 for TTI. This derivation demonstrates that
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Figure 2.10: Increase in OI with stencil size k and machine-specific minimum OI values
for all three hardware architectures considered in this paper.

overall very large stencils are required for the acoustic anisotropic solver and VTI to fully

utilize modern HPC hardware, and that even TTI requires at least order 6 to be able to

computationally saturate HPC architectures with a very high arithmetic throughput, like

the Intel Xeon Phi.

2.5 Example: MADAGASCAR modelling kernel

We demonstrate our proposed performance model and its flexibility by applying it on a

broadly used and benchmarked modelling kernel contained in Madagascar [12]. We are

illustrating the ease to extend our method to a different wave-equation and by extension

to any PDE solver. The code implements the 3D anisotropic elastic wave-equation and is

described in [105]. We are performing our analysis based on the space order, hardware and
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runtime described in [105]. The governing equation considered is:

ρ
d2ui
dt2

=
dσij
dxj

+ Fi,

σij = cijklεkl,

εkl =
1

2
[
ul
dxk

+
uk
dxl

],

ui(., 0) = 0,

dui(x, t)

dt
|t=0 = 0.

(2.3)

where ρ is the density, ui is the ith component of the three dimensional wavefield dis-

placement (i = 1, 2, 3 for x, y, z), F is the source term,ε is the strain tensor, σ is the stress

tensor and c is the stiffness tensor. The equation is discretized with an 8th order star stencil

for the first order derivatives and a second order scheme in time and solves for all three

components of u. Equation 2.3 uses Einstein notations meaning repeated indices represent

summation:

dσij
dxj

=
3∑

j=1

σij
dxj

,

cijklεkl =
3∑

k=1

(
3∑

l=1

cijklεkl

)
.

(2.4)

From this equation and knowing the finite-difference scheme used we can already com-

pute the minimum required bandwidth and operational intensity. We need to solve this

equation for all three components of the wave u at once as we have coupled equations in ε

and u. For a global estimate of the overall memory traffic, we need to account for loading

and storing 2 × 3N values of the displacement vector and loading N values of ρ. In case

the stiffness tensor is constant in space the contribution of cijkl is 64 independently of N ,

which yields an overall data volume of Bglobal = 4N(6 + 1) + 64 ' 28N Bytes. In the

realistic physical configuration of a spatially varying stiffness tensor, we would estimate

loading 64N values of cijkl, leaving us with a data volume of Bglobal = 4N(6 + 1 + 64) =
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284N Bytes. Finally we consider symmetries in the stiffness tensor are taken into account

reducing the number of stiffness values to load to 21N and leading to a data volume of

Bglobal = (6 + 1 + 21)× 4N = 112N Bytes.

The number of valuable FLOPs performed to update one grid point can be estimated

by:

• 9 first derivatives (∂kul, for all k, l = 1, 2, 3) : 9× (8 mult + 7 add) = 135 FLOPs

• 9 sums for εkl (9× 9 adds) and 9× 8 mult for σij = 153 FLOPs

• 9 first derivatives ∂jσij and 9 sums = 144 FLOPs

• 3 times 3 sums to update ui = 9 FLOPs.

The summation of all four contributions gives a total of 441 operations and by dividing

by the memory traffic we obtain the operational intensity Istiff for variable stiffness and

Iconst for constant stiffness:

Istiff =
441N

112N
= 3.93,

Iconst =
441N

28N
= 15.75.

(2.5)

Using the OI values derived above we can now quantify the results presented by [105]

by interpreting their runtime results with respect to our performance measure. The achieved

GFLOPS have been obtained on the basis of 1000 time steps with 8th order spatial finite-

differences and 2nd order temporal finite-differences. We interpret Figure 11a) of [105] to

give a run time of approximately 53 seconds and a domain size of N = 2253. We obtain

with this parameter the following achieved performances:

F =
N3FkernelNt

W
,

=
2253 × 441× 1000

53
,

= 94.8GFLOPS,

(2.6)

where Nt is the number of time steps, and W is the run time.
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Figure 2.11: Roofline model for the 3D elastic anisotropic kernel from [105] on a 480-core
NVIDIA GTX480 GPU (with hardware specification from [106]).

Figure 2.11 shows the calculated performance in relation to our predicted algorithmic

bounds Istiff and Iconst. The use of a constant stiffness tensor puts the OI of the considered

equation in the compute-bound region for the benchmarked GPU architecture (NVIDIA

GTX480). Assuming a spatially varying stiffness tensor, we can calculate an achieved

hardware utilization of 40.5% based on the reported results, assuming an achievable peak

memory bandwidth of 150.7 GByte/s, as reported by [106] and a maximum achievable

performance of 150.7 GByte/s × 1.5528 FLOPs/Byte = 234 GFLOPS. Assuming

80% [100] of peak performance is achievable, the roofline model suggests that there is still

potential to double the performance of the code through software optimization. It is not

possible to draw such a conclusion from traditional performance measures such as timings

or scaling plots. This highlights the importance of a reliable performance model that can

provide an absolute measure of performance in terms of the algorithm and the computer

architecture.
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2.6 Cost-benefit analysis

So far we discussed the design of finite-difference algorithms purely from a performance

point of view without regard to the numerical accuracy and cost-to-solution. Now we

discuss the impact of the discretization order on the achieved accuracy of the solution and

how that, in turn, affects the wall clock time required for computation. To do so, we

look at the numerical requirements of a time-stepping algorithm for the wave-equation.

More specifically we concentrate on two properties, namely dispersion and stability, in the

acoustic case. This analysis is extendable to more advanced wave-equations such as VTI

and TTI with additional numerical analysis. The dispersion criteria and stability condition

for the acoustic wave-equation is given by [107, 108]:

vmaxdt

h
≤
√
a1

a2

CFL condtion, stability

h ≤ vmin

pfmax

dispersion criterion,
(2.7)

where:

a1 is the sum of the absolute values of the weights of the finite-difference scheme for

the second time derivative of the wavefield; ∂2u
∂t2

a2 is the sum of the absolute values of the weights of the finite-difference approximation

of∇2u;

vmax is the maximum velocity;

fmax is the maximum frequency of the source term that defines the minimum wavelength

for a given minimum velocity λmin = vmin

fmax
;

p is the number of grid points per wavelength. The number of grid points per wave-

length impacts the amount of dispersion (different wavelengths propagating at differ-

ent velocities) generated by the finite-difference scheme. The lower the number, the

higher the dispersion will be for a fixed discretization order.
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These two conditions define the computational setup for a given source and physical model

size. Knowing that a2 increases with the spatial discretization order, Equation 2.7 shows

that higher discretization orders require a smaller time-step hence increasing the total num-

ber of time steps for a fixed final time and grid size. However, higher order discretizations

also allow to use less grid points per wavelength (smaller p). A smaller number of grid

points per wavelengths leads to a smaller overall computational domain as a fixed physical

distance is represented by a coarser mesh and as the grid spacing has been increased, the

critical time-step (maximum stable value) is also increased. Overall, high order discretiza-

tions have better computational parameters for a predetermined physical problem. From

these two considerations, we can derive an absolute cost-to-solution estimation for a given

model as a function of the discretization order for a fixed maximum frequency and physi-

cal model size. The following results are not experimental runtimes but estimations of the

minimum achievable runtime assuming a perfect performance implementation. We use the

following setup:

• We fix the physical model size as 500 grid point in all three directions for a second

order discretization (minimum grid size).

• The number of grid points per wavelength is p = 6 for a second order spatial dis-

cretization and p = 2 for a 24th order discretization and varies linearly for interme-

diate orders.

• The number of time steps is 1000 for the second order spatial discretization and

computed according to the grid size/time step for other spatial orders.

The hypothetical numerical setup (with a1 = 4, second order time discretization) is

summarized in Table 2.2. We combine the estimation of a full experimental run with the

estimated optimal performance and obtain an estimation of the optimal time-to-solution

for a fixed physical problem. The estimated runtime is the ratio of the total number of

GFLOPs (multiply Fkernel by the number of grid points and time steps) to the maximum
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achievable performance for this OI. Table 2.3 shows the estimated runtime assuming peak

performance on two systems: a dual-socket Intel Xeon E5-2697 v2 and an Intel Xeon Phi

7120A co-processor.

Table 2.2: Cost-to-solution computational setup summary.

Order a2 p h dt N nt

2nd order 12 6 1 0.5774 1.25e+08 1000
6th order 18.13 5 1.2 0.5637 7.24e+07 1024

12th order 21.22 4 1.5 0.6513 3.70e+07 887
18th order 22.68 3 2 0.8399 1.56e+07 688
24th order 23.57 2 3 1.2359 4.63e+06 468

Table 2.3: Cost-to-solution estimation for several spatial discretizations on fixed physical
problem.

Order Ialg(k) GFLOPs GFLOPS Xeon GFLOPS Phi Runtime Xeon Runtime Phi
2nd 1.375 2.75e+03 137.5 275 20s 10s
6th 2.875 3.414e+03 287.5 575 12s 6s

12th 5.125 2.691e+03 512.5 1025 6s 3s
18th 7.375 1.266e+03 737.5 1475 2s 1s
24th 9.625 3.337e+02 962.5 1925 1s 1s

We see that by taking advantage of the roofline results in combination with the stability

conditions, we obtain an estimate of the optimal cost-to-solution of an algorithm. It can

be seen that higher order stencils lead to better hardware usage by lowering the wall-time-

to-solution. These results, however, rely on mathematical results based on homogeneous

velocity. In the case of an heterogenous model, high order discretizations may result in in-

accurate, even though stable and non dispersive, solutions to the wave-equation. The choice

of the discretization order should then be decided with more than just the performance in

mind.

2.7 Conclusions

Implementing an optimizing solver is generally a long and expensive process. Therefore,

it is imperative to have a reliable estimate of the achievable peak performance, FLOPS, of

an algorithm at both the design and optimized implementation stages of development.
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The roofline model provides a readily understandable graphical tool, even for a non-

specialist, to quickly assess and evaluate the computational effectiveness of a particular

implementation of an algorithm. We have shown how the roofline model can be applied

to finite-difference discretizations of the wave-equation commonly used in the geophysics

community. Although the model is quite simple, it provides a reliable estimate of the

peak performance achievable by a given finite-difference discretization regardless of the

implementation. Not only does this aid the algorithm designer to decide between different

discretization options but also gives solver developers an absolute measure of the optimality

of a given implementation. The roofline model has also proved extremely useful in guiding

further optimization strategies, since it highlights the limitations of a particular version of

the code, and gives an indication of whether memory bandwidth optimizations, such as

loop blocking techniques, or FLOPs optimizations, such as SIMD vectorization, are likely

to improve results.

However, one should always be mindful of the fact that it does not provide a complete

measure of performance and should be complemented with other metrics, such as time to

solution or strong scaling metrics, to establish a full understanding of the achieved perfor-

mance of a particular algorithmic choice and implementation.

2.A Appendix

2.A.1 Wave-equations

In the following equations u is the pressure field in the case of acoustic anisotropic while

p, r are the split wavefields for the anisotropic case. We denote by u(., 0) and respectively

p, r the value of u for all grid points at time t = 0. The physical parameters are m the

square slowness, ε, δ the Thomsen parameters and θ, φ the tilt and azimuth. The main

problem with the TTI case is the presence of transient functions (cos, sin) known to be

extremely expensive to compute (typically about an order of magnitude more expensive

than an add or multiply). Here we will assume these functions are precomputed and come
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from a look-up table, thus only involving memory traffic In the acoustic anisotropic case

the governing equations are:

m
d2u(x, t)

dt2
−∇2u(x, t) = q,

u(., 0) = 0,

du(x, t)

dt
|t=0 = 0.

(2.8)

In the anisotropic case we consider the equations describe in [104]. More advanced

formulation have been developed however this equation allow an explicit formulation on

the operational intensity and simple stencil expression. It is the formulation we are also

using in our code base. In the VTI case the governing equations are:

m
d2p(x, t)

dt2
− (1 + 2ε)Dxxp(x, t)−

√
(1 + 2δ)Dzzr(x, t) = q,

m
d2r(x, t)

dt2
−
√

(1 + 2δ)Dxxp(x, t)−Dzzr(x, t) = q,

p(., 0) = 0,

dp(x, t)

dt
|t=0 = 0,

r(., 0) = 0,

dr(x, t)

dt
|t=0 = 0.

(2.9)

49



For TTI the governing equations are:

m
d2p(x, t)

dt2
− (1 + 2ε)(Gx̄x̄ +Gȳȳ)p(x, t)−

√
(1 + 2δ)Gz̄z̄r(x, t) = q,

m
d2r(x, t)

dt2
−
√

(1 + 2δ)(Gx̄x̄ +Gȳȳ)p(x, t)−Gz̄z̄r(x, t) = q,

p(., 0) = 0,

dp(x, t)

dt
|t=0 = 0,

r(., 0) = 0,

dr(x, t)

dt
|t=0 = 0,

(2.10)

where the rotated differential operators are defined as

Gx̄x̄ =cos(φ)2cos(θ)2 d
2

dx2
+ sin(φ)2cos(θ)2 d

2

dy2
+

sin(θ)2 d
2

dz2
+ sin(2φ)cos(θ)2 d2

dxdy
− sin(φ)sin(2θ)

d2

dydz
− cos(φ)sin(2θ)

d2

dxdz

Gȳȳ =sin(φ)2 d
2

dx2
+ cos(φ)2 d

2

dy2
− sin(2φ)2 d2

dxdy

Gz̄z̄ =cos(φ)2sin(θ)2 d
2

dx2
+ sin(φ)2sin(θ)2 d

2

dy2
+

cos(θ)2 d
2

dz2
+ sin(2φ)sin(θ)2 d2

dxdy
+ sin(φ)sin(2θ)

d2

dydz
+ cos(φ)sin(2θ)

d2

dxdz
.

(2.11)
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CHAPTER 3

DEVITO API

3.1 introduction

Large-scale inversion problems in exploration seismology constitute some of the most com-

putationally demanding problems in industrial and academic research. Developing compu-

tationally efficient solutions for applications such as seismic inversion requires expertise

ranging from theoretical and numerical methods for partial differential equation (PDE)

constrained optimization to low-level performance optimization of PDE solvers. Progress

in this area is often limited by the complexity and cost of developing bespoke wave propa-

gators (and their discrete adjoints) for each new inversion algorithm or formulation of wave

physics. Traditional software engineering approaches often lead developers to make critical

choices regarding the numerical discretization before manual performance optimization for

a specific target architecture and making it ready for production. This workflow of bringing

new algorithms into production, or even to a stage that they can be evaluated on realistic

datasets can take many person-months or even person-years. Furthermore, it leads to math-

ematical software that is not easily ported, maintained or extended. In contrast, the use

of high-level abstractions and symbolic reasoning provided by domain-specific languages

(DSL) can significantly reduce the time it takes to implement and verify individual oper-

ators for use in inversion frameworks, as has already been shown for the finite element

method [31, 32, 109].

State-of-the-art seismic imaging is primarily based upon explicit finite difference schemes

due to their relative simplicity and ease of implementation [110, 111, 105]. When consid-

ering how to design a DSL for explicit finite difference schemes, it is useful to recognize

the algorithm as being primarily a sub-class of stencil algorithms or polyhedral computa-
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tion [112, 100, 113]. However, stencil compilers lack two significant features required to

develop a DSL for finite differences: symbolic computational support required to express

finite difference discretizations at a high level, enabling these expressions to be composed

and manipulated algorithmically; support for algorithms that are not stencil-like, such as

source and receiver terms that are both sparse and unaligned with the finite difference grid.

Therefore, the design aims behind the Devito DSL can be summarized as:

• create a high-level mathematical abstraction for programming finite differences to

enable composability and algorithmic optimization,

• insofar as possible use existing compiler technologies to optimize the affine loop

nests of the computation, which account for most of the computational cost,

• develop specific extensions for other parts of the computation that are non-affine

(e.g., source and receiver terms).

The first of these aims is primarily accomplished by embedding the DSL in Python

and leveraging the symbolic mathematics package Sympy [45]. From this starting point,

an abstract syntax tree is generated and standard compiler algorithms can be employed to

either generate optimized and parallel C code or to write code for a stencil DSL - which

itself will be passed to the next compiler in the chain. The fact that this can be all performed

just-in-time (JIT) means that a combination of static and dynamic analysis can be used

to generate optimized code. However, in some circumstances, one might also choose to

compile offline.

The use of symbolic manipulation, code generation and just-in-time compilation allows

the definition of individual wave propagators for inversion in only a few lines of Python

code, while aspects such as varying the problem discretization become as simple as chang-

ing a single parameter in the problem specification, for example changing the order of the

spatial discretization [43]. This article explains what can be accomplished with Devito,

showing how to express real-life wave propagators as well as their integration within larger
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workflows typical of seismic exploration, such as the popular Full-Waveform Inverison

(FWI) and Reverse-Time Migration (RTM) methods. The Devito compiler, and in partic-

ular how the user-provided SymPy equations are translated into high-performance C, are

also briefly summarized, although for a complete description the interested reader should

refer to [42].

The remainder of this paper is structured as follows: first, we provide a brief history

of optimizing compilers, DSL and existing wave equation seismic frameworks. Next, we

highlight the core features of Devito and describe the implementation of the featured wave

equation operators in Section 3.3. We outline the seismic inversion theory in Section 3.4.

Code verification and analysis of accuracy in Section 3.5 is followed by a discussion of

the propagators computational performance in Section 3.6. We conclude by presenting a

set of realistic examples such as seismic inversion and computational fluid dynamics and a

discussion of future work.

3.2 Background

Improving the runtime performance of a critical piece of code on a particular computing

platform is a non-trivial task that has received significant attention throughout the history

of computing. The desire to automate the performance optimization process itself across a

range of target architectures is not new either, although it is often met with skepticism. Even

the very first compiler, A0 [114], was received with resistance, as best summarized in the

following quote: “Dr. Hopper believes,..., that the result of a compiling technique should

be a routine just as efficient as a hand tailored routine. Some others do not completely

agree with this. They feel the machine-made routine can approach hand tailored coding,

but they believe there are ”tricks of the trade” that apply to various special cases that a

computer cannot be expected to utilize.” [115]. Given the challenges of porting optimized

codes to a wide range of rapidly evolving computer architectures, it seems natural to raise

again the layer of abstraction and use compiler techniques to replace much of the manual
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labor.

Community acceptance of these new “automatic coding systems” began when concerns

about the performance of the generated code were addressed by the first “optimizing com-

piler”, FORTRAN, released in 1957 – which not only translated code from one language

to another but also ensured that the final code performed at least as good as a hand-written

low-level code [116]. Since then, as program and hardware complexity rose, the same prob-

lem has been solved over and over again, each time by the introduction of higher levels of

abstractions. The first high-level languages and compilers were targeted at solving a large

variety of problems and hence were restricted in the kind of optimizations they could lever-

age. As these generic languages became common-place and the need for further improve-

ment in performance was felt, restricted languages focusing on smaller problem domains

were developed that could leverage more “tricks of the trade” to optimize performance.

This led to the proliferation of DSLs for broad mathematical domains or sub-domains,

such as APL [117], Mathematica, Matlab R©or R.

In addition to these relatively general mathematical languages, more specialized frame-

works targeting the automated solution of PDEs have long been of interest [118, 119, 120,

121]. More recent examples not only aim to encapsulate the high-level notation of PDEs,

but are often centered around a particular numerical method. Two prominent contemporary

projects based on the finite element method (FEM), FEniCS [31] and Firedrake [32], both

implement a common DSL, UFL [122], that allows the expression of variational problems

in weak form. Multiple DSLs to express stencil-like algorithms have also emerged over

time, including [112, 123, 124, 125, 126, 127, 128, 129, 130, 113]. Other stencil DSLs

have been developed with the objective of solving PDEs using finite differences [49], [46]

and [131]. However, in all cases their use in seismic imaging problems (or even more

broadly in science and engineering) has been limited by a number of factors other than

technology inertia. Firstly, they only raise the abstraction to the level of polyhedral-like

(affine) loops. As they do not generally use a symbolic mathematics engine to write the
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mathematical expressions at a high-level, developers must still write potentially complex

numerical kernels in the target low-level programming language. For complex formula-

tions this process can be time consuming and error prone, as hand-tuned codes for wave

propagators can reach thousands of lines of code. Secondly, most DSLs rarely offer enough

flexibility for extension beyond their original scope (e.g. sparse operators for source terms

and interpolation) making it difficult to work the DSL into a more complex science/engi-

neering workflow. Finally, since finite difference wave propagators only form part of the

over-arching PDE constrained (wave equation) optimization problem, composability with

external packages, such as the SciPy optimization toolbox, is a key requirement that is often

ignored by self-contained standalone DSLs. The use of a fully embedded Python DSL, on

the other hand, allows users to leverage a variety of higher-level optimization techniques

through a rich variety of software packages provided by the scientific Python ecosystem.

Moreover, several computational frameworks for seismic imaging exist, although they

provide varying degrees of abstraction and are typically limited to a single representation of

the wave equation. IWAVE [132, 133, 134, 111], although not a DSL, provides a high-level

of abstraction and a mathematical framework to abstract the algebra related to the wave-

equation and its solution. IWAVE provides a rigorous mathematical abstraction for linear

operations and vector representations including Hilbert space abstraction for norms and

distances. However, its C++ implementation limits the extensibility of the framework to

new wave-equations. Other software frameworks, such as Madagascar [12], offer a broad

range of applications. Madagascar is based on a set of subroutines for each individual prob-

lem and offers modelling and imaging operators for multiple wave-equations. However, the

lack of high-level abstraction restricts its flexibility and interfacing with high level external

software (i.e Python , Java). The subroutines are also mostly written in C/Fortran and limit

the architecture portability.
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3.3 Symbolic definition of finite difference stencils with Devito

In general, the majority of the computational workload in wave-equation based seismic

inversion algorithms arises from computing solutions to discrete wave equations and their

adjoints. There are a wide range of mathematical models used in seismic imaging that ap-

proximate the physics to varying degrees of fidelity. To improve development and innova-

tion time, including code verification, we describe the use of the symbolic finite difference

framework Devito to create a set of explicit matrix-free operators of arbitrary spatial dis-

cretization order. These operators are derived for example from the acoustic wave equation

m(x)
∂2u(t, x)

∂t2
−∆u(t, x) = q(t, x), (3.1)

where m(x) = 1
c(x)2

is the squared slowness with c(x) the spatially dependent speed of

sound, symbol ∆u(t, x) denotes the Laplacian of the wavefield u(t, x) and q(t, x) is a

source usually located at a single location xs in space (q(t, x) = f(t)δ(xs)). This formula-

tion will be used as running example throughout the section.

3.3.1 Code generation - an overview

Devito aims to combine performance benefits of dedicated stencil frameworks [130, 129,

112, 113] with the expressiveness of symbolic PDE-solving DSLs [31, 32] through au-

tomated code generation and optimization from high-level symbolic expressions of the

mathematics. Thus, the primary design objectives of the Devito DSL are to allow users to

define explicit finite difference operators for (time-dependent) PDEs in a concise symbolic

manner and provide an API that is flexible enough to fully support realistic scientific use

cases. To this end, Devito offers a set of symbolic classes that are fully compatible with the

general-purpose symbolic algebra package SymPy that enables users to derive discretized

stencil expressions in symbolic form. As we show in Figure 3.1, the primary symbols in

such expressions are associated with user data that carry domain-specific meta-data infor-

56



Symbolic Equation

Data

Symbolic Functions

Operator

JIT-compiled .so

Python

u = TimeFunction(name=‘u’, grid=grid)
m = Function(name=‘m’, grid=grid)

eqn = m*u.dt2 - u.laplace

op = Operator(eqn)

Grid grid = Grid(shape=(…))
Overarching 
application

PDE 
solver

…

…

Python/…

Figure 3.1: Overview of the Devito architecture and the associated example workflow.
Devito’s top-level API allows users to generate symbolic stencil expressions using data-
carrying function objects that can be used for symbolic expressions via SymPy . From this
high-level definition, an operator then generates, compiles and executes high-performance
C code.

mation to be used by the compiler engine (e.g. dimensions, data type, grid). The discretized

expressions form an abstract operator definition that Devito uses to generate low-level C

code (C99) and OpenMP at runtime. The encapsulating Operator object can be used

to execute the generated code from within the Python interpreter making Devito natively

compatible with the wide range of tools available in the scientific Python software stack.

We manage memory using our own allocators (e.g. to enforce alignment and NUMA op-

timizations) and therefore we also take control over freeing memory. We wrap everything

with the NumPy array API to ensure interoperability with other modules that use NumPy.

A Devito Operator takes as input a collection of symbolic expressions and progres-

sively lowers the symbolic representation to semantically equivalent C code. The code gen-

eration process consists of a sequence of compiler passes during which multiple automated

performance-optimization techniques are employed. These can be broadly categorized into

two classes and are performed by distinct sub-packages:

• Devito Symbolic Engine (DSE): Symbolic optimization techniques, such as Com-

mon Sub-expression Elimination (CSE), factorization and loop-invariant code mo-

tion are utilized to reduce the number of floating point operations (flops) performed
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within the computational kernel [135]. These optimization techniques are inspired

by SymPy but are custom implemented in Devito and do not rely on SymPy imple-

mentation of CSE for example.

• Devito Loop Engine (DLE): Well-known loop optimization techniques, such as ex-

plicit vectorization, thread-level parallelization and loop blocking with auto-tuned

block sizes are employed to increase the cache utilization and thus memory band-

width utilization of the kernels.

A complete description of the compilation pipeline is provided in [42].

3.3.2 Discrete function symbols

The primary user-facing API of Devito allows the definition of complex stencil operators

from a concise mathematical notation. For this purpose, Devito relies strongly on SymPy

(Devito 3.1.0 depends upon SymPy 1.1 and all dependency versions are specified in De-

vito’s requirements file). Devito provides two symbolic object types that mimic SymPy

symbols, enabling the construction of stencil expressions in symbolic form:

• Function: The primary class of symbols provided by Devito behaves like sympy.Function

objects, allowing symbolic differentiation via finite difference discretization and gen-

eral symbolic manipulation through SymPy utilities. Symbolic function objects en-

capsulate state variables (parameters and solution of the PDE) in the operator defini-

tion and associated user data (function value) with the represented symbol. The meta-

data, such as grid information and numerical type, which provide domain-specific in-

formation to the Devito compiler are also carried by the sympy.Function object.

• Dimension: Each sympy.Function object defines an iteration space for stencil

operations through a set of Dimension objects that are used to define and generate

the corresponding loop structure from the symbolic expressions.
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In addition to sympy.Function and Dimension symbols, Devito supplies the con-

struct Grid, which encapsulates the definition of the computational domain and defines the

discrete shape (number of grid points, grid spacing) of the function data. The number of

spatial dimensions is hereby derived from the shape of the Grid object and inherited by

all Function objects, allowing the same symbolic operator definitions to be used for two

and three-dimensional problem definitions. As an example, a two-dimensional discrete rep-

resentation of the square slowness of an acoustic wave ~m[x, y] inside a 5 by 6 grid points

domain can be created as a symbolic function object as illustrated in Figure 3.2.

>>> grid = Grid(shape=(5, 6))

>>> m = Function(name=’m’,

grid=grid)

>>> m

m(x, y)

>>> m.data.shape

(5, 6)

Figure 3.2: Defining a Devito Function on a Grid.

It is important to note here that ~m[x, y] is constant in time, while the discrete wave-

field ~u[t, x, y] is time-dependent. Since time is often used as the stepping dimension for

buffered stencil operators, Devito provides an additional function type TimeFunction,

which automatically adds a special TimeDimension object to the list of dimensions.

TimeFunction objects derive from Function with an extra time dimension and in-

herit all the symbolic properties. The creation of a TimeFunction requires the same

parameters as a Function, with an extra optional time order property that defines

the discretization order for the time dimension and an integer save parameter that de-

fines the size of the time axis when the full time history of the field is stored in mem-

ory. In the case of a buffered time dimension save is equal to None and the size of

the buffered dimension is automatically inferred from the time order value. As an

example, we can create an equivalent symbolic representation of the wavefield as u =
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TimeFunction(name=’u’, grid=grid), which is denoted symbolically as u(t,

x, y).

Spatial discretization

The symbolic nature of the function objects allows the automatic derivation of discretized

finite difference expressions for derivatives. Devito Function objects provide a set

of shorthand notations that allow users to express, for example, d~u[t,x,y,z]
dx

as u.dx and

d2~u[t,x,y,z]
dx2 as u.dx2. Moreover, the discrete Laplacian, defined in three dimensions as

∆~u[t, x, y, z] = d2~u[t,x,y,z]
dx2 + d2~u[t,x,y,z]

dy2
+ d2~u[t,x,y,z]

dz2
can be expressed in shorthand simply as

u.laplace. The shorthand expression u.laplace is agnostic to the number of spatial

dimensions and may be used for two or three-dimensional problems.

The discretization of the spatial derivatives can be defined for any order. In the most

general case, we can write the spatial discretization in the x direction of order k (and

equivalently in the y and z direction) as:

∂2~u[t, x, y, z]

∂x2
=

1

h2
x

k
2∑

j=0

[αj(~u[t, x+ jhx, y, z] + ~u[t, x− jhx, y, z])] , (3.2)

where hx is the discrete grid spacing for the dimension x, the constants αj are the coeffi-

cients of the finite difference scheme and the spatial discretization error is of order O(hkx).

Temporal discretization

We consider here a second-order time discretization for the acoustic wave equation, as

higher order time discretization requires us to rewrite the PDE [136]. The discrete second-

order time derivative with this scheme can be derived from the Taylor expansion of the
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discrete wavefield ~u(t, x, y, z) as:

d2~u[t, x, y, z]

dt2
=
~u[t+ ∆t, x, y, z]− 2~u[t, x, y, z] + ~u[t−∆t, x, y, z]

∆t2
. (3.3)

In this expression, ∆t is the size of a discrete time step. The discretization error is O(∆t2)

(second order in time) and will be verified in Section 3.5.

Following the convention used for spatial derivatives, the above expression can be

automatically generated using the shorthand expression u.dt2. Combining the tempo-

ral and spatial derivative notations, and ignoring the source term q, we can now define

the wave propagation component of Equation 3.1 as a symbolic expression via Eq(m *

u.dt2 - u.laplace, 0) where Eq is the SymPy representation of an equation. In

the resulting expression, all spatial and temporal derivatives are expanded using the cor-

responding finite difference terms. To define the propagation of the wave in time, we can

now rearrange the expression to derive a stencil expression for the forward stencil point

in time, ~u(t + ∆t, x, y, z), denoted by the shorthand expression u.forward. The for-

ward stencil corresponds to the explicit Euler time-stepping that updates the next time-step

u.forward from the two previous ones u and u.backward (Equation 3.4). We use the

SymPy utility solve to automatically derive the explicit time-stepping scheme, as shown

in Figure 3.3 for the second order in space discretization.

~u[t+ ∆t, x, y, z] = 2~u[t, x, y, z]− ~u[t−∆t, x, y, z] +
∆t2

~m[x, y, z]
∆~u[t, x, y, z]. (3.4)

The iteration over time to obtain the full solution is then generated by the Devito com-

piler from the time dimension information. Solving the wave-equation with the above ex-

plicit Euler scheme is equivalent to a linear system A(~m)~u = ~qs where the vector ~u is the

discrete wavefield solution of the discrete wave-equation, ~qs is the source term and A(~m)

is the matrix representation of the discrete wave-equation. From Equation 3.4 we can see
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1 >>> from sympy import Eq, solve, init_printing, pprint
2 >>> init_printing(use_latex=True)
3 >>> from devito import Function, TimeFunction, Grid
4

5 >>> grid = Grid(shape=(5, 5))
6 >>> u = TimeFunction(name=’u’, grid=grid, space_order=2, time_order=2)
7 >>> m = Function(name=’m’,grid=grid)
8

9 >>> eqn = Eq(m * u.dt2 - u.laplace)
10 >>> stencil = solve(eqn, u.forward)[0]
11 >>> pprint(Eq(u.forward, stencil))

Produces output equivalent to:

u(t + s, x, y) = 2u(t, x, y)− u(t− s, x, y)

− 2s2u(t, x, y)

h2
ym(x, y)

+
s2u(t, x, y − hy)

h2
ym(x, y)

+
s2u(t, x, y + hy)

h2
ym(x, y)

− 2s2u(t, x, y)

h2
xm(x, y)

+
s2u(t, x− hx, y)

h2
xm(x, y)

+
s2u(t, x + hx, y)

h2
xm(x, y)





∆t2∆u

m(x, y)

Figure 3.3: Example code defining the two-dimensional wave equation without damping
using Devito symbols and symbolic processing utilities from SymPy . Assuming hx = ∆x,
hy = ∆y and s = ∆t the output is equivalent to Equation 3.1 without the source term ~qs.

that the matrix A(~m) is a lower triangular matrix that reflects the time-marching structure

of the stencil. Simulation of the wavefield is equivalent to a forward substitution (solve row

by row from the top) on the lower triangular matrix A(~m). Since we do not consider com-

plex valued PDEs, the adjoint of A(~m) is equivalent to its transpose denoted as A>(~m)

and is an upper triangular matrix. The solution ~v of the discrete adjoint wave-equation

A(~m)>~v = ~qa for an adjoint source ~qa is equivalent to a backward substitution (solve from

the bottom row to top row) on the upper triangular matrix A(~m)> and is simulated back-

ward in time starting from the last time-step. These matrices are never explicitly formed,

but are instead matrix free operators with implicit implementation of the matrix-vector

product, ~u = A(~m)−1~qs as a forward stencil. The stencil for the adjoint wave-equation in

this self-adjoint case would simply be obtained with solve(eqn, u.backward) and

the compiler will detect the backward-in-time update.
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Boundary conditions

The field recorded data is measured on a wavefield that propagates in an infinite domain.

However, solving the wave equation in a discrete infinite domain is not feasible with finite

differences. In order to mimic an infinite domain, Absorbing Boundary Conditions (ABC)

or Perfectly Matched Layers (PML) are necessary [137]. These two methods allow the

approximation of the wavefield as it is in an infinite medium by damping and absorbing the

waves within an extra layer at the limit of the domain to avoid unnatural reflections from

the edge of the discrete domain.

The least computationally expensive method is the Absorbing Boundary Condition that

adds a single damping mask in a finite layer around the physical domain. This absorbing

condition can be included in the wave-equation as:

~m[x, y, z]
d2~u[t, x, y, z]

dt2
−∆~u[t, x, y, z] + ~η[x, y, z]

d~u[t, x, y, z]

dt
= 0. (3.5)

The ~η[x, y, z] parameter is equal to 0 inside the physical domain and increasing from

inside to outside within the damping layer. The dampening parameter ~η can follow a linear

or exponential curve depending on the frequency band and width of the dampening layer.

For methods based on more accurate modelling, for example in simulation-based acquisi-

tion design [138, 139, 140, 141], a full implementation of the PML will be necessary to

avoid weak reflections from the domain limits.

Sparse point interpolation

Seismic inversion relies on data fitting algorithms, hence we need to support sparse oper-

ations such as source injection and wavefield (~u[t, x, y, z]) measurement at arbitrary grid

locations. Both operations occur at sparse domain points, which do not necessarily align

with the logical cartesian grid used to compute the discrete solution ~u(t, x, y, z). Since such

operations are not captured by the finite differences abstractions for implementing PDEs,
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Devito implements a secondary high-level representation of sparse objects [142] to create a

set of SymPy expressions that perform polynomial interpolation within the containing grid

cell from pre-defined coefficient matrices.

The necessary expressions to perform interpolation and injection are automatically gen-

erated through a dedicated symbol type, SparseFunction, which associates a set of

coordinates with the symbol representing a set of non-aligned points. For examples, the

syntax p.interpolate(expr) provided by a SparseFunction p will generate a

symbolic expressions that interpolates a generic expression expr onto the sparse point

locations defined by p, while p.inject(field, expr) will evaluate and add expr

to each enclosing point in field. The generated SymPy expressions are passed to De-

vito Operator objects alongside the main stencil expression to be incorporated into the

generated C kernel code. A complete setup of the acoustic wave equation with absorbing

boundaries, injection of a source function and measurement of wavefields via interpolation

at receiver locations can be found in Section 3.4.2.

3.4 Seismic modeling and inversion

Seismic inversion methods aim to reconstruct physical parameters or an image of the earth’s

subsurface from multi-experiment field measurements. For this purpose, a wave is gener-

ated at the ocean surface that propagates through to the subsurface and creates reflections at

the discontinuities of the medium. The reflected and transmitted waves are then captured by

a set of hydrophones that can be classified as either moving receivers (cables dragged be-

hind a source vessel) or static receivers (ocean bottom nodes or cables). From the acquired

data, physical properties of the subsurface such as wave speed or density can be recon-

structed by minimizing the misfit between the recorded measurements and the numerically

modelled seismic data.
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3.4.1 Full-Waveform Inversion

Recovering the wave speed of the subsurface from surface seismic measurements is com-

monly cast into a non-linear optimization problem called full-waveform inversion (FWI).

The method aims at recovering an accurate model of the discrete wave velocity, ~c, or al-

ternatively, the square slowness of the wave, ~m = 1
~c2

(not an overload), from a given set

of measurements of the pressure wavefield ~u.In [35, 6, 17, 40] is shown that this can be

expressed as a PDE-constrained optimization problem. After elimination of the PDE con-

straint, the reduced objective function is defined as:

minimize
~m

Φs(~m) =
1

2

∥∥∥Pr~u− ~d
∥∥∥

2

2
with: ~u = A(~m)−1PT

s ~qs, (3.6)

where Pr is the sampling operator at the receiver locations, PT
s (T is the transpose or

adjoint) is the injection operator at the source locations, A(~m) is the operator representing

the discretized wave equation matrix, ~u is the discrete synthetic pressure wavefield, ~qs is the

corresponding pressure source and ~d is the measured data. While we consider the acoustic

isotropic wave equation for simplicity here, in practice, multiple implementations of the

wave equation operator ~A(~m) are possible depending on the choice of physics. In the

most advanced case, ~m would not only contain the square slowness but also anisotropic or

orthorhombic parameters.

To solve this optimization problem with a gradient-based method, we use the adjoint-

state method to evaluate the gradient [41, 40]:

∇Φs(~m) =
nt∑

~t=1

~u[~t]~vtt[~t] = JT δ~ds, (3.7)

where nt is the number of computational time steps, δ~ds =
(
Pr~u− ~d

)
is the data

residual (difference between the measured data and the modeled data), J is the Jacobian
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operator and ~vtt is the second-order time derivative of the adjoint wavefield that solves:

AT (~m)~v = PT
r δ
~ds. (3.8)

The discretized adjoint system in Equation 3.8 represents an upper triangular matrix

that is solvable by modelling wave propagation backwards in time (starting from the last

time step). The adjoint state method, therefore, requires a wave equation solve for both the

forward and adjoint wavefields to compute the gradient. An accurate and consistent adjoint

model for the solution of the optimization problem is therefore of fundamental importance.

3.4.2 Acoustic forward modelling operator

We consider the acoustic isotropic wave-equation parameterized in terms of slowness ~m[x, y, z]

with zero initial conditions assuming the wavefield does not have any energy before zero

time. We define an additional dampening term to mimic an infinite domain (see Sec-

tion 3.3.2). At the limit of the domain, the zero Dirichlet boundary condition is satisfied

as the solution is considered to be fully damped at the limit of the computational domain.

The PDE is defined in Equation 3.5. Figure 3.4 demonstrates the complete set up of the

acoustic wave equation with absorbing boundaries, injection of a source function and sam-

pling wavefields at receiver locations. The shape of the computational domain is hereby

provided by a utility object model, while the damping term η d~u[x,y,z,t]
dt

is implemented via

a utility symbol eta defined as a Function object. It is important to note that the dis-

cretization order of the spatial derivatives is passed as an external parameter order and

carried as meta-data by the wavefield symbol u during construction, allowing the user to

freely change the underlying stencil order.

The main (PDE) stencil expression to update the state of the wavefield is derived from

the high-level wave equation expression eqn = u.dt2 - u.laplace + damp*u.dt
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1

2 def forward(model, source, receiver,

space_order=2):

3 m, eta = model.m, model.damp

4 # Allocate wavefield and auxiliary fields

5 u = TimeFunction(name=’u’, grid=model.grid,

time_order=2,

6 space_order=space_order)

7

8 # Derive stencil from symbolic equation

9 eqn = m * u.dt2 - u.laplace + eta * u.dt

10 stencil = solve(eqn, u.forward)

11 update_u = Eq(u.forward, stencil)

12

13 # Source injection and receiver interpolation

14 src = source.inject(field=u.forward,

expr=src * dt**2 / m)

15 rec = receiver.interpolate(expr=u)

16

17 op = Operator([update_u] + src + rec,

subs=model.spacing_map)

Figure 3.4: Example definition of a forward operator.

using SymPy utilities as demonstrated before in Figure 3.3. Additional expressions for the

injection of the wave source via the SparseFunction object src are then generated

for the forward wavefield, where the source time signature is discretized onto the compu-

tational grid via the symbolic expression src * dt**2 / m. The weight dt2

m
is derived

from rearranging the discretized wave equation with a source as a right-hand-side simi-

larly to the Laplacian in Equation 3.4. A similar expression to interpolate the current state

of the wavefield at the receiver locations (measurement points) is generated through the

receiver symbol. The combined list of stencils, a sum in Python that adds the different

expressions that update the wavefield at the next time step, inject the source and interpo-

late at the receivers, is then passed to the Operator constructor alongside a definition

of the spatial and temporal spacing hx, hy, hz,∆t provided by the model utility. Devito

then transforms this list of stencil expressions into loops (inferred from the symbolic Func-

tions), replaces all necessary constants by their values if requested, prints the generated C

code and compiles it. The operator is finally callable in Python with op.apply().

