
U T I L I Z I N G S W I T C H E D L I N E A R DY NA M I C S O F
I N T E R C O N N E C T E D S TAT E T R A N S I T I O N D E V I C E S F O R

A P P ROX I M AT I N G C E RTA I N G L O BA L F U N C T I O N S

A Dissertation
Presented to

The Academic Faculty

By

A B H I N AV PA R I H A R

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2020

Copyright © Abhinav Parihar 2020



U T I L I Z I N G S W I T C H E D L I N E A R DY NA M I C S O F
I N T E R C O N N E C T E D S TAT E T R A N S I T I O N D E V I C E S F O R

A P P ROX I M AT I N G C E RTA I N G L O BA L F U N C T I O N S

Approved by:

Dr. Arijit Raychowdhury (Advisor)
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Justin Romberg
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Saibal Mukhopadhyay
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Magnus Egerstedt
School of Electrical and Computer Engineering

Georgia Institute of Technology

Dr. Suman Datta
Department of Electrical Engineering

University of Notre Dame



TA B L E O F C O N T E N T S

Table of Contents iii

List of Tables vii

List of Figures viii

1 Introduction and Motivation 1

1.1 Anatomy of a Computing Machine . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Avenues of improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objective of proposed research . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Survey 4

2.1 Technologies for continuous time dynamical systems . . . . . . . . . . . . 4

2.2 Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Computing models . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Other dynamical systems for computing . . . . . . . . . . . . . . . . . . . 8

3 Devices, Circuits and Oscillations 9

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Kinds of oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Oscillator implementations . . . . . . . . . . . . . . . . . . . . . . 11

3.2 This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 State-Transition devices . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

iii



3.2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3.1 D-D configuration . . . . . . . . . . . . . . . . . . . . . 14

3.2.3.2 D-R configuration . . . . . . . . . . . . . . . . . . . . . 15

3.2.3.3 D-MOSFET configuration . . . . . . . . . . . . . . . . . 16

3.2.4 Phase space, flows and oscillation conditions . . . . . . . . . . . . 17

4 Stochastic Properties 21

4.1 IMT phase change neuron model . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Mechanism of oscillations and spikes . . . . . . . . . . . . . . . . . . . . . 23

4.3 Model approximations and connections with FHN neuron . . . . . . . . . . 24

4.3.1 Non-hysteretic approximation . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Single dimensional approximation . . . . . . . . . . . . . . . . . . 25

4.4 Noise induced stochastic behavior . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 OU process with constant boundary . . . . . . . . . . . . . . . . . 27

4.4.2 OU process with fluctuating boundary . . . . . . . . . . . . . . . . 29

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Spiking Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.6.1 First moment and the firing rate . . . . . . . . . . . . . . . . . . . 30

4.6.2 Higher moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Comparison with other work . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Pairwise Coupling 36

5.1 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Phase space, flows and oscillation conditions . . . . . . . . . . . . 36

5.1.1.1 Monotonic Flows and Periodic Orbits . . . . . . . . . . . 37

5.1.2 D-D oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2.2 Symmetric D-D oscillators . . . . . . . . . . . . . . . . 42

iv



5.1.2.3 Asymmetric D-D oscillators . . . . . . . . . . . . . . . . 50

5.1.3 D-R oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3.2 Limit cycle behavior . . . . . . . . . . . . . . . . . . . . 57

5.1.4 D-MOSFET oscillators . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.4.2 Limit cycle behavior . . . . . . . . . . . . . . . . . . . . 62

5.1.5 Computational applications: Analog subtraction . . . . . . . . . . . 64

5.1.5.1 Variations and mismatches . . . . . . . . . . . . . . . . . 66

5.1.6 A note on stability . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1.7 Experimental demonstrations . . . . . . . . . . . . . . . . . . . . . 68

6 Network Coupling and Graph Coloring 71

6.1 Prior studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 D-R network coupling . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1.2 Phase evolution and dynamics . . . . . . . . . . . . . . . 78

6.2.1.3 Dynamics in the discharge state s = 0 . . . . . . . . . . . 81

6.2.1.4 Dynamics in the charging states s 6=0 . . . . . . . . . . . 87

6.2.1.5 Minimum Graph Coloring Problem and its reformulation . 90

6.2.1.6 Connection to Vertex Coloring . . . . . . . . . . . . . . . 93

6.2.1.7 Simulation Results and Performance Assessment . . . . . 97

6.2.1.8 Experimental Demonstrations . . . . . . . . . . . . . . . 101

7 Network models 106

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Colors, Cuts, and Clusters . . . . . . . . . . . . . . . . . . . . . . 106

v



7.1.2 Vector relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.3 Continuous network dynamics . . . . . . . . . . . . . . . . . . . . 110

7.1.3.1 Linear Dynamics - Raleigh Quotient Gradient Flow . . . 111

7.1.3.2 Lattice Models . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.3.3 Coupled oscillators . . . . . . . . . . . . . . . . . . . . . 112

7.2 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Characterizing IMT coupled oscillators as a network model . . . . . 113

7.2.1.1 Similarity of local minima . . . . . . . . . . . . . . . . . 115

7.2.1.2 Coloring performance . . . . . . . . . . . . . . . . . . . 118

8 Towards a CMOS implementation 121

8.1 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Oscillator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3 Loader circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.4 Phase measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.5 Connectivity Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.6 Coupled oscillator network . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A Mathematical results 128

A.1 The coefficient matrix in prototypical case . . . . . . . . . . . . . . . . . . 128

A.1.1 Eigenvectors of B in prototypical case . . . . . . . . . . . . . . . . 129

A.1.2 Structure of the inverse of F in prototypical case . . . . . . . . . . 130

A.1.3 Column vector of B in prototypical case . . . . . . . . . . . . . . . 131

Bibliography 133

vi



L I S T O F TA B L E S

2.1 Comparison of different electrical oscillator technologies with VO2 based

oscillators used in this work . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 Comparison of VO2 based spiking neurons with other spiking neuron hard-

ware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Comparison with Brelaz heuristics . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Comparison of various dynamical systems, their analogous algorithms and

their energy landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vii



L I S T O F F I G U R E S

3.1 Circuit equivalent of D-D oscillator . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Circuit equivalent of D-R oscillator . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Phase space of the state transition device in a single D-R oscillator . . . . . 19

3.4 Frequency of VO2 oscillator as a function of gate voltage . . . . . . . . . . 20

4.1 VO2 based IMT spiking neuron circuit . . . . . . . . . . . . . . . . . . . . 23

4.2 Phase space showing nullclines of IMT neuron and piecewise linear FitzHugh

Nagumo neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Phase space of IMT based neuron showing bifurcation between oscillating

and non-oscillating states . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Experimental waveforms of IMT based spiking neuron . . . . . . . . . . . 27

4.5 Noise model of IMT neuron and firing rate variation with gate voltage . . . 28

4.6 Prototypical DC voltage-current characteristics for a single VO2 device

VIMT distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 σimt/µimt for the interspike interval plotted against σt for various threshold

noise distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Circuit equivalent of coupled D-D and D-R oscillators . . . . . . . . . . . . 37

5.2 Phase space of coupled oscillator system . . . . . . . . . . . . . . . . . . . 38

5.3 Flows and phase space transitions in coupled oscillator systems . . . . . . . 39

5.4 Regions for fixed points of D-D and D-R coupled oscillator systems . . . . 39

5.5 Simulation waveforms and limit cycles in D-D and D-R coupled oscillators. 40

5.6 Phase space, state transitions and limit cycle in D-MOSFET coupled oscil-

lators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.7 Combined phase space in the coupled symmetric D-D oscillators . . . . . . 43

viii



5.8 Phase space symmetries in the coupled D-D oscillator system . . . . . . . . 44

5.9 Symmetry reduced space (fundamental domain) of the coupled symmetric

D-D oscillator system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.10 Return maps in coupled symmetric D-D oscillators . . . . . . . . . . . . . 46

5.11 In-phase and anti-phase periodic orbits . . . . . . . . . . . . . . . . . . . . 49

5.12 Transient waveforms for capacitive and resistive coupling . . . . . . . . . . 49

5.13 Return map type for the coupled symmetric D-D case in the parametric

space β ×α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.14 Bistability in coupled D-D oscillators . . . . . . . . . . . . . . . . