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Chapter 1
INTRODUCTION AND MOTIVATION

Thinking is the most complex phenomenon known to man. We have tried for centuries
to understand brain as a complex machine and thinking as a natural phenomenon which
follows the laws of nature. The process of understanding, by synthesis, led to the creation
of computer, albeit for other useful purposes. Yet, today’s computing systems are hardly a
match for the kind of information processing we can imagine. In fact, on many fronts, these
systems are not adequate even for our present needs. Neither can they predict tornados,
nor can they replace a broken limb. The challenge resides not only in engineering such
systems, but also in the conceptual understanding behind their design. On the contrary,
many computing-like phenomena found in nature, for example rythmic flashing of fireflies,
or pattern formation in microbial systems, show processing of hard problems in a very easy
and efficient manner. As such, it raises the question whether the problems themselves are
hard or is it the style of computing that makes them hard, and whether other alternative

computing systems can be designed which are more efficient in solving such systems.

1.1 ANATOMY OF A COMPUTING MACHINE

A computing operation involves transformation of information from a given, less useful,
input form to another desired output form which is more useful. A computing machine
is capable of performing a computing transformation by itself, i.e. the transformation re-
sults merely from the physics of its constitution without any external entity governing the
process. As such, any computing process in a computing machine would essentially be a dy-
namical system governed by the physical processes in the machine. The current standard
paradigm of computing is the Turing machine model and the Von Neumann architecture.

In the Turing machine model, every computing operation is broken down into basic binary



arithmetic operations. And Von Neumann architecture dictates an implementation of such
a system with a separate memory block, and a processor that stores and fetches data from
the memory and performs binary arithmetic. The tremendous success of this paradigm is
partly due to its universal nature, and partly due to the ease of implementing binary logic in
CMOS. Yet, these systems prove inadequate in solving hard problems like combinatorial
optimization. Possible reasons include separation of memory and processing, and redun-
dant enforced accuracy and storage at each step. In fact, it can be argued that many of these
hard problems are not suited to be solved in terms of discrete arithmetic operations, but in-
stead in terms of continuous representations and dynamics which are not easily calculated

using conventional array representations in the digital symbolic metaphor.

1.2 AVENUES OF IMPROVEMENT

This perspective of the anatomy of a computing system highlights many possible avenues
for improvements. In order to build dedicated hardware accelerators for special opera-
tions, a universal model of computation like the Turing machine is not needed. Also, new
technologies and the physics of devices can enable emulation of many other basic opera-
tions and functions that are not mere binary logic operations. This has been the premise
of analog computation from the beginning [1], but its computational power has always
been compared to the Turing machine model in the light of “absolute” results equating
the computational power of Turing machine with any analog computer that can be built
[2]. Although such results about Turing machine and its universality are some of most
important results in computer science, these are disconnected from the real world imple-
mentation where the costs involved can come from architectural choices as well. A much
better problem specific computing system is possible if an alternative computing model
is complemented with the continuous time dynamics, deterministic or stochastic, of new
beyond CMOS devices. These beyond CMOS devices are new devices being researched

which have different characteristics than the transistors used in conventional semiconduc-



tor chips. But these efforts face a common challenge - lack of good computational models
which can support the dynamical systems of these new interconnected devices. As such,
these new devices end up aiming for the same old goals of better switches and compact
logical operations that had formed the basis of Turing machine paradigm. The possibility
that physical devices can offer more computing abilities than just switches or logic gates
has been either less explored or challenging. The work described in this thesis lies at this
intersection of design, modeling and architectures to create novel computing systems that

use the continuous time dynamics of interacting devices to solve hard computing problems.

1.3 OBJECTIVE OF PROPOSED RESEARCH

The objective of the proposed research is to create alternative computing models and ar-
chitectures, unlike (discrete) sequential Turing machine/Von Neumann style models, which
utilize the network dynamics of interconnected IMT (insulator-metal transition) devices.
This work focusses on circuits (mainly coupled oscillators) and the resulting switched lin-
ear dynamical systems that arise in networks of IMT devices. Electrical characteristics of
the devices and their stochasticity are modeled mathematically and used to explain exper-
imentally observed behavior. For certain kinds of connectivity patterns, the steady state
limit cycles of these systems encode approximate solutions to global functions like domi-

nant eigenvector of the connectivity matrix and graph coloring of the connectivity graph.



Chapter 2
LITERATURE SURVEY

Even with the tremendous success of digital Von Neumann architecture, researchers have
always been interested in other kinds of analog computing systems where the dynamics
of the system computes by itself in continuous time. Many of these are inspired by com-
puting that occur in nature with different computing entites interacting with each other, for

example, coupled oscillators, neural networks etc.

2.1 TECHNOLOGIES FOR CONTINUOUS TIME DYNAMICAL SYSTEMS

At the fundamental level, compute technologies have used and manipulated the charge,
spin, or quantum properties of electrons, or used photons. Important technologies include
spin-torque [3—6], insulator-metal-transition [7], optical [5, 8] and quantum [9]. CMOS
(Complementary metal oxide semiconductor) technology based on charge has driven most
of the digital computing machinery by implementing logic gates. Currently, there has been
a lot of emphasis on technologies other than CMOS called beyond-CMOS techonlogies.
Major reasons for not prefering CMOS based continuous time dynamical systems for com-

puting are:

1. CMOS processes introduce non-linearities when dealing with large signal dynamics
which is usually the case for continuous time dynamical systems. This makes it hard

to create circuits with predictable dynamics which can be used for computing.

2. Small signal model based traditional analog circuits could be used for linearity but

such circuits involve high biasing currents resulting in high power consumption.

3. Size of basic components like oscillators built using CMOS technology are much

larger which reduces the density of large arrays of such oscillators.
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2.2 COUPLED OSCILLATORS

2.2.1 Theory

Coupled oscillator models can explain many natural, chemical and biological synchroniza-
tion phenomena like the synchronized flashing of fireflies, pacemaker cells in the human
heart, chemical oscillations, neural oscillations, and laser arrays, to name a few [10]. The
simplest theoretical models of oscillators start with sinusoidal oscillators which have been
extensively studied [11-13] and their application in the computational paradigm has been
well demonstrated [14, 15]. A generalized description of oscillators in these models is usu-
ally a canonical phase model [10, 16], and the coupling mechanisms are generally assumed
weak and composed of simple periodic functions which explicitly depend on phases. In
this model the oscillators are simple harmonic and their coupling is assumed to affect each
other’s phases linearly. If the oscillators with phases 6; and 6, have frequencies ®; and @,

then in Kuramoto models the coupling of two oscillators will result in the phase equations:

91 = W —|—k(91 — 92)

92 = +k(92 — 91)
where k is the coupling constant. A Kuramoto system of N oscillators is described by

. KY :
Gi:a)i+ﬁj;sm(6j—6,~) i=1,...N
where 6; and @; are the phase and frequency respectively of i oscillator. Several studies
on more general periodic coupling functions have also been studied [17].
Along with sinusoidal oscillators, non-linear Van-der-Pol oscillators [18] and several of
its variants, like the Morris-lecar neuron model [19], have also been studied and the applica-

bility of such models in neurobiological and chemical oscillators have been demonstrated

5



[20-22]. A single van-der-pol oscillator is defined by adding a non-linearity in the simple
harmonic oscillator model

W'+ e =1 +u=0

which results in relaxation behavior and hence it is also called relaxation type oscillators.
But these analysis also assume non-realistic coupling dynamics like weak or pulse coupling
and do not focus on engineering aspects of building such coupled oscillators.

Such analytic models of coupled oscillatory systems almost always require a canoni-
cal phase description of the oscillators and a periodic phase dependent additive coupling
that can be classified as weak. Strong coupling for relaxation type oscillators built using
electrical circuits lack good explanations. Some theoretical studies have focussed on pulse
coupling [23-25], and injection locking [26, 27] but these are not suitable for understanding
coupled relaxation oscillators of the kind focussed in this thesis.

Another kind of two coupled oscillator study was done in [28] which involved the usual
relaxation type oscillators [29] which work on charging and discharging of a capacitor. As
such, these oscillators show piecewise linear dynamics instead of continuous dynamics as
in the previous models and the analysis of coupling is rather difficult as the limit cycle

spans different “pieces” of the dynamics.

2.2.2 Implementation

It has been always been challenging to create compact as well as low power oscillators. But
more challenging is the coupling of such oscillators to give predictable phase or frequency
dynamics. Basic oscillators in CMOS technology include logical oscillators, which are
square wave oscillators consisting of a chain of odd number of inverters, and LC oscillators
which are sinusoidal harmonic oscillators LC components in the loop.

Non-silicon electrical oscillators include two important kinds which are currently being
developed. One prominent effort is the use of spin torque oscillators (STOs) coupled with

using spin diffusion currents, or electrical signals, for providing a computational platform
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Table 2.1: Comparison of different electrical oscillator technologies with VO, based oscil-
lators used in this work

This Work TaO, [41] HfTaOx and GeTeg [42] PLL [43]

Power (uW) 12 < 100 <50 <700
Area (,umz) 0.89 0.5 0.5 -
Max Freq. (MHz) 9 500 350 <10

for machine learning, spiking neural networks, and others [3-6, 30-32]. However, the high
current densities of STOs and the limited range of spin diffusion currents continue to pose
serious challenges in created coupled networks of such oscillators. Optical oscillators have
been studied [8, 33] and used for computing [5], but challenges include bulky components,
difficult interfacing between electrical and optical mediums and lack of programmability
for any optical computing apparatus. Another promising non-silicon technology for very
compact oscillators is the IMT (insulator-metal transition) material based oscillator technol-
ogy [34, 35] which is the focus in this work. As the oscillation mechanism is completely
electrical, the coupling of oscillators can be done easily using electrical components. There
have been other implementation efforts for elecrical oscillators [36—40] but the focus has
been to build high frequency and low power individual oscillators but not to build coupled
systems or to generate interesting dynamics for computing. The oscillators used in this
work are based on IMT (insulator-metal-transition) devices built using Vanadium Dioxide
(VO,). A comparison of some other computing focussed oscillators with the VO, based

oscillators is shown in Table 2.1:

2.2.3 Computing models

Coupled oscillator associative memories [15, 44, 45] have been proposed which have been
shown to be equivalent to the Hopfield model of associative memories, but successful im-
plementations have yet to come. Another application can be graph coloring [46, 47], but

its understanding has been limited to two colorable graphs. An interesting Ising Machine
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implementation using Optical Parametric Oscillators (OPO) was shown in [5].

2.3 OTHER DYNAMICAL SYSTEMS FOR COMPUTING

Apart from coupled oscillators, other dynamical system models have been studied for var-
ious applications, but few have been implemented in some kind of hardware with proven
advantages over corresponding digital implementations of algorithms. Hopfield networks
are attractor networks proposed for associative memories [48] where the fixed points (or
stable states) of the system correspond to memories and the dynamics of the network is
such that the system settles to the fixed point which is closest to the initial state the system
starts from. Hopfield style models have also been used for optimization [49]. Cellular neu-
ral networks [50] consist of interconnected nodes where each node has linear or non-linear
dynamics and the connections specify the coupling between their corresponding differen-
tial equations. Their CMOS implementations have been proposed with applications like
pattern matching. Ising Machine [5, 51, 52] models have been proposed based on coupled
spin glasses. The energy minima of such networks correspond to the solutions of an NP-
hard combinatorial optimization problem, and hence can model other NP-hard problems
as well [51]. Another dynamical system for constraint satisfaction [53] is built on similar
principles. An architecture based on non-repeating phase relations [54] between fabricated
CMOS oscillators tries to emulate stochastic local search (SLS) for constraint satisfaction
problems. An interesting approach based on "memory co-processors" was introduced as
Memcomputing in [55]. Interesting insights can be obtained by looking into dynamical
systems like iterated maps [56], cellular automata [57-59], and 0-1 continuous reformula-

tions of discrete optimization problems [60].



Chapter 3
DEVICES, CIRCUITS AND OSCILLATIONS

3.1 BACKGROUND

3.1.1 Kinds of oscillators

Not all circuits oscillate and show periodic behavior. For oscillations, a very special kind
of instability is required. Coupled with the fact that with the kind of “simple” electrical
components available, only certain kinds of electrical behavior can be realized in practice.
Here, “simple” components refer to those components which have locally linear relation-
ships between charge, current and voltages. The components assumed in the following
characterization include the passive components - resistance, capacitance, and inductance,
as well as another component - a hysteretic resistance. A hysteretic resistor is a two ter-
minal resistance, but changes between two resistance states - a metallic and an insulating
state. The state switches to metallic when the applied voltage exceeds a higher threshold
vy. The state switches to insulating state when the applied voltage goes below a lower
threshold v;. There is hysteresis in switching, which means that v;, # v;. When the applied
voltage is between v;, and v; the current resistance state is retained. The transition between
metallic and insulatng states is very abrupt/instantaneous. In physical reality, such devices
are usually accompanied with some capacitance, but no inductance. This means that the
current switches abruptly during the transitions but the voltage avoids any abrupt change.
Using these components, 4 kinds of oscillators have been studied in literature. These os-
cillator models are not completely distinct and have some well-defined relationships among

them. These models are:

1. Harmonic oscillators: Also called sinusoidal oscillators, their waveforms are sinu-

soidal and can be created using an inductance and capacitance in a loop. Harmonic

9



oscillations have a simple, but second order, diferential equation -

X (t) = —kx

whose solutions are sinusoidal functions, which is why they are also called sinusoidal

oscillators.

. 'Van der pol oscillators: These are a variation of the harmonic oscillators but with
an added non-linearity, also called damping, and were used to describe oscillations

in early circuits involving vaccuum-tubes. The basic form of such oscillators is:

These are also called relaxation oscillators as an oscillation cycle shows two stages

which involve charging and discharging of some capacitive element.

. Hysteresis based: Oscillations in these kinds arise by connecting just a hysteretic
resistance in series with a linear resistance, where the hysteresis resistance is accom-
panied with a parallel capacitor across it. The oscillations arise due to a lack of a
stable point. The oscillations are relaxation oscillations where a capacitance is be-
ing charged or discharged in the two states of the hysteretic resistance. This study

focuses on this particular kind of oscillators.

. Spiking Neurons: Another kind of commonly discussed oscillators are spiking neu-
rons, which are essentially oscillators but with a bifurcation - the bifurcation being
between oscillating behavior and a constant behavior (stable fixed point). There are 3
common spiking neuron models, which are successive aproximations of the previous

one:

(a) Hodgkin Huxley (HH) model - 4 dimensional

10



(b) Fitz-Hugh-Nagumo (FHN) model - 2 dimensional

(c) Integrate and Fire (I&F) model - piece-wise 1 dimensional

3.1.2 Oscillator implementations

Oscillators can be implemented in CMOS technologies. Examples include LC oscillators
which use an inductance and a capacitance to create harmonic oscillations. Problems with
such CMOS oscillators include difficulties integrating large inductances on chip. With-
out the inductance, it becomes difficult to realize a second order differential equation, and
hence harmonic oscillations, in a circuit. As such, from a hardware implementation per-
spective, it is important to consider oscillators which do not use inductances, and as such
are non-harmonic.

This is where hysteresis based oscillators have an advantage. Also, it turns out that not
only do hysteresis based oscillators can be very compact, they also have desirable properties
of coupling with other oscillators - the coupling is easy to implement, and the coupling has
linear characteristics which is easy to analyse.

The reason why oscillator implementations have started involving non-CMOS devices
is because the implementation of oscillators using traditional CMOS technologies either
consume more resources or have a behavior which is not suitable for the applications they
are intended for. Different kinds of device technologies have been used for realizing differ-

ent kinds of oscillator hardware.

3.2 THIS STUDY

3.2.1 State-Transition devices

This study focusses on the hysteresis + R kind of oscillators, and was done in collaboration
with a group working on an implementation of such oscillators, specifically the hysteretic

resistance. But as a result of this analysis, certain relationships also emerged between the
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hysteresis + R kind, and the other kinds of oscillators. The implementation of the hysteretic
resistance is based on Vanadium-Dioxide (VO;) based thin-film devices, called insulator-
metal-transition (IMT) devices, or phase-change devices, and the state switching occurs
under the application of heat or an electric field [61]. Interestingly, some other efforts to
create new kinds of post-CMOS devices also resulted in devices with similar hysteretic
resistance behavior like , and the analysis for IMT devices can be extended easily to these
other devices. As such, these devices will all be collectively referred to as State-Transition
(ST) devices. A State-Transition device is defined as a two-terminal device which behaves
as a resistance at a given point in time, but switches between two resistance states. The

state transition of the device has following characteristics:

1. Only the resistance of the device changes with its state; and the resistance is linear;

2. A state transition is triggered by the voltage across the device. This triggering can
be electric field driven or thermally driven, and can be modeled as an equivalent
triggering voltage [62]. When the voltage exceeds a higher threshold v, the state
changes to a metallic (low resistance) state and when the voltage exceeds a lower
threshold v;, the state switches back to the insulating (high resistance) state. The

thresholds v; and v; are not equal, i.e. there is hysteresis in the switching with v; < vy,.

3. A capacitance is associated with the device that ensures gradual build up and decay-

ing of the voltage (and hence energy) across the device.

3.2.2 Oscillator Circuits

We will consider two kinds of relaxation oscillator circuits using such state-changing de-
vices - (a) two state-changing devices in series (3.1). We will refer to this configuration
as D-D. And (b) a state changing device in series with a resistance (3.2)[63]. This con-
figuration will be referred to as D-R. The D-D configuration is enticing in its simplicity,

both in physical realization and analysis as will be evident in the following sections. The
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Figure 3.1: Relaxation oscillator circuit realized using two IMT state-changing devices
in series (D-D configuration), and its circuit equivalent with R;,, and R;; as the internal
resistance of the IMT devices in metallic and insulating states respectively. When R; >
R, the device behaves as a parallel combination of a capacitor and a resistor with a switch.
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Figure 3.2: Relaxation oscillator circuit realized with a IMT device in series with a resistor
(D-R configuration), and its circuit equivalent with R4, and R;; as the internal resistance of
the IMT device in metallic and insulating states respectively. When Ry; > Ry, the device
behaves as a parallel combination of a capacitor and a resistor with a switch.
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D-R configuration, on the other hand, has been experimentally demonstrated[63] and can
be thought of as an extension of the D-D configuration albeit with more complex dynamics
of synchronization.

This study of the synchronization dynamics of such coupled systems, although inspired
by the experimental realization of VO, based oscillators, is not limited to these oscillators
only, but encompasses a class of similar pairwise-coupled relaxation oscillators as well.
The circuit equivalents of D-D and D-R relaxation oscillators are shown in figures 3.1 and
3.2 respectively. The internal resistance of the device R; has two different values in the two
states of the device - Ry; in the insulating (high resistance) state and R ;,,, in the metallic (low
resistance) state. C is the internal capacitance of the IMT device (including any parasitic
capacitances) and Ry is the series resistance. We will also assume that R;; > Rg,,,. In the
D-D configuration, the capacitor being charged can be represented as a single capacitor at
the output circuit node. The coupling circuit is a parallel combination of a capacitor C. and
a resistor R.. As shown, the output node of the oscillator is between the device and the

resistance, and the coupling circuit is connected between these output nodes[63].