A more detailed explanation of the seismic setup and parameters such as the source and

receiver terms in Figure 3.4 is covered in [143].
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3.4.3 Discrete adjoint wave-equation and FWI gradient

To create the adjoint that pairs with the above forward modeling propagator we can make

use of the fact that the isotropic acoustic wave equation is self-adjoint. This entails that

for the implementation of the forward wave equation eqn, shown in Figure 3.5, only the

sign of the damping term needs to be inverted, as the dampening time-derivative has to

be defined in the direction of propagation ( ∂
∂n(t)

). For the PDE stencil, however, we now

rearrange the stencil expression to update the backward wavefield from the two next time

steps as ~v[t−∆t, x, y, z] = f(~v[t, x, y, z], ~v[t+∆t, x, y, z]). Moreover, the role of the sparse

point symbols has changed (Equation 3.8), so that we now inject time-dependent data at the

receiver locations (adj src), while sampling the wavefield at the original source location

(adj rec).

Based on the definition of the adjoint operator, we can now define a similar operator

to update the gradient according to Equation 3.7. As shown in Figure 3.6, we can replace

the expression to sample the wavefield at the original source location with an accumulative

update of the gradient field grad via the symbolic expression Eq(grad, grad - u *

v.dt2).

To compute the gradient, the forward wavefield at each time step must be available

which leads to significant memory requirements. Many methods exist to tackle this mem-

ory issue, but all come with their advantages and disadvantages. For instance, we im-

plemented optimal checkpointing with the library Revolve [27] in Devito to drastically

reduce the memory cost by only saving a partial time history and recomputing the for-

ward wavefield when needed [29]. The memory reduction comes at an extra computational

cost as optimal checkpointing requires log(nt) + 2 extra PDE solves. Another method

is boundary wavefield reconstruction [144, 145, 146] that saves the wavefield only at the

boundary of the model, but still requires us to recompute the forward wavefield during the

back-propagation. This boundary method has a reduced memory cost but necessitates the

computation of the forward wavefield twice (one extra PDE solve), once to get the data
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def adjoint(model, adj_src, adj_rec,

space_order=2):

m, eta = model.m, model.damp

# Allocate wavefield and auxiliary fields

v = TimeFunction(name=’v’, grid=model.grid,

time_order=2,

space_order=space_order)

# Derive stencil from symbolic equation

eqn = m * v.dt2 - v.laplace - eta * v.dt

stencil = solve(eqn, v.backward)

update_v = Eq(u.backward, stencil)

# Receiver injection and adj-source

interpolation

src_a = adj_src.inject(field=v.backward,

expr=rec * dt**2 / m)

rec_a = adj_rec.interpolate(expr=v)

op = Operator([update_v] + src_a + rec_a,

subs=model.spacing_map)

Figure 3.5: Example definition of an adjoint
operator.

def gradient(model, u, adj_src, space_order=2):

m, eta = model.m, model.damp

# Allocate wavefield and auxiliary fields

v = TimeFunction(name=’v’, grid=model.grid,

time_order=2,

space_order=space_order)

grad = Function(name=’grad’, grid=model.grid)

# Derive stencil from symbolic equation

eqn = m * v.dt2 - v.laplace - eta * v.dt

stencil = solve(eqn, v.backward)

update_v = Eq(u.backward, stencil)

# Receiver injection and gradient update

src_a = adj_src.inject(field=v.backward,

expr=rec * dt**2 / m)

update_grad = Eq(grad, grad - u * v.dt2)

op = Operator([update_v] + src_a +

update_grad,

subs=model.spacing)

Figure 3.6: Example definition of a gradient
operator.

than a second time from the boundary values to compute the gradient.

3.4.4 FWI using Devito operators

At this point, we have a forward propagator to model synthetic data in Figure 3.4, the ad-

joint propagator for Equation 3.8 and the FWI gradient of Equation 3.7 in Figure 3.6. With

these three operators, we show the implementation of the FWI objective and gradient with

Devito in Figure 3.8. With the forward and adjoint/gradient operator defined for a given

source, we only need to add a loop over all the source experiments and the reduction oper-

ation on the gradients (sum the gradient for each source experiment together). In practice,

this loop over sources is where the main task-based or MPI based parallelization happens.

The wave-equation propagator does use some parallelization with multithreading or do-

main decomposition but that parallelism requires communication. The parallelism over

source experiment is task-based and does not require any communication between the sep-

arate tasks as the gradient for each source can be computed independently and reduced to

obtain the full gradient. With the complete gradient summed over the source experiments,
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1 def fwi_gradient(model, op_fwd, op_grad):

2 """

3 Function to compute a single FWI gradient

4 """

5 u = TimeFunction(name=’u’, grid=model.grid,

6 space_order=order)

7 grad = Function(name=’grad’, grid=model.grid)

8

9 for i in nshots:

10 # Update source location for each shot

11 src.coordinates.data[0. :] =

source_loc[i]

12

13 # Run forward modelling operator

14 op_fwd(u=u, src=src, rec=smooth_d)

15

16 # Compute gradient from data residual and

17 # update objective function

18 residual = smooth_d.data[:] -

true_d.data[:]

19 objective +=

.5*np.linalg.norm(residual)**2

20 op_grad(rec=residual, u=u, m=model.m,

grad=grad)

21

22 return objective, grad.data

Figure 3.7: Definition of FWI gradient up-
date.

1 model = Model(...)

2 dt, nt = <timestepping parameters>

3

4 # Define source and receiver geometry

5 src = RickerSource(...)

6 rec = Receiver(...)

7

8 # Create forward and gradient operators

9 op_fwd = forward(model, src, rec, order)

10 op_grad = gradient(model, rec, order)

11

12 # Run FWI with gradient descent

13 for i in range(0, fwi_iterations):

14 # Compute functional value and gradient

15 # for the current model estimate

16 phi, direction = fwi_gradient(model.m)

17

18 # Artificial Step length for gradient descent

19 alpha = .005 / np.max(direction)

20

21 # Update the model estimate and inforce

22 # minimum/maximum values

23 m_updated = model.m.data - alpha*direction

24 model.m.data[:] = box_constraint(m_updated)

Figure 3.8: FWI algorithm with linesearch.

we update the model with a simple fixed step length gradient update [69].

This FWI function in Figure 3.7 can then be included in any black-box optimization

toolbox such as SciPy optimize to solve the inversion problem Equation 3.6. While

black-box optimization methods aim to minimize the objective, there are no guarantees

they find a global minimum because the objective is highly non-linear in m and other more

sophisticated methods are required [147, 20, 148, 78].

3.5 Verification

Given the operators defined in Section 3.3 we now verify the correctness of the code gen-

erated by the Devito compiler. We first verify that the discretized wave equation satisfies

the convergence properties defined by the order of discretization, and secondly we verify

the correctness of the discrete adjoint and computed gradient.
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3.5.1 Numerical accuracy

The numerical accuracy of the forward modeling operator (Figure 3.4) and the runtime

achieved for a given spatial discretization order and grid size are compared to the analytical

solution of the wave equation in a constant media. We define two measures of the accuracy

that compare the numerical wavefield in a constant velocity media to the analytical solution:

• Accuracy versus size, where we compare the obtained numerical accuracy as a func-

tion of the spatial sampling size (grid spacing).

• Accuracy versus time, where we compare the obtained numerical accuracy as a

function of runtime for a given physical model (fixed shape in physical units, variable

grid spacing).

The measure of accuracy of a numerical solution relies on a hypothesis that we satisfy

for these two tests:

• The domain is large enough and the propagation time small enough to ignore bound-

ary related effects, i.e. the wavefield never reaches the limits of the domain.

• The source is located on the grid and is a discrete approximation of the Dirac to avoid

spatial interpolation errors. This hypothesis guarantees the existence of the analytical

and numerical solution for any spatial discretization [149].

Convergence in time We analyze the numerical solution against the analytical solution

and verify that the error between these two decreases at a second order rate as a function of

the time step size ∆t. The velocity model is a 400m × 400m domain with a source at the

center. We compare the numerical solution to the analytical solution on Figure 3.9.
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Figure 3.9: Numerical wavefield for a constant velocity dt = .1ms, h = 1m and compari-
son with the analytical solution.

The analytical solution is defined as [150]:

us(r, t) =
1

2π

∫ ∞

−∞
{−iπH(2)

0 (kr) q(ω)eiωtdω} (3.9)

r =
√

(x− xsrc)2 + (y − ysrc)2, (3.10)

where H(2)
0 is the Hankel function of second kind and q(ω) is the spectrum of the source

function. As we can see on Figure 3.10 the error decreases near quadratically with the

size of the time step with a time convergence rate of slope of 1.94 in logarithmic scale that

matches the theoretical expectation from a second order temporal discretization.

Spatial discretization analysis The spatial discretization analysis follows the same method

as the temporal discretixzation analysis. We model a wavefield for a fixed temporal setup

with a small enough time-step to ensure negligeable time discretization error (dt = .00625ms).

We vary the grid spacing (dx) and spatial discretization order and the and compute the er-

ror between the numerical and analytical solution. The convergence rates should follow

the theoretical rates defined in Equation 3.2. In details, for a kth order discretization in

space, the error between the numerical and analytical solution should decrease as O(dxk).
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Figure 3.10: Time discretization convergence analysis for a fixed grid, fixed propagation
time (150ms) and varying time step values. The result is plotted in a logarithmic scale and
the numerical convergence rate (1.94 slope) shows that the numerical solution is accurate.

The best way to look at the convergence results is to plot the error in logarithmic scale and

verify that the error decrease linearly with slope k. We show the convergence results on

Figure 3.11. The numerical convergence rates follow the theoretical ones for every tested

order k = 2, 4, 6, 8 with the exception of the 10th order for small grid size. This is mainly

due to reaching the limits of the numerical accuracy and a value of the error on par with

the temporal discretization error. This behavior for high order and small grids is however

in accordance with the literature as in in [151].

The numerical slopes obtained and displayed on Figure 3.11 demonstrate that the spatial

finite difference follows the theoretical errors and converges to the analytical solution at

the expected rate. These two convergence results (time and space) verify the accuracy

and correctness of the symbolic discretization with Devito. With this validated simulated

wavefield, we can now verify the implementation of the operators for inversion.

3.5.2 Propagators verification for inversion

We concentrate now on two tests, namely the adjoint test (or dot test) and the gradient test.

The adjoint state gradient of the objective function defined in Equation 3.7 relies on the

solutions of the forward and adjoint wave equations, therefore, the first mandatory property
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Figure 3.11: Comparison of the numerical convergence rate of the spatial finite difference
scheme with the theoretical convergence rate from the Taylor theory. The theoretical rates
are the dotted line with the corresponding colors. The result is plotted in a logarithmic scale
to highlight the convergence orders as linear slopes and the numerical convergence rates
show that numerical solution is accurate.

to verify is the exact derivation of the discrete adjoint wave equation. The mathematical

test we use is the standard adjoint property or dot-test:

for any random ~x ∈ span(~Ps
~A(~m)−T ~P−Tr ), ~y ∈ span(~Pr

~A(~m)−1 ~P−Ts )

< ~Pr
~A(~m)−1 ~P−Ts ~x, ~y > − < ~x, ~Ps

~A(~m)−T ~P−Tr ~y >

< ~Pr
~A(~m)−1 ~P−Ts ~x, ~y >

= 0.0. (3.11)

The adjoint test is also individually performed on the source/receiver injection/interpo-

lation operators in the Devito tests suite. The results, summarized in Tables 3.1 and 3.2

with F = ~Pr
~A(~m)−1 ~P−Ts , verify the correct implementation of the adjoint operator for any

order in both 2D and 3D. We observe that the discrete adjoint is accurate up to numeri-

cal precision for any order in 2D and 3D with an error of order 1e − 16. In combination

with the previous numerical analysis of the forward modeling propagator that guarantees

that we solve the wave equation, this result verifies that the adjoint propagator is the ex-

act numerical adjoint of the forward propagator and that it implements the adjoint wave

equation.
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Table 3.1: Adjoint test for different discretization orders in 2D, computed on a two layer
model in double precision.

Order < F~x, ~y > < ~x,FT~y > relative error
2nd order 7.9858e+05 7.9858e+05 0.0000e+00
4th order 7.3044e+05 7.3044e+05 0.0000e+00
6th order 7.2190e+05 7.2190e+05 4.8379e-16
8th order 7.1960e+05 7.1960e+05 4.8534e-16

10th order 7.1860e+05 7.1860e+05 3.2401e-16
12th order 7.1804e+05 7.1804e+05 6.4852e-16

Table 3.2: Adjoint test for different discretization orders in 3D, computed on a two layer
model in double precision.

Order < F~x, ~y > < ~x,FT~y > relative error
2nd order 5.3840e+04 5.3840e+04 1.3514e-16
4th order 4.4725e+04 4.4725e+04 3.2536e-16
6th order 4.3097e+04 4.3097e+04 3.3766e-16
8th order 4.2529e+04 4.2529e+04 3.4216e-16

10th order 4.2254e+04 4.2254e+04 0.0000e+00
12th order 4.2094e+04 4.2094e+04 1.7285e-16

With the forward and adjoint propagators tested, we finally verify that the Devito oper-

ator that implements the gradient of the FWI objective function (Equation 3.7, Figure3.6)

is accurate with respect to the Taylor expansion of the FWI objective function. For a given

velocity model and associated squared slowness ~m, the Taylor expansion of the FWI ob-

jective function from Equation 3.6 for a model perturbation ~dm and a perturbation scale h

is:

Φs(~m+ h ~dm) = Φs(~m) +O(h)

Φs(~m+ h ~dm) = Φs(~m) + h〈∇Φs(~m), ~dm〉+O(h2). (3.12)

These two equations constitute the gradient test where we define a small model perturbation
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Figure 3.12: Gradient test for the acoustic propagator. The first order (blue) and second
order (red) errors are displayed in logarithmic scales to highlight the slopes. The numerical
convergence order (1.06 and 2.01) show that we have a correct implementation of the FWI
operators.

~dm and vary the value of h between 10−6 and 100 and compute the error terms:

ε0 =Φs(~m+ h ~dm)− Φs(~m)

ε1 =Φs(~m+ h ~dm)− Φs(~m)− h〈∇Φs(~m), ~dm〉. (3.13)

We plot the evolution of the error terms as a function of the perturbation scale h knowing

ε0 should be first order (linear with slope 1 in a logarithmic scale) and ε1 should be second

order (linear with slope 2 in a logarithmic scale). We executed the gradient test defined in

Equation 3.12 in double precision with a 8th order spatial discretization. The test can be

run for higher orders in the same manner but since it has already been demonstrated that

the adjoint is accurate for all orders, the same results would be obtained.

In Figure 3.12, the matching slope of the error term with the theoretical h and h2 slopes

from the Taylor expansion verifies the accuracy of the inversion operators. With all the

individual parts necessary for seismic inversion, we now validate our implementation on a

simple but realistic example.
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Figure 3.13: FWI on the acoustic Marmousi-ii model. The top-left plot is the true velocity
model, the top-right is the initial velocity model, the bottom-left plot is the inverted velocity
at the last iteration of the iterative inversion and the bottom-right plot is the convergence.

3.5.3 Validation: Full-Waveform Inversion

We show a simple example of FWI Equation 3.7 on the Marmousi-ii model [152]. This

result obtained with the Julia interface to Devito JUDI [78, 153] that provides high-level

abstraction for optimization and linear algebra. The model size is 4km× 16km discretized

with a 10m grid in both directions. We use a 10Hz Ricker wavelet with 4s recording. The

receivers are placed at the ocean bottom (210m depth) every 10m. We invert for the velocity

with all the sources, spaced by 50m at 10m depth for a total of 300 sources. The inversion

algorithm used is minConf PQN [154], an l-BFGS algorithm with bounds constraints (min-

imum and maximum velocity values constraints). While conventional optimization would

run the algorithm to convergence, this strategy is computationally not feasible for FWI. As

each iteration requires two PDE solves per source qs (see adjoint state in Section 3.4), we

can only afford aO(10) iterations in practice (O(104) PDE solves in total). In this example,

we fix the number of function evaluations to 20, which, with the line search, corresponds

to 15 iteration. The result is shown in Figure 3.13 and we can see that we obtain a good

reconstruction of the true model. More advanced algorithms and constraints will be nec-

essary for more complex problem such as less accurate initial model, noisy data or field

recorded data [78, 148]; however the wave propagator would not be impacted, making this

example a good proof of concept for Devito.
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This result highlights two main contributions of Devito. First, we provide PDE simu-

lation tools that allow easy and efficient implementation of inversion operator for seismic

problem and potentially any PDE constrained optimization problem. As described in Sec-

tion 3.3 and 3.4, we can implement all the required propagators and the FWI gradient in a

few lines in a concise and mathematical manner. Second, as we obtained this results with

JUDI [153], a seismic inversion framework that provides a high-level linear abstraction

layer on top of Devito for seismic inversion, this example illustrates that Devito is fully

compatible with external languages and optimizations toolboxes and allows users to use

our symbolic DSL for finite difference within their own inversion framework.

3.5.4 Computational Fluid Dynamics

Finally we describe three classical computational fluid dynamics examples to highlight

the flexibility of Devito for another application domain. Additional CFD examples can

be found in the Devito code repository in the form of a set of Jupyter notebooks. The

three examples we describe here are the convection equation, the Burger equation and the

Poisson equation. These examples are adapted from [155] and the example repository

contains both the original Python implementation with Numpy and the implementation

with Devito for comparison.

Convection

The convection governing equation for a field u and a speed c in two dimensions is:

∂u

∂t
+ c

∂u

∂x
+ c

∂u

∂y
= 0. (3.14)

The same way we previously described it for the wave equation, u is then defined as a

TimeFunction. In this simple case, the speed is a constant and does not need a symbolic

representation, but a more general definition of this equation is possible with the creation

of c as a Devito Constant that can accept any runtime value. We then discretized the
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u = TimeFunction(name=’u’, grid=grid)

# Derive stencil from symbolic equation

eq = Eq(u.dt + c*u.dxl + c*u.dyl)

stencil = solve(eq, u.forward)

# Apply boundary conditions

u.data[:, 0, :] = 1.

u.data[:, -1, :] = 1.

u.data[:, :, 0] = 1.

u.data[:, :, -1] = 1.

# Create an Operator that updates the forward stencil

# point in the interior subdomain only.

op = Operator(Eq(u.forward, stencil,

subdomain=grid.interior))

Figure 3.14: Convection equation in Devito. In this example, the initial Dirichlet boundary
conditions are set to 1 using the API indexing feature, which allows to assign values to the
TensorFunction data.
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Figure 3.15: Initial (left) and final (right) time of the simulation of the convection equation.

PDE using forward differences in time and backward differences in space:

un+1
i,j = uni,j − c

∆t

∆x
(uni,j − uni−1,j)− c

∆t

∆y
(uni,j − uni,j−1), (3.15)

which is implemented in Devito as in Figure 3.14.

The solution of the convection equation is displayed on Figure 3.15 that shows the

evolution of the field u and the solution is consistent with the expected result produced

by [155].
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Burgers’ equation

In this second example, we show the solution of Burgers’ equation. This example demon-

strates that Devito supports coupled system of equations and non linear equations easily.

The Burgers’ equation in two dimensions is defined as the following coupled PDE system:





∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

= ν
(

∂2u
∂x2 + ∂2u

∂y2

)
,

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

= ν
(

∂2v
∂x2 + ∂2v

∂y2

)
,

(3.16)

where u, v are the two components of the solution and ν is the diffusion coefficient of

the medium. The system of coupled equations is implemented in Devito in a few lines as

shown in Figure 3.16.

We show the initial state and the solution at the last time step of the Burgers’ equation

in Figure 3.17. Once again, the solution corresponds to the reference solution of [155].

