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SUMMARY 

Over the past two decades, π-conjugated organic molecules have found applications in the 

active layer of different types of organic electronic devices. To optimize and improve the 

performance of each of these devices, it is important to establish clear connections between 

chemical-structure, intermolecular packing and their impact on the electronic and charge transport 

properties in these systems. In this Thesis, we focus on two-component organic material systems 

– one acting as a π-electron donor (D) and the other as a π-electron acceptor (A) for applications 

in organic photovoltaics (OPV) and organic field-effect transistors (OFETs).  

   On the OPV side (Chapters 3 & 4), initially, we investigate the solution temperature-dependent 

aggregation property of a few polymers in their pure phases, which has been recently established 

as a potential method for morphology control in high-performing OSC devices. We then explore 

the intermolecular packing properties in the binary blends of polymer and two small molecule 

acceptors, which in their binary as well as ternary combinations exhibit high power conversion 

efficiencies. We elucidate clear connections between the molecular scale features that impact the 

device parameters in both the binary blends. We also obtain useful trends to explain the linear 

evolution of device parameters in the ternary blends.  

 On the OFET side (Chapters 5 & 6), our focus is on DA charge-transfer co-crystals, which 

possess potential applications as active layer components in OFET devices. Initially, we 

investigate the effect of packing on electronic properties of co-crystals based on F6TNAP acceptor 

and a series of donor molecules. Further, we focus on understanding the evolution in electronic, 

vibrational and charge-transport properties with sequential addition of alkyl chains on the donor 

and fluorine atoms on the acceptor on co-crystals based on BTBT-FmTCNQ (m=0, 2, 4) and di-
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CnBTBT-FmTCNQ (n=8, 12; m=0, 4) series. Finally, we explore the degree of charge-transfer in 

these systems using an approach based on Mulliken charges. While these results are limited to the 

systems under consideration, our simulations provide a reliable, molecular-level understanding to 

systematically improve the morphological characteristics that impact the device performances in 

organic electronic devices.   
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

 The field of organic electronics has registered a remarkable growth over the past two decades. 

Novel properties of organic materials have invoked extensive research interest to explore its 

potential applications in multiple areas of electronics. Consequently, consumer electronic products 

with displays and chemical sensors based on organic materials are available in the market.  

 

With the advent of efficient methods for device fabrication like the “printed electronics” 

technology, it became clear that semiconducting materials based on inorganic silicon and the like 

are not the only path forward. To suite a number of requirements in the electronics industry, it is 

imperative to develop alternative materials with tunable properties. Organic materials display 

several key advantages including flexibility, chemical tunability and easy solution processing at 

room temperature.1-5 Although conducting polymers were discovered as early as the 1970’s,6 

efforts to apply these materials for consumer electronics developed mainly from the early 1990’s. 

We note that an early commercial application of organic polymers was as photoconductors for the 

xerox industry.7-9 

 

 Nowadays, the versatility of organic materials is clearly in display, with applications over a 

wide range of fields- from energy to electronics, bio-integrated wearable materials to robotics and 

prosthetics. Efforts are currently in progress to effectively maximize their potential for large-scale 

consumer applications. It should be borne in mind that organic electronics is not a technology 
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envisioned to replace inorganic silicon-based electronics. Instead, it is to be seen as a parallel 

stream of prospects, working next to existing technologies as well as newer materials development 

initiatives like perovskites and covalent organic frameworks/metal-organic frameworks etc., for 

novel types of applications.  

 

      Recently, notable progress has been made in materials development for three major areas - 

organic photovoltaics (OPV), organic light-emitting diodes (OLED) and organic field effect 

transistors (OFET). For instance, as a result of the rapid progress made in the last few years, power 

conversion efficiencies (PCEs) of laboratory scale OPV devices now reach up to an impressive 

16%.10 In comparison, laboratory scale PV cells made of crystalline silicon exhibit PCEs of the 

order of slightly higher than 26% for mono-crystalline cells11 and ca. 20% for polycrystalline 

cells,12 while commercial modules show PCEs in the range 17-21%.13, 14 In terms of OLEDs, 

significant progress has been made since the first efforts of Tang and VanSlyke,15 resulting in the 

most successful functional device applications. Consumer electronics giants like Apple, LG, 

Samsung Corporation etc., have already brought smart watches, televisions and mobile devices 

based on OLED materials into the market. Also, in the case of OFET’s, new and diverse material 

combinations are now available which exhibits preferential n-type, p-type or ambipolar charge-

transport characteristics. The mobility values of the champion devices using organic 

semiconductors are increasingly surpassing those exhibited by amorphous silicon-based field 

effect transistors. 

 

These developments were in part facilitated by concerted efforts in the theoretical and 

experimental understanding of the processes taking place on an atomistic scale and the subsequent 
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tuning of the characteristics of these materials. However, important developments in material and 

device stability as well as improvements in efficiencies and device lifetime are still desirable. Thus, 

further investigations are required to keep improving the properties of these materials and ensure 

broader commercialization.  

 

 With this aim in mind, in this Thesis, we focus on understanding the impact of packing, 

morphology, and molecular-scale interactions on device performance and on the charge-transport 

properties of materials used in organic electronic devices. We consider specifically materials 

applicable to two key areas of organic electronics – organic photovoltaics (OPV) and organic field 

effect transistors (OFET). In the next section, first we detail our motivation to delve into these two 

major areas. Next, we discuss the material combinations relevant to the functioning of these 

devices and provide a brief overview of the major processes taking place in a device architecture 

along with key loss mechanisms hindering performance. We then summarize our current 

understanding of the strong connection among morphology, electronic properties and device 

performance. We also describe the effects of energetic disorder on the charge-transport properties 

in the active layer. Finally, we explain our rationale to study structure-property relationships and 

discuss how an improved description of molecular-scale parameters derived from our study can be 

useful to improving device performance.     

 

1.2 Motivation 

1.2.1 The need for Organic Photovoltaics 

 An increased supply of energy is paramount to keep up the fast pace of development of human 

life. Over the last century, increased demands due to increasing world population and lifestyle 
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changes have demanded excessive utilization of carbon-based energy sources like coal, oil and 

natural gas. Unfortunately, this has resulted in larger concentration of greenhouse gases in the 

atmosphere leading to significant climate change and global warming. Recent estimates based on 

the fifth assessment report of the Inter-governmental panel for climate change (IPCC) reveals that 

industrial activities have raised the atmospheric CO2 content from 280 parts per million to 407 

parts per million over the last 150 years.16 Moreover, pollution of the atmosphere from various 

industrial emissions/greenhouse gases and other human activities is shifting climate patterns to an 

extent dangerous to the existence of human and other forms of life on Earth. Efficient strategies 

need to be devised to counter the problem of climate change which is affecting the geo-political 

stability as well as the habitability of planet earth. 

 

  In order to curb these destabilizing effects on our environment, efforts are focused to identify 

and use alternative “clean” sources of energy. This is imperative for two main reasons; (1) to meet 

the energy needs of the planet and to keep the pace of progress made through technological 

advancement, and (2) to keep the environment habitable for future generations. With the current 

global energy requirements reaching tens of terawatt ranges, alternative sources of energy must 

address the following aspects:  

 

• They should be abundantly available.  

• They should be cost-effective and be able to contribute to terawatt capacity requirements.  

• They should be a non-polluting source of energy – for the environment and without harmful 

effects to human or other forms of life.   
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• They should be easily stored and transformable into multiple forms of energy to meet 

varied requirements.  

 

Although there exist multiple sources of “clean” energy like wind, hydroelectric power, nuclear 

power etc., which satisfy one or more of the requirements listed above, solar energy has the 

potential to fulfill all the requirements. Earth receives more energy from the sun in an hour than it 

needs to meet its energy requirements for an entire year. In recent years, solar modules are 

increasingly deployed across the world, and reduces our dependency on carbon-based sources for 

energy. Currently, 2.6% of global electricity requirements (~505 GW) is produced from solar PV 

modules.  Seeing the enormous potential of solar energy as a “clean” source of power, many 

countries have pledged to increase the contribution of solar power in their energy budget under the 

Paris Climate Agreement.17  

 

 At present, around 85-90% of the solar PV modules on the market are various forms of 

crystalline silicon. While the levelized cost of energy using silicon modules has gone down by 

over 80% between 2010 and 2018,14 there remains a need for new materials for PV applications, 

which could require less processing, be easy to handle and altogether have the potential for large-

scale commercialization. Here, organic materials appear as a viable class with a number of 

advantageous functionalities. Steady improvements in device power conversion efficiencies and 

stability have been obtained over the last few years.10, 18-20 In addition, the capability of organic 

materials to be printable on a large area, in high throughput roll-to-roll fashion, allows easier 

integration into electronic materials platforms. Thus, organic photovoltaics is a strong contender 

that displays promising prospects to satisfy the needs of future technological advancements.  
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1.2.2 OFET’s  

 Field-effect transistors (FET) are now ubiquitous in electronics industry. Primarily, the FETs 

are electronic devices used to control the flow of current. Depending on the material used as the 

semiconductor/substrate different types of inorganic FETs exists, with applications ranging from 

displays to sensors, imaging and logic applications.  

 

 Rising cost of materials and high-temperature processing requirements have initiated efforts to 

identify materials that could be manufactured from relatively low-cost processing techniques. 

Also, FETs are normally fabricated on silicon-based substrates. However, for newer commercial 

applications like radio-frequency identification (RFID) tags or card readers, semiconducting 

materials are required which can be fabricated on plastic substrates. Here, organic-FETs, utilizing 

the semiconducting properties of organic materials, form an attractive prospect. Organic materials 

can be deposited on different types of substrates and do not need epitaxial templating for use in 

device configurations. Additionally, the performance of OFETs in thin-film transistor (TFT) 

configurations is now comparable to those obtained using amorphous silicon-based transistors. 

OTFTs exhibiting mobility values greater than 10 cm2/Vs are already reported.21 There is a strong 

interest to develop new materials and efforts are in progress to utilize these materials for 

applications for which inorganic FET’s are less adequate.22 This area is also destined to witness a 

large expansion in market penetration in the form of wearable plastic devices for consumer 

applications.  
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1.3 Materials and their combinations for organic electronic devices 

 Organic materials used for optoelectronic applications are broadly categorized into three types 

– small molecules, oligomers and polymers. The π-conjugation is a key aspect responsible for most 

of the relevant properties in these materials, which can be tuned by varying their conjugation 

length. Another important aspect is the nature of packing of these materials in their bulk phases, 

as packing strongly influences intermolecular interactions and the electronic properties.1, 23-25   

 

   The tunability of properties is achieved by tailoring the backbones through chemical 

substitutions2-5 or modulating the side-chain patterns,1, 26, 27 among others. Representative 

examples of small-molecule semiconductors are aromatic hydrocarbons including anthracene, 

pentacene, fullerenes and their derivatives, porphyrins or  oligothiophenes, etc. (see Figure 1.1). 

 

 

Figure 1.1 Illustration of the chemical structures of representative small-molecule 

semiconductors: (a) anthracene, (b) pentacene, (c) rubrene, (d) fullerene-C60, (e) fullerene-C70, (f) 

oligothiophenes. 
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 On the application side, initially, linear conjugated polymers gained importance not only as 

conducting materials but also as semiconductors with possible applications in OPV’s and OLED’s. 

These polymers are made conducting by chemical or electrochemical doping. Representative 

examples for linear π-conjugated polymers include poly-para-phenylenes and their derivatives, 

polythiophenes with varied alkyl substitution on the backbone, and polyanilines (see Figure 1.2), 

to name but a few.  

 

Figure 1.2. Illustration of the chemical structures of representative polymers functioning as p-type 

semiconductors - (a) poly-p-phenylene (PPP), (b) poly-p-phenylene vinylene (PPV), (c) poly-3-

hexyl-thiophene (P3HT), (d) poly-aniline, (e) poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-

b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-

benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]] (PBDB-T), (f) 1-(5-(4,8-bis(5-(2-ethylhexyl)-4-

fluorothiophen-2-yl)-6-methylbenzo[1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5,7-bis(2-

ethylhexyl)-3-(5-methylthiophen-2-yl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione (PM6), (g) 

poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3’”-di(2-octyldodecyl)-

2,2’;5’,2’’;5’’,2’’’-quaterthiophen-5,5’’’-diyl)] (PffBT4T-2OD). 
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 Interestingly, materials development with specific applications for OPV and OFETs were 

closely related to the processes taking place in their device operation. For OPV materials, a critical 

function in operation is the dissociation of excitons (coulombically bound electron-hole pair) and 

transport of separated charges to the electrodes. To achieve efficient exciton dissociation, the 

active layer requires the presence of two components- one acting as electron donor and the other 

as electron-acceptor.28, 29 The electron donor functions as a p-type semiconductor and transports 

holes to the hole-collecting electrode while the electron acceptor functions as an n-type 

semiconductor and transports electrons to the electron collecting electrode. Up to recently, 

conjugated polymers and small molecules like fullerenes and their derivatives have been utilized 

as electron donor and electron acceptor (see Figures 1.2 & 1.3), respectively, in OPV devices.30 

Over the past three years, a new generation of small-molecule acceptors, not based on fullerenes, 

has appeared (see Figure 1.3).  
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Figure 1.3. Illustration of the chemical structures of representative acceptor molecules functioning 

as n-type semiconductors - (a) phenyl-C61-butyric acid methyl ester (PC61BM), (b) 3,9-bis(2-

methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno 

[2,3-d:2’,3’-d’ ]-s-indaceno [1,2-b:5,6-b’ ]dithiophene (ITIC), (c) phenyl-C71-butyric acid methyl 

ester (PC71BM), (d) 2,2′-((2Z,2′Z)-((5,5′-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-

indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(4-((2-ethylhexyl)-oxy)thiophene-5,2-

diyl))bis(methanylylidene))bis(3-oxo-2,3-di-hydro-1H-indene-2,1-diylidene))dimalononitrile 

(IEICO), (e) (2,20-((2Z,20Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-

[1,2,5]thiadiazolo[3,4-e]thieno[2,"30’:4’,50]thieno[20,30:4,5]pyrrolo[3,2-

g]thieno[20,30:4,5]thieno[3,2-b]indole-2,10-diyl)bis(me-thanylylidene))bis(5,6-difluoro-3-oxo-

2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) (Y6), (f) N,N′-ditridecylperylene-

3′,4,9,10-tetracarboxylic di-imide (PTCDI-C13).  

 

  At this stage, it is important to discuss the nature of the two-component systems in the active 

layer of the OPV device. The first configuration constructed was that of a “bi-layer”, prepared by 

placing a thin layer of acceptor material over a thin layer of donor material or vice-versa. In this 

architecture, however, many excitons decay back to the ground state before reaching the 

donor/acceptor interfaces. To solve this issue, another architecture, referred to as a “bulk-

heterojunction” (BHJ) structure has been introduced; here, the active layer consists of a blend of 

donor and acceptor components. Therefore, the interfacial area is significantly increased, which 

allows excitons easier access to the interface and separation into free charges. 

 

 For polymer-fullerene based BHJ OPV devices, the improvement in efficiencies was mainly 

realized via structural modification of the polymer donors. To increase the photon utilization at the 

near IR region of the solar spectrum, low optical-gap polymer donors that contain alternating 

electron-rich and electron-poor moieties have been commonly used. Recent developments in non-

fullerene acceptors (NFAs) have provided effective ways to overcome some of the fundamental 

limitations of fullerene-based acceptors. NFAs present distinctive advantages, such as tunable 

bandgap which can broaden absorption in the NIR region, tunable planarity and crystallinity, 



11 

 

which controls the active-layer morphology or adjustable energy level alignments to achieve 

suitable ionization energy (IE)/ electron affinity (EA) offsets, which can lead to a higher charge-

transfer (CT) state energy and lower voltage loss (see Figure 1.3 for representative examples). 

Consequently, power conversion efficiencies now reach over 16% for single-junction organic solar 

cell devices10 and 17.3% for tandem devices.19 

 

  Materials development for OFET devices has closely followed the developments on the OPV 

side. A large library of crystalline small molecules for n-channel and p-channel conduction has 

been generated, which show mobility values superior to those exhibited by amorphous silicon. A 

newer class of two-component materials that exhibit n-channel, p-channel and ambipolar transport 

characteristics with potential applications in OFET devices are donor-acceptor co-crystals. These 

are synthesized via a co-crystallization process and exhibit well-defined packing in the crystalline 

regime. In 1:1 stoichiometry, typically, two types of packing configurations are identified. In the 

first type, known as the “segregated” type, the donor and acceptor molecules align themselves in 

separate ordered stacks. The second type involves an alternating arrangement of donor and 

acceptor molecules along the stacking directions and are known as the “mixed” type of co-crystals. 

When free of disorder or other instabilities, the segregated type can exhibit metallic-like 

conductivities.31 However, the mixed type co-crystals are generally semiconductors or 

insulators.32-34 
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1.4 Key processes in OPV and OFET devices 

 We now provide a brief description of the main electronic processes in OPV and OFET 

devices. Here, we briefly note that the operation of OLED devices roughly follows a reverse order 

to that in OPV devices, but since OLEDs are not  the focus of this Thesis, we do not discuss these 

devices here in detail.  

 

 The main processes in the functioning of an OPV device takes place in the active layer and at 

the interfaces between active layer and electrodes. They can be summarized as follows. First, (i) 

photon absorption takes place in the π-conjugated materials in the active layer. Electrons are 

excited in the electron donor or acceptor component leading to formation of coulombically bound 

electron-hole pairs referred to as “excitons”. Excitons are neutral species; (ii) they diffuse and 

reach the donor-acceptor interface, where (iii) they can dissociate via electron or hole transfer from 

electron donor component to electron acceptor component or vice versa, leading to formation of 

charge-transfer (CT) excitons. The electron on the acceptor site and the hole on the donor site in a 

CT state are still coulombically bound. Finally, (iv) the CT states dissociate to form charge-

separated (CS) states in which the charges move away from one another to their respective 

electrodes.35, 36  

 

 We note that each of these processes have an accompanying energy-loss pathway associated 

with them, which directly impacts the device efficiency. Importantly, here the process of charge-

recombination that can be either radiative or non-radiative requires special attention. First of all, 

excitons, especially in bilayer devices, can decay back to ground state before reaching the interface 

due to a large distance to the interface and limited diffusion length. The bulk-heterojunction 
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architecture marginalized this form of loss by allowing the formation of excitons close to the 

interface. However, we note that in BHJ blends, two major loss mechanisms through charge-

recombination exists during solar-cell operation. In the first type, known as “geminate 

recombination”, the CT states recombine to  the ground state before dissociation into free charges. 

In the second mechanism referred to as non-geminate recombination, during migration of charges 

to their respective electrodes, a hole and electron may find one another and reform a CT state that 

could decay to the ground state or a low-energy triplet state.  

 

 The morphology of the active layer plays a determining role in efficient solar-cell operation. 

While a highly intermixed nature of the blend in the BHJ active layer can lead to a higher 

magnitude of non-geminate recombination, a lower intermixing of the blend can lead to limited 

exciton dissociation. In this context, it has been shown that domain sizes on the order of ~20-40 

nm in the active layer are crucial for optimum performance of OPV devices.18 While improvement 

in crystallinity of the domains will have a positive effect on charge transport, higher crystallinity 

can result in larger domain sizes, which negatively affects device performance.37 Domain sizes 

larger than the exciton diffusion lengths indeed lead to exciton trapping and a larger extent of 

geminate recombination in the active layer. In addition, disorder effects, grain boundary effects, 

the processing method or the substrates can also impact the morphology and the molecular packing 

in the active layer. It is hence worth noting that subtle interplays among many different parameters 

determine the performance. Altogether, optimizing the morphology of the active layer remains a 

key aspect in optimizing solar-cell performance.   
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 OFET devices contain three terminals (electrodes) - source, drain and gate. The main 

components of an OFET device are the organic semiconducting layer, a dielectric layer and the 

electrodes. While the organic layer provides the conducting channel for the charges, the dielectric 

layer is used to capacitively induce charges in the organic semiconducting layer using an applied 

field to the gate electrode. The gate electrode is kept close to the conducting channel to control the 

flow of charge carriers. Conduction occurs from source to drain. Inorganic materials like SiO2, 

Al2O3 or non-conjugated materials like polystyrene, poly(vinyl phenol) etc., are used as dielectric 

materials. The gate electrodes can be metals like Au or conducting polymers like polyaniline. 

Depending on the material properties of the organic semiconductor, n-channel (electron) or p-

channel (hole) conduction is displayed.38 In the case of co-crystals, charge-transfer is controlled 

by the intermolecular interactions between the donor and acceptor components, leading to a ground 

state with (partial) CT character.  A molecular-scale understanding is important to identify the 

impact of packing and donor-acceptor interactions on the charge-transport properties, which can 

lead to the design of organic semiconductors with improved charge transport.  

 

1.5 Morphology, its impact on transport parameters and disorder 

 Until now, we have highlighted the various aspects of operation of organic electronic devices 

and the loss pathways inhibiting their performance. It is well documented that the active-layer 

morphology plays a crucial role in determining device performance. At this stage, it is useful to 

express the active layer morphology of a bulk-heterojunction in terms of “global” and “local” 

features. While the global morphology refers to the extent of phase separation, crystallinity, and 

purity of the domains, the local morphology features the local intermolecular packing (i.e., donor-

donor, donor-acceptor, and acceptor-acceptor packing).39  
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  Experimentally, the BHJ layers are analyzed using various techniques like atomic force 

microscopy (AFM), grazing induced wide angle x-ray spectroscopy (GIWAXS), polarized-soft x-

ray scattering (p-SoXS), differential scanning calorimetry (DSC), transmission electron 

microscopy (TEM), x-ray diffraction (XRD) studies, and cyclic voltammetry (CV) etc., to name a 

few. A number of details including miscibility, domain size, packing, crystallinity, phase 

separation etc., can be extracted from the data coming from such techniques. Using some of these 

experimental techniques, it has already been demonstrated that in the P3HT/PC70BM BHJ, the 

active layer consists of a three-phase arrangement of domains, i.e., mixed regions as well as pure 

regions of both donor and acceptor (macro) molecules.40 The active layers of polymer non-

fullerene acceptor systems are expected to follow the same trend. Computationally, approaches 

like coarse-grain (CG) simulations are used to investigate the global morphology. The local 

morphology can be assessed from a combination of atomistic molecular dynamics (MD) 

simulations and quantum-chemical calculations.  

 

 The local packing strongly determines the interactions between the donor and acceptor 

components and hence has significant effects on the formation of interfacial charge-transfer (CT) 

electronic states. As we have mentioned earlier, the CT states act as a mediator to the exciton-

dissociation, charge-recombination and charge-separation processes. It has been recently reported 

that, while minor variations of the polymer backbone in terms of the presence or absence of 

fluorine atoms can increase the mean CT-state energy, the addition of electronically irrelevant 

alkyl groups can in fact increase the width of the CT-state energy distribution.39 A linear 

correlation between CT-state energy and open-circuit voltage has also been well demonstrated.41 
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 In this context, it is important to connect the current understanding of solid-state packing in 

the active layer to the voltage-loss mechanisms and energetic disorder in the blend systems. In 

amorphous blends, there are two contributions to energetic disorder.42-44 The first is related to the 

time-dependent distribution of the CT-state energies due to the electron-vibration interactions in 

the blend. This is known as the “dynamic” component of energetic disorder. The second 

contribution, referred to as “static” disorder is due to the variation in donor and acceptor positions 

in the blend, which produces a time-independent distribution of CT-state energies. We note that 

an understanding of how to reduce both these disorder contributions is important in the quest  for 

more efficient OPV devices. While amorphous blends include energetic disorder in both dynamic 

and static forms, in donor-acceptor co-crystals, the energetic disorder is mostly dynamic in nature. 

It can also arise from the co-existence of multiple polymorphs, which can lead to lattice 

dislocations.  

 

 Altogether, it is now clear that variations in packing configurations bring differences in  

intermolecular interactions in organic materials. Our aim in this Thesis is to investigate this critical 

aspect in two different material combinations of the active layer for organic electronic devices – 

the bulk-heterojunction (BHJ) configuration in OPV applications and donor-acceptor co-crystals 

in OFET applications. For the BHJ blends, while the nature of global morphology is available from 

various experimental techniques, access to local features is scarce. In the case of donor-acceptor 

co-crystals, segregated and mixed types of packing of donor and acceptor molecules can result in 

major differences in electronic and charge-transport properties. To evaluate these properties, 

computational techniques can be valuable, as they not only provide details of structure-property 

relationship on a local scale, but also provide insight to rationalize the variability in device 
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parameters. An in-depth understanding on the molecular-scale aspects gained from our 

investigations will contribute to design more efficient OPV and OFET devices.   

 

1.6. Thesis objective and outline 

In this Thesis, our investigations focus on two combinations of donor-acceptor materials – 

polymer/non-fullerene combinations for bulk-heterojunctions and donor-acceptor co-crystals. 

With this work, we aim: 

1.  To gain a better understanding of the influence of packing and local interactions in pure and 

mixed regions of donor-acceptor BHJ blends on their electronic and charge-transport 

properties. 

2.  To assess the nature and influence of local packing and electron-phonon interactions on the 

electronic, charge-transport and vibrational properties in donor-acceptor co-crystals. 

 

To do so, we seek to provide descriptions of structure-morphology-property relationships in 

various material combinations. After a brief overview of our computational methodologies in 

Chapter-2, the results of our investigations are organized as follows:  

 

▪ In Chapters 3 & 4, we discuss our results on materials used in bulk-heterojunction active 

layers. In Chapter 3, we analyze the impact of molecular-scale interactions responsible for 

a temperature dependent aggregation of pure polymer donors in solution on eventual  

power conversion efficiencies. In Chapter 4, we investigate the effect of local interactions 

in the mixed phase of polymer donor non-fullerene small molecule acceptor blends on the  
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photovoltaic parameters. Also, we collect some useful trends obtained from our 

investigations on binary blends, to rationalize the photovoltaic properties of ternary blends.  

▪ In Chapters 5, & 6, we discuss our investigation of the electronic, vibrational and charge-

transport properties of various co-crystals systems. In Chapter 5, we focus on the co-

crystals made of the F6TNAP acceptor and a variety of donor molecules.  Here, we are 

able to correlate our observations with experimental investigations and explain the trends 

observed in their electronic and charge-transport properties. In Chapter 6, we focus on 

CnBTBT-FmTCNQ co-crystals. Our aim is to understand the impact of  alkyl chain length 

on the donor and of fluorination of the acceptor on the co-crystal properties. Further we 

quantify the ground-state charge-transfer using an approach based on Mulliken charges.   
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CHAPTER 2 

 

THEORETICAL METHODOLOGY 

 

2.1 Introduction 

In this Chapter, we give a brief review of the theoretical methods applied in this Thesis. We mainly 

employed a combination of molecular dynamics (MD) simulations and density functional theory 

(DFT) calculations for examining the morphology and electronic properties of different amorphous 

material systems in Chapters 3 & 4. Also, we have employed band-structure calculations, effective 

mass calculations, and electronic coupling calculations based on density functional theory to 

investigate the electronic and charge-transport properties of donor-acceptor co-crystal materials in 

Chapters 5 & 6. Here, we start by discussing the theoretical foundations and approximations used 

in electronic-structure theory. Then, we describe the origins of DFT and discuss its varied levels 

of complexity.  We also briefly discuss the band structure, effective mass, and electronic coupling 

concepts and the application of these concepts to treat the electronic structure of crystalline 

systems. Finally, we review atomistic MD simulations, discuss the parameterization of the OPLS-

AA (optimized potentials for liquid simulations-all atom) force-field, and provide a brief 

description of MD simulations applied to materials systems. 

 

2.2. The Schrödinger Equation  

All the properties of a stationary quantum-mechanical system containing N electrons and M nuclei 

can be derived from the eigenfunctions, ψ𝑖 , and the eigenvalues, Ei, of the system’s Hamiltonian 

operator, 𝐻̂ . The ψ𝑖 and  Ei values are obtained by solving the many-body, time-independent  

Schrödinger equation:  
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 𝐻̂|ψ𝑖⟩  = 𝐸𝑖|ψ𝑖⟩     (2.1)                                                       

In the absence of relativistic effects, the Hamiltonian operator is given by the sum of the kinetic 

and potential energy operators of all particles associated with the system.  In the case of a many-

body system, this includes all the nuclear-nuclear, nuclear-electron, and electron-electron 

interactions, and is given by: 

 Ĥ = −
1

2
∑ ∇l̇

2N
i=1 −

1

2
∑

1

MA
∇A
2M

A=1 − ∑ ∑
ZA

riA

M
A=1

N
i=1 + ∑ ∑

1

rij

N
j>i

N
i=1 +∑ ∑

zAzB

rAB

M
B>A

M
A=1  (2.2) 

where ∇𝑖
2 and ∇𝐴

2 are the Laplacians corresponding to second-order partial derivatives with respect 

to the coordinates of the ith electron and Ath nucleus, respectively. MA and ZA represent the mass 

and (positive) charge of the Ath nucleus, respectively; rij =|ri-rj| corresponds to the distance between 

the ith and jth electrons, riA=|ri-rA|, the distance between ith electron and Ath nucleus, and rAB=|rA-

rB|, the distance between Ath and Bth nucleus, respectively. The first two terms to the right of 

Equation (2.2) denote the kinetic energy operators for the electrons and nuclei in the system, 

respectively. The third term to the right represents the electron-nuclear attraction; the fourth term 

the electron-electron interactions; and the last term, the nuclear-nuclear interactions.  

 

Born-Oppenheimer approximation 

Solving the Schrödinger equation provides an exact solution only for hydrogen-like atoms; in all 

the other cases, because of the presence of multiple nuclear-nuclear, electron-electron and nuclear-

electron many-body interactions, several approximations have to be introduced. The first 

approximation involves separating the nuclear and electronic coordinates. This is known as the 

Born-Oppenheimer approximation and primarily arises from the large difference in masses of 

electron and nucleus; the mass of a proton (1.6726×10-27 kg), or of a neutron (1.6749×10-27 kg) is 

approximately 2000 times the electron mass (9.1093×10-31 kg). Within the Born-Oppenheimer 
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approximation, the Schrödinger equation is solved in two steps.  In the first step, electronic motion 

is approximated to be under the static field of fixed nuclei by neglecting the nuclear dynamics. 

Then, the Hamiltonian operator simplifies into an electronic Hamiltonian (𝐻̂𝑒𝑙 )  that depends 

parametrically on the nuclear positions. This leads to the following electronic Schrödinger 

equation: 

Ĥel(𝑟, 𝑅)ψel(r, R) = Eel(𝑅)ψel(𝑟, 𝑅) (2.3) 

In the second step, R is varied, which gives the wavefunctions ψel(𝑟, 𝑅)  and the electronic 

energies Eel(𝑅) referred to as adiabatic potential energies.  

 

2.2.1. Hartree-Fock Theory 

Because of the complexity in addressing the (many-body) electron-electron interactions, additional 

approximations are introduced, the first of which assumes that the electrons do not interact with 

each other. This approximates the total wavefunction of the system to be a product of independent 

electron wavefunctions (orbitals). The resulting wavefunction, known as a Hartree product, is 

represented as a product of spin-orbital (product of spatial orbital and spin) wavefunctions for each 

electron:  

 ΨHP (x1, x2....xN) = χi(x1) χj(x2)... χN(xN) (2.4) 

where the spin-orbitals are defined as: 

                                                    𝛹𝑖(x) α(ω) 

ꭓ
𝑖
(x) = 

                                                    𝛹𝑖(x) β(ω) (2.5) 
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 An essential condition in accordance to Pauli’s exclusion principle is that the many electron total 

wavefunction should be antisymmetric with respect to exchange of positions by any two electrons 

in the system. This is represented as: 

Ψ (x1, x2...xi, xj....xN)= −Ψ(x1, x2....xj, xi....xN) (2.6) 

Note that Equation (2.4) does not satisfy the Pauli exclusion principle. A simple approach to anti-

symmetrize the wavefunction of N-electron system is by the use of a single Slater determinant. 

The representation of a Slater determinant is done as follows: 

  (2.7) 

 

where 
1

√𝑁!
 denotes the normalization factor and ꭓ (x) are the spin-orbitals. Discarding any electron-

electron interaction turns out to be much too crude an approximation. Re-introducing such 

interactions was done by Hartree and by Fock, by considering that each electron evolves in the 

mean field due to the other electrons. In the Hartree-Fock approximation, we have:  

Eel = ⟨ψel|Ĥel|ψel⟩ 

 Eel = ∑ ⟨i|h|i⟩N
i +

1

2
∑ [ii|jj]N
ij − [ij|ji] (2.8) 

where the first term in Equation (2.8) represents one-electron integrals and includes the 

contributions of electron kinetic energies and electron-nuclear interactions, which writes; 

 ⟨i|h|i⟩ = ∫ dxiχ1
∗(x1) {−

1

2
∇i2 −∑

zA

riA

M

A
} χ1(x1) (2.9) 

The second term in Equation (2.8) includes the two-electron Coulomb and exchange integrals 

respectively, which correspond to:  
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[ii|jj] = ∫ dx1dx2χi
∗(x1)χi(x1)

1

r12
χj̇
∗(x2)χj(x2) = 𝐽𝑗(𝑥1) 

and  

[ij|ji] = ∫ dx1dx2χi
∗(x1)χj(x1)

1

r12
χj̇
∗(x2)χi(x2) = 𝐾𝑗(𝑥1) χj(x1) (2.10) 

Thus, the one-electron operator, h, and two-electron operator, υ (i, j) are defined as:  

 ℎ(𝑖)  =  −
1

2
∇𝑖
2  −  ∑

𝑍𝐴

𝑟𝑖𝐴
𝐴   

 υ (i, j) = 
1

𝑟𝑖𝑗
.  (2.11) 

The Hartree-Fock approximation leads to the ground state of a multi-electron system to be 

described with a single Slater determinant. An important aspect is that the variational theorem can 

be applied to minimize the total energy of the system and obtain the lowest-energy wavefunction. 

To apply the variational method, the initial and the final orbitals are restricted to orthonormality 

using the Lagrange’s method of undetermined multipliers. The Hartree-Fock equations then 

assumes the form: 

ℎ(𝑥1)𝜒𝑖(𝑥1)  + ∑ [∫ 𝑑𝑥2|𝜒𝑗(𝑥2)|
2
𝑟12
−1] 𝜒𝑖(𝑥1)𝑗≠𝑖  −  ∑ [∫𝑑𝑥2𝜒𝑗

∗(𝑥2)𝜒𝑖(𝑥2)𝑟12
−1]𝜒𝑗(𝑥1)𝑗≠𝑖  =

 𝜀𝑖𝜒𝑖(𝑥1)  (2.12) 

Based on the definitions made for Coulomb and exchange integrals in Equation (2.10), a one-

electron Hartree-Fock equation could be written as: 

  [ℎ(𝑥1)  +  ∑ 𝐽𝑗(𝑥1)𝑗≠𝑖  −  ∑ 𝐾𝑗(𝑥1)𝑗≠𝑖  ]𝜒𝑖(𝑥1)  =  𝜀𝑖𝜒𝑖(𝑥1) (2.13)  

The Hartree-Fock equations can be solved either numerically or by using a set of known basis 

functions. The equations must be solved iteratively which corresponds to a self-consistent field 

(SCF) approach with the solutions dependent on the initial guess of orbitals. In the latter case, the 

spin orbitals are defined by a linear combination of atomic orbitals (LCAO approach), which is 

represented as:  
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 χi =∑ Cμ
i ϕμ

μ
 (2.14)  

where 𝐶𝜇
𝑖  are the LCAO coefficients and 𝜙𝜇 corresponds to the atomic orbitals included in the 

basis set.  

 

Since Hartree-Fock approach treats the electron-electron interactions in an average way, the total 

Hartree-Fock energy is an upper bound to the exact total energy, with the difference expressed as 

the correlation energy. There exist wave-function methods [like CCSD (Coupled cluster singles 

doubles), CCSD(T) (Coupled cluster singles doubles and perturbative triples) and MP2 (second 

order Moller-Plesset Perturbation Theory)] that allow the evaluation of the correlation energy. 

However, for the very large systems we will be investigating density functional theory turns out 

to be the method of choice. In the next section, we review the origins of density functional theory 

and the classification of functionals based on their levels of complexity and accuracy.  

 

2.2.2. Density Functional Theory 

While high-level wavefunction based methods such as MP2, CCSD(T) and CI (configuration 

interaction) allow for high-accuracy electronic-structure results, they quickly become 

computationally prohibitive for the large systems we want to study. Density functional theory 

(DFT) is then a method of choice to provide a good balance between accuracy and computational 

time.  

 

2.2.2.1. The Hohenberg-Kohn Theorems 

DFT is built on the seminal work of Hohenberg and Kohn.1 The first Hohenberg-Kohn theorem 

states that “in a system of interacting particles in an external potential 𝑉𝑒𝑥𝑡 (𝑟), the external 



29 

 

potential 𝑉𝑒𝑥𝑡 (𝑟) is uniquely determined by the ground-state electron density, 𝜌0(r)”. This means 

that all the properties of the system can be determined from the ground-state density. The second 

theorem states that “for any external potential 𝑉𝑒𝑥𝑡 (𝑟), the exact ground-state energy of the system 

may be obtained by a variational method and the electron density that minimizes the total energy 

is the exact ground-state density of the system”. The density writes as:  

 ρ(r) = N∫. . . ∫ |Ψ (x1, x2, … , xN)|
2dx1dx2…dxN (2.15) 

With the energy of the ground state a functional of electron density, it can be expressed as:  

 E0 [ρ(r)] = T[ρ] + Eee[ρ] + ENe[𝜌] (2.16)  

where T[ρ] represents the kinetic energy component of the Hamiltonian; Eee [ρ], the electron-

electron repulsion component; and ENe[ρ] , the electron-nuclear attraction component. By 

separating the classical and non-classical components, Equation (2.16) can be re-written as:  

 E0 [ρ(r)]= T𝑐𝑙[ρ] + J𝑐𝑙[ρ] + 𝐸𝑛𝑒[𝜌] + Encl[ρ] (2.17)  

where J(ρ) represents the classical part of the electron-electron interactions which is known 

exactly. Encl[ρ]  then represents all the non-classical contributions to the problem, including 

exchange and electron correlation. Finding the most accurate description of Encl[ρ] represents the 

grand challenge in DFT.  

 

2.2.2.2. Kohn-Sham Theory 

Kohn and Sham proposed an approach which involves the many-body system being treated 

effectively as a reference system built from a set of one-electron orbitals in an effective potential.2 

The effective one-electron orbitals, known as Kohn-Sham orbitals, define a Slater determinant that 

represents the ground state wavefunction. An important advantage of this approach is that the 
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major part of kinetic energy can be easily calculated with the remainder merged with the non-

classical contributions. 

The expression for independent-particle kinetic energy is given by:  

 TS = −
1

2
∑ ⟨φi|∇

2|φi⟩
N
i  (2.18)  

The corrections to kinetic energy corresponding to the actual system are added to the non-classical 

contributions. This is included by introducing the following form of the universal functional, F[ρ]: 

 F[ρ] = TS[ρ] + J[ρ] + EXC[ρ] (2.19) 

where EXC[ρ] represents the exchange-correlation energy that includes the corrections for kinetic 

energy and the non-classical electron correlation contributions. This is defined as:  

 EXC[ρ] = (T[ρ] − TS[ρ]) + (Eee[ρ] − J[ρ]) (2.20)  

In Equation (2.20), the first set of terms within the bracket constitute the kinetic correlation energy 

and second set of terms are a combination of potential correlation energy and the exchange energy. 

The expression of total energy becomes:  

 E[ρ] = TS[ρ] + J[ρ] + EXC[ρ] + ENe[ρ] (2.21) 

The corresponding Schrödinger equation can then be represented as: 

{−
1

2
∇2  + [∫

ρ(r⃗ 2)

r12
dr 2 + VXC(r 1) − ∑

ZA

r1A

M
A ]} φi  =  εiφi (2.22)  

where the exchange-correlation potential VXC is defined as: 

 VXC = 
δEXC

δρ
 (2.23) 

An exact form for the exchange-correlation energy EXC and the corresponding potential VXC is not 

known yet. The central focus of modern DFT is to find better approximations for these two 

quantities. As the approximations improve, the accuracy of the description of many-body systems 

also gets better.  
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2.2.2.3. Approximate exchange-correlation functionals 

Unlike the wave-function based methods, DFT does not contain a systematic method for 

improving the accuracy of approximate functionals. Based on the complexities of their functional 

forms, a wide range of functionals have been developed based on different approximations. They 

are categorized within the concept of “Jacob’s ladder”, introduced by Perdew and Schmidt, into 

different rungs of the ladder.3 Here, we briefly discuss four of the most common forms of 

approximations used.  

 

2.2.2.3.1. Local density approximation (LDA) 

In the local density approximation, the XC functional depends only on the specific electron density 

at a given point in space. The exchange-correlation energy is then obtained as an integral over all 

space and the exchange-correlation energy density at each point is assumed to have the same 

energy density as that of the homogeneous electron gas. In this approximation, the exchange-

correlation energy is represented in the following simple form: 

 EXC
LDA[ρ] = ∫ ρ(r ) εXC(ρ(r ))dr  (2.24)  

The local density approximation allows the splitting of the exchange and correlation energies into 

separate exchange and correlation contributions: 

 EXC
LDA[ρ] = EX

LDA[ρ] + EC
LDA[ρ] (2.25) 

Here, no explicit expression is available for the correlation part. The correlation energy is normally 

determined numerically and fitted to analytical expressions based on various parameterization 

schemes including quantum Monte Carlo simulations of the homogeneous electron gas.4 The most 

widely used LDA functionals include the Perdew and Zunger (PZ) functional5 and the Vosko, 

Wilk and Nusair (VWN)6 functional. 
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2.2.2.3.2. Generalized Gradient Approximations 

In order to account for the inhomogeneous nature of the electron density of many-electron systems, 

especially in molecular systems, the generalized gradient approximations (GGA) includes the 

gradient of the charge density at a particular point in addition to the charge density at that point. 

The local density approximation forms the first term of the Taylor expansion of uniform densities; 

extending the series with the next lowest term of charge density gradient is expected to provide 

better approximations for the exchange-correlation functional. All the GGA functionals are 

described by the following functional form: 

 EXC
GGA[ρ] = ∫ρ(r ) εXC[ρ(r ), ∇ρ(r )]dr  (2.26)  

Popular GGA functionals include the Perdew, Burke and Ernzerhof (PBE) functional,7 the B88  

exchange functional by Becke,8 the PW91 functional by Perdew,9 or the correlation functional 

introduced by Lee, Yang and Parr (LYP).10 

 

2.2.2.3.3. Hybrid functionals 

In the exchange-correlation potential, the contribution of the exchange part is found to be much 

larger than the correlation part. An accurate description of the exchange part is therefore expected 

to give improved results from the DFT methods. To correctly describe the 1/r asymptotic decay of 

the DFT exchange-correlation functional, Becke proposed the inclusion of some part of exact non-

local Hartree-Fock exchange into the DFT exchange.11 This functional form of the exchange-

correlation energy can then be represented as:  

EXC = a0EX
HF + (1 − a0)EX

DFT + EC
DFT (2.27)  
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where 𝑎0 is a constant and can vary between values of 0 and 1. Many hybrid functionals have been 

developed to include the exact HF exchange with the most popular functional among them being 

B3LYP.10, 12 The explicit functional form of B3LYP is as follows:  

EXC
B3LYP

 
= EX

LDA +  𝑎(EX
HF − EX

LDA) +  𝑏(EX
GGA − EX

LDA)  + Ec
LDA  +  𝑐(Ec

GGA − Ec
VWN)  (2.28)  

where a=0.2, b=0.72, and c=0.81. Here, the abbreviations LDA in EX
LDA  and VWN in 

EC
VWNrepresents the exchange energy calculated based on local density approximation and the 

correlation energy calculated based on the LDA Vosko, Wilk and Nusair functional respectively. 

The abbreviation EX
GGA denotes the Becke 88 exchange functional and Ec

GGA corresponds to the 

correlation functional introduced by Lee, Yang and Parr (LYP); EX
HF represents the exact exchange 

energy from Hartree-Fock theory.  

 

2.2.2.3.4. Long-range corrected functionals 

Even though the global hybrid functionals have achieved good results for thermochemistry, 

inaccurate results are observed, for instance, for the calculation of charge-transfer excited states of 

molecules. This was found to be due to ~a/r decay of the exchange correlation functional instead 

of the correct ~1/r decay.13 To deal with this issue, the Coulomb operator is partitioned into short-

range and long-range terms and treated separately. The general functional form of long-range 

corrected functionals is given by: 

 EXC
LC−DFT

 
= EX

LR−HF
 
+ EX

SR−DFT + EC
DFT (2.29) 

The long-range exchange terms are treated exactly using Hartree-Fock, while the short-range 

exchange terms and correlation terms are approximated using Kohn-Sham DFT. This type of 

partitioning is achieved using a scheme as below: 

 
1

𝑟12
 =  

𝑒𝑟𝑓(𝜔𝑟12)

𝑟12
 +  

𝑒𝑟𝑓𝑐(𝜔𝑟12)

𝑟12
 (2.30) 
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In Equation (2.30), the first term to the right depicts the long-range electron-electron interactions 

treated by Hartree Fock and the second term corresponds to short-range interactions. The 

parameter ω controls the partitioning of the inter-electronic distance 𝑟12.  

 

In this Thesis, we primarily employ the long-range corrected ωB97XD functional, proposed by 

Chai and Head-Gordon,14 in Chapters 3 and 4 and the global hybrid B3LYP functional in Chapters 

5 and 6, for the evaluation of the electronic properties of different material systems. The functional 

form of ωB97XD is: 

 EXC
ωB97XD

 
= EX

LR−HF + c𝑥EX
SR−HF + EX

SR−B97 + EC
B97 − ∑ ∑

𝐶6
𝑖𝑗

𝑅𝑖𝑗
6

𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) (2.31) 

where n is the number of atoms in the system, 𝐶6
𝑖𝑗

 is the dispersion coefficient for atom pair ij, and 

𝑅𝑖𝑗 is the interatomic distance. The damping function 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) enforces the correct asymptotic 

pairwise van der Walls potentials as well as zero dispersion correction at short interatomic 

distances. When the interatomic distances are large, the damping function reduces to 1.  

 

2.2.2.4. Non-empirical tuning of the range-separated functionals 

Within the premises of closed-shell Hartree-Fock theory, Koopman’s theorem states that the first 

ionization energy of a molecular system is equal to energy of the highest occupied molecular 

orbital (HOMO).15 Kohn-Sham DFT also includes its own version of Koopman’s theorem, which 

postulates that the vertical ionization energy of a system of N electrons is mathematically 

equivalent to the negative of the corresponding Kohn-Sham HOMO energy of the system.16 In π-

conjugated systems, the ω-value of range-separated hybrid functionals is strongly system-

dependent. An optimal tuning of the ω-value is shown to improve the descriptions of optical gap 

in systems showing charge transfer. This is achieved by forcing the functional to satisfy the DFT-
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version of the Koopman’s theorem. For ω-tuning of donor-acceptor systems both ionization energy 

and electron affinity of the system are important. According to the “Golden Proportion” method,17 

the vertical electron affinity of n-electron system is approximated as ionization potential of n+1 

electron system. The tuning is performed based on the following scheme:  

 J2 = ∑ [εH(n + i) + IP(n + i)]
21

i=0  (2.32)  

This scheme is used for tuning the ω-value of systems considered in Chapters 3 and 4. In the next 

section, we briefly describe the band theory in crystals, based on the density functional theory 

methods described above but extended to crystals in the solid state. This forms the basis of our 

evaluations of electronic-structure and charge-transport properties in Chapters 5 & 6.  

 

2.2.2.5. Band Structure and Tight-Binding Model 

The bulk electronic properties of a solid-state crystalline materials are described based on the 

assumption that the whole crystal is formed by translations of a small group of atoms in space. The 

smallest repeating unit of the crystal, the unit cell,  is described by using three linearly independent, 

non-coplanar vectors, denoted here as  𝐚 ⃗⃗⃗  , 𝐛 ⃗⃗  ⃗, and 𝐜 ⃗⃗ . The translation vector within the crystal can 

be defined as: 

 𝑇nanbnc = na𝐚 ⃗⃗⃗  +  nb𝐛 ⃗⃗  ⃗ +nc𝐜 ⃗⃗  (2.33) 

 Although infinite translations of the elementary cell are restricted by boundaries in an actual 

crystal, nevertheless, such a model forms an excellent starting point in the description of their 

electronic properties. We start with the description of a 1-D lattice, in which periodicity will lead 

to identical electronic densities at translationally equivalent points r and r+ja, where “a” is the 

translation vector and j is an integer. The phase relationship among the wavefunctions at 

periodically related points r and r+ja, is given by Bloch’s theorem: 
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 Ψ𝑘(𝑟 + 𝑗𝑎)  =  𝑒
𝑖𝑘𝑗𝑎Ψ𝑘(𝑟) (2.34)  

where 𝑒𝑖𝑘𝑗𝑎 is referred to as the phase factor and k represents the electron wavevector in reciprocal 

space. We note that the electron wavevector has direct relation with the crystal momentum, i.e., 

p=ℏ𝑘. The translational vector (Gm1m2m3) and lattice vectors (a∗, b∗, c∗) in reciprocal space are 

defined as:  

 𝐺m1m2m3 = m1𝐚
∗ + m2𝐛

∗ +m3𝐜
∗ (2.35) 

 𝒂∗ = 
𝟐𝝅(𝒃 𝒙 𝒄)

𝒂.(𝒃 𝒙 𝒄) 
, 𝒃∗ = 

𝟐𝝅(𝒄 𝒙 𝒂)

𝒃.(𝒄 𝒙 𝒂) 
, 𝒄∗ = 

𝟐𝝅(𝒂 𝒙 𝒃)

𝒄.(𝒂 𝒙 𝒃) 
 (2.36) 

Similar to unit cells in a direct lattice, the reciprocal space also includes a primitive cell, referred 

to as a Wigner-Seitz cell. Within the framework of electronic-structure theory, these primitive cells 

are more commonly referred to as the first Brillouin Zone (BZ).   

The crystal wavefunctions can be approximated via a Tight-binding approach. Here, the 

wavefunction is constructed from the superposition of basis set of orbitals occupying each site in 

the elementary cell (since the wavefunctions describe the properties of tightly bound electrons in 

the solid state, hence the name “tight-binding”). In this context, the electronic Hamiltonian can be 

represented as:  

 H = ∑ εmbm
+

m bm + ∑ tmnm≠n bm
+ bn  (2.37) 

where 𝜀𝑚 corresponds to the electron site energy, 𝑡𝑚𝑛 represents the transfer integral between sites 

m and n, 𝑏𝑚
+  and 𝑏𝑚 are the creation and annihilation operators at site m. We illustrate the 

application of the tight-binding approximation by considering a one-dimensional (1-D) periodic 

lattice. With the electronic Hamiltonian of Eq. (2.37) the crystal wavefunction would become:  

 Ψ𝑘(𝑎)  =  
1

√𝑁
∑ 𝜙(𝑟 − 𝑛𝑎𝑎)𝑒

𝑖𝑘𝑛𝑎𝑎
𝑎  (2.38)  

Here, “a” corresponds to the lattice spacing. The energetic dispersion in the 1-D  case is then given 

by: 
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 E(k)=E0 − 2tcos(ka) (2.39) 

where E(k) represents the energy of a hole/electron with momentum k; E0, the band center; t, the 

transfer integral between adjacent molecules along the stacking direction; and a, the lattice 

constant. The band structure represents the energetic dispersion associated with the orbitals as a 

function of wavevector k. Usually, the band structure in crystals is calculated between high-

symmetry points in the first Brillouin zone. The bandwidth corresponds to the energy difference 

between the highest and lowest energy levels in the band and is related to the electronic coupling 

between adjacent sites. Within the tight binding model, the bandwidth is given by W=2zt, where z 

is the number of nearest neighbors and t represents the transfer integrals between the sites. In this 

context, we note that the term “valence band” in a band structure corresponds to the highest band 

of energy levels occupied by electrons. While the conduction band is formed from the lowest 

energy levels that are unoccupied.  

 

2.2.2.6. Effective Masses 

From the band structure, the energies at the highest value in the valence band and lowest value in 

the conduction band can be approximated as: 

 𝐸(𝑘)  =  
ℏ2𝑘2

2𝑚∗
 +  𝐸0 (2.40)  

where the first term to the right in Equation (2.40) corresponds to kinetic energy and second term 

corresponds to a constant depicting the energy at the edge of that band. In classical terms, in the 

presence of an external field, the effective mass of a charge carrier is then defined as:  

 (
1

𝑚∗
)
𝑖,𝑗
= 

1

ℏ2
𝜕2𝐸𝑛(𝑘⃗ )

𝜕𝑘𝑖𝑘𝑗
 , i,j=x,y,z (2.41) 

where i and j denote the reciprocal components, 𝑚∗ is the effective mass of the particle in terms 

of rest electron mass (m0=9.31 x 10-31kg) and 𝐸𝑛(𝑘) represents the energy of the nth band. We note 
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that the dispersion relation at the maximum or minimum of a band can often be taken as a parabola, 

which is given by:  

 𝐸𝑛(𝑘⃗ ) = 𝑎1𝑘𝑥
2 + 𝑎2𝑘𝑦

2 + 𝑎3𝑘𝑧
2 (2.42) 

The components of the effective mass tensor are then the inverse of the components in front of the 

quadratic term in Equation (2.42). This is given by:  

 𝑚𝑥𝑥
∗  =  

ℏ

2𝑎1
 ; 𝑚𝑦𝑦

∗  =  
ℏ

2𝑎2
 ; 𝑚𝑧𝑧

∗  =  
ℏ

2𝑎3
 (2.43) 

However, in the case of organic semiconductors, it is not always possible to fit the band structure 

to the quadratic equation. Hence, in this case, the dispersion relation is analyzed numerically along 

different directions using the finite difference method. Here, the explicit form of the right side of 

Equation (2.41) is given by:  

 
𝜕2𝐸

𝜕𝑘2
 =  

(

  
 

𝜕2𝐸

𝜕𝑘𝑥
2

𝜕2𝐸

𝜕𝑘𝑥𝑘𝑦

𝜕2𝐸

𝜕𝑘𝑥𝑘𝑧

𝜕2𝐸

𝜕𝑘𝑦𝑘𝑥

𝜕2𝐸

𝜕𝑘𝑦
2

𝜕2𝐸

𝜕𝑘𝑦𝑘𝑧

𝜕2𝐸

𝜕𝑘𝑧𝑘𝑥

𝜕2𝐸

𝜕𝑘𝑧𝑘𝑦

𝜕2𝐸

𝜕𝑘𝑧
2 )

  
 

 (2.44) 

In Equation (2.44), the second and mixed derivatives are evaluated on a five-point stencil method. 

To illustrate an example, in the case of a one-dimensional periodic lattice, the effective mass at the 

band edge is given by :  

 𝑚∗ = 
ℏ2

2𝑡𝑎2
 (2.45)  

 

2.2.2.7. Transfer Integrals (Electronic Couplings) 

The transfer integrals (electronic couplings) are important parameters for describing the charge-

transport properties in both the band regime and hopping regime. Based on the energy splitting in 

dimer (ESD) approach,  the interaction between highest occupied molecular orbitals (HOMO’s) 
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of monomers results in splitting of the order of twice the transfer integral (2𝑡𝐴𝐵) in a dimer AB, 

where A and B correspond to monomers and 𝑡𝐴𝐵 represents the transfer integral. Based on the one-

electron approximation, for two monomers treated in an orthonormal basis, the transfer integrals 

are calculated as : 

 𝑡 = 
𝐸𝐻[𝐿+1]−𝐸𝐻−1[𝐿]

2
 (2.46) 

 where 𝐸𝐻[𝐿+1] represents HUMO [LUMO+1] energies and 𝐸𝐻−1[𝐿]  represents the HOMO-

1[LUMO] energies of the corresponding monomers.15 To depict the cases where monomer orbitals 

are non-orthogonal, we apply the procedure described by Valeev et. al.18 Here, the orbital energies 

of the dimer are described by a secular equation:  

 HC – ESC = 0 (2.47) 

 where H and S are the system Hamiltonian and overlap matrices, respectively. An essential 

component of this approximation is that the dimer HOMO and HOMO-1 are presumed to be 

formed only by the interaction of monomer HOMO’s. Here, H and S are given by the matrices: 

 H = (
𝑒1 𝐽12
𝐽12 𝑒2

), and,  (2.48) 

 S = (
1 𝑆12
𝑆12 1

) (2.49) 

The matrix elements in Equation (2.48) are described by 𝑒𝑖  = ⟨Ψ𝑖|𝐻̂|Ψ𝑖⟩ and 𝐽𝑖𝑗 = ⟨Ψ𝑖|𝐻̂|Ψ𝑗⟩. 

Valeev et. al.18 further applied Löwdin’s symmetric transformation to convert the non-orthonormal 

monomer basis to an orthonormal basis.19 Equation (2.48) is then represented as:  

 𝐻𝑒𝑓𝑓 = (
𝑒1
𝑒𝑓𝑓 𝐽12

𝑒𝑓𝑓

𝐽12
𝑒𝑓𝑓 𝑒2

𝑒𝑓𝑓
) (2.50) 

where the matrix elements are obtained as: 

 𝑒1(2)
𝑒𝑓𝑓
 =  

1

2
 
(𝑒1+𝑒2) − 2𝐽12𝑆 12± (𝑒1− 𝑒2)√1−𝑆12

2

1−𝑆12
2  and  (2.51) 
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 𝐽12
𝑒𝑓𝑓
 =  

𝐽12 − 
1

2
(𝑒1+𝑒2)𝑆 12

1−𝑆12
2   (2.52) 

Based on this approach, the matrix elements 𝑒1(2)
𝑒𝑓𝑓

  and 𝐽12
𝑒𝑓𝑓
 in Equations (2.51) and (2.52) have 

the same physical meaning as 𝜀𝑚  and 𝑡𝑚𝑛 in Equation (2.37). The resulting energetic splitting 

between the dimer HOMO and HOMO-1 can be expressed as:  

 ∆𝐸12 = √(𝑒1
𝑒𝑓𝑓
 −  𝑒2

𝑒𝑓𝑓
)
2
+ (2𝐽12

𝑒𝑓𝑓
)
2
    (2.53) 

This model can also be applied to systems where HOMO and LUMO energies are energetically 

well separated from HOMO-1 and LUMO+1, respectively.  

 

2.3. Atomistic Molecular Dynamics 

The morphological properties of materials systems based on polymers, small molecules, and their 

blends are of crucial importance to determine the charge and energy transport in organic electronic 

devices. In order to understand the impact of morphology formed by a large number of molecules, 

it is imperative to drastically reduce the number of electronic degrees of freedom. In this context, 

approximate methods like atomistic molecular dynamics (MD) simulations can be used to access 

realistic morphologies of large ensembles of molecules for pre-defined thermodynamic conditions. 

MD simulations employ force-fields to reproduce the molecular geometries and the molecules 

follow Newtonian dynamics for motion. Here, only the atomic nuclei are explicitly modelled as a 

series of points (atoms) connected by strings (bonds), and all the electronic parameters are 

contained implicitly within the force field. The final molecular organizations are then determined 

by following the trajectory of all atoms in time.  
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2.3.1. Force fields 

Force fields represent the sum of equations with parameter sets that are used to calculate the 

potential energy of the system under consideration. Depending on the properties calculated, force 

fields are parameterized to replicate some experimental results. This is often done by performing 

quantum-chemical calculations of constituent molecules and by using empirical terms and fitting 

them to the functional form of the force field. The force field contains energy terms for both bonded 

and non-bonded interactions. In Chapters 3 and 4, we employ the OPLS-AA (optimized potential 

for liquid simulations- all atom) force field developed by Jorgensen and coworkers,20 to simulate 

the bulk properties of materials. As in other force fields, OPLS-AA also includes terms for 

harmonic bond-stretching and angle bending, Fourier series terms for each torsional angle, and 

Coulomb and Lennard-Jones terms for intermolecular and intramolecular non-bonded interactions. 

The complete analytical form of the OPLS-AA force field is as below:  

Etotal = Ebonds + Eangles + Etorsions + Enonbonded 

Ebonds  =  ∑ Kr
bonds

(r –  req)
2 

Eangles = ∑ Kθ
angles

(θ − θeq)
2 

Etorsions = ∑{V0,i +
V1,i
2
(1 + 𝐶𝑜𝑠ϕi) +

V2,i
2
(1–𝐶𝑜𝑠2ϕi) +

V3,i
2
(1 + 𝐶𝑜𝑠3ϕi)}

i

 

 Enon−bonded  =  ∑ ∑ {
qiqje

2

rij
 +  4ϵij [(

σij

rij
)
12

− (
σij

rij
)
6

]}ji  (2.54)  

To update the force field parameters for specific (macro) molecules, we performed DFT 

calculations at the ωB97XD/6-31G** level of theory. The bonds and angles were directly taken 

from the optimized structures. The dihedral parameters corresponding to inter-ring dihedrals were 

obtained by fitting the converged torsion profile calculated at the ωB97XD/6-31G** level of 
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theory. Unless otherwise noted, the partial atomic charges were obtained using the CHelpG method 

implemented in Gaussian 09.D01, which produces charges by fitting the electrostatic potential at 

points selected according to CHelpG scheme.21  

 

2.3.2. Performing MD simulations 

To run MD simulations, every system is initially described by a set of coordinates and momenta. 

As mentioned above, the dynamics of each particle is described by Newton’s second law of 

motion:  

 
∂H

∂r
 =  

∂U

∂r
 =  −m

∂2r 

∂t2
 (2.55)  

Equation (2.55) is integrated to compute positional coordinates, angular coordinates, and velocities 

of all atoms as a function of time, thereby generating the full trajectory of the system in phase 

space. The integration is performed along discrete time steps, which starts from initial positions 

and velocities for every particle at time t and finding the positions and velocities at an incremented 

time of (t + ∆t). Normally, this is carried out by using a Taylor expansion, where the new positions 

are described as; 

 r(t + Δt) = r(t) + 
∂r

∂t
 (Δt) + 

1

2
 
∂2r

∂t2
 (Δt)2+... (2.56) 

There are multiple algorithms that can perform this integration of Newton’s equation of motion. 

In this work, we have used the Verlet algorithm to perform this crucial task, which performs the 

Taylor expansion with minimum of truncation error.22 This is achieved by carrying out the Taylor 

expansion in positive and negative increments of time steps and adding them together to obtain 

the new position. Since velocities are not explicitly calculated to find the new positions, they are 

approximated in this method. The time step for the Verlet integrator is kept sufficiently low to the 

order of ~1 fs in order to capture the vibrational motions of the bonds. The MD simulations we 
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have carried out are performed in the NPT ensemble (constant number of particles, N; constant 

pressure, P; and constant temperature, T), where the temperature and pressure controls were 

achieved using the Nosѐ-Hoover thermostat/barostat.23-26 A cut-off distance of 12 Å was used for 

summation of the van der Waals interactions and the particle-particle particle-mesh (PPPM) 

method27 was used to calculate long-range Coulomb interactions.  

 

The final output of MD simulations is the full trajectory of the system. Observable properties can 

then be reproduced or predicted from the average values at equilibrium of properties like densities, 

distributions of bonds, angles and dihedrals, or radial distribution functions, in the form of a time 

average from configurations along the overall simulation time. We note that while atomistic MD 

simulations can provide a good insight on the “local” morphology (as described in Chapter 1), 

methods like coarse-grain simulations are to be applied in order to investigate the “global” 

morphology within a device active layer. Since coarse-grain simulations do not form the focus of 

our work, we do not discuss this approach here. 

 

2.4. Codes Used 

All electronic-structure calculations within this dissertation are performed using the Gaussian 

09.D01 software package.28 All crystal structures were obtained from the Cambridge 

Crystallographic Database. The calculations of band structures and effective masses were 

performed, based on the experimental crystal structures with the Crystal 1429 and Crystal 1730 

codes. Molecular Dynamics simulations were carried out with the  LAMMPS package31 and 

OPLS-AA force-field.20  
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Chapter-3 

 

Impact of solution temperature-dependent aggregation on the solid-state 

packing and electronic properties of polymers for organic photovoltaics 

 

3.1  Introduction 

As discussed in Chapter 1, improving the morphology characteristics of the active layer of an 

organic solar cell remains a crucial factor for obtaining higher device efficiencies. Significant 

efforts have been devoted experimentally to try and control the active-layer morphology via 

techniques including thermal or solvent annealing,1-5 chemical substitution of the polymer donor 

and/or acceptor,3-13 using solvent additives,4, 5, 7, 14 and/or varying the donor:acceptor ratio in the 

active layer. Recently, Yan and co-workers demonstrated the successful exploitation of the solution 

temperature-dependent aggregation properties (TDA) of a series of polymers in achieving efficient 

morphology control.10, 11, 13 Temperature-dependent aggregation can be used to direct the polymers 

to form domains with optimal sizes of 20-40 nm, which is conducive to high device performance. 

 

We note that most of the polymers displaying temperature-dependent aggregation properties have 

fluorine atoms along the polymer backbone.10, 11, 13 Interestingly, after removing these fluorine 

atoms, the TDA properties tend to disappear and, in this context, lower device efficiencies are 

observed. In some instances, the domain sizes for the non-fluorinated polymers in the active layer 

were found to be very large (up to ~100 nm). Also, up to four-fold differences in device efficiencies 

were observed between polymers with and without TDA properties. For example, in the cases of 

blends of PBT4T-2OD (poly[(2,1,3-benzothiadiazole-4,7-diyl)-alt-(3,3’”-di(2-octyldodecyl)-
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2.2’;5’,2”;5”,2’”-quarterthiophen-5,5’”-diyl)]) and PffBT4T-2OD (poly[(5,6-difluoro-2,1,3-

benzothiadiazol-4,7-diyl)-alt-(3,3’”-di(2-octyldodecyl)-2,2’;5’,2’’;5’’,2’’’-quaterthiophen-5,5’’’-

diyl)]) with phenyl-C71-butyric acid methyl ester (PC71BM), the device efficiencies were 

measured to be 2.6% and 10.5%, respectively.11, 13 Thus, in order to gain a better understanding of 

the relationship between the active-layer morphology and efficiency, it is useful to connect the 

TDA properties of the polymer donors with the fluorination of the backbone, as well as to consider 

the impact of the TDA properties on the inter-chain packing at the molecular level. 

 

In this context, we use a combination of molecular dynamics (MD) simulations and density 

functional theory (DFT) calculations to investigate the TDA properties of representative polymer 

donors and their impact on the formation of efficient morphologies and the nature of inter-chain 

packing. We choose the non-fluorinated polymer PBT4T-2OD and its difluorinated counterpart 

PffBT4T-2OD as model systems, see Figure 3.1. We start by discussing the results of MD 

simulations for the pure polymers in 1,2-dichlorobenzene solution at five different temperatures 

and characterize the differences in their extent of aggregation. We then rationalize these differences 

by analyzing the planarity of the PBT4T-2OD and PffBT4T-2OD backbones. Finally, we evaluate 

the impact of the temperature-dependent aggregation properties on the solid-state packing and 

electronic properties of the two polymers. This work has been published in Journal of Materials 

Chemistry C, 2018, 6, 13162-13170.15 
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Figure 3.1. Illustration of the chemical structures of the PBT4T-2OD and PffBT4T-2OD polymers 

with their chemical differences highlighted in blue and red.  
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3.2. Methodology 

3.2.1. Molecular Dynamics Simulations 

The MD simulations were performed16 with the LAMMPS package17 and based on the Optimized 

Potential for Liquid Simulations – All Atom (OPLS-AA) force field.18-22 The OPLS-AA force field, 

as described in detail in Chapter 2, was parameterized with bond lengths, bond angles, torsion 

angles, and atomic charges coming from PBT4T-2OD and PffBT4T-2OD oligomers optimized at 

the ωB97XD/6-31G(d,p) level of theory. The torsion potentials for specific dihedral angles were 

calculated on oligomers of increasing size until convergence was achieved. We note that the atomic 

partial charges were evaluated using the restricted electrostatic potential fitting scheme (RESP) at 

the ωB97XD/cc-PVTZ level of theory. We obtained good fitting of the force-field with the updated 

parameters, as described in our previous work.23 Here, the RESP calculations were carried out with 

the Red software.24 

 

The initial models for the MD simulations were built by constructing polymer stacks (consisting 

of six polymer chains perfectly packed on top of each other) for both PBT4T-2OD and PffBT4T-

2OD; each polymer chain has 6 repeat units (see representative example in Figure 3.2). The 

simulation boxes consisted of 152,448 atoms in total, including 12,226 1,2-dichlorobenzene (o-

DCB) molecules. Here, the MD simulations were performed for both polymers at 100°C (for 50 

ns), 80°C (for 80 ns), 60°C (for 120 ns), 40°C (for 200 ns) and 25°C (for 200 ns); in the latter case, 

the time scale of 200 ns represents the limit of our MD simulations while at 100°C, 80°C, and 

60°C, the stacks nearly disaggregate into individual chains after 50 ns, 80 ns, and 120 ns, 

respectively.  
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Figure 3.2. Illustration of the representative initial model used for the MD simulations: Top: A 

single polymer chain of PBT4T-2OD consisting of 6 repeat units. Bottom: A polymer stack 

made of 6 polymer chains perfectly packed on top of each other.  

 

To examine more closely the planarity of individual chains, MD simulations were also carried out 

on single chains. The simulation box for the PBT4T-2OD polymer consisted of 87,440 atoms (one 

chain of PBT4T-2OD and 7,207 molecules of o-DCB) while that for the PffBT4T-2OD polymer 

contained 89,600 atoms (one chain of PffBT4T-2OD and 7,387 molecules of o-DCB). Here, the 

simulations were carried out at 25°C for 10 ns. 

 

 



51 

 

3.2.2. Density Functional Theory Calculations  

All the DFT calculations were performed at the ωB97XD/6-31G(d,p) level of theory. In the 

framework of semi-classical Marcus theory, the electronic couplings (transfer integrals) among 

neighboring chains are a relevant figure of merit to describe at least qualitatively the charge-

transport properties of the active layer.25 The transfer integrals among sets of neighboring chains, 

i.e., dimers extracted from MD simulation snapshots at different temperatures were calculated 

using a fragment orbital approach26 combined with a basis set orthogonalization procedure. These 

calculations were performed with the Gaussian 09-D01 package.27 

 

Another useful parameter in determining the strength of interaction among polymer chains is their 

binding energy. A higher binding energy between specific chain segments implies a higher 

probability of presence of such interacting segments in the bulk phase of the active layer. In the 

evaluation of the binding energies, in order to prevent basis set superposition errors (BSSE), the 

counterpoise correction method proposed by Boys and Bernardi was applied.28  

 

3.3. Results and Discussion 

3.3.1 Morphology of the Polymers in Solution 

We first focus on the disaggregation of the polymer stacks as a function of time at five different 

temperatures representative of those used experimentally. The main results are as follows: 

• For the PffBT4T-2OD and PBT4T-2OD stacks in solution at 100°C and 80°C disaggregation into 

individual chains takes place after 50 ns and 80 ns, respectively (see Figure 3.3).  
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• At 60°C, while the PBT4T-2OD stack disaggregates into isolated polymer chains after 120 ns, 

the PffBT4T-2OD stack separates into a smaller stack containing 3 interacting chains and into three 

separated chains; interestingly, the smaller 3-chain PffBT4T-2OD stack keeps long-range order.  

• At 40°C, the PBT4T-2OD stack starts to disaggregate along several sections after 200 ns; in 

contrast, the PffBT4T-2OD 6-chain stack begins to separate into two 4-chain and 2-chain stacks 

that clearly maintain overall shape and long-range order compared to the PBT4T-2OD case.  

• The simulations at 25°C show trends similar to those at 40°C in both cases; after 200 ns, the 

PffBT4T-2OD stack has separated into two smaller 3-chain stacks that keep their pattern and long-

range order, while the PBT4T-2OD stack is seen to disaggregate along several sections. 
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Figure 3.3. Snapshots from the MD simulations showing the extent of disaggregation of the six 

polymer chains present in the simulation box. The snapshots on the left and right correspond to 

PBT4T-2OD and PffBT4T-2OD, respectively; they are taken from simulations at 100°C (after 50 

ns), 80°C (after 80 ns), 60°C (after 120 ns), 40°C (after 200 ns) and 25°C (after 200 ns). 

 

The MD results are fully consistent with the experimental observations. Yan and co-workers indeed 

reported that PffBT4T-2OD chains aggregate when the solution is cooled down from 85°C to room 

temperature, while PBT4T-2OD chains do not present any aggregation under the same 

conditions.11, 13 The ability of the PffBT4T-2OD chains to stack at 25°C and 40°C can be attributed 

to an efficient chain packing in the aggregated state. This can be correlated with multiple 

observations that fluorination of the polymer backbone leads to more efficient π-π stacking in the 
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solid state.6, 8, 9, 12, 13, 29 We note that inter-chain H-F interactions could be a major driving force 

that leads to this effect in the PffBT4T-2OD polymer.30 Since the PBT4T-2OD chains do not 

maintain any stacking configuration, be it at high or low solution temperatures, fluorination of the 

polymer backbone is confirmed as a crucial factor directing chain aggregation at low temperature. 

 

The simulations at 25°C, 40°C, and 60°C reveal another major difference in the conformational 

behavior of the polymers. Unlike the PBT4T-2OD chains, the PffBT4T-2OD chains maintain long-

range order throughout the simulations. Upon separation from the stack in solution, a PBT4T-2OD 

chain tends to bend, twist, and assume random conformations. Therefore, upon film casting during 

the evaporation of the solvent molecules, the PBT4T-2OD chains are expected to remain in their 

disordered conformations; this, in turn, will lead to the formation of large, uncontrolled amorphous 

domains that can limit charge separation and thus result in lower device performance. On the 

contrary, the fact that the PffBT4T-2OD chains can maintain packing and long-range order in 

solution, can translate into ordered domains in the solid state. Also, the low-temperature pre-

aggregation of PffBT4T-2OD chains in solution allows the control of the eventual domain sizes in 

the solid state, via tuning of the solution temperature. 

 

3.3.2 Distribution of Dihedral Angles along the Polymer Chains and Assessment of Co-Planarity 

To compare the relative planarity between the PBT4T-2OD and PffBT4T-2OD chains, we analyzed 

the distributions of dihedral angles present along the polymer backbones. We evaluated these 

distributions based on 2,000 snapshots extracted from the final 10 nanoseconds of the MD 

simulations at each temperature.  
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We first discuss the dihedral-angle distributions for the polymer stacks in solution. Since the 

distributions turn out to be similar at the five temperatures, we only discuss the results obtained at 

25°C. Three dihedral angles, depicted in Figure 3.4, have been chosen for this analysis. Dihedral 

1 represents the torsion angle between the benzothiadiazole unit of the PBT4T-2OD polymer or 

di-fluoro-benzothiadiazole unit of the PffBT4T-2OD polymer and the thiophene unit on its right 

side. Dihedrals 2 and 3 represent the torsion angles between the two central and two external 

thiophenes of the quarterthiophene moieties.  

 
Figure 3.4. Illustration of the three dihedrals considered to analyze the distribution of    dihedral 

angles. 

 

A comparison of the dihedral distributions of both polymers reveals that, for dihedral angle 1, there 

is a substantially higher relative frequency distribution of dihedral angles around 0°±50° for 

PffBT4T-2OD as compared to PBT4T-2OD (see Figure 3.5). For dihedral angle 3, PffBT4T-2OD 

has a strong distribution around 180°±50° and a very limited distribution around 0°±50°, while 

PBT4T-2OD has a much narrower distribution around +180° and a broad distribution around 

0°±50°. For dihedral angle 2, largely similar distributions are found for both polymers. 
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Figure 3.5. Distribution of dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD (right) 

chains after MD simulations of the respective polymer stacks in solution at 25°C.     
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Figure 3.6. Distribution of the dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD 

(right) chains after MD simulations of the respective polymer stacks in solution at 40°C.  
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Figure 3.7. Distribution of the dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD 

(right) chains after MD simulations of the respective polymer stacks in solution at 60°C.  
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Figure 3.8. Distribution of the dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD 

(right) chains after MD simulations of the respective polymer stacks in solution at 80°C.  
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Figure 3.9. Distribution of the dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD 

(right) chains after MD simulations of the respective polymer stacks in solution at 100°C.  
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The results for dihedral angles 1 and 3 confirm that the PffBT4T-2OD polymer chains tend to be 

more planar as compared to the PBT4T-2OD polymer. As shown in Figures 3.6-3.9, these trends 

in dihedral-angle distributions are found to be similar at all the other temperatures. Since the side 

chains are the same on both polymers, their impact in determining the final stable conformations 

of both polymer chains is expected to be nearly identical.23 With the only difference between the 

two polymers being the presence or absence of fluorine atoms in the polymer backbone, it is clear 

that the tendency of PffBT4T-2OD to remain more co-planar can be mainly ascribed to the 

backbone fluorination itself.  

 

We also evaluated the dihedral-angle distributions of single polymer chains in o-DCB solution. 

Here, a single PBT4T-2OD/PffBT4T-2OD chain consisting of 6 repeat units was placed in solution; 

the simulations ran for 10 ns. Interestingly, we find similar trends for the distributions of all three 

dihedral angles, see Figure 3.10. This result underlines that neither the solvent nor the effect of 

inter-chain interactions plays a significant role in determining the planarity of the PffBT4T-2OD 

chains. Thus, it is an intrinsic property of the PffBT4T-2OD chains to remain more co-planar in 

comparison to PBT4T-2OD chains.  
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Figure 3.10. Distribution of dihedral angles along the PBT4T-2OD (left) and PffBT4T-2OD (right) 

chains after MD simulations of single polymer chains in o-DCB solution at 25°C.  
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3.3.3. Interaction Energies and Their Effect on Morphology  

A way to quantify the strength of the inter-chain interactions is to consider the binding energies 

(interaction energies). We first evaluated the inter-chain binding energies for DFT-optimized 

PBT4T-2OD and PffBT4T-2OD dimers, where a dimer consists of two well-packed polymer 

chains with each chain containing two repeat units (see Table 3.1). A difference of ca. 2 kcal/mol 

is calculated between the PffBT4T-2OD and PBT4T-2OD cases, which thus translates into ca. 1 

kcal/mol per repeat unit. 

 

Table 3.1: Binding energies between two perfectly stacked dimer units, as calculated at the 

ωB97XD/6-31G** level of theory. A negative value indicates an attractive interaction. 

 

Polymer Binding Energy (in kcal/mol) 

PBT4T-2OD -56.7 

PffBT4T-2OD -58.6 

 

We then estimated the binding energies between adjacent polymer chains extracted from the MD 

simulations of the polymer stacks in solution. Two chains in close proximity, consisting each of 

six repeat units, are taken as a dimer; thus overall, given six polymer chains, a maximum of five 

dimers can be present at any temperature. We note that at the higher temperatures of 80°C and 

100°C, for which the polymer stacks disaggregate into individual chains, only the binding energies 

between chains that are somewhat close (<5Å) are evaluated.  

 

The binding energies between PffBT4T-2OD chains are found to be significantly larger than those 

between PBT4T-2OD chains (see Table 3.2). This is consistent with the fact that the simulations 

at lower temperatures, e.g., at 25°C and 40°C, indicate that the PffBT4T-2OD chains remains better 
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packed with longer-range order as compared to the PBT4T-2OD chains. Thus, adjacent PffBT4T-

2OD chains have a longer interaction length. Considering the small difference in binding energy 

per repeat unit that we found between PffBT4T-2OD and PBT4T-2OD dimers, it is the longer 

interaction length between the PffBT4T-2OD chains, and not the fluorination-induced increase in 

binding energy, that is mainly responsible for the significantly higher binding energies. Also, we 

note that the highest magnitude of binding energy for the PffBT4T-2OD chains is obtained at 25°C, 

which correlates well with the largest extent of aggregation observed at that temperature.  

 

Table 3.2: Binding energies between two adjacent polymer chains, as calculated at the ωB97XD/6-

31G** level of theory. A negative value indicates an attractive interaction. 

 

Polymer Dimer 

Binding Energy 

(kcal/mol) 

25 ˚C 40˚C 60˚C 80˚C 100˚C 

PBT4T-2OD 

1 -99.7 -62.7 -25.4 -49.9 0 

2 -63.8 -49.0 0 0 0 

3 -50.6 -41.5 0 0 0 

4 -40.8 -23.1 - - - 

5 - -18.2 - - - 

PffBT4T-2OD 

1 -120.5 -100.1 -87.9 -81.3 0 

2 -64.7 -89.3 0.0 -33.4 0 

3 -54.5 -87.9 0.0 0 0 

4 -2.2 -75.1 - - - 

5 - -23.9 - - - 
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3.3.4. Electronic coupling 

The electronic couplings (transfer integrals) are important parameters in the description of the 

charge-transport characteristics. As discussed above, the fact that the aggregation behavior and 

long-range packing order found in solution are expected to maintain in the solid state, means that 

the electronic couplings for the chains in solution will be representative of the situation in the 

active layer.  

 

Thus, we have evaluated the electronic couplings between adjacent PBT4T-2OD chains and 

PffBT4T-2OD chains extracted from the MD simulations of the polymer stacks in solution. The 

DFT calculations show that the highest occupied molecular orbitals (HOMOs) of both polymers 

delocalize across about two repeat units along the polymer backbone. (see Figure 3.11)  

 

 

Figure 3.11.  HOMOs of PBT4T-2OD and PffBT4T-2OD, as calculated at the ωB97XD/6-31G** 

level of theory 

 

For that reason, each chain (6 repeat-unit long) was cut into 3 segments of two repeat units each; 

the HOMO-HOMO electronic couplings were then calculated between these segments (see Figure 

3.12). We note that: (i) the electronic couplings between segments with intermolecular distances 
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larger than 5Å are not evaluated since there is no effective wave-function overlap between such 

distant segments; and (ii) we only consider electronic couplings between HOMO levels since the 

polymers are hole transporters in the active layer.  

 

 

Figure 3.12. Illustration of (a) the cut of a polymer chain with six repeat units into segments of 

two repeat units each, (b) the protocol for the calculation of the electronic couplings between 

adjacent chains. The electronic couplings between the segments connected by arrows are the only 

ones considered for this work.   

 

At all solution temperatures (except 100°C), the HOMO-HOMO couplings between PffBT4T-

2OD segments are found to be consistently larger in comparison to the PBT4T-2OD case, see 

Figure 3.13. We note that, at higher solution temperatures, the polymer segments separate and, 

consequently, there are very few interacting segments at 60°C and 80°C. At 100°C, the polymer 

stacks are totally separated into individual chains and no interacting segments can be found within 

the threshold distance of 5 Å.  
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Figure 3.13. Electronic couplings between segments of the PBT4T-2OD and PffBT4T-2OD chains 

at 25°C, 40°C, 60°C and 80°C. 

 

Overall, our investigations give useful insights that allow us to correlate the nature of the 

interactions in both polymers with the experimental results. The PffBT4T-2OD chains are observed 

experimentally to aggregate in solution at lower temperatures;11, 13 our MD simulations also show 

this pre-aggregation behavior as the PffBT4T-2OD stacks hold together at lower temperatures. The 

PffBT4T-2OD chains display better planarity, more efficient packing, and longer-range order in 

the stacks, leading to more efficient wave-function overlap between the chains; accordingly, we 



69 

 

calculate higher electronic couplings among PffBT4T-2OD segments as compared to the PBT4T-

2OD case.  

 

3.4. Conclusions  

Our investigations on the effects of temperature-dependent aggregation on the solid-state packing 

and electronic properties of two representative polymers, PBT4T-2OD and PffBT4T-2OD, reveals 

that fluorination of the polymer backbone plays a key role in keeping the PffBT4T-2OD chains 

more co-planar than the PBT4T-2OD chains. The planarity of the polymer backbones in turn 

facilitates a longer interaction length between the polymer chains, as a result of which the PffBT4T-

2OD chains remain well-packed in the stacks. These combined effects lead to easier pre-

aggregation of the PffBT4T-2OD chains in solution.  

 

Upon film formation, the solvent molecules evaporate; the well-aggregated nature of the PffBT4T-

2OD chains is expected to maintain in the solid state, which leads to adequate size morphologies 

in the active layer. This can contribute to efficient exciton diffusion and hole transport within the 

PffBT4T-2OD domains, and ultimately lead to higher device efficiency. The exploitation of the 

temperature-dependent aggregation properties thus represents an effective tool to control the 

morphology of the active layers.   
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CHAPTER-4 

 

Bulk-heterojunction solar cells: Understanding the intermolecular packing 

and electronic properties in polymer-small-molecule acceptor blends 

 

4.1. Introduction 

In single-junction organic solar cells (OSCs), there are two prominent compositions of the active-

layer components − binary and ternary. While the former includes an electron donor and an 

electron acceptor, the latter contains one additional electron-donor or electron-acceptor component. 

Adding a suitable component to the binary blends is typically done to expand the absorption 

window vs. the solar spectrum,1-5 and/or to improve charge-transport, and subsequently to lead to 

relatively higher device performance.6-9 As already demonstrated in multiple reports, the presence 

of a third component can also optimize the active-layer morphology in the form of increasing 

crystallinity and improving crystal orientation and domain sizes.10-13 Several investigations also 

show enhanced photo-stability and device storage lifetime for ternary blends as compared to binary 

ones.14-16  

 

Experimental studies on the morphological properties of binary blends of polymer and fullerene 

derivatives have illustrated the presence of a three-phase structure in the active layer,17-22 that is, 

pure and intermixed phases of electron donors and electron acceptors coexisting in the active layer. 

The binary blends of polymer and non-fullerene small-molecule acceptors (SMAs) are also 

expected to follow the same structure. Increasing the number of components in the active layer to 

a ternary blend leads to significantly more complex descriptions and control of the active-layer 
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morphology. To boost the application of ternary blends in OSCs, it is important to determine the 

best approaches regarding morphology control while avoiding any negative impact on the 

variables that influence device performance. 

 

Recently, Yan and co-workers developed a protocol for morphological control in ternary blends 

via minimizing the interfacial tensions among the three components.10 The ternary blend includes 

a polymer donor and two SMAs. The morphology control was enabled through multiple aspects. 

Firstly, a polymer showing a temperature-dependent aggregation (TDA) property in solution was 

selected as the donor component, which leads to small domains for the pure polymer phase.23 The 

TDA property also allows the control of crystallization of these domains.23-27 Secondly, the 

selection of components was based on their surface tensions. The components with minimal 

difference in their surface tensions showed lesser interfacial tension and subsequently lesser phase-

separation in the blends. Finally, reduced interfacial tension between SMAs leads to greater 

intermolecular intermixing. As a result, the ternary blend behaves essentially like a binary system 

with the polymer forming one component and the mixture of SMAs (working as an electronic alloy) 

forming another component. Notably, for the OSCs made of such ternary blends, the open-circuit 

voltage (VOC) was found to follow a quasi-linear evolution vs the SMA composition. The fill 

factors for all ternary combinations of D-A1-A2 were found to be higher than those for the binary 

combinations of D-A1 or D-A2. Also, the introduction of the second SMA was shown to improve 

the crystallinity of the first SMA in the active layer. While this strategy was found to be effective 

for improving the efficiencies, an understanding of the molecular-scale origin of the linear 

evolution of VOC and improvement in fill factor in the ternary blends remains to be developed. 

Here, we have combined atomistic molecular dynamics (MD) simulations and long-range 
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corrected density functional theory (DFT) calculations to investigate the intermolecular packing 

patterns and interactions as well as the related electronic properties (including electron-transfer 

rates among SMAs, interfacial charge-transfer states, and non-radiative recombination rates), in 

order to rationalize the morphological and electronic properties of these ternary blends.  We have 

considered 4-(3-(2-decyltetradecyl)-5'-(2,3-difluoro-4-(5-methylthiophen-2-yl)phenyl)-[2,2'-

bithiophen]-5-yl)-7-(4-(2-decyltetradecyl)-5-methylthiophen-2-yl)-5,6-difluoro-2-propyl-2H-

benzo[d][1,2,3]triazole (PTFB-O) as the polymer donor and 3,9-bis(2-methylene-(3-(1,1-

dicyanomethylene)-indanone))-5,5,11,11-tetrakis(5-hexylthienyl)-dithieno[2,3-d:2’,3’-d’]-s-

indaceno[1,2-b:5,6-b’]dithiophene (ITIC-Th) as well as 2,2′-((2Z,2′Z)-(((4,4,9,9-tetrakis(5-

hexylthiophen-2-yl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-

octylthiophene-5,2-diyl))-bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-

diylidene))-dimalononitrile (IEIC-Th) as the SMAs, see Figure 4.1. Due to the limitations of all-

atom MD simulations in terms of system sizes and time scales required for the investigation of 

ternary blends, we have divided the ternary combination into the three binary combinations, i.e., 

PTFB-O:ITIC-Th, PTFB-O:IEIC-Th, and ITIC-Th:IEIC-Th. Here, as a first step into this general 

investigation, we have focused on distinguishing the intermolecular packing and electronic 

properties between the PTFB-O:ITIC-Th and PTFB-O:IEIC-Th binary blends.  
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Figure 4.1. Chemical structures of PTFB-O, ITIC-Th, and IEIC-Th. The groups circled in red 

represents the electron-poor (A ) moiety and those circled in blue represents the electron-rich (D) 

moiety. 
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4.2. Methodology 

4.2.1 Molecular dynamics simulations 

The MD simulations were performed with the LAMMPS package28 and optimized potential for 

liquid simulations-all atom (OPLS-AA) force field.29 To accurately model the intra- and 

intermolecular interactions, the OPLS-AA force-field was parameterized for atomic charges, bond 

lengths, bond angles, and dihedrals between different fragments. The parameterization of the 

force-field was performed based on the method described in Chapter 2 of this Thesis. Here, all the 

DFT calculations were performed at the ωB97XD/6-31G** level of theory with the Gaussian 

09.D01 package.30  

 

The initial models were built by randomly placing the PTFB-O chains and ITIC-Th or IEIC-Th 

molecules in cubic cells at a low density of 0.02 g cm-3. The donor:acceptor weight ratio was kept 

the same as the experimental value of 1:1.5. For the PTFB-O:ITIC-Th blend, the cell includes 30 

PTFB-O chains and 405 ITIC-Th molecules (total of 131430 atoms), while for PTFB-O:IEIC-Th 

blend, the cell includes 30 PTFB-O chains and 341 IEIC-Th molecules (total of 139390 atoms). In 

each case, the PTFB-O chains consist of 10 repeat units. 

 

The simulations were then carried out with the NPT (constant number of molecules, pressure and 

temperature) ensemble. For the summation of van der Walls interactions, a cut-off distance of 12 

Å was applied. The particle-particle particle mesh (PPPM) solver31 was used for the long-range 

Coulomb interactions. Both the blends were initially kept at a high temperature of 500 K for 20 ns. 

We note that during the first 4 ns of simulations at 500 K, a small timestep of 0.1 fs was applied, 

which allows the system to slowly form the bulk. Then, a cooling process was performed by 
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running MD simulations for 500 ps for every 50 K from 500 K to 300 K. The Verlet integrator32 

was applied with a timestep of 1.0 fs, and the Nose-Hover thermostat/barostat33-36 was employed 

for temperature/pressure control. To take account of the experimental annealing process, MD 

simulations were performed at 363 K for 50 ns followed by a cooling process to 300 K at the rate 

of 10 K ns-1. Finally, MD simulations were performed at 300 K for 50 ns to allow the systems to 

equilibrate. 

 

4.2.2 Density functional theory calculations 

DFT calculations were performed at the ωB97XD/6-31G** level of theory to evaluate the 

interaction energies in pairs between PTFB-O and ITIC-Th [IEIC-Th] as well as in pairs of ITIC-

Th [IEIC-Th] molecules. Here, the alkyl side chains of PTFB-O, ITIC-Th, and ITIC-Th were 

replaced with methyl groups; the PTFB-O chain was truncated to dimer with ITIC-Th or IEIC-Th 

close to the center of the dimer. To avoid the basis set superposition error (BSSE), the 

counterpoise-correction method proposed by Boys and Bernardi was applied.37 

 

The lowest singlet charge-transfer (1CT1) excited states were evaluated via TDDFT calculations at 

the ωB97XD/6-31G** level of theory. The range-separation parameter, ω, was optimized via a 

non-empirical tuning procedure38 within the polarizable continuum model (PCM),39 using a typical 

dielectric constant of ε = 3.5. 

