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SUMMARY

Secure communication and authentication are some of the most important and practi-

cal topics studied in modern cryptography. Plenty of cryptographic protocols have been

proposed to accommodate all sorts of requirements in different settings and some of those

have been widely deployed and utilized in our daily lives. For instance, over half of web

traffic is now protected by the Transport Layer Security (TLS) protocol to encrypt the com-

munication between web servers and clients. Not surprisingly, these real-world protocols

become hot targets of malicious attacks, which could lead to disastrous confidential infor-

mation leakage and significant financial loss. It is therefore a crucial goal to provide formal

security guarantees for such protocols.

In this thesis, we apply the provable security approach, a standard method used in

cryptography to formally analyze the security of cryptographic protocols, to three problems

related to secure communication and authentication:

First, we focus on the case where a user and a server share a secret and try to authenti-

cate each other and establish a session key for secure communication, for which we propose

the first user authentication and key exchange protocols that can tolerate strong corruptions

on the client-side.

Next, we consider the setting where a public-key infrastructure (PKI) is available and

propose models to thoroughly compare the security and availability properties of the most

important low-latency secure channel establishment protocols: TLS 1.3 over TCP Fast

Open (TFO), Quick UDP Internet Connections (QUIC) over UDP, and QUIC[TLS] (a new

design for QUIC that uses TLS 1.3 key exchange) over UDP.

Finally, we perform the first provable security analysis of the new FIDO2 protocols, the

promising proposed standard for passwordless user authentication from the Fast IDentity

Online (FIDO) Alliance to replace the world’s over-reliance on passwords to authenticate

users, and design new constructions to achieve stronger security.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Goal

Secure communication and authentication are some of the most important and useful tools

provided by cryptography for information security. In particular, secure communication

prevents private communication between two entities from being eavesdropped and modi-

fied by a third party while authentication verifies the identity of an entity.

So far, there are plenty of cryptographic protocols proposed by both cryptographers and

practitioners to accommodate all sorts of requirements in different settings. Among them

some protocols have been widely deployed and utilized in our daily lives. As a prominent

example, the Transport Layer Security (TLS) [1] protocol is currently used to encrypt over

half of web traffic to protect the communication between web servers and clients, which

in particular guarantees the confidentiality and integrity of the browsed web content if the

website employs HTTPS [2]. TLS also provides server authentication by default, which

for instance prevents network attackers from impersonating a legal website.

Not surprisingly, such real-world protocols are always hot targets of malicious attacks.

To mitigate potential attacks and construct secure protocols, it is important to perform

formal analyses of the cryptographic protocols to evaluate their security guarantees and

identify possible vulnerabilities.

Again taking TLS for example, there have been a lot of reported attacks [3] that ex-

ploited its design flaws and implementation errors, resulting in disastrous confidential in-

formation leakage and significant financial loss. An important cause of those exploited

vulnerabilities was the insufficient formal security analysis of the previous TLS standards.

Since 1999, several TLS standards have been designed and released by the Internet En-
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gineering Task Force (IETF) TLS working group. However, their security was mostly

“believed” rather than guaranteed in a formal way until the first thorough security analysis

of TLS 1.2 appeared in 2012 [4]. In order to enhance the security (and performance) of the

current deployed standard TLS 1.2 [1], the new standard TLS 1.3 [5] was designed in an

unprecedented joint effort with the academic community. With extensive formal analyses

performed by cryptography and security researchers along with its design process [6, 7, 8,

9, 10, 11, 12, 13, 14, 15], TLS 1.3 upon its release has very strong security guarantees in

contrast with its predecessors.

Our goal in this thesis is to provide formal cryptographic analyses of some of the most

important secure communication and authentication protocols and propose new construc-

tions to achieve stronger security in some settings. In particular, we apply the provable

security approach, a standard methodology in modern cryptography to formally analyze

the security of a cryptographic protocol, to three problems related to secure communication

and authentication. We hope our results will help the practitioners understand the security

guarantees and vulnerabilities of the existing protocols and facilitate the design and de-

ployment of more secure and efficient constructions by proposing candidate protocols with

strong provable security. Our contributions are sketched below.

1.2 Contributions

Let us first briefly recall the provable security approach, which is used throughout this

thesis. The idea of provable security dates back to the seminal work of Goldwasser and

Micali [16] and now this approach is widely applied to analyze all kinds of cryptographic

protocols. It consists of three main steps: first formalizing the general protocol syntax that

captures the target protocol to be analyzed, then defining the security model to specify the

security goals and adversarial abilities, and finally based on the defined model proving the

security of the target protocol or identifying attacks that break the security. The proofs

proceed by reduction, i.e., showing that if an attacker breaks the security of the target

2



protocol then the underlying computational hardness assumption (or the security) of some

building block does not hold.

1.2.1 Human Authenticated Key Exchange

Motivation. Our first problem concerns the case where a user and a server share a secret

and try to authenticate each other and establish a session key for secure communication.

This problem has been extensively studied under the topic Password-Authenticated Key

Exchange (PAKE), since the seminal work by Bellovin and Merritt [17]. However, what

happens if the terminal through which the user communicates with the server has been

compromised? The terminal may have a spyware keylogger recording the user’s keystrokes

and sending them to the attacker.

The existing security definitions for PAKE acknowledge the problem by modeling

strong corruptions when the adversary corrupts the user’s terminal and learns all of its

current state. However, none of the existing protocols try to offer any security for the user’s

future sessions in this case. Basically, the consensus is that in case of strong corruption, all

is lost to the user, and the only thing guaranteed is that this should not violate the security of

his past sessions and other users. Indeed, cryptography cannot do much since the attacker

invading a machine would know everything, as it can read all secrets being stored or typed.

In this work, we take a fresh look at this problem and try to provide a solution. That is,

if a user’s terminal has been fully compromised, can we still protect his (past and future)

sessions from other trusted terminals, even though the same long-term secret is used?

Basic Approach. Our basic idea is to store no long-term secrets on the terminals, and

instead, employ human computation or an additional device such as RSA SecurID to boost

security. (We think it is much more reasonable to assume that the human and the offline

device stay uncompromised than the terminals and other devices used for connecting to

servers.) In a bit more detail, we ask the server to send a random challenge, then let the

human user generate a response by computing (in his head or with an additional device) a

3



function of the memorized long-term secret and enter it into the terminal. Then we can use

a PAKE-like protocol ran on the response as a common ephemeral secret, also known as a

one-time password.

A PAKE protocol, that is usually used to prevent off-line dictionary attacks, here pro-

vides the guarantee that no information is leaked about the one-time passwords in passive

and even active sessions. It is important to limit the information leakage about the long-

term secret of the user, since one-time passwords, were they in the clear, could have helped

recovering the long-term secret. This is unfortunately the case when they are generated

with functions that are easy enough to be computed by a human. On the other hand, if an

additional device is used to derive the one-time passwords, their privacy may be less critical

and so resistance to off-line dictionary attacks is not required anymore, which allows the

use of a weaker variant of PAKE.

Contribution Overview. We propose the first user authentication and key exchange proto-

cols that can tolerate strong corruptions on the client-side. More specifically, our protocols

guarantee the following: even if a user happens to log in to a server via a fully compromised

terminal, his other past and future sessions executed through honest terminals still remain

secure. Note that such guarantee is impossible if the user simply types his secret into the

terminal.

We first define the security model for Human Authenticated Key Exchange (HAKE)

protocols and then propose two generic HAKE protocols based on the Human-Compatible

(HC) function family, PAKE, commitment scheme, and authenticated encryption. We prove

that our HAKE protocols are secure against strong corruptions under reasonable assump-

tions.

All of the building blocks like PAKE have existing efficient and secure instantiations,

except for the new primitive HC function families that we propose. Security-wise, the ad-

versary should be able to see multiple challenge-response pairs, among which some of the

challenges could be chosen by the attacker (adaptive queries vs. non-adaptive queries).

4



This is because the attacker, who compromises a terminal, can eavesdrop on the commu-

nication with the human user. And an active attacker who took control of the terminal can

impersonate the server and ask the user to answer maliciously chosen challenges. But still,

the adversary should not be able to forge a valid response for a new random challenge, so

that future sessions remain safe.

Finding such a function family would be easy if we did not have the human-

computability restrictions. We survey some works on secure human-based computation

later, but they are not directly suitable for us. Luckily, a recent paper by Blocki, Blum,

Datta, and Vempala [18] (almost) provided a solution. They proposed a way for a human

user to authenticate to a computer that does not offer privacy (honest-but-curious). Such

a computer stores a set of challenges and the user authenticates by providing a response

to a random challenge. In their concrete construction, a challenge is a set of images, the

secret user memorizes is a correspondence between images and numbers and the response

is some basic function using addition of the digits (modulo 10). The authors provide exper-

imental evidence that their scheme can be used by a human user. Namely, the secret can be

memorized and the response can be computed within reasonable time by an average human

user. The authors also propose a tool to help secret memorization. While the usability of

their solution is not perfect, it is definitely a start and further research will hopefully yield

protocols with better usability.

Although the construction and security results from [18] are very useful for our work,

we cannot use them as is. The problem is that it is not known whether security of their

scheme holds when the attacker can see responses to maliciously chosen challenges (adap-

tive queries). We extend their analysis and prove a second conjecture that the unforgeability

of their HC function family still holds if the adversary can make very few adaptive queries.

Our Confirmed HAKE (one of the two generic HAKE protocols) is designed to rely on

those HC function families (whose security can tolerate some adaptive queries): after the

PAKE completion using the first response, the human user selects a random challenge and

5



enters it into the terminal, who encrypts the challenge under the recently established ses-

sion key and forwards the result to the server. The server decrypts, computes the response,

and sends it, also encrypted to the terminal. The terminal decrypts and displays the re-

sponse and the human user verifies it. If verification fails, the user needs to take measures

against suspected terminal infection and possibly abort the long-term secret. Encrypting

the terminal-server communication here is needed for authenticity in case of an honest ter-

minal, to prevent a network adversary to ask the server maliciously chosen challenges. We

show that this extended protocol limits the number of responses the attacker infecting the

terminal can obtain for malicious challenges of its choice (in that case, the adversary will

not be able to make the user pass the connection confirmation step). We argue that this

addition, while adds a little bit more work for the human user, does not violate human

computability for our instantiation, i.e., that the user can select a random challenge and

verify the response. Furthermore, we show that the Confirmed HAKE provides explicit

authentication assuming that the encryption scheme is secure authenticated encryption.

Finally, we consider the more practical case where the human user is allowed to get

help from an offline device such as RSA SecurID. Such device-assisted HAKE protocols

are very efficient as the human user does not need to do any computations. Furthermore,

an additional device permits simple HC function family instantiations with stronger secu-

rity (e.g., pseudorandom functions): leaking information about several challenge-response

pairs might not endanger the long-term secret. As a result, we can rely on a weaker variant

of PAKE and get device-assisted HAKE protocols that are even more efficient.

Open Problems. We hope that our work will stimulate further results about secure human-

compatible cryptographic function families. We leave to future works to formally prove

the unforgeability property (against several adaptive queries) of the HC function from [18],

and possibly finding other HC function families with such security. Those would allow to

avoid additional devices and still have a completely proven efficient HAKE protocol. Im-

proving the usability of the scheme from [18] will indeed imply improved HAKE protocols,
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and may have other applications. Another interesting question is to design a coin-flipping

protocol with a human participant. Such protocol could be used within HAKE to pre-

vent the attacker to ask malicious challenges. Eventually, after this first step of modeling

HAKE protocols with symmetric long-term secrets shared between the user and the server,

asymmetric secrets would be important to consider. This would be similar to the so-called

verifier-based PAKE that helps moderate the impact of corruption of the server.

1.2.2 Comparing TLS 1.3 (over TCP Fast Open) to QUIC

Motivation. We next switch our focus on the setting where a public-key infrastructure (PKI)

is available. As mentioned before, secure channel establishment protocols such as TLS are

some of the most important cryptographic protocols, enabling the encryption of Internet

traffic. Currently, more than half of all Internet traffic is encrypted according to a 2017

EFF report [19], with Google reporting that 94% of its traffic is encrypted as of October

2019 [20]. This trend has also been facilitated by efforts like the free digital certificate

issuer Let’s Encrypt servicing 87 million active (unexpired) certificates and 150 million

unique domains at the end of 2018 [21].

Secure channel establishment protocols allow two parties (where one or both parties

have a public key certificate) to establish a secure communication channel over the insecure

Internet. Typically, the parties first authenticate all parties holding a public key certificate

and agree on a session key — the key exchange phase. Then, this session key is used to

encrypt the communication during the session — the secure channel phase.

The main secure channel establishment protocol in use today is TLS. The session key

establishment with TLS today involves 3 round-trip times (RTTs) of end-to-end commu-

nication, including the cost of establishing a TCP connection before the TLS connection.

Further, this TCP cost is paid every time the two parties communicate with each other, even

if the connection is interrupted and then immediately resumed. Given that most encrypted

traffic is web traffic, this cost represents a significant performance bottleneck, a nuisance
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to users, and financial loss to companies. For instance, back in 2006 Amazon found that

every 100ms of latency cost them 1% in sales [22], while a typical RTT on a connection

from New York to London is 70ms [23].

Not surprisingly, many efforts in recent years have focused on reducing latency in se-

cure channel establishment protocols. The focus has been on reducing the number of inter-

actions (or RTTs) during session establishment and resumption without sacrificing much

security. The most important protocols addressing this goal are TLS 1.3 [5] (the just-

released successor to the current TLS 1.2 standard) and Google’s QUIC [24].

With TLS 1.3, it is possible to reduce the number of RTTs (prior to sending encrypted

data) during session resumption to 1. This reduction is achieved by utilizing a session ticket

that was saved during a previous communication and multiple keys (which we call stage

keys) that can be set within one session, of which some keys are set faster (with slightly

less security) so that data can be encrypted earlier. The remaining 1-RTT during session re-

sumption is due to the aforementioned TCP connection. However, one recent optimization

for TCP, called TCP Fast Open (TFO) [25, 26] extends TCP to allow for 0-RTT resumption

connections, so that the client may begin data transmission immediately. The mechanism

underlying this optimization is a cookie saved from previous communication, similar to the

ticket used by TLS 1.3.

Like TLS 1.3, Google’s QUIC uses weaker initial keys, under which data can be en-

crypted earlier, and a token saved from previous communication between the parties. But

unlike TLS, QUIC operates over UDP rather than TCP. Instead of relying on TCP for reli-

ability, flow control, and congestion control, QUIC implements its own data transmission

functionality, integrating connection establishment with key exchange. These features al-

low QUIC to have 1-RTT full connections and 0-RTT resumption connections.

In Table 1.1 we show the cost of establishing full and resumption connections for sev-

eral layered protocol options achieving end-to-end security. These include TLS 1.2 over

TCP, TLS 1.3 over TCP, TLS 1.3 over TFO, QUIC over UDP, and the new design for
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Table 1.1: Latency comparison of layered protocols

Layered Full Resumption
Protocol Connection Connection

TCP+TLS 1.2 3-RTT 2-RTT
TCP+TLS 1.3 2-RTT 1-RTT
TFO+TLS 1.3 2-RTT 0-RTT
UDP+QUIC 1-RTT 0-RTT

UDP+QUIC[TLS] 1-RTT 0-RTT

QUIC [27] (which we refer to as QUIC[TLS] [28] to indicate that it borrows the key ex-

change from TLS 1.3) over UDP. It is clear that the last three win in terms of the number

of interactions. But how does their security compare?

At first glance, the question is easy to answer. Recent works have done formal security

analyses of TLS 1.3 [29, 30, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and Google’s QUIC [31, 32].

Most works confirm that (the cryptographic cores of) both protocols are provably secure

under reasonable computational assumptions. Moreover, as shown in [32, 11], their 0-RTT

data transmission designs cannot achieve the same strong security guaranteed by classical

key exchange protocols with at least one RTT. In particular, the 0-RTT keys do not provide

forward secrecy and the 0-RTT data suffers from replay attacks. Overall, it might seem that

all three layered protocols mentioned above are equally secure.

However, a closer look reveals that the answer is not that simple. First, all aforemen-

tioned formal security analyses, except for [32] analyzing the IP spoofing (source valida-

tion) of QUIC, did not consider packet-level availability attacks. Therefore, it is not clear

at the packet level what security can be achieved and what attacks can be prevented by

these protocols. In other words, we have no formal understanding of what security can be

obtained when layering protocols. Also, TFO uses some cryptographic primitives, such

as a cookie, to prevent IP spoofing, but, to the best of our knowledge, no formal analysis

has been done. Furthermore, the security of QUIC[TLS] has not been formally analyzed

(although some security aspects can be reduced to those of Google’s QUIC and TLS 1.3).

9



Contribution Overview. To compare their security, we develop novel security models that

permit “layered” security analysis. In addition to the standard goals of server authentica-

tion and data privacy and integrity, we consider the packet-level availability attacks that

are not usually taken into account by existing security models that focus mainly on the

cryptographic cores of the protocols. Our models are sketched as follows.

Like most security models, we consider a very powerful attacker who can initiate com-

munications between honest parties, can intercept, inject, drop, or modify the exchanged

packets, and can adaptively learn parties’ stage keys or adaptively corrupt them to learn

their long-term keys and secret states. The attacker can also have prior knowledge of the

exchanged data. However, the attacker should not be able to prevent clients from establish-

ing final session keys without noticing the attacker’s involvement (Server Authentication)

or using these keys to achieve a secure channel with data privacy and integrity (Channel

Security). These standard security goals are captured by our first model.

For the second model that deals with packet-level availability attacks, we first follow

QACCE [32] to consider IP-spoofing prevention (also known as address validation) and

further extend it to additionally capture IP-spoofing attacks in the full connections. Then,

we design several novel notions for packet-level authentication as follows.

First, we define Header Integrity to capture the integrity of the whole unencrypted

packet header. (Note that previous models like QACCE only cover the header integrity

implied by the authenticity security of the underlying authenticated encryption scheme.)

To enable fine-grained security analyses and comparisons, we split the above notion into

two related ones, Key Exchange (KE) Header Integrity and Secure Channel (SC) Header

Integrity, which capture header integrity during the key exchange phase and secure channel

phase respectively. Furthermore, we define the notion of KE Payload Integrity to cover

availability attacks that modify the payloads of packets sent during key exchange. We note

that unlike the availability attacks shown in [32], successful attacks under our new notions

do not affect the client’s session key establishment and therefore are harder or impossible
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Table 1.2: Security comparison

TLS 1.3 QUIC QUIC[TLS]
+TFO +UDP +UDP

0-RTT Key Forward Secrecy [11] 7 7 7

0-RTT Data Anti-Replay [11] 7 7 7

Server Authentication 3 3 3

Channel Security 3 3 3

IP-Spoofing Prevention 3 3 3

KE Header Integrity 7 7 7

KE Payload Integrity 3 7 7

SC Header Integrity 7 3 3

Reset Authentication 7 7 3

to detect by the client. This makes such attacks more harmful and their treatment more

important. Finally, we formalize the new goal of Reset Authentication to deal with attacks

forging a reset packet to abruptly terminate an honest party’s session.

Equipped with our new models we provide a detailed comparison of TLS 1.3 over TFO,

QUIC over UDP, and QUIC[TLS] over UDP. In particular, we show that TFO’s cookie

mechanism does provably achieve the security goal of IP spoofing prevention. Additionally,

we find several new availability attacks that manipulate the early key exchange packets

without being detected by the communicating parties.

Our results are summarized in Table 1.2. As mentioned above, by [11] results, no

protocol achieves forward secrecy for 0-RTT keys or protects against 0-RTT data replays

(which contribute to the first two rows in the table). By including packet-level attacks in our

analysis, our results shed light on how the reliability, flow control, and congestion control

of the above layered protocols compare, in adversarial settings.

Even though QUIC may not be able to sustain the competition in the long run despite

stronger security, we hope our models will help practitioners better understand the advan-

tages and limitations of novel secure channel establishment protocols.
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1.2.3 Provable Security Analysis of FIDO2

Motivation. Our final work is related to the ongoing effort by the Fast IDentity Online

(FIDO) Alliance to replace the world’s over-reliance on passwords to authenticate users.

Authentication is used to verify the identity of an entity and plays an important role

in ensuring authorized access to confidential data or services. Currently, with the help of

a PKI a server can be easily authenticated by having its associated certificate validated,

whereas a user typically authenticates himself using a low-entropy human-memorizable

password.

With massive password leakage reported by recurring data breaches [33], it becomes

well-acknowledged that strong security cannot be achieved with passwords only. Accord-

ing to Verizon’s 2019 Data Breach Investigations Report [34], 81% of data breaches are

caused by compromised, weak, and reused passwords. To deal with the problems caused

by dominant password usage, various authentication solutions (see [35] for a 2012 sur-

vey) have been proposed towards replacing passwords, but their wide adoption still falls

behind. As pointed out in [35], “many academic proposals failed to gain traction because

researchers rarely consider a sufficiently wide range of real-world constraints”. In par-

ticular, some solutions that provide strong security are expensive to deploy or difficult to

use.

In 2013, an open industry association called the Fast IDentity Online (FIDO) Alliance

was launched and its mission is to provide authentication standards to help reduce the

world’s over-reliance on passwords to authenticate users. Unlike most academic proposals

that mainly focus on strong security, FIDO also aims at fulfilling the practical requirements

for smooth deployment and satisfying usability. Currently, FIDO is driven by hundreds

of global technology leaders including Google, Amazon, Alibaba, Intel, Microsoft, Paypal,

Samsung, Visa, and major banks. It is truly a world-wide effort with growing impact: FIDO

has member-driven working groups in the US, China, Europe, India, Japan, and Korea.
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To address various authentication use cases, the FIDO Alliance has published three

sets of specifications [36]: FIDO Universal Second Factor (FIDO U2F), FIDO Universal

Authentication Framework (FIDO UAF), and FIDO2. FIDO U2F supports second-factor

(or multi-factor) authentication that augments the security of the existing password infras-

tructure by adding a strong authentication factor, while FIDO UAF is designed for pass-

wordless authentication. FIDO2 is a newly proposed standard that unifies and improves the

previous specifications to maximize platform support. It consists of the World Wide Web

Consortium’s (W3C) Web Authentication (WebAuthn) specification and FIDO Alliance’s

Client-to-Authenticator Protocol (CTAP), where CTAP consists of CTAP1 as a new name

for FIDO U2F and the main component CTAP2.

FIDO protocols are moving towards wide deployment and standardization with great

success. In January 2017, Facebook announced support for FIDO Authentication, which

brought the number of potential FIDO users to more than 3 billion. From December 2017,

FIDO Authentication is backed by hardware key attestation openly available on any An-

droid 8.0 or later device. By April 2018, major web browsers (e.g., Chrome, Firefox,

Edge, etc.) have implemented the FIDO standards. In December 2018, FIDO UAF 1.1 and

CTAP were recognized as international standards by the International Telecommunication

Union’s Telecommunication Standardization Sector (ITU-T). In 2019, WebAuthn became

an official web standard and Android and Windows Hello earned FIDO2 Certification.

As a promising future standard for user authentication, FIDO protocols are expected to

achieve strong security. Descriptions of their security goals, possible attacks, and counter-

measures are provided in the published specifications [36]. However, these descriptions are

of course informal and can only serve as security guidelines. To understand the exact se-

curity guarantees and fix any potential vulnerabilities before wide deployment of the FIDO

protocols, it is critical and urgent to provide their formal security analyses.

Unfortunately, as we will survey later in Chapter 5, there are not much security analysis

about FIDO protocols. In particular, there is no provable security analysis of the new
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FIDO2 protocols despite their fast deployment process. Our goal is to provide the first

provable security analysis of the latest FIDO2 protocols to help practitioners understand

their security guarantees and vulnerabilities. More precisely, we focus on the main FIDO2

components WebAuthn [37] and CTAP2 [38].

FIDO2 Overview. Before describing our contributions, we first recall the high-level ideas

behind the FIDO2 protocols.

WebAuthn is a web API that can be built into browsers and related web platform infras-

tructure to enable web applications (of online services) to integrate public-key user authen-

tication. The core component of WebAuthn is a passwordless “challenge-response” scheme

between a secure device owned by the user (e.g., a security token or a smartphone) and a

server, which is used for both user registration and authentication. Such a device-assisted

“challenge-response” scheme works as follows: first the server sends a random challenge

to the secure device through a client (e.g., a browser or an operating system installed on

the user’s laptop), then the device replies with an unforgeable signature associated with the

challenge (and a public key used for future authentication if in the registration phase), and

finally this signature is verified by the server. The security of the above scheme may seem

straightforward at first glance, but subtleties are incurred by the involvement of multiple

parties (i.e., users, devices, clients, and servers). To achieve the desired overall security,

one needs to carefully design the functions and identify the security requirements for each

party.

On the other hand, CTAP2 specifies the communication between a remote authenticator

(i.e., the secure device) and a client that has a user PIN as input. Roughly speaking, the

security goal of CTAP2 is to set up the authenticator with the user’s PIN and “bind” a

trusted client to the set-up authenticator such that the authenticator accepts only messages

sent from a “bound” client.

Contribution Overview. To better understand and improve each component protocol, our

analysis is conducted in a modular way, i.e., we analyze CTAP2 and WebAuthn separately
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and then derive the overall security of FIDO2 by composing their security.

First, we design a model to analyze the more complex CTAP2 protocol. We show

that its simpler but as secure version is provably secure, in the sense that an authenticator

can only be accessed through the client-to-authenticator authenticated channels established

from the CTAP2 “binding” process. However, if any of the channels towards the same

authenticator is compromised, the attacker can have access to other channels due to the

same authenticator secret used to “bind” multiple clients. Besides, CTAP2’s “binding”

process is not resistant to man-in-the-middle attacks. To address these issues, we propose

an efficient protocol that employs password-authenticated key exchange for the “binding”

process and prove its security in the strong sense.

Next, we analyze the user authentication security of the WebAuthn protocol based on

our second model. We propose two security notions and show that WebAuthn can only be

proved secure for the weak security, which guarantees that any successful user authentica-

tion must involve the registered authenticator and go through a trusted client (i.e., a client

that has access to an authenticated channel towards that authenticator). However, WebAu-

thn is not secure if any of the trusted clients is compromised, even when the user tries to

authenticate to the server via a secure trusted client (i.e., not affected by the compromised

client). This is because the user cannot detect if his authenticator accepts messages through

an unexpected channel. We hence augment WebAuthn to add such user detectability and

prove its strong security.

We hope our models and provable security results will help clarify the security guaran-

tees of the FIDO2 protocols and expect our proposed constructions to facilitate the design

and deployment of more secure passwordless user authentication protocols.

1.3 Declaration of Co-Authorship and Previous Publications

Our investigation of human authenticated key exchange was published in CSF 2017 with

co-authors Alexandra Boldyreva, Pierre-Alain Dupont, and David Pointcheval [39]. This
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work was also included in Pierre-Alain Dupont’s dissertation [40]. He mainly contributed

to the device-assisted HAKE protocols and the security proofs, while I mainly contributed

to the confirmed HAKE protocol and the HC function family.

Our security results of comparing low-latency secure channel establishment proto-

cols were published in ESORICS 2019 with co-authors Samuel Jero, Matthew Jagielski,

Alexandra Boldyreva, and Cristina Nita-Rotaru [41].

Our security analysis of FIDO2 is currently in submission, which is collaborated with

Manuel Barbosa, Alexandra Boldyreva, and Bogdan Warinschi.

1.4 Road Map

We first specify the notations and recall the cryptographic building blocks used in this

thesis in Chapter 2. Our detailed investigations of the three problems sketched above are

respectively presented in Chapter 3 4 5. Finally, we conclude in Chapter 6.
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CHAPTER 2

PRELIMINARIES

2.1 Notations

Let {0, 1}∗ denote the set of all finite-length binary strings (including the empty string

ε) and {0, 1}n denote the set of n-bit binary strings. [n] denotes the set of integers

{1, 2, . . . , n}. For a finite set R, let |R| denote its size and r $← R denote sampling r uni-

formly at random fromR. For a binary string s, let |s| denote its length in bits. y ← F (x)

(resp. y
$← F (x)) denotes y being the output of the deterministic (resp. probabilistic)

function F with input x. Let x ← a denote assigning value A to variable x. We use the

wildcard · to indicate any valid input of a function.

Let λ denote the security parameter. We say an algorithm or a function is efficient if its

running time is polynomial in the security parameter λ. We say a function or a probability

is negligible (denoted by negl(λ)) if it decreases faster than the inverse of any positive

polynomial of λ. We say a security notion is achieved if its associated advantage Adv(A)

is small (e.g., negligible) for any probabilistic polynomial time (PPT) adversary A with

reasonable resources (e.g., with certain number of queries to the given oracle).

2.2 Pseudorandom Function

For a function family F : {0, 1}λ × {0, 1}n → {0, 1}m, consider the following security

experiment associated with an adversary A. In the beginning, sample a bit b $← {0, 1}.

If b = 0, A is given oracle access, i.e., can make queries, to Fk(·) = F (k, ·) where k $←

{0, 1}λ. If b = 1, A is given oracle access to f(·) that maps elements from {0, 1}n to

{0, 1}m uniformly at random. In the end, A outputs a bit b′ as a guess of b. The advantage

of A is defined as Advprf
F (A) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|, which measures
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A’s ability to distinguish Fk (with random k) from a random function f .

F is a pseudorandom function (PRF) if: 1) for any k ∈ {0, 1}λ and any x ∈ {0, 1}n,

there exists an efficient algorithm to compute F (k, x); and 2) for any PPT adversary A,

Advprf
F (A) = negl(λ).

A weak PRF is weaker than a PRF in the sense that the adversary A cannot get Fk(x)

for arbitrary xs but only have access to pairs (x, Fk(x)) for random xs.

2.3 Commitment Scheme

Roughly, a commitment scheme allows a user to “commit” a value such that the receiver

cannot learn any information about it, but the user is also not able to change his mind later.

Syntax. A (non-interactive) commitment scheme CS is a triple (Setup,Com,Open) such

that Setup generates the global public parameters and the other two algorithms are defined

as follows:

• Com(x): on input a message x, and some internal random coins, it outputs a com-

mitment c together with an opening value s;

• Open(c, s): on input a commitment c and then opening value s, it outputs either the

committed value x or ⊥ in case of invalid opening value.

Correctness requires that for every x, if (c, s)← Com(x), then Open(c, s) outputs x.

Security. The usual security notions for commitment schemes are the hiding property,

which says that x is hidden from c, and the binding property, which says that once c has

been sent, no adversary can open it in more than one way. We will also need additional

properties, such as extractability (a simulator can extract the value x to which cwill be later

opened) and equivocality (a simulator can generate some fake commitments c it can later

open to any x). These features are provided from trapdoors, generated by an alternative

setup algorithm and privately given to the simulator.
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In this thesis, we will simply let AdvCS(A) denote the advantage an adversary can get

against any of these security notions. We refer to [39] for detailed security definitions.

Instantiation. An efficient instantiation, with all our expected security properties, in the

random oracle model [42], can be described as follows:

Given a hash functionH onto {0, 1}λ modeled as a random oracle, we have:

• Com(x): Generate r $← {0, 1}2λ and output (c← H(x, r), s← (x, r));

• Open(c, s = (x, r)): ifH(s) = c, return x, otherwise, return ⊥.

In the random oracle model, this simple scheme is trivially computationally binding (be-

cause H is collision-resistant) and statistically hiding (because for a large domain {0, 1}2λ

for r there are almost the same number of possible rs for any x that would lead to the

same commitment c). Additionally, we can use the programmability of the random oracle

for equivocality and the list of query-answers for extractability. More details can be found

in [39].