Poisson

We finally show the implementation of a solver for the Poisson equation in Devito. While

the Poisson equation is not time dependent, the solution is obtained with an iterative solver

and simplest one can easily be implemented with finite differences. The Poisson equation

for a field p and a right hand side b is defined as:

∂2p

∂x2
+
∂2p

∂y2
= b, (3.17)

and its solution can be computed iteratively with:
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# Define our velocity fields and initialise with hat

function

u = TimeFunction(name=’u’, grid=grid, space_order=2)

v = TimeFunction(name=’v’, grid=grid, space_order=2)

init_hat(field=u.data[0], dx=dx, dy=dy, value=2.)

init_hat(field=v.data[0], dx=dx, dy=dy, value=2.)

# Write down the equations with explicit backward

differences

a = Constant(name=’a’)

u_dx = first_derivative(u, dim=x, side=left, order=1)

u_dy = first_derivative(u, dim=y, side=left, order=1)

v_dx = first_derivative(v, dim=x, side=left, order=1)

v_dy = first_derivative(v, dim=y, side=left, order=1)

eq_u = Eq(u.dt + u*u_dx + v*u_dy, a*u.laplace,

subdomain=grid.interior)

eq_v = Eq(v.dt + u*v_dx + v*v_dy, a*v.laplace,

subdomain=grid.interior)

# Let SymPy rearrange our stencils to form the update

expressions

stencil_u = solve(eq_u, u.forward)

stencil_v = solve(eq_v, v.forward)

update_u = Eq(u.forward, stencil_u)

update_v = Eq(v.forward, stencil_v)

# Create Dirichlet BC expressions using the low-level

API

bc_u = [Eq(u[t+1, 0, y], 1.)] # left

bc_u += [Eq(u[t+1, nx-1, y], 1.)] # right

bc_u += [Eq(u[t+1, x, ny-1], 1.)] # top

bc_u += [Eq(u[t+1, x, 0], 1.)] # bottom

bc_v = [Eq(v[t+1, 0, y], 1.)] # left

bc_v += [Eq(v[t+1, nx-1, y], 1.)] # right

bc_v += [Eq(v[t+1, x, ny-1], 1.)] # top

bc_v += [Eq(v[t+1, x, 0], 1.)] # bottom

# Create the operator

op = Operator([update_u, update_v] + bc_u + bc_v)

Figure 3.16: Burgers’ equations in Devito. In this example, we use explicitly the FD
function first derivative. This function provides more flexibility and allows to
take an upwind derivative, rather than a standard centered derivative (_dx), to avoid odd-
even coupling, which leads to chessboard artifacts in the solution.
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Figure 3.17: Initial (left) and final (right) time of the simulation of the Burgers’ equations.

pn+1
i,j =

(pni+1,j + pni−1,j)∆y
2 + (pni,j+1 + pni,j−1)∆x2 − bni,j∆x2∆y2

2(∆x2 + ∆y2)
, (3.18)

where the expression in Equation 3.18 is computed until either the number of itera-

tions is reached (our example case) or more realistically when ||pn+1
i,j − pni,j|| < ε. We

show two different implementations of a Poisson solver in Figure 3.18, 3.19. While these

two implementations produce the same result, the second one takes advantage of Devito’s

BufferedDimension that allows to iterate automatically alternating between pn and

pn+1 as the two different time buffers in the TimeFunction.

The solution of the Poisson equation is displayed on Figure 3.20 with its right-hand-side

b.

These examples demonstrate the flexibility of Devito and show that a broad range of

PDE can easily be implemented with Devito including non linear equation, coupled PDE

system and steady state problems.

3.6 Performance

In this section we demonstrate the performance of Devito from the numerical and the in-

version point of view, as well as the absolute performance from the hardware point of view.

This section only provides a brief overview of Devito’s performance and a more detailed
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p = Function(name=’p’, grid=grid, space_order=2)

pd = Function(name=’pd’, grid=grid, space_order=2)

p.data[:] = 0.

pd.data[:] = 0.

# Initialise the source term ‘b‘

b = Function(name=’b’, grid=grid)

b.data[:] = 0.

b.data[int(nx / 4), int(ny / 4)] = 100

b.data[int(3 * nx / 4), int(3 * ny / 4)] = -100

# Create Laplace equation base on ‘pd‘

eq = Eq(pd.laplace, b, subdomain=grid.interior)

# Let SymPy solve for the central stencil point

stencil = solve(eq, pd)

# Now we let our stencil populate our second buffer ‘p‘

eq_stencil = Eq(p, stencil)

# Create boundary condition expressions

x, y = grid.dimensions

t = grid.stepping_dim

bc = [Eq(p[x, 0], 0.)]

bc += [Eq(p[x, ny-1], 0.)]

bc += [Eq(p[0, y], 0.)]

bc += [Eq(p[nx-1, y], 0.)]

# Now we can build the operator that we need

op = Operator([eq_stencil] + bc)

# Run the outer loop explicitly in Python

for i in range(nt):

# Determine buffer order

if i % 2 == 0:

_p = p

_pd = pd

else:

_p = pd

_pd = p

# Apply operator

op(p=_p, pd=_pd)

Figure 3.18: Poisson equation in Devito
with field swap in Python.

# Now with Devito we will turn ‘p‘ into ‘TimeFunction‘

# object to make all the buffer switching implicit

p = TimeFunction(name=’p’, grid=grid, space_order=2)

# Initialise the source term ‘b‘

b = Function(name=’b’, grid=grid)

b.data[:] = 0.

b.data[int(nx / 4), int(ny / 4)] = 100

b.data[int(3 * nx / 4), int(3 * ny / 4)] = -100

# Create Laplace equation base on ‘p‘

eq = Eq(p.laplace, b)

# Let SymPy solve for the central stencil point

stencil = solve(eq, p)

# Let our stencil populate the buffer ‘p.forward‘

eq_stencil = Eq(p.forward, stencil)

# Create boundary condition expressions

# Note that we now add an explicit "t + 1"

# for the time dimension.

bc = [Eq(p[t + 1, x, 0], 0.)]

bc += [Eq(p[t + 1, x, ny-1], 0.)]

bc += [Eq(p[t + 1, 0, y], 0.)]

bc += [Eq(p[t + 1, nx-1, y], 0.)]

# We can even switch performance logging back on,

# since we only require a single kernel invocation.

configuration[’log-level’] = ’INFO’

# Create and execute the operator for nt iterations

op = Operator([eq_stencil] + bc)

op(time=nt)

Figure 3.19: Poisson equation in Devito
with buffered dimension for automatic
swap at each iteration.
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Figure 3.20: Right hand side (left) and solution (right) of the Poisson equations
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Figure 3.21: Different spatial discretization orders accuracy against runtime for a fixed
physical setup (model size in m and propagation time).

description of the compiler and its performance is covered in [42].

3.6.1 Error-cost analysis

Devito’s automatic code generation lets users define the spatial and temporal order of FD

stencils symbolically and without having to reimplement long stencils by hand. This allows

users to experiment with trade-offs between discretization errors and runtime, as higher

order FD stencils provide more accurate solutions that come at increased runtime. For our

error-cost analysis, we compare absolute error in L2-norm between the numerical and the

reference solution to the time-to-solution (the numerical and reference solution are defined

in the previous Section 3.5). Figure 3.21 shows the runtime and numerical error obtained

for a fixed physical setup. We use the same parameter as in Sections 3.5.1 with a domain

of 400m× 400m and we simulate the wave propagation for 150ms.

The results in Figure 3.21 illustrate that higher order discretizations produce a more

accurate solution on a coarser grid with a smaller runtime. This result is very useful for

inverse problems, as a coarser grid requires less memory and fewer time steps. A grid size

two times bigger implies a reduction of memory usage by a factor of 24 for 3D modeling.

Devito then allows users to design FD simulators for inversion in an optimal way, where

the discretization order and grid size can be chosen according to the desired numerical
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accuracy and availability of computational resources. The order of the FD stencils also

affects the best possible hardware usage that can theoretically be achieved and whether an

algorithm is compute or memory bound, a trade-off that is described by the roofline model.

3.6.2 Roofline analysis

We present performance results of our solver using the roofline model, as previously dis-

cussed in [73, 75, 34, 74, 43]. Given a finite difference scheme, this method provides an

estimate of the best achievable performance on the underlying architecture, as well as an

absolute measure of the hardware usage. We also show a more classical metric, namely

time to solution, in addition to the roofline plots, as both are essential for a clear pic-

ture of the achieved performance. The experiments were run on an Intel Skylake 8180

architecture (28 physical cores, 38.5 MB shared L3 cache, with cores operating at 2.5

Ghz). The observed Stream TRIAD [102] was 105 GB/s. The maximum single-precision

FLOP performance was calculated as #cores ·#avx units ·#data items per vector register ·

2(fused multiply-add)·core frequency = 4480 GFLOPs/s. A (more realistic) performance

peak of 3285 GFLOPs/s was determined by running the LINPACK benchmark [156].

These values are used to construct the roofline plots. In the following performance results,

the operational intensity (OI) is computed by the Devito profiler from the symbolic expres-

sion after the compiler optimization. While the theoretical OI could be use, we chose to

recompute it from the final optimized symbolic stencil for a more accurate performance

measure. A more detailed overview of Devito’s performance model is described in [42].

We show three different roofline plots, one plot for each domain size attempted, in Fig-

ure 3.22, 3.23 and 3.24. Different space orders are represented as different data points. The

time-to-solution in seconds is annotated next to each data point. The experiments were run

with all performance optimizations enabled. Because auto-tuning is used at runtime to de-

termine the optimal loop-blocking structure, timing only commences after autotuning has

finished. The reported operational intensity benefits from the use of expression transforma-
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Figure 3.22: Roofline plots for a 512 × 512 × 512 model on a Skylake 8180 architecture.
The run times correspond to 1000ms of modeling for four different spatial discretization
orders (4, 8, 12, 16).

1 2 4 8 16 32 64
Operational intensity (FLOPs/Byte)

16
32
64

128
256
512

1024
2048
4096
8192

Pe
rfo

rm
an

ce
 (G

FL
OP

s/
s)

SO=4

59%

42s

SO=8

52%

48s

SO=12

46%

54s

SO=16

36%

69s

linpack
ideal

Figure 3.23: Roofline plots for a 768 × 768 × 768 model on a Skylake 8180 architecture.
The run times correspond to 1000ms of modeling for four different spatial discretization
orders (4, 8, 12, 16).
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Figure 3.24: Roofline plots for a 1024×1024×1024 model on a Skylake 8180 architecture.
The run times correspond to 1000ms of modeling for four different spatial discretization
orders (4, 8, 12, 16).

tions as described in Section 3.3; particularly relevant for this problem is the factorization

of FD weights.

We observe that the time to solution increases nearly linearly with the size of the

domain. For example, for a 16th order discretization, we have a 17.1sec runtime for a

512× 512× 512 domain and 162.6sec runtime for a 1024× 1024× 1024 domain (8 times

bigger domain and about 9 times slower). This is not surprising: the computation lies in

the memory-bound regime and the working sets never fit in the L3 cache. We also note a

drop in performance with a 16th order discretization (relative to both the other space orders

and the attainable peak), especially when using larger domains (Figure 3.23 and 3.24). Our

hypothesis, supported by profiling with Intel VTune [157], is that this is due to inefficient

memory usage, in particular misaligned data accesses. Our plan to improve the perfor-

mance in this regime consists of resorting to a specialized stencil optimizer such as YASK

(see Section 3.7). These results show that we have a portable framework that achieves

good performance on different architectures. There is small room for improvements, as the

machine peak is still relatively distant, but 50-60% of the attainable peak is usually con-

sidered very good. Finally, we remark that testing on new architectures will only require
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extensions to the Devito compiler, if any, while the application code remains unchanged.

3.7 Future Work

A key motivation for developing an embedded DSL such as Devito is to enable quicker

development, simpler maintenance, and better portability and performance of solvers. The

other benefit of this approach is that HPC developer effort can be focused on developing

the compiler technology that is reapplied to a wide range of problems. This software reuse

is fundamental to keep the pace of technological evolution. For example, one of the current

projects in Devito regards the integration of YASK [113], a lower-level stencil optimizer

conceived by Intel for Intel architectures. Adding specialized backends such as YASK

– meaning that Devito can generate and compile YASK code, rather than pure C/C++ –

is the key for long-term performance portability, one of the goals that we are pursuing.

Another motivation is to enable large scale computation and as many PDE is possible. In

practice, this means that a staggered grid setup with half-node discretization and domain

decomposition will be required. These two main requirements to extend the DSL to a

broader community and applications is in full development and will be available in future

releases.

3.8 conclusions

We have introduced a DSL for time-domain simulation for inversion and its application to

a seismic inverse problem based on the finite difference method. Using the Devito DSL

a highly optimized and parallel finite difference solver can be implemented within just a

few lines of Python code. Although the current application focuses on features required

for seismic imaging applications, Devito can already be used in problems based on other

equations; a series of CFD examples are included in the code repository.

The code traditionally used to solve such problems is highly complex. The primary

reason for this is that the complexity introduced by the mathematics is interleaved with the
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complexity introduced by performance engineering of the code to make it useful for prac-

tical use. By introducing a separation of concerns, these aspects are decoupled and both

simplified. Devito successfully achieves this decoupling while delivering good computa-

tional performance and maintaining generality, both of which shall continue to be improved

in future versions.

3.9 Code Availability

The code source code, examples and test script are available on github at https://

github.com/opesci/devito and contains a README for installation. A more de-

tailed overview of the project, list of publication and documentation of the software gen-

erated with Sphinx is available at http://www.devitoproject.org/. To install

Devito:

git clone -b v3.1.0 https://github.com/opesci/devito

cd devito

conda env create -f environment.yml

source activate devito

pip install -e .
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CHAPTER 4

DEVITO COMPILER

4.1 Introduction

Developing software for high-performance computing requires a considerable interdisci-

plinary effort, as it often involves domain knowledge from numerous fields such as physics,

numerical analysis, software engineering and low-level performance optimization. The re-

sult is typically a monolithic application where hardware-specific optimizations, numerical

methods, and physical approximations are interwoven and dispersed throughout a large

number of loops, functions, files and modules. This frequently leads to slow innovation,

high maintenance costs, and code that is hard to debug and port onto new computer ar-

chitectures. A powerful approach to alleviate this problem is to introduce a separation of

concerns and to raise the level of abstraction by using domain-specific languages (DSLs).

DSLs can be used to express numerical methods using a syntax that closely mirrors how

they are expressed mathematically, while a stack of compilers and libraries is responsible

for automatically creating the optimized low-level implementation in a general purpose

programming language such as C++. While the focus of this paper is on finite-difference

(FD) based codes, the DSL approach has already had remarkable success in other numeri-

cal methods such as the finite-element (FE) and finite-volume (FV) method, as documented

in Section 4.2.

This work describes the architecture of Devito, a system for automated stencil compu-

tations from a high-level mathematical syntax. Devito was developed with an emphasis on

FD methods on structured grids. For this reason, Devito’s underlying DSL has many fea-

tures to simplify the specification of FD methods, as discussed in Section 4.3. The original

motivation was to solve large-scale partial differential equations (PDEs) in the context of
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seismic inverse problems, where FD methods are commonly used for solving wave equa-

tions as part of complex workflows (e.g., data inversion using adjoint-state methods and

backpropogation). Devito is equally useful as a framework for other stencil computations

in general; for example, computations where all array indices are affine functions of loop

variables. The Devito compiler is also capable of generating arbitrarily nested, possibly

irregular, loops. This key feature is needed to support many complex algorithms that are

used in engineering and scientific practice, including applications from image processing,

cellular automata, and machine-learning.

One of the design goals of Devito was to enable high-productivity, so it is fully written

in Python , with easy access to solvers, optimizers, input and output, and the wide range

of other libraries in the Python ecosystem. At the same time, Devito transforms high-level

symbolic input into optimized C++ code, resulting in a performance that is competitive

with hand-optimized implementations. While the examples presented in this paper focus

on using Devito from a Python application, exploiting the full potential of on-the-fly code

generation and just-in-time (JIT) compilation, a practical advantage of generating C++ as

an intermediate step is that it can be also used to generate libraries for legacy software, thus

enabling incremental code modernization.

Compared to other DSL frameworks that are used in practice, Devito uses compiler

technology, including several layers of intermediate representations, to perform optimiza-

tions in multiple passes. This allows Devito to perform more complex optimizations, and

to better optimize the code for individual target platforms. The fact that these optimiza-

tions are performed programmatically facilitates performance portability across different

computer architectures [158]. This is important, as industrial codes are often used on a

variety of platforms, including clusters with multi-core CPUs, GPUs, and many-core chips

spread across several compute nodes as well as various cloud platforms. Devito also per-

forms high-level transformations for floating-point operation (FLOP) reduction based on

symbolic manipulation, as well as loop-level optimizations as implemented in Devito’s
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own optimizer, or using a third-party stencil compiler such as YASK [159]. The Devito

compiler is presented in detail in Sections 4.4, 4.5 and 4.6.

After the presentation of the Devito compiler, we show test cases in Section 4.7 that are

inspired by real-world seismic-imaging problems. The paper finishes with directions for

future work and conclusions in Sections 4.8 and 4.9.

4.2 Related work

The objective of maximizing productivity and performance through frameworks based

upon DSLs has long been pursued. In addition to well-known systems such as Mathematica R©

and Matlab R©, which span broad mathematical areas, there are a number of tools specialized

in numerical methods for PDEs, some dating back to the 1970s [118, 119, 120, 121].

4.2.1 DSL-based frameworks for partial differential equations

One noteworthy contemporary framework centered on DSLs is FEniCS [31], which allows

the specification of weak variational forms, via UFL [33], and finite-element methods,

through a high-level syntax. Firedrake [32] implements the same languages as FEniCS,

although it differs from it in a number of features and architectural choices. Devito is heav-

ily influenced by these two successful projects, in particular by their philosophy and de-

sign. Since solving a PDE is often a small step of a larger workflow, the choice of Python

to implement these software provides access to a wide ecosystem of scientific packages.

Firedrake also follows the principle of graceful degradation, by providing a very simple

lower-level API to escape the abstraction when non-standard calculations (i.e., unrelated

to the finite-element formulation) are required. Likewise, Devito allows injecting arbitrary

expressions into the finite-difference specification; this feature has been used in real-life

cases, for example for interpolation in seismic imaging operators. On the other hand, a

major difference is that Devito lacks a formal specification language such us UFL in FEn-

iCS/Firedrake. This is partly because there is no systematic foundation underpinning FD,
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as opposed to FE which relies upon the theory of Hilbert spaces [160]. Yet another distinc-

tion is that, for performance reasons, Devito takes control of the time-stepping loop. Other

examples of embedded DSLs are provided by the OpenFOAM project, with a language for

FV [161], and by PyFR, which targets flux reconstruction methods [162].

4.2.2 High-level approaches to finite differences

Due to its simplicity, the FD method has been the subject of multiple research projects,

chiefly targeting the design of effective software abstraction and/or the generation of high

performance code [49, 46, 47, 48]. Devito distinguishes itself from previous work in a

number of ways including: support for the principle of graceful degradation for when the

DSL does not cover a feature required by an application; incorporation of a symbolic math-

ematics engine; using actual compiler technology rather than template-based code genera-

tion; adoption of a native Python interface that naturally allows composition into complex

workflows such as optimisation and machine-learning frameworks.

At a lower level of abstraction there are a number of tools targeting “stencil” compu-

tation (FD codes belong to this class), whose major objective is the generation of efficient

code. Some of them provide a DSL [159, 163, 164, 165], whereas others are compilers or

user-driven code generation systems, often based upon a polyhedral model, such as [130,

166]. From the Devito standpoint, the aim is to harness these tools – for example by inte-

grating them, to maximize performance portability. As a proof of concept, we shall discuss

the integration of one such tool, namely YASK [159], with Devito.

4.2.3 Devito and seismic imaging

Devito is a general purpose system, not restricted to specific PDEs, so it can be used for

any form of the wave equation. Thus, unlike software specialized in seismic exploration,

like IWAVE [11] and Madagascar [12], it suffers neither from the restriction to a small set

of wave equations and discretizations, nor from the lack of portability and composability
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typical of a pure C/Fortran environment.

4.2.4 Performance optimizations

The Devito compiler can introduce three types of performance optimizations: FLOPs re-

duction, data locality, and parallelism. Typical FLOPs reduction transformations are com-

mon sub-expressions elimination, factorization, and code motion. A thorough review is

provided in [167]. To different extent, Devito applies all of these techniques (see Sec-

tion 4.5.1). Particularly relevant for stencil computation is the search for redundancies

across consecutive loop iterations [168, 169, 170]. This is at the core of the strategy de-

scribed in Section 4.6, which essentially extends these ideas with optimizations for data

locality. Typical loop transformations for parallelism and data locality [171] are also au-

tomatically introduced by the Devito compiler (e.g., loop blocking, vectorization); more

details will be provided in Sections 4.5.2 and 4.5.3.

4.3 Specification of a finite-difference method with Devito

The Devito DSL allows concise expression of FD and general stencil operations using a

mathematical notation. It uses SymPy [172] for the specification and manipulation of

stencil expressions. In this section, we describe the use of Devito’s DSL to build PDE

solvers. Although the examples used here are for FD, the DSL can describe a large class

of operations, such as convolutions or basic linear algebra operations (e.g., chained tensor

multiplications).

4.3.1 Symbolic types

The key steps to implement a numerical kernel with Devito are shown in Figure 4.1. We

describe this workflow, as well as fundamental features of the Devito API, using the acous-

tic wave equation, also known as d’Alembertian or Box operator. Its continuous form is

given by:
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Figure 4.1: The typical usage of Devito within a larger application.

m(x, y, z)
d2u(x, y, z, t)

dt2
−∇2u(x, y, z, t) = qs,

u(x, y, z, 0) = 0,

du(x, y, z, t)

dt
|t=0 = 0,

(4.1)

where the variables of this expression are defined as follows:

• m(x, y, z) = 1
c(x,y,z)2

, is the parametrization of the subsurface with c(x, y, z) being

the speed of sound as a function of the three space coordinates (x, y, z);

• u(x, y, z, t), is the spatially varying acoustic wavefield, with the additional dimension

of time t;

• qs is the source term, which is a point source in this case.

The first step towards solving this equation is the definition of a discrete computational

grid, on which the model parameters, wavefields and source are defined. The computational

grid is defined as a Grid(shape) object, where shape is the number of grid points in

each spatial dimension. Optional arguments for instantiating a Grid are extent, which

defines the extent in physical units, and origin, the origin of the coordinate system, with

respect to which all other coordinates are defined.
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The next step is the symbolic definition of the squared slowness, wavefield and source.

For this, we introduce some fundamental types.

• Function represents a discrete spatially varying function, such as the velocity. A

Function is instantiated for a defined name and a given Grid.

• TimeFunction represents a discrete function that is both spatially varying and

time dependent, such as wavefields. Again, a TimeFunction object is defined on

an existing Grid and is identified by its name.

• SparseFunction and SparseTimeFunction represent sparse functions, that

is functions that are only defined over a subset of the grid, such as a seismic point

source. The corresponding object is defined on a Grid, identified by a name, and

also requires the coordinates defining the location of the sparse points.

Apart from the grid information, these objects carry their respective FD discretization

information in space and time. They also have a data field that contains values of the

respective function at the defined grid points. By default, data is initialized with zeros

and therefore automatically satisfies the initial conditions from equation 4.1. The initial-

ization of the fields to solve the wave equation over a one-dimensional grid is displayed in

Listing 1.

Listing 1 Setup Functions to express and solve the acoustic wave equation.

>>> from devito import Grid, TimeFunction, Function, SparseTimeFunction
>>> g = Grid(shape=(nx,), origin=(ox,), extent=(sx,))
>>> u = TimeFunction(name="u", grid=g, space_order=2, time_order=2) # Wavefield
>>> m = Function(name="m", grid=g) # Physical parameter
>>> q = SparseTimeFunction(name="q", grid=g, coordinates=coordinates) # Source

4.3.2 Discretization

With symbolic objects that represent the discrete velocity model, wavefields and source

function, we can now define the full discretized wave equation. As mentioned earlier, one

of the main features of Devito is the possibility to formulate stencil computations as concise
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mathematical expressions. To do so, we provide shortcuts to classic FD stencils, as well

as the functions to define arbitrary stencils. The shortcuts are accessed as object properties

and are supported by TimeFunction and Function objects. For example, we can take

spatial and temporal derivatives of the wavefield u via the shorthand expressions u.dx and

u.dt (Listing 2).

Listing 2 Example of spatial and temporal FD stencil creation.

>>> u.dx
-u(t, x - h_x)/(2*h_x) + u(t, x + h_x)/(2*h_x)
>>> u.dt
-u(t - dt, x)/(2*dt) + u(t + dt, x)/(2*dt)
>>> u.dt2
-2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2

Furthermore, Devito provides shortcuts for common differential operations such as the

Laplacian via u.laplace. The full discrete wave equation can then be implemented in a

single line of Python (Listing 3).

Listing 3 Expressing the wave equation.

>>> wave_equation = m * u.dt2 - u.laplace
>>> wave_equation
(-2*u(t, x)/dt**2 + u(t - dt, x)/dt**2 + u(t + dt, x)/dt**2)*m(x) + 2*u(t, x)/h_x**2 - u(t, x -

h_x)/h_x**2 - u(t, x + h_x)/h_x**2

To solve the time-dependent wave equation with an explicit time-stepping scheme, the

symbolic expression representing our PDE has to be rearranged such that it yields an update

rule for the wavefield u at the next time step: u(t + dt) = f(u(t), u(t − dt))). Devito

allows to rearrange the PDE expression automatically using the solve function, as shown

in Listing 4.

Listing 4 Time-stepping scheme for the acoustic wave equation. region=INTERIOR
ensures that the Dirichlet boundary conditions at the edges of the Grid are satisfied.
>>> from devito import Eq, INTERIOR, solve

>>> stencil = Eq(u.forward, solve(wave_equation, u.forward), region=INTERIOR)

>>> stencil

Eq(u(t + dt, x), -2*dt**2*u(t, x)/(h_x**2*m(x)) + dt**2*u(t, x - h_x)/(h_x**2*m(x)) + dt**2*u(t,

x + h_x)/(h_x**2*m(x)) + 2*u(t, x) - u(t - dt, x))
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Note that the stencil expression in Listing 4 does not yet contain the point source q.

This could be included as a regular Function which has zeros all over the grid except for

a few points; this, however, would obviously be wasteful. Instead, SparseFunctions

allow to perform operations, such as injecting a source or sampling the wavefield, at a sub-

set of grid points determined by coordinates. In the case in which coordinates do not

coincide with grid points, bilinear (for 2D) or trilinear (for 3D) interpolation are employed.

To inject a point source into the stencil expression, we use the inject function of the

SparseTimeFunction object that represents our seismic source (Listing 5).1

Listing 5 Expressing the injection of a source into a field.

>>> injection = q.inject(field=u.forward, expr=dt**2 * q / m)
>>> injection
[Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q, 0])/h_x))], dt**2*(1 - FLOAT(-h_x*INT(floor((-o_x +

q_coords[p_q, 0])/h_x)) - o_x + q_coords[p_q, 0])/h_x)*q[time, p_q]/m[INT(floor((-o_x +
q_coords[p_q, 0])/h_x))] + u[t + 1, INT(floor((-o_x + q_coords[p_q, 0])/h_x))]),

Eq(u[t + 1, INT(floor((-o_x + q_coords[p_q, 0])/h_x)) + 1], dt**2*FLOAT(-h_x*INT(floor((-o_x +
q_coords[p_q, 0])/h_x)) - o_x + q_coords[p_q, 0])*q[time, p_q]/(h_x*m[INT(floor((-o_x +
q_coords[p_q, 0])/h_x)) + 1]) + u[t + 1, INT(floor((-o_x + q_coords[p_q, 0])/h_x)) + 1])]

The inject function takes the field being updated as an input argument (in this case

u.forward), while expr=dt**2 * q / m is the expression being injected. The re-

sult of the inject function is a list of symbolic expressions, similar to the stencil

expression we defined earlier. As we shall see, these expressions are eventually joined

together and used to create an Operator object – the solver of our PDE.

4.3.3 Boundary conditions

Simple boundary conditions (BCs), such as Dirichlet BCs, can be imposed on individual

equations through special keywords (see Listing 4). For more exotic schemes, instead, the

BCs need to be explicitly written (e.g., Higdon BCs [173]), just like any of the symbolic

expressions defined in the Listings above. For reasons of space, this aspect is not elaborated

further; the interested reader may refer to [174].

1More complicated interpolation schemes can be defined by precomputing the grid points corresponding
to each sparse point, and their respective coefficients. The result can then be used to create a Precomputed-
SparseFunction, which behaves like a SparseFunction at the symbolic level.
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4.3.4 Control flow

By default, the extent of a TimeFunction in the time dimension is limited by its time

order. Hence, the shape of u in Listing 1 is (time order + 1, nx) = (3, nx). The iterative

method will then access u via modulo iteration, that is u[t%3, ...]. In many scenarios,

however, the entire time history, or at least periodic time slices, should be saved (e.g., for

inversion algorithms). Listing 6 expands our running example with an equation that saves

the content of u every 4 iterations, up to a maximum of save = 100 time slices.

Listing 6 Implementation of time sub-sampling.
>>> from devito import ConditionalDimension

>>> ts = ConditionalDimension(’ts’, parent=g.time_dim, factor=4)

>>> us = TimeFunction(name=’us’, grid=g, save=100, time_dim=ts)

>>> save = Eq(us, u)

In general, all equations that access Functions (or TimeFunctions) employing

one or more ConditionalDimensions will be conditionally executed. The condition

may be a number indicating how many iterations should pass between two executions of

the same equation, or even an arbitrarily complex expression.

4.3.5 Domain, halo, and padding regions

A Function internally distinguishes between three regions of points.

Domain Represents the computational domain of the Function and is inferred from the

input Grid. This includes any elements added to the physical domain purely for

computational purposes, e.g. absorbing boundary layers.

Halo The grid points surrounding the domain region, i.e. “ghost” points that are accessed

by the stencil when iterating in proximity of the domain boundary.

Padding The grid points surrounding the halo region, which are allocated for performance

optimizations, such as data alignment. Normally this region should be of no interest
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to a user of Devito, except for precise measurement of memory allocated for each

Function.

4.4 The Devito compiler

In Devito, an Operator carries out three fundamental tasks: generation of low-level code,

JIT compilation, and execution. The Operator input consists of one or more symbolic

equations. In the generated code, these equations are scheduled within loop nests of suit-

able depth and extent. The Operator also accepts substitution rules (to replace symbols

with constant values) and optimization levels for the Devito Symbolic Engine (DSE) and

the Devito Loop Engine (DLE). By default, all DSE and DLE optimizations that are known

to unconditionally improve performance are automatically applied. The same Operator

may be reused with different input data; JIT-compilation occurs only once, triggered by

the first execution. Overall, this lowering process – from high-level equations to dynami-

cally compiled and executable code – consists of multiple compiler passes, summarized in

Figure 4.2 and discussed in the following sections (a minimal background in data depen-

dence analysis is recommended; the unfamiliar reader may refer to a classic textbook such

as [175]).

4.4.1 Equations lowering

In this pass, three main tasks are carried out: indexification, substitution, and domain-

alignment.

• As explained in Section 4.3, the input equations typically involve ore or more indexed

Functions. The indexification consists of converting such objects into actual ar-

rays. An array always keeps a reference to its originating Function. For instance,

all accesses to u such as u[t, x + 1] and u[t + 1, x − 2] would store a pointer to the

same, user-defined Function u(t, x). This metadata is exploited throughout the

various compilation passes.
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Equations lowering
Input Equations → Lowered Equations

Invariants extraction

Aliases detection

Factorization

Common sub-expressions elimination 

Local analysis

Symbolic optimization [DSE]
Clusters → Clusters

IET construction 
Clusters → IET [abstract syntax tree]

IET optimization [DLE/YLE]
IET → IET

Synthesis
IET → CGen AST → C/C++ string 

Clustering
Lowered Equations → Clusters

Declarations

Instrumentation for profiling 

Header files, globals, macros, …

Enforcement of iteration direction

Grouping

JIT Compilation
C/C++ string → kernel.c → kernel.so

IET analysis 
IET → IET

SIMD vectorization

Loop blocking

Shared-memory (hierarchical) parallelism

Low-level optimization
(e.g., sw prefatching)

Figure 4.2: Compiler passes to lower symbolic equations into shared objects through an
Operator.

• During substitution, the user-provided substitution rules are applied. These may be

given for any literal appearing in the input equations, such as the grid spacing sym-

bols. Applying a substitution rule increases the chances of constant folding, but it

makes the Operator less generic. The values of symbols for which no substitution

rule is available are provided at execution time.

• The domain-alignment step shifts the array accesses deriving from Functions hav-

ing non-empty halo and padding regions. Thus, the array accesses become logically

aligned to the equation’s natural domain. For instance, given the usual Function

u(t, x) having two points on each side of the x halo region, the array accesses u[t, x]

and u[t, x + 2] are transformed, respectively, into u[t, x + 2] and u[t, x + 4]. When

x = 0, therefore, the values u[t, 2] and u[t, 4] are fetched, representing the first and

third points in the computational domain.

101



4.4.2 Local analysis

The lowered equations are analyzed to collect information relevant for the Operator

construction and execution. In this pass, an equation is inspected “in isolation”, ignoring

its relationship with the rest of the input. The following metadata are retrieved and/or

computed:

• input and output Functions;

• Dimensions, which are topologically ordered based on how they appear in the

various array index functions; and

• two notable Spaces: the iteration space, ISpace, and the data space, DSpace.

A Space is a collection of points given by the product of n compact intervals on Z.

With the notation d[om, oM ] we indicate the compact interval [dm + om, dM + oM ] over the

Dimension d, in which dm and dM are parameters (specialized only at runtime), while

om and oM are known integers. For instance, [x[0, 0], y[−1, 1]] describes a rectangular

two-dimensional space over x and y, whose points are given by the Cartesian product

[xm, xM ]× [ym − 1, yM + 1]. The ISpace and DSpace are two special types of Space.

They usually span different sets of Dimensions. A DSpace may have Dimensions

that do not appear in an ISpace, in particular those that are accessed only via integer

indices. Likewise, an ISpace may have Dimensions that are not part of the DSpace,

such as a reduction axis. Further, an ISpace also carries, for each Dimension, its

iteration direction.

As an example, consider the equation stencil in Listing 4. Immediately we see that

input = [u,m], output = [u], Dimensions = [t, x]. The compiler constructs the ISpace

[t[0, 0]+, x[0, 0]∗]. The first entry t[0, 0]+ indicates that, along t, the equation should run

between tm + 0 and tM + 0 (extremes included) in the forward direction, as indicated by

the symbol +. This is due to the fact that there is a flow dependence in t, so only a unitary
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positive stepping increment (i.e., t = t + 1) allows a correct propagation of information

across consecutive iterations. The only difference along x is that the iteration direction is

now arbitrary, as indicated by ∗. The DSpace is [t[0, 1], x[0, 0]]; intuitively, the entry t[0, 1]

is used right before running an Operator to provide a default value for tM – in particular,

tM will be set to the largest possible value that does not cause out-of-domain accesses (i.e.,

out-of-bounds array accesses).

4.4.3 Clustering

A Cluster is a sequence of equations having (i) same ISpace, (ii) same control flow

(i.e., same ConditionalDimensions), and (iii) no dimension-carried “true” anti-dependences

among them.

As an example, consider again the setup in Section 4.3. The equation stencil cannot

be “clusterized” with the equations in the injection list as their ISpaces are different. On

the other hand, the equations in injection can be grouped together in the same Cluster

as (i) they have same ISpace [t[0, 0]∗, pq[0, 0]∗], (ii) same control flow, and (iii) there

are no true anti-dependences among them (note that the second equation in injection does

write to u[t + 1, ...], but as explained later this is in fact a reduction, that is a “false” anti-

dependence).

Iteration direction

First, each equation is assigned a new ISpace, based upon a global analysis. Any of

the iteration directions that had been marked as “arbitrary” (∗) during local analysis may

now be enforced to forward (+) or backward (−). This process exploits data dependence

analysis.

For instance, consider the flow dependence between stencil and the injection equations.

If we want u to be up-to-date when evaluating injection, then we eventually need all equa-

tions to be scheduled sequentially within the t loop. For this, the ISpaces of the injection
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equations are specialized by enforcing the direction forward along the Dimension t. The

new ISpace is [t[0, 0]+, pq[0, 0]∗].

Algorithm 1 illustrates how the enforcement of iteration directions is achieved in gen-

eral. Whenever a clash is detected (i.e., two equations with ISpace [d[0, 0]+, ...] and

[d[0, 0]−, ...]), the original direction determined by the local analysis pass is kept (lines 11

and 13), which will eventually lead to generating different loops.

Algorithm 1: Clustering: enforcement of iteration directions (pseudocode).
Input: A sequence of equations E .
Output: A sequence of equations E ′ with altered ISpace.
// Map each dimension to a set of expected iteration directions

1 mapper← DETECT FLOW DIRECTIONS(E);
2 for e in E do
3 for dim, directions in mapper do
4 if len(directions) == 1 then

// No ambiguity
5 forced[dim]← directions.pop();
6 else if len(directions) == 2 then

// No ambiguity as long as one of the two items is /Any/
7 try
8 directions.remove(Any);
9 forced[dim]← directions.pop();

10 except
11 forced[dim]← e.directions[dim];
12 else
13 forced[dim]← e.directions[dim];
14 end if
15 end for
16 E ′.append(e. rebuild(directions=forced))
17 end for
18 return E ′

Grouping

This step performs the actual clustering, checking ISpaces and anti-dependences, as well

as handling control flow. The procedure is shown in Algorithm 2; some explanations fol-

low.

• Robust data dependence analysis, capable of tracking flow-, anti-, and output-dependencies

at the level of array accesses, is necessary. In particular, it must be able to tell
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Algorithm 2: Clustering: grouping expressions into Clusters (pseudocode)
Input: A sequence of equations E .
Output: A sequence of clusters C.

1 C ← ClusterGroup();
2 for e in E do
3 grouped← false;
4 for c in reversed(C) do
5 anti, flow← GET DEPENDENCES(c, e);
6 if e.ispace == c.ispace and anti.carried is empty then
7 c.add(e);
8 grouped← true;
9 break;

10 else if anti.carried is not empty then
11 c.atomics.update(anti.carried.cause);
12 break;
13 else if flow.cause.intersection(c.atomics) then

// cannot search across earlier clusters
14 break;
15 end for
16 if not grouped then
17 C.append(Cluster(e));
18 end if
19 end for
20 C ← CONTROL FLOW(C);
21 return C

whether two generic array accesses induce a dependence or not. The data depen-

dence analysis performed is conservative; that is, a dependence is always assumed

when a test is inconclusive. Dependence testing is based on the standard Lamport

test [175]. In Algorithm 2, data dependence analysis is carried out by the function

GET DEPENDENCES.

• If an anti-dependence is detected along a Dimension i, then i is marked as atomic

– meaning that no further clustering can occur along i. This information is also

exploited by later Operator passes (see Section 4.4.5).

• Reductions, and in particular increments, are treated specially. They represent a

special form of anti-dependence, as they do not break clustering. GET DEPENDEN-

CES detects reductions and removes them from the set of anti-dependencies.

• Given the sequence of equations [E1, E2, E3], it is possible that E3 can be grouped
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withE1, but not with its immediate predecessorE2 (e.g., due to a different ISpace).

However, this can only happen when there are no flow or anti-dependences between

E2 andE3; i.e. when the if commands at lines 10 and 13 are not entered, thus allow-

ing the search to proceed with the next equation. This optimization was originally

motivated by gradient operators in seismic imaging kernels.

• The routine CONTROL FLOW, omitted for brevity, creates additional Clusters if

one or more ConditionalDimensions are encountered. These are tracked in a

special Cluster field, guards, as also required by later passes (see Section 4.4.5).

4.4.4 Symbolic optimization

The DSE – Devito Symbolic Engine – is a macro-pass reducing the arithmetic strength

of Clusters (e.g., their operation count). It consists of a series of passes, ranging from

standard common sub-expression elimination (CSE) to more advanced rewrite procedures,

applied individually to each Cluster. The DSE output is a new ordered sequence of

Clusters: there may be more or fewer Clusters than in the input, and both the overall

number of equations as well as the sequence of arithmetic operations might differ. The DSE

passes are discussed in Section 4.5.1. We remark that the DSE only operates on Clusters

(i.e., on collections of equations); there is no concept of “loop” at this stage yet. However,

by altering Clusters, the DSE has an indirect impact on the final loop-nest structure.