 

Within the framework of semiclassical Marcus equation,40 the electronic coupling (transfer 

integral) is a relevant parameter to estimate the extent of electronic interaction between states. 

Here, these transfer integrals were calculated using a fragment orbital approach.41 We have also 
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estimated the electron-transfer rates among SMAs using the semi-classical Marcus equation. The 

corresponding electronic couplings, reorganization energies, and energy differences between 

states were calculated at the PCM-tuned ωB97XD/6-31G** level of theory. 

 

To determine the VOC losses, we estimated the non-radiative recombination rates. In the case of a 

1CT1 energy larger than ~1 eV, the quantum component of the reorganization energy becomes 

important.42-44 Thus, the Marcus-Levich-Jortner model 42, 45, 46 was used to examine these rates. 

Here as well, the calculations were performed at the PCM-tuned ωB97XD/6-31G** level of 

theory. 

 

4.3. Results and Discussion 

4.3.1 Intermolecular packing and interactions 

It has been reported experimentally that the active layers composed of binary combinations of 

PTFB-O:ITIC-Th or PTFB-O:IEIC-Th and ternary combination of PTFB-O:ITIC-Th:IEIC-Th 

exhibit similar, homogenous bulk morphologies.10 To gain an understanding of this morphological 

similarity, we have investigated the intermolecular packing patterns and interactions in two binary 

blends of PTFB-O:ITIC-Th and PTFB-O:IEIC-Th. 

 

Figure 4.2 shows the radial distribution functions (RDFs), g(r), between the PTFB-O backbones 

and the SMAs in the PTFB-O:ITIC-Th and PTFB-O:IEIC-Th blends. We recall that a higher g(r) 

peak corresponds to a larger packing density in the blends, with the first peak around ~5 Å 

indicating the nearest-neighbor PTFB-O/SMA packing. The very similar g(r) peaks at this distance 

suggest similar PTFB-O/SMA packing densities and intermolecular interactions in the two blends. 
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Figure 4.2. Radial distribution functions between PTFB-O backbones and SMAs in the PTFB-

O:ITIC-Th and PTFB-O:IEIC-Th blends. 

 

To further confirm this point, we have extracted all the PTFB-O:ITIC-Th, PTFB-O:IEIC-Th pairs 

and the ITIC-Th:ITIC-Th, IEIC-Th:IEIC-Th dimers from the MD-simulated PTFB-O:ITIC-Th and 

PTFB-O:IEIC-Th blends. Here, a “pair” corresponds to one PTFB-O chain interacting with a SMA 

within a distance of ~5 Å of each other, and a “dimer” corresponds to the case of two interacting 

SMAs. We note that, to save computational time for the quantum-chemical calculations, the long 

PTFB-O chain with 10 repeat units are truncated to 2 repeat units. Calculations at the 

(counterpoise-corrected) ωB97XD/6-31G** level indicate that the intermolecular interaction 

energies in PTFB-O:ITIC-Th pairs are similar to those in PTFB-O:IEIC-Th pairs (see Table 4.1). 

The same holds true between ITIC-Th:ITIC-Th and IEIC-Th:IEIC-Th dimers. These findings 

support the RDF results and point to an identical degree of polymer-SMA mixing in both blends. 
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Table 4.1. Average interaction energies (and their standard deviations) among PTFB-O, ITIC-Th, 

and IEIC-Th pairs and dimers. A negative value indicates an attractive interaction. 

 

 
Average interaction 

energies (kcal mol-1) 

PTFB-O:ITIC-Th -18.1 ± 8.4 

PTFB-O:IEIC-Th -17.9 ± 8.2 

ITIC-Th:ITIC-Th -16.4 ± 8.8 

IEIC-Th:IEIC-Th -17.3 ± 9.3 

 

4.3.2 Intermolecular packing patterns 

Here, we assess the intermolecular packing patterns in the PTFB-O:ITIC-Th and PTFB-O:IEIC-

Th blends, that is, the way the electron-rich ("donor", D) moieties or electron-poor ("acceptor", A) 

moieties preferentially pack on top of one another. The D and A moieties of PTFB-O, ITIC-Th, 

and IEIC-Th are illustrated in Figure 4.1. 
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Figure 4.3. RDFs for: (a) interaction between the PTFB-O polymer backbone and the D moiety 

or A moiety of ITIC-Th acceptors, (b) interaction between the PTFB-O polymer backbone and the  

D moiety or A moiety of IEIC-Th acceptors. 
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We first examined the RDFs between the PTFB-O backbones and the D/A moieties of SMAs. 

Figure 4.3 shows that around ~5 Å there exist gentle shoulders and sharp peaks for the RDFs 

between the PTFB-O backbones and the SMA D and A moieties, respectively. This indicates that 

the PTFB-O/SMA-A packing is the dominant packing pattern in both PTFB-O:ITIC-Th and 

PTFB-O:IEIC-Th blends; this can be attributed to the presence of the bulky hexylthiophene side 

chains on the SMA D moieties, which hinder close contacts with the PTFB-O backbones. 

 

We further analyzed the RDFs between the D and A moieties of PTFB-O and the A moieties of 

the SMA molecules (see Figure 4.4). Interestingly, in both blends, the first g(r) peaks that 

represent the PTFB-O-A/SMA-A packing density are markedly higher than those that represent 

the PTFB-O-D/SMA-A packing density. This suggests that the PTFB-O:ITIC-Th and PTFB-

O:IEIC-Th blends have similar intermolecular donor/acceptor packing patterns: PTFB-O-A/SMA-

A > PTFB-O-D/SMA-A. To quantify this observation, we explored the proportions of PTFB-O-

A/SMA-A and PTFB-O-D/SMA-A pairs in both blends; the results show that ~69% of the packing 

in the PTFB-O:ITIC-Th blend and ~70.5% of the packing in the PTFB-O:IEIC-Th blend take place 

through PTFB-O-A/SMA-A packing patterns, in agreement with the RDF findings. Here as well, 

the average interaction energies were calculated for the PTFB-O-A/SMA-A and PTFB-O-D/SMA-

A pairs extracted from the MD-simulated PTFB-O:ITIC-Th and PTFB-O:IEIC-Th blends. As 

expected, from the above discussion the interaction energies for the PTFB-O-A/SMA-A are larger 

than those for the PTFB-O-D/SMA-A pairs, see Table 4.2. The similarity in the  PTFB-O/SMA 

packing density and pattern in the two binary blends can thus be anticipated to result in similar, 

well-mixed bulk morphologies in blends of PTFB-O:ITIC-Th and PTFB-O:IEIC-Th binary 

combinations and PTFB-O:ITIC-Th:IEIC-Th ternary combination.  



84 

 

 
 

Figure 4.4. RDFs for: (a) interactions between the D moiety or A moiety of PTFB-O polymer and 

the A moiety of ITIC-Th acceptor, (b) interactions between D moiety or A moiety of PTFB-O 

polymer and the A moiety of IEIC-Th acceptor. 
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Table 4.2. Average interaction energies (and their standard deviations) for PTFB-O-A/SMA-A 

and PTFB-O-D/SMA-A pairs extracted from the MD-simulated PTFB-O:ITIC-Th and PTFB-

O:IEIC-Th blends. 

 

 Average interaction energies (kcal mol-1) 

 PTFB-O-A/SMA-A PTFB-O-D/SMA-A 

PTFB-O:ITIC-Th blend -17.8 ± 7.9 -16.1 ± 8.2 

PTFB-O:IEIC-Th blend -18.6 ± 8.0 -14.4 ± 6.9 

 

To this end, we examined the SMA/SMA packing patterns in both blends. The partial RDFs for 

the SMA-D/SMA-D, SMA-D/SMA-A, and SMA-A/SMA-A interactions point to very closely 

related packing patterns in both blends, with interactions decreasing in the order: SMA-A/SMA-

A > SMA-D/SMA-A > SMA-D/SMA-D, see Figure 4.5. Again, we note that the more the D 

moieties are involved, the lesser the packing density, which can be attributed to the steric hindrance 

of the bulky hexylthiophene side chains attached on the D moieties of the ITIC-Th and IEIC-Th 

molecules. 
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Figure 4.5. RDFs for the SMA-D/SMA-D, SMA-D/SMA-A, and SMA-A/SMA-A interactions in 

(a) PTFB-O:ITIC-Th and (b) PTFB-O:IEIC-Th. 
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4.3.3 Intermolecular electron-transfer rates among adjacent SMAs 

We now turn to a discussion of the electron-transport processes in the PTFB-O:ITIC-Th and 

PTFB-O:IEIC-Th blends by evaluating the electron-transfer rates among SMA/SMA dimers via 

the semi-classical Marcus equation. Here, we evaluate the electronic couplings between the lowest 

unoccupied molecular orbitals (LUMOs) relevant for the electron-transport processes. Table 4.3 

collects the average LUMO-LUMO (VL-L) couplings (and their standard deviations). As the 

calculation of electron-transfer rates considers the squares of the electron couplings, we note that 

the signs of the relevant transfer integrals have not been tracked. Table 4.3 shows that the ITIC-

Th/ITIC-Th dimers exhibit somewhat stronger electronic couplings as compared to the IEIC-

Th/IEIC-Th dimers. To further confirm this, Figure 4.6 provides a distribution of the electronic 

couplings for all the ITIC-Th/ITIC-Th (IEIC-Th/ITIC-Th) dimers extracted from the MD-

simulated PTFB-O:ITIC-Th (PTFB-O:IEIC-Th) blend. At lower coupling values below ~20 meV, 

the IEIC-Th/IEIC-Th dimers present a higher distribution than the ITIC-Th/ITIC-Th dimers, a 

trend that reverses at higher coupling values. 

 

Table 4.3. Average electronic couplings (VL-L) and the standard deviations between the LUMOs 

of SMA/SMA dimers extracted from the MD-simulated PTFB-O:ITIC-Th and PTFB-O:IEIC-Th 

blends.  

 

SMA/SMA dimers VL-L (meV) 

ITIC-Th/ITIC-Th 17.6 ± 18.2 

IEIC-Th/IEIC-Th 13.9 ± 15.6 
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Figure 4.6. Distributions for the electronic couplings between the LUMOs of SMAs all the 

SMA/SMA dimers extracted from the MD-simulated PTFB-O:ITIC-Th and PTFB-O:IEIC-Th 

blends. 

 

We also evaluated another important transport parameter i.e., reorganization energy (λ). The 

intramolecular reorganization energies were found to be slightly very higher for ITIC-Th (~175 

meV) than IEIC-Th (~169 meV). By fitting the electronic couplings, reorganization energies, and 

the energy differences (between the initial and final states) into the semi-classical Marcus equation, 

Table 4.4 collects the proportions of SMA/SMA dimers at different orders of magnitude of 

electron-transfer rates for both blends. 
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Table 4.4. Proportions of SMA/SMA dimers corresponding to different orders of magnitude in 

electron-transfer rates and experimentally measured electron mobilities for the blends of PTFB-

O:ITIC-Th and PTFB-O:IEIC-Th. 

 

Electron-transfer rates (s-1) PTFB-O:ITIC-Th PTFB-O:IEIC-Th 

>1012 45.3% 38.0% 

>1011 76.3% 66.3% 

>1010 90.5% 83.6% 

>109 97.2% 94.5% 

<109 2.7% 5.4% 

Experimentally measured electron mobility  

(cm2 V-1 s-1) 

4.6 x 10-5 2.6 x 10-5 

 

Interestingly, all the higher levels of electron-transfer rates (i.e., >1012 s-1, >1011 s-1, >1010 s-1, >109 

s-1) correspond to a higher proportion of ITIC-Th/ITIC-Th dimers in PTFB-O:ITIC-Th blend, as 

compared to that of IEIC-Th/IEIC-Th dimers in PTFB-O:IEIC-Th blend. These trends contribute 

to rationalize the slightly higher mobility and JSC for the PTFB-O:ITIC-Th blend. 

 

4.3.4. Interfacial charge-transfer states and non-radiative recombination rates 

Finally, we examined the interfacial charge-transfer (CT) states and non-radiative recombination 

rates for the two blends. We extracted approximately ~600 PTFB-O/SMA pairs from three 

snapshots of the MD-simulated PTFB-O:ITIC-Th or PTFB-O:IEIC-Th blends. Figure 4.7 displays 

the energetic distribution of the CT states (via fitting to a Gaussian function) for both blends.  
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Figure 4.7. Energetic distribution of the CT states in MD-simulated blends of PTFB-O:ITIC-Th 

and PTFB-O:IEIC-Th. 

 

The average CT-state energies of (𝐸𝐶𝑇
𝑎 ) are very close (i.e., 1.817 eV for PTFB-O:ITIC-Th and 

1.810 eV for PTFB-O:IEIC-Th). However, a notable difference is found for their standard 

deviations, which relate to the total disorder, i.e., ~166 meV for PTFB-O:ITIC-Th and ~148 meV 

for PTFB-O:IEIC-Th. There thus occurs a larger energetic disorder in the former case.  

 

We recall that the total energetic disorder of the CT states arises from two contributions – static 

and dynamic. While the former is linked to variations in positions and geometries of donor and 

acceptor molecules in blends, which lead to a time-independent variance in CT-state energies, the 

latter occurs due to electron-vibration interactions and results in a time-dependent variance in CT-

state energies (the standard deviations corresponding to total, dynamic, and static disorders are 

denoted by 𝜎𝑇,  𝜎𝐷 , and 𝜎𝑆 , respectively). When the static and dynamic components follow 
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Gaussian distributions, the total variances of the  CT-state energies can be expressed as: 𝜎𝑇
2 =

𝜎𝐷
2 + 𝜎𝑆

2.47-49 We obtain the dynamic disorder by considering the PTFB-O/SMA pairs generated 

from trajectories of MD simulations as a function of time; the coordinates of 200 configurations 

of each of 5 randomly selected PTFB-O/SMA pairs are extracted from the trajectories of the MD-

simulated blends. We then evaluate σD for all selected pairs and average them. The static 

component is then simply calculated via 𝜎𝑆 = √𝜎𝑇
2 − 𝜎𝐷

2 .49 Table 4.5 summarizes the total, 

dynamic, and static contributions to the energetic disorders in both blends. Interestingly, the extent 

of dynamic disorder is similar in both blends. Consequently, static disorder contributes to the 

difference in the total disorder between the two blends. 

 

Table 4.5. Standard deviations of the energetic distributions of the CT states, corresponding to 

total, dynamic, and static disorders for the PTFB-O:ITIC-Th and PTFB-O:IEIC-Th blends.   

 

 𝜎𝑇  (meV) 𝜎𝐷  (meV) 𝜎𝑆  (meV) 

PTFB-O:ITIC-Th blend 166 116 118 

PTFB-O:IEIC-Th blend 148 116 91 

 

Since an exact partition of the reorganization energy into classical (𝜆𝑐) and quantum components 

(𝜆𝑞𝑚 ) is not known (where 𝜆 = 𝜆𝑐 + 𝜆𝑞𝑚;  𝜆  is the total reorganization energy), Figure 4.8 

presents the non-radiative recombination rates, knr, as a function of the value chosen for the 

quantum component of the reorganization energy. We note that the estimation here is based on the 

Marcus-Levich-Jortner model that includes the quantum effects.45, 50 
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Figure 4.8. Non-radiative recombination rates as a function of the quantum component of 

reorganization energy. 

 

It is seen that the evolution of the knr values of both blends overlap as a function of λqm, which 

implies that the voltage losses from the non-radiative recombination processes should be nearly 

identical in both cases. Therefore, the differences in the experimental VOC values between the two 

blends (PTFB-O:ITIC and PTFB-O:IEIC-Th) arise from the different distributions of the CT-state 

energies. Here, with the average CT-state energies being similar for both blends, the blend with 

lower disorder is predicted to have a higher VOC. 

 

To further clarify this point, we estimate the effective CT-state energy, 𝐸𝐶𝑇
𝑒 , on the basis of the 

calculated 𝐸𝐶𝑇
𝑎  and σT values. We employ the relation of ECT

e  = ECT
a  − 

𝜎𝑇
2

2kBT
, where kB is Boltzmann 

constant and T is the temperature (see Table 4.6).51, 52 The effective CT-state energies are found 
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to be 1.26 eV and 1.37 eV for the PTFB-O:ITIC-Th and PTFB-O:IEIC-Th blends, respectively. 

The 0.1 eV higher VOC in the PTFB-O:IEIC-Th is consistent with the higher ECT
e  value, which is 

induced by the lower interfacial disorder. 

 

Table 4.6. Average CT-state energy (ECT
a ); standard deviation (σT); 𝑉𝑂𝐶  loss due to interfacial 

disorder(
𝜎𝑇
2

2kBT
); effective CT-state energy ( ECT

e ) evaluated using 𝐸𝐶𝑇
𝑒  = 𝐸𝐶𝑇

𝑎 − 
𝜎𝑇
2

2kBT
,51 and 

experimentally measured 𝑉𝑂𝐶,10 for the cases of PTFB-O:ITIC-Th and PTFB-O:IEIC-Th.  

 

 

Blends 𝐄𝐂𝐓
𝐚 (eV) σT (eV) 𝝈𝑻

𝟐

𝟐𝐤𝐁𝐓
 (𝐞𝐕) 

𝐄𝐂𝐓
𝐞 (eV) Exp. 𝐕𝐎𝐂 

(V)  

PTFB-O:ITIC-

Th 

1.817 0.166 0.551 1.266 0.92 

PTFB-O:IEIC-

Th 

1.810 0.148 0.438 1.372 1.02 

 

 

4.4. Conclusions  

We have used a combination of MD simulations and long-range corrected DFT calculations to 

examine the intermolecular packing and electronic properties in the binary blends of PTFB-

O:ITIC-Th and PTFB-O:IEIC-Th. Our main results can be summarized as follows: 

 

(i) The intermolecular donor/acceptor packing density is found to be very much the same in both 

blends, which is induced by the similar nature of the intermolecular interactions. 

(ii) The intermolecular packing patterns between PTFB-O and the SMAs are nearly identical in 

the two blends and mainly proceed through their A moieties; the same pattern is also found for the 

SMA/SMA packing. The similar intermolecular packing density and pattern point to the 

homogeneously well-mixed nature of the two binary blends. This is consistent with the linear 
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dependence of the VOC values as a function of the concentration in one of the SMAs in the PTFB-

O:ITIC-Th:IEIC-Th ternary blend. 

(iii) The higher electronic couplings between neighboring ITIC-Th molecules in the PTFB-

O:ITIC-Th blend leads to higher intermolecular electron-transfer rates, which accounts for the 

higher electron mobility and JSC values in PTFB-O:ITIC-Th OSC.  

(iv) While the average CT-state energies of both blends are similar, the different standard 

deviations corresponding to total energetic disorder mainly comes from the effect of static disorder. 

(v) Similar non-radiative recombination rates point to similar non-radiative voltage losses in both 

blends. The difference in experimental VOC values is expected to arise from different distributions 

of CT-state energies. With the average CT-state energy being the same, the PTFB-O:IEIC-Th 

blend that possesses a lower static energetic disorder has a higher VOC. 
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CHAPTER 5 

 

Electronic and Charge-Transport Properties of F6TNAP-based Charge-

Transfer Cocrystals 

 

5.1 Introduction 

Over the years, organic donor-acceptor co-crystals have garnered extensive research 

interest due to their potential applications in organic (opto)-electronic devices. They are formed 

by regular arrangement of two or more molecular moieties in a defined stoichiometry. The 

assembly of co-crystals is controlled by means of intermolecular interactions between its 

components, like charge-transfer (CT), π-π, or hydrogen bonding interactions. These materials 

exhibit properties distinct from those of their individual molecular moieties; for instance, 

ambipolar charge-transport characteristics were reported on co-crystals made of components that 

individually exhibited p-type and n-type semiconducting properties.1-5  

 

In this Thesis, we mainly focused on binary CT co-crystals where one component acts as 

an π-electron donor (D) and the other as a π-electron acceptor (A). The selected components are 

usually coplanar and tightly packed, features that facilitate efficient frontier orbital overlaps and 

intermolecular interactions in the solid state. We note that the degree of CT is tunable by means 

of chemical modifications to the molecular backbones in the CT complex. As mentioned in 

Chapter 1, two major types of molecular stacking motifs are found in CT crystals with 1:1 

stoichiometry: (1) mixed stacks, in which D and A molecules alternate along the stacking direction, 

-D-A-D-A; and (2) segregated stacks, in which D and A molecules form separate stacks, -D-D-D- 

and -A-A-A. In the absence of disorder, metallic conductivities can be exhibited by CT co-crystals 

in segregated stacking arrangement. The CT in metallic, segregated co-crystals is normally found 
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to be midway (ρ = ca. 0.5) between the fully neutral (ρ = 0) and fully ionic (ρ = 1) limits.4, 6-8 

However, co-crystals in mixed-stack packing arrangement are usually semiconductors or 

insulators.7, 9-11  

 

We note that packing of the D and A molecules in co-crystals has significant effect in 

directing its charge-transport behavior. In mixed-stack systems, apart from through space 

interactions between adjacent D and A molecules, the electronic interactions along the stacking 

direction also occurs via a superexchange mechanism.11-14 This involves hybridization of frontier 

molecular orbitals of two closest D [A] molecules with the orbitals of the bridging A [D] molecule; 

as a result, both electron and hole transport can be promoted along mixed-stacked DA columns. It 

was reported earlier, based on density functional theory (DFT) calculations, that ambipolar charge-

transport properties can be observed in DMQtT-F4TCNQ (DMQtT = dimethylquarterthiophene, 

F4TCNQ = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane ), DBTTF-TCNQ (DBTTF = 

dibenzotetrathiafulvalene, TCNQ = 7,7,8,8-tetracyanoquinodimethane), and, STB-F4TCNQ (STB 

= stilbene) CT co-crystals, which is a consequence of similar superexchange electronic couplings 

for holes and electrons along the stacking direction.11 Also, this feature results in quasi-mirror 

symmetry between valence and conduction bands in their respective band structures. However, we 

note that electron-hole symmetry is not a common trend in co-crystals as different degrees of 

electronic interactions can exist between its components. This issue will be discussed in more 

detail in the next chapter. 

 

Here, we investigate the electronic-structure and charge-transport properties of co-crystals 

made of the 1,3,4,5,7,8-hexafluoro-11,11,12,12-tetracyano-2,6-naphthoquinodimethane (F6TNAP, 
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also known as F6TCNNQ) acceptor and six different donor molecules – triphenylene (TP), pyrene 

(PY), benzo[b]benzo[4,5]thieno[2,3-d]thiophene (BTBT), benzo[1,2-b:4,5-b']dithiophene (BDT), 

anthracene (ANT), and carbazole (CBZ), see Figure 5.1. Experimentally, these co-crystals were 

synthesized in the groups of Professor Seth Marder at Georgia Institute of Technology and 

Professor Adam Matzger at the University of Michigan and their crystal structures were 

determined by single-crystal X-ray diffraction (SCXRD) performed in the group of Professor 

Tatiana Timofeeva at the New Mexico Highlands University. The predictions on the charge-

transport properties obtained from our DFT calculations were correlated with experimental data 

obtained from field-effect transistor (FET) and space-charge-limited current (SCLC) 

measurements performed in the group of Professor Oana Jurchescu at the Wake Forest University. 