2.4 Message Authentication Code

For a (deterministic) message authentication code (MAC) MAC : K × {0, 1}∗ → {0, 1}n,

consider the following security experiment associated with an adversary A. In the begin-

ning, sample a random key k $← K. Then,A is given access to the oracle MAC(k, ·). In the

end,A outputs a message-tag pair (m, τ). Its advantage measure Adveuf-cma
MAC (A) is defined

as the probability that MAC(m) = τ and m was not queried to the MAC(k, ·) oracle.

MAC is existentially unforgeable under chosen message attack (EUF-CMA) if for any

PPT adversary A, Adveuf-cma
MAC (A) = negl(log |K|).

2.5 Authenticated Encryption

We briefly recall the authenticated encryption scheme and its security notions and refer

to [43] for detailed definitions.
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For an authenticated encryption scheme ES = (K,Enc,Dec), its decryption should fail

when the ciphertext has not been properly generated under the appropriate key. This will

thus provide a kind of key confirmation, as usually done to achieve explicit authentication.

However, some critical data will have to be sent, hence a simple MAC would not be enough,

privacy of the content is important too.

There are two security notions for an authenticated encryption scheme. The semantic

security, also known as indistinguishability under chosen plaintext attack (IND-CPA), pre-

vents any information being leaked about the plaintexts, while the integrity of ciphertexts

(INT-CTXT) essentially guarantees no valid ciphertext can be produced without the key. Let

Advind-cpa
ES (A) and Advint-ctxt

ES (A) respectively denote the adversarial advantages for the

above notions. For simplicity, let Advauthenc
ES (A) = max{Advind-cpa

ES (A),Advint-ctxt
ES (A)}.

One simple way to achieve secure authenticated encryption is by using a generic

Encrypt-then-MAC approach [43] or by using a dedicated scheme such as OCB [44].

2.6 Stateful Authenticated Encryption with Associated Data

We follow [45, 46] in extending the stateful authenticated encyption notion of Bellare et

al. [47] to capture a hierarchy of stateful AEAD security notions based on different authen-

tication levels. The following definitions are the same as [46], except that we exclude the

length-hiding property proposed by Paterson et al. [48] for conciseness.

Syntax. A stateful AEAD scheme sAEAD is a three-tuple (sGen, sEnc, sDec) associ-

ated with a key space K = {0, 1}λ, a message space M ⊆ {0, 1}∗, an associated

data space AD ⊆ {0, 1}∗, and a state space ST ⊆ {0, 1}∗. sGen is a probabilis-

tic algorithm that samples a random key from K and initializes the encryption and de-

cryption states ste, std ∈ ST . sEnc is a probabilistic encryption algorithm that takes

as input k ∈ K, ad ∈ AD,m ∈ M and ste and outputs a ciphertext ct ∈ {0, 1}∗

with an updated ste. sDec is a deterministic decryption algorithm that takes as input

k ∈ K, ad ∈ AD, ct ∈ {0, 1}∗ and std and outputs m ∈ M ∪ {⊥} with an updated

20



std. Correctness requires that, for any k ∈ K, ste = st0e, std = st0d sampled or initialized

by sGen and any sequence of encryptions {(cti+1, st
i+1
e )

$← sEnc(k, adi,mi, st
i
e)}i≥0, the

sequence of decryptions {(m′i+1, st
i+1
d ) ← sDec(k, ad,Enc(k, adi, cti, st

i
d))}i≥0 satisfies

mi = m′i, i ≥ 0.

Security. Consider the following experiment with an authentication level al ∈ [4]. In the

beginning, run sGen to generate a key k and initialize ste, std. Sample b $← {0, 1} and

set (u, v, outofsync) ← (0, 0, 0). Then, the adversary A is given access to the following

oracles:

encrypt(ad,m0,m1):

1: u← u+ 1, (sent.ctu, st
′
e)

$← sEnc(k, ad,mb, ste)

2: (sent.adu, ste)← (ad, st′e), return sent.ctu

decrypt(ad, ct):

1: if b = 0, return ⊥

2: v ← v + 1, (m, st′d)← sDec(k, ad, ct, std)

3: (rcvd.adv, std)← (ad, st′d)

4: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m 6= ⊥) ∧ condal,1

set outofsync← 1

5: if outofsync = 1, return m, otherwise, return ⊥

In the end, A outputs a bit b′. The stateful AEAD scheme sAEAD is secure with au-

thentication level al if and only if Advaead-al
sAEAD(A) = |2 Pr[b = b′]− 1| is negligible in λ for

any PPT adversary A.

2.7 Collision-Resistant Hash Function Family

Consider a function family H = {hk : Dk → Rk}k generated by some algorithm G(1λ),

where ∀k $← G(1λ), |Dk| > |Rk| and computing hk on any input is efficient given k. In

the security experiment, an adversary A takes as input 1λ and a random k
$← G(1λ), then

1Authentication conditions condal are defined in the same way as in the msACCE-std Decrypt query.
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outputs two messages (x1, x2) ∈ Dk. Its advantage measure Advcoll
H (A) is defined as the

probability that x1 6= x2 and hk(x1) = hk(x2).

H is collision-resistant if for any PPT adversary A, Advcoll
H (A) = negl(λ). Note that

in practice H is typically a single hash function instead of a function family.

2.8 Signature Scheme

A signature scheme Sig consists of three efficient algorithms (Kg, Sign,Ver):

• Kg: takes as input the security parameter 1λ and outputs a pair of keys: a public

verification key pk and a private signing key sk.

• Sign: takes as input a signing key sk and a message m, then outputs a signature σ.

• Ver: takes as input a verification key pk, a messagem, and a signature σ, then outputs

a bit b indicating if the signature is valid.

Correctness requires that for any key pair (pk, sk)
$← Kg(1λ) and any message m,

Ver(pk,m, Sign(sk,m)) = 1.

For security, consider the following security experiment associated with an adversary

A. In the beginning, run (pk, sk)
$← Kg(1λ). Then, A is given pk and access to the oracle

Sign(sk, ·). In the end, A outputs a message-signature pair (m,σ). Its advantage measure

Adveuf-cma
Sig (A) is defined as the probability that Ver(pk,m, σ) = 1 and m was not queried

to the Sign(sk, ·) oracle.

Sig is existentially unforgeable under chosen message attack (EUF-CMA) if for any

PPT adversary A, Adveuf-cma
Sig (A) = negl(λ).

2.9 The Diffie-Hellman Assumptions

Consider a cyclic group G = 〈g〉 of prime order q associated with the security parameter

λ.

22



The computational Diffie-Hellman (CDH) assumption states that it is computationally

infeasible to compute gab given G, g, ga, gb for random a, b
$← Zq. That is, let Advcdh

G (A)

denote the probability that an adversaryA outputs gab, then we have Advcdh
G (A) = negl(λ)

for any PPT adversaryA. On the other hand, the decisional Diffie-Hellman (DDH) assump-

tion states that (ga, gb, gab) and (ga, gb, gc) are computationally indistinguishable, where c

is chosen uniformly at random from Zq. Similarly, let Advddh
G (A) denote the associated

adversarial advantage.

For the strong CDH (SCDH) assumption [49], an adversary A is additionally granted

oracle access to Oa(·, ·), which takes any group elements Y, Z ∈ G as input and checks if

Y a = Z. Let Advscdh
G (A) denote the probability thatA outputs gab. The SCDH assumption

states that for any PPT adversary A, Advscdh
G (A) = negl(λ).

2.10 Password-Authenticated Key Exchange

A Password-Authenticated Key Exchange (PAKE) protocol is an interactive protocol be-

tween two parties (sometimes referred to as a client and a server). PAKE protocols allow

them to establish an high-entropy session key over an insecure channel using only a shared

low-entropy, human-memorizable password.

Since only the shared low-entropy password is used for authentication, an adversary

has non-negligible chance of successfully impersonating one of the parties by guessing

their shared password. Such an impersonation attack is called an online dictionary attack

because the adversary cannot mount this attack by itself (referred to as offline dictionary

attack) but needs to interact with an “online” party to verify its guess. Note that an offline

attack, if possible, is disastrous to a PAKE protocol due to the low entropy of the pass-

word. Informally, a secure PAKE protocol guarantees that for any efficient adversary an

exhaustive online dictionary attack is the best strategy to break the protocol.

We consider the security model for PAKE in the universal composability (UC) frame-

work [51], which makes no assumption on the distribution of passwords. The UC security
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The functionality FPAKE is parameterized by a security parameter k. It interacts with an adversary S
and a set of parties P1,. . . ,Pn via the following queries:
Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj) to S.
If this is the first NewSession query, or if this is the second NewSession query and there is a
record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record fresh.
Upon receiving a query (TestPwd, sid, Pi, pw

′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do:

• If pw = pw′, mark the record compromised and reply to S with “correct guess”.

• If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from the adversary S:
If there is a record of the form (Pi, Pj , pw) and this is the first NewKey query for Pi, then do:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw = pw′, and a key sk′

was sent to Pj , and (Pj , Pi, pw
′) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 2.1: Functionality FPAKE [50]

of a PAKE protocol is defined with respect to its ideal functionality, for which we consider

both the basic functionality FPAKE (see Figure 2.1) from [50] and the functionality FCA
PAKE

defined in [52] that captures client authentication. Both functionalities can be efficiently in-

stantiated with (variants of) the classical EKE [17] protocol that uses the shared password to

encrypt a Diffie-Hellman key exchange. In particular, [52] shows that a variant [53] of the

EKE protocol securely realizes F̂CA
PAKE (the implicitly defined multi-session extension [54]

of FCA
PAKE), under the computational Diffie-Hellman assumption in the random oracle and

ideal cipher models. There also exist other less efficient secure PAKE constructions in the

standard model, e.g., the protocol proposed in [50].

In our analysis, we use Advpake
PAKE(S,A,Z) to denote the advantage of the environment

Z distinguishing between the ideal world with the ideal functionality (F̂PAKE or F̂CA
PAKE) and

the simulator S and the real world with the PAKE protocol PAKE and the adversaryA. We

also assume the “black-box” simulator exists for PAKE and denote it by SPAKE.

Note that PAKE may correspond to a PAKE instantiation that realize either F̂PAKE or

F̂CA
PAKE. In particular, our first work presented in Chapter 3 uses F̂PAKE while our final work
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presented in Chapter 5 uses F̂CA
PAKE.
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CHAPTER 3

HUMAN AUTHENTICATED KEY EXCHANGE

3.1 Introduction

As motivated in Subsection 1.2.1, our goal in this work is to provide the first solution to the

following problem: if a user’s terminal has been fully compromised, can we still protect

his (past and future) sessions from other trusted terminals, even though the same long-term

secret is used?

3.1.1 Related Work

As we mentioned, there are numerous results about PAKE, from the seminal work of

Bellovin and Merritt [17, 43], but they offer no practical solutions for strong corruptions

(to protect future sessions).

Matsumoto and Imai [55] proposed the first scheme to deal with human identification

through insecure channels (and via untrusted machines), which has been improved by the

follow-up works [56, 57, 58]. However, their schemes are only secure given very few lo-

gin sessions or require the human to memorize a long bit string. Later, Blocki et al. [18]

improved this line of work with a much more secure and practical construction. Dziem-

bowski [59] also considers the problem of human-based key-exchange, but in a setting

where both parties are human and his scheme is only secure against a machine adversary

unable to solve CAPTCHAs.

There is a long sequence of papers [60, 61, 62, 63, 64, 65, 66] following the work by

Hopper and Blum [67] offering protocols for the same problem of secure human identifi-

cation over insecure channels, whose security is based on the Learning Parity with Noise

(LPN) problem. They require too much computation work for human users. Personal
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devices generating one-time passwords have been commercially available for years [68],

motivating IETF to standardize their constructions and use in many protocols [69, 70, 71,

72, 73]. The work [73] is particularly relevant to our device-assisted constructions and it

defined a time-based one-time password algorithm based on HMAC [72]. Interestingly,

while dedicated token generators are the most secure, software applications running on

mobile phones are now commonly used [74].

Some papers explore PAKE schemes with one-time passwords. Paterson and Ste-

bila [75] defined a security model for one-time PAKE, explicitly considering the com-

promise of past (and future) one-time passwords, but still recovering the security after a

compromise (which is still not strong corruption, i.e., not all passwords are corrupted),

thanks to the ephemeral property of the one-time password and its change over the time.

However, their construction is generic and uses PAKE as a black-box. It thus cannot be

more efficient than a PAKE, as opposed to ours. They also mentioned the possibility of

using a secure token to generate the one-time passwords and then running one-time-PAKE

on it, but they did not provide an explicit protocol or security analysis.

3.1.2 Our Contributions

To make our basic ideas described in Subsection 1.2.1 “work”, numerous problems need to

be resolved to finalize the solutions. We discuss these after we describe our security model.

Protocol and Security Definitions. The novelty behind our definitions is the unavoidable

incorporation of a human player. We define a Human Authenticated Key Exchange (HAKE)

protocol as an interactive protocol between a human user U and a server S, via a terminal

T . The server can only directly communicate with the terminal, and the user can only

directly communicate with the terminal. In addition, the messages sent by the terminal to

the user must be human-readable, the messages sent by the user to the terminal must be

human-writable, and the long-term secret of the user must be human-memorizable, unless

an additional device is used for computing the ephemeral secrets.
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Our security model is a non-trivial extension of the security model for PAKE protocols

by Bellare, Pointcheval, and Rogaway [43], later called BPR, as we take into account really

strong corruptions and model human computations/interactions. As already mentioned,

the goal of a HAKE protocol is to ensure that a human user sharing the long-term secret

with a server can establish a secure channel with the server, in presence of a very strong

attacker. Our model takes into account various types of attacks possible in practice. As

usual, to model a network compromise (e.g., taking advantage of an insecure Wi-Fi), we

allow the adversary to control the messages parties exchange. The attacker can read and

modify the communication between a server and a terminal. However, we assume that the

channel between the human user and the honest terminal is secure, since this is a direct

communication from the keyboard and the screen. At least, it is authentic and private,

unless the terminal is compromised.

We thus also have to model malicious terminals and this, in fact, is the gist of our work.

Even though taking the full control of a computer is an extremely hard job, compromising

its parts, such as a browser, is very common. And such compromises can be of various

strengths. Using a keylogger, screen capture or similar malware the adversary can learn the

terminal’s inputs/outputs. The attacker may also learn some random coins or intermediate

values from the internal state of the compromised computer. This also models human

“over-the-shoulder” attacks. Even though such compromise can be referred to as honest-

but-curious, the existing protocols, such as PAKE, do not offer protection against it. The

existing protocols only protect against weak corruptions, where the attacker just learns

the session key (with reveal-queries). This models the misuse of the session key, rather

than the terminal compromise. Even if security models for PAKE allow the attacker to

learn the long-term secrets [43] (with corrupt-queries), or the internal states (in the UC

framework [51]), this is only to model forward secrecy, and so the security of past sessions,

but nothing is guaranteed anymore for future sessions.

In our model, we let the adversary compromise terminals and learn all their inputs and
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the internal state. Moreover, we consider an even more powerful adversary, who takes full

control of the terminal’s browser and can display outputs of its choice to be shown to the

human user. Hence, the adversary can interact with the human user, but is never given the

long-term secret key memorized by the human user (or stored on his secondary device).

The security goals are, to the most part, the standard privacy and authentication for key

exchange protocols: we want to make sure that an attacker cannot learn any information

about the session key nor make a party agree on a session key without the other party

completing the protocol. Of course, if a terminal is compromised, it is unreasonable to

expect security of the current session. But this should not compromise security of other

sessions (past or future), even involving the same user.

HAKE Protocol: Generic Constructions and Instantiations. Let us assume we have a

Human-Compatible (HC) function family F (we will discuss it in more detail shortly). Let

the server pick a random challenge x (or increment a counter) and display it to the human

user via the user’s terminal. The user can compute (in his head or using a device) and enter

the response r = FK(x), where K is the long-term secret shared between the user and

the server. The server can compute r on its end the same way. Then, the terminal and the

server execute a PAKE protocol on r (i.e., the response r plays the role of the password

in PAKE), and thus agree on a session key. Even though human-computable responses

may have low entropy, PAKE ensures security against off-line dictionary attacks, which

guarantees no information leakage about the ephemeral secret r in passive sessions, and

even in active sessions, excepted possibly the exclusion of one candidate per session. If the

attacker compromises the terminal, a suitable “unforgeability” property of F would prevent

the adversary from breaking security of other sessions.

But still, this protocol is not secure under our definition. An attacker, who learns an

ephemeral secret r = FK(x) for a given challenge x can later use it to successfully imper-

sonate the server, by forcing the same challenge. To prevent such replay attacks, we let the

terminal and the server to jointly pick a challenge using a coin-flipping protocol, that we
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implement using a commitment scheme with specific properties. This is our first proposal,

which we call the Basic HAKE: using a coin-flipping, we avoid replay attacks, and with a

suitable unforgeability property on the function family F we can guarantee the security of

the global process.

However, a malicious terminal can still ask specific (not necessarily random) challenges

to the human user, while impersonating the server, and the user has no way to detect such

a malicious behavior. Therefore security of the Basic HAKE requires that the HC function

unforgeability holds even in presence of multiple adaptive challenges. This may be too

strong of a requirement in practice. We thereafter enhance Basic HAKE and propose the

Confirmed HAKE protocol, which allows parties to detect potential bad behaviors, in order

to react appropriately, and thus the construction tolerates weaker HC function families. Re-

quirements on HC function families then become more compatible with functions that can

be evaluated by human being without external help. The Confirmed HAKE also provides

explicit authentication of the parties.

Finally, we consider the case of device-assisted protocols: with an additional device,

one can implement more complex computations and use stronger HC function families.

This leads to less critical ephemeral secrets: leaking information about several (x, FK(x))

pairs might not endanger the long-term secretK. This allows us to rely on a weaker variant

of PAKE, and hence get device-assisted HAKE protocols that are more efficient.

Human-Compatible Function Family. We now turn our attention to the inner part of the

construction, the human-compatible function family. Security-wise, the adversary should

be able to see multiple challenge-response pairs, among which some of the challenges

could be chosen by the attacker (adaptive queries vs. non-adaptive queries). This is because

the attacker, who compromises a terminal, can eavesdrop on the communication with the

human user. And an active attacker who took control of the terminal can impersonate the

server and ask the user to answer maliciously chosen challenges. But still, the adversary

should not be able to forge a valid response for a new random challenge, so that future
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sessions remain safe.

Finding such a function family would be easy if we did not have the human-

computability restrictions. We survey some works on secure human-based computation

later, but they are not directly suitable for us. Luckily, a recent paper by Blocki, Blum,

Datta, and Vempala [18] (almost) provides a solution. They proposed a way for a human

user to authenticate to a computer that does not offer privacy (honest-but-curious). Such

a computer stores a set of challenges and the user authenticates by providing a response

to a random challenge. In their concrete construction, a challenge is a set of images, the

secret user memorizes is a correspondence between images and numbers and the response

is some basic function using addition of the digits (modulo 10). The authors provide exper-

imental evidence that their scheme can be used by a human user. Namely, the secret can be

memorized and the response can be computed within reasonable time by an average human

user. The authors also propose a tool to help secret memorization. While the usability of

their solution is not perfect, it is definitely a start and further research will hopefully yield

protocols with better usability.

Security-wise, the authors prove that recovering the user’s long-term secret from a num-

ber (below a certain bound) of random challenge-response pairs (non-adaptive queries) is

equivalent to solving the random planted constraint satisfiability problem, and they state

a conjecture about security of the latter. To support the conjecture, the authors prove the

hardness of the problem for any statistical attacker, extending the results of [76]. Finally,

it is proven that forging a response for a random challenge is equivalent to recovering the

secret. The bound on the number of revealed challenge-response pairs corresponds to the

maximum number of logins a user can execute, without endangering future sessions.

The construction and security results from [18] are very useful for our work, but we

cannot use them as is. The problem is that it is not known whether security of their

scheme holds when the attacker can see responses to maliciously chosen challenges (adap-

tive queries). We extend their analysis and prove a second conjecture that the unforgeability
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of their HC function family still holds if the adversary can make very few adaptive queries.

Our Confirmed HAKE is designed to rely on such HC functions (whose security can tol-

erate very few adaptive queries): after the PAKE completion using the first response, the

human user selects a random challenge and enters it into the terminal, who encrypts the

challenge under the recently established session key and forwards the result to the server.

The server decrypts, computes the response, and sends it, also encrypted to the terminal.

The terminal decrypts and displays the response and the human user verifies it. If verifica-

tion fails, the user needs to take measures against suspected terminal infection and possibly

abort the long-term secret. Encrypting the terminal-server communication here is needed

for authenticity in case of an honest terminal, to prevent a network adversary to ask the

server maliciously chosen challenges. We show that this extended protocol limits the num-

ber of responses the attacker infecting the terminal can obtain for malicious challenges of

its choice (in that case, the adversary will not be able to make the user pass the connec-

tion confirmation step). We argue that this addition, while adds a little bit more work for

the human user, does not violate human computability for our instantiation, i.e., that the

user can select a random challenge and verify the response. Furthermore, we show that the

Confirmed HAKE provides explicit authentication assuming that the encryption scheme is

secure authenticated encryption.

Our formal analysis on the HC function [18] demands a stronger conjecture stating

one-more unforgeability. This is similar to the analysis of blind signatures that relies on the

one-more unforgeability of RSA [77], but we consider a sequential version of the one-more

security definition, that is weaker than the original one.

We want to note that, unlike [18], in our analysis, the bound on the number of challenge-

response pairs the attacker can see does not correspond to the total number of logins, but

only to the number of logins via compromised terminals, which is much more practical.

This is because PAKE guarantees security against network attackers when end-points are

secure: responses remain completely hidden to external players.
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Unfortunately, it is not clear how to extend the results of [18] to expect resistance to

many adaptive queries (so that we could have a simpler protocol without the confirmation

step). The only possibility is the use of a pseudo-random function: after many adaptive

queries, the response to a new challenge is still random-looking to any adversary. But for

such functions, one needs additional help, hence our device-assisted scenario. One impor-

tant advantage of such a stronger HC function family (tolerating many adaptive challenges,

and thus also many non-adaptive challenges) is that responses are ephemeral secrets used

once for authentication, but that can be revealed after use: as a consequence, a weaker

variant of PAKE is enough, since resistance to off-line dictionary attacks is not required

any more. We can expect more efficient constructions. Hence is our first construction in

the device-assisted context. But to limit interactions with the device and avoid collisions

on the inputs, we thereafter adopt a time-based challenge: r = FK(t), with an increasing

counter t, based on an internal clock. While one cannot guarantee perfect synchronization

between the device and the server, we can tolerate a slight time-shift since we anyway use

timeframes that are long enough for the human to enter the response read on the device

(e.g., 30 seconds or 1 minute).

To summarize, we propose the first user authenticated key exchange protocols which

can tolerate corrupted terminals: if a user happens to log in to a server from a terminal that

has been fully compromised, then the other past and future user sessions initiated from hon-

est terminals stay secure. We formalize the security model for Human Authenticated Key

Exchange (HAKE) protocols and propose both generic and device-assisted constructions

based on HC function families, PAKE, commitment scheme, and authenticated encryption.

We analyze the security of our HAKE protocols and discuss their instantiations. We hope

our work will promote further developments in the area of human-oriented cryptography.
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3.2 HAKE Syntax and Security Model

In this section, we define the syntax and security model for a Human Authenticated Key

Exchange (HAKE) protocol.

3.2.1 Protocol Syntax

HAKE is an interactive protocol between a user and a server, via a terminal, which can be

viewed as an extension to an Authenticated Key Exchange (AKE) protocol [43] by separat-

ing an AKE client into a user and a terminal and capturing human interactions.

Human-Compatible Communication. Here we present several notions that our protocol

definition will use. Since it is hard to formalize human computational abilities, our defini-

tions are not mathematically precise.

We say a message is human-readable if this is a short sequence of ASCII symbols, or

images; human-writable if this is a short sequence of ASCII symbols1; human-memorizable

if this is simple enough to be memorized by an average human, e.g., a simple arithmetic

rule like “plus 3 modulo 10”. A function is human-computable if an average human can

evaluate it without help of additional resources other than his head, e.g., simple additions

modulo 10. A set is human-sampleable if an average human can choose a message from the

set at random according to the appropriate distribution without help of additional resources

other than his head.

HAKE Syntax. We now formally describe a HAKE protocol.

Definition 1 (HAKE Protocol). A human authenticated key exchange protocol is an inter-

active protocol between a human user U and a server S, via a terminal T . It consists of

two algorithms:

• A long-term key generation algorithm LKG which takes as input the security param-

eter and outputs a long-term key.
1It is also possible to incorporate mouse clicks into that, but we do not deal with it for simplicity.
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• An interactive key-exchange algorithm KE which is ran between U , T , and S. At the

beginning, only U and S take as input the same long-term secret key and, at the end,

T and S each outputs a session key skT and skS respectively. In case of additional

explicit authentication, U and/or S may either accept or reject the connection.

The above algorithms must satisfy the following constraints:

• S can only communicate with T ;

• U can only communicate with T , and

– the message sent by T to U must be human-readable, and

– the message sent by U to T must be human-writable;

• The long term secret and the state of U , if any, must be human-memorizable for the

duration necessary.

Correctness requires that for every security parameter and for every long-term key out-

put byLKG, in any execution ofKE , U and S both accept the connection (in case of explicit

authentication), T and S complete the protocol with the same session key (skT = skS).

3.2.2 Security Model

As already mentioned, the goal of a HAKE protocol is to ensure that a human user sharing

the long-term secret with a server can help a terminal to establish a secure channel with the

server, in presence of a very powerful attacker, including strong corruptions of terminals.

Let P denote the set of all participants. As usual, to model multiple and possibly con-

current (except for the human users) sessions we consider oracles πiP , where i ∈ N+ and

P ∈ P . For human oracles, sessions can only be sequential, and not concurrent, mean-

ing that humans are not allowed to run several sessions concurrently (a new session starts

after the previous one ends). This is a reasonable assumption for human users. We note
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that since terminals do not store long-term secrets and do not preserve state between ses-

sions, multiple terminal oracles model both multiple sessions ran from the same or different

terminals. Also, we assume the server cannot be compromised.

Hence, without loss of generality, in the following we consider multiple human users

{U`}` with different long-term secrets, one terminal T , and one server S that has all the

user long-term secrets. For all of them, multiple instances will model the multiple sessions

(either sequential for U`, or possibly concurrent for T and S). However, while the server

can concurrently run several sessions, we will also limit it to one session at a time with

each user: the server will not start a new session with a user until it finishes the previous

session with the same user.

Because of our specific context with a human user, there is a direct communication

link between the user and the terminal, and so we can assume that the channels between

instances πiU`
and πjT are authenticated and even private (unless the terminal oracle is com-

promised, as defined below), whereas the communication between the terminal and the

server is over the internet, and so the channels between instances πjT and πkS are neither

authenticated nor private.

Security Experiments. We consider the following security experiments associated with a

given HAKE protocol and an adversary A, to define the two classical security notions for

authenticated key exchange: privacy (or semantic security of the session key) and authen-

tication. In these experiments, the adversary A can make the following queries:

• Compromise(j, `), where j, ` ∈ N – As the result of this query, the terminal oracle πjT

is considered to be compromised, and the adversary gets its internal state, i.e. the random

tape, temporary variables, etc. If the terminal oracle πjT is not linked yet to a user, it is

linked to user U` with the user oracle πiU`
for a new index i, otherwise ` is ignored.

• Infect(j), where j ∈ N – As the result of this query, the terminal oracle πjT is considered

to be infected. Without loss of generality, we limit this query to compromised terminals

only.
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• SendTerm(j,M), where j ∈ N and M ∈ {0, 1}∗ ∪ {Start(`)} – This sends message M

to πjT . A specific Start(`) message asks the terminal to initiate a session, to be done with

a user oracle πiU`
for a new index i. But only if the terminal oracle πjT is not linked yet to

a user, otherwise ` is ignored. To compute its response to A, πjT may internally talk to its

linked human oracle according to the protocol. In addition, if πjT is compromised, it will

additionally return to A the messages exchanged with its linked human oracle2.

• SendServ(k,M), where k ∈ N and M ∈ {0, 1}∗ – This sends message M to oracle πkS .

The oracle computes the response according to the corresponding algorithm and sends the

reply to A.

• SendHum(j,M) where j ∈ N and M ∈ {0, 1}∗ (and human-readable) – This sends a

message to the πjT linked human oracle πiU`
on behalf of πjT . This is allowed only if the

terminal πjT is infected (and thus compromised, which implies the existence of a partenered

human oracle). The oracle computes the response according to the corresponding algorithm

and sends the reply to A.

• Test(j, P ), where j ∈ N and P ∈ {T} ∪ {S} – If skP has been output by πjP , then one

looks at the internal bit b (flipped once for all at the beginning of the privacy experiment,

while b = 1 in the authentication experiment). If b = 1, then A gets the real session key

skP , otherwise it gets a uniformly random session key. This query is only allowed if πjP is

fresh (defined below).

In the privacy experiment, after having adaptively asked several of these oracle queries,

the adversary A outputs a bit b′ (a guess on the bit b involved in the Test queries). The

intuition is that the adversary should not be able to distinguish the real session keys from

independent random strings. While in the authentication experiment, the goal of the adver-

sary is to make an honest party to successfully complete the protocol execution thinking

it “built a secure session” with the right party, whereas that is not the case. In order to

formally define the goals and the advantages of the adversary, we present the notions of

2The messages to the human oracle can be already known to the adversary as they are a function of the
oracle’s random tape. But we give the adversary the whole communication for convenience.
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partnering and freshness, as well as the flags accept and terminate.

Flags. In order to model authentication, we follow BPR [43], who defined two flags:

accept essentially means that a party has all the material to compute the session key while

terminate means that a party thinks that it completes the protocol execution thinking it

communicates with the expected other party (a human user in our case). These two flags

are initially set to False, and they are explicitly set to True in the description of the

protocol. Note that in Definition 1 U and/or S accept if and only if in the end the terminate

flag is set to True, otherwise, U and/or S reject.

Partnering. Whereas πiU`
and πjT are declared as linked at the initialization of the commu-

nication because of the authenticated channels between users and the terminal, partnering

between πiU`
and πkS is a posteriori: they are indeed declared partners in the end of the

protocol execution if they use the same long-term key and both accept. Then we define

partnering between πjT and πkS , by saying that they are declared partners if πkS and U i
` are

partners and U i
` is linked to πjT .

Freshness. Informally, the freshness denotes oracles that hold sessions keys that are not

trivially known to the adversary. For P ∈ {T}∪{S}, the oracle πjP is fresh, if no Test query

has been asked to πjP nor its partner, and none of πjP or its partner have been compromised

(πjT is fresh if it has not been compromised, and πkS is fresh if the terminal linked to the

partner human user has not been compromised.)

Security Notions. In the privacy security game, the goal of the adversary is to guess the bit

b involved in the Test queries. Then we measure the success of an adversaryA, that outputs

a bit b′, by Advpriv
HAKE(A) = |2 ·Pr[b′ = b]− 1|. This notion implies implicit authentication,

which essentially means that no one else than the expected partners share the session key

material.

For explicit authentication, we define the authentication security game: the goal of

the adversary is essentially to make a player terminate (flag terminate set to true) without

an accepting partner (flag accept set to true). But in our case with compromised or even
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infected terminals, this is a bit more complex than usual. We thus split the authentication

security in two parts:

• Server-authentication: a user oracle should not successfully terminate a session if

there is not exactly one partner server oracle that has accepted. Then, we denote

Advs-auth
HAKE(A) the probability the adversary A makes such a bad event happens;

• User-authentication: a server oracle should not successfully terminate a session if

there is not exactly one partner user oracle that has accepted. Then, we denote

Advu-auth
HAKE(A) the probability the adversary A makes such a bad event happens.

Eventually, we define Advauth
HAKE(A) = max{Advs-auth

HAKE(A),Advu-auth
HAKE(A)}.