4.4.5 IET construction

In this pass, the intermediate representation is lowered to an Iteration/Expression Tree

(IET). An IET is an abstract syntax tree in which Iterations and Expressions – two

special node types – are the main actors. Equations are wrapped within Expressions,

while Iterations represent loops. Loop nests embedding such Expressions are con-

structed by suitably nesting Iterations. Each Cluster is eventually placed in its

own loop (Iteration) nest, although some (outer) loops may be shared by multiple
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Clusters.

Algorithm 3: An excerpt of the cluster scheduling algorithm, turning a list (of Clusters) into a
tree (IET). Here, the fact that different Clusters may eventually share some outer Iterations
is highlighted.

Input: A sequence of Clusters C.
Output: An Iteration/Expression Tree.

1 schedule← list();
2 for c in C do
3 root← None;
4 index← 0;
5 for i0, i1 in zip(c.ispace, schedule) do
6 if i0 != i1 or i0.dimension in c.atomics then
7 break;
8 end if
9 root← schedule[i1];

10 index← index + 1;
11 if i0.dim in c.guards then
12 break;
13 end if
14 end for
15 〈build as many Iterations as Dimensions in c.ispace[index:] and nest them

inside root〉;
16 〈update schedule〉;
17 〈...〉
18 end for

Consider again our running acoustic wave equation example. There are three Clusters

in total: C1 for stencil, C2 for save, and C3 for the equations in injection. We use Al-

gorithm 3 – an excerpt of the actual cluster scheduling algorithm – to explain how this

sequence of Clusters is turned into an IET. Initially, the schedule list is empty, so

when C1 is handled two nested Iterations are created (line 15), respectively for the

Dimensions t and x. Subsequently, C2’s ISpace and the current schedule are com-

pared (line 5). It turns out that t appears among C2’s guards, hence the for loop is exited

at line 12 without inspecting the second and last iteration. Thus, index = 1, and the pre-

viously built Iteration over t is reused. Finally, when processing C3, the for loop is

exited at the second iteration due to line 6, since pq! = x. Again, the t Iteration is

reused, while a new Iteration is constructed for the Dimension pq. Eventually, the

constructed IET is as in Listing 7.
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Listing 7 Graphical representation of the IET produced by the cluster scheduling algorithm
for the running example.

for t = t_m to t_M:
|-- for x = x_m to x_M:
| |-- <Eq(u[t+1,x], ...)>
|
|-- if t % 4 == 0
| |-- for x = x_m to x_M:
| |-- <Eq(us[t/4, x], ...)>
|
|-- for p_q = p_q_m to p_q_M:

|-- <Eq(u[t+1,f(p_q)], ...)>
|-- <Eq(u[t+1,g(p_q)], ...)>

4.4.6 IET analysis

The newly constructed IET is analyzed to determine Iteration properties such as sequential,

parallel, and vectorizable, which are then attached to the relevant nodes in the

IET. These properties are used for loop optimization, but only by a later pass (see Sec-

tion 4.4.7). To determine whether an Iteration is parallel or sequential, a

fundamental result from compiler theory is used – the i-th Iteration in a nest com-

prising n Iterations is parallel if for all dependences D, expressed as distance vectors

D = (d0, ..., dn−1), either (d1, ..., di−1) > 0 or (d1, ..., di) = 0 [175].

4.4.7 IET optimization

This macro-pass transforms the IET for performance optimization. Apart from runtime

performance, this pass also optimizes for rapid JIT compilation with the underlying C com-

piler. A number of loop optimizations are introduced, including loop blocking, minimiza-

tion of remainder loops, SIMD vectorization, shared-memory (hierarchical) parallelism via

OpenMP, software prefetching. These will be detailed in Section 4.5. A backend (see

Section 4.4.9) might provide its own loop optimization engine.

4.4.8 Synthesis, dynamic compilation, and execution

Finally, the IET adds variable declarations and header files, as well as instrumentation for

performance profiling, in particular, to collect execution times of specific code regions.
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Declarations are injected into the IET, ensuring they appear as close as possible to the

scope in which the relative variables are used, while honoring the OpenMP semantics of

private and shared variables. To generate C code, a suitable tree visitor inspects the IET

and incrementally builds a CGen tree [176], which is ultimately translated into a string and

written to a file. Such files are stored in a software cache of Devito-generated Operators,

JIT-compiled into a shared object, and eventually loaded into the Python environment. The

compiled code has a default entry point (a special function), which is called directly from

Python at Operator application time.

4.4.9 Operator specialization through backends

In Devito, a backend is a mechanism to specialize data types as well as Operator passes,

while preserving software modularity (inspired by [177]).

One of the main objectives of the backend infrastructure is promoting software com-

posability. As explained in Section 4.2, there exist a significant number of interesting tools

for stencil optimization, which we may want to integrate with Devito. For example, one of

the future goals is to support GPUs, and this might be achieved by writing a new backend

implementing the interface between Devito and third-party software specialized for this

particular architecture.

Currently, two backends exist:

core the default backend, which relies on the DLE for loop optimization.

yask an alternative backend using the YASK stencil compiler to generate optimized

C++ code for Intel R© Intel R©XeonTMand Intel R©Xeon PhiTMarchitectures [159]. De-

vito transforms the IET into a format suitable for YASK, and uses its API for data

management, JIT-compilation, and execution. Loop optimization is performed by

YASK through the YASK Loop Engine (YLE).

The core and yask backends share the compilation pipeline in Figure 4.2 until the loop
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optimization stage.

4.5 Automated performance optimizations

As discussed in Section 4.4, Devito performs symbolic optimizations to reduce the arith-

metic strength of the expressions, as well as loop transformations for data locality and

parallelism. The former are implemented as a series of compiler passes in the DSE, while

for the latter there currently are two alternatives, namely the DLE and the YLE (depending

on the chosen execution backend).

Devito abstracts away the single optimizations passes by providing users with a certain

number of optimization levels, called “modes”, which trigger pre-established sequences of

optimizations – analogous to what general-purpose compilers do with, for example, -O2

and -O3. In Sections 4.5.1, 4.5.2, and 4.5.3 we describe the individual passes provided

by the DSE, DLE, and YLE respectively, while in Section 4.7.1 we explain how these are

composed into modes.

4.5.1 DSE - Devito Symbolic Engine

The DSE passes attempt to reduce the arithmetic strength of the expressions through FLOP-

reducing transformations [167]. They are illustrated in Listings 8-11, which derive from

the running example used throughout the article. A detailed description follows.

• Common sub-expression elimination (CSE). Two implementations are available:

one based upon SymPy ’s cse routine and one built on top of more basic SymPy rou-

tines, such as xreplace. The former is more powerful, being aware of key arith-

metic properties such as associativity; hence it can discover more redundancies. The

latter is simpler, but avoids a few critical issues: (i) it has a much quicker turnaround

time; (ii) it does not capture integer index expressions (for increased quality of the

generated code); and (iii) it tries not to break factorization opportunities. A general-

ized common sub-expressions elimination routine retaining the features and avoiding
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the drawbacks of both implementations is still under development. By default, the

latter implementation is used when the CSE pass is selected.

Listing 8 An example of common sub-expressions elimination.

>>> 9.0*dt*dt*u[t, x + 1] - 18.0*dt*dt*u[t][x + 2] + 9.0*dt*dt*u[t, x + 3]
temp0 = dt*dt
9.0*temp0*u[t, x + 1] - 18.0*temp0*u[t][x + 2] + 9.0*temp0*u[t, x + 3]

• Factorization. This pass visits each expression tree and tries to factorize FD weights.

Factorization is applied without altering the expression structure (e.g., without ex-

panding products) and without performing any heuristic search across groups of ex-

pressions. This choice is based on the observation that a more aggressive approach is

only rarely helpful (never in the test cases in Section 4.7), while the increase in sym-

bolic processing time could otherwise be significant. The implementation exploits

the SymPy collect routine. However, while collect only searches for com-

mon factors across the immediate children of a single node, the DSE implementation

recursively applies collect to each Add node (i.e., an addition) in the expression

tree, until the leaves are reached.

Listing 9 An example of FD weights factorization.

>>> 9.0*temp0*u[t, x + 1] - 18.0*temp0*u[t][x + 2] + 9.0*temp0*u[t, x + 3]
9.0*temp0*(u[t, x + 1] + u[t, x + 3]) - 18.0*temp0*u[t][x + 2]

• Extraction. The name stems from the fact that sub-expressions matching a certain

condition are pulled out of a larger expression, and their values are stored into suit-

able scalar or tensor temporaries. For example, a condition could be “extract all

time-varying sub-expressions whose operation count is larger than a given thresh-

old”. A tensor temporary may be preferred over a scalar temporary if the intention is

to let the IET construction pass (see Section 4.4.5) place the pulled sub-expressions

within an outer loop nest. Obviously, this comes at the price of additional storage.

This peculiar effect – trading operations for memory – will be thoroughly analyzed

in Sections 4.6 and 4.7.
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Listing 10 An example of time-varying sub-expressions extraction. Only sub-expressions
performing at least one floating-point operation are extracted.

>>> 9.0*temp0*(u[t, x + 1] + u[t, x + 3]) - 18.0*temp0*u[t][x + 2]
temp1[x] = u[t, x + 1] + u[t, x + 3]
9.0*temp0*temp1[x] - 18.0*temp0*u[t][x + 2]

• Detection of aliases. The Alias-Detection Algorithm implements the most advanced

DSE pass. In essence, an alias is a sub-expression that is redundantly computed at

multiple iteration points. Because of its key role in the Cross-Iteration Redundancy-

Elimination algorithm, the formalization of the Alias-Detection Algorithm is post-

poned until Section 4.6.

Listing 11 An example of alias detection.

>>> 9.0*temp0*u[t, x + 1] - 18.0*temp0*u[t][x + 2] + 9.0*temp0*u[t, x + 3]
temp[x] = 9.0*temp0*u[t, x]
temp[x + 1] - 18.0*temp0*u[t][x + 2] + temp[x + 3]

4.5.2 DLE - Devito Loop Engine

The DLE transforms the IET via classic loop optimizations for parallelism and data local-

ity [171]. These are summarized below.

• SIMD Vectorization. Implemented by enforcing compiler auto-vectorization via

special pragmas from the OpenMP 4.0 language. With this approach, the DLE

aims to be performance-portable across different architectures. However, this strat-

egy causes a significant fraction of vector loads/stores to be unaligned to cache

boundaries, due to the stencil offsets. As we shall see, this is a primary cause of

performance loss.

• Loop Blocking. Also known as “tiling”, this technique implemented by replacing

Iteration trees in the IET. The current implementation only supports block-

ing over fully-parallel Iterations. Blocking over dimensions characterized by

flow- or anti-dependences, such as the time dimension in typical explicit finite dif-

ference schemes, is instead work in progress (this would require a preliminary pass
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known as loop skewing; see Section 4.8 for more details). On the other hand, a

feature of the present implementation is the capability of blocking across particu-

lar sequences of loop nests. This is exploited by the Cross-Iteration Redundancy-

Elimination algorithm, as shown in Section 4.6.3. To determine an optimal block

shape, an Operator resorts to empirical auto-tuning.

• Parallelism. Shared-memory parallelism is introduced by decorating Iterations

with suitable OpenMP pragmas. The OpenMP static scheduling is used. Nor-

mally, only the outermost fully-parallel Iteration is annotated with the parallel

pragma. However, heuristically nested fully-parallel Iterations are collapsed

if the core count is greater than a certain threshold. This pass also ensures that all

array temporaries allocated in the scope of the parallel Iteration are declared as

private and that storage is allocated where appropriate (stack, heap).

Summarizing, the DLE applies a sequence of typical stencil optimizations, aiming to

reach a minimum level of performance across different architectures. As we shall see, the

effectiveness of this approach, based on simple transformations, deteriorates on architec-

tures strongly conceived for hierarchical parallelism. This is one of the main reasons be-

hind the development of the yask backend (see Section 4.4.9), described in the following

section.

4.5.3 YLE - YASK Loop Engine

“YASK” (Yet Another Stencil Kernel) is an open-source C++ software framework for gen-

erating high-performance implementations of stencil codes for Intel R© Intel R©XeonTMand

Intel R©Xeon PhiTMprocessors. Previous publications on YASK have discussed its over-

all structure [159] and its application to the Intel R©Xeon PhiTMx100 family (code-named

Knights Corner) [178] and Intel R©Xeon PhiTMx200 family (code-named Knights Land-

ing) [179, 180] many-core CPUs. Unlike Devito, it does not expose a symbolic language
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to the programmer or create stencils from finite-difference approximations of differential

equations. Rather, the programmer provides simple declarative descriptions of the sten-

cil equations using a C++ or Python API. Thus, Devito operates at a level of abstraction

higher than that of YASK, while YASK provides performance portability across Intel ar-

chitectures and is more focused on low-level optimizations. Following is a sample of some

of the optimizations provided by YASK:2

• Vector-folding. In traditional SIMD vectorization, such as that provided by a vector-

izing compiler, the vector elements are arranged sequentially along the unit-stride di-

mension of the grid, which must also be the dimension iterated over in the inner-most

loop of the stencil application. Vector-folding is an alternative data-layout method

whereby neighboring elements are arranged in small multi-dimensional tiles. Fig-

ure 4.3 illustrates three ways to pack eight double-precision floating-point values

into a 512-bit SIMD register. Figure 4.3a shows a traditional 1D “in-line” layout,

and 4.3b and 4.3c show alternative 2D and 3D “folded” layouts. Furthermore, these

tiles may be ordered in memory in a dimension independent of the dimensions used

in vectorization [178]. The combination of these two techniques can significantly

increase overlap and reuse between successive stencil-application iterations, reduc-

ing the memory-bandwidth demand. For stencils that are bandwidth-bound, this can

provide significant performance gains [178, 180].

• Software prefetching. Many high-order or staggered-grid stencils require many

streams of data to be read from memory, which can overwhelm the hardware prefetch-

ers. YASK can be directed to automatically generate software prefetch instructions

to improve the cache hit rates, especially on Xeon Phi CPUs.

• Hierarchical parallelism. Dividing the spatial domain into tiles to increase tem-

poral cache locality is a common stencil optimization as discussed earlier. When

2Not all YASK features are currently used by Devito.
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implementing this technique, sometimes called “cache-blocking”, it is typical to as-

sign each thread to one or more small rectilinear subsets of the domain in which to

apply the stencil(s). However, if these threads share caches, one thread’s data will

often evict data needed later by another thread, reducing the effective capacity of the

cache. YASK addresses this by employing two levels of OpenMP parallelization: the

outer level of parallel loops are applied across the cache-blocks, and an inner level is

applied across sub-blocks within those tiles. In the case of the Xeon Phi, the eight

hyper-threads that share each L2 cache can now cooperate on filling and reusing the

data in the cache, rather than evicting each other’s data.

YASK also provides other optimizations, such as temporal wave-fron tiling, as well as

MPI support. These features, however, are not exploited by Devito yet. The interested

reader may refer to [179, 181].

a. 1× 1× 8 1D fold b. 1× 2× 4 2D fold c. 2× 2× 2 3D fold

Figure 4.3: Various folds of 8 elements [178]. The smaller diagram in the upper-left of each
sub-figure illustrates a single SIMD layout, and the larger diagram shows the input values
needed for a typical 25-point stencil, as from an 8th-order finite-difference approximation
of an isotropic acoustic wave. Note that the 1×1×8 1D fold corresponds to the traditional
in-line vectorization.

To obtain the best of both tools, we have integrated the YASK framework into the De-

vito package. In essence, the Devito yask backend exploits the intermediate representa-

tion of an Operator to generate YASK kernels. This process is based upon sophisticated

compiler technology. In Devito v3.1, roughly 70% of the Devito API is supported by the

yask backend3.
3At the time of writing, reaching feature-completeness is one the major on-going development efforts
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4.6 The Cross-Iteration Redundancy-Elimination Algorithm

Aliases, or “cross-iteration redundancies” (informally introduced in Section 4.5.1), in FD

operators depend on the differential operators used in the PDE(s) and the chosen discretiza-

tion scheme. From a performance viewpoint, the presence of aliases is a non-issue as long

as the operator is memory-bound, while it becomes relevant in kernels with a high arith-

metic intensity. In Devito, the Cross-Iteration Redundancy-Elimination (CIRE) algorithm

attempts to remove aliases with the goal of reducing the operation count. As shown in

Section 4.7, the CIRE algorithm has considerable impact in seismic imaging kernels. The

algorithm is implemented through the orchestration of multiple DSE and DLE/YLE passes,

namely extraction of candidate expressions (DSE), detection of aliases (DSE), loop block-

ing (DLE/YLE).

4.6.1 Extraction of candidate expressions

The criteria for extraction of candidate sub-expressions are:

• Any maximal time-invariant whose operation count is greater than Thr0 = 10 (float-

ing point arithmetic only). The term “maximal” means that the expression is not

embedded within a larger time-invariant. The default value Thr0 = 10, determined

empirically, provides systematic performance improvements in a series of seismic

imaging kernels. Transcendental functions are given a weight in the order of tens of

operations, again determined empirically.

• Any maximal time-varying whose operation count is greater than Thr1 = 10. Such

expressions often lead to aliases, since they typically result from taking spatial and

time derivatives on TimeFunctions. In particular, cross-derivatives are a major

cause of aliases.

This pass leverages the extraction routine described in Section 4.5.1.

116



4.6.2 Detection of aliases

To define the concept of aliasing expressions, we first need to formalize the notion of trans-

lated operands. Here, an operand is regarded as the arithmetic product of a scalar value (or

“coefficient”) and one or more indexed objects. An indexed object is characterized by a la-

bel (i.e., its name), a vector of n dimensions, and a vector of n displacements (one for each

dimension). We say that an operand o1 is translated with respect to an operand o0 if o0 and

o1 have same coefficient, label, and dimensions, and if their displacement vectors are such

that one is the translation of the other (in the classic geometric sense). For example, the

operand 2∗u[x, y, z] is translated with respect to the operand 2∗u[x+ 1, y+ 2, z+ 3] since

they have same coefficient (2), label (u), and dimensions ([x, y, z]), while the displacement

vectors [0, 0, 0] and [1, 2, 3] are expressible by means of a translation.

Now consider two expressions e0 and e1 in fully-expanded form (i.e., a non-nested

sum-of-operands). We say that e0 is an alias of e1 if the following conditions hold:

• the operands in e0 (e1) are expressible as a translation of the operands in e1 (e0);

• the same arithmetic operators are applied to the involved operands.

For example, consider e = u[x] + v[x], having two operands u[x] and v[x]; then:

• u[x-1] + v[y-1] is not an alias of e, due to a different dimension vector.

• u[x] + w[x] is not an alias of e, due to a different label.

• u[x+2] + v[x] is not an alias of e, since a translation cannot be determined.

• u[x+2] + v[x+2] is an alias of e, as the operands u[x+2] and v[x+2] can be expressed

as a translation of u[x] and v[x] respectively, with T (od) = od+2 and od representing

the displacement vector of an operand.

The relation “e0 is an alias of e1” is an equivalence relation, as it is at the same time

reflexive, symmetric, and transitive. Thanks to these properties, the turnaround times of
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the Alias-Detection Algorithm are extremely quick (less than 2 seconds running on an

Intel R© Intel R©XeonTME5-2620 v4 for the challenging tti test case with so=16, described

in Section 4.7.2), despite the O(n2) computational complexity (with n representing the

number of candidate expressions, see Section 4.6.1).

Algorithm 4 highlights the fundamental steps of the Alias-Detection Algorithm. In the

worst case scenario, all pairs of candidate expressions are compared by applying the alias-

ing definition given above. Aggressive pruning, however, is applied to minimize the cost of

the search. The algorithm uses some auxiliary functions: (i) CALCULATE DISPLACEMENTS

returns a mapper associating, to each candidate, its displacement vectors (one for each in-

dexed object); (ii) COMPARE OPS(e1, e2) evaluates to true if e1 and e2 perform the same

operations on the same operands; (iii) IS TRANSLATED(d1, d2) evaluates to true if the dis-

placement vectors in d2 are pairwise-translated with respect to the vectors in d1 by the same

factor. Together, (ii) and (iii) are used to establish whether two expressions alias each other

(line 8).

Eventually, m sets of aliasing expressions are determined. For each of these sets

G0, ..., Gm−1, a pivot – a special aliasing expression – is constructed. This is the key for

operation count reduction: the pivot pi of Gi = {e0, ..., ek−1} will be used in place of

e0, ..., ek−1 (thus obtaining a reduction proportional to k). A simple example is illustrated

in Listing 11.

Several optimizations for data locality, not shown in Algorithm 4, are also applied. The

interested reader may refer to the documentation and the examples of Devito v3.1 for more

details; below, we only mention the underlying ideas.