This work has been recently published in Adv. Funct. Mater., 2019, 1904858.15  

 

Figure 5.1. Chemical structures of the F6TNAP acceptor and the TP, BTBT, BDT, PY, ANT, 

and CBZ donors.  
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5.2 Methodology 

5.2.1. Density Functional Theory Calculations 

The molecular energy levels of the individual molecules were calculated using DFT with the 

B3LYP functional and the 6-31G basis set as implemented in the Gaussian 09.D01 package.16 The 

experimental crystal geometries were used for the calculations of the band structure and densities 

of states of the co-crystals. Uniform 8×4×4, 10×8×6, 8×8×4, 8×8×4, 8×10×4, and 8×8×8 

Monkhorst-Pack k-point meshes were employed for the TP:F6TNAP, BTBT:F6TNAP, 

BDT:F6TNAP, PY:F6TNAP, ANT:F6TNAP, and CBZ:F6TNAP crystals, respectively. All band 

structure calculations were performed using the CRYSTAL 14 package.17, 18  

 

  As explained in Chapter 2, the inverse effective mass tensor for the 3-dimensional crystal 

is calculated using the expression: 

        (1) 

 
where subscripts i and j represent the Cartesian coordinates in reciprocal space; ħ is the reduced 

Planck constant and k, the electron wave-vector. The diagonalization of mij
-1 provides the principal 

components and their orientations. The inverse effective mass tensor was calculated by means of 

Sperling’s centered difference method with dk = 0.01 bohr–1.  

 

The effective electronic couplings (transfer integrals) between molecules along different 

directions were calculated by using a molecular-fragment orbital approach combined with a basis-

set orthogonalization procedure at the B3LYP/6-31G level of theory. A more simple approach to 

evaluate the transfer integrals was considered by applying Koopman’s theorem19 (see Figure 5.2) 

where the transfer integrals for holes [electrons] are approximated as half the energy difference 
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between the highest occupied molecular orbitals (HOMOs) [lowest unoccupied molecular 

orbitals(LUMOs)], following the relation:  

𝑡𝑚𝑛 =
𝐸𝐻[𝐿+1] − 𝐸𝐻−1[𝐿]

2
 

where the subscripts H[L+1] and H-1[L] represent the HOMO[LUMO+1] and HOMO-1[LUMO] 

energies of a dimer, respectively; m and n correspond to the individual molecules forming a dimer. 

An essential condition for applicability of this approximation is that the dimer should be symmetric 

(monomers forming the dimer are the same) with the HOMO and HOMO-1 (as well as LUMO 

and LUMO+1) molecular orbitals having a similar nature.  
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Figure  5.2. Illustration of the energy-splitting estimates of the transfer integrals along the stacking 

direction for (a) holes and (b) electrons of Pentacene dimer and (c) holes and (d) electrons of 

DMQtT-F4TCNQ co-crystal. Adapted from reference [13] 

 

The energy splitting approach can also be applied in the evaluation of the superexchange 

coupling, where the molecular orbitals of the bridge molecule (acceptor [donor]) takes part in the 

electronic coupling between two donors [acceptors] along the stacking direction. Here, instead of 

the energy levels of a dimer, the molecular orbitals of a cluster need to be considered.13 For 

example, the effective transfer integrals for electrons are calculated from the orbital energies, E, 

of a A-D-A triad (see Figure 5.2) as: 

𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠
𝑒𝑓𝑓

= 
(𝐸𝐿+1−𝐸𝐿)

2
        (2) 

 

and those for the holes, from the orbital energies of a D-A-D triad as: 

 

𝑡ℎ𝑜𝑙𝑒𝑠
𝑒𝑓𝑓

= 
(𝐸𝐻−𝐸𝐻−1)

2
                  (3) 

 
where the subscripts L and L+1 refer to the LUMO and LUMO+1 of the neutral state of the A-D-

A triad, and H and H–1 to the HOMO and HOMO–1 of the D-A-D triad. We note that this approach 

is only applicable in instances where the donor and acceptor molecules are equidistant along the 

stacking direction. In the cases of co-crystals where the packing along the stacking direction is not 

symmetric, the effective electronic couplings can be evaluated by means of a projection approach 

that accounts for the electronic couplings of the transport orbitals with the low energy orbitals of 

the bridging unit. Here, the teff values are estimated only for co-crystals with symmetric packing 

of donor and acceptor molecules along the stacking direction. The calculations of the transfer 

integrals were carried out using the B3LYP functional  and 6-31G basis set with the Gaussian 

09.D01 package.16  
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5.2.2. Experimental  

It is useful to briefly describe the device fabrication process and the electrical measurements 

carried out in the Jurchescu group. Organic field-effect transistors (OFETs) were obtained by 

laminating the single crystals over pre-fabricated elastomeric polydimethylsiloxane (PDMS) 

stamps.20-22 In this structure, a 5.5 µm thick gap between the raised and recessed regions of the 

PDMS stamp served as the air/vacuum gate dielectric. A layer of 40 nm of Au was e-beam 

evaporated on the patterned PDMS stamp to form electrically isolated electrodes with the source 

and drain defined on the raised region and the gate on the recessed region of the PDMS stamp. 

Space-charge-limited current (SCLC) measurements were performed in the same configuration, 

with the coplanar contacts using non-gated two-point current-voltage measurements. Both OFET 

and SCLC measurements were performed at room temperature, in the dark and under vacuum 

using an Agilent 4155C Semiconductor Parameter Analyzer. At least 5 crystals of each type were 

measured in each case giving consistent results. SCLC measurements were taken in incremental 

voltage steps of 0.1 V and FET measurements were performed in 1 V steps. Background noise was 

minimized by integrating the measurements over longer times, during which the instrument 

averages several measurement samples. The medium integration time was used in all 

measurements; this is automatically adjusted by the instrument depending on the current level: 

smaller current requires longer integration time (50 PLC needed for a current of 10 pA, 5 PLC for 

1 nA, and 1 PLC for 10 nA to 100 mA, where PLC is the power-line cycle mode and 1 PLC=1/60 

s). 
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5.3 Results and Discussions 

5.3.1. Electronic structure, Band-Structure, and Electronic Couplings 

        The crystal-structure data of all the co-crystals investigated here were deposited in the 

Cambridge Crystallographic Database (CCDC 1922856-1922863). The selection of the donor 

molecules was performed based on their oxidation potentials; variations similar to the 

experimental ones were observed in the DFT derived highest occupied molecular orbital (HOMO) 

and ionization energies (IE), see Table 5.1.  

 

Table 5.1. Electrochemical potentialsa (as measured in the Marder group) and B3LYP/6-31G-

calculated orbital energies, adiabatic ionization energy (IE) and electron affinity values (EA) for 

the donor and acceptor molecules. 

Molecule E1/2
+/0 / V E1/2

0/– / V EHOMO / eV ELUMO / eV IE / eV EA / eV 

TP +1.10b - -5.81 -0.78 7.3 – 

BTBT +1.00c - -5.61 -1.11 7.1 – 

BDT +0.96b - -5.56 -0.78 7.3 – 

PY +0.94c - -5.32 -1.37 6.8 – 

ANT +0.88d - -5.20 -1.53 6.8 – 

CBZ +0.80d - -5.43 -0.51 7.1 – 

F6TNAP - +0.26e -7.32 -5.43 – 4.3 
a 0.1 M nBu4NPF6/CH2Cl2 vs FeCp2

+/0; b peak potential, Epa, from cyclic voltammetry; c E1/2 from cyclic voltammetry; 
d peak potential from oxidative differential pulse-voltammetry; e peak potential from reductive differential pulse-

voltammetry 

 

All the co-crystals are characterized by a 1:1 stoichiometry and crystallize in mixed-stack arrays. 

The crystals of TP:F6TNAP, BTBT:F6TNAP, and CBZ:F6TNAP belong to triclinic group P1, 

while the crystals of ANT:F6TNAP, BDT:F6TNAP, and PY:F6TNAP belong to the monoclinic 

space group P21/c. Structural analyses of TP:F6TNAP reveal two distinct centroid-to-centroid 

distances along two different stacks in the asymmetric unit (the distances are 3.799Å and 4.437Å 

along one stack and 3.747Å and 4.453Å along the other stack). CBZ:F6TNAP also displays two 

distinct centroid-to-centroid distances (3.551Å and 3.608Å) along the stacks. However, all the 

other co-crystals have equally spaced alternating donor and acceptor molecules along the stacks. 
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The electronic band structures and the densities of states of the six co-crystals are shown in Figure 

5.3.  
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Figure  5.3. Electronic band structure and density of states of the (a) TP:F6TNAP, (b) 

BTBT:F6TNAP, (c) BDT:F6TNAP, (d) PY:F6TNAP, (e) ANT:F6TNAP, and (f) CBZ:F6TNAP co-

crystals. The high-symmetry points in the first Brillouin zone are labelled as: Г = (0,0,0), Z = 

(0,0,0.5), T = (0,0.5,0.5), Y = (0,0.5,0), X = (0.5,0,0), V = (0.5,0.5,0), R = (0.5,0.5,0.5) and U = 

(0.5,0,0.5) for the (a, b & f) cases, and Г = (0,0,0), Z = (0,0.5,0), C = (0.5,0.5,0), Y = (0.5,0,0), B 

= (0,0,0.5), A = (-0.5,0,0.5), E = (-0.5,0.5,0.5) and D = (0,0.5,0.5) for the (c, d, & e) cases. All 

points are given in fractional coordinates in the reciprocal space. The zero of energy is taken as 

the top of the valence band.  

 

  

    Table 5.2 compares for each co-crystal the widths of the conduction band (CB) and valence 

band (VB) along with the effective masses. Figure 5.4 and Table 5.3 provide more details 

regarding effective masses and transfer integrals, respectively.  

 

Table 5.2. B3LYP/6-31G conduction and valence bandwidths (in meV) along with the lowest two 

effective masses (in units of electron mass in vacuum, m0).  

 

 

 

Cocrystal 

 

Valence 

Bandwidth 

 

Conduction 

Bandwidth 

 

Effective Mass, 

Holes 

  

Effective Mass, 

Electrons  

m1 / m0 m2 / m0  m1 / m0 m2 / m0 

TP:F6TNAP 220 156 1.2 >10  1.4 2.7 

BTBT:F6TNAP 57.4 482 4.5 >10  0.6 1.4 

BDT:F6TNAP 194 212 1.0 3.1  0.8 >10 

PY:F6TNAP 272 181 1.2 5.0  2.8 >10 

ANT:F6TNAP 37.2 231 >10 >10  1.8 >10 

CBZ:F6TNAP 57.6 318 4.5 >10  0.7 7.6 

 

 

The largest CB bandwidth of about 480 meV is estimated for BTBT:F6TNAP (Figure 5.3b), 

which is slightly larger than the highest value (445 meV) computed at the same level of theory for 

co-crystals based on F4TCNQ.11 The largest band dispersion is found along the stacking direction 

and is due to a large effective (super-exchange) transfer integral (76 meV) (see Figure 5.4).  A 

relatively large CB bandwidth (320 meV) is also found for CBZ:F6TNAP. The VBs are 

significantly narrower than the CBs for BTBT:F6TNAP, ANT:F6TNAP, and CBZ:F6TNAP. For 
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BDT:F6TNAP, the VB approaches the CB in width, while for TP:F6TNAP and PY:F6TNAP the 

VB is somewhat wider than the CB. Thus, the present systems do not exhibit the usual “mirror” 

symmetry between VBs and CBs found in many previously studied co-crystals.12, 23 The lack of 

mirror symmetry is an indication that the super-exchange coupling is not dominated by the 

interaction involving only the donor and acceptor molecular frontier orbitals (a situation found in 

many CT systems) but rather contains contributions from more molecular levels. As a result, the 

super-exchange transfer integrals, teff , for holes can be very different than for electrons; in the 

present systems, overall these couplings are smaller for holes than for electrons (see Figure 5.4 

and Table 5.3).12 We also note that the super-exchange couplings depend on the transfer integrals 

(tDA) between donor and acceptor frontier orbitals and the related energy gaps (ΔEDA); thus, in the 

weak electronic coupling limit, they can be expressed as: 

 𝑡𝑒𝑓𝑓=  𝑡𝐷𝐴
2 /Δ𝐸𝐷𝐴            (4) 

The DFT results for the considered systems show that despite a 0.5 eV variation in the ΔEDA values, 

the tDA integrals that are controlled by the crystal packing, have a stronger effect on the relative 

super-exchange couplings (see Table 5.3).  

 

Table 5.3. B3LYP/6-31G estimates of ΔEDA (computed using the IP and EA values from Table 

5.1), tDA, and super-exchange couplings for holes (𝑡ℎ
𝑒𝑓𝑓

) and electrons (𝑡𝑒
𝑒𝑓𝑓

).  

Co-crystals ΔEDA (eV) tDA (meV) 𝒕𝒉
𝒆𝒇𝒇

 (meV) 𝒕𝒆
𝒆𝒇𝒇

 (meV) 

TP:F6TNAP 3.0 
185.4/66 

230/130.3 
- - 

BTBT:F6TNAP 2.8 300.5 11.6 76.3 

BDT:F6TNAP 3.0 163.5 24.5 34.6 

PY:F6TNAP 2.5 186.4 9.2 13.6 

ANT:F6TNAP 2.5 125.3 6.8 30 

CBZ:F6TNAP 2.8 179.3/101.3 - - 
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In line with the results obtained for the band dispersions and transfer integrals, the smallest 

effective masses for electrons are found along the stacking direction. Except in the case of 

PY:F6TNAP, the effective mass for electrons are smaller than 2m0, where m0  is the electron mass 

in vacuum. In particular, very small effective-mass values of 0.64 m0 and 0.75 m0 are found for 

BTBT:F6TNAP and CBZ:F6TNAP,  respectively. Small effective masses of 1.25 m0, 1.00 m0, and 

1.25 m0 are also found for holes in TP:F6TNAP, BDT:F6TNAP, and PY:F6TNAP, respectively. 

However, in contrast to what is found for electrons, the smallest effective masses for holes are 

found along the stacking direction only in BDT:F6TNAP, while in the TP:F6TNAP and 

PY:F6TNAP cocrystals, they are found along  directions approximately perpendicular to the 

stacking direction (see Figure 5.4 and Table 5.4); this is a consequence in these systems of direct 

through-space transfer integrals that exceed the super-exchange couplings. In most cases, the 

charge carriers are characterized by a small effective mass only along one crystal direction. 

However, two small components of the effective masses are found for electrons in TP:F6TNAP 

and BTBT:F6TNAP and for holes in BDT:F6TNAP, which suggests that charge transport in these 

cases has a two-dimensional character. For comparison, we note that the calculated effective 

masses for holes and electrons in pentacene, which is one of the most extensively studied single-

component systems in organic electronics, are ca. 1.5 m0 and 1.6 m0, respectively.14 
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(a) 

 

 (b) 

  

 

(c) 
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(d) 

  

 (e) 

  

(f) 

 

Figure 5.4. Illustrations of the largest transfer integrals and smallest effective masses for holes 

and electrons in:  (a) TP:F6TNAP, (b) BTBT:F6TNAP, (c) BDT:F6TNAP, (d) PY:F6TNAP; (e) 

ANT:F6TNAP, and (f) CBZ:F6TNAP. The red lines indicate the directions along which the 

principal components of mji
-1 have the smallest values of effective mass.   

A)!Anthracene+F6TCNAP!

!
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!

C)!Pyrene+F6TCNNQ!
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Table 5.4. Hole and electron effective masses, m (in units of the free electron mass at rest, m0).  

Crystal  m / m0 Parallel to  

TP:F6TNAP Holes at X (0.5, 0, 0) 1.2 b+0.35a+0.005c 

  10.77 a-0.05b-0.017c 

  1129.9 c+0.49a+0.48b 

 Electrons at R(0.5, 0.5, 0.5) 1.4 a+0.13b+0.23c 

  2.7 b-0.81a+0.97c 

  4.9 b+0.49a-0.46c 

BTBT:F6TNAP Holes at U (0.5, 0, 0.5) 4.5 a-0.27b-0.03c 

  11.4 b+0.7a+0.36c 

  107.8 c-0.02a-0.54c 

 Electrons at X (0.5,0,0) 0.64 a+0.29b+0.31c 

  1.40 c+0.77b-0.77a 

  171.9 b+0.1a-0.33c 

BDT:F6TNAP Holes at Г (0, 0, 0) 1.01 a+0.2c 

  3.06 c-0.37a 

  20.0 b 

 Electrons at Z (0, 0.5, 0) 0.81 a+0.006c 

  18.5 b+0.2a 

  30.0 b 

PY:F6TNAP Holes at Г (0, 0, 0) 1.25 b 

  5.01 a+0.04c  

  35.13 c+0.078a 

 Electrons at (0, 0.2, 0) 2.76 a+0.36c 

  10.13 a-0.43c 

  120 b 

ANT:F6TNAP Holes at E (-0.5, 0.5, 0.5) 17.1 b 

  468.6 a-0.6c  

  158.7 a+0.18c 

 Electrons at D (0, 0.5, 0.5) 1.81 a+0.0002c 

  12.4 b 

  240.1 c+0.16a 

CBZ:F6TNAP Holes at Г (0, 0, 0) 4.56 a-0.05b 

  60.00 c-0.06a-0.14b 

  70.77 b-0.13a 

 Electrons at (0, 0.035, 0.5) 0.75 a-0.24b+0.25c 

  7.61 c-0.45a+0.22b 

  60.83 b+0.19a-0.22c 

 

Overall, the calculations predict good electron-transport properties in all six cocrystals, 

particularly for the BTBT:F6TNAP and CBZ:F6TNAP cocrystals, while good hole-transport 
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properties are also predicted for TP:F6TNAP, BDT:F6TNAP, and PY:F6TNAP, which suggests 

that these three co-crystals could display ambipolar transport.  

 

5.3.2. Electrical properties  

In this Section, we briefly describe the experimental data from the Jurchescu group on the charge-

transport properties of the co-crystals and correlate them with the results of our DFT calculations. 

As a first step, two-terminal current-voltage characteristics were measured for all six co-crystals 

and the charge-carrier mobility values, µ, were evaluated using the space-charge-limited current 

(SCLC) method.24-31 Figure 5.5 shows current-voltage characteristics of BTBT:F6TNAP and 

CBZ:F6TNAP as representative examples. The resistivity () was calculated from the low-voltage 

regime of the curve, in which the current density (J) and the applied voltage (V ) are directly 

proportional (J  V, indicated by the blue line). Charge-carrier mobility values () were then 

estimated from the SCLC regime in which J  has a quadratic dependence on V (J  V2), by using 

the Mott-Gurney law24: 

                                (5) 

where L is the distance between the contacts, r is the relative permittivity of the semiconductor 

(approximated to be 3), 0 is the permittivity of free space, and   the ratio of free charge carriers 

to total charge carriers (assumed to be 1).  

J
SCLC

=
9

8

me
r
e
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q
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Figure 5.5. SCLC measurements for the representative examples of the (a) BTBT:F6TNAP and 

(b) CBZ:F6TNAP co-crystals. Inset shows an optical micrograph of a crystal laminated across the 

electrodes. The blue and red solid lines represent linear fits for the ohmic and SCLC regimes, 

respectively. Measurements conducted in the Jurchescu group. 

 

 

Table 5.5 lists the values of µ obtained for all six cocrystals. We note that there are significant 

uncertainties in the estimation of the µ values from the SCLC measurements, which arise from the 

assumed values of  and r  and with measurements of crystal thickness; hence, here, we report the 

order of magnitude rather than actual values. The SCLC mobility values fall into two groups: The 

TP:F6TNAP, BTBT:F6TNAP, PY:F6TNAP, and CBZ:F6TNAP co-crystals exhibit mobilities in 

the 0.1 – 1 cm2 V-1 s-1 range, while the mobilities are substantially lower for BDT:F6TNAP and 

ANT:F6TNAP. Overall, SCLC mobility values exceeding 1 cm2 V-1 s-1 are observed only for 

BTBT:F6TNAP and CBZ:F6TNAP, for which the DFT-estimated conduction bandwidths are the 

largest among all co-crystals considered in this work. 
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Table 5.5. Summary of the electrical properties evaluated from the SCLC and OFET 

measurements conducted in the Jurchescu group. 

 

Cocrystal 
SCLC Measurementsa  OFET Characteristics 

SCLC / cm2 V-1 s-1  h / cm2 V-1 s-1 e / cm2 V-1 s-1 

TP:F6TNAP 10-1  - - 

BTBT:F6TNAP 100  - - 

BDT:F6TNAP 10-4  - - 

PY:F6TNAP 10-1  (1.4  0.42)  10-2 (2.0  0.71)  10-2 

ANT:F6TNAP 10-3  (3.8  0.14)  10-4 (6.6  0.49)  10-4 

CBZ:F6TNAP 101  - - 
aReported as an order of magnitude because these values are estimated with numerous approximations.  

 

The electrical properties of the co-crystals were also evaluated using bottom-gate bottom-contact 

organic field-effect transistors (OFETs). ANT:F6TNAP and PY:F6TNAP crystals yielded 

functional FETs, while for the other systems, the attempts to fabricate OFETs were unsuccessful, 

most likely due to the high surface roughness of these crystals. Figure 5.6 shows the current 

between the source and drain electrodes, ID, as a function of gate-source voltage (VGS) at constant 

source-drain voltage, VDS = –60 V (left panel) and VDS = +60 V (right panel) for ANT:F6TNAP 

and PY: F6TNAP devices; the data clearly indicate ambipolar transport. The electron and hole 

charge carrier mobilities were evaluated in the respective saturation regimes using standard OFET 

equations and are given in Table 5.5.  
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Figure 5.6.  Evolution of the drain current, ID as a function of gate-source voltage, VGS (a) at VDS 

= –60 V, and (b) VDS = 60 V for ANT:F6TNAP and (c) at VDS = –70 V, and (d) VDS = 70 V for 

PY:F6TNAP. The left axis shows the square root of ID while the right axis shows ID on a 

logarithmic scale. The reliability factors for the graphs in panels are (a) 87%, (b) 94%, (c) 97%  

and (d)70%, respectively. Measurements conducted in the Jurschescu group. 

 

The ambipolarity observed for the PY:F6TNAP cocrystal is consistent with the band-

structure calculations, which indicate large widths for both VB and CB. On the other hand, the 

calculated VB bandwidth for the ANT:F6TNAP cocrystal is much lower than the CB bandwidth, 

apparently at odds with the ambipolarity suggested by the FET mobility data; this might be due to 

preferential trapping of electrons at the dielectric interface, which reduces electron mobility. The 

estimated µSCLC values for BTBT:F6TNAP and CBZ:F6TNAP are broadly consistent with 

calculated bandwidths or effective masses; however, the trends in µSCLC values for the other co-

crystals show no obvious correlation with the trends in the calculated bandwidths or effective 

masses.  
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5.3.3 Degree of charge transfer  

Having discussed the charge-transport properties of six F6TNAP acceptor-based co-crystals, it is 

of interest to understand whether these properties correlate with the degree of charge-transfer (ρ) 

in these systems. Several reports have underlined the sensitivity of certain vibrational modes to 

charge-transfer excitations.32-37 In particular, the nitrile (C≡N) stretching frequencies in cyano-

functionalized acceptors (like TCNQ, F2TCNQ, F4TCNQ or F6TNAP) have often been used to 

estimate this parameter.38-42 In this work, the relevant vibrational modes were identified from the 

IR spectra taken in the Marder group for all the co-crystals (see Figure 5.7) and ρ was estimated 

from the highest-energy stretching modes of C≡N (see Table 5.6).  