For simplicity, in the following we only consider a single user for the above security

notions, which can be easily extended to the multi-user case via a union bound.

Passive Sessions. We now define a new notion of passive session, which extends the

Execute queries in the standard BPR model [43]. Recall that Execute queries allow the

adversary to get full transcripts of communication between honest parties. Even though

the same can be achieved via Send queries, in the security analyses it is useful to count the

number of observed honest sessions and the number of maliciously altered sessions sep-

arately. In addition, we will not limit to full sessions: the adversary can stop forwarding

honest flows, making the session abort. Then, there can be passive full/partial-sessions:

Definition 2 (Passive Session). A (full or partial) session between oracles πjT and πkS is

called passive, if the messages of all queries SendTerm(j, ·) or SendServ(k, ·) are either

Start(·) or themselves an output of one of these two queries type. If flows are numbered,

this also implies that the actual order of flows between T and S has not been modified. If

all the outputs have been forwarded as inputs, this is a passive full-session, otherwise this

is a passive partial-session.

Sessions that are not passive are called active, since the adversary altered something in

the honest execution.
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We believe this notion is stronger than the Execute queries defined in the BPR security

model, since the adversary does not need to decide from the beginning if all the exchanges

will be passive or not. A can start with a passive sequence and decide at some point to stop

(passive partial-session) or behave differently in an adaptive way (active session).

Resources of the Adversary. When doing security analyses, for every adversary and its

privacy and authentication advantages, one also has to specify the adversarial resources

such as the running time t, the number of oracle queries, the number of player instances,

and the numbers npassive/nactive of (fully) passive and active sessions the adversary needs.

Discussion. We discuss a bit more about our security definitions to explain why they cap-

ture the practical threats. First, a passive network adversary is able to observe legitimate

communications via SendServ and SendTerm queries (these will satisfy the passive sessions

definition). An active network adversary can modify legitimate messages or impersonate

a terminal or a server by injecting some messages of its choice, again, via SendServ and

SendTerm queries. This models, in the standard way, possible insecurity (in terms of pri-

vacy or authentication) of the network channel between terminals and servers.

Passive-insider attacks (such as keylogger and screen capture malware compromising

computers or their browsers) are modeled by Compromise queries followed by SendTerm

queries. The former gives the adversary full information about the terminal’s internal state,

including its random coins and registers’ contents, and the latter reveals to the adversary

the inputs from the human.

We consider even more powerful attackers who can take full control of the computers

or some of their crucial applications such as browsers. In this case, in addition to learning

the internal state and all the inputs, the adversary can impersonate the honest terminal while

sending adaptively selected messages to the human. We model this by Infect and SendHum

queries.

Our model captures all the above scenarios and moreover, it takes into account the

possibility of multiple simultaneous attacks, such as colluding network and malware ad-
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versaries. One can notice that attacks involving Infect queries are stronger than those with

Compromise queries: when an adversary infects a terminal, it takes full control on it, with

knowledge of its internal state, and thus plays on its behalf, using SendServ and SendHum

queries.

Note that in any case, we are concerned with the security of a new session, in terms

of privacy and authentication, over an honest terminal, that is neither compromised nor

infected. Such security should be guaranteed even though the other sessions involving the

same human with the same long-term secret were carried over compromised terminals, and

if possible even over infected terminals. We model privacy via the Test query and with the

appropriate privacy advantage definition. We model authentication via the corresponding

advantage definition.

We also stress that we do not consider corruption of the long-term secrets, since they

are known by the users and the server only, and we do not allow to corrupt them. Would

the long-term secret be leaked, we cannot guarantee any security for future sessions. The

interesting open problem of dealing with such corruptions could be addressed using an

asymmetric long-term secret: a verifier-based variant that would just provide an encoded

version of the user’s secret to the server.

3.3 Human-Compatible Function Family

In this section, we define the syntax and security of a Human-Compatible (HC) function

family and its instantiations.

3.3.1 Syntax

A HC function family is specified by the challenge space C, the key generation algorithm

KG, which takes input the security parameter and outputs a key K , and the challenge-

response function F that takes a key K and a challenge x ∈ C and returns the response

r = FK (x). We require that:
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1. for every K output by KG and every x ∈ C, both x and FK (x) are human-writable

and human-readable;

2. C is human-sampleable.

We also define the only-human HC function family (where an additional device is ex-

cluded), which is the human-compatible function family that also has:

1. for every K output by KG, FK (·) is human-computable;

2. every K output by KG is human-memorizable;

3.3.2 Security

In an authentication protocol with challenge-response pairs, intuitively, we would like that

any successful authentication to a server should involve an evaluation of the function by the

human user. So we expect no compromised/infected terminal to successfully authenticate

to the server one more time than it interacted with the human. The security notion from

the function is thus a kind of one-more unforgeability [77]. But here, any query to an

FK (·) oracle should help to immediately answer FK (x) to the current challenge x, since a

second challenge will come from a new session that has closed the previous one, and so

the previous challenge is obsolete: the adversary cannot store the n + 1 challenges, ask

n queries, and answer the n + 1 initial challenges. In our protocols, the adversary gets

a random challenge (GetRandChal query), can ask any FK (·) query (GetResp query), but

should answer that challenge (TestResp query), otherwise the failure is detected. After

too many failures (recorded in the unvalidated-query counter ctr) one may restrict oracle

queries. Hence our following security notion which formalizes these restrictions to the

adversary.

η-Unforgeability. As said above, we thus define a kind of sequential one-more unforge-

ability experiment, with a limit η on the unvalidated-query counter ctr, where the queries

follow the graph presented on Figure 3.1. Given a HC function family F , an adversary A,
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GetRandChal()

GetResp()

TestResp()

if ctr < η

Figure 3.1: Graph of the sequential oracle calls in the η-unforgeability experiment

and a public parameter η, one first generates K with KG and initializes ctr ← 0. Then

the adversary can ask the following queries, with possible short loops on the GetRandChal

query and direct TestResp attempt right after getting the challenge:

1. GetRandChal() – It picks a new x
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗) and increments ctr. It also

marks the fresh x as unfresh. Otherwise, it outputs ⊥;

3. TestResp(r) –

• If FK (x) = r and x is fresh, the adversary wins;

• If FK (x) = r and x is unfresh, it decrements ctr, marks x as used, and outputs

1;

• Otherwise, it outputs 0.

Because of the sequential iterations, any TestResp query relates to the previous

GetRandChal query. One can thus consider one memory-slot to store the challenges, but

one only at a time: any new challenge replaces the previous one. The dashed line from

GetRandChal to GetResp emphases the restriction on the number of unvalidated queries.

When ctr ≥ η, the adversary has no more choice than immediately trying an answer for
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the random challenges. The bound η represents the maximum gap that is allowed at any

time between the number of GetResp queries and the number of correct TestResp queries.

Note that a random challenge x can only be either fresh, unfresh, or used, and that mark-

ing it as one of those erases the other flags. Intuitively, a fresh challenge has not been

compromised in any way, and succeeding at a TestResp on it would indicate the unforge-

ability has been breached, hence the winning status for the adversary, and the experiment

stops. A challenge can switch to the unfresh state if the adversary asks the GetResp ora-

cle for an answer. There are only two ways for the experiment to stop: if the adversary

wins with a correct TestResp query on a fresh challenge; or if the adversary aborts, it then

looses the game. We stress that the adversary can query the GetResp oracle on any x∗ of its

choice, and so possibly different from the current challenge x obtained with the previous

GetRandChal query. But we give it a chance to still answer correctly to the challenge x

with the correct TestResp query that, on an unfresh challenge, cancels the increment of the

counter ctr. This counter represents the gap between the number of GetResp queries and

the number of correct TestResp queries on random challenges. When one limits ctr to be

at most 1, any GetResp query should be immediately followed by a correct TestResp query

(one-more unforgeability).

This definition is a weaker notion than the one-more unforgeability [77], but still allows

the adversary to exploit malleability: For example, with the RSA function, for a random

challenge y, the adversary can ask a GetResp query on any y′ = y · re mod n, for an r of

its choice, so that it can then extract an e th root of y. But this would not help it to answer

a next fresh challenge.

2-Party η-Unforgeability. Unfortunately, the above clean security notion is not enough

for our applications, as client-server situations and man-in-the-middle attacks allow more

complex ordering of the queries by the adversary. We therefore present a variant of this ex-

periment below, that is suitable for a protocol involving two parties (hence in the following

b ∈ {0, 1}).
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Given a HC function family F , an adversary A, and a public parameter η, one first

generates K with KG and initializes ctr ← 0. Then the adversary can ask the following

queries:

1. GetRandChal(b) – It picks a new xb
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – If ctr < η and x∗ ∈ C, it returns FK (x∗) and increments ctr. It also

marks all fresh xb as unfresh. Otherwise, it outputs ⊥;

3. TestResp(r, b) – If xb exists:

• If FK (xb) = r and xb is fresh, the adversary wins;

• If FK (xb) = r and xb is unfresh, it decrements ctr, marks xb as used and outputs

1;

• Otherwise, it outputs 0.

The main difference with the previous experiment are the two memory-slots for challenges

x0 and x1. But still, any GetResp query must be followed by a correct TestResp query to

limit ctr from increasing too much.

The advantage of any adversary A against the unforgeability, Advη-uf
F (A) is the prob-

ability of winning in the above experiment (with a correct TestResp query on a fresh chal-

lenge). Such a success indeed means that the adversary found the response for a new

random challenge, without having asked for any GetResp query.

The resources of the adversary are the polynomial running time and the numbers

qc, qr, qt of queries to GetRandChal, GetResp and TestResp oracles, respectively.

Indistinguishability. For some constructions, we will expect the sequence of answers

{FK (xi), i = 0, . . . , T} for challenges xi (either adversarially chosen or not) to look ran-

dom, or at least any new element in the sequence is not easy to predict from the previous

ones.
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For simplicity, we assume that there exists a global distribution D with large enough

entropy D such that any such sequence is computationally indistinguishable from DT+1:

We denote Advdist-c
F (D,A) the advantage the adversary A can get in distinguishing the

sequence {y0 = FK (x0), . . . , yc−1 = FK (xc−1)} for a random K , from (y0, . . . , yc−1)
$←

D × . . . × D. For the latter distribution, the probability to guess yc−1 from the view of

(y0, . . . , yc−2) is 1/2D.

(Weak) pseudo-random functions definitely satisfy this property. But from a more prac-

tical point of view, the function implemented in the RSA SecurID device [68] is believed

to satisfy it too, with xi being a time-based counter.

3.3.3 Token-Based HC Function Family Instantiation

Then, we introduce a simple token-based HC function family. This assumes that the human

is in possession of a simple device on which it can input challenge x and get the response

r ← FK(x). The device will store K and perform the computation, but the human is still

responsible for the communication with the terminal.

This allows us to use strong cryptographic primitives. For instance, we could set K $←

{0, 1}λ and FK : {0, 1, . . . , 9}t′ → {0, 1, . . . , 9}t a pseudorandom function. In the random

oracle model (for modeling H in FK(x) = H(K‖x)), we have Advη-uf
F (A) ≤ 10−t for

any adversary and any η, since an adversary can just guess by chance the answer to a

fresh challenge. Note that this function is obviously human-readable, human-writable and

human-sampleable as its input/output are numbers in basis 10 so it is a HC function family.

Hence this function family is a good candidate to use in our Basic HAKE protocol (see

Subsection 3.4.1) and its simplified version (see Subsection 3.5.1).

3.3.4 Only-Human HC Function Family Instantiation

However, avoiding such devices would be much better in practice. We are thus interested in

the only-human HC function family that would not require anything beyond simple human
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memory and brain computation power. Since such a function is necessarily weaker, we will

use it in our Confirmed HAKE protocol (see Subsection 3.4.2), which has a much tighter

control over adaptive queries and therefore requires weaker security properties from the

HC function family.

Construction

We present a candidate based on the construction of Blocki et al. [18], for which the security

is based on [76]: Consider a challenge space C = X t
l ⊆ [n]lt, where [n] = {1, . . . , n} is

the set of n integers each representing one of the n variables and Xl denotes the space

of ordered clauses of l variables without repetition. The parameter t indicates that each

challenge consists of t independent clauses, i.e., “small” challenges. The key generation

algorithm KG of our HC function family takes as input a parameter n, then outputs a

random mapping σ : [n]→ Zd as the key K, where the integer d is a constant. Usually we

set d = 10 because most humans are familiar with computations on digits. Let σl : [n]l →

Zld = (σ, · · · , σ) denote the mapping that applies σ to each element of an l-tuple. Using

a public human-computable function f : Zld → Zd that is instantiated later, the challenge-

response function F takes a key K = σ and a challenge x ∈ C as inputs, and returns a

response r = FK(x). Here FK : C → Ztd is defined as a t-tuple (t ≥ 1) (f ◦σl, · · · , f ◦σl),

where ◦ indicates the function composition.

For instance, if n = 100, l = 3, d = 10, t = 2, x = ((1, 4, 20), (3, 36, 41)),

σ(i) = (i + 3) mod 10 and f = (x1 − x2 + x3) mod 10, then σ((1, 4, 20)) = (4, 7, 3),

σ((3, 36, 41)) = (6, 9, 4) and FK(x) = (0, 1).

Given integers k1, k2 > 0, the function f is instantiated as fk1,k2 : Z10+k1+k2
10 → Z10,

which is defined as follows:

fk1,k2(x0, . . . , x9+k1+k2) = x(∑9+k1
i=10 xi mod 10

) +

9+k1+k2∑
i=10+k1

xi mod 10.
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Note that when f is instantiated as fk1,k2 , we have l = 10 + k1 + k2 and d = 10.

It is easy to see that such a function family is an only-human HC function family apart

from the human memorization property. However, we can allow for images to represent the

variables. As illustrated in [18], by using mnemonic helpers, humans are able to remember

such mappings from images to digits. As an evidence, the primary author of [18] was able

to memorize a mapping from n = 100 images to digits in 2 hours.

Security

In [18], the authors proved the intractability to answer to a new random challenge for

the above HC function family instantiation based on the conjecture about the hardness of

random planted constraint satisfiability problems (RP-CSP). We briefly recall a special

case of the RP-CSP conjecture, which we call the RP-CSP* conjecture, and its implied

security theorem, both with our notations. For an in-depth review of those notions, the

reader should refer to [18].

The RP-CSP* Conjecture. Before stating this conjecture, we introduce some notations as

in [18]. Denote H(α1, α2) = |{i ∈ [n] | α1[i] 6= α2[i]}| as the Hamming distance between

two strings α1, α2 ∈ Znd . Use H(α) = H(α,~0) to denote the Hamming weight of α. Then

we say two mappings σ1, σ2 ∈ Znd are ε-correlated if H(σ1, σ2)/n ≤ (d− 1)/d− ε.

Conjecture 1 (RP-CSP*). Consider the function fk1,k2 described above, for any ε, ε′ > 0

and any probabilistic polynomial time (in n) adversary A, there exists an interger N ∈ N,

such that for all n > N , m ≤ nmin{(k2+1)/2,k1+1−ε′}, we have Advrand
fk1,k2

(A, ε) =

negl(n), where Advrand
fk1,k2

(A, ε) is the probability that A outputs a mapping σ′ that is ε-

correlated with the secret mapping σ given m random “small” challenge-response pairs

{(Ci, fk1,k2(σl(Ci)))}1≤i≤m.

REMARK. The RP-CSP conjecture in [18] is a general version of the RP-CSP* Conjec-

ture 1, where f can be instantiated as other functions. Here, for simplicity, we only state
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the conjecture where f = fk1,k2 . In [18], the authors also prove strong evidence in support

of the RP-CSP conjecture: it holds for any statistical adversary and any Gaussian Elimi-

nation adversary. As observed in [76], most natural algorithmic techniques have statistical

analogues except the Gaussian Elimination.

Basic η-Unforgeability. To state the security theorem in [18], we need the following “ba-

sic” HC security notion that is a “non-malleable” version of the η-unforgeability. It indeed

assumes that asking a GetResp query with an input different from the current random chal-

lenge should not help to answer this challenge correctly to the TestResp query. Given a HC

function family F , an adversary A, and a public parameter η, one first generates K with

KG and initializes ctr ← 0. Then the adversary can ask the following queries:

1. GetRandChal() – It picks a new x
$← C, marks it fresh and outputs it;

2. GetResp(x∗) – It increments ctr if x∗ 6= x;

• If ctr ≤ η and x∗ ∈ C, it outputs FK (x∗) and marks x as unfresh;

• Otherwise, it outputs ⊥;

3. TestResp(r) –

• If FK (x) = r and x is fresh, the adversary wins;

• If FK (x) = r and x is unfresh, it outputs 1;

• Otherwise, it outputs 0.

Just like the η-unforgeability experiment, the above oracle calls are sequential (similar to

Figure 3.1), starting with a GetRandChal query. But since non-malleability is assumed,

only GetResp queries with inputs different from the current random challenges make the

counter increase, and it is never decreased.

The advantage of any adversary A against the above unforgeability, Advη-uf-basic
F (A)

is the probability of winning in the above experiment. Such a success indeed means that
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the adversary found the response for a new random challenge, without having asked for a

GetResp query. The parameter η restricts the number of “adaptive” GetResp queries thatA

can make, where adaptive means “different from the current random challenge”.

The resources of the adversary are the polynomial running time and the numbers

q′c, q
′
r, q
′
t of queries to the above GetRandChal, GetResp and TestResp oracles, respectively.

For convenience, denote by q′′t the number of TestResp queries such that the current random

challenge x is fresh. By definition, we have q′r ≤ q′c, q
′
t ≤ q′c and q′′t ≤ q′c − q′r.

HC Function Family Security Results. Under Conjecture 1, one can prove the following

unforgeability result about the HC function family.

Theorem 1 (From [18]). Given ε, ε′ > 0, t ∈ N+ and δ > ( 1
10

+ ε)t, for any probabilistic

polynomial time (in n, q′c, 1/ε) adversary A against the basic 0-unforgeability security of

the HC function family F constructed above using f = fk1,k2 with

q′′t = 1, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 1, we have Adv0-uf-basic
F (A) < δ.

Note that in the basic 0-unforgeability security game, the adversary learns nothing from

GetResp(x∗) if x∗ is not the current random challenge x. So if η = 0, the adversary A is

only given random challenge-response pairs.

This result is actually not strictly good-enough, even for our Confirmed HAKE protocol

(see Subsection 3.4.2). Indeed, if the function does not allow for at least one adaptive query,

an attacker could make it in the first exchange (using an infected terminal), then break the

unforgeability of the function before the confirmation flow and make the protocol succeed,

hence avoiding detection. Thus, we extend the RP-CSP conjecture to allow log n adaptive

“small” challenge-response pairs.

Conjecture 2. Consider the function fk1,k2 described above, for any ε, ε′ > 0, t ∈ N+ and

any probabilistic polynomial time (in n) adversary A, there exists an interger N ∈ N,
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such that for all n > N , mr ≤ nmin{(k2+1)/2,k1+1−ε′} and ma ≤ t log n, we have

Advadapt
fk1,k2

(A, ε) = negl(n), where Advadapt
fk1,k2

(A, ε) is the probability thatA outputs a map-

ping σ′ that is ε-correlated with the secret mapping σ givenmr random “small” challenge-

response pairs and the correct responses to ma “small” challenges adaptively chosen by

A.

Proof. For any adversary A we can construct an adversary B such that Advadapt
fk1,k2

(A, ε) ≤

10t logn ×Advrand
fk1,k2

(B, ε).

B simulates A’s view by providing A with the given mr random “small” challenge-

response pairs and randomly guessing the responses to the ma (≤ t log n) adaptive “small”

challenges. The probability of correctly guessing all adaptive ones is 10−t logn (refer to

the construction of fk1,k2), hence the above advantage reduction. One should note that

10t logn × negl(n) = negl(n) and B’s running time is polynomial in n.

Under this extended conjecture, one can prove the following stronger unforgeability

result about the HC function family, which “almost” suits our Confirmed HAKE protocol

(see Subsection 3.4.2):

Theorem 2. Given ε, ε′ > 0, t ∈ N+ and δ > ( 1
10

+ ε)t, for any probabilistic polyno-

mial time (in n, q′c, 1/ε) adversary A against the basic η-unforgeability security of the HC

function family F constructed above using f = fk1,k2 with

η ≤ log n, q′c ≤
1

t
· nmin{(k2+1)/2,k1+1−ε′} − 1,

under Conjecture 2, we have Advη-uf-basic
F (A) < q′′t · δ.

Proof. The proof is almost the same as that of Theorem 1. Informally, we need to show that

any adversary A that breaks the basic η-unforgeability security of the HC function family

can also “recover” the secret mapping σ in Conjecture 2. The reader can refer to the proof

of Theorem 5 in [18], which we call the “HCP” proof below, for the details.
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Nevertheless, here the theorem differs from Theorem 1 in several aspects. First, A can

adaptively select t log n “small” challenges to get the correct responses, while in Theorem 1

only random ones are allowed. But having adaptive queries does not affect the HCP proof

because it only uses A as a blackbox to predict the responses to any t “small” challenges.

Second, we apply an union bound of q′′t queries to the final advantage.

REMARK. In the above theorem ε, ε′ are almost 0. We can set n = 100, k1 = 1, k2 = 3

and t = 5, then η ≤ 6, q′c ≤ n2/t− 1 ≈ 2000 and Advη-uf-basic
F (A) < q′′t · 10−t ≤ 1/50.

We believe a similar theorem holds for Advη-uf
F (by replacing the oracles with those

in the 2-party η-unforgeability experiment), which our HAKE security can rely on. The

intuition is as follows. With the HC function family instantiation described in this section,

a GetResp(x∗) query in the η-unforgeability experiment should not have x∗ too “far” from

the random challenge x output by the latest GetRandChal query. Otherwise, it is very

unlikely for the adversary to guess correctly in the TestResp query. But the adversary can

modify x a little bit to guess the correct response with a smaller failure probability. This is

the difference between the two unforgeability notions: the basic one does not tolerate any

malleability, whereas the other can exploit malleability. Because of the size of the challenge

space, that has to be quite large (it is essentially nt(10+k1+k2), and thus 2465, with the above

parameters), the number of challenges that are “close” to any random challenge accounts

for a tiny proportion. Thus, the adversary should not get much help from such “nearly

random” challenges. Besides, such queries risk increasing the counter in the GetResp oracle

without extracting much useful information. In addition, the two memory slots will not

increase much the advantage of an adversary, and so Advη-uf-basic
F and Advη-uf

F should be

quite close for this specific HC function family instantiation. We leave further studies of

security of the HC function family from [18] to future works.
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3.4 Generic HAKE Protocols

In this section, we propose two generic HAKE protocols. They build on a simple idea of

composing a human-compatible (HC) function family with a password authenticated key

exchange (PAKE) protocol. More precisely, a server chooses a random challenge x, the

user U`’s response is r = FK`
(x), where F is a HC function family and K` is the long-

term secret shared between the user and the server. And finally the terminal and the server

execute the PAKE on the one-time password r, as in [75]. As already mentioned, whereas

the server supports concurrent sessions, since the human does not, there is no sense in

maintaining multiple session states for one human user.

However, a straightforward replay attack is possible. The adversary can first just eaves-

drop a session by compromising a terminal, and then play on behalf of the server with the

observed challenge-response pair (x, r), even when the user uses an honest terminal. The

main issue is that there is no reason for the challenge to be distinct in the various sessions

if we do not add a mechanism to enforce it. In [75]’s constructions, they assume the server

is stateful to prevent it. However, we can do better.

This is the goal of our first protocol: it adds a coin-flipping protocol between the ter-

minal and the server to avoid either party to influence the challenge x, and thus to avoid

the aforementioned replay attacks. We prove it secure (in terms of privacy, which implies

implicit authentication) assuming security of commitments (underlying the coin-flipping),

HC function family, and PAKE. However, the concrete security depends on the bound η,

which is large enough for our device-based HC function family, but the only-human HC

function family construction we proposed in Subsection 3.3.4 (and its underlying hardness

problem) does not tolerate a high η.

Hence, the goal of our second HAKE protocol is to add explicit authentication, which

will help limiting the number of malicious challenge-response pairs the adversary can see,

or at least to detect them: the user can then suspect the terminal to be infected. We still
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Human U`(K`) Terminal T Server S(K`)

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT )
`, c−−−−−−−→

x←−−−−−−− x← g(xS + xT )
xS←−−−−−−− xS

$← Z|C|
r ← FK`

(x)
r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)

x← g(xS + xT )
r ← FK`

(x)
PAKE(r)

↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
PAKEsid = (`, c, xS , s)

Outputs skT Outputs skS

Figure 3.2: Basic HAKE construction

need the concrete HC function to tolerate at least one malicious challenge, but this remains

a reasonable assumption.

3.4.1 The Basic HAKE

Our first construction utilizes a commitment scheme, a HC function family, and PAKE.

Description. Let (KG, F ) be a human-compatible function family with challenge space C,

let CS = (Setup,Com,Open) be a commitment scheme, let PAKE be a password authen-

ticated key exchange protocol and let g : Z|C| → C be a bijection. We construct the Basic

HAKE (LKG = KG,KE). Its interactive KE protocol is described on Figure 3.2, here are

the descriptions.

• KE execution:

1. When the user invokes a terminal to establish a connection with the server, the

terminal chooses its part of the challenge xT , and commits it for the server. It

also sends the user’s identifier `;

2. Upon receiving the commitment, the server waits until any previous session for

U` finishes, then it chooses its part of the challenge xS , and sends it in clear to

the terminal;

3. The terminal then combines both parts xT and xS to generate the challenge

x = g(xS + xT ), and asks x to the user;
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4. Upon reading the challenge x, the user computes and writes down the response

r for the terminal;

5. When the terminal receives the response r from the human user, it opens its

commitment to the server, and can already starts with the PAKE protocol exe-

cution;

6. Upon receiving the opening value of the commitment, the server opens the latter

to get xT . It can then combine both parts xT and xS to generate the challenge

x = g(xS + xT ), and compute the response r. It can then proceed with the

PAKE protocol too.

The terminal and the server both run the PAKE protocol with their (expected) com-

mon input r and session identifier PAKEsid that is the concatenation of the tran-

script. At the end of the PAKE execution, they come up with two session keys, skT

and skS , respectively, that will be equal if both parties used the same r in the PAKE.

Since we do not consider explicit authentication, accept and terminate flags are not

set.

Correctness of the HAKE construction follows from correctness of the building blocks.

Security Analysis. For Basic HAKE, we only assess privacy of the session key, since this

protocol does not provide explicit authentication. We have the following theorem and refer

to [39] for the proof.

Theorem 3. Consider the Basic HAKE protocol defined in Figure 3.2. Let A be an ad-

versary against the privacy security game with static compromises, running within a time

bound t and using less than ncomp compromised terminal sessions, nuncomp uncompro-

mised terminal sessions, nserv server sessions and nactive ≤ ncomp + nuncomp + nserv active

sessions. Then there exist an adversary B1 attacking the 2-party ncomp-unforgeability of

the HC function family with qr, qc, qt queries of the corresponding type, an adversary B2

and a distinguisher B3 attacking UC-security of PAKE with a simulator SPAKE as well as
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an adversary B4 against the commitment scheme, all running in time t, such that

Advpriv
HAKE(A) ≤ Adv

ncomp-uf
F (B1) + 2 ·Advpake

PAKE(SPAKE,B2,B3) + 6 ·AdvCS(B4) ,

where qr ≤ ncomp, qt ≤ nactive, and qc ≤ nuncomp + ncomp + nserv.

Discussion. Concrete security of the HC function family is definitely the most crucial

compared to that of other building blocks, since it is hard to balance strong security and

usability. This is why we emphasize this in the above theorem.

We note that the sessions which lead to TestResp queries have non-oracle-generated

flows and therefore correspond to classical on-line dictionary attacks: the adversary simply

tries to impersonate the user/terminal to the server (or vice-versa), with a guess for the

answer r (unless the query has been asked to GetResp). Indeed, sessions with GetResp

queries on the exact challenges have compromised terminals and correspond to a spyware

keylogger that records random challenge-response pairs. If using such a compromised

terminal can be considered rare, this remains reasonable. Eventually, the sessions which

lead to GetResp queries on different challenges are the most critical, but they should likely

fail. And we expect them to be quite exceptional. As remarked above, such sessions likely

conclude to a failure: no concrete session is established with the server the user wanted to

connect to (if the HC function family is still secure after such adaptive queries). If the user

can detect such a failure, he can run away from this terminal. We now propose a way for

the user to detect such a dangerous terminal, and thereafter take appropriate measures. At

the same time, our next proposal will achieve explicit authentication.

3.4.2 The Confirmed HAKE

We now enhance the Basic HAKE by adding two confirmation flows (see Figure 3.3) that

allow the user to detect a bad behavior of the adversary, who compromised the device, and

take appropriate measures. This can happen in two different scenarios: the adversary just
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Human U`(K`) Terminal T Server S(K`)

accept← False accept← False
terminate← False terminate← False

`−−−−−−−→ xT
$← Z|C|

(c, s)← Com(xT )
`, c−−−−−−−→

x←−−−−−−− x← g(xS + xT )
xS←−−−−−−− xS

$← Z|C|
r ← FK`

(x)
r−−−−−−−→ s−−−−−−−→ xT ← Open(c, s)

accept← True x← g(xS + xT )
r ← FK`

(x)PAKE(r)
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁
PAKEsid = (`, c, xS , s)

Parses key: (kT ||skT ) Parses key: (kS ||skS)
accept← True

xU
$← C xU−−−−−−−→ XU ← EnckT (xU )

XU−−−−−−−→ xU ← DeckS (XU )
Verifies rU

rU←−−−−−−− rU ← DeckT (RU )
RU←−−−−−−− RU ← EnckS (FK`

(xU ))
Outputs skT Outputs skS

terminate← True
0/1−−−−−−−→ terminate← True

Figure 3.3: Confirmed HAKE construction

compromised a terminal and additionally plays on behalf of the server, which allows it to

ask any query to the user through the terminal, or the adversary infected a terminal that

allows it to directly ask any query to the user.

As said above, such dangerous cases lead to no connection with the expected server.

The user will thus check whether he built a secure session with the expected server, who

should be able to answer to a fresh random challenge. This is performed under the fresh

key, established with the PAKE, using a secure authenticated encryption. As shown below,

the two additional flows will not only provide explicit authentication, but also allow the

user to detect such bad events and take measures. For this, it is important that the user

does not start multiple sessions concurrently, which is anyway not realistic for a human (as

already noticed above).

Description. The protocol is similar to Basic HAKE, but it uses an additional building

block, an authenticated encryption scheme ES = (Enc,Dec), that is used in the new last

stage of the protocol. The description is in Figure 3.3.

Since we now consider the authentication of the players, we additionally include accept

and terminate flags in the protocol: The user U` accepts after sending the first response
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while the server S accepts after the PAKE. Then both terminate when they have the con-

firmation of the other partner. More precisely, the user terminates after sending the last

bit (1 for acceptance and 0 for rejection) to the terminal (thus having verified the server’s

response in the last stage), and the server terminates after sending the encrypted response

(thus having checked the terminal can generate a valid ciphertext).

Note that if the protocol terminates, skT and skS must be equal, since our additional

flows act as confirmation flows for the PAKE.

Security Analysis. We now present Theorem 4 regarding the security of our Confirmed

HAKE in the HAKE privacy and authenticity experiment.

While it relies on the same security properties of PAKE, authenticated encryption, com-

mitment scheme and HC function family, a critical parameter is added, the number of hu-

man sessions that reject in the end.

Indeed, the explicit authentication property we achieve means that any attempt at issu-

ing an adaptive query unrelated to the challenge will likely lead to a failure of the PAKE

protocol, that can in turn be detected by the human, as he doesn’t get the answer to xU he

looked for. This allows to use a much stricted η in the HC unforgeability game (even η = 1

for a very strict human user), which is a much more reasonable goal for an only-human HC

function family.