• The pivot of Gi is constructed, rather than selected out of e0, ..., ek−1, so that it could

coexist with as many other pivots as possible within the same Cluster. For ex-

ample, consider again Listing 11: there are infinite possible pivots temp[x + s]

= 9.0*temp0*u[t, x + s], and the one with s = 0 is chosen. However,

this choice is not random: the Alias-Detection Algorithm chooses pivots based on a
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Algorithm 4: The Alias-Detection Algorithm (pseudocode).
Input: A sequence of expressions E .
Output: A sequence of Alias objects A.

1 displacements← CALCULATE DISPLACEMENTS(E);
2 A← list();
3 unseen← list(E);
4 while unseen is not empty do
5 top← unseen.pop();
6 G = Alias(top);
7 for e in unseen do
8 if COMPARE OPS(top, e) and IS TRANSLATED(displacements[top], displacements[e])

then
9 G.append(e);

10 unseen.remove(e);
11 end if
12 end for
13 A.append(G)
14 end while
15 return A

global optimization strategy, which takes into account all of the m sets of aliasing

expressions. The objective function consists of choosing s so that multiple pivots

will have identical ISpace, and thus be scheduled to the same Cluster (and,

eventually, to the same loop nest).

• Conservatively, the chosen pivots are assigned to array variables. A second optimiza-

tion pass, called index bumping and array contraction in Devito v3.1, attempts to turn

these arrays into scalar variables, thus reducing memory consumption. This pass is

based on data dependence analysis, which essentially checks whether a given pivot

is required only within its Cluster or by later Clusters as well. In the former

case, the optimization is applied.

4.6.3 Loop blocking for working-set minimization

In essence, the CIRE algorithm trades operation for memory – the (array) temporaries

to store the aliases. From a run-time performance viewpoint, this is convenient only in

arithmetic-intensive kernels. Unsurprisingly, we observed that storing temporary arrays

spanning the entire grid rarely provides benefits (e.g., only when the operation count re-
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ductions are exceptionally high). We then considered the following options.

1. Capturing redundancies arising along the innermost dimension only. Thus, only

scalar temporaries would be necessary. This approach presents three main issues,

however: (i) only a small percentage of all redundancies are captured; (ii) the imple-

mentation is non-trivial, due to the need for circular buffers in the generated code;

(iii) SIMD vectorization is affected, since inner loop iterations are practically seri-

alised. Some previous articles followed this path [168, 169].

2. A generalization of the previous approach: using both scalar and array temporaries,

without searching for redundancies across the outermost loop(s). This mitigates is-

sue (i), although the memory pressure is still severely affected. Issue (iii) is also

unsolved. This strategy was discussed in [170].

3. Using loop blocking. Redundancies are sought and captured along all available di-

mensions, although they are now assigned to array temporaries whose size is a func-

tion of the block shape. A first loop nest produces the array temporaries, while a

subsequent loop nest consumes them, to compute the actual output values. The block

shape should be chosen so that writes and reads to the temporary arrays do not cause

high latency accesses to the DRAM. An illustrative example is shown in Listing 12.

The CIRE algorithm uses the third approach, based on cross-loop-nest blocking. This

pass is carried out by the DLE, which can introduce blocking over sequences of loops (see

Section 4.5.2).

Listing 12 The loop nest produced by the CIRE algorithm for the example in Listing 11.
Note that the block loop (line 2) wraps both the producer (line 3) and consumer (line 5)
loops. For ease of read, unnecessary information are omitted.

for t = t_m to t_M:
for xb = x_m to x_M, xb += blocksize:

for x = xb to xb + blocksize + 3, x += 1
temp[x] = 9.0*temp0*u[t, x]

for x = xb to xb + blocksize; x += 1:
u[t+1,x,y] = ... + temp[x + 1] - 18.0*temp0*u[t][x + 2] + temp[x + 3] + ...
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4.7 Performance evaluation

We outline in Section 4.7.1 the compiler setup, computer architectures, and measurement

procedure that we used for our performance experiments. Following that, we outline the

physical model and numerical setup that define the problem being solved in Section 4.7.2.

This leads to performance results, presented in Sections 4.7.3 and 4.7.4.

4.7.1 Compiler and system setup

We analyse the performance of generated code using enriched roofline plots. Since the DSE

transformations may alter the operation count by allocating extra memory, only by looking

at GFlops/s performance and runtime jointly can a quality measure of code syntheses be

derived.

For the roofline plots, Stream TRIAD was used to determine the attainable memory

bandwidth of the node. Two peaks for the maximum floating-point performance are shown:

the ideal peak, calculated as

#[cores] ·#[avx units] ·#[vector lanes] ·#[FMA ports] · [ISA base frequency]

and a more realistic one, given by the LINPACK benchmark. The reported runtimes are

the minimum of three runs (the variance was negligible). The model used to calculate the

operational intensity assumes that the time-invariant Functions are reloaded at each time

iteration. This is a more realistic setting than a “compulsory-traffic-only” model (i.e., an

infinite cache).

We had exclusive access to two architectures: an Intel R© Intel R©XeonTMPlatinum 8180

(formerly code-named Skylake) and an Intel R©Xeon PhiTM7250 (formerly code-named Knights

Landing), which will be referred to as skl8180 and knl7250. Thread pinning was en-

abled with the program numactl. The Intel R©compiler icc version 18.0 was used

to compile the generated code. The experiments were run with Devito v3.1 [13]. The
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experimentation framework with instructions for reproducibility is available at [182]. All

floating point operations are performed in single precision, which is typical for seismic

imaging applications.

Any arbitrary sequence of DSE and DLE/YLE transformations is applicable to an

Operator. Devito, provides three preset optimization sequences, or “modes”, which

vary in aggressiveness and affect code generation in three major ways:

• the time required by the Devito compiler to generate the code,

• the potential reduction in operation count, and

• the potential amount of additional memory that might be allocated to store (scalar,

tensor) temporaries.

A more aggressive mode might obtain a better operation count reduction than a non-

aggressive one, although this does not necessarily imply a better time to solution as the

memory pressure might also increase. The three optimization modes – basic, advanced,

and aggressive– apply the same sequence of DLE/YLE transformations, which in-

cludes OpenMP parallelism, SIMD vectorization, and loop blocking. However, they vary

in the number, type, and order of DSE transformations. In particular,

basic enables common sub-expressions elimination only;

advanced enables basic, then factorization, extraction of time-invariant aliases;

aggressive enables advanced, then extraction of time-varying aliases.

Thus, aggressive triggers the full-fledged CIRE algorithm, while advanced uses only

a relaxed version (based on time invariants). All runs used loop tiling with a block shape

that was determined individually for each case using auto-tuning. The auto-tuning phase,

however, was not included in the measured experiment runtime. Likewise, the code gener-

ation phase is not included in the reported runtime.
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4.7.2 Test case setup

In the following sections, we benchmark the performance of operators modeling the prop-

agation of acoustic waves in two different models: isotropic and Tilted Transverse Isotropy

(TTI, [183]), henceforth isotropic and tti, respectively. These operators were chosen

for their relevance in seismic imaging techniques [183].

Acoustic isotropic modeling is the most commonly used technique for seismic in-

verse problems, due to the simplicity of its implementation, as well as the comparatively

low computational cost in terms of FLOPs. The tti wave equation provides a more real-

istic simulation of wave propagation and accounts for local directional dependency of the

wave speed, but comes with increased computational cost and mathematical complexity.

For our numerical tests, we use the tti wave equation as defined in [183]. The full spec-

ification of the equation as well as the finite difference schemes and its implementation

using Devito are provided in [13, 43]. Essentially, the tti wave equation consists of two

coupled acoustic wave equations, in which the Laplacians are constructed from spatially

rotated first derivative operators. As indicated by Figure 4.4, these spatially rotated Lapla-

cians have a significantly larger number of stencil coefficients in comparison to its isotropic

equivalent which comes with an increased operational intensity.

The tti and isotropic equations are discretized with second order in time and

varying space orders of 4, 8, 12 and 16. For both test cases, we use zero initial condi-

tions, Dirichlet boundary conditions and absorbing boundaries with a 10 point mask (Sec-

tion 4.3.5). The waves are excited by injecting a time-dependent, but spatially-localized

seismic source wavelet into the subsurface model, using Devito’s sparse point interpo-

lation and injection as described in Section 4.3.1. We carry out performance measure-

ments for two velocity models of 5123 and 7683 grid points with a grid spacing of 20

m. Wave propagation is modeled for 1000 ms, resulting in 327 time steps for isotro-

pic, and 415 time steps for tti. The time-stepping interval is chosen according to the

Courant-Friedrichs-Lewy (CFL) condition [37], which guarantees stability of the explicit
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time-marching scheme and is determined by the highest velocity of the subsurface model

and the grid spacing.

Figure 4.4: Stencils of the acoustic Laplacian for the isotropic (left) and tti (right)
wave equations and so=16. The anisotropic Laplacian corresponds to a spatially rotated
version of the isotropic Laplacian. The color indicates the distance from the central coeffi-
cient.

4.7.3 Performance: acoustic wave in isotropic model

This section illustrates the performance of isotropic with the core and yask back-

ends. To relieve the exposition, we show results for the DSE in advanced mode only;

the aggressive has no impact on isotropic, due to the memory-bound nature of the

code [43].

The performance of core on skl8180, illustrated in Figure 4.5 (yask uses slightly

smaller grids than core due to a flaw in the API of Devito v3.1, which will be fixed in

Devito v3.2), degrades as the space order (henceforth, so) increases. In particular, it drops

from 59% of the attainable machine peak to 36% in the case of so=16. This is the result

of multiple issues. As so increases, the number of streams of unaligned virtual addresses

also increases, causing more pressure on the memory system. Intel R© VTuneTM revealed

that the lack of split registers to efficiently handle split loads was a major source of perfor-

mance degradation. Another major issue for isotropic on core concerns the quality of

the generated SIMD code. The in-line vectorization performed by the auto-vectorizer pro-

duces a large number of pack/unpack instructions to move data between vector registers,

124



which introduces substantial overhead. Intel R© VTuneTM also confirmed that, unsurprisingly,

isotropic is a memory-bound kernel. Indeed, switching off the DSE basically did not

impact the runtime, although it did increase the operational intensity of the four test cases.

The performance of core on knl7250 is not as good as that on skl8180. Fig-

ure 4.6 shows an analogous trend to that on skl8180, with the attainable machine peak

systematically dropping as so increases. The issue is that here the distance from the peak

is even larger. This simply suggests that core is failing at exploiting the various levels of

parallelism available on knl7250.

The yask backend overcomes all major limitations to which core is subjected. On

both skl8180 and knl7250, yask outperforms core, essentially since it does not

suffer from the issues presented above. Vector folding minimizes unaligned accesses; soft-

ware prefetching helps especially for larger values of so; hierarchical OpenMP parallelism

is fundamental to leverage shared caches. The speed-up on knl7250 is remarkable, since

even in the best scenario for core (so=4), yask is roughly 3× faster, and more than 4×

faster when so=12.

4.7.4 Performance: acoustic wave in tilted transverse isotropy model

This sections illustrates the performance of tti with the core backend. tti cannot be

run on the yask backend in Devito v3.1 as some fundamental features are still missing;

this is part of our future work (more details in Section 4.8).

Unlike isotropic, tti significantly benefits from different levels of DSE optimiza-

tions, which play a key role in reducing the operation count as well as the register pres-

sure. Figure 4.14 displays the performance of tti for the usual range of space orders on

skl8180 and knl7250, for two different cubic grids.

Generally, tti does not reach the same level of performance as isotropic. This

is not surprising given the complexity of the PDEs (e.g., in terms of differential opera-

tors), which translates into code with much higher arithmetic intensity. In tti, the mem-
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Figure 4.5: skl8180, core, 7683 grid
points.
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Figure 4.6: knl7250, core, 7683 grid
points.
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Figure 4.7: skl8180, yask, 7483 grid
points.
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Figure 4.8: knl7250, yask, 7483 grid
points.

Figure 4.9: Performance of isotropic on multiple Devito backends and architectures.

ory system is stressed by a considerably larger number of loads per loop iteration than in

isotropic. On skl8180, we ran some profiling with Intel R© VTuneTM . We determined

that one of the major issues is the pressure on both L1 cache (lack of split registers, unavail-

ability of “fill buffers” to handle requests to the other levels of the hierarchy) and DRAM

(bandwidth and latency). Clearly, this is only a summary from some sample kernels – the

actual situation varies depending on the DSE optimizations as well as the so employed.

It is remarkable that on both skl8180 and knl7250, and on both grids, the cutoff

point beyond which advanced results in worse runtimes than aggressive is so=8.

One issue with aggressive is that to avoid redundant computation, not only additional

memory is required, but also more data communication may occur through caches, rather
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than through registers. In Figure 12, for example, we can easily deduce that temp is first

stored, and then reloaded in the subsequent loop nest. This is an overhead that advanced

does not pay, since temporaries are communicated through registers, for as much as pos-

sible. Beyond so=8, however, this overhead is overtaken by the reduction in operation

count, which grows almost quadratically with so, as reported in Table 4.1.

Table 4.1: Operation counts for different DSE modes in tti

so basic advanced aggressive
4 299 260 102
8 857 707 168

12 1703 1370 234
16 2837 2249 300

The performance on knl7250 is overall disappointing. This is unfortunately caused

by multiple factors – some of which already discussed in the previous sections. These

results, and more in general, the need for performance portability across future (Intel R©or

non-Intel R©) architectures, motivated the ongoing yask project. Here, the overarching issue

is the inability to exploit the multiple levels of parallelism typical of architectures such

as knl7250. Approximately 17% of the attainable peak is obtained when so=4 with

advanced (best runtime out of the three DSE modes for the given space order). This

occurs when using 5123 points per grid, which allows the working set to completely fit

in MCDRAM (our calculations estimated a size of roughly 7.5GB). With the larger grid

size (Figure 4.13), the working set increases up to 25.5GB, which exceeds the MCDRAM

capacity. This partly accounts for the 5× slow down in runtime (from 34s to 173s) in spite

of only a 3× increase in number of grid points computed per time iteration.

4.8 Further work

While many simulation and inversion problems such as full-waveform inversion only re-

quire the solver to run on a single shared memory node, many other applications require
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Figure 4.10: skl8180, 5123 grid points.
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Figure 4.11: skl8180, 7683 grid points.
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Figure 4.12: knl7250, 5123 grid points.
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Figure 4.13: knl7250, 7683 grid points.

Figure 4.14: Performance of tti on core for different architectures and grids.

support for distributed memory parallelism (typically via MPI) so that the solver can run

across multiple compute nodes. The immediate plan is to leverage yask’s MPI support,

and perhaps to include MPI support into core at a later stage. Another important fea-

ture is staggered grids, which are necessary for a wide range of FD discretization methods

(e.g. modelling elastic wave propagation). Basic support for staggered grids is already in-

cluded in Devito v3.1, but currently only through a low-level API – the principle of graceful

degradation in action. We plan to make the use of this feature more convenient.

As discussed in Section 4.7.4, the yask backend is not feature-complete yet; in par-

ticular, it cannot run the tti equations in the presence of array temporaries. As tti is

among the most advanced models for wave propagation used in industry, extending Devito

in this direction has high priority.
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There also is a range of advanced performance optimization techniques that we want

to implement, such as “time tiling” (i.e., loop blocking across the time dimension), on-the-

fly data compression, and mixed-precision arithmetic exploiting application knowledge.

Finally, there is an on-going effort towards adding an ops [163] backend, which will enable

code generation for GPUs and also supports distributed memory parallelism via MPI.

4.9 Conclusions

Devito is a system to automate high-performance stencil computations. While Devito pro-

vides a Python -based syntax to easily express FD approximations of PDEs, it is not limited

to finite differences. A Devito Operator can implement arbitrary loop nests, and can

evaluate arbitrarily long sequences of heterogeneous expressions such as those arising in

FD solvers, linear algebra, or interpolation. The compiler technology builds upon years

of experience from other DSL-based systems such as FEniCS and Firedrake, and wher-

ever possible Devito uses existing software components including SymPy and NumPy , and

YASK. The experiments in this article show that Devito can generate production-level code

with compelling performance on state-of-the-art architectures.
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CHAPTER 5

CONCLUSIONS

5.1 Summary

Seismic wave-equation based inversion is an extremely complex problem due to its size

and the non-convexity of the optimization problem. In order to develop algorithms for

this inverse problem, computationally efficient wave-equation propagators are necessary

that can easily scale to large domain sizes (i.e billions of computational grid points). The

current general philosophy is to rely on hand-coded propagators targeting specific hard-

ware at hand. Moreover, by necessity, the implementation usually only concerns a specific

wave-equation with a fixed discretization (i.e hard coded space orders) that is numerically

stable for a very limited range of numerical parameters. The lack of flexibility on the nu-

merical side with hard coded discretization, on the physical side with single wave-equation

workflows, as well as the limited hardware portability, are the inherent shortcomings ad-

dressed in this thesis. Specifically, the proposed solution involve two distinct steps: the

theoretical study of finite-difference solvers using the roofline model and the development,

implementation and analysis of Devito, a finite-difference DSL with its own just-in-time

compiler.

In the first part, I investigated the theoretical computational properties of finite-difference

solvers for a family of wave-equations. This work led to two principal findings: On the one

hand, I showed that the runtime is a poor measure of the computational performance of

solvers. Runtime performance is based on the underlying assumption that two codes have

equivalent optimal runtime, assumption that is proven inaccurate by the roofline model. I

consequently adapted the roofline model for analyzing wave equation solvers with finite

differences, which provides an absolute measure of the achieved performance compared
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to the maximum achievable one. The roofline model then allowed me to demonstrate that

the computational performance of finite-difference solvers will depend on a combination of

numerical parameters and hardware capabilities. This work highlights the need for flexible

and portable workflows that allow to choose the best numerical parameters for the hardware

at hand.

In the second part, I introduced Devito, a finite-difference DSL, where I offered a flex-

ible alternative to legacy codes where optimized code is generated on the fly at runtime.

Compared to these legacy codes, this has the advantage that highly optimized code is gen-

erated automatically. This offers the possibility to experiment with different discretizations

and optimization strategies designed to make optimal use of the hardware. Additionally,

Devito is designed around separation of concerns and offers easy current and future in-

tegration with other just-in-time compilers or packages (e.g. julia [153], Tensorflow, Py-

Torch [184]), portability to the cloud [185], or other architectures such as GPUs [186, 187].

I now summarize in detail these two main contributions.

5.1.1 Performance prediction and evaluation

The computational performance evaluation of a simulation code is a complex problem due

to its numerous parameters (discretization, hardware, implementation, reference perfor-

mance) and requires a rigorous definition of what makes an implementation good. The

conventional one-to-one comparison of the runtime between two codes can lead to unfair

or erroneous conclusions as it is trivial to implement a slow version of a code to boost

the improvement achieved. In Chapter 2, I presented a performance analysis based on the

roofline model, a recent performance benchmark tool, that provides an absolute hardware-

level measure of performance. This work on performance prediction and evaluation is

summarized as follows:

First, I demonstrated that finite-difference solvers have certain theoretical computa-

tional properties, such as the number of floating point operations per grid point, that can
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be estimated from the mathematical expression of finite-difference discretization formulas.

This estimation provides insights into the expected maximum achievable performance for

a given choice of wave-equation and discretization that can drive the design of a solver

for specific hardware. This estimated optimal performance is in GFLOP/s and can then be

translated into runtime for a fixed number of grid points and time steps. These performance

prediction results show that a flexible design of propagator with respect to the discretization

can offer better performance based on hardware specific characteristics.

Second, the roofline model also provides insights into the quality of an implementation

and the amount of achievable improvement. The roofline model, on top of being a pre-

dictive and theoretical tool, also provides runtime relative performance benchmarks that

inform on how well an implementation performs compared to the maximum achievable

performance and consequently how much improvement is potentially achievable. This ab-

solute performance measure can also be attached to a conventional runtime benchmark to

provide a complete overview of the performance of a given implementation. Without the

roofline model, a tremendous amount of work can be sunk into improving the performance

of a solver that may already be near-optimal.

5.1.2 Software design with separation of concern

The design of software for computationally demanding applications, such as wave-equation

based geophysical exploration and more generally PDE constrained optimization, can be

extremely complex as it involves expertise in multiple scientific fields such as physics,

mathematics, and computational science. Good software design calls for a separation of

concerns, so that each specialist can focus on their respective area of expertise, while still

providing a collaborative framework to allow rapid development. In Chapter 3 and 4 of my

thesis, I introduced Devito, a finite-difference DSL that is designed around the paradigm

of separation of concerns, which is necessary to facilitate efficient collaboration for multi-

disciplinary research and development in fields such as exploration geophysics.
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Devito is an embedded symbolic domain specific language (DSL). The user interface

is symbolic and based on the open source Python package sympy [45] that closely fol-

lows the mathematical definition of a PDE and allows concise and readable expressions for

complex mathematical representations of the physics. Devito’s symbolic manipulation then

automatically generates the finite-difference stencils from these high-level expressions.