3.2.3 Modeling

Let us establish the system model and the system of ODEs that define the system. This will
allow us to define the conditions for oscillation as well as the coupling dynamics. We will
first consider D-D configuration and then D-R configuration as an extension of the D-D
configuration. The D-D configuration, owing to its inherent symmetry renders to easier

dynamics and analysis and provides valuable insights into the system.

3.2.3.1 D-D configuration

The circuit equivalent for a D-D type relaxation oscillator is shown in 3.1. For simplicity,
all voltages are normalized to v, (including v; and vj,). We define conductances g;; = R;l.l,

8dm = R;nll and g, = REI. For the conductances, subscript d denotes a state dependent
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device conductance and m/i denotes metallic/insulating state respectively. The subscripts
preceding dm or di refer to the corresponding numbered device as shown in figure. Also, it
is assumed that g, > g4;, which means that the g,; state essentially disconnects the circuit.
This implies that the effective charging happens through g4, and effective discharging
through g-4,,- The single D-D oscillator can be described by the following set of piecewise

linear differential equations:

.| (vag—v)giam charging
cv = 3.1)

—V&dm discharging

where c is the lumped capacitance of both devices along with the parasitics. The equa-
tion can be re-written as:

oV = —g(s)v+p(s) (3.2)

where s denotes the conduction state of the device (0 for metallic, and 1 for insulating)

and g(s) and p(s) depend on the device conduction state s as follows:

8ldm, S = charging
gls) = (3.3)

82am, S =discharging
\

8ldm, S = charging
p(s) = (3.4)

0, s = discharging

3.2.3.2 D-R configuration

The equivalent circuit for a D-R type relaxation oscillator is shown in figure 3.2. As in the
case of D-D configuration, voltages are normalized to v;4. The conductances involved are
8di = R;l.l, gam = R, nll, gs=R;'and g. = REI. Effective charging happens through g4, as

in the previous case but there is an added leakage through g, whereas effective discharging
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happens only through g;. Following the same methodology as in the D-D case, the equation

for the single D-D oscillator dynamics can be written as:

(Vdd - V)gd;n - ng Chal’ging
cy =

—Vgs discharging

which can be re-written as:

v = —g(s)v+p(s)

where,

8dm+&s, §=charging

8s» s = discharging
\
(

8dm, S = charging

0, s = discharging

\

and s denotes the conduction state of the system as before.

3.2.3.3 D-MOSFET configuration

(3.5)

(3.6)

(3.7)

(3.8)

One variation of a D-R configuration is when the series resistor is replaced by a mosfet.

The idea is to be able to control the effective resistance of the series element using a volt-

age signal, so as to control the properties of oscillations, and also to be able to switch them

on or off. The MOSFET is assumed to operate in its saturation region and is modeled us-

ing a voltage controlled current source and an output impedence. As before, the transition

voltages for changing the state of the device from insulating to metallic and vice versa cor-

respond to voltages v; and vy, respectively at the output node. Let the following parameters

be defined for the series transistor: g,, — trans-conductance of series transistor, go — output
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conductance of series transistor. For simplicity, all voltages in the system are normalized to
vaq (including vy, vy, and vgs applied at the transistor gates); hence, vqq = 1. When gqi < go

and gam > go, the equation for the system can be simplified to:

!/

cv =—g(s)v+p(s)

where s denotes the phase of the device (metallic, or insulating) and g(s) and p(s)

depend on the device phase s as follows:

;

8dm, S = metallic
g(s) = (3.9)
8o, S =insulating
;
Ldms s = metallic
pls) = (3.10)
—8&mVgs, S = insulating

3.2.4 Phase space, flows and oscillation conditions

A series arrangement of two IMT devices (D-D), or an IMT device and a resistor (D-R) will
oscillate only when certain conditions are met. In case of two devices in series (D-D), the
two devices must be in opposite 