We have the following theorem and refer to [39] for the proof.

Theorem 4. Consider the Confirmed HAKE protocol defined in Figure 3.3. Let A,A′

be adversaries against the privacy and authenticity security game of HAKE within a time

bound t and using less than ncomp compromised terminal sessions, nuncomp uncompromised

terminal sessions, nserv server sessions, nactive ≤ ncomp + nuncomp + nserv active sessions

and nhr human session that reject in the end. Then there exist two adversaries B1,B′1 at-

tacking the 2-party (nhr + 1)-unforgeability of HC function family with qr, qc, qt queries

of the corresponding type, two adversaries B2,B′2 and two distinguishers B3,B′3 attacking

UC-security of PAKE with the simulator SPAKE, two adversaries B4,B′4 against the authen-
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ticated encryption, as well as two adversaries B5,B′5 against the commitment scheme, all

running in time t, such that

Advpriv
HAKE(A) ≤ Adv

(nhr+1)-uf
F (B1) + 2(ncomp + nuncomp + nserv) ·Advauthenc

ES (B4)

+ 6 ·AdvCS(B5) + 2 ·Advpake
PAKE(SPAKE,B2,B3),

Advauth
HAKE(A′) ≤ Adv

(nhr+1)-uf
F (B′1) + 2(ncomp + nuncomp + nserv) ·Advauthenc

ES (B′4)

+ 6 ·AdvCS(B′5) + 2 ·Advpake
PAKE(SPAKE,B′2,B′3),

where qr ≤ 2ncomp, qt ≤ nactive, qc ≤ ncomp + nuncomp + nserv.

REMARK. We also note that given the confirmation phase, and assuming the strong policy

of resetting all credentials if the confirmation phase fails, the coin-flipping part is no longer

necessary for the security proof: we could let the server choose the challenge during the

first phase and the human in the second one (to avoid one player being to make replay

attacks). We chose to keep it as part of the protocol because, first, this would not reduce the

number of flows since the terminal always initiates such a connection, and second, without

coin-flipping a network attacker could test adaptive challenges. The confirmation phase

would fail, but there is no real need for the user to take severe measures and change the

long-term secret in such a weak attack. Hence we prevent adaptive tests (from network

attacks) with coin-flipping, which may be useful if a policy a little weaker is in use, such

as resetting only if there is suspicion of terminal infection.

3.5 Device-Assisted HAKE Protocols

In this section, we take a step back from the only-human HC function family to allow the

use of an additional device that will perform the computations in place of the human. In

this setting, the HC function family can be quite powerful and thus resist to many adaptive

queries. We consider it in two scenarios: first in a similar context as the Basic HAKE,

where one can enter a challenge onto the device to get the response; and second, a time-

59



based token, that outputs the response every timeframe, with the time as the challenge

(without having the user to enter it).

3.5.1 Simplified Basic HAKE

According to the security proof of the Basic HAKE, the PAKE has to be instantiated with

a UC-secure protocol, which turns out to be quite costly. Indeed, the only efficient scheme

that achieves this security level is the encrypted key exchange protocol (EKE) [17]. How-

ever, the proof holds in the ideal cipher model, for a symmetric blockcipher that should

only output elements in the Diffie-Hellman group. In practice, the best way to do it is to

iterate a large blockcipher until one falls in the group. First, a large blockcipher from a hash

function (modeled as a random oracle) has fueled a whole line of works [78, 79, 80], and

is nevertheless already quite costly: at the time of writing, at least 8-round Feistel network

is required [80], with an impossibility result below 6 [78]. Thereafter, additional iterations

are required to build a permutation onto the group. This thus eventually corresponds to

dozens of hash function evaluations.

Looking back at the construction, using a full PAKE seems anyway as a bit of an

overkill since the ephemeral secrets are only used once, and need not to be kept secret

afterwards. We hence propose a simplified Basic HAKE protocol that uses commitments

instead of a full PAKE to achieve better efficiency. Due to its very similarity to the Basic

HAKE and that “simplified PAKE” is also used in our Time-Based HAKE described below,

for conciseness we refer to [39] for the details.

3.5.2 Time-Based HAKE

Scenario. In this section, we focus on the particular (but quite usual) case where the phys-

ical device does not have a dedicated input but uses time instead to compute its output.

More precisely, our protocol considers a device, such as the RSA-SecurId [68] token, that,

based on an internal seed (the long-term key K`), generates a one-time password (the value
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Time Human U` Terminal T Server S

≤ t accept← False accept← False
terminate← False

t
`−−−→ xT

$← Zp, XT ← gxT xS
$← Zp, XS ← gxS

t
pwt−−−→ (cT , sT )← ComT (XT , pwt)

`,XT , cT−−−−−−−→
t accept← True

XS , cS←−−−−−−− (cS , sS)← ComS(XS , pwt)
... Wait for timeframe > t Wait for timeframe > t
> t

sT−−−−−−−→ If OpenT (cT , sT ) = (XT , pwt)
> t and (`, t) 6∈ Λ, store (`, t) in Λ
> t Otherwise reject
> t accept← True
> t Reject if OpenS(cS , sS)

sS←−−−−−−− Outputs (XT )xS

> t 6= (XS , pwt)
> t Outputs (XS)xT terminate← True

Figure 3.4: Time-Based HAKE construction

FK`
(t), based on the time period t), and displays it on an LCD-Screen. The password

is tied to an internal clock, and changes every τ (e.g. 30s). Note that such a password

is already human readable and human writable, hence it satisfies our human-compatible

communications.

Building on the security model presented in Section 3.2, we now consider time as a

variable, that is to be segmented into timeframes (each spanning τ seconds). We then

number those timeframes and associate to each message sent between T and S this number,

representing the fact that each party can measure time and identify the timeframe in which

the message was sent.

Since the one-time passwords are generated by a secure device implementing FK`
, we

can make the assumption that, for each timeframe, the output is indistinguishable from an

element sampled from the distribution D with entropy greater than D (which increases the

advantage of an adversary A by at most Advdist-T
F (A) after T timeframes).

We rely on the requirement that any user U` can only make use of one terminal during

a timeframe. That is, he may not attempt to authenticate using more than one terminal in a

single time period.

Protocol. We now propose a device-assisted HAKE protocol called Time-Based HAKE.

It is presented on Figure 3.4. As in the previous Simplified Basic HAKE, it makes use

of a commitment scheme on top of the unauthenticated Diffie-Hellman scheme to perform
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authentication.

The commitment scheme CS is initialized twice, with two independent setup, leading to

ComT/OpenT and ComS/OpenS , each of them being used for the commitments generated

by the terminal and the server, respectively. We also setup a group G of prime order p in

which the discrete logarithm problem is believed to be hard. Let g be a generator of G.

The protocol itself is split into two parts: the commitment phase which must happen

during a timeframe t (that we will call the session timeframe) and the verification phase,

that must happen later than the session timeframe.

This delay is a clear limitation on the total speed of the protocol, which on average

will take τ/2. It will however prove necessary, as it allows FK`
(t) to be revealed without

compromising the security of the scheme, therefore building on the one-time specificity of

the password. To enforce a unique session in a timeframe, the server will not accept to

run several sessions within the same timeframe, with the same user, as the latter should

not do it anyway (see above). This would thus come from an adversary, and then allowing

multiple sessions in a timeframe t can compromise other sessions in the same timeframe

when FK`
(t) is revealed.

It is interesting to note that this protocol uses the time period t as the HAKE challenge

(the challenge is a counter) and the one-time password (FK`
(t)) read from the device as

the human’s response. Therefore, partnering between U and S is entirely determined at the

end of the session timeframe t.

Security Analysis. In the security analysis, as in Section 3.2.1, we only consider static

compromises. Hence Compromise(j) can only be the first oracle query of a session, and

Infect(j) can only affect compromised sessions. Since compromises are known before the

first flow and partnering between Human and Server is determined at the end of timeframe

t, this means that freshness itself can be perfectly ascertained in any timeframe > t.

We have the following theorem and refer to [39] for the proof.

Theorem 5. Consider the Time-Based Device-Assisted HAKE protocol defined in Fig-
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Table 3.1: Performance of the Time-Based Device-Assisted HAKE

Scheme Flows Terminal Server Communication
expon. H eval. expon. H eval. complexity

1(SPAKE1)[75, 81] 4 3 1 3 1 4λ

This work 4 2 2 2 2 10λ

ure 3.4. Let A,A′ be an adversaries against the privacy and user authenticity security

games with static compromises, running within time t and using less than nserv non-passive

sessions against the server oracle, nterm non-passive sessions against the terminal oracle,

ntotal > nterm + nserv total sessions and T < ntotal unique timeframes. Then there exist

an adversary B1 against the indistinguishability of the password-distribution D running in

time t, an adversary B2 against the commitment scheme running in time t, and an adversary

B3 against the DDH experiment running in time t+ 8ntotalτexp:

Advpriv
HAKE(A) ≤ (nserv + nterm) · 2−D + Advdist-T

F (B1) + 4 ·AdvCS(B2) + Advddh
G (B3),

Advu-auth
HAKE(A′) ≤ (nserv + nterm) · 2−D + Advdist-T

F (B1) + 3 ·AdvCS(B2),

with τexp the time necessary to exponentiate one group element, and ntotal the global number

of sessions.

REMARK. Note that the Time-Based Device-Assisted HAKE only achieves user authenti-

cation in our setting, since server authentication requires the server identity to be approved

by the human in our setting (the terminal could be infected so it cannot be relied on). A

similar approach to the one of the Confirmed HAKE could be used to achieve a full mutual

authentication.

Perfomances. We offer in Table 3.1 a comparison (in terms of numbers of flows, expo-

nentiations, H evaluations and overall communication complexity) of the performances of

our HAKE protocol with the one-time PAKE 1(P) construction of [75], instantiated with

SPAKE1 from [81] as a reference.
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Since SPAKE1 is also proven in the random oracle model, it is fair to use the efficient

commitment scheme described in Section 2.3. We do not include the redundant XP in

sP (it is transmitted at the commitment stage) for the communication complexity, and for a

security parameter λ, we assume the group elements to be encoded into 2λ-long bit-strings.

While our communication complexity is higher, the computational load is reduced by

30% from [75] with the most efficient PAKE. Relaxing the PAKE security properties allows

a significant gain from the complexity point of view.

64



CHAPTER 4

COMPARING TLS 1.3 OVER TFO TO QUIC

4.1 Introduction

As motivated in Subsection 1.2.2, our goal in this work is to thoroughly compare the secu-

rity and availability properties of the most important low-latency secure channel establish-

ment protocols: TLS 1.3 over TFO, QUIC over UDP, and QUIC[TLS] over UDP.

4.1.1 Our Contributions

To compare security, we first need to define a general protocol syntax for secure channel

establishment and fix a security model for it. Since the only provable security analysis

that studies security related to data transmission functionality is [32], we take their Quick

Connections (QC) protocol definition and Quick Authenticated and Confidential Channel

Establishment (QACCE) security model as our starting point.

To accommodate protocol syntaxes of TLS 1.3 and QUIC[TLS], we extend the QC

protocol to a more general Multi-Stage Authenticated and Confidential Channel Establish-

ment (msACCE) protocol, which allows more keys to be set during each session. Then,

we extend the Quick Authenticated and Confidential Channel Establishment (QACCE) se-

curity model [32] to two msACCE security models — msACCE-std and msACCE-pauth

— that are general enough for all layered secure channel establishment protocols listed in

Table 1.1. The former is fairly standard and is for core cryptographic security, and the latter

is novel and is for packet-level security.

Like most security models, we consider a very powerful attacker who can initiate com-

munications between honest parties, can intercept, inject, drop, or modify the exchanged

packets, and can adaptively learn parties’ stage keys or adaptively corrupt them to learn

65



their long-term keys and secret states. The attacker can also have prior knowledge of the

exchanged data. However, the attacker should not be able to prevent clients from establish-

ing final session keys without noticing the attacker’s involvement (Server Authentication)

or using these keys to achieve a secure channel with data privacy and integrity (Channel

Security). These standard security goals are captured by our first model.

For the second model that deals with packet-level availability attacks, we first follow

QACCE [32] to consider IP-spoofing prevention (also known as address validation) and

further extend it to additionally capture IP-spoofing attacks in the full connections. Then,

we design several novel notions for packet-level authentication as follows.

First, we define Header Integrity to capture the integrity of the whole unencrypted

packet header. (Note that previous models like QACCE only cover the header integrity

implied by the authenticity security of the underlying authenticated encryption scheme.)

To enable fine-grained security analyses and comparisons, we split the above notion into

two related ones, Key Exchange (KE) Header Integrity and Secure Channel (SC) Header

Integrity, which capture header integrity during the key exchange phase and secure channel

phase respectively. Furthermore, we define the notion of KE Payload Integrity to cover

availability attacks that modify the payloads of packets sent during key exchange. We note

that unlike the availability attacks shown in [32], successful attacks under our new notions

do not affect the client’s session key establishment and therefore are harder or impossible

to detect by the client. This makes such attacks more harmful and their treatment more

important. Finally, we formalize the new goal of Reset Authentication to deal with attacks

forging a reset packet to abruptly terminate an honest party’s session.

Equipped with our new models, we study the security and availability functionalities

provided by TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS]. We first confirm that

all protocols provably satisfy the standard security notions of Server Authentication and

Channel Security given that their building blocks are secure. The results mostly follow

from prior works and we just have to argue that they still hold for the extended model.
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Similarly, prior results showed that QUIC achieves IP-spoofing prevention and we show

that this extends to our stronger notion. As for TFO+TLS 1.3, its IP-spoofing prevention

relies on TCP sequence number randomization and TFO’s cookie mechanism (but no prior

former analysis confirmed its security). We prove that TFO+TLS 1.3 does satisfy this

security assuming that the underlying block cipher is a pseudorandom function.

Regarding SC Header Integrity, we show that while UDP+QUIC is secure, TFO+TLS

1.3, on the other hand, is insecure because it allows header-only packets to be sent in

the secure channel phases and does not authenticate the TCP headers of encrypted packets.

This theoretical result captures practical availability attacks that the networking community

has been slowly uncovering via manual investigation over the last 30 years [82, 83, 84,

85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], such as TCP flow control manipulation, TCP

acknowledgment injection, etc.

We next show that neither protocol satisfies KE Header Integrity. For TFO+TLS 1.3

this result leads to a TFO cookie removal attack that we discover, which allows the attacker

to undermine the whole benefit of TFO. Then, we show that UDP+QUIC is not secure

in the sense of KE Payload Integrity. This leads to a new availability attack that we call

ServerReject Triggering. Note that unlike the QUIC attacks (e.g., server config replay at-

tack, connection ID manipulation attack, etc.) discovered in [32], ServerReject Triggering

is harder to detect and more harmful in this sense. We show that TFO+TLS 1.3, on the

other hand, achieves KE Payload Integrity.

We further show that neither TFO+TLS 1.3 nor UDP+QUIC provide Reset Authenti-

cation, justifying the TCP Reset attack [94] relevant for TFO+TLS 1.3 and the PublicReset

attack for UDP+QUIC. For completeness, we recall the results from [32, 11] showing that

neither protocol provides forward secrecy for the keys encrypting 0-RTT data and that this

data can be replayed.

We finally show that the new UDP+QUIC[TLS] protocol achieves the strongest security

of three designs. While formally it does not provide KE Payload Integrity, the related
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| Acknowledgment Number |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| Data | |U|A|P |R|S |F | |
| O f f s e t | Rese rved |R|C|S |S |Y| I | Window |
| | |G|K|H|T|N|N| |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| Checksum | Urgen t P o i n t e r |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| O p t i o n s | Padding |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

Figure 4.1: TCP header. [96]

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| Source P o r t | D e s t i n a t i o n P o r t |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+
| Length | Checksum |
+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+

Figure 4.2: UDP header. [97]

attacks can also happen in TFO+TLS 1.3 in a similar way, while the latter satisfies KE

Payload Integrity mainly because its availability functionalities are all carried in its protocol

headers rather than payloads. More importantly, UDP+QUIC[TLS] is the only protocol that

guarantees Reset Authentication (based on the unpredictability of its reset tokens).

Our results are summarized in Table 1.2 in Section 4.4. Even though QUIC may not be

able to sustain the competition in the long run despite stronger security, we hope our mod-

els will help protocol designers and practitioners better understand the important security

aspects of novel secure channel establishment protocols.

4.2 Background

Network protocols are designed and implemented following a layered network stack model

where each layer has its own functionality, defines an interface for use by higher layers,

and relies only on the properties of lower layers. In this work, we are concerned with three

layers: network, represented by the IP protocol; transport, represented by UDP and TCP

with the Fast Open optimization (TFO); and application, represented by TLS or QUIC.
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4.2.1 TLS 1.3 over TFO

TCP Fast Open. TCP Fast Open (TFO) is an optimization to the TCP protocol. TCP itself

provides the following services to an application (or higher protocol): (1) reliability, (2)

ordered delivery, (3) flow control, and (4) congestion control. It is connection-oriented

and consists of three phases: connection establishment, data transfer, and connection tear-

down. TCP relies on control information from its header to implement this functionality.

For example, as shown in Figure 4.1, control bits specify what type of packets are sent

over the network, which determines whether the packets are establishing a new connection,

sending data, acknowledging data, or tearing down the connection.

The disadvantage of layering protocols is that higher level protocols have no control

over the internal mechanics of lower level protocols and can interact with them only through

defined interfaces. A protocol using standard TCP for transferring data needs to wait for

connection establishment at the TCP layer to complete before it receives notification of a

new connection and can begin its own processing and data transfer.

The TFO optimization introduces a simple modification to the TCP connection estab-

lishment handshake to reduce the 1-RTT connection establishment latency of TCP and al-

low for 0-RTT handshakes, so that data transmission may begin immediately. TFO fulfills

the same design goals mentioned for TCP above, assuming the connection is established

correctly.

The mechanism through which 0-RTT is achieved is a cookie that is obtained by the

client first time it communicates with a server and cached for later uses. This cookie is

intended to prevent replay attacks while avoiding the need for servers to keep expensive

state. It is generated by the server, authenticates client IP address, and has a limited lifetime.

Generation and verification have low overhead.

Cookies are sent in the TFO option field in SYN packets. The first two message ex-

changes in Figure 4.3 left, show how a cookie is obtained. The client requests a cookie by
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Figure 4.3: TFO+TLS 1.3 (EC) DHE 2-RTT full handshake (left) and TFO+TLS 1.3 PSK-
(EC) DHE 0-RTT resumption handshake (right). * indicates optional messages. () indicates
messages protected using the 0-RTT keys derived from a pre-shared key. {} and [] indicate
messages protected with initial and final keys.

using the TFO option in the SYN with the cookie field set to 0, indicating that it would

like to use TFO. The server generates an appropriate cookie and places it in the TFO op-

tion field of the SYN-ACK. The client caches this cookie for subsequent connections to

this server. If a cookie was not provided, the client instead caches the negative response,

indicating that TFO connections should not be tried to this server, for some time.

In subsequent connections to this server (first message in Figure 4.3 right), the client

places its cached TFO cookie in the TFO option in the SYN packet. The client is also

allowed to send 0-RTT data in the remainder of the SYN packet. This might be an HTTP

GET request or a TLS ClientHello message. When the server receives the SYN, it will

validate the cookie. If the cookie is valid, it responds with a SYN-ACK acknowledging the

0-RTT data and a response to the 0-RTT data. If the cookie is invalid (expired or otherwise),
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a full handshake is required and any initial data ignored.

TLS 1.3. TLS provides confidentiality, authentication, and integrity of communication over

a secure channel between a client and a server. This is accomplished in two phases – the

handshake and the record protocol. The handshake sets up appropriate parameters for the

record protocol to achieve these three goals. These include parameters like the cipher suite

to use and the shared secret key. Unfortunately, the handshake in TLS 1.2 takes 2-RTTs to

complete. Additionally, the naive layering of TLS 1.2 over TCP, as traditionally used for

HTTPS, would require a full 3-RTTs before the HTTP request could be sent. Fortunately,

the recently standardized TLS 1.3 [5] provides many improvements over TLS 1.2. Most

relevant for our purposes, it enables 0-RTT handshakes at the TLS level.

In a TLS 1.3 full connection (see Figure 4.3 left, fourth message), the client be-

gins by sending a ClientHello message containing a list of ciphersuites the client

is willing to use with key shares for each and optional extensions. The server re-

sponds with a ServerHello message containing the ciphersuite to use and its key

share. At this point, an initial encryption key is derived and all future messages

are encrypted. The server also sends an EncryptedExtensions message con-

taining any extension data, a CertificateRequest message if doing client au-

thentication, a ServerCertificate message containing the server’s certificate, a

ServerCertificateVerify message containing a signature over the handshake

with the private key corresponding to the server’s certificate, and a ServerFinished

message containing an HMAC of all messages in the handshake. The client receives

these messages, verifies their contents, and responds with ClientCertificate and

ClientCertificateVerify messages if doing client authentication before finishing

with a ClientFinished message containing an HMAC of all messages in the hand-

shake. At this point, a final encryption key is derived and used for encrypting all future

messages. If the server supports 0-RTT connections, one final handshake message, the

NewSessionTicket message, will be sent by the server to provide the client with an

71



opaque session ticket to be used in a resumption session.

In later TLS 1.3 resumption connections to this server, the client uses the session ticket

established in the prior full connection to do a 0-RTT connection. In this case, the client

sends a ClientHello message indicating a pre-shared-key ciphersuite, a ciphersuite to

use for the final key, and the cached session ticket. The client can then derive an encryp-

tion key and begin sending 0-RTT data. The server will verify the session ticket, use it to

establish the same encryption key, and send a ServerHello message containing the ci-

phersuite to use and its final key share. At this point, an initial encryption key is derived and

all future messages are encrypted. The server also sends an EncryptedExtensions

message containing any extension data and a ServerFinished message containing an

HMAC of all messages in the handshake. The client receives these messages, verifies their

contents, and responds with an EndOfEarlyData message and a ClientFinished

message containing an HMAC of all messages in the handshake. At this point, a final

encryption key is derived and used for encrypting all future messages.

TLS 1.3 over TFO. TLS assumes that lower layers provide reliable, in-order delivery of

TLS messages. As a result, TLS is usually layered on top of TCP, which provides these

properties. This usually results in a delay for the TCP handshake followed by a delay for

the TLS handshake. This is obviously undesirable. However, the combination of TLS 1.3

and TCP Fast Open enables true 0-RTT connections.

In a full connection to a TFO+TLS 1.3 server, the client requests a TFO cookie in the

TCP SYN and then does a full TLS 1.3 handshake once the TCP connection completes.

This takes 3-RTTs (see Figure 4.3 left), but provides a cached TFO cookie and cached TLS

session ticket.

In subsequent resumption connections to this server, the client can use the TFO cookie

to establish a 0-RTT TCP connection and include the TLS 1.3 ClientHello message in

the SYN packet. The TLS ClientHello message can use the cached TLS session ticket

to perform a 0-RTT resumption handshake. Thus, the TCP and TLS 1.3 connections are
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Figure 4.4: QUIC 1-RTT full handshake (left) and UDP+QUIC 0-RTT resumption hand-
shake (right). * indicates optional messages. {} and [] indicate messages protected with
initial and final keys.

established at the same time, as shown in Figure 4.3 right.

4.2.2 QUIC over UDP

UDP. UDP [97] is an extremely simple transport protocol providing unreliable datagram

delivery, the ability to multiplex data between multiple applications, and an optional check-

sum. A UDP sender simply wraps the message to be sent with a UDP header (see Fig-

ure 4.2) and the receiver unwraps the message and delivers it to the application, after pos-

sibly verifying the checksum. No other processing is performed.

UDP has been typically used for applications where low latency is crucial, like video

gaming and real-time streaming video. As a result, it can traverse NAT devices and firewalls

that often block unknown or rare protocols.

QUIC. Quick UDP Internet Connections (QUIC) is a transport protocol developed by

Google and implemented by Chrome and Google servers since 2013 [24]. It now pro-

vides service for the majority of requests by Chrome to Google properties [98]. QUIC’s

goal was to provide secure communication comparable with TLS while achieving reduced

connection setup latency compared to traditional TCP+TLS 1.2. To do so, it provides the

following services to applications: (1) reliability, (2) in order delivery, (3) flow control,
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(4) congestion control, (5) data confidentiality, and (6) data authenticity. For repeated con-

nections to the same server it also provides (7) 0-RTT connections, enabling useful data

to be sent in the first round trip. In short, QUIC provides a very similar set of services to

TFO+TLS 1.3.

Instead of modifying TCP to enable 0-RTT connection establishment, QUIC replaces

TCP entirely, using UDP to provide application multiplexing and enabling it to traverse the

widest possible swath of the Internet. QUIC then provides all other guarantees itself.

QUIC packets contain a public header and a set of frames that are encrypted and au-

thenticated after initial connection setup. The header contains a set of public flags, a unique

64-bit connection identifier referred to as cid, and a variable length packet number. All

other protocol information is carried in control and stream (data) frames that are encrypted

and authenticated.

To provide 0-RTT, QUIC caches important information about the server that will en-

able the client to determine the encryption key to be used for each new connection. As

shown in Figure 4.4 left, the first time a client contacts a given server it has no cached in-

formation, so it sends an empty (Inchoate) ClientHello message. The server responds

with a ServerReject message containing the server’s certificate and three pieces of in-

formation for the client to cache. The first of these is an object called an scfg, or server

configuration. The scfg contains a variety of information about the server, including a

Diffie-Hellman share from the server, supported encryption and signing algorithms, and

flow control parameters. This scfg has a defined lifetime and is signed by the server’s

private key to enable authentication using the server’s certificate. Along with the scfg,

the server sends the client a source-address token or stk. The stk is used to prevent IP

spoofing. It contains an encrypted version of the client’s IP address and a timestamp.

With this cached information, a client can establish an encrypted connection with the

server. It first ensures that the scfg is correctly signed by the server’s certificate which

is valid and then sends a ClientHello indicating the scfg its using, the stk value it
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has cached, a Diffie-Hellman share for the client, and a client nonce. After sending the

ClientHello, the client can create an initial encryption key and send additional en-

crypted Application Data packets. In fact, to take advantage of the 0-RTT connec-

tion establishment it must do so. When the server receives the ClientHello message,

it validates the stk and client nonce parameters and creates the same encryption key using

the server share from the scfg and the client’s share from the ClientHello message.

At this point, both client and server have established the connection and setup encryp-

tion keys and all further communication between the parties is encrypted. However, the

connection is not forward secure yet, meaning that compromising the server would com-

promise all previous communication because the server’s Diffie-Hellman share is the same

for all connections using the same scfg. To provide forward secrecy for all data af-

ter the first RTT, the server sends a ServerHello message after receiving the client’s

ClientHello which contains a newly generated Diffie-Hellman share. Once the client

receives this message, client and server derive and begin using the new forward secure

encryption key.

For the client that has connected to a server before, it can instead initiate a resump-

tion connection. This consists of only the last two steps of a full connection, sending the

ClientHello and ServerHello messages as shown in Figure 4.4 right.

4.2.3 QUIC with TLS 1.3 Key Exchange

A new version of QUIC [27], which also supports 0-RTT, describes several improvements

of the previous design. The most important change is replacing QUIC’s key exchange

with the one from TLS 1.3, as specified in the latest Internet draft [28]. We provide more

details (e.g., the new stateless reset feature) of this new QUIC (denoted by QUIC[TLS]) in

Section 4.4.
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4.3 Multi-Stage Authenticated and Confidential Channel Establishment

In this section, we define the syntax and two security models for Multi-Stage Authenticated

and Confidential Channel Establishment (msACCE) protocols.

For simplicity, we assume the public keys used in our analysis are supported by a public

key infrastructure (PKI) and do not consider certificates or certificate checks explicitly. In

other words, we assume each public key is certified and bound to the corresponding party’s

identity.

4.3.1 Protocol Syntax

Our msACCE protocol is an extension to the Quick Connection (QC) protocol proposed by

Lychev et al. [32] and the Multi-Stage Key Exchange (MSKE) protocol proposed by Fischlin

and Günther [31] (and further developed by [6, 9, 10, 11]). Even though the authors of [32]

claimed their QC protocol syntax to be general, TLS 1.3 does not fit it well because TLS

1.3 has two initial keys and one final key in 0-RTT resumption while QC captures only one

initial key. On the other hand, the MSKE protocol and its extensions focus only on the key

exchange phases.

Our msACCE protocol syntax inherits many parts of the QC protocol syntax but extends

it to a multi-stage structure and additionally covers session resumptions (explicitly, unlike

QC), session resets, and header-only packets exchanged in secure channel phases. The

detailed protocol syntax is defined below.

A msACCE protocol is an interactive protocol between a client and a server. They es-

tablish keys in one or more stages and exchange messages encrypted and decrypted with

these keys. Messages are exchanged via packets. A packet consists of source and destina-

tion IP addresses1 IPs, IPd ∈ {0, 1}32 ∪ {0, 1}64, a header, and a payload. Each party P has

a unique IP address IPP .
1For the network-layer protocols, we only consider the Internet Protocol and its IP address header fields

because our model mainly focuses on the application and transport layers and additionally only captures the
IP-spoofing attack.
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The protocol is associated with the security parameter λ ∈ N+, a key generation algo-

rithm Kg that takes as input 1λ and outputs a public and secret key pair, a header space2

(for transport and application layers) H ⊆ {0, 1}∗, a payload space PD ⊆ {0, 1}∗, header

and payload spaces Hrst ⊆ H,PDrst ⊆ PD for reset packets (described later), a resump-

tion state space RS ⊆ {0, 1}∗, a stateful AEAD scheme3 sAEAD = (sGen, sEnc, sDec)

(with a key space K = {0, 1}λ, a message space M ⊆ {0, 1}∗, an associated data

space AD ⊆ {0, 1}∗, and a state space ST ⊆ {0, 1}∗), disjoint4 message spaces

MKE,MSC,MpRST ⊆ M withMKE,MSC for messages encrypted during key exchange

and secure channel phases respectively and MpRST for pre-reset messages (described

later) encrypted in a secure channel phase, and a server configuration generation function

scfg gen described below.

The protocol’s execution is associated with the universal notion of time divided into dis-

crete periods τ1, τ2, . . .. During its execution, both parties can keep states that are initialized

to the empty string ε. In the beginning of each time period, the protocol may periodically

update each server’s configuration state scfg with scfg gen (which takes as input 1λ, a

server secret key, and a time period, then outputs a server configuration state). Otherwise,

scfg gen is undefined and without loss of generality the protocol is executed within a single

time period.

A reset packet enables a sender, who lost its session state due to some error condition

(e.g., server reboots, denial-of-service attacks, etc.), to abruptly terminate a session with the

receiver. A pre-reset message (e.g., a reset token in QUIC[TLS]) is sent to the receiver in a

secure channel phase5 before the sender loses its state in order to authenticate the sender’s

2Some protocol header fields (e.g., port numbers, checksums, etc.) can be excluded if they are not the
focus of the security analysis.

3To fit TLS 1.3’s encryption scheme, unlike QACCE we model QUIC’s encryption scheme as a more
general stateful AEAD scheme rather than a nonce-based one.

4Disjointness is a reasonable assumption as practical protocols (such as those in Table 1.1) enforce differ-
ent leading bits for different types of messages.

5A pre-reset message can also be carried within an encrypted key exchange packet. We consider it en-
crypted as a separate secure channel packet to get a clean packet-authentication security model described
later.

77



reset packet. Each session has at most one pre-reset message for each party. A non-reset

packet is not a reset packet. A header-only packet has no payload.

We say a party rejects a packet if its processing the packet leads to an error (defined

according to the protocol), and accepts it otherwise.