Additionally, non-standard operations such as source injection and receiver interpolation

(to off the grid source/receiver positions) are necessary for field measurement-based data-

fitting inverse problems. As Devito is not only specifically designed for finite-differences,

it also provides a framework for generic computations on structured grids, operations such

as source/receiver sampling are fully supported and therefore make it suitable for seismic

inverse problems. Second, Devito is a code generation framework and a just-in-time com-

piler. Symbolic DSLs are already well developed, some of the most famous being sympy

or mathematica (variational DSL such as Firedrake [32] were discussed earlier), but

are usually based on computationally inefficient symbol replacement for the evaluation of

expressions. Devito, on the other hand, implements the translation of symbolic expressions

generated from a high-level symbolic interface to highly optimized C-code that is then

compiled at runtime. In Chapter 4, I showed that the code-generation framework imple-

ments many modern compiler technologies such as vectorization, multi-threading or cache

blocking. Therefore, the computational performance achieved is on par with hand-coded

equivalent implementations and in some case even outperforms them. The computational

performance of Devito makes it suitable not only for research and development but enables

at-scale deployment of research codes to production-level validation and application.

To furthermore validate the computational performance of Devito, and thanks to the

vectorial extension I present in Section 5.3, I compared the runtime of Devito with a refer-

ence open source hand-coded propagator. This propagator, described in [188] is an elastic

kernel (c.f. 5.1) and has been implemented by J. W. Thorbecke who is a developer and

benchmarker for Cray and Senior researcher in applied geophysics at Delft University of

133



Technology. The source code can be found at fdelmodc. I compared the runtime of Devito

against fdelmodc for a fixed and common computational setup from one of their examples:

• 2001 by 1001 physical grid points.

• 200 grid points of dampening layer on all four sides (total of 2401x1401 computa-

tional grid points).

• 10001 time steps.

• Single point source, 2001 receivers.

• Same compiler (gcc/icc) to compile fdelmodc and run Devito.

• Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.8GHz.

• Single socket, four physical cores, four physical threads, thread pinning to cores and

hyperthreading off.

The runtime results are summarized in Table 5.1 and show on average that Devito per-

forms around 75% faster with the intel compiler and 40% faster with gcc.

Table 5.1: Runtime comparison between Devito and FDELMODC [188] for a two dimen-
sional elastic model. The first column shows the kernel execution time (call to the generated
C code) of Devito and the second column shows the total runtime including code gener-
ation and compilation. Only the kernel execution time of FDELMODC is shown as the
libraries are precompiled.

Compiler Devito kernel Devito runtime FDELMODC kernel Kernel speedup Runtime speedup

GCC 9.2.0 166.07s 172.83s 237.52s 1.430 1.374
ICC 19.1.0 131.59s 136.85 237.17s 1.802 1.733

This comparison illustrate the performance achieved with Devito is at least on par with

hand coded propagators. Future work will aim at providing a thorough benchmark by

comparing first against a three dimensional implementations and second against state of

the art stencil language.
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The combination of a symbolic DSL with a just-in-time compiler makes Devito a per-

fect tool for seismic inverse problems. As months of manual implementations of low-level

propagators are reduced to a few lines of high-level Python code, geophysicists and mathe-

maticians can concentrate on algorithms for inverse problem, while computer scientist can

still develop the compiler technology through the code-generation API. The separation of

concerns applied to every level of Devito (compiler, API, seismic wrappers) also allows

easy unit-testing and safeguards against large monolithic code-base. Finally, unlike similar

academic projects, Devito is now quickly being adapted by the broader geoscience commu-

nity and multiple projects were and are currently making use of Devito. I highlight some

of these projects now.

5.2 Enabling research

As motivated in the introduction and through the content of my thesis, Devito is designed

to enable and accelerate research and development. The main impact factor and validation

for Devito is its current usage by the scientific community. Devito enabled projects in

multiple fields for a wide range of users. Among these projects are academics projects

that I have been actively involved in and collaborated with, as well as industry research

and development and even running Devito at scale in production codes. While I am not

at liberty to discuss industry usage of Devito and my work, I now briefly describe my

contribution to two projects that were enabled by Devito and demonstrate that my work

drove the development of new technologies. In the following sections, I will first discuss

JUDI [153], a Julia linear algebra DSL for seismic inverse problem that interfaces and

uses Devito for the solves of the wave-equation while providing a high-level linear algebra

framework for implementing and solving mathematical inverse problems. Second of all, I

will describe and illustrate the implementation industry-scale seismic imaging in the cloud

(specifically on Microsoft Azure) using Devito [189, 185, 190].
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5.2.1 JUDI: The Julia Devito Inversion framework

The Julia Devito Inversion framework (JUDI1) [153, 78, 30] is a parallel matrix-free linear

algebra DSL for seismic modeling and inversion based on Devito [42, 13] and SegyIO [191],

a performant Julia package for reading and writing large data volumes in SEG-Y for-

mat [192]. JUDI allows implementing seismic inversion algorithms as linear algebra oper-

ations, enabling rapid translations of seismic inversion algorithms to executable Julia code.

The underlying wave equations are set up and solved using Devito and are interfaced from

Julia using the PyCall package. As described in the Introduction 1 and Chapter 3, seismic

inversion can be formulated in a linear algebra way that allows for a simple expression of

the problem and clearer definition and implementation of inversion algorithms. The projec-

tion and modeling operators, that wrap around Devito’s propagators, can be set up in JUDI

in the following way:

ntComp = get_computational_nt(q.geometry, d_obs.geometry,

model0)

info = Info(prod(model0.n), d_obs.nsrc, ntComp)

Pr = judiProjection(info, d_obs.geometry)

Ps = judiProjection(info, q.geometry)

Ainv = judiModeling(info, model0)

Seismic shot records (active-source seismic experiments) can then be modeled by run-

ning the matrix-free:

d pred = Pr*Ainv*adjoint(Ps)*q

from the Julia command line, which is equivalent to the mathematical expressionF (m;q) =

PrA
−1(m)P>s q by virtue of the instantiation Ainv = judiModeling(info, model0),

which makes the wave equation solver implicitly dependent on the model defined in the

1A modified version of this description of JUDI was published in The Leading Edge [78] as apart of a
three part tutorial on seismic modelling and inversion, the first two parts concentrating on modeling [76] and
adjoint modeling and computing the FWI gradient [77] with Devito.
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variable model0. If we started our Julia session with multiple CPU cores or nodes (julia

-p n, with n being the number of workers), the wave equation solves are automatically

parallelized over source locations and all shots are collected in the d pred vector. We can

also model a single or subset of shots by indexing the operators with the respective shot

numbers. E.g. if we want to model the first two shots, we define i=[1,2] and then run:

d sub = Pr[i]*Ainv[i]*adjoint(Ps)[i]*q[i].

If we want to solve an adjoint wave equation with the observed data as the adjoint source

and restrictions of the wavefields back to the source locations, we can simply run:

qad = Ps*adjoint(Ainv)*adjoint(Pr)*d obs,

exemplifying the advantages of casting FWI in a proper computational linear algebra frame-

work. Accordingly, a basic gradient descent (GD)example with a line search can be im-

plemented in a few lines of Julia code. To reduce the computational cost of full GD, we

will use a stochastic gradient descent (SGD) in which we only compute the gradient and

objective value for a randomized subset of source locations. In JUDI, this is accomplished

by choosing a random vector of integers for the sources and indexing the data vectors as

described earlier. Furthermore, a box constraints is applied to the updated model, to prevent

velocities (or squared slownesses) to become negative or too large. Bound constraints are

applied to the updated model trough a projection operator proj(x), which clips values of

the slowness that lie outside the allowed range. The full algorithm for FWI with stochastic

gradient descent and box constraints is implemented as follows in JUDI:
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maxiter = 10

batchsize = 8 # number of shots for each iteration

proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)],2),

model0.n)

for j=1:maxiter

# FWI objective function value and gradient

i = randperm(d_obs.nsrc)[1:batchsize] # select

random source locations

fval, grad = fwi_objective(model0, q[i], d_obs[i])

# line search and update model

update = backtracking_linesearch(model0, q[i], d_obs

[i], fval, grad, proj; alpha=1f0)

model0.m += reshape(update, model0.n)

# apply box constraints

model0.m = proj(model0.m)

end

The function backtracking linesearch performs an approximate line search

and returns a model update that leads to a sufficient decrease of the FWI function value

and is part of the JUDI optimization sub-module JUDI.SLIM optim. JUDI is the per-

fect example of vertical integration of a software stack, that starts with low level C-code

optimization, followed by Devito symbolic interface for the definition of the PDEs and fi-

nally JUDI’s linear algebra DSL for the definition of an optimization algorithm to solve

the inverse problem. This project was well received by both the academic and industry in
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the seismic community and was highlighted by the leading Edge as part of their brightspot

advertisement [193].

5.2.2 Imaging in the cloud

For the major part of my Ph.D, I was lucky to have had access to a moderately size on-

premise HPC cluster for running numerical experiments, without much consideration to

cost. However, in recent years, our laboratory has made the choice to move the cloud.

One of the main challenges in modern HPC is to modernize legacy codes for the cloud,

which are usually hand-tuned or designed for on-premise clusters with a known and fixed

architecture and setup. Porting these codes and algorithms to the cloud can be straightfor-

ward using a lift-and-shift strategy that essentially boils down to renting a cluster in the

cloud. However, this strategy is not cost-efficient. Pricing in the cloud is typically based

on a pay-as-you-go model, which charges for requested computational resources, regard-

less of whether or not instances and cores are actively used or sit idle. This pricing model

is disadvantageous for the lift-and-shift strategy and oftentimes incurs higher costs than

required by the actual computations, especially for communication-heavy but task-based

algorithms that only need partial resources depending of the stage of the computation. On

the other hand, serverless software design provides flexible and cost efficient usage of cloud

resources including for large scale inverse problem such as seismic inversion. With Devito,

we had access to a portable yet computationally efficient framework for wave-equation

based seismic exploration that allowed us to quickly develop a new strategy to execute

seismic inversion algorithms in the cloud. This new serverless and event-driven approach

led to significant early results [190, 189] that caught the attention of both seismic inverse

problems practitioners and cloud providers. This led to a proof of concept project on an

industry size problem in collaboration with Microsoft Azure. The main objectives of this

project were:

• Demonstrate the scalability, robustness and cost effectiveness of a serverless imple-
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mentation of seismic imaging in the cloud. In this case, we imaged a synthetic three

dimensional anisotropic subsurface model that mimics a realistic industry size prob-

lem (10km by 10km by 5km) with a realistic representation of the physics (TTI).

• Demonstrate the flexibility and portability of Devito. The seismic image (RTM as

defined in Chapter 3) was computed with Devito and highlights the code-generation

and high performance capability of Devito on an at-scale real world problem. This

results shows that in addition to conventional benchmark metrics such as soft and

hard scaling and the roofline model, Devito provides state of the art performance on

practical applications as well.

The subsurface velocity model that was used in this study is an artificial anisotropic

model I designed and built combining two broadly known and used open-source SEG/EAGE

acoustic velocity models. The anisotropy parameters are derived from smoothed version

of the velocity wile the tilt angles were derived from a combination of the smooth velocity

models and vertical and horizontal edge detection. The final seismic image of the subsur-

face model is plotted in Figure 5.1 and highlights the fact that 3D seismic imaging based on

a serverless approach and automatic code generation is feasible and provides good results

on a realistic model.

In [189] is fully describes the serverless implementation of seismic inverse problems,

including iterative algorithms for least square minimization problems (LSRTM). The 3D

anisotropic imaging results were presented as part of a keynote presentation at the EAGE

HPC workshop in October 2019 [185]. This work perfectly illustrates the flexibility and

portability of Devito, as we were able to easily port a code only tested and developed

on local hardware to the cloud, with only requiring minor adjustments. This portability

included the possibility to run MPI-based code for domain decomposition in the cloud,

after developing it on a desktop computer.
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Figure 5.1: 3D TTI imaging on a custom made model.

5.3 Extended API

While the acoustic wave-equation is a good start to understand wave physics and wave

propagation, it provides a very crude approximation of the true physics of the earth. In order

to realistically model wave propagation in the earth, the elastic wave-equation is necessary.

The elastic wave-equation 5.1 is however vectorial and requires more advanced numerical

methods to be discretized and solved. The elastic isotropic wave-equation, parametrized

by the Lamé parameters λ, µ and the density ρ reads:

1

ρ

dv

dt
= ∇.τ

dτ

dt
= λtr(∇v)I + µ(∇v + (∇v)T )

(5.1)
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where v is a vector valued function with one component per cartesian direction:

v =




vx(t, x, y, z)

vy(t, x, y, z)

vz(t, x, y, z)




(5.2)

and the stress τ is a symmetric second-order tensor-valued function:

τ =




τxx(t, x, y, z) τxy(t, x, y, z) τxz(t, x, y, z)

τxy(t, x, y, z) τyy(t, x, y, z) τyz(t, x, y, z)

τxz(t, x, y, z) τyz(t, x, y, z) τzz(t, x, y, z)



. (5.3)

The discretization of such a set of coupled PDEs requires 5 equations in two dimensions

(two equations for particle velocity and three for stress) and 9 equations in three dimen-

sions (three particle velocities and six stress equations). However the mathematical defini-

tion only requires two for any number of dimensions. The main contribution of this work

is to extend the previously scalar-only capabilities of Devito to vector and second order

tensors and allow a straightforward and mathematical definition of high-dimensional PDEs

such as the elastic wave equation in Equation 5.1. Once again, based on sympy, I recently

extended the symbolic interface to vectorial and tensorial object to allow for a straightfor-

ward definition of equations such as the elastic wave-equation, as well as computational

fluid dynamics equations. The extended API defines two new types, VectorFunction

(and VectorTimeFunction) for vectorial objects such as the particle velocity, and

TensorFunction (and TensorTimeFunction) for second order tensor objects (ma-

trices) such as the stress. These new objects are constructed the exact same way as the pre-

viously scalar Function objects and automatically implement staggered grid and stag-

gered finite-differences with the possibility of half-node averaging. This new extended API

now allows users to define the elastic wave-equation in four lines as follows:

The sympy expressions created by these commands can be displayed via the sympy
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v = VectorTimeFunction(name=’v’, grid=model.grid, space_order=so, time_order=1)
tau = TensorTimeFunction(name=’t’, grid=model.grid, space_order=so, time_order=1)

u_v = Eq(v.forward, model.damp * (v + s/rho*div(tau)))
u_t = Eq(tau.forward, model.damp * (tau + s * (l * diag(div(v.forward)) +

mu * (grad(v.forward) + grad(v.forward).T))))

Figure 5.2: Update stencil for the particle velocity. The stencil for updating the stress com-
ponent is left out for readability, as the equation does not fit onto a single page. However,
it can be found in the Devito tutorial on elastic modeling.

pretty printer (sympy.pprint) as shown in Figure 5.2. This representation reflects

perfectly the mathematics while still providing computational portability and efficiency

through the Devito compiler.

Each component of a vectorial or tensorial object is accessible via conventional vector

and matrix indices (i.e. v[0], t[0,1],....). I show the elastic particle velocity and

stress for a well known 2D synthetic model, the elastic marmousi-ii [194, 152] model. The

wavefields are shown on Figure 5.3 and its corresponding elastic shot records are displayed

in Figure 5.4.

Figure 5.2 also highlights a second new feature: delayed evaluation. The equation

is still a differential equation, and the finite-difference schemes are now evaluated either

through an explicit user request via the .evaluate call, or automatically at the compiler

level. This delayed evaluation of derivatives provides a cleaner and more user friendly

interface to Devito, which prevents complex and lengthy finite-difference schemes being

displayed after defining the symbolic expressions. Figure 5.5 illustrates this new feature

showing the user-facing representation of a derivative and its evaluation.
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Figure 5.3: Particle velocities and stress at time t = 3s for a source at 10m depth and
x=5\text{km} in the marmousi-ii model.

Figure 5.4: Seismic shot record for 5sec of modeling. a is the pressure (trace of stress
tensor) at the surface (5m depth), b is the vertical particle velocity and c is the horizontal
particle velocity at the ocean bottom (450m depth).
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Figure 5.5: Illustration of the lazy evaluation feature on a simple derivative. This examples
shows that the symbolic representation of the derivatives matches the mathematical defini-
tion and that it’s evaluation automatically generate the finite difference stencil associated
with it.

145



5.4 Future work

Finally, I briefly discuss possible future work and open questions. While Devito has already

grown into a very flexible framework, there are additional research directions that are still

open and require future work:

• Topology (non-flat physical interfaces such as ocean bottoms). Currently, topology

is not supported in any high-level and concise way that would allow users to easily

formulate complex boundaries such has mountain ranges or non-flat ocean bottoms.

While these issue are usually fairly irrelevant in the acoustic case, more advanced

physics such as elasticity require proper definitions of the fluid-solid interfaces to

avoid artifacts and accurately represent surface waves. This extension would fall

under what can be defined as SubDomain extensions, that allow users to define

objects and equations on partial parts of the Grid with interface continuation con-

ditions (equations that links the fields between two SubDomain). Such conditions

are close to trivial to implement by hand in low-level finite-difference codes, but a

robust high-level and user-friendly interface is more complex. Preliminary work is

currently in development at Imperial College London.

• Hardware portability. As I explained throughout this thesis, architecture portability

is one of the main challenges when it comes to computational methods and software.

As Devito is its own compiler, support for multiple architecture is already possible,

but is currently limited to CPUs (intel, AMD), intel Xeon Phis (KNC, KNL), and

ARM chips [195]. One of the main interests from the community is to extend the

hardware portability to other types of accelerators, namely to GPUs and potentially

FPGAs. These hardwares are currently not supported, or at the very least not for the

full set of operation Devito permits, but is currently in active development. Offering

support for graphic cards accelerators would greatly improve the impact of Devito

and its range of potential applications. Two main ideas are currently investigated
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concerning GPUs. First, the ops backend [163] is in development that interfaces

the stencil loop DSL (Oxford Parallel library for Structured meshes) in a similar way

the yask backend (see Chapter 4) is setup. Second, we are investigating the new

capabilities of openMP-5 and its GPU offloading tools that would allow to generate

GPU code from OpenMP pragmas only and let the compiler translate and offload the

computation. Early results on the OpenMP offloading are promising.

• Complex arithmetic. Currently, Devito only supports standard numpy ctypes that do

not include complex valued numbers. Complex values would be a great addition to

Devito as it would enable to solve problems such as Fourier based methods or elec-

tromagnetism easily. Currently, these kind of operations need to be implemented by

hand by manually splitting real/imaginary parts of the problem arithmetic operations,

such as multiplications. Support of complex arrays would require to implement an

extension of numpy ctypes for complex numbers, which is already supported by na-

tive numpy, making this extension generally straight forward. The integration of

complex numbers into Devito would then be trivial as all Devito objects are already

numpy arrays and complex arithmetic can be integrated into the compiler.

• Machine Learning. The Devito compiler is designed to be optimal for stencil com-

putations such as finite-differences, or in other words convolutional kernels, that are

at the core of convolutional networks. It should straightforward to support machine

learning applications with Devito and scale to large images or videos. Another re-

search direction is to use Devito for PDE based machine learning where a single layer

may be represented by a wave-equation such as in [196].
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APPENDIX A

APPENDIX

A.1 Distribution and copyrights

This section provides the proper distributions rights from the hournal for the papers in

Chapter 2 and 3. As of Chapter 4, the paper is still in review and therefore usable in the

Thesis with the authorization of the main author below.

Chapter 2 is published in Computer and Geoscience as an open source article. As stated

at https://www.elsevier.com/about/policies/copyright#personaluse

the author (me) can use the article in my Thesis for non commerical use.

Chapter 3 is published in Geoscientific Model Development https://www.geoscientific-model-development.

net and the author (me) retains full copyright of the paper and is authorized to copy and

share its content for example as part of a Thesis as stated at https://www.geoscientific-model-development.

net/about/licence_and_copyright.html.

Chapter 4 is currently being proceessed to be published in the ACM Transactions on

Mathematical Software (TOMS) as an open access paper giving authorization to reuse it as

part of my thesis https://authors.acm.org/author-services/author-rights.

The article is currently under Creative Commons on Arxiv that allows me to use it in my

thesis.
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