 

Figure 5.7. IR spectra comparing the nitrile stretching modes of F6TNAP with (a) TP:F6TNAP, 

BTBT:F6TNAP, ANT:F6TNAP, PY:F6TNAP cocrystals, and (b) CBZ:F6TNAP. Measurements 

conducted in the Marder group.  

 

The degree of charge-transfer was then estimated according to:40, 42-47  

                                                                                                                        (6) 

where Δν = ν0 – νCT and ν0, ν1, and νCT denote the highest nitrile stretching frequencies of F6TNAP 

in the neutral state (ρ = 0, ν0 = 2225 cm–1), the F6TNAP anion (ρ = 1, ν1 = 2194 cm–1), and the CT 

r =
2Dn

n
0

1-n
1

2 / n
0

2( )



119 

 

co-crystal, respectively. In the case of CBZ:F6TNAP, the value of νCT was found to be equivalent 

to that of ν0, precluding its use in estimating ρ. 

Table 5.6.  Highest nitrile stretching frequencies (cm–1) for F6TNAP, cocrystals, and F6TNAP•–, 

0, CT, and ν1, respectively, and along with estimated degree of charge transfer (𝜌) for cocrystals.a  

Cocrystal 0 CT 1 ρ 

TP:F6TNAP 2225 2223 2194 0.06±0.03 
BTBT:F6TNAP 2225 2222 2194 0.09±0.03 
BDT:F6TNAP 2225 2223 2194 0.06±0.03 
PY:F6TNAP 2225 2221 2194 0.13±0.03 
ANT:F6TNAP 2225 2223 2194 0.06±0.03 

 

Although the method described above is widely used in estimating ρ, we note that there are several 

inconsistencies within this approximation. First of all, the IR spectra of the neat F6TNAP crystal 

shows three peaks instead of the two that are expected. As seen from Figure 7, there occurs a sharp 

central peak along with two weak-intensity peaks. We note that the F6TNAP crystal contains two 

molecules per unit cell. Therefore, these results indicate that interactions between the same kinds 

of molecules could also largely impact the vibrational properties; thus, the change in the vibrational 

energies when going from a single-component crystal to a D-A crystal should not be expected to 

be related only with the amount of electron transfer. Therefore, the use of nitrile stretching 

frequencies or other frequencies to access the degree of charge transfer could be, in general, 

challenging and lead to inconsistencies.  

            

 The DFT simulated infra-red vibrational frequencies of C≡N stretching modes of F6TNAP in the 

co-crystals present a similar picture (see Figure 5.8) with multiple peaks largely differing in 

intensities. As discussed above, the higher-energy modes can correspond to interactions between 

molecules along different directions or a linear combination of different vibrations and need not 

necessarily arise solely from absorption by the C≡N stretching modes of F6TNAP.        
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Figure 5.8. DFT simulated (IR) vibrational frequencies (scaled by 0.9614) comparing the C≡N 

stretching modes of F6TNAP in the charge-transfer complexes, as calculated at the B3LYP/6-31G 

level.  

 

Clearly in addition to IR or Raman data, other approaches should be used to provide a reliable 

estimation of 𝜌. On the theory side, in order to estimate  the degree of charge-transfer, an approach 

based on Mulliken charges can be used.23 Table 5.7 collects the absolute values of charge transfer 

for all the co-crystals estimated in this way. We note that the charge-transfer values are 

significantly smaller than those estimated from the IR vibrational modes.  
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Table 5.7. Degree of charge transfer in the co-crystals based on Mulliken charges.   

co-crystal ρ (calculated) 

TP: F6TNAP 0.019 

BTBT: F6TNAP 0.050 

BDT: F6TNAP 0.014 

PY: F6TNAP 0.018 

ANT: F6TNAP 0.016 

CBZ: F6TNAP 0.053 

 

Here, the largest magnitude of charge transfer is observed for the BTBT: F6TNAP and CBZ: 

F6TNAP co-crystals. We recall from our electronic-structure calculations that these systems show 

the largest conduction bandwidths and the lowest effective masses for the electrons along the 

stacking direction. Additionally, the strong electronic couplings along the stacking directions and 

the large magnitude of the experimental SCLC mobilities affirm the strong nature of the CT 

interactions in these two systems. On the other hand, TP: F6TNAP, BDT: F6TNAP, PY: F6TNAP 

and ANT: F6TNAP display similar ρ values, which indicate a similar nature of CT interactions in 

these systems. The DFT prediction of ambipolar charge-transport characteristics in TP: F6TNAP, 

BDT: F6TNAP and PY: F6TNAP as well as the experimental OFET ambipolar charge-transfer 

characteristics for PY: F6TNAP and ANT: F6TNAP are generally consistent with this result.         

Overall, while a quantitative picture of charge transfer cannot be derived, our work provides a 

qualitative description that is consistent with the experimental observations.  
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5.4. Conclusions 

We have investigated the electronic and charge-transport properties of six co-crystals of F6TNAP 

with coplanar donors using a combination of DFT calculations, IR spectroscopy, and electrical 

measurements. The DFT calculations point to large conduction bandwidths and small effective 

masses for electrons along the stacking direction for all six co-crystals, which suggests good 

electron-transport properties. Large valence bandwidths and low effective masses for holes are 

also found for the TP:F6TNAP, BDT:F6TNAP, and PY:F6TNAP co-crystals. Based on these results, 

ambipolar charge-transport properties are predicted for three of the six co-crystals (TP:F6TNAP, 

BDT:F6TNAP and PY:F6TNAP); experimentally, only two of these co-crystals yield functioning 

OFET devices (PY:F6TNAP and ANT: F6TNAP) displaying ambipolar charge transport. Charge 

carrier mobilities are found to be in excess of 10-1 cm2V-1s-1 for four of the co-crystals; these values 

are comparable to the highest values reported in the literature for other CT complexes. We also 

evaluated the degree of charge transfer using IR spectroscopy data as well as DFT calculations and 

found qualitative trends that are in line with the charge-transport behavior of the co-crystals.   
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CHAPTER-6 

 

Electronic, vibrational and charge-transport properties of di-CnBTBT-

FmTCNQ co-crystals: Impact of alkyl chains and fluorination 

 

6.1 Introduction 

In the previous Chapter, we have investigated the electronic and charge-transport properties in co-

crystals based on the F6TNAP acceptor. Here, we primarily focus on charge-transfer (CT) co-

crystals formed from donor moieties based on the benzothieno[3,2-b][1]benzothiophene (BTBT) 

molecule and acceptor moieties based on 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its 

fluorinated derivatives.  

 

Over the years, BTBT and its alkylated derivatives have found promising prospects as a p-type 

semiconducting material for organic field-effect transistor (OFET) applications. In their pristine 

form, di-Cn-BTBT shows a high-degree of layered crystallinity that facilitates hole transport 

through the material. Field-effect mobilities of up to 10 cm2V-1s-1 were observed,1-3 which mainly 

arises from the herringbone packing pattern of these molecules in their pure phases. Here, it is 

useful to recall that rubrene also displays a similar packing pattern and exhibits mobilities in the 

same range (~20 cm2V-1s-1).4-6   

 

Recently, Mѐndez and coworkers, reported that the doping of 2,7-didecyl-BTBT (di-C10BTBT) 

with fluorinated derivatives of TCNQ resulted in the formation of CT complexes.7 Despite the 

strong p-type conduction features of BTBT in its pure phase, several recent experimental reports 

indicate n-type or ambipolar transport characteristics upon formation of CT co-crystals of BTBT 
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(or its alkylated forms) with TCNQ (or its fluorinated derivatives). Two reports are especially of 

interest. In the first report, OFET transport characteristics measured for co-crystals formed 

between unsubstituted BTBT and FmTCNQ (m = 0, 2, 4) identified only n-type conduction in all 

the combinations of co-crystals.8 The largest mobilities were found for the BTBT-F4TCNQ co-

crystal, in both thin-film and single-crystal based devices. In the second report, OFET mobilities 

were measured for a series of CT compounds of (di-Cn-BTBT)(FmTCNQ) [n = 4, 8, 12; m = 0, 2, 

4] and the largest  mobility value among all combinations was observed for di-C8BTBT-F2TCNQ 

in single-crystal based devices.9 Interestingly, di-C8BTBT-TCNQ shows ambipolar transport 

characteristics, even though its mobility is ~4 orders of magnitude lower than that of di-C8BTBT-

F2TCNQ. However, the structure-property relationships that govern the nature of transport with 

sequential addition of: (1) alkyl chains to the donor moiety and/or (2) fluorine atoms to the acceptor 

moiety, are not yet established.  

 

A second aspect of interest is the presence of two CT bands for di-C8BTBT-FmTCNQ (m=0,2,4) 

co-crystals in the low-energy part of the optical absorption spectra.9 The CT-state energies were 

found to systematically shift towards lower energies with the increase in the number of fluorine 

atoms on the TCNQ backbone. However, the presence of additional features in the spectra along 

different axes challenges the CT peak assignments. Hence, it is important to identify the molecular-

scale factors that define the nature of the excited states in these systems and to correlate them to 

experimental predictions.  

 

To obtain a better perspective, we choose to investigate the electronic-structure, vibrational, and 

charge-transport properties of BTBT-FmTCNQ (m=0,2,4) and di-CnBTBT-FmTCNQ (n=8,12; 
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m=0,4) co-crystals (see Figure 6.1). Our work here mostly focuses on deriving the structure-

property relationships and identifying the trends in the electronic properties upon: (1) increasing 

the length of the alkyl chains on the D moiety and (2) increasing the number of fluorine atoms on 

the A moiety, in the co-crystals considered.  Also, we quantify the ground-state degree of CT in 

these systems in order to rationalize the impact of the aspects mentioned above.  

 

 

Figure 6.1. Chemical structures of the BTBT (n=0, R=H), di-C8BTBT (n=8, R=C8H17), and di-

C12BTBT (n=12, R=C12H25) donors as well as the TCNQ, F2TCNQ, and F4TCNQ acceptor 

molecules.  

 

6.2. Methodology 

Geometry optimizations and calculations of individual molecular energies of BTBT, di-Cn-BTBT 

(n=8,12) and FmTCNQ (m=0, 2, 4) were performed using density functional theory (DFT) at the 

B3LYP/6-31G (d, p) level. Time-dependent density functional theory (TDDFT) was used at the 

same level on the optimized ground-state geometries to calculate the electronic excitations from 

the ground state. A natural transition orbital (NTO) approach was applied to visualize the 
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electronic excitations.10 All of these calculations were performed using the Gaussian 09. D01 

package.11  

 

The geometry optimizations of the CT co-crystals were also performed at the B3LYP/6-31G (d, p) 

level. During optimization, the cell parameters were kept fixed at their experimental values while 

the atomic positions were allowed to relax. Harmonic vibrational frequencies were calculated at 

the Г point of the crystals. A Coupled Perturbed Hartree-Fock/ Kohn-Sham (CPHF/CPKS) 

approach,12 which performs a completely analytical determination of IR and RAMAN intensities, 

was used for calculating the vibrational spectra. These DFT calculations with periodic boundary 

conditions were carried out with the CRYSTAL 17 package.13 

 

The electronic band-structures and density of states (DOS) for all the crystals were calculated at 

B3LYP/6-31G (d, p) level. In order to compare our results with previous studies, the electronic-

structure calculations of the co-crystals were also performed using the experimental crystal 

structures.14 Uniform 8×8×8 or 8×8×4 Monkhorst-Pack k-point meshes were employed for the 

BTBT-FmTCNQ (m=0,2,4) and di-CnBTBT-FmTCNQ (n=8,12 and m=0,4) co-crystals. All band-

structure calculations were performed using the CRYSTAL 14 package.15   

 

The charge-transport properties of the co-crystals were characterized based on electronic-coupling 

(transfer-integrals) and effective-mass calculations for both holes and electrons. We have applied 

the same protocols for all these calculations as in Chapter 5.16-18 In addition to through-space 

electronic couplings along the stacking direction, the transfer integrals between donor-donor, 

donor-acceptor, and acceptor-acceptor components located in different stacks were evaluated 
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using the fragment orbital approach. Also, superexchange couplings were estimated for both holes 

and electrons using a modified version of the Koopmans theorem, similar to the description in 

Chapter 5.19 All these calculations were carried out at the B3LYP/6-31G (d, p) level with the 

Gaussian 09.D01 package.11 

 

6.3. Results and Discussions 

6.3.1. Electronic Structure and Electronic Couplings 

The crystal structures of BTBT-FmTCNQ and di-CnBTBT-FmTCNQ were taken from the 

Cambridge Structural Database (CCDC), deposits 1031368, 1031369, 1031371, 1031372, 

1583470, 1583471 and 1583473.8, 9 BTBT-TCNQ, BTBT-F2TCNQ and di-CnBTBT-FmTCNQ 

(n=8,12; m=0,4) co-crystals belong to the triclinic space group P1̅, while the BTBT-F4TCNQ co-

crystal belongs to the monoclinic P21/c space group.  All co-crystals are characterized by a 1:1 

stoichiometry and crystallize in a mixed stack array. The BTBT-TCNQ, BTBT-F2TCNQ, and di-

CnBTBT-FmTCNQ co-crystals are stacked along the a-direction while BTBT- F4TCNQ is stacked 

along the b-direction (see Figure 6.2). In all cases, the donor and acceptor molecules are 

equidistant from each other along the stacking direction; therefore, similar electronic couplings 

can be expected between donor-acceptor pairs along the stacking direction in all these co-crystals.  
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Figure 6.2. Crystal structures of (a) BTBT-TCNQ, (b) BTBT-F2TCNQ, (c) BTBT-F4TCNQ, (d) 

di-C8BTBT-TCNQ, (e) di-C8BTBT-F4TCNQ, (f) di-C12BTBT-TCNQ, and (g) di-C12BTBT-

F4TCNQ. The stacking directions are represented in red for (a, b, d, e, f, and g) cases and in green 

for the (c) case.  

 

 The band structures and the densities of states of the co-crystals are given in Figure 6.3. Table 

6.1 collects the widths of conduction bands (CB) and valence bands (VB), along with the effective 

masses for each co-crystal (Table 6.2 and Table 6.3 provide more details on the effective masses 

and transfer integrals, respectively). The CB bandwidths are found to be relatively large, in the 

range of 280-380 meV, comparable to those already reported for the co-crystals based on TCNQ 

and F4TCNQ acceptors.14, 20 The main contribution to the total CB width comes from the electronic 

interactions between acceptor molecules along the stacking direction. The largest values among 

the CB widths are estimated for the BTBT:F2TCNQ, BTBT:F4TCNQ, di-C8BTBT-F4TCNQ and 

di-C12BTBT:F4TCNQ co-crystals; this results from the large effective (superexchange) transfer 

integral (~60-70 meV) along their respective stacking directions (see Table 6.3).  

 

The VB width of all co-crystals are narrower, in the range of 80-180 meV. The BTBT-FmTCNQ 

(m=0,2,4) co-crystals have a relatively larger and dispersive VB width along multiple directions, 
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in comparison to the co-crystals based on the di-CnBTBT donors; the di-CnBTBT-FmTCNQ 

(n=8,12; m=0,4) co-crystals show VB dispersion only along the stacking direction. In all co-

crystals, the superexchange couplings for the holes are much smaller than those for the electrons. 

However, direct through-space transfer integrals between BTBT molecules in different stacks are 

found to be either larger (>10 meV) or nearly similar to the superexchange couplings (holes) in 

the BTBT-FmTCNQ co-crystals; consequently, the dispersive nature of their VB in the band 

structure.  

 

Table 6.1. B3LYP/6-31G (d, p) conduction and valence bandwidths (in meV) along with the 

lowest two effective masses (in units of electron mass in vacuum, m0).  

 

Co-crystals 

Conduction 

Bandwidth 

Valence 

Bandwidth 

Effective Mass 

Electrons 

Effective Mass 

Holes 

m1/m0 m2/m0 m1/m0 m2/m0 

BTBT-TCNQ 299 139 1.0 3.2 1.3 4.7 

BTBT-F2TCNQ 372 177 0.8 1.5 1.0 3.4 

BTBT-F4TCNQ 345 157 0.8 3.6 2.1 2.3 

di-C8BTBT-TCNQ 286 89 1.0 >10 3.1 >10 

di-C8BTBT-F4TCNQ 340 132 0.7 >10 1.5 >10 

di-C12BTBT-TCNQ 283 100 1.2 7.5 3.9 >10 

di-C12BTBT-F4TCNQ 324 128 1.1 6.0 3.6 >10 
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Figure  6.3. Electronic band structures and densities of states of the: (a) BTBT:TCNQ, (b) 

BTBT:F2TCNQ, (c) BTBT:F4TCNQ, (d) di-C8BTBT:TCNQ, (e) di-C8BTBT:F4TCNQ, (f) di-

C12BTBT:TCNQ, and (g) di-C12BTBT:F4TCNQ  crystals. The high-symmetry points in the first 

Brillouin zone are labelled as: Г = (0,0,0), Z = (0,0,0.5), T = (0,0.5,0.5), Y = (0,0.5,0), X = (0.5,0,0), 

V = (0.5,0.5,0), R = (0.5,0.5,0.5) and U = (0.5,0,0.5), for the (a, b, d, e, f & g) cases, and Г = (0,0,0), 

Z = (0,0.5,0), C = (0.5,0.5,0), Y = (0.5,0,0), B = (0,0,0.5), A = (-0.5,0,0.5), E = (-0.5,0.5,0.5) and 

D = (0,0.5,0.5) for the (c) case. All points are given in fractional coordinates in the reciprocal space. 

The zero of energy is taken as the top of the valence band.  

 

Consistent with the band structure and electronic-coupling results, the smallest effective masses 

for electrons are found along the stacking directions in all co-crystals. Very small effective-mass 

values of 0.8m0, 0.8m0, and 0.7 m0 are calculated for electrons in BTBT-F2TCNQ, BTBT-F4TCNQ, 

and di-C8BTBT-F4TCNQ, respectively (where m0 is the rest mass of electrons in vacuum). The 

smallest effective mass values for electrons in other co-crystals are in the range of 1-1.2 m0. The 

smallest effective-mass components for holes are larger, although, in the BTBT-TCNQ and BTBT-

F2TCNQ cases, they are comparable to some of the smallest components of electron-effective 

masses. In a pattern that is similar to the F6TNAP-based co-crystals, the smallest effective masses 

for holes in the BTBT-FmTCNQ (m=0,2,4) co-crystals are oriented along a direction perpendicular 

to the stacking axis (see Tables 6.2 & 6.3), due to the electronic coupling between the donor 

molecules located in different stacks. This is in contrast to the cases of the di-CnBTBT-FmTCNQ 

(n=8,12; m=0,4) co-crystals in which the effective-mass components for holes are oriented only 

along the stacking direction. Interestingly, a rather small effective-mass component for holes (2.3 

m0) is also found along the stacking direction in BTBT-F4TCNQ, indicating a 2D nature of hole 

transport in this system. The BTBT-F2TCNQ co-crystal also exhibits a 2D character of charge 

transport in this case for electrons; a small component of electron-effective mass (1.5 m0) is found 

oriented indeed along a direction perpendicular to the stacking axis.  
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Table 6.2. Hole and electron effective masses, m (in units of the free electron mass at rest, m0).  

Crystal  m / m0 Parallel to  

BTBT-TCNQ Holes at Г (0, 0, 0) 1.3 b-0.09a-0.71c 

  4.7 c+0.45a+0.87b 

  10.7 a-0.11b-0.19c 

 Electrons at T (0, 0.5, 0.5) 1.07 a-0.03b+0.01c 

  3.2 c-0.03a-0.79b 

  13.4 b-0.02a+0.55c 

BTBT-F2TCNQ Holes at Г (0, 0, 0) 1.03 b-0.13a-0.77c 

  3.41 b+0.45a+0.96c 

  4.91 a-0.09b-0.19c 

 Electrons at T (0, 0.5, 0.5) 0.8 a-0.07b+0.05c 

  1.5 b+0.1a-0.7c 

  4.3 c-0.04a+0.8c 

BTBT-F4TCNQ Holes at Г (0, 0, 0) 2.1 a+0.17c 

  2.3 b 

  5.2 c-0.65a 

 Electrons at Г (0, 0, 0) 0.83 b 

  3.62 a+0.31c 

  5.73 a-0.61c 

di-C8BTBT-TCNQ Holes at Г (0, 0, 0) 3.06 a+0.011b-0.002c 

  33.76 b-0.27a-0.09c 

  358.06 c-0.56a+0.51b 

 Electrons at Г (0, 0, 0) 1.0 a-0.007b 

  26.9 b-0.29a 

  240.0 c-0.4a-0.03b 

di-C8BTBT-F4TCNQ Holes at Y (0, 0.5, 0) 1.5 a-0.04b+0.00098c 

  61.66 c-0.6b+0.7c 

  308.26 b-0.23b-0.16c 

 Electrons at T (0, 0.5, 0.5) 0.73 a+0.02b+0.003c 

  15.80 b-0.4a+0.09c 

  327.9 c-0.14a-0.56c 

di-C12BTBT-TCNQ Holes at Г (0, 0, 0) 3.9 a-0.07b-0.04c 

  13.7 b+0.03a+0.82c 

  18.9 b-0.26a-0.18c 

 Electrons at Г (0, 0, 0) 1.25 a-0.09b-0.03c 

  7.54 b-0.001a+0.71c 

  14.91 b-0.24a-0.20c 

di-C12BTBT-F4TCNQ Holes at Y (0, 0.5, 0) 3.56 a-0.17b-0.03c 

  21.06 b+0.017a+0.63c 

  30.92 b-0.15a-0.24c 

 Electrons at (0, 0.5, 0.010) 1.11 a-0.009b-0.043c 

  6.0 b-0.03a+0.7c 

  11.54 b-0.27a-0.22c 
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Experimentally, Mori and co-workers have reported n-type conduction in single-crystal OFET 

devices of the BTBT-FmTCNQ (m=0, 2, 4) systems; with the largest mobilities observed for the 

BTBT-F4TCNQ co-crystal.8 Hasegawa and co-workers have also reported n-type transport in 

devices based on diC8BTBT-FmTCNQ (m=0,2,4) co-crystals.9 Our DFT calculations are consistent 

with the available experimental results as good electron-transport properties are predicted for the 

seven co-crystals. However, our calculations also predict good hole-transport properties for the 

BTBT-FmTCNQ (m=0,2,4) and di-C8BTBT-F4TCNQ cases, which suggests that ambipolar charge 

transport could be displayed in these systems. Experimentally, ambipolar transport has been 

observed only for the di-C8BTBT-TCNQ co-crystal, for which our DFT calculations predict only 

electron-transport characteristics. 

 

Table 6.3. B3LYP/6-31G (d,p) estimates of tAA, tDD, and tDA, and super-exchange couplings for 

holes (𝑡ℎ
𝑒𝑓𝑓

) and electrons (𝑡𝑒
𝑒𝑓𝑓

). 

 

Co-crystals tA-A tD-D tD-A 𝐭𝐞𝐥𝐞𝐜𝐭𝐫𝐨𝐧𝐬
𝐞𝐟𝐟  𝐭𝐡𝐨𝐥𝐞𝐬

𝐞𝐟𝐟  

BTBT-TCNQ 1.9 14.2 160.3 56.3 3.6 

BTBT-F2TCNQ 7.2 17.6 226.7 63.2 5.3 

BTBT-F4TCNQ 2.7 13.9 252.4 66.5 16.5 

di-C8BTBT-TCNQ 0.7 7.9 213.8 57.9 5.4 

di-C8BTBT-F4TCNQ 3.3 5.7 276.4 62.8 13.6 

di-C12BTBT-TCNQ 0.6 10.6 184.6 57.0 6.6 

di-C12BTBT-F4TCNQ 2.7 5.1 174.3 60.9 10.3 
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6.3.2. Superexchange Couplings: Electron hole Asymmetry  

A characteristic feature of many co-crystals is the “mirror symmetry” between VBs and CBs in 

their band structures. Representative examples for DMQtT-F4TCNQ and DBTTF-TCNQ are 

shown in Figure 6.4. However, in the co-crystals considered in the present Chapter and the 

previous Chapter, this mirror symmetry between VB and CB is absent.   

 

Figure 6.4. Electronic band structures and densities of states of the: (a) DMQtT:F4TCNQ and (b) 

DBTTF:F4TCNQ co-crystals. The points of high symmetry in the first Brillouin zone are labelled 

as follows: Г = (0,0,0), Z = (0,0,0.5), T = (0,0.5,0.5), Y = (0,0.5,0), X = (0.5,0,0), V = (0.5,0.5,0), 

R = (0.5,0.5,0.5) and U = (0.5,0,0.5). All points are given in fractional coordinates of the reciprocal 

space. The zero of energy is taken as the top of valence band. Adapted from Reference [17]. 
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In order to explain why the electron-hole symmetry is observed in some co-crystals but is absent 

in others, we have considered the case where superexchange couplings can be treated by means of 

perturbation theory. The super-exchange couplings for holes and electrons in this limit are given 

as: 

                                                 𝑡ℎ
𝑒𝑓𝑓

= ∑
𝑡𝑎𝐷1𝑏𝐴 𝑡𝑏𝐴𝑎𝐷2

𝐸𝑎𝐷𝑏𝐴
𝑎𝐷(𝑏𝐴)                                                                         (1) 

                                                 𝑡𝑒
𝑒𝑓𝑓

= ∑
𝑡𝑏𝐴1𝑎𝐷 𝑡𝑎𝐷𝑏𝐴2

𝐸𝑎𝐷𝑏𝐴
𝑏𝐴(𝑎𝐷)                                                                         (2) 

Here, 𝑎𝐷 and 𝑏𝐴 represent the molecular orbitals of the donor and  acceptor (with D1[A1]  and 

D2[A2] corresponding to two donor[acceptor] molecules in the D1-A-D2 [A1-D-A2] triad); 𝐸𝑎𝐷𝑏𝐴 

and 𝑡𝑎𝐷𝑏𝐴  are the energy gaps and transfer integrals involving these orbitals. When only the 

transfer integral from the HOMO (HD) of the donor to the LUMO (LA) of the acceptor contributes 

to the superexchange couplings, we obtain: 

 𝑡𝑒
𝑒𝑓𝑓

= 𝑡ℎ
𝑒𝑓𝑓

=
𝑡𝐻𝐷𝐿𝐴
2

𝐸𝐻𝐷𝐿𝐴
                        (3) 

Thus, in this case, the effective coupling for holes and electrons are equal. Generally, this occurs 

when the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 

(LUMO) levels are energetically well separated from the rest of the molecular orbital levels. 

However, this is not the case in the current set of co-crystals. As seen from Table 6.4, the electronic 

couplings of the HOMO-1 energy level of BTBT and LUMOs on the acceptors are at least 50% 

larger than the couplings between HOMOD and LUMOA. Since the HOMO-1 and HOMO levels 

of BTBT are separated by only 0.3 eV (see Figure 6.5), these two electronic coupling pathways 

(HOMOD => LUMOA and HOMO-1D => LUMOA) contribute nearly equally to the super-

exchange couplings for electrons,  resulting in relatively larger 𝑡𝑒
𝑒𝑓𝑓

 values and a large dispersion 

of the CBs.  
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Several electronic-coupling pathways also contribute to the super-exchange couplings for holes.  

Our calculations on the BTBT-TCNQ co-crystal show that, despite the fact that the LUMO+1 in 

TCNQ, F2TCNQ, and F4TCNQ is separated from their respective LUMO by about 2 eV, the 

HOMOD => LUMO+1A channel also contributes considerably to the superexchange coupling. We 

note that, in general, two DA transfer integrals in the same triad (for instance,   𝑡𝑎𝐷1𝑏𝐴 and 𝑡𝑏𝐴𝑎𝐷2 

in D1-A-D2 ) could have similar or opposite signs. In the case of BTBT-TCNQ,  the main 

contributions for the hole-transport have an opposite sign and cancel each other, leading to very 

low superexchange couplings for the holes. Therefore, the VB along the stacking directions shows 

a much lower dispersion in comparison with the CB, resulting in high asymmetry between holes 

and electrons.  

 

Figure 6.5. Energy levels of BTBT, TCNQ, F2TCNQ, and F4TCNQ calculated at the B3LYP/6-

31G(d, p) level.  
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Table 6.4. B3LYP/6-31G (d,p) estimates of t(H)D-(L)A (meV) and t(H-1)D-LA [(H)D=HOMO of the 

donor molecule and LA is the LUMO of the acceptor molecule]. 

 

 

 

 

 

 

6.3.3. Low-energy CT Optical Transitions 

In order to investigate the nature of the lowest energy optical transitions, we performed TDDFT 

calculations. NTO analyses reveal that the S0-S1, S0-S2, and S0-S3 transitions are CT states (see 

Table 6.5 and Figure 6.6). For all co-crystals, the coefficients corresponding to each transition 

indicate dominant contributions from HOMOD => LUMOA and HOMO-1D => LUMOA one-

electron excitations for the S1 and S2 excited states, respectively. We note that Hasegawa and co-

workers have also observed two peaks in the optical absorption spectra of the diC8BTBT-FmTCNQ 

(m=0, 2, 4) co-crystals and assigned the transitions to HOMOD => LUMOA and (HOMO-1)D 

=>LUMOA excitations.9 Interestingly, a ~0.5-0.6 eV difference was observed between the two CT 

transitions for the diC8BTBT-FmTCNQ (m=0, 2, 4) co-crystals; this trend is consistent with the 

results of our calculations as well. Thus, the two CT bands observed experimentally and those 

co-crystals tHD-LA (meV) t(H-1)D-LA (meV) 

BTBT-TCNQ 160.3 348.1 

BTBT-F2TCNQ 226.7 329.5 

BTBT-F4TCNQ 252.4 331.9 

di-C8BTBT-TCNQ 213.8 424.4 

di-C8BTBT-F4TCNQ 276.4 394.5 

di-C12BTBT-TCNQ 184.6 430.3 

di-C12BTBT-F4TCNQ 174.3 239.7 
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reproduced by our TDDFT calculations are related to the same DA coupling pathways (HOMOD  

=> LUMOA and HOMO-1D => LUMOA) that define the super-exchange  couplings for holes, showing 

that in DA co-crystals there is a strong relationship between optical and charge-transport properties. 

 

 

Table 6.5. Singlet excited-state energies of co-crystals calculated by TDDFT at the B3LYP/6-

31G(d,p) level. The values in brackets are the oscillator strengths (f).  

 

Co-crystals S1 (f) S2 (f) S3 (f) 

BTBT-TCNQ 1.19 (0.0061) 1.78 (0.0620) 2.16 (0.0098) 

BTBT-F2TCNQ 1.10 (0.0106) 1.65 (0.0616) 2.05 (0.0168) 

BTBT-F4TCNQ 1.06 (0.0107) 1.61 (0.0666) 2.00 (0.0131) 

di-C8BTBT-TCNQ 1.16 (0.0164) 1.63 (0.0570) 2.12 (0.0092) 

di-C8BTBT-F4TCNQ 1.01 (0.0198) 1.43 (0.0634) 1.95 (0.0105) 

di-C12BTBT-TCNQ 1.13 (0.0171) 1.59 (0.0555) 2.10 (0.0088) 

di-C12BTBT-F4TCNQ 1.05 (0.0143) 1.42 (0.0641) 1.87 (0.0118) 

 

 

Co-crystal Excited 

State 

Hole Electron 

BTBT-TCNQ S1 

 
 

 S2 
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BTBT-F2TCNQ S1 

 
 

 S2 

  

BTBT-F4TCNQ S1 

 
 

 S2 

 
 

di-C8BTBT-

TCNQ 

S1 

  

 S2 

  

di-C8BTBT-

F4TCNQ 

S1 
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 S2 

 
 

di-C12BTBT-

TCNQ 

S1 

  

 S2 

  

di-C12BTBT-

F4TCNQ 

S1 

 
 

 S2 

 
 

 

Figure 6.6. Natural Transition Orbitals for the lowest excited states calculated at the TDDFT 

B3LYP/6-31G (d, p) level.  
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6.3.4. Degree of Charge Transfer 

It is also of interest to quantify the degree of charge transfer (ρ) in the co-crystals. As already 

mentioned in Chapter 5, vibrational spectroscopy is a common tool used to quantify ρ. We recall 

that the changes in vibrational frequencies when going from a single-component crystal to D-A 

co-crystals cannot be necessarily linked to ρ; this is even more evident in the current systems, for 

which we have calculated the IR absorption spectra. Here, we focus on both C꞊C and the C≡N 

stretching frequencies for comparison. We note that the C꞊C stretching frequencies in the TCNQ, 

F2TCNQ, and F4TCNQ acceptors are found in the range of 1400-1600 cm-1; however, there are 

several peaks of differing intensities that appear in this region. In contrast, the C≡N bonds exhibit 

only two peaks in all co-crystals. An interesting feature that emerges from the C≡N vibrations (see 

Figure 6.7b) is that the peaks are decreasing in intensity with an increase in the length of alkyl 

chains on the donor and/or increase in the number of fluorine atoms on the acceptor unit.  
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Figure 6.7. B3LYP/6-31G (d, p) IR vibrational frequencies (scaled by 0.9614) comparing: (a) the 

charge sensitive bands in the 1200-1700 cm-1 region, and, (b) the C≡N stretching modes of 

FmTCNQ (m=0, 2, 4) in the charge-transfer complexes. 

 

While the presence of two sharp C≡N peaks in the IR spectra of all co-crystals is an argument for 

their use in the estimation of ρ, the system-dependent nature of this method questions its general 

applicability. Moreover, previous works have highlighted the often overestimated nature of the 

degree of CT obtained from C≡N stretching frequencies.21, 22 Therefore, we choose not to rely on 

this method for estimation of ρ here.  Instead, similar to the case of the F6TNAP co-crystals, we 

have applied an approach based on Mulliken charges (see Table 6.6). An interesting trend that 

emerges from the results is that the co-crystals with unsubstituted BTBT as the donor exhibit nearly 

similar ρ values; this trend has been previously reported by Rovira and co-workers on the same 

systems using IR absorption spectra.22 The co-crystals with alkyl-chain substituted BTBT, on the 

other hand, display overall higher ρ values. The largest ρ value is calculated for the diC8BTBT-

F4TCNQ system, which also shows one of the largest transfer integrals and conduction bandwidth 

along the stacking direction as well as one of the smallest effective masses for electrons. Moreover, 

diC8BTBT-F4TCNQ shows the largest OFET mobility values among the co-crystals in single-

crystal based devices.9  
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Table 6.6. Degree of charge transfer in the co-crystals based on Mulliken charges.  

 

co-crystals ρ (calculated) 

BTBT-TCNQ 0.036 

BTBT-F2TCNQ 0.044 

BTBT-F4TCNQ 0.040 

di-C8BTBT-TCNQ 0.066 

di-C8BTBT-F4TCNQ 0.072 

di-C12BTBT-TCNQ 0.056 

di-C12BTBT-F4TCNQ 0.052 

 

 

6.4. Conclusion 

We have investigated the electronic structure, vibrational properties and charge-transport 

properties of co-crystals based on BTBT and di-CnBTBT (n=8, 12) donors and FmTCNQ (m=0, 2, 

4) acceptors. The DFT calculations predict large conduction bandwidths and small effective 

masses for electrons in all co-crystals, which suggests good electron-transport properties in all 

these systems. Large values of the valence bandwidths and small effective masses for holes are 

also observed for the BTBT-FmTCNQ (m=0, 2, 4) co-crystals, which also suggests ambipolar CT 

characteristics in these systems.  

 

We also explored the electron-hole asymmetry observed in the band structures and characterized 

the formation of asymmetric charge-transport pathways leading to different extent of 

superexchange couplings for holes and electrons. The calculated lowest energy CT excitations 

were found to correlate well with the experimental anisotropic optical absorption spectra. Finally, 
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we evaluated the degree of charge transfer, which was quantified using Mulliken charges.  The 

results are consistent with those for the electronic coupling and band structures.   
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CHAPTER-7 

 

CONCLUSIONS AND OUTLOOK 

 

            Over the past decade, the field of organic electronics has witnessed a steady growth, with 

the development of newer material systems and significant improvements in operational 

efficiencies and the expansion of the organic light-emitting diode (OLED) market. Insights on 

device processes obtained from fundamental studies such as those presented here offer avenues to 

establish reliable connections between experimental observations and theoretical predictions. 

However, the absence of detailed control of the morphology of the active layers in the different 

types of organic electronic devices, represents a limiting step for further performance 

improvements. Therefore, in order to obtain a comprehensive picture of device operation, a better 

understanding of the factors linking the nature of packing and its impact on electronic and charge-

transport characteristics are necessary.  

 

With this broad aim in mind, in this Thesis, our investigations were focused on two types of π-

electron donor (D)- π-electron acceptor (A) material combinations: (1) polymer/small-molecule 

acceptor combinations in pure and blend phases for organic photovoltaic (OPV) device 

applications; and (2) charge-transfer (CT) DA co-crystals for organic field-effect transistor 

(OFET) applications. We applied a combined approach based on molecular dynamics (MD) 

simulations and density functional theory (DFT) calculations for evaluating the local morphology 

of OPV materials and its impact on electronic properties; to analyze the effect of crystal packing 

on the charge-transport behavior in the CT co-crystals, we performed a series of DFT-based 

calculations to evaluate the band structures, densities of states, effective masses, and electronic 
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couplings. Below, we briefly summarize our main findings and discuss the outlook for future work 

for each of these categories of materials.  

 

7.1. Organic Photovoltaics  

In Chapter 3, we investigated the effect of solution temperature-dependent aggregation on the 

solid-state packing and electronic properties of two representative polymer donors, PBT4T-2OD 

and PffBT4T-2OD, in their pure phases. Using MD simulations, we explored the disaggregation 

of a perfectly packed cluster of each of these polymer chains in solution at 5 different temperatures. 

Based on the outputs of MD simulations, DFT calculations revealed the key role of fluorination in 

maintaining the coplanarity of PffBT4T-2OD chain. This facilitates a longer inter-chain interaction 

length and larger magnitude of electronic coupling among the PffBT4T-2OD chains, which 

contributes to the fact that they remain well-packed in solution. Therefore, when the solvent 

molecules evaporate during film formation, the binding interactions between the PffBT4T-2OD 

chains maintain their aggregated nature, leading to appropriate domain sizes and good crystallinity 

for the donor phase in the active layer. Such a morphology is favorable to efficient exciton 

dissociation and hole transport, which leads to high power-conversion efficiencies (PCEs). 

  

In Chapter 4, we performed MD simulations on binary combinations of the PTFB-O polymer and 

two SMAs, ITIC-Th and IEIC-Th. The main results from this part are: (i) The similarity in 

intermolecular packing density and packing patterns points to the well-mixed nature among PTFB-

O, ITIC-Th, and IEIC-Th, which explains the linear evolution of VOC as a function of ITIC-Th 

concentration in the ternary blend of PTFB-O:ITIC-Th:IEIC-Th. (ii) Higher electronic couplings 

among the ITIC-Th acceptors account for higher electron-transfer rates, which is consistent with 
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the higher JSC observed in the PTFB-O:ITIC-Th blend. (3) The difference in total energetic 

disorder of the CT states between the PTFB-O:ITIC-Th and PTFB-O:IEIC-Th blends is mainly 

induced by the difference in static disorder. (4) The difference in VOC values is found to arise from 

the different extent of total energetic disorders of the CT states; the blend that exhibits lower total 

energetic disorder displays a higher VOC.  

 

The results we have obtained on OPV materials have given us more insight into the factors that 

influence the operation of an OPV device, which depends on the formation of an optimum active-

layer morphology for efficient charge transport through the mixed and pure regions. While the 

results discussed in Chapter 3 focused on the pure phase of polymer donors, the impact on the 

mixed phase of the minor structural changes to the polymer backbone has also been investigated 

in a separate study to which we contributed (Adv. Funct. Mater., 2018, 28, 1705868, see Appendix 

A). We found that upon formation of a blend with the PC71BM acceptor, the structural differences 

in the polymer backbones play a major role in determining the energetics of the CT interfacial 

electronic states. The main takeaway from our work is that the morphology control in blends such 

as those we have investigated can be enabled by optimization of three critical aspects: (i) 

temperature of the blend solution as well as casting temperature; (ii) selection of suitable solvent 

molecules; and (iii) position and extent of fluorination of the polymer backbones. Careful selection 

of these three parameters is crucial, as they allow the fine-tuning of all the intermolecular 

interactions that impact the formation of the final film morphology.  

 

The main message from Chapter 4 is that the open-circuit voltage, Voc, is higher in the case of the 

blend that shows the lowest static disorder, that is, the PTFB-O: IEIC-Th blend. We note that to 
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achieve higher device efficiencies, it is necessary to develop materials that exhibit reduced static 

and dynamic energetic disorders, and at the same time maintain optimum packing characteristics. 

In this regard, theoretical calculations can be of valuable help for material selection and 

understanding of the interactions within the blends. Such studies can point to good packing 

properties and high electronic couplings, characteristics that can lead to larger short-circuit current 

density values, Jsc, in the blends.  

 

While our investigations on the OPV side mainly focused on the “local” morphology, we note that 

it is also important to evaluate their impact on the “global” morphology. However, the inherent 

limitations of all-atom MD simulations in terms of system sizes (up to about 10 nm x 10 nm x 10 

nm) and time-scales (up to a few hundreds of nanoseconds) restrict their applicability for this 

purpose. To obtain a more reliable comparison with actual device morphology, coarse-grained 

(CG) MD simulations, which can address system sizes some three orders of magnitude larger and 

timescales reaching microseconds, need to be implemented.  

 

A follow-up to Chapter 3 would be to rationalize in more detail the origin of the solution 

temperature-dependent aggregation properties in the PffBT4T-2OD polymer. Via an approach 

combining MD simulations, DFT calculations, and symmetry adapted perturbation theory (SAPT) 

calculations, this could be achieved by examining specific interactions among the molecular 

components. As for Chapter 4, extending the current MD simulations from binary blends to ternary 

blends represents the clear step forward. It is important indeed to understand the factors leading to 

the improvement in fill factor (FF) in the ternary blends vs. the corresponding binary blends. 

Recent reports in the literature indeed predict some of the highest PCEs for ternary blend devices. 
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We note that such an extension to our simulations would contribute greatly to the understanding 

of the specific features leading to the high efficiencies of the ternary blends. In addition, the derived 

binary and ternary morphologies can act as inputs for Kinetic Monte Carlo (KMC) calculations to 

simulate device relevant properties such as hole and electron mobilities, charge injection and 

extraction, and charge-recombination processes. CG simulations could also be useful here to 

directly compare the simulated morphologies to actual experimental device configurations. In the 

near future, more systematic relationships between morphology and device performance will in 

this way be more easily extracted from computational methodologies.  

 

7.2. Organic CT Co-crystals  

In this part of our Thesis, we mainly focused on analyzing the impact of packing on the electronic 

and charge-transport properties, with experimentally derived crystal structures used as inputs for 

the DFT calculations. In Chapter 5, we investigated the CT properties of a series of co-crystals 

based on the F6TNAP acceptor and correlated them with the experimental results. The main 

conclusions of our work indicated that: (i) Large conduction bandwidths and small effective 

masses for electrons were obtained for all the co-crystals, which points to good electron-transport 

properties. (ii) Large valence bandwidths and small effective masses for holes were also obtained 

for the TP:F6TNAP, BDT:F6TNAP, and PY:F6TNAP co-crystals, which suggests ambipolar 

charge-transport in these co-crystals. We recall that experimentally ambipolar transport properties 

were observed only for the PY:F6TNAP and ANT:F6TNAP co-crystals, and the charge-carrier 

SCLC mobilities are in excess of 10-1 cm2V-1s-1 for at least four of the six co-crystals considered 

(TP:F6TNAP, BTBT:F6TNAP, PY:F6TNAP and CBZ:F6TNAP). (iii) The degrees of charge 
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transfer calculated using Mulliken charges also correlate well with the trends observed in the 

experimental results.  

 

Chapter 6 primarily aimed at understanding the impact of sequential addition of alkyl chains on 

the donor and fluorine atoms on the acceptor, on the charge-transport characteristics of the BTBT-

FmTCNQ (m=0, 2, 4) and di-CnBTBT-FmTCNQ (n=8, 12; m=0, 4) series of co-crystals. As in the 

case of F6TNAP co-crystals, we find that all the co-crystals considered here exhibit good electron-

transport characteristics. However, ambipolar transport is predicted only for the BTBT-FmTCNQ 

(m=0, 2, 4) series of co-crystals. We note that the electron-hole asymmetry found in these systems 

arises mainly from the presence of multiple charge-transport pathways that contribute to the overall 

superexchange couplings for holes and electrons along the stacks. The TDDFT calculations on the 

lowest energy CT excitations correlate well with the experimental observations. Again, the degree 

of charge transfer calculated from Mulliken charges were consistent with the available 

experimental data.  

 

While the results presented in this Thesis provide a detailed characterization of the electronic 

structure of these co-crystals, which are found to be in line with the experimental data, there are 

features that need further clarification. For instance, although the impact of Hartree-Fock exchange 

on the electron-vibration couplings has been previously investigated, the corresponding impact of 

range-separated functionals not been fully explored. Another aspect of interest is to evaluate the 

effect of hydrogen-bond interactions and halogen interactions on the packing motifs of the co-

crystals. Also, recent studies indicate that some of the donor-acceptor co-crystals display 

ferroelectric properties. A theoretical understanding of the nature and extent of these magnetic 
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properties as well as of the non-linear optical properties is crucial to investigate their potential 

applications as, for instance, electrically conducting hydrogels, CT sensitizers for photovoltaics, 

and magnetically controllable ferroelectric materials.  

 

Extensions of the work presented in Chapters 5 and 6 would include a broader characterization of 

the structure-property relationships in these co-crystals, including aspects like electron-phonon 

coupling and impact of disorder. In this regard, it is important to evaluate the impact of electron-

phonon couplings beyond the Г point. Also, the identification of the intramolecular and 

intermolecular vibrational modes corresponding to CT excitations is of interest. We note that the 

optical properties of these co-crystals have not been very well characterized yet. While the 

calculations so far have been largely limited to simple DA complexes, it would be interesting to 

extend the current approaches to cluster-level calculations at the level of accurate methodologies 

such as the GW approximations in combination with Bethe-Salpeter equations. A comprehensive 

description of all these features would definitely help form a better understanding of the structure-

property relationships and eventually contribute to improve the device performance in OFET 

devices based on such co-crystals.  
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