The protocol has two modes, full and resumption. Its corresponding executions are

referred to as the full and resumption sessions. Each resumption session is associated with

a single previous full session and we say the resumption session resumes its associated full

session. In the beginning of a full or resumption session, each party takes as input a list

of messages6 Msend = (M1, . . . ,Ml),Mi ∈ MSC, l ∈ N (where the total message length

|Msend| is polynomial in λ andMsend can be empty) as well as the other party’s IP address.

In a full session, the server takes as input its associated public and secret key pair (generated

by running Kg(1λ)) and the client takes the server’s public key as input. In a resumption

session, each party additionally takes as input its own resumption state rs ∈ RS (set in the

associated full session). In either case, the client sends the first packet to start the session.

A D-stage msACCE protocol consists of D ∈ N+ successive stages and each stage,

e.g., the d-th (d ∈ [D]) stage, consists of one or two phases described as follows:

1) Key Exchange. At the end of this phase each party sets its d-th stage key kd =

(kdc , k
d
s). At most one of kdc and kds can be ⊥, i.e., unused.7 If this is the final stage in a full

session, each party can send additional messages8 in MKE encrypted with kd and by the

end of this phase each party sets its own resumption state.

2) Secure Channel. This phase is mandatory for the final stage but optional for other

stages. In this phase, the parties can exchange messages from their input lists as well as

pre-reset messages, encrypted and decrypted using the associated stateful AEAD scheme

with kd. The client uses kdc to encrypt and the server uses it to decrypt, whereas the server

6For simplicity, we consider transportation of atomic messages rather than a data stream that can be
modeled as a stream-based channel [99] and later extended to capture multiplexing [100].

7This captures the case where a 0-RTT key only consists of a client encryption key while the server
encryption key does not exist.

8This captures the post-handshake key exchange messages that are used for session resumption, post-
handshake authentication, key update, etc.

78



uses kds to encrypt and the client uses it to decrypt. They may also send reset or header-only

packets. At the end of this phase, each party outputs a list of received messages (which may

be empty)Mrecv
i = (M ′

1, . . . ,M
′
l′i
), l′i ∈ N, M ′

i ∈MSC.

Each message exchanged between the parties must belong to some unique phase at

some unique stage. One stage’s second phase and the next stage’s first phase may overlap,

and the two phases in the final stage may also overlap. We call the final stage key the

session key and the other stage keys the interim keys.

Correctness. Consider a client and a server running a D-stage msACCE protocol in ei-

ther mode without sending any reset packet. Each party’s input message list Msend, in

which the messages are sent among D stages according to any partitioning Msend =

Msend
1 , . . . ,Msend

D , is equal to the other party’s total output message list Mrecv =

Mrecv
1 , . . . ,Mrecv

D , in which the message order is preserved. Each party terminates its ses-

sion upon receiving the other party’s reset packet.

REMARK. With our more general protocol syntax, the ACCE [4] and QC [32] protocols

can be classified into 1-stage and 2-stage msACCE protocols respectively.

4.3.2 Security Models

We propose two security models respectively for basic authenticated and confidential chan-

nel security and packet authentication. Our models do not consider the key exchange and

secure channel phases independently, as was the case for some previous QUIC and TLS

1.3 security analyses [31, 6, 9, 10, 11], because QUIC’s key exchange and secure chan-

nel phases are inherently inseparable and the TLS 1.3 full handshake does not fit into a

composability framework, as discussed in [32, 9].

1) msACCE Standard Security Model:

In this msACCE standard (msACCE-std) security model, we consider the standard se-

curity goals such as server authentication9 and channel security (which captures data pri-

9Our msACCE-std model focuses on the most common server authentication, but can be extended to
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vacy and integrity) for msACCE protocols. Our msACCE-std model is very similar to the

standard security portion of the QACCE model [32], but extends it to capture more (rather

than two) stages and use a more general stateful encryption scheme to fit both TLS 1.3 and

QUIC.

Like QACCE and other previous models, we consider a very powerful adversary who

can control communications between honest parties, can adaptively learn their stage keys,

and can adaptively corrupt servers to learn their long-term keys and secret states.

Our detailed security model is defined below.

Protocol Entities. The set of parties P consists of two disjoint type of parties: clients C

and servers S, i.e., |P| = |C|+ |S|.

Session Oracles. To capture multiple sequential and parallel protocol executions, each

party P ∈ P is associated with a set of session oracles π1
P , π

2
P , . . ., where πiP models P

executing a protocol instance in session i ∈ N+.

Matching Conversations. As part of the security model, matching conversations are used

to model entity authentication, session key confirmation, and handshake integrity. A client

(resp. server) oracle has a matching conversation with a server (resp. client) oracle if and

only if both session oracles observe the same10 session identifier sid defined according

to the protocol specifications and security goals. Note that a msACCE protocol may have

two different session identifiers in full and resumption modes, but for simplicity we use the

same notation sid. Compared to the general definition of matching conversations [101,

4], sid is often defined as a subset of the whole communication transcript. For instance,

QUIC’s sid in QACCE [32] is defined as the second-round key exchange messages, i.e.,

ClientHello and ServerHello, while the first-round messages are excluded to allow

mutual authentication, e.g., as described in [29].
10As discussed in [4], two session oracles having matching conversations with each other may not observe

the same transcript due to the gap between one oracle sending a message and the other receiving it. We can
use symmetric session identifiers to define matching conversations because our msACCE-std model focuses
only on server authentication and we require session identifiers to exclude, if any, a client oracle’s last key
exchange message(s) sent immediately before it sets its session key.
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for valid but different source-address tokens or signatures. Similarly, TLS 1.2’s sid in

ACCE [29] is defined as the first three key exchange messages, while the rest are excluded

to allow for valid but different encrypted Finished messages.

Partners. We say a client oracle and a server oracle are each other’s partner if they observe

the same first-stage session identifier sid1 (i.e., sid restricted to the first stage), which

intuitively means that they set the first stage key with each other. Note that a client oracle

may have more than one partners if sid1 consists of only message(s) sent from the client

oracle, which can be replayed to the same11 server to establish multiple (identical) first-

stage keys. Therefore, a session oracle’s partner may not be its final unique communication

partner. Instead, the real partner is the session oracle with which the oracle has a matching

conversation.

Security Experiments. In the beginning of the experiments, run Kg(1λ) for all servers to

generate the public and secret key pairs and initialize the global states of all parties and

the local states of all session oracles. In the beginning of each time period, run scfg gen

(if defined) for each server to update its configuration state scfg. We assume that both

the server oracles and the adversary A are aware of the current time period. Let N ∈ N+

denote the maximum number of msACCE protocol instances for each party and D ∈ N+

denote the maximum number of stages in each session. The channel security experiment

is associated with an authentication level al ∈ [4]. Each oracle πiP at stage d is associated

with a random bit bi,dP
$← {0, 1}. Each oracle πiP has a global state m̃ (initialized to ⊥) that

stores its pre-reset message. The adversary A is given all public keys and the IP addresses

associated with all parties and then interacts with the session oracles via the following

queries:

• Connect(πiC , S), for C ∈ C, S ∈ S, i ∈ [N ].

This query asks πiC to output the first packet that it would send to S in a full session ac-

11In practice, 0-RTT replay attacks can be mounted to different servers with the same public-secret key
pair. However, 0-RTT key exchange message(s) replayed to other servers with different public-secret key
pairs will be rejected.
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cording to the protocol if πiC was not used (i.e., as input of previous Connect,Resume, Send

queries). This output packet is returned to A instead of S. After this query, we say S is the

target server of πiC .

This query allows the adversary to ask a specified client oracle to start a full session

with a specified server.

• Resume(πiC , S, i
′), for C ∈ C, S ∈ S, i, i′ ∈ [N ], i′ < i.

This query asks πiC to output the first packet that it, taking πi′C’s resumption state as input,

would send to S in a resumption session according to the protocol and returns this packet

to A, if πiC was not used and πi′C has set its resumption state in a previous full session with

its target server S. Otherwise, it returns ⊥.

This query allows the adversary to ask a specified client oracle to start a resumption

session with a specified server oracle to resume a specified full session between the two

parties, if the associated previous client oracle has set its resumption state.

• Send(πiP , pkt), for P ∈ P , i ∈ [N ], pkt ∈ {0, 1}∗.

This query sends pkt to πiP and returns its response if πiP is in a key exchange phase,

otherwise, returns ⊥.

This query allows the adversary to send any packet to a specified session oracle and get

its response in a key exchange phase.

• Reveal(πiP , d), for P ∈ P , i ∈ [N ], d ∈ [D].

This query returns πiP ’s (perhaps unset) stage-d key kd. After this query, we say kd was

revealed.

This query allows the adversary to learn any stage key of a specified session oracle.

• Corrupt(S), for S ∈ S.

This query returns S’s secret key and all its current states including its scfg and resumption

states (for all full sessions involving S) in the current time period. After this query, we say

S was corrupted.

This query allows the adversary to learn the long-term secret along with all current
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states of a specified server.

• Encrypt(πiP , d, ad,m0,m1), for P ∈ P , i ∈ [N ], d ∈ [D], ad ∈ AD,m0,m1 ∈ MSC ∪

MpRST ∪ {rst}.

This query proceeds as follows:

1: if m0,m1 are of different types (i.e.,MSC orMpRST or {rst}) or |m0| 6= |m1| or πiP

is not in its d-th secure channel phase or kdp = ⊥ (where p = c if P ∈ C and p = s if

P ∈ S), return ⊥

2: if m0 = m1 = rst, return m̃

3: if m0,m1 ∈MpRST, return ⊥ if m̃ 6= ⊥ or set m̃← mbi,dP
otherwise

4: (upon setting each encryption stage key, initialize ste ∈ ST , u← 0, sent← ε)

5: u← u+ 1, (sent.ctu, st
′
e)

$← sEnc(kdp , ad,mbi,dP
, ste)

6: (sent.adu, ste)← (ad, st′e)

7: return sent.ctu

This query allows the adversary to specify any associated data and any two secure

channel or pre-reset messages of the same length, then get the ciphertext of one message

determined by bi,dP , a random bit associated with the specified session oracle at the specified

stage. This query also stores the pre-reset message and returns it when the input is rst.

(Recall that each oracle has at most one pre-reset message, so this query stores only the

first pre-reset message and rejects others.)

• Decrypt(πiP , d, ad, ct), for P ∈ P , i ∈ [N ], d ∈ [D], ad ∈ AD, ct ∈ {0, 1}∗.

This query proceeds as follows:

1: if πiP is not in its d-th secure channel phase or kdp = ⊥ (where p = c if P ∈ C and

p = s if P ∈ S), return ⊥

2: (upon setting each decryption stage key, initialize std ∈ ST , v ← 0, rcvd ←

ε, outofsync← 0)

3: v ← v + 1, rcvd.ctv ← ct, (m, st′d)← sDec(kdp , ad, ct, std)

4: (rcvd.adv, std)← (ad, st′d)
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5: if m 6∈ MSC ∪MpRST, set m← ⊥

6: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m 6= ⊥) ∧ condal,

set outofsync← 1

7: if outofsync = 1, return bi,dP , otherwise, return ⊥

This query allows the adversary to specify any associated data and any ciphertext to be

decrypted by the partner(s) of the specified session oracle at the specified stage, then get the

secret bit bi,dP if and only if this query is “out-of-sync”, otherwise, it still gets ⊥ (to avoid

trivial wins). The “out-of-sync” condition (see line 6) captures different authentication

levels. For conciseness, we list only the authentication conditions for level 1 and 4 (refer

to [46] for level 2 and 3) as follows:

cond1 = (@w : (ct = sent.ctw) ∧ (ad = sent.adw))

cond4 = (u < v) ∨ (ct 6= sent.ctv) ∨ (ad 6= sent.adv)

Note that cond1 corresponds to the lowest authentication level (e.g., for the stateful AEAD

scheme in QUIC) that only guarantees no forgeries, while cond4 corresponds to the highest

authentication level (e.g., for the stateful AEAD scheme in TLS 1.3) that prevents forgeries,

replays, reordering, and dropping.

Advantage Measures. An adversary A against a msACCE protocol Π in msACCE-std has

the following advantage measures.

• Server Authentication. We define Advs-auth
Π (A) as the probability that there exist a client

oracle πiC and its target server S such that the following holds:

1. πiC has set its session key;

2. S was not corrupted before πiC set its session key;

3. No interim keys of πiC or its partner(s) were revealed;12

12More precisely, we allow revealing other stage keys (if any), except the first stage key, of a πiC’s partner
which observes the same session identifier at only the first stage but not the next one, because such a partner’s
key exchange message is never received by πiC . Similar condition relaxation also holds for our other security
notions.
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4. There is no unique server oracle πjS with which πiC has a matching conversation.

The above captures the attacks in which the adversary impersonates a server to make

the client mistakenly believe that it shares the session key with the server.

• (level-al) Channel Security. We define Advcs-al
Π (A) as |2 Pr[bi,dP = b′]−1|, where al ∈ [4]

is a specified authentication level and (P, i, d, b′) is output by A, such that the following

holds:

1. If P = S ∈ S, πiS has a matching conversation with a client oracle πjC ; if P = C ∈ C,

denote S as πiC’s target server;

2. S was not corrupted before πiP set its last stage key; If forward secrecy is not required

for the d-th stage keys, S was not corrupted in the same time period associated with

πiP ;

3. No stage keys of πiP or its partner(s) were revealed;

4. If two different pre-reset messages were queried in the d-th stage, later no

Encrypt(πiP , ·, ·, rst, rst) queries were made.

The above captures the attacks in which the adversary compromises the privacy or

integrity of secure channel messages without revealing stage keys or revealing the hidden

pre-reset message or corrupting the server before the client set its last stage key (which

may not be the session key). If the stage key at the target stage is not supposed to provide

forward secrecy, the adversary is further restricted not to corrupt the server during the same

associated time period of the target session.

2) msACCE Packet-Authentication Security Model:

In this msACCE packet-authentication (msACCE-pauth) security model, we consider

security goals related to packet authentication beyond those captured by the msACCE-std

model. Note that msACCE-std essentially focuses only on the packet fields in the applica-

tion layer, while msACCE-pauth further covers transport-layer headers and IP addresses.
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First, we consider IP spoofing prevention (a.k.a. source authentication) as with the

QACCE model, but, as illustrated later, generalize one of the QACCE queries to addition-

ally capture IP spoofing attacks in the full sessions. Then, more importantly, we define four

novel packet-level security notions (elaborated later): KE Header Integrity, KE Payload

Integrity, SC Header Integrity, and Reset Authentication, which enable a comprehensive

and fine-grained security analysis of layered protocols.

In particular, KE Header and Payload Integrity respectively capture the header and

payload integrity of key exchange packets. Such security issues have not been investigated

before and, as we show later, lead to new availability attacks for both TFO+TLS 1.3 and

UDP+QUIC. Furthermore, we employ SC Header Integrity to capture the header integrity

of non-reset packets in secure channel phases. Note that, unlike the availability attacks

shown in [32], successful attacks breaking our security notions are harder or impossible

to detect by the client as they do not affect the client’s session key establishment, so they

are more harmful in this sense. Finally, our model captures malicious undetectable session

resets in a secure channel phase with Reset Authentication.

As with the msACCE-std model, msACCE-pauth captures multiple stages and consid-

ers a very powerful adversary. It also inherits the same definitions of protocol entities,

session oracles, matching conversations, and partners.

Security Experiments. Consider the same experiment setups as in msACCE-std, except

that no random bit bi,dP is needed. The adversary A is given all the public parameters

and interacts with the session oracles via the same Connect,Resume, Send,Reveal,Corrupt

queries as in the msACCE-std model13, as well as the following:

• Connprivate(πiC , π
j
S, cmp), for C ∈ C, S ∈ S, i, j ∈ [N ], cmp ∈ {0, 1}.

This query always returns ⊥. If cmp = 1, πiC and πjS establish a complete full session

privately without showing their communication to the adversary. If cmp = 0, πiC and πjS

establish a partial full session privately such that the last packet sent from πiC right before

13Note that Encrypt and Decrypt queries are not needed because msACCE-pauth does not consider data
privacy explicitly.
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πjS sets its first stage key is blocked.

This query allows the adversary to establish a complete or partial full session between

any client and server oracles without observing their communication. By taking an addi-

tional flag cmp as input, this query extends the QACCE Connprivate query [32] to model

IP-spoofing attacks happening in both full and resumption sessions.

• Pack(πiP , ad,m), for P ∈ P , i ∈ [N ], ad ∈ AD,m ∈MSC ∪MpRST ∪ {prst, rst}.

This query returns ⊥ if πiP is not in a secure channel phase. If m ∈ MpRST, it asks πiP to

set its pre-reset message equal to m (which may fail). If m = prst, it asks πiP to generate

its own pre-reset message (hidden from the adversary). (Recall that each oracle has at

most one pre-reset message, so at most one of the above queries is successful for πiP .) If

m ∈ MSC ∪MpRST ∪ {prst}, this query then asks πiP to output the packet that it would

send to its partner(s) for the specified associated data ad and message m (which are useless

if m = prst) according to the protocol, then returns this packet. If m = rst, this query

asks πiP to output its reset packet (if any) and returns it.

This query allows the adversary to specify any associated data and any message in

a secure channel phase, then get the packet output by the specified session oracle. The

adversary can also ask the specified session oracle to set a specified pre-reset message or

get its reset packet.

• Deliver(πiP , pkt), for P ∈ P , i ∈ [N ], pkt ∈ {0, 1}∗.

This query delivers pkt to πiP and returns its response if πiP is in a secure channel phase,

otherwise, returns ⊥.

This query allows the adversary to deliver any packet to a specified session oracle and

get its response in a secure channel phase.

Advantage Measures. An adversary A against a msACCE protocol Π in msACCE-pauth

has the following associated advantage measures.

• IP-Spoofing Prevention. We define Advipsp
Π (A) as the probability that there exist a client

oracle πiC and a server oracle πjS such that the following holds:
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1. πjS has set its first stage key right after a Send(πjS, (IPC , IPS, ·, ·)) query;

2. S was not corrupted before πjS set its first stage key;

3. The only allowed queries concerning both C and S in the time period associated with

πjS are:

- Connprivate(πxC , π
y
S, ·) for any x, y ∈ [N ], and

- Send(πyS, (IPC , IPS, ·, ·)) for any y ∈ [N ], where (IPC , IPS, ·, ·) is the last packet

received by πyS right before it sets its first stage key.

The above captures the attacks in which the adversary fools a server into accepting a

spurious connection request seemingly from an impersonated client, without observing any

previous communication between the client and server in the same time period.

• KE Header Integrity. We define Advint-keh
Π (A) as the probability that there exist a client

oracle πiC and a server oracle πjS such that the following holds:

1. πiC has set its session key and has a matching conversation with πjS;

2. S was not corrupted before πiC set its session key;

3. No interim keys of πiC or its partner(s) were revealed;

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted a packet

with a new header that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the protocol header of

a key exchange packet of the communicating parties without affecting the client setting its

session key. In the above definition, we assume that a client sets its session key immediately

after sending its last key exchange packet(s) (if any). Then, a forged packet that leads to a

successful attack cannot be any of these last packet(s), which have not yet been sent to the

server. The same assumption is made for KE Payload Integrity defined below.
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• KE Payload Integrity. We define Advint-kep
Π (A) as the probability that there exist a client

oracle πiC and a server oracle πjS such that the same (1)∼(3) conditions as in the above KE

Header Integrity notion hold and the following holds:

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted a packet

with a new payload that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the payload of a key

exchange packet of the communicating parties without affecting the client setting its session

key.

• SC Header Integrity. We define Advint-h
Π (A) as the probability that A outputs (P, i, d)

such that the same (1)∼(3) conditions as in the Channel Security notion hold and the fol-

lowing holds:

4. In the secure channel phase of the d-th stage, πiP accepted a non-reset packet with a

new header that was not output by its partner(s) (via Pack queries), or πiP accepted a

non-reset header-only packet.

The above captures the attacks in which the adversary creates a valid non-reset se-

cure channel packet by forging the protocol header without breaking any Channel Security

conditions. Note that in the above security notion an invalid header forgery is detected

immediately after the malicious packet is received and processed, while the detection of

invalid packet forgeries in a key exchange phase (e.g., for plaintext packets) can be delayed

to the point when the client sets its session key, according to the definitions of KE Header

and Payload Integrity.

• Reset Authentication. We define Advrst-auth
Π (A) as the probability thatA outputs (P, i, d)

such that the same (1)∼(3) conditions as in the Channel Security notion hold and the fol-

lowing holds:

4. In the secure channel of the d-th stage, πiP accepted a packet output by a
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Pack(·, ·, prst) query to its partner πjP ′ . Later (in the d-th or a later stage), πiP ac-

cepted a reset packet but A made no Pack(πjP ′ , ·, rst) queries.

The above captures the attacks in which the adversary forges a valid reset packet without

breaking any Channel Security conditions. Note that such attacks are undetectable by the

accepting party, as opposed to a network attacker that simply drops packets.

REMARK. Note that the payload integrity in secure channels is captured by Channel Se-

curity. Our msACCE-std and msACCE-pauth models completely capture the authentica-

tion (or integrity) of all packet fields in the transport and application layers. Furthermore,

msACCE-pauth captures (network-layer) IP-Spoofing Prevention against weaker off-path

attackers (i.e., those can only inject packets without observing the communication), but

leaves other integrity attacks on low layers (e.g., network, link, and physical layers) uncov-

ered. Such attacks may affect packet forwarding, node-to-node data transfer, or raw data

transmission, which are outside the scope of our work.

4.4 Provable Security Analysis

Equipped with msACCE security models, we now analyze and compare the security of

TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS]. The security results are summarized

in Table 1.2. As mentioned in the Introduction, by [11] results, no protocol achieves for-

ward secrecy for 0-RTT keys or protects against 0-RTT data replays (which contribute

to the first two rows in the table). We now move to the detailed analyses and start with

TFO+TLS 1.3.

4.4.1 TLS 1.3 over TFO

Protocol Description

Referring to the msACCE protocol syntax, a TFO+TLS 1.3 2-RTT full handshake (see

Fig. 4.3 left) is a 2-stage msACCE protocol in the full mode and a 0-RTT resumption hand-
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shake (see Fig. 4.3 right) is a 3-stage msACCE protocol in the resumption mode. Note

that we focus only on the main components of the handshakes and omit more advanced

features such as 0.5-RTT data, client authentication, and post-handshake messages (ex-

cept NewSessionTicket). In a full handshake, the initial keys are set after sending

or receiving ServerHello and the final keys (i.e., session keys) are set after sending or

receiving ClientFinished (but only handshake messages up to ServerFinished

are used for final key generation). In a 0-RTT resumption handshake, the parties set 0-RTT

keys to encrypt or decrypt 0-RTT data, after sending or receiving ClientHello.

According to the TFO and TLS 1.3 specifications [26, 5], the TFO+TLS 1.3 header

contains the TCP header (see Fig. 4.1). We ignore some uninteresting header fields such

as port numbers and the checksum because modifying them only leads to redirected or

dropped packets. Such adversarial capabilities are already considered in the msACCE se-

curity models. We thus define the header space H as containing the following fields: a

32-bit sequence number sqn, a 32-bit acknowledgment number ack, a 4-bit data offset

off, a 6-bit reserved field resvd, a 6-bit control bits field ctrl, a 16-bit window window,

a 16-bit urgent pointer urgp, a variable-length (≤ 320-bit) padded options opt. For en-

crypted packets, H additionally contains the TLS 1.3 record header fields: an 8-bit type

type, a 16-bit version ver, and a 16-bit length len. We further define reset packets as

those with the RST bit (i.e., the 4-th bit of ctrl) set to 1. Note that scfg gen is undefined.

TLS 1.3 enforces different content types for encrypted key exchange and secure chan-

nel messages. For simplicity, we defineMKE andMSC as consisting of bit strings differing

in their first bits.MpRST = ∅. In Appendix B, we define TLS 1.3’s stateful AEAD scheme

sAEADTLS = (sGen, sEnc, sDec) based on the underlying nonce-based AEAD scheme

AEAD = (Gen,Enc,Dec) (instantiated with AES-GCM [102] or others as documented

in [5]).

We refer to Appendix A.1 for the remaining details of TFO and refer to [11, 15] for the

detailed descriptions of TLS 1.3 handshake messages and key generations in earlier TLS

91



1.3 drafts as well as [5] for the latest updates.

Security Results

TFO+TLS 1.3’s session identifier sidTLS is defined as all key exchange messages from

ClientHello to ServerFinished, excluding TCP headers and IP addresses. The

msACCE-std security of TFO+TLS 1.3 is by definition independent of TCP headers and

is hence provided by the TLS 1.3 component. Previous works [103, 11, 10] only proved

TLS 1.3’s authenticated key exchange security, i.e., the stage keys are authenticated and

indistinguishable from random ones under reasonable computational assumptions. In Ap-

pendix C.1, we show one can adapt their security results to prove TLS 1.3’s Server Authen-

tication and level-4 Channel Security in our msACCE-std model, by additionally relying on

the level-4 AEAD security of sAEADTLS (which can be reduced to the nonce-based AEAD

security of the underlying AEAD as shown in [12]).

The msACCE-pauth security analyses are shown as follows.

IP-Spoofing Prevention. This security of TFO+TLS 1.3 is provided by the TFO compo-

nent through TCP sequence number randomization and TFO cookies. By modeling the

cookie generation function, an AES-128 block cipher, as a PRF F : {0, 1}λ × {0, 1}n →

{0, 1}n, we have the following theorem with the proof in Appendix A.1:

Theorem 6. For any PPT adversary A making at most q Send queries, there exists a PPT

adversary B such that:

Advipsp
TFO+TLS 1.3(A) ≤ |S|Advprf

F (B) +
q

min{2|sqn|, 2n}
.

KE Header Integrity. TFO+TLS 1.3 does not achieve this security notion because TCP

headers are never authenticated. We find a new practical attack below, where a PPT adver-

sary A can always get Advint-keh
TFO+TLS 1.3(A) = 1:

TFO Cookie Removal. A can first make πi
′
C complete a full handshake with πj

′

S (via
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Connect, Send queries), then query Resume(πiC , S, i
′) (i′ < i) to get the output packet

(IPC , IPS, H, pd), which is a SYN packet with a TFO cookie. A then modifies the opt

field of H to get a new H ′ 6= H that contains no cookie. The resulting SYN packet will

be accepted by a new server oracle πjS , which will then respond with a SYN-ACK packet

that does not contain a TFO cookie, indicating a fallback to the standard 3-way TCP. As a

result, a 1-RTT handshake is needed to complete the connection and any 0-RTT data sent

with SYN would be retransmitted. This eliminates the entire benefit of TFO without be-

ing detected, resulting in reduced performance and increased handshake latency. A similar

attack is possible by removing the TFO cookie in a server’s SYN-ACK packet.

Interestingly, clients are supposed to cache negative TFO responses and avoid sending

TFO connections again for a lengthy period of time. This is because the most likely expla-

nation for this behavior is that the server does not support TFO, but only standard TCP [26].

As a result, performing this attack for a single connection prevents TFO from being used

with this server for a lengthy time period (i.e., days or weeks).

KE Payload Integrity. TFO+TLS 1.3 is secure in this regard simply because sidTLS con-

sists of the payloads of all key exchange packets exchanged between the communicating

parties before the client set its session key. That is, for any client oracle that has a matching

conversation with any server oracle, by definition they observe the same sidTLS and hence

no key exchange packet payload can be modified, i.e., Advint-kep
TFO+TLS 1.3(A) = 0 for any PPT

adversary A.

SC Header Integrity. TFO+TLS 1.3 does not achieve this security notion again because of

the unauthenticated TCP headers. A PPT adversary A can get Advint-h
TFO+TLS 1.3(A) = 1 by

either modifying the TCP header of an encrypted packet (e.g., reducing the window value)

or by forging a header-only packet (e.g., removing the payload of an encrypted packet

and changing its ack value). Such packets are valid and will be accepted by the receiving

session oracle.

The above fact exposes the adversary’s ability to arbitrarily modify or even entirely
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forge the information in the TCP header, which is being relied on to provide reliable deliv-

ery, in-order delivery, flow control, and congestion control for the targeted flow. This leads

to a whole host of availability attacks that the networking community has been slowly un-

covering via manual investigation over the last 30 years [82, 83, 84, 85, 86, 87, 88, 89, 90,

91, 92, 93, 94, 95]. Some of the practical attacks are described as follows.

TCP Flow Control Manipulation. An adversary with access to the communication channel

can impact TCP’s flow control mechanism to decrease the sending rate or stall the connec-

tion by modifying TCP’s window header field. This field controls the amount of received

data the sender of this packet is prepared to buffer. By reducing this quantity, the through-

put of the connection can be reduced and if it is set to zero the connection will completely

stall.

One example of this attack would be to modify the window field to zero in a TCP packet

containing a TLS-encrypted HTTP request. Since TCP headers are not authenticated, this

modification will not be detected. As a result, when the server receives this request and

attempts to send the response, it will believe that the client cannot currently accept any

data and will delay sending the response. After some timeout, TCP will probe the client

with a single packet of data to determine whether the window is still zero. If the adversary

also modifies the responses to these probes, the connection will remain stalled indefinitely;

otherwise, the connection will eventually recover after a lengthy delay.

TCP Acknowledgment Injection. An adversary who can observe a target connection and

forge packets can inject new acknowledgment packets into the TCP connection. Acknowl-

edgment packets have no data making them undetectable by either TLS or the application.

However, they are used by congestion control to determine the allowed sending rate of a

connection.

Injecting duplicate or very slowly increasing acknowledgments can be used to slow a

target connection down drastically. [95] demonstrated a 12x reduction in throughput using

this approach with the attacker required to expend only 40Kbps. This, of course, represents
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a significant performance degradation for a TFO+TLS 1.3 connection.

Injecting acknowledgments can also be used to dramatically increase the sending rate

of a connection, turning it into a firehose that an attacker can point at their desired target.

This is done by sending acknowledgments for data that has not been received yet, an attack

known as Optimistic Ack [82]. This attack renders TCP insensitive to congestion and can

completely starve competing flows. It could be used with great effect to cause denial of

service against a server or the Internet infrastructure as a whole [104].

Reset Authentication. TFO+TLS 1.3 is insecure in this sense because its reset packet, TCP

Reset, is an unauthenticated header-only packet. This leads to a practical attack below,

where a PPT adversary A always gets Advrst-auth
TFO+TLS 1.3(A) = 1:

TCP Reset Attack. A can first make two session oracles complete a handshake using

Connect, Send queries, then use Pack,Deliver queries to let them exchange secure chan-

nel packets. By observing these packet headers, A can easily forge a valid reset packet by

setting its RST bit to 1 and the remaining header fields to reasonable values. This attack

will cause TCP to tear down the connection immediately without waiting for all data to be

delivered.

Note that even an off-path adversary who can only inject packets into the communica-

tion channel may be able to accomplish this attack. The injected TCP reset packet needs

to be within the receive window for the client or server, but [94] demonstrated that a sur-

prisingly small number of packets is needed to achieve this, thanks to the large receive

windows typically used by implementations.

4.4.2 QUIC over UDP

Protocol Description

Referring to the msACCE protocol syntax, an UDP+QUIC 1-RTT full handshake (see

Fig. 4.4 left) is a 2-stage msACCE protocol in the full mode and a 0-RTT resumption

handshake (see Fig. 4.4 right) is a 2-stage msACCE protocol in the resumption mode. The
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initial keys are set after sending or receiving ClientHello and the final keys (i.e., ses-

sion keys) are set after sending or receiving ServerHello.

According to the UDP and QUIC specifications [24, 97, 105], the UDP+QUIC header

contains the UDP header (see Fig. 4.2) and the QUIC header (described below). As with

the TCP header, we ignore the port numbers and checksum in the UDP header. Similarly,

we also ignore the UDP length field because it only affects the length of the QUIC header

and payload. We thus can completely omit the UDP header and define the header space H

as containing the following fields: an 8-bit public flag flag, a 64-bit connection ID cid,

a variable-length (≤ 48 bits) sequence number sqn, and other optional fields. We further

define reset packets as those with the PUBLIC FLAG RESET bit (i.e., the 7-th bit of flag)

set to 1. A reset packet header only contains flag and cid.

As with TLS 1.3, for UDP+QUIC we defineMKE andMSC as consisting of bit strings

differing in their first bits.MpRST = ∅. In Appendix B, we define QUIC’s stateful AEAD

scheme sAEADQUIC = (sGen, sEnc, sDec) based on the underlying nonce-based AEAD

scheme AEAD = (Gen,Enc,Dec) (instantiated with AES-GCM [102]).

We refer to [32] for the detailed descriptions of scfg gen and QUIC handshake messages

and key generations.

Security Results

UDP+QUIC’s session identifier sidQUIC is defined as the ClientHello payload and

ServerHello, excluding IP addresses. The msACCE-std security of UDP+QUIC fol-

lows from prior works as we discuss in Appendix C.2. Note that UDP+QUIC only achieves

level-1 Channel Security, but, as discussed in [32], QUIC implicitly prevents packet re-

ordering by authenticating sqn in the packet header. It also prevents replays and dropping

with frame sequence numbers encrypted in the payload. Therefore, UDP+QUIC essentially

achieves level-4 authentication as TLS 1.3 does.

The msACCE-pauth security analyses are shown as follows.
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IP-Spoofing Prevention. In [32], QUIC has been proven secure against IP spoofing based

on the AEAD security. Their IP-spoofing security notion is the same as our IP-Spoofing

Prevention notion for UDP+QUIC except that ours additionally captures attacks in full ses-

sions. However, since source-address tokens are validated in both full and resumption ses-

sions, their results can be trivially adapted to show that UDP+QUIC achieves IP-Spoofing

Prevention.

KE Header and Payload Integrity. UDP+QUIC does not achieve these security no-

tions because its first-round key exchange messages, i.e., InchoateClientHello and

ServerReject, and any invalid ClientHello are not fully authenticated. Interest-

ingly, a variety of existing attacks on QUIC’s availability discovered in [32] are all exam-

ples of key exchange packet manipulations (e.g., the server config replay attack, connection

ID manipulation attack, etc.), but these attacks cause connection failure and hence are easy

to detect. However, successful attacks breaking KE Header or Payload Integrity will be

harder (if not impossible) to detect.

For KE Header Integrity, we do not find any harmful attacks but theoretical attacks

exist. For instance, a PPT adversary A can get Advint-keh
UDP+QUIC(A) = 1 as follows. A can

first query Connect(πiC , S) to get the output packet (IPC , IPS, H, pd), then modify the flag

and sqn fields of H to get a new header H ′ 6= H that only changes sqn’s length but not its

value. The resulting packet will be accepted by a new server oracle πjS . This attack has no

practical impact on UDP+QUIC but it successfully modifies the protocol header without

being detected.

For KE Payload Integrity, we find a new practical attack described below where a PPT

adversary A can get Advint-kep
UDP+QUIC(A) ≈ 1:

ServerReject Triggering. A can first let πi
′
C complete a full handshake with πj

′

S

with Connect, Send queries, then query Resume(πiC , S, i
′) (i′ < i) to get the output

ClientHello packet. A then modifies its payload by replacing the source-address token

stk with a random value, which with high probability is invalid. Sending this modified
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packet to a new server oracle πjS will trigger a ServerReject packet containing a new

valid stk. This as a result downgrades the original 0-RTT resumption connection to a full

1-RTT connection, which causes increased latency and results in the retransmission of any

0-RTT data. Note that this attack is hard to detect because πiC may think its original stk′

has expired (although this does not happen frequently).

SC Header Integrity. UDP+QUIC is secure in this regard because it does not allow header-

only packets to be sent in the secure channel phases and the entire protocol header is

taken as the associated data authenticated by the underlying encryption scheme. There-

fore, UDP+QUIC’s SC Header Integrity can be reduced to its level-1 Channel Secu-

rity. Formally, for any PPT adversary A there exists a PPT adversary B such that

Advint-h
UDP+QUIC(A) ≤ Advcs-1

UDP+QUIC(B).

Reset Authentication. UDP+QUIC does not achieve this security notion because, similar

to TCP Reset, its reset packet PublicReset is not authenticated either. In the following

availability attack, a PPT adversary A can always get Advrst-auth
UDP+QUIC(A) = 1:

PublicReset Attack. A can first make two session oracles complete a handshake using

Connect, Send queries, then use Pack,Deliver queries to let them exchange secure channel

packets. By observing these packet headers, A can easily forge a valid (plaintext) reset

packet by setting its PUBLIC FLAG RESET bit to 1 and the remaining packet fields to

reasonable values (which is easy because it simply contains the connection ID cid, the

sequence number of the rejected packet, and a nonce to prevent replay). This attack will

cause similar effects as described in the TCP Reset attack. Note that this vulnerability is

fixed in QUIC[TLS] shown below.
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4.4.3 QUIC[TLS] over UDP

Protocol Description

As mentioned in the Background, QUIC[TLS] replaces QUIC’s key exchange with the TLS

1.3 key exchange. So, as with TLS 1.3, a UDP+QUIC[TLS] 2-RTT full handshake is a 2-

stage msACCE protocol in the full mode and a 0-RTT resumption handshake is a 3-stage

msACCE protocol in the resumption mode. The stage keys are set in the same way as in

TLS 1.3.

The header fields (as specified in [27]) are similar to those in UDP+QUIC. Reset

packets are defined as those whose first two header bits are 01. scfg gen is undefined.

UDP+QUIC[TLS] also enforces different frame types for encrypted key exchange, secure

channel, and pre-reset messages. For simplicity, we defineMKE,MSC,MpRST as consist-

ing of bit strings differing in their first two bits. UDP+QUIC[TLS]’s stateful encryption

scheme is the same as sAEADQUIC based on the underlying nonce-based AEAD scheme

AEAD = (Gen,Enc,Dec) (instantiated with AES-GCM [102] or others as documented

in [5]).

QUIC[TLS] still provides source validation with a secure token generated by the server,

similar to the case in Google’s QUIC. We discuss QUIC[TLS]’s stateless reset mechanism

later in the security analysis of Reset Authentication and refer to [27, 28] for the detailed

UDP+QUIC[TLS] handshake messages and key generations.

Security Results

UDP+QUIC[TLS]’s session identifier sidQUIC[TLS] is defined as sidTLS. By construction,

UDP+QUIC[TLS] inherits the msACCE-std security from TLS 1.3 (but using QUIC’s un-

derlying encryption scheme). That is, it achieves level-1 Channel Security and implic-

itly achieves level-4 authentication as discussed before. UDP+QUIC[TLS] has a similar

source-validation token scheme as QUIC. If the token is generated with an authenticated
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encryption scheme, the IP-Spoofing Prevention security of UDP+QUIC[TLS] can be re-

duced to the encryption scheme’s authenticity security. However, such a source-validation

scheme suffers from an availability attack against KE Payload Integrity similar to ServerRe-

ject Triggering for UDP+QUIC, where the adversary replaces the source-validation token

with a random value to downgrade a 0-RTT resumption connection. As noted in [28], an

adversary can also modify the unauthenticated ACK frames in the Initial packets without

being detected. Furthermore, UDP+QUIC[TLS] achieves SC Header Integrity in the same

way as UDP+QUIC. We are only left to show its security of KE Header Integrity and Reset

Authentication.

KE Header Integrity. UDP+QUIC[TLS] does not achieve these security notions because

its first-round Initial packets (see [27]) are not fully authenticated. For instance, a PPT

adversary A can get Advint-keh
UDP+QUIC[TLS](A) = 1 as follows. A first queries Connect(πiC , S)

to get πiC’s Initial packet (IPC , IPS, H, pd). Then, as described in [28], A can decrypt this

packet with its Destination Connection ID dcid inH , change it to another value dcid′, and

re-encrypt the whole packet with this new dcid′. The resulting packet (IPC , IPS, H ′, pd′),

where H 6= H ′, is valid and will be accepted by a new server oracle πjS without being

detected by the client. However, this is only a theoretical attack with no practical impact.

Reset Authentication. In UDP+QUIC[TLS], the stateless reset works as follows. One

party generates a 128-bit reset token using its static key and a random 64-bit cid as input.

Then this token (carried within the pre-reset message) is sent to the other party in a secure

channel phase. Later, the same party that generated this token can perform a stateless reset

by regenerating the token and sending it to the other party in clear (via a reset packet).

The Reset Authentication security of UDP+QUIC[TLS] can be reduced to its level-1

Channel Security and the PRF security of the reset token generation function F : {0, 1}λ×

{0, 1}|cid| → {0, 1}n as shown in the theorem below with the proof in Appendix A.2:

Theorem 7. For any PPT adversary A delivering at most qrst forged reset packets (via
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Deliver queries), there exist PPT adversaries B and C such that:

Advrst-auth
UDP+QUIC[TLS](A) ≤ |P|Advprf

F (B) + Advcs-1
UDP+QUIC[TLS](C) +

|P|N2

2|cid|
+
qrst
2n
.
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CHAPTER 5

PROVABLE SECURITY ANALYSIS OF FIDO2

5.1 Introduction

As motivated in Subsection 1.2.3, our goal in this work is to perform the first provable

security analysis of the latest FIDO2 protocols.

5.1.1 Related Work and Focus

There are not much security analysis about FIDO protocols. To the best of our knowledge,

the only existing security results are as follows. Hu and Zhang [106] analyzed the security

of FIDO UAF 1.0 and identifies several vulnerabilities in different attack scenarios. Later,

Panos et al. [107] analyzed FIDO UAF 1.1 and explored some potential attack vectors

and vulnerabilities. However, both works were informal. FIDO U2F and WebAuthn were

analyzed with formal methods using the applied pi-calculus and ProVerif tool [108, 109,

110]. Regarding an older version of FIDO U2F, Pereira et al. [108] presented a server-

in-the-middle attack and Jacomme and Kremer [109] further analyzed it with a structured

and fine-grained threat model for malwares. Guirat and Halpin [110] confirmed the au-

thentication security provided by WebAuthn while pointed out that the claimed privacy

properties (i.e., account unlinkability) failed to hold due to the same attestation key used

among different servers.

However, there is no provable security analysis of the new FIDO2 protocols despite

their fast deployment process. In particular, CTAP2 has not been analyzed yet and the for-

mal methods results for WebAuthn [109] are quite insufficient. As noted by the authors,

their model “makes a number of simplifications and so much work is needed to formally

model the complete protocol as given in the W3C specification”. Moreover, security proofs
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generated by formal methods are associated with the symbolic model, which is too abstract

to capture subtle attacks. In particular, a symbolic model treats the underlying crypto-

graphic building blocks as “ideal” and hence does not give us guidance of what practical

known security properties the cryptographic primitives should satisfy. For instance, if a

protocol uses a digital signature scheme, the formal methods will not indicate whether one

should employ a signature scheme that is unforgeable for a given message, existentially

unforgeable under chosen message attack, or strongly unforgeable under chosen message

attack.

In comparison, the provable security approach used to prove security of cryptographic

protocols utilizes a computational model, which is much less abstract and is tied to the

practical adversarial capabilities much more closely. The proofs proceed by reduction, i.e.,

showing that if an attacker breaks the security of the target protocol then the security or

computational hardness assumption about some building block (e.g., strong unforgeability

of the signature scheme) does not hold. Proofs in the computational model provide stronger

security guarantees than the formal methods proofs, but they are often more complicated.

Our goal is to provide the first provable security analysis of the latest FIDO2 proto-

cols to help practitioners understand their security guarantees and vulnerabilities. More

precisely, we focus on the main FIDO2 components WebAuthn [37] and CTAP2 [38].

5.1.2 Our Contributions

We perform the first thorough cryptographic analysis of FIDO2 protocols using the prov-

able security approach: first defining the protocol syntax, then designing its security model

that specifies the adversarial capabilities and formal security goals, and finally proving se-

curity by reduction to the security of the building blocks or identifying attacks based on the

model. To better understand and improve each component protocol, our analysis is con-

ducted in a modular way. That is, we analyze CTAP2 and WebAuthn separately and then

derive the overall security of FIDO2 by composing their security.
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We start our analysis with the more complex CTAP2 protocol and define a PIN-based

Authenticator Setup and Authenticated Channel Establishment (PASACE) protocol to for-

malize the general syntax of the core CTAP2 components. Although CTAP2 by its name

may suggest a two-party protocol, our PASACE protocol actually involves the user as an

additional party and captures human interactions with the client and authenticator (e.g., the

user typing its PIN into the client or rebooting the authenticator). PASACE runs in three

phases as follows. First, in the authenticator setup phase, the user “embeds” its PIN into the

authenticator via the client and as a result the authenticator stores a PIN-related state that

we call a transformed PIN. Then, the client with the same input PIN is “bound” to the set-up

authenticator in the binding phase and each party ends up with setting a (perhaps different)

binding state. Finally, in the authenticated channel phase, the client is able to send any

authenticated message (prepared with its binding state) to the authenticator, which accepts

or rejects the received message after verifying it with the binding state. Note that the final

established authenticated channel is unidirectional, i.e., it only guarantees authenticated

access from the client to the authenticator but not the other way.

As mentioned before, the security goal of CTAP2 is essentially to grant a client (or

multiple clients) exclusive access to the user’s authenticator. To achieve this, the authen-

ticator privately sends its associated secret called pinToken (generated upon power-up) to

the trusted client, where the pinToken will be used as the binding state to authenticate and

verify messages sent to the authenticator. By the CTAP2 design, each authenticator is asso-

ciated with a single pinToken, so multiple clients establish multiple authenticated channels

with the same authenticator using the same pinToken. This limits the security of CTAP2

authenticated channels to a weak sense: in order for a particular channel between an au-

thenticator and a client to be secure (i.e., no attacker can forge authenticated messages in

that channel), no clients bound to the same authenticator are allowed to be compromised.

In our security model for PASACE protocols, we first define the notion Unforgeability

(UF) to cover the above weak security and then define Strong Unforgeability (SUF) to
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capture strong fine-grained security. Unlike UF, SUF allows the attacker to compromise

any clients except for the client in the target channel. As explained in Section 5.3, SUF also

covers certain forward secrecy guarantees for authentication. For both notions, we consider

a powerful attacker that can manipulate the communication between parties, compromise

clients (that are not bound to the target authenticator) to reveal the binding states, and

corrupt users (that did not set up the target authenticator) to learn their secret PINs.

However, we assume the authenticator setup phase is executed in a trusted way, i.e.,

its execution is protected from malicious manipulation (but eavesdropping is allowed), be-

cause otherwise an attacker can “embed” any PIN into the authenticator and no security is

likely to hold. On the other hand, the binding phase may be executed in either a trusted or

an unprotected public environment. To enable comprehensive security analysis, our model

captures both cases for UF and SUF, resulting in two more weaker notions denoted by UF-t

and SUF-t respectively for the trusted binding case. Unlike a trusted setup, in the trusted

binding setting, an attacker can still interact with the authenticator and the client during

the binding phase, except that it cannot interfere with a honest binding execution. As a

summary of our four notions, by definition SUF is the strongest security notion and UF-t is

the weakest one, but UF and SUF-t are incomparable as indicated by our separation result

discussed in Section 5.5.

Based on our security model, we first prove that a simplified (but as secure) version

of CTAP2 only achieves the weakest UF-t security. CTAP2 cannot achieve UF security

because it uses unauthenticated Diffie-Hellman key exchange in the binding phase, which is

vulnerable to man-in-the-middle (MITM) attacks. To achieve stronger security, we propose

the PIN-based Authenticator Setup and Key Exchange (PASKE) protocol, which utilizes a

Password-Authenticated Key Exchange (PAKE) protocol. PAKE takes as input a common

password and outputs the same random session key for both party. The key observation

is that the transformed PIN shared between the authenticator and the client (which gets

the user PIN as input) can be treated as a common password to run PAKE. The resulting
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session key is used as the binding state to build the authenticated channel. Thanks to the

independent random keys generated by PAKE, we prove that PASKE actually achieves the

strongest SUF security. Furthermore, by comparing its efficiency with CTAP2, we argue

that PASKE comes with only very little overhead.

Next, we define an Authenticator-assisted Passwordless User Authentication (APlUA)

protocol to capture the WebAuthn protocol syntax. Our APlUA protocol considers all four

parties involved in WebAuthn: a user, an authenticator, a client, and a server (often referred

to as a relying party). Similar to PASACE, an APlUA protocol covers all types of commu-

nications between parties including human interactions with the client and authenticator.

In our security model for APlUA protocols, we first define the basic security notion

User Authentication (UA), which is however more complicated than one might expect due

to the involvement of multiple parties. Roughly, UA guarantees that if a server accepts the

authentication from a user then not only the registered authenticator must be used to authen-

ticate to the server (which is the only authentication property considered in [110]) but also

the following holds: 1) the authentication must be approved on the registered authenticator

via the human communication channel (e.g., by pressing a button); 2) the authentication

must go through a trusted client (i.e., a client that has access to an authenticated channel

towards the authenticator); and 3) the server that accepts must be the user’s intended server.

Note that the second condition helps forbid malicious user authentication even if the au-

thenticator is stolen by the attacker because it still needs to compromise or steal a trusted

client.

Though strong as it seems, UA does not guarantee any security for a user if any of

the trusted clients (and hence the authenticated channels) associated with the registered

authenticator is compromised. We hence define a strong security notion Strong User Au-

thentication (SUA) to achieve authentication security even if some of the channels are com-

promised.

We prove that WebAuthn is UA secure when the underlying client-to-authenticator au-
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thenticated channels achieve at least weak security and other building blocks are secure,

i.e., the hash function is collision-resistant and the signature scheme is unforgeable. Then,

we show that WebAuthn does not achieve SUA security even if its underlying channels

are strongly secure, which contradicts our intuition. The reason behind this is that in We-

bAuthn, though an authenticator can distinguish between different strong channels, a user

cannot detect which channel is used. As a result, an attacker can trick a user to approve

a malicious authentication request to a different server (that registered the same authenti-

cator as the intended server) through a compromised channel, while the user might think

the authentication goes through the specified uncompromised channel. To fix this issue, we

propose an augmented WebAuthn protocol called WebAuthn+ and prove that it achieves

SUA security. In WebAuthn+, the user specifies a recognizable unique name for each au-

thenticated channel and inputs it to the client, which then sends the name to the user’s

authenticator through the authenticated channel. Later, upon each request for user approval

the authenticator shows him the channel name. This augmented mechanism may require a

display on the authenticator but enables the user to distinguish between different channels

and hence achieve stronger authentication security.

Finally, we present our composition theorem that shows that a PASACE protocol can

be securely composed with an APlUA protocol. With this composition theorem, we derive

that the overall FIDO2 achieves UF-t and UA security, while our new construction that

integrates PASKE and WebAuthn+ achieves the strongest SUF and SUA security.

To summarize, we provide the first thorough provable security analysis of the FIDO2

protocols: CTAP2 and WebAuthn. We hope our models and provable security results will

help clarify the security guarantees of the FIDO2 protocols and expect our proposed con-

structions to facilitate the design and deployment of more secure passwordless user authen-

tication protocols.
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5.2 IND-1$PA Security for Deterministic Encryption

Before defining our security models, we first introduce a new security notion used in our

analysis that we call indistinguishability under one-time chosen and then random plaintext

attack (IND-1$PA).

Definition 3 (IND-1$PA). Consider a deterministic encryption scheme DE =

(K,Enc,Dec) and the following security experiment associated with an adversary A. In

the beginning, sample a random key k $← K and a random bit b $← {0, 1}. Then, A is

granted access to the following encryption oracles:

• OLR(m0,m1): returns Enc(k,mb), where the input m0,m1 are of the same bit length

which is a multiple of the block size bl. This oracle is queried only once (if any) and

has to be the first query.

• O$LR(l, same or rand): if the second input is same, samples a random message

m
$← {0, 1}l·bl and returns (m,Enc(k,m)); if the second input is rand, samples

two independent random messages m0
$← {0, 1}l·bl, m1

$← {0, 1}l·bl and returns

(m0,m1,Enc(k,mb)).

In the end, A outputs a bit b′ as its guess of b. Its advantage measure Advind-1$pa
DE (A) is

defined as |2 Pr(b = b′) − 1|, which is equivalent to |Pr(A ⇒ 1 | b = 0) − Pr(A ⇒ 1 |

b = 1)|.

We say DE is IND-1$PA secure if for any probabilistic polynomial-time (PPT) adver-

sary A, Advind-1$pa
DE (A) = negl(log |K|).

Comparison to other IND-CPA Security Notions. Note that our IND-1$PA security is im-

plied by the classical (deterministic) IND-CPA security (whereOLR can be queried multiple

times as long as messages in each world never repeat) because the random LR oracle O$LR

can be simulated byOLR. However, IND-1$PA does not imply IND-CPA. In particular, the
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encryption scheme CBC0 (described later) used by CTAP2 is IND-1$PA secure (see The-

orem 8), but it is obviously not IND-CPA secure for long messages (e.g., of length more

than one block size). On the other hand, IND-1$PA clearly implies one-time IND-CPA for

which no O$LR queries are allowed after the single OLR query. Such one-time IND-CPA

security was defined as security against passive attacks by Cramer and Shoup [111]. Note

that the other direction is not true, e.g., the one-time pad is one-time IND-CPA secure but

not IND-1$PA secure.

5.3 PIN-Based Authenticator Setup and Authenticated Channel Establishment

In this section, we define the syntax and security model for PIN-based Authenticator Setup

and Authenticated Channel Establishment (PASACE) protocols.

5.3.1 Protocol Syntax

A PASACE protocol is an interactive protocol among a human user, an authenticator and

a client. First, the user that has a PIN sets up the authenticator via the client, i.e., “em-

bedding” the user PIN in the authenticator. Then, they establish a client-to-authenticator

channel to allow the client sending authenticated messages (along with unauthenticated

auxiliary data) to the authenticator.

User

Authenticator Client

1

3

2

Figure 5.1: Communication Channels.

The possible communication channels are represented as double-headed arrows in

Figure 5.1. Following the intuitive definitions of human-compatible communications by

Boldyreva et al. [39], we also require messages sent to the user be human-readable and
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those sent by the user be human-writable.1 The user PIN needs to be human-memorizable.

The protocol is associated with the security parameter λ ∈ N+, a PIN space PIN ⊆

{0, 1}∗, a transformed-PIN space T PIN ⊆ {0, 1}λ, an authenticator power-up state space

PS ⊆ {0, 1}∗, a binding state space BS ⊆ {0, 1}λ, a message spaceM ⊆ {0, 1}∗ \ {ε},

an auxiliary data space X ⊆ {0, 1}∗, a deterministic PIN transformation function trans that

takes as input a PIN pin ∈ PIN and outputs a transformed PIN tpin ∈ T PIN , and an

authenticator power-up state generation function ps gen that takes as input 1λ and outputs

a power-up state ps ∈ PS. All the above functions are efficient.

In the beginning of the protocol’s execution, the authenticator takes as input its asso-

ciated power-up state ps (generated by running ps gen(1λ)) and the user takes as input its

long-term secret PIN pin ∈ PIN . During its execution, each party (except the user) can

keep states that are initialized to the empty string ε.

A PASACE protocol consists of the following phases where the user sends the first

messages in the first two phases:

1) Authenticator Setup. This phase is optional and executed at most once for each

authenticator. At the end of this phase, the authenticator sets its transformed PIN tpin.

2) Binding. At the end of this phase, the authenticator and client each sets its (perhaps

different) binding state bs ∈ BS (if any2) on success or halts (with bs unset) on failure.

3) Authenticated Channel. In this phase, the client sends one or more authenticated

messages along with auxiliary data to the authenticator.3 For each (M,x) ∈ M × X to

be sent, the client outputs M̂ and sends (M̂, x) to the authenticator which either accepts or

rejects the received message.

We say an authenticator rejects a received message if processing it results in an error

(defined according to the protocol), and accepts it otherwise. During the protocol execu-

1For PASACE protocols, we regard understandable information from Internet browsing as human-
readable and typing in a PIN or rebooting an authenticator as human-writable.

2The authenticator may have no separate binding state but resort to its power-up state.
3Note that the established authenticated channel is unidirectional, i.e., only messages sent from the client

to the authenticator are authenticated but not the other direction. This is also why we call the second phase
“binding” instead of “pairing” where the latter usually implies symmetry.

110



tion, the user may reboot (i.e., re-power-up) the authenticator.

Correctness. First, if an authenticator is rebooted, its power-up state is refreshed by run-

ning ps gen again and all of its binding states (if any) are erased. Then, consider any

user (with input pin), authenticator, and client running a PASACE protocol without au-

thenticator reboots. At the end of the authenticator setup phase, the authenticator sets its

transformed PIN tpin equal to trans(pin). The binding phase succeeds if the authenti-

cator’s transformed PIN tpin was set equal to trans(pin) in the beginning of this phase.

If the binding phase succeeded, then in the authenticated channel phase the authenticator

accepts all messages sent by the client.

5.3.2 Security Model

We now formally define the security model for PASACE protocols.

Protocol Entities. The set of parties P consists of three disjoint type of parties: user U ,

authenticators T , and clients C, i.e., |P| = |U|+ |T |+ |C|.

Session Oracles. To capture multiple sequential and parallel protocol executions, each

party P ∈ P is associated with a set of session oracles π1
P , π

2
P , . . ., where πiP models P

executing a protocol instance in session i ∈ N+.

Communication Channel Security. For an PASACE execution, we assume the following

security properties for the communication channels shown in Figure 5.1:

• Human communications ( 1 2 ) are authenticated and private.

• Client-authenticator communications ( 3 ) are not protected, i.e., neither authenti-

cated nor private.

Security Experiments. In the beginning of the experiments, run {psT
$← ps gen(1λ)}T∈T

to generate power-up states for all authenticators, sample independent and random PINs

{pinU
$← PIN}U∈U for all users, and initialize global states (e.g., transformed PIN) of all

parties and local states (e.g., binding state) of all session oracles. According to the syntax
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of PASACE protocols, each authenticator has only one transformed PIN, but each authenti-

cator (resp. client) may have multiple binding states, one for each different “bound” client

(resp. authenticator) oracle. Let N ∈ N+ denote the maximum number of PASACE proto-

col instances for each party. We assume the human communications ( 1 2 in Figure 5.1) are

authenticated and private. The adversary A interacts with session oracles via the following

queries:

• Execute(πlU , πiT , π
j
C), for U ∈ U , T ∈ T , C ∈ C, l, i, j ∈ [N ].

This query asks πlU , π
i
T , π

j
C to execute the protocol (honestly) for the first two phases (or

only the second phase if T was already set up) then returns a transcript (excluding human

communications) of its execution. If the authenticator setup phase is successfully executed

in this query, we say T was set up by U .

This query allows the adversary to access honest protocol executions.

• Connect(πlU , πiT , π
j
C), for U ∈ U , T ∈ T , C ∈ C, l, i, j ∈ [N ].

This query asks πlU , that intends to bind πiT and πjC , to send the first message to πjC (through

an authenticated and private channel) in the binding phase. The output of πjC through

channel 3 is returned to A instead of πiT .

This query allows the adversary to ask a specified user oracle to start a binding phase

between a specified client oracle and a specified authenticator oracle, then get the message

output by the client oracle. Note that we do not have a similar “connect” query in the

authenticator setup phase because we assume that phase is always performed in a trusted

way (often referred to as a trusted setup in practice), i.e., not subject to any kind of attacks.

For the same reason, we do not have a “send” query in the authenticator setup phase either

as shown below.

• Send(πiP ,m, n), for P ∈ P \ U , i ∈ [N ],m ∈ {0, 1}∗ ∪ {Reboot}, n ∈ [3].

If P ∈ T , m = Reboot and n = 1, this query reboots authenticator P and returns. If πiP is

in the binding phase or the authenticated channel phase, this query sends m to a non-user

oracle πiP through communication channel n shown in Figure 5.1 and returns its response
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(if any) through the same channel, otherwise, returns⊥. πiP may interact with a user oracle

internally but such interactions are not revealed to the adversary due to our assumption on

human communications.

This query allows the adversary to send any message to a specified non-user oracle and

get its response in the binding or authenticated channel phase. It also allows the adversary

to reboot a specified authenticator.

• Authenticate(πiC ,M), for C ∈ C, i ∈ [N ],M ∈M.

This query returns ⊥ if πiC has not set its binding state. It asks πiC to output the authen-

ticated message M̂ (for the given input M ) that it would send to an authenticator in the

authenticated channel phase, then returns M̂ .

This query allows the adversary to specify any message and get the corresponding au-

thenticated message output by the specified client oracle in the authenticated channel phase.

Note that we do not have a “verify” query to model an authenticator verifying the generated

authenticated message because it actually models sending the generated message to the au-

thenticator in the authenticated channel phase and getting the response, which is captured

in our Send query.

• Compromise(πiC), for C ∈ C, i ∈ [N ].

This query returns πiC’s binding state. After this query, we say πiC was compromised.

This query allows the adversary to learn the binding state of a specified client oracle.

Note that our model does not allow compromising an authenticator oracle because we as-

sume authenticators are tamper-proof.

• Corrupt(U), for U ∈ U .

This query returns user U ’s PIN pinU . After this query, we say U was corrupted.

This query allows the adversary to learn a specified user’s long-term secret PIN.

Partners. We say an authenticator oracle πiT and a client oracle πjC are each other’s part-

ner if there was a successful Execute(·, πiT , π
j
C) query. Otherwise, we say they are each

other’s partner if they observe the same session identifier sid (in the binding phase) de-
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fined according to the protocol specifications and security goals, which is usually defined as

a subset of the whole communication transcript. We also say πjC is T ’s partner (and hence

T may have more than one partners). Note that as mentioned before, if an authenticator is

rebooted then its power-up state is refreshed and all of its binding states (if any) are erased,

i.e., the authenticator loses its existing partners after each reboot.

Advantage Measures. An adversary A against a PASACE protocol Π outputs (M̂, x) in

the end and has the following advantage measures:

• Unforgeability (UF). We define Advuf
Π (A) as the probability that there exists an authen-

ticator oracle πiT that accepted (M̂, x) in the authenticated channel phase such that the

following holds:

(1) M̂ was not output by T ’s partners (if any4) via previous Authenticate queries;

(2) No partners of T were compromised before πiT accepted (M̂, x);

(3) T was set up by U and U was not corrupted before πiT accepted (M̂, x).

The above captures the attacks in which the adversary successfully makes an authen-

ticator accept a forged authenticated message, without corrupting the user who set up the

authenticator or compromising any of the authenticator’s partners. A PASACE protocol

satisfying the above security notion should prevent an adversary from sending valid authen-

ticated messages to the authenticator even if it stole the authenticator, unless the adversary

corrupts the user that set up the authenticator or compromises any of the authenticator’s

partners. Note that the authenticated channels considered in this notion have only “weak”

security, i.e., compromising one channel implies compromising all (to the same authenti-

cator),

Then, to capture UF with trusted binding (UF-t) where the binding phase is also as-

sumed to be run in a trusted way, we define its advantage measure Advuf-t
Π (A) the same

as Advuf
Π (A) except that the adversary is not allowed to make Connect queries. Note that

4Recall that T ’s partners got refreshed every time Reboot(T ) is queried.
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unlike a trusted setup, here in the binding phase the adversary is still allowed to interact

with the authenticator or the client (via Send queries) but it cannot interfere with an honest

binding execution. Apparently, Advuf-t
Π (A) ≤ Advuf

Π (A) and hence UF implies UF-t.

• Strong Unforgeability (SUF). We define Advsuf
Π (A) as the probability that there exists an

authenticator oracle πiT that accepted (M̂, x) in the authenticated channel phase such that

the following holds:

(1) M̂ was not output by πiT ’s partner πjC (if any) via previous Authenticate queries;

(2) πjC was not compromised before πiT accepted (M̂, x);

(3) T was set up by U and U was not corrupted before πiT set its binding state;

The above captures similar attacks considered in UF but in the client level, where the

adversary is further allowed to compromise some of the target authenticator’s partners (ex-

cept the partner in the target authenticated channel) and corrupt the user even before the

forged message was accepted (but after the authenticator set its binding state). The latter

relaxation guarantees forward secrecy for authentication, which is not as strong as forward

secrecy for confidentiality because breaking forward secrecy for authentication does not

affect already authenticated messages but only affects future messages sent through an al-

ready established authenticated channel. Nevertheless, forward secrecy is still preferable.

Besides, unlike UF, the authenticated channels considered in this notion have “strong” se-

curity, i.e., compromising one channel does not affect the other channels. It is not hard to

see that SUF implies UF, i.e., Advuf
Π (A) ≤ Advsuf

Π (A). A PASACE protocol that is SUF

secure should not have the same binding state for all partner client oracles (of the same au-

thenticator), otherwise compromising any of them implies compromising all and hence the

adversary can trivially win. More precisely, security can break down if two partner client

oracles share the same binding state.

Similarly, one can define the advantage measure for SUF with trusted binding (SUF-

t) Advsuf-t
Π (A). Obviously Advsuf-t

Π (A) ≤ Advsuf
Π (A) and hence SUF implies SUF-t.
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Furthermore, it is not hard to see that SUF-t implies UF-t.

Relations between Security Notions. As discussed above, Figure 5.2 shows the implication

relations among our four defined notions. We will discuss examples in Section 5.5 to

confirm the separation between UF and SUF-t, i.e., they do not imply each other.

SUF UF

SUF-t UF-t

\

Figure 5.2: Relations between PASACE security notions.

5.4 The Client to Authenticator Protocol v2.0 and its Security

In this section, we present the FIDO Alliance’s Client to Authenticator Protocol v2.0

(CTAP2) [38] of FIDO2 following our PASACE protocol syntax and show its provable

security results based on our security model.

5.4.1 Protocol Description

CTAP2 consists of several sub-protocols (requested with the corresponding sub-

commands). For our analysis we focus on its core sub-protocols getKeyAgreement,

setPIN, getPINToken, and usePINToken (ignoring getRetries and changePIN)

(cf. Figure 1 in [38]). The PIN space PIN consists of 64-byte8 strings (but a user PIN

has low entropy, so |PIN | is small). The transformation function f is defined as the SHA-

256 hash function (with output truncated to the first 128 bits) H and the corresponding

transformed-PIN space T PIN is {H(pin)}pin∈PIN . Let ECKG denote the key generation

function of the elliptic curve Diffie-Hellman (ECDH) scheme that takes as input 1λ and out-

puts an elliptic curve public and secret key pair (aG, a), where G is an elliptic curve point

5By default nmax = 8.
6Once the authenticator blocks the pin, it needs to be reset to the factory default state (i.e., erasing all

previous state) before further operations.
7By default nth = 3.
8PINs memorized by users are of 4∼63 bytes length in UTF-8 representation, padded with trailing 0 bytes.
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Authenticator T (ps = (aG, a, pt, inc)) Client C (pinU )

(1) getKeyAgreement:
cmd = 2←−−−−−−−−−−−−−−−−−−−−
aG−−−−−−−−−−−−−−−−−−−−→ (bG, b)

$← ECKG(1λ)
K ← H(abG.x)

(2) setPIN:
cp ← Enc(K, pinU )

τp ← MAC(K, cp)

K ← H(abG.x)
cmd = 3, bG, cp, τp

←−−−−−−−−−−−−−−−−−−−−
if τp = MAC(K, cp) and
pin← Dec(K, cp) ∈ PIN :
tpinT ← H(pinU )
ctr ← nmax

5 ok−−−−−−−−−−−−−−−−−−−−→
otherwise: error−−−−−−−−−−−−−−−−−−−−→

(3) getPINToken:
cph ← Enc(K,H(pinU ))

if ctr = 0:
cmd = 5, bG, cph←−−−−−−−−−−−−−−−−−−−−

blocks pin6and halts error−−−−−−−−−−−−−−−−−−−−→ bs unset
K ← H(abG.x)
ctr ← ctr − 1
if tpinT = Dec(K, cph):
cpt ← Enc(K, pt)
ctr ← nmax, inc← 0 cpt−−−−−−−−−−−−−−−−−−−−→ bs← Dec(K, cpt)otherwise:
(aG, a)

$← ECKG(1λ)
inc← inc+ 1
if inc = nth

7:
requires reboot error−−−−−−−−−−−−−−−−−−−−→ bs unset

(4) usePINToken (client sending (M,x) to the authenticator):
τ ← MAC(bs, H(M))

τ ?= MAC(pt,H(M))
(M, τ), x

←−−−−−−−−−−−−−−−−−−−−
accept/reject

−−−−−−−−−−−−−−−−−−−−→

Figure 5.3: The CTAP2 protocol

generating a cyclic group G of prime order q and a is a random number in {1, . . . , q − 1}.

(Note that CTAP2 uses the P-256 elliptic curve parameter set [112] for 128-bit security.) In

CTAP2, the authenticator power-up state generation function ps gen is defined as follows

(where bl = 128 denotes the block size and pt is called the pinToken):

ps gen(1λ):

(aG, a)
$← ECKG(1λ), pt $← {0, 1}bl, inc← 0

return (aG, a, pt, inc)
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Let CBC0 = (K,Enc,Dec) denote the (deterministic) AES256-CBC encryption scheme

with IV = 0 and MAC : K × {0, 1}∗ → {0, 1}bl denote the HMAC-SHA256 message

authentication code (with output truncated to the first 128 bits). The core sub-protocols

of CTAP2 are presented in Figure 5.3, where in the beginning the client takes as input the

user’s PIN pinU . It is not hard to see that CTAP2 is a PASACE protocol. More precisely, the

authenticator setup phase corresponds to getKeyAgreement, setPIN, the binding phase

corresponds to getKeyAgreement, getPINToken, and the authenticated channel phase

corresponds to usePINToken.

5.4.2 Security Results

First, we notice that the MAC authentication (boxed in Figure 5.3) in setPIN is useless, i.e.,

it does not provide any authentication protection for a MITM attacker. A MITM attacker

can pick its own ECDH key share to compute the shared keyK that is used to generate valid

ciphertexts and authentication tags. However, using the same key K for both encryption

and authentication is considered bad practice and the resulting security guarantee is elusive

for the CBC construction. Therefore, in our security analysis, we remove those redundant

and problematic MAC operations and focus on the resulting simplified protocol (denoted

by CTAP2*) which is more efficient and at least as secure as the original CTAP2.

It is not hard to see that CTAP2* is neither UF secure nor SUF-t secure (and hence SUF

insecure). If the binding phase is not trusted, an attacker can impersonate the authenticator

to get the PIN hash (i.e., transformed PIN) from the client which takes the user PIN as

input. Then, the attacker is able to get pt from the authenticator. On the other hand, if any

of the authenticator’s partners is compromised, the attacker is able to get pt shared between

them.

Now, we show that CTAP2* is UF-t secure. First, by modeling the AES-256 cipher as

a PRF E : {0, 1}2bl × {0, 1}bl → {0, 1}bl, we have the following theorem showing that

CBC0 is IND-1$PA secure, with the proof in Appendix A.3.
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Theorem 8. For any PPT adversary A, there exist a PPT adversary B such that:

Advind-1$pa
CBC0

(A) ≤ 2Advprf
E (B) +

µ

bl
(
µ

bl
− 1)2−bl,

where µ the total bit length of ciphertexts in response to all encryption oracle queries.

Then, by modeling the hash function H as a random oracleH : {0, 1}∗ → {0, 1}bl, we

have the following theorem showing that CTAP2* is indeed UF-t secure, with the proof in

Appendix A.4:

Theorem 9. For any PPT adversaryAmaking at most qE Execute queries, qR authenticator

reboots, and qH random oracle queries, there exist PPT adversaries B, C,D such that:

Advuf-t
CTAP2*(A) ≤ qEAdvscdh

G (B) + qEAdvind-1$pa
CBC0

(C) + (|T |+ qR)Adveuf-cma
MAC (D)

+
nqE
|PIN |

+
nqE + qH

2

2bl
,

where n = nth if user undetectability is guaranteed or n = nmax otherwise.

Note that in practical scenarios, if an authenticator is stolen by the attacker, nmax

limits the maximum number of consecutive wrong PIN guesses before the authenticator

blocks further interactions. On the other hand, if the target authenticator is not stolen (i.e.,

possessed by a user), then authenticator reboots imply user detectability. Therefore, nth

(< nmax) limits the maximum number of undetectable consecutive wrong PIN guesses

after each honest binding execution.

Avoiding Authenticator Reboots Caused by Consecutive PIN Mismatches. As mentioned

above, the nth threshold is used for user detectability. To involve user interaction, CTAP2

requires the authenticator to reboot each time nth consecutive PIN mismatches occur. Such

reboots do not enhance security because the stored transformed PIN is not updated, but they

could cause usability issue because each reboot invalidates all existing client-authenticator

bindings. Therefore, we recommend it instead require a simple test of user presence (e.g.,
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pressing a button) as well as resetting the inc counter to 0, when nth consecutive PIN

mismatches are detected.

Improving CTAP2*’s UF-t Security with Test of User Presence. Under the trusted bind-

ing assumption, we can make a simple modification to get rid of the only non-negligible

nqE/|PIN | term (that accounts for online dictionary attacks) in the above security bound

to improve the UF-t security of CTAP2* in the user-undetectable case. We only need to

test the user presence (e.g., requiring the user to press a button on the authenticator) at the

beginning of the binding phase. This helps prevent all malicious binding attempts because

by assumption no honest bindings can be interrupted and now all other bindings become

detectable. We argue that such test-of-user-presence overhead is quite small for CTAP2

because the user has to type his PIN into the client anyway. The security gain is consider-

able, because now no malicious binding attempts can happen and we get a neat negligible

security bound.

5.5 The PIN-Based Authenticator Setup and Key Exchange Protocol and its Security

In this section, we propose a PASACE protocol called PIN-based Authenticator Setup and

Key Exchange (PASKE) and prove its SUF security.

5.5.1 Protocol Description

PASKE consists of three sub-protocols (as shown in Figure 5.4) that respectively corre-

spond to the three PASACE phases. It employs the same cryptographic primitives as

CTAP2, as well as a PAKE protocol PAKE. Its authenticator power-up state generation

function ps gen is defined as follows (which does not generate the CTAP2 PINtoken pt):

ps gen(1λ):

(aG, a)
$← ECKG(1λ), inc← 0

return (aG, a, inc)

9The user interaction could be pressing a button, which also needs to reset the inc counter to 0.
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Authenticator T (ps = (aG, a, inc)) Client C (pinU )

(1) Authenticator Setup:
(bG, b)

$← ECKG(1λ)bG←−−−−−−−−−−−−−−−−−−−−
aG−−−−−−−−−−−−−−−−−−−−→ K ← H(abG.x)

K ← H(abG.x) cp ← Enc(K, pinU )
if pin← Dec(K, cp) ∈ PIN :

cp←−−−−−−−−−−−−−−−−−−−−
tpinT ← H(pinU )
ctr ← nmax ok−−−−−−−−−−−−−−−−−−−−→

otherwise: error−−−−−−−−−−−−−−−−−−−−→

(2) Binding:
rb

$← {0, 1}blif ctr = 0:
rb←−−−−−−−−−−−−−−−−−−−−

blocks pin and halts
ra

$← {0, 1}bl ra−−−−−−−−−−−−−−−−−−−−→
PAKE(H(pinU ))↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇁

PAKEsid = (rb, ra)if PAKE outputs a session if PAKE outputs a session
key skT ∈ {0, 1}λ: key skC ∈ {0, 1}λ:
bs← skT bs← skC
ctr ← nmax, inc← 0

otherwise:
ctr ← ctr − 1
inc← inc+ 1
if inc = nth:

requires user interaction9

(3) Authenticated Channel (client sending (M,x) to the authenticator):
τ ← MAC(skC , H(M))

τ ?= MAC(skT , H(M))
(M, τ), x

←−−−−−−−−−−−−−−−−−−−−
accept/reject

−−−−−−−−−−−−−−−−−−−−→

Figure 5.4: The PASKE protocol

5.5.2 Security Results

We show that PASKE is SUF secure. As discussed in Section 5.2, IND-1$PA implies one-

time IND-CPA, so according to Theorem 8 the one-time IND-CPA security of CBC0 (of

which the advantage is denoted by Advot-ind-cpa
CBC0

(A)) can also be reduced to (with negligible

loss) the PRF security of E. The session identifier sid is defined as the concatenation of

the client and authenticator’s random nonces (rb, ra), which is also the session identifier

of PAKE. We have the following theorem showing that PASKE achieves the strong SUF

security in the random oracle and ideal cipher models, with the proof in Appendix A.5:
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Theorem 10. For any PPT adversary A making at most qE Execute queries, qC Connect

queries, and qẼ honest PAKE executions, there exist PPT adversaries B, C,D and environ-

ment Z such that:

Advsuf
PASKE(A) ≤ qEAdvcdh

G (B) + qEAdvot-ind-cpa
CBC0

(C) + Advpake
PAKE(SPAKE,A,Z)

+ |T |NAdveuf-cma
MAC (D) +

nqẼ + qC
|PIN |

+
(|U|2 + |T |2)N2 + nqẼ + qC + qH

2

2bl
,

where n = nth if user undetectability is guaranteed or n = nmax otherwise.

Note that it is crucial for PAKE to guarantee explicit client authentication. Otherwise,

the authenticator cannot detect wrong PIN guesses and decrease its ctr counter, which is

used to prevent exhaustive PIN guesses.

Efficiency Comparison between PASKE and CTAP2. We purposely design our PASKE

protocol following the original CTAP2 protocol such that the required modification is min-

imized. To achieve stronger security, PASKE introduces slightly more overhead. In par-

ticular, PASKE requires two and a half round trips (where PAKE takes one and a half)

for its binding phase, while CTAP2 only runs two round trips. However, we argue that

such overhead is very small especially when noticing that the client-authenticator commu-

nication is typically performed through USB or Bluetooth that do not involve significant

network latency. Besides, we emphasize that the cryptographic primitives in PASKE could

be instantiated with more efficient (but still secure) ones compared to those in CTAP2. For

instance, one can use a simple one-time pad (with appropriate key expansion) instead of

CBC0 in the authenticator setup phase to achieve the same SUF security.

Notion Separation between UF and SUF-t. First, SUF-t does not imply UF. One can mod-

ify CTAP2* to generate an independent random pinToken for each partner client oracle. It

is not hard to see that the resulting protocol is SUF-t secure but still not UF secure. On the

other hand, UF does not imply SUF-t, either. One can modify PASKE to let the authenti-

cator generate a global pinToken as with CTAP2* and send it (encrypted with the session
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key output by PAKE) to its partner in the end of the binding phase. The resulting protocol

is clearly UF secure, but it is not SUF-t secure because of the same pinToken used by all

partners.

5.6 Authenticator-Assisted Passwordless User Authentication

In this section, we define the syntax and security model for Authenticator-assisted Pass-

wordless User Authentication (APlUA) protocols.

For simplicity, we do not consider certificates or certificate checks explicitly but assume

any public verification key associated with an authenticator is supported by a public key

infrastructure (PKI) and hence certified and bound to the authenticator’s identity.

5.6.1 Protocol Syntax

An APlUA protocol is an interactive protocol among four parties: a user, an authenticator,

a client, and a server. The user authenticates himself to the server via a client with the

assistance of an authenticator (owned by the user and already registered to the server),

instead of relying on a password.

User

Authenticator Client Server

1

3 4

2

Figure 5.5: Communication Channels.

The possible communication channels are represented as double-headed arrows in Fig-

ure 5.5. Similar to PASACE protocols, we require messages sent to the user be human-

readable and those sent by the user be human-writable.10 We assume that the authenticator

and client can distinguish messages received through a human communication channel 1

2 from those received through other channels 3 4 .
10For APlUA protocols, we regard messages like authenticator displaying some user-defined messages (or

simply blinking) as human-readable and pressing a button as human-writable.
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The protocol is associated with the security parameter λ ∈ N+, a username space

UN ⊆ {0, 1}∗, a server ID space ID ⊆ {0, 1}∗, a registration state space RS ⊆ {0, 1}∗,

a message spaceM⊆ {0, 1}∗ \ {ε}, an auxiliary data space X ⊆ {0, 1}∗, and an efficient

key generation algorithm Kg that takes as input 1λ and outputs an attestation-verification

key pair (ak, vk).

The protocol is also associated with a channel oracleOch that establishes and uses unidi-

rectional client-to-authenticator authenticated channels. It supports the following queries:

• Och(establish, chid = (C, T )) — this query is invoked by three parties, a user

U , an authenticator T , and a client C: if T is (by default) not set up yet or T was

set up by U , then records “T was set up by U” (if not recorded yet) and a C-to-T

authenticated channel identified by a unique chid = (C, T )11; otherwise, returns ⊥.

• Och(authenticate, chid = (C, T ),M), where M ∈M— this query is invoked by

the client C: records M as authenticated with channel chid.

The protocol has two modes, registration and authentication. Its corresponding exe-

cutions are referred to as the registration and authentication sessions. Each authentication

session is associated with a single previous registration session which shares the same user-

name12.

In the beginning of a registration or authentication session, the user takes as input the

intended server’s ID id ∈ ID and a username un ∈ UN , the authenticator takes as input

its associated attestation key (generated by running Kg(1λ)), and the server takes as input

its associated ID the authenticator’s verification key. In an authentication session, the au-

thenticator and server additionally takes as input its own registration state rs ∈ RS (set in

the associated registration session). During the protocol’s execution, each party (except the

user) can keep states. In either mode, the user sends the first packet to start the session:
11We assume that there exists at most one channel between each client-authenticator pair.
12In practice, the registration and authentication sessions are associated with the same credential ID, since

the same username may correspond to multiple credentials. Here to simplify our model we assume each
username corresponds to one credential.
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1) Registration. After receiving the first message, the client sets its target server ID id ∈

ID. In the end, the authenticator and server each sets its (perhaps different) registration

state rs ∈ RS on success or halts with rs unset on failure. If successful, we say the server

registered the user’s input username.

2) Authentication. After receiving the first message, the client sets its target server ID

id ∈ ID (which is initialized to the empty string ε at the beginning of each registration or

authentication session). In the end, the server either accepts or rejects.

Correctness. Consider any user (with input un and id), authenticator, client, and server

running an APlUA protocol in either mode. After receiving the first message, the client

sets id equal to id. The authenticator only accepts messages through Och(accept, ·, ·, ·)

queries. Assume an authenticated channel exists from the client to the authenticator. In

a registration session, if un has not been registered to the server before, then in the end

the registration succeeds, otherwise, the registration fails. In an authentication session, if

the associated registration session succeeded and the same authenticator is used to run the

authentication, then in the end the server accepts.

5.6.2 Security Model

We now formally define the security model for APlUA protocols.

Protocol Entities. The set of parties P consists of four disjoint type of parties: users U ,

authenticators T , clients C, and servers S, i.e., |P| = |U|+ |T |+ |C|+ |S|.

Session Oracles. Similar to PASACE protocols, each party P ∈ P is associated with a set

of session oracles π1
P , π

2
P , . . ..

Communication Channel Security. For an APlUA execution, we assume the following

security properties for the communication channels shown in Figure 5.5:

• Human communications ( 1 2 ) are authenticated and private.

• Client-server communications ( 4 ) are not protected.
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• Authenticator-client communications ( 3 ) are not protected, but as mentioned in the

protocol syntax a client-to-authenticator authenticated channel can be established by

querying the associated channel oracle Och.

Security Experiments. In the beginning of the experiments, run {(akT , vkT )
$←

Kg(1λ)}T∈T to generate attestation-verification key pairs for all authenticators, run {idS ∈

ID}S∈S to generate unique identities for all servers, and initialize global states of all parties

and local states of all session oracles. We assume that the user sessions are sequential, i.e.,

a new user session oracle starts only if the user’s previous session oracles have finished. Let

N ∈ N+ denote the maximum number of APlUA protocol instances for each party. The

channel oracle Och is associated with a security level level ∈ {weak, strong} that indi-

cates the security level of the established channels. The adversaryA is given all verification

keys and server IDs, then interacts with session oracles via the following queries:

• Channel(U, T, C), for U ∈ U , T ∈ T , C ∈ C.

This query asks U, T, C to invoke Och(establish, chid = (C, T )) to establish a C-to-T

authenticated channel (and set up T if necessary). (This query fails and returns ⊥ if T

was set up by a user other than U .) If U was corrupted (defined later), this query grants

the adversary access to Och(authenticate, (C, T ), ·). After this query, we say C is T ’s

channel partner.

This query allows the adversary to establish an authenticated channel from a specified

client oracle to a specified authenticator oracle with help of a specified user oracle, as well

as set up the authenticator if necessary. If the user was corrupted, this query also grants the

adversary access to the established channel.

• Start(πlU , πiT , π
j
C , S, un, mode), for U ∈ U , T ∈ T , C ∈ C, S ∈ S, l, i, j ∈ [N ], un ∈

UN , mode ∈ {reg, auth}.

This query asks a user oracle πlU , which intends to register or authenticate to server S

using username un via πjC with the assistance of πiT , to send the first message to πjC in a

registration session if mode = reg or in an authentication session if mode = auth, if T
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was set up by U and there exists a C-to-T authenticated channel. The output of the client

oracle πjC is returned to A instead of S.

This query allows the adversary to ask a specified user oracle to start a registration or

authentication session towards a specified server using a specified username via a specified

client oracle with the assistance of a specified authenticator oracle, then get the message

output by the client oracle. This query also specifies an existing authenticated channel for

later use, which may be used in multiple registration and authentication sessions.

• Send(πiP ,m, n), for P ∈ P \ U , i ∈ [N ],m ∈ {0, 1}∗, n ∈ {1, 3, 4}.

This query sends m to a non-user oracle πiP through communication channel n as shown

in Figure 5.5 and returns its response (if any). πiP may interact with a user oracle internally

but such interactions are not revealed to the adversary due to our assumption on human

communications. If P ∈ C and the response M is output to the authenticated channel chid,

then also asks P to invoke Och(authenticate, chid,M). If P ∈ T and n = 3, then

m must be of the form ((C,P ),M, x) for C ∈ C,M ∈ M, x ∈ X , and πiP accepts the

received message (M,x) if and only if: M was recorded as authenticated with the

specified channel (C,P ) if level = strong or with any channel (·, P ) towards authenticator

P if level = weak.

This query allows the adversary to send any message to a specified non-user oracle

through a specified communication channel and get its response. This query also authenti-

cates the output message sent through an existing authenticated channel. An authenticator

oracle accepts only messages authenticated with the specified authenticated channel. Note

that the adversary is not allowed to send messages to a client oracle via the human commu-

nication channel, in which case we consider the client oracle and the authenticated channel

used by it are compromised as captured by the following query.

• Compromise(πiP or chid), for P ∈ C ∪ S, i ∈ [N ], chid ∈ C × T .

If the input is πiP , this query returns πiP ’s internal states. If the input is chid = (C, T )

that refers to an existing authenticated channel, this query grants the adversary access to
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Och(authenticate, chid, ·) for channel chid if level = strong or for all channels towards

the same authenticator T if level = weak.

This query allows the adversary to learn all the internal states of a specified client or

server oracle. It also allows the adversary to compromise an existing authenticated channel,

this query grants the adversary access to the compromised channel for strong channels or

to all authenticated channels towards the same authenticator for weak channels.

• Corrupt(U), for U ∈ U .

If level = weak, This query grants the adversary access to Och(authenticate, chid, ·)

for all channels established by Channel(U, ·, ·). After this query, we say U was corrupted.

This query grants the adversary access to all authenticated channels related to a speci-

fied user for weak channels.

Partners. We say a server oracle and an authenticator oracle are each other’s partner in

a registration session if they observe the same session identifier sid, which is a subset

of the communication transcript defined according to the protocol specifications and secu-

rity goals. In an authentication session, we additionally require that the partnered session

oracles are associated with the same registration session, i.e., their input registration states

were set by partnered session oracles. We say an authenticator oracle and a client oracle are

each other’s partner if they observe the same (non-empty) messages transmitted through

the authenticated channel.

Advantage Measures. An adversary A against an APlUA protocol Π has the following

advantage measure:

• User Authentication (UA). We define Advua-level
Π (A) (recall that level denotes the secu-

rity level of the authenticated channels established by Och) as the probability that: there

exists a server oracle πkS that accepts in an authentication session and its associated previ-

ous registration session oracle πk′S (k′ < k) has a partner authenticator oracle πi′T where T

was set up by a user U , but the following does not hold:

(1) πkS has a unique authenticator partner πiT ;
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(2) πiT accepted a message through the human communication channel 1 ;

(3) πiT has a unique partner πjC and πjC has set id equal to idS , if the following holds:

• U was not corrupted before πkS accepts, and

• no channels towards T were compromised before πkS accepts.

The above captures the attacks in which the adversary successfully impersonates a user

to authenticate to a server that already registered the user’s authenticator. For the above

conditions, (1) implies that the registered authenticator must be used to authenticate to the

server; (2) implies the authentication must be approved on the registered authenticator via

the human communication channel; and (3) implies the authentication must go through a

trusted client (i.e., a client that has an authenticated channel towards the authenticator) and

the server that accepts must be the user’s intended server if the adversary did not corrupt

the user or compromise any of the registered authenticator’s authenticated channels.

Note that by definition Advua-strong
Π (A) ≤ Advua-weak

Π (A). That is, if an APlUA pro-

tocol is UA secure for weak channels, then it is also UA secure for strong channels.

• Strong User Authentication (SUA). We define Advsua
Π (A) as the probability thatA breaks

UA (for either of the (1)∼(3) conditions) or breaks the following:

(4) πjC is πiT ’s unique partner and πjC has set id equal to idS , if the following holds:

• a Start(πlU , π
i
T , π

j
C , S, ·, auth) query was made,

• U was not corrupted before the (C, T ) channel was established,

• the (C, T ) channel was not compromised before πkS accepts, and

• during the authentication session of πkS , no Send queries were made to T through

the human communication channel 1 .

Unlike UA, the above is defined with respect to strong channels only, because it cannot

be achieved with weak channels. The additional attacks captured by SUA are similar to
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those breaking condition (3) in UA, except that the adversary is further allowed to compro-

mise some of the authenticated channels (and hence SUA cannot be achieved with weak

channels) and corrupt the user even before the server accepts (but after the authenticated

channel was established). However, the adversary is not allowed to send any message

to the registered authenticator via the human communication channel, which in practice

means the adversary does not possess the authenticator. This restriction is due to the fol-

lowing observation: it is impossible to prevent an adversary from authenticating to a server

if it possesses the user’s authenticator and meanwhile compromises any of the authentica-

tor’s authenticated channels. An APlUA protocol satisfying SUA additionally guarantees

(compared to UA) that authenticating to a server through an uncompromised client using

a user-possessed authenticator remains secure even if the adversary compromised other

authenticated channels towards the registered authenticator.

Since the adversary can interact with the registered authenticator through a compro-

mised authenticated channel, the authenticator has to send some messages to the user to

help him detect malicious messages sent from unexpected (compromised) channels. This

implies that the authenticator had better have a display in practice.

By definition, Advua-strong
Π (A) ≤ Advsua

Π (A) and hence SUA implies UA.

REMARK. Note that in our model only the authenticator has a secret, i.e., the attestation

key, and the other parties essentially do not hold any secret (except a client may have

private access to some authenticated channels). As a result, an APlUA protocol that is

UA or SUA secure prevents many real-world attacks that compromise the parties (but not

the authenticator which we assume is tamper-proof). For instance, it is immune to phishing

attacks because the user does not have any private secret or information that can be revealed

on the client. Besides, the server-in-the-middle attack presented in [108] is also ruled out

because the adversary is already granted the ability to easily impersonate any server.
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User U Authenticator T Client C Server S
(idS , un) (akT ) (idS , vkT )

(1) Registration:
0, idS , un−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ id← idS

0, un−−→ ch
$← {0, 1}bl

(id, c)← cc
cc←−− cc← (idS , ch)

id ?= id

hc ← H(c)
M⇐==
AC

13 M ← (id, hc)ppt←−−14

up−−→15 up ?= 1

(pk, sk)
$← Kg(1λ)

n← 0, cid
$← {0, 1}bl

ad← (H(id), n, cid, pk)

σ ← Sign(akT , ad‖hc)
ad, σ−−→ att← (c, ad, σ)

att−−→ (c, h, n, cid, pk, σ)← att

rs← (id, cid, sk, n) c ?= ch, h ?= H(idS), n
?= 0

Ver(vkT , ad‖H(ch), σ) ?= 1
rs← (un, cid, pk, n)

(2) Authentication:
1, idS , un−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ id← idS

1, un−−→ ch
$← {0, 1}bl

(id, c, cid)← cr
cr←−− cr ← (idS , ch, cid)

id ?= id

hc ← H(c)
M⇐==
AC

M ← (id, hc, cid)ppt←−−
up−−→ up ?= 1

n← n+ 1
ad← (H(id), n)

σ
$← Sign(sk, ad‖hc)

ad, σ−−→ ass← (c, ad, σ)
ass−−→ (c, h, n′, pk, σ)← ass

c ?= ch, h ?= H(idS)
b← Ver(pk, ad‖H(ch), σ)

if n′ ≤ n: b← 0
if b = 1: n← n′

accept iff b = 1

Figure 5.6: The WebAuthn protocol

5.7 The W3C Web Authentication Protocol and its Security

In this section, we present the W3C’s Web Authentication (WebAuthn) protocol [37] of

FIDO2 following our APlUA protocol syntax and show its provable security results based

on our security model.
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5.7.1 Protocol Description

WebAuthn supports two types of operations: Registration and Authentication

(cf. Figure 1 and Figure 2 in [37]), respectively corresponding to the registration and

authentication modes of an APlUA protocol. The username space UN consists of human-

palatable strings for user accounts. The server ID space ID consists of effective domains

(e.g., hostnames) of server URLs. The key generation algorithm Kg is defined as part of

a signature scheme Sig = (Kg, Sign,Ver). (Note that WebAuthn supports the RSASSA-

PKCS1-v1 5 and RSASSA-PSS signature schemes [113].) Let H denote the SHA-256

hash function. The core cryptographic operations are presented in Figure 5.6. Obviously,

WebAuthn is an APlUA protocol.

5.7.2 Security Results

We show that WebAuthn is UA secure with respect to weak channels. The session identifier

sid is defined as the concatenation of the authenticator data and the signature (ad, σ).

We have the following theorem showing that WebAuthn achieves UA security for weak

channels, with the proof in Appendix A.6:

Theorem 11. For any PPT adversary A that makes the authenticator oracles generate at

most nc credentials (i.e., public-secret key pairs generated by Kg in registration sessions),

there exist PPT adversaries B, C such that:

Advua-weak
WebAuthn(A) ≤ Advcoll

H (B) + ncAdveuf-cma
Sig (C) +

|S|N2

2bl
.

However, somewhat unexpectedly, WebAuthn is not SUA secure even equipped with

strong channels. The reason is that in WebAuthn a user cannot detect if his authenticator ac-

13AC denotes the client-to-authenticator authenticated channel.
14ppt denotes the prompt generated by the authenticator, e.g., simple blinking or display of some client

and server information.
15up denotes the bit indicating whether the user pressing a button on the authenticator as a test of user

presence, which could be replaced by user verification uv for more powerful authenticators.
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cepts messages through an unexpected (and perhaps compromised) channel. For instance,

an attacker can trick a user to approve a malicious authentication request to a different

server (that registered the same authenticator as the intended server) through a compro-

mised channel, while the user might think the authentication goes through the specified

uncompromised channel.

In the following section, we propose an augmented WebAuthn protocol that we call

WebAuthn+ and prove its SUA security.

5.8 The WebAuthn+ Protocol and its Security

WebAuthn+ augments WebAuthn with simple operations as follows. After each authenti-

cated channel is established, the user creates or chooses a recognizable unique name for the

channel and inputs it to the client, which then sends the name to the authenticator through

the established channel. Later when an authenticator seeks the human user for authenti-

cation approval, it first shows him the user-recognizable channel name. In this way, the

user is able to detect malicious authentications and reject them if his authenticator accepts

messages from an unexpected channel.

We have the following theorem showing that WebAuthn+ achieves SUA security, with

the proof in Appendix A.7.

Theorem 12. For any PPT adversary A that makes the authenticator oracles generate at

most nc credentials, there exist PPT adversaries B, C such that:

Advsua
WebAuthn+(A) ≤ Advcoll

H (B) + ncAdveuf-cma
Sig (C) +

|S|N2

2bl
.

5.9 Composition

In this section, we show our composition theorem that states that a PASACE protocol can

be securely composed with an APlUA protocol.
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The protocol that composes a PASACE protocol Σ with an APlUA protocol Π is a

“composed” protocol that replaces all queries to the “ideal” channel protocol Och of Π

with the corresponding operations of Σ. In particular, a Och(establish, chid = (C, T ))

query is replaced with the first two phases of a new Σ instance among the client C, au-

thenticator T , and user U that set up T (or a new user if T was not set up). On the other

hand, a Och(authenticate, chid = (C, T ),M) query is replaced with asking C to output

the authenticated message of M in the authenticated channel phase of the associated Σ

instance.

We say a UF or UF-t security game generates weak authenticated channels, while a

SUF or SUF-t security game generates strong authenticated channels. Let GΣ be a game

(i.e., security experiment) modeling the security for Σ that generates chl-level authenticated

channels and GΠ a game associated with chl-level channels for Π, then GΣ;Π denotes the

composed security game of GΣ and GΠ, which essentially relaysOch-related queries to GΣ

queries. The adversary wins in the composed gameGΣ;Π if and only if it breaks the security

of Π given queries of both GΣ and GΠ. Note that the adversary A in the composed game

inherits the same restrictions from GΣ. For instance, if GΣ refers to the UF-t security, then

A cannot make Connect queries, i.e., the same trusted binding assumption is applied.

Our composition theorem is shown as follows, with the proof in Appendix A.8.

Theorem 13. Let Σ be a secure PASACE protocol that generates chl-level channels and let

Π be a secure APlUA protocol. If Π is secure for chl-level channels, then the composition

Σ; Π is secure with respect to experiment GΣ;Π, i.e., for any PPT adversary A, there exist

PPT adversaries B, C such that:

Adv
GΣ;Π

Σ;Π (A) ≤ AdvGΣ
Σ (B) + AdvGΠ

Π (C).

With our composition theorem, we derive that the overall FIDO2 achieves UF-t and UA

security, while our new construction that integrates PASKE and WebAuthn+ achieves the
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strongest SUF and SUA security.
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CHAPTER 6

CONCLUSION

In this thesis, we explore three interesting problems about secure communication and au-

thentication and provide provable security analyses. We hope our results will help the prac-

titioners understand the security guarantees and vulnerabilities of the important protocols

and facilitate the design and deployment of more secure and efficient constructions.

Both our HAKE and FIDO2 analyses consider a human user as a separate party and

capture human interactions with machines. We especially propose a concrete instantiation

for the only-human HC function family based on previous work. We believe our work will

promote further research and development in the area of human-oriented cryptography,

which is promising to achieve stronger security by reducing trust on the client machines.

Our investigation of the most important low-latency secure channel establishment pro-

tocols (i.e., TLS 1.3 over TFO, QUIC over UDP, QUIC[TLS] over UDP) and passwordless

authentication protocols (i.e., FIDO2) help clarify their precise security guarantees and

limitations. Our models can be used as good references or guidelines for protocol design-

ers and practitioners to better understand the important security aspects of novel secure

communication and authentication protocols. Our proposed new constructions can serve as

good candidates to achieve stronger security than existing protocols.
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APPENDIX A

PROOFS OF THEOREMS

A.1 Proof of Theorem 6

Client C Server S(kck)
1.sqnC

2.ackS, sqnS, c
k

3.ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1

sqnS
$← {0, 1}32

ck← ck gen(kck, IPC)
ackS ← sqnC + 1

Figure A.1: TFO initial connection.

Client C(ck) Server S(kck)
1.sqnC , ck,m∗

C

2.ackS, sqnS,m
∗
S

3.ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1
+|m∗S |

sqnS
$← {0, 1}32

ck′ ← ck gen(kck, IPC)
If ck = ck′:
ackS ← sqnC + 1

+|m∗C |
Otherwise:
ackS ← sqnC + 1
(fall back to TCP)

Figure A.2: TFO 0-RTT resumption connection. * indicates optional messages.

The TFO protocol specifications are shown in Fig. A.1 and Fig. A.2, where the server

samples kck
$← {0, 1}λ in the beginning and then generates cookies with ck gen:

ck gen(kck, IPC):

return Fkck(IPC‖IPS‖0 · · · 0)

Proof. Consider a sequence of games G0, . . . , G|S|. G0 is the real experiment for A and

G|S| uses random functions instead of the PRF F for all servers. The hybrid game Gi uses

random functions for the first i servers and PRF for the last |S| − i servers. Denote Pri as

the winning probability of A in Gi. By the PRF definition, for any i ∈ [|S|] there exists
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a PPT adversary Bi such that |Pri−1−Pri | ≤ Advprf
F (Bi). Therefore, there exists a PPT

adversary B such that |Pr0−Pr|S| | ≤ |S|Advprf
F (B).

Now we only need to bound Pr|S| by considering two cases. 1) A wins by sending a

valid ACK packet. In this case, A must have generated a valid ackC by correctly guessing

the target server’s TCP sequence number sqnS . The winning probability of each guess is

exactly 1/2|sqn|. 2) A wins by sending a valid SYN packet in resumption sessions. In this

case, A must have forged a valid TFO cookie ck. The winning probability of each forgery

is exactly 1/2n because the TFO cookie generation functions are independent and truly

random. By applying a union bound on the q queries, we have Pr|S| ≤ q/min{2|sqn|, 2n}.

A.2 Proof of Theorem 7

Proof. Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the

winning probability of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Advrst-auth
UDP+QUIC[TLS](A).

Game 1: The challenger proceeds as before except it aborts if the connection IDs repeat

for a party. Since the probability of cid collision for each party is at most N2/2|cid|, by a

union bound we have |Pr0−Pr1 | ≤ |P|N2/2|cid|.

Game 2: The challenger proceeds as before except it replaces the PRFs F used for re-

set token generation with independent random functions f . By a hybrid argument simi-

lar to the proof of Theorem 6, there exists a PPT adversary B such that |Pr1−Pr2 | ≤

|P|Advprf
F (B).

Game 3: The challenger proceeds as before except it replaces the encrypted pre-reset

messages (via Pack(·, ·, prst) queries) with encryption of independent random pre-reset

messages. There exists a PPT adversary C against the Channel Security such that

|Pr2−Pr3 | ≤ Advcs-1
UDP+QUIC[TLS](C).
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C can simulate Pack and Deliver queries with Encrypt and Decrypt queries. For a

Pack(·, ·, prst) query, C generates two random reset tokens x, y $← {0, 1}n and uses them

to construct two pre-reset messages. Then, C queries Encrypt with these pre-reset messages

as challenge messages, uses the output ciphertext to form a pre-reset packet, and sends it

to A. For a Pack(·, ·, rst) query, C returns the pre-reset message constructed from x. This

perfectly simulates Game 2 in the left world or Game 3 in the right world. C outputs 1 if

and only if A wins.

Now, in Game 3, the random pre-reset messages are independent from A’s view and

each guess is correct with probability 1/2n. By a union bound, we have Pr3 ≤ qrst/2
n.

A.3 Proof of Theorem 8

Proof. First, we replace the PRF E in both the left and right worlds with a purely random

function f : {0, 1}λ → {0, 1}λ. Note that it is straightforward to simulate either world of

the IND-1$PA experiment of CBC0 with oracles Ek (for random k) or f . Therefore, there

exists an efficient adversary B against the PRF security of E such that the game differences

caused by replacing E with f are bounded by 2Advprf
E (B).

Let C̃BC0 denote the CBC0 encryption scheme of which the underlying PRF is replaced

with a purely random function. We are left to show that the left and right worlds of the

IND-1$PA experiment of C̃BC0 are computationally indistinguishable. It is sufficient to

bound the probability of input collisions for f because the two worlds are perfectly indis-

tinguishable if no collisions occur. Let p denote such collision probability. Since there are

µ/bl blocks in each world, by a union bound, we have p ≤ µ/bl(µ/bl− 1)2−bl. We also

refer to [114] (Lemma 18) for a more detailed security analysis of the randomized CBC

scheme that also applies to our case.
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A.4 Proof of Theorem 9

Proof. Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the

winning probability of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Advuf-t
CTAP2*(A).

Game 1: The challenger proceeds as before except it replaces all shared keys K =

H(abG.x) established in Execute queries with independent random values K̃ $← {0, 1}λ.

By a hybrid argument, there exists an efficient adversary B against the SCDH security of

G such that |Pr0−Pr1 | ≤ qEAdvscdh
G (B).

To simulate a hybrid game, we embed the challenge group elements ãG, b̃G into the

corresponding authenticator and client oracles and answer random oracle H queries via

lazy sampling. Note that when receiving an arbitrary bG fromA to the authenticator oracle

via a Send query, we check if ãbG.x has already been queried to the random oracleH using

the verification oracle Oã(·, ·). This is sufficient to answer H queries consistently and set

the resulting shared keys accordingly. Before setting K = H(ãb̃G.x) to K̃, we also need

to check if ãb̃G has already been queried: if so we can win the SCDH game, otherwise we

simulate A’s view perfectly.

Game 2: The challenger proceeds as before except it replaces all transmitted ciphertexts

cp = Enc(K̃, 0, pin), cph = Enc(K̃, 0,H(pin)), cpt = Enc(K̃, 0, pt) in Execute queries

with c̃p ← Enc(K̃, 0, p̃in), c̃ph ← Enc(K̃, 0,H(p̃in)), c̃pt ← Enc(K̃, 0, p̃t), where p̃in $←

PIN , p̃t $← {0, 1}λ are independent random values. By a hybrid argument, there exists

an efficient adversary C against the IND-1$PA security of CBC0 such that |Pr1−Pr2 | ≤

qEAdvind-1$pa
CBC0

(C).

To simulate a pair of consecutive hybrid gamesGk, Gk+1 (e.g., replacing the transmitted

ciphertexts in Execute(πlU , π
i
T , π

j
C)), we sample an independent random PIN p̃in

$← PIN

and query the IND-1$PA encryption oracles of CBC0 as follows. First, query c∗ ←

OLR(pinU , p̃in) if the considered Execute query involves the authenticator setup phase.
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Then, if pinU 6= p̃in, query (m0,m1, cb)
$← O$LR(1, rand); otherwise (if pinU = p̃in),

query (m, c)
$← O$LR(1, same) and let m0 = m1 = m and cb = c. Finally, query

(m′0,m
′
1, c
′
b)

$← O$LR(1, rand). Now, we set cp ← c∗, cph ← cb, cpt ← c′b, pt ← m′0.

It is not hard to see that, in the left world, the above ciphertexts and pt are equal to the

original ones in game Gk while, in the right world, they are equal to the replaced cipher-

texts that encrypt random values in game Gk+1. Note that we simulate the random oracle

H via lazy sampling as before except that we fix H(pinU) ← m0 and H(p̃in) ← m1 (or

H(pin)← m if pinU = p̃in) in the beginning.

Game 3: The challenger proceeds as before except it aborts if some authenticator oracle

received a malicious cph from A (via a Send query) and the decrypted message matches its

transformed PIN tpin. Note that after Game 2, the authenticators’ transformed PINs and

the clients’ input PINs are independent from A’s view. Since each Execute query allows

A to make at most nmax guesses (or nth guesses without requiring authenticator reboots)

about the corresponding authenticator’s tpin and each guess succeeds with probability at

most 1/|PIN |+ 1/2bl (where 1/2bl accounts for the chance that two different PINs result

in the sameH output), by a union bound we have |Pr2−Pr3 | ≤ nqE(1/|PIN |+1/2bl) =

nqE/|PIN |+ nqE/2
bl.

Now, Game 3 can be simulated by an efficient adversary D against the EUF-CMA

security of the MAC scheme MAC. D first guesses the accepting authenticator T and

its reboot cycle with probability at least 1/(|T | + qR) (because each authenticator reboot

generates an independent random pt), then simulates the game with the MAC oracle of

MAC. This simulation is perfect except when collisions occur in the random oracle queries

(used to get the message digest before signing), which happens with probability at most

qH
2/2bl. Therefore, Pr3 ≤ (|T |+ qR)Adveuf-cma

MAC (D) + qH
2/2bl.

142



A.5 Proof of Theorem 10

Proof. Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the

winning probability of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Advsuf
PASKE(A).

Game 1: The challenger proceeds as before except it replaces all shared keys K =

H(abG.x) established in Execute queries with independent random values K̃ $← {0, 1}λ.

Since ECDH is executed only in the trusted authenticator setup phase, our proof no longer

requires the SCDH assumption. Similar to the corresponding proof in Appendix A.4, there

exists an efficient adversary B against the CDH security of G such that |Pr0−Pr1 | ≤

qEAdvcdh
G (B).

Game 2: The challenger proceeds as before except it replaces all transmitted ciphertexts

cp = Enc(K̃, 0, pin) in Execute queries with c̃p ← Enc(K̃, 0, p̃in) for an independent

random p̃in
$← PIN . By a hybrid argument, there exists an efficient adversary C against

the one-time IND-CPA security of CBC0 such that |Pr1−Pr2 | ≤ qEAdvot-ind-cpa
CBC0

(C).

To simulate a pair of consecutive hybrid games Gk, Gk+1 (e.g., replacing cp with c̃p

in Execute(πlU , π
i
T , π

j
C)), we sample an independent random PIN p̃in

$← PIN , query

cb ← OLR(pinU , p̃in), and set cp ← cb, which simulates the games perfectly.

Game 3: The challenger proceeds as before except it aborts if there exist two sessions

with the same session identifier. Recall that the nonces ra, rb are chosen independently at

random by honest parties, so any two session identifiers collide with probability at most

1/2bl on each half. Since there are at most |U|N sessions that involves clients and at

most |T |N sessions that involves authenticators, by a union bound we have |Pr2−Pr3 | ≤

(|U|2 + |T |2)N2/2bl.

Game 4: The challenger proceeds as before except it replaces PAKE with the ideal

functionality F̂CA
PAKE and uses SPAKE to simulate interactions with PAKE. By definition,

there exists an efficient environment Z against the UC security of PAKE with ideal func-
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tionality F̂CA
PAKE in the random oracle and ideal cipher models such that |Pr3−Pr4 | ≤

Advpake
PAKE(SPAKE,A,Z).

Game 5: The challenger proceeds as before except it aborts if some session got com-

promised, i.e., SPAKE made a TestPwd query and guessed the password correctly. Note

that after Game 4, the authenticators’ transformed PINs and the clients’ input PINs are

independent from A’s view. Furthermore, authenticators can detect all wrong password

guesses because F̂CA
PAKE includes client authentication. Since each honest PAKE exe-

cution allows A to make at most nmax guesses (or nth guesses without requiring au-

thenticator reboots) about the password (i.e., H(pin)) by interacting with an authenti-

cator and A has to make a Connect query before guessing the password by interact-

ing with a client, in total A can make at most nqẼ + qC guesses. Then, because each

guess succeeds with probability at most 1/|PIN | + 1/2bl, by a union bound we have

|Pr4−Pr5 | ≤ (nqẼ + qC)(1/|PIN |+ 1/2bl) = (nqẼ + qC)/|PIN |+ (nqẼ + qC)/2bl.

Now, Game 5 can be simulated by an efficient adversary D against the EUF-CMA

security of the MAC scheme MAC. D first guesses the accepting authenticator oracle πiT

with probability at least 1/|T |N , then simulates the game with the MAC oracle of MAC.

Recall that F̂CA
PAKE guarantees client authentication, i.e., πiT receives a random key (in an

uncompromised session) only if there is a partner client oracle that received the same key.

This ensures that D can simulate the MAC operations of πiT and its partner perfectly if

no random oracle collisions occur. Therefore, we have Pr5 ≤ |T |NAdveuf-cma
MAC (D) +

qH
2/2bl.

A.6 Proof of Theorem 11

Proof. Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the

winning probability of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Advua-weak
WebAuthn(A).
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Game 1: The challenger proceeds as before except it aborts if a hash collision occurs. By

definition, there exists a PPT adversary B against the collision-resistance security of H

such that |Pr0−Pr1 | ≤ Advcoll
H (B).

Game 2: The challenger proceeds as before except it aborts if there exists a server that

generates two identical challenges in authentication sessions. By a union bound, we have

|Pr1−Pr2 | ≤ |S|N2/2bl.

Game 3: The challenger proceeds as before except it aborts if the first condition in UA

does not hold, i.e., πkS does not have a unique partner πiT . This game can be simulated by a

PPT adversary C against the EUF-CMA security of the signature scheme Sig as follows.

C first guesses πkS’s credential with probability at least 1/nc, then simulates the game

by answering all queries related to that credential with the signing oracle and public key

of Sig. There are two cases, πkS has two partners or no partner. Because the signature

counter n is incremented for every new session, πkS cannot have two partners using the same

credential, except the same credential used by πkS was generated in another registration

session. If this happens, C can trivially forge a signature to a new message as it knows

the signing key. Otherwise, recall that partners in authentication sessions must refer to the

same registration session and hence the same credential, so πkS cannot have two partners

with different credentials. On the other hand, if πkS has no partner but still accepts in an

authentication session, then C has forged a valid signature and wins the EUF-CMA game.

Therefore, we have |Pr2−Pr3 | ≤ ncAdveuf-cma
Sig (C).

Now, in Game 3 πkS has a unique partner πiT . Referring to Figure 5.6 for the authenti-

cation procedures of WebAuthn, it is obvious that the second condition in UA holds, i.e.,

πiT accepted a message through the human communication channel 1 . Moreover, πiT must

have accepted an authenticated message M through an authenticated channel. Since the

adversary does not have access to any of the authenticated channels towards T , with weak

channelsM must be authenticated by a client oracle πjC . Note thatM consists of the unique

server ID and a challenge (that is also unique), so πjC is unique and the third condition in
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UA also holds. Therefore, Pr3 = 0.

A.7 Proof of Theorem 12

Proof. The proof proceeds in the same way as the proof of Theorem 11 in Appendix A.6,

except that it relies on strong channels and the augmented user detectability to show that

the extra condition (4) in SUA also holds in the final game. More precisely, in the final

game consider that πkS has a unique partner πiT and a Start(πlU , π
i
T , π

j
C , S, ·, auth) query

was made. Since the adversary does not have access to the (C, T ) channel or the human

communication channel to πiT , for the authentication to succeed, πlU must approve it. Now

with strong channels, due to the augmented user detectability, πiT must receive an authen-

ticated message from the expected (C, T ) channel authenticated by a session oracle of C.

Recall that the user sessions are assumed to be sequential, πjC is the only active client oracle

that can send an authenticated message to πiT through that channel, and hence πjC is πiT ’s

unique client partner. Before sending the authenticated message, πjC must check that id

equals idS .

A.8 Proof of Theorem 13

Proof. Consider a sequence of games (i.e., experiments) and let Pri, i ≥ 0 denote the

winning probability of A in Game i.

Game 0: This is the real experiment for A, so Pr0 = Adv
GΣ;Π

Σ;Π (A).

Game 1: The challenger proceeds as before except it aborts if the GΣ security is broken,

i.e., there exists an authenticator oracle that accepted a forged authenticated message. Note

for any PPT adversary A, there exists a PPT adversary B against the GΣ security that can

simulate all GΣ;Π queries perfectly. Therefore, |Pr0−Pr1 | ≤ AdvGΣ
Σ (B).

Now Game 1 can be simulated by a PPT adversary C against theGΠ security. C samples

all the secret PINs and authenticator power-up states and only uses authenticated channels
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established with its Och queries for the GΠ subgame, i.e., C does not actually relay Och

queries to the simulated GΣ queries in the composed game but only simulates such effect.

By the design of the queries in our APlUA security experiments, such simulation is perfect

given that the GΣ security of Game 1 cannot be broken. Therefore, A wins implies C wins

and we have Pr1 ≤ AdvGΠ
Π (C).
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APPENDIX B

QUIC AND TLS 1.3’S STATEFUL AEAD SCHEMES AND THEIR SECURITY

In this chapter, we describe the stateful AEAD schemes used in QUIC and TLS and prove

their security. We refer to [115] for the syntax and security definitions of a nonce-based

AEAD scheme.

B.1 QUIC’s Stateful AEAD Scheme and its Security

First, we show QUIC’s stateful encryption scheme sAEADQUIC constructed from a nonce-

based AEAD scheme AEAD = (Gen,Enc,Dec) as follows. We also refer to [115] for the

syntax and security definitions of a nonce-based AEAD scheme.

sGen():

ke
$← Gen(), km

$← {0, 1}32

(ste, std)← (∅,⊥)

return (ke, km)

sDec(k, ad, ct, std):

(ke, km)← k

(cid, sqn)← ad

m← Dec(ke, km‖sqn, ad, ct)

return (m,⊥)

sEnc(k, ad,m, ste):

(ke, km)← k

(cid, sqn)← ad

if sqn ∈ ste,

return (⊥, ste)

c← Enc(ke, km‖sqn, ad,m)

ste ← ste ∪ {sqn}

return (c, ste)

Note that sAEADQUIC uses the encryption state to keep track of used nonces to avoid

repeating and the decryption state is unused.

To reduce sAEADQUIC’s level-1 AEAD security to the underlying AEAD’s nonce-based

AEAD security, we first recall that the nonce-based AEAD security is defined as two sep-

arate parts, privacy and authenticity. For privacy, the adversary guesses the secret bit of a
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left-or-right encryption oracle but cannot make queries with a repeated nonce. The associ-

ated advantage is denoted by Advind-cpa
AEAD (A). For authenticity, the adversary tries to forge a

valid ciphertext (together with a nonce and an associated data), given an encryption oracle

(without the secret bit). The associated advantage is denoted by Advint-ctxt
AEAD (A). Now, we

are ready to prove the following theorem.

Theorem 14. For any PPT adversary A, there exist PPT adversaries B and C such that:

Advaead-1
sAEADQUIC

(A) ≤ Advint-ctxt
AEAD (B) + Advind-cpa

AEAD (C) .

Proof. Consider two games G0 and G1. G0 is the real experiment forA and G1 is the same

as G0 except that it will always return ⊥ for decrypt queries. Denote Pri as the advantage

of A in Gi. |Pr0−Pr1 | is bounded by the probability that A forges a new valid ciphertext

given b = 1, which by definition is bounded by Advint-ctxt
AEAD (B) for some PPT adversary

B. Then, note that according to the sAEADQUIC construction nonces in AEAD encryption

queries never repeat and G1 can be simulated by an PPT adversary C against the nonce-

based AEAD privacy security, which implies Pr1 ≤ Advind-cpa
AEAD (C). Therefore, we have

Advaead-1
sAEADQUIC

(A) ≤ Advint-ctxt
AEAD (B) + Advind-cpa

AEAD (C).

B.2 TLS 1.3’s Stateful AEAD Scheme and its Security

Next, we show TLS 1.3’s stateful encryption scheme sAEADTLS constructed from a nonce-

based AEAD scheme AEAD = (Gen,Enc,Dec) as follows:

sGen():

ke
$← Gen(), km

$← {0, 1}n

(ste, std)← (0, 0)

return (ke, km)

sEnc(k, ad,m, ste):

(ke, km)← k

c← Enc(ke, km ⊕ ste, ad,m)

ste ← ste + 1

return (c, ste)
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sDec(k, ad, ct, std):

if std = ⊥, return (⊥,⊥)

(ke, km)← k

m← Dec(ke, km ⊕ std, ad, ct)

if m = ⊥,

std ← ⊥

otherwise,

std ← std + 1

return (m, std)

Note that in the above TLS’s stateful encryption scheme, nonce repeating is prevented

by the increasing counter kept by the encryption state ste. Following a very similar argu-

ment as in the above proof of Theorem 14, one can show that the level-4 AEAD security

of sAEADTLS is also reduced to the nonce-based AEAD security of AEAD. This result has

been proved by previous work (Theorem 3 in [12]), but their stateful AEAD security def-

inition is slightly different from ours. For instance, in their game the adversary needs to

distinguish ciphertexts from random, while in our game the adversary distinguishes cipher-

texts of two messages.
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APPENDIX C

MSACCE-STD SECURITY OF TLS 1.3 OVER TFO AND QUIC OVER UDP

C.1 TFO+TLS 1.3’s msACCE-std Security

Due to the high similarity among the abundant TLS 1.3 proofs in the MSKE model (and its

extensions) and a security proof in our msACCE-std model, we show a proof sketch below.

Previous works [103] and [11] respectively proved that the TLS 1.3 draft-16 (EC)DHE

full handshake and draft-14 PSK-(EC)DHE 0-RTT resumption handshake are secure in the

MSKE model based on the collision resistance of the hash function, unforgeability of the

signature and MAC schemes, PRF security of the key derivation function, and pseudoran-

dom function oracle Diffie-Hellman (PRF-ODH) assumption [4, 29, 116]. Their MSKE

security, which captures only the key exchange phases, ensures the Bellare-Rogaway-style

key secrecy [101] (i.e., the stage keys are indistinguishable from random ones) with vari-

ous authentication properties (for which our msACCE-std model focuses on the unilateral

server authentication). These results derived the overall TLS 1.3 security using a compo-

sitional approach, i.e., composing a secure key exchange protocol (e.g., the TLS 1.3 hand-

shake protocol) in the MSKE model with an arbitrary secure symmetric key protocol (e.g.,

the TLS 1.3 record protocol). However, as stated in [11], this generic composition result

only works for key-independent, forward-secret, external, and non-replayable stage keys.

In particular, it does not apply to the final session keys in full handshakes or the interim

handshake keys because they are used internally in the key exchange phases. Besides, it

does not apply to the 0-RTT keys, which are replayable and non-forward-secret. In order to

adjust their security results to prove TLS 1.3’s Server Authentication and level-4 Channel

Security in our model, we need to address a few TLS 1.3 updates and model differences as

follows.
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First, we show that the security results in [103, 11] for old TLS 1.3 drafts can be ex-

tended to the standard TLS 1.3 [5], i.e., the standard TLS 1.3 (EC)DHE full handshake and

PSK-(EC)DHE 0-RTT handshake are secure in the MSKE model.

1) The multi-stage key generation procedures are updated in the just-released TLS 1.3.

Recall that TLS 1.3 performs key derivation in the extract-then-expand paradigm [117] us-

ing the HMAC-based Extract-and-Expand Key Derivation Function (HKDF), which con-

sists of two functions HKDF.Extract and HKDF.Expand. In particular, it first extracts an

internal secret (e.g., early secret, handshake secret, and master secret), then expands it

(twice) to derive the corresponding stage key. The latest standard TLS 1.3 performs an

expand-then-extract procedure instead of a single extract procedure for the extraction of

the handshake secret and master secret. However, these two additional expand steps do not

affect the MSKE security because they only add a constant (single) query to HKDF.Expand,

leading to a larger constant for its PRF advantage. Besides, compared to [103], such ex-

tra expand steps help TLS 1.3’s MSKE security no longer rely on the PRF security of the

underlying HMAC primitive of both HKDF functions.

2) The message flows of the PSK-(EC)DHE 0-RTT resumption handshake are updated

in the just-released TLS 1.3. The 0-RTT Finished message is replaced by a pre-shared

key (PSK) binder. They are both HMAC values generated with very similar procedures

and have the same purpose, i.e., to authenticate the ClientHello message and to bind

the current resumption session with the assoicated full session. Such a replacement does

not affect the TLS 1.3’s MSKE security. Besides, a new EndOfEarlyData message is

added as an indicator to end 0-RTT data transmission. This is an empty handshake message

independent of key generation so does not affect the security either.

Then, based on the above extended TLS 1.3 MSKE security, we can apply the secu-

rity results in [10] to get the Multi-Level&Stage security of the combination of the TLS

1.3 full handshake and 0-RTT resumption handshake. Referring to their notions [10], our

msACCE-std model focuses only on two modes, i.e., the (EC)DHE full handshake and

152



PSK-(EC)DHE 0-RTT resumption handshake, and two levels, i.e., one level of full hand-

shakes followed by one level of 0-RTT resumption handshakes.

Finally, we show that the above TLS 1.3 security result in the Multi-Level&Stage

model [10] can be augmented to prove TLS 1.3’s Server Authentication and level-4 Chan-

nel Security.

1) The above security result guarantees server authentication, i.e., a client oracle that

has set its final session key must share the same session identifier with a unique partner

server oracle. However, their session identifier is defined as unencrypted key exchange

messages in order to capture key independence (i.e., revealing independent stage keys in

the same session does not break the unrevealed stage key’s secrecy). We instead use a

“real” encrypted session identifier to simplify our model and make reducing KE Payload

Integrity to Server Authentication easy. (Note that an unencrypted session identifier may

correspond to many valid encrypted session identifiers but KE Payload Integrity requires no

modification in the encrypted payload). To prove Server Authentication, we need to follow

their proof of the TLS 1.3 Multi-Level&Stage server authentication to replace handshake

keys with independent and random values, then use sAEADTLS’s AEAD oracles to simulate

encrypted key exchange messages in sidTLS and the decryption of them. In this way, Server

Authentication can be reduced to the TLS 1.3 Multi-Level&Stage server authentication and

the AEAD security.

2) To prove level-4 Channel Security, we follow their proof of the TLS 1.3 Multi-

Level&Stage security to replace all stage keys with independent and random values

and then use the AEAD oracles to simulate encrypted key exchange messages and

Encrypt,Decrypt queries. In this way, level-4 Channel Security can be reduced to

the TLS 1.3 Multi-Level&Stage security and the level-4 AEAD security of sAEADTLS.

Note that the AEAD oracles are also used to simulate post-handshake messages like

NewSessionTicket. This bypasses the composition issue [9] faced by the MSKE

model (and its extensions), in which the application keys in full handshakes cannot be
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composed with secure symmetric key protocols because these keys are used internally in

the key exchange phase to encrypt NewSessionTicket messages.

C.2 UDP+QUIC’s msACCE-std Security

It has been proven in [32] that QUIC is QACCE-secure in the random oracle model

based on the unforgeability of the signature scheme, the computational Diffie-Hellman

(DH) assumption [118], and the nonce-based AEAD security. Note that msACCE-std

with sAEADQUIC is semantically equivalent to QACCE with nonce-based AEAD and get iv

(defined in [32]), so their QACCE security results can be trivially adapted to show that

UDP+QUIC achieves Server Authentication and level-1 Channel Security in our msACCE-

std model. Note that msACCE-std security relies on the level-1 AEAD security of

sAEADQUIC instead of the nonce-based AEAD security of the underlying AEAD, but the

former can be reduced to the latter as shown in Appendix B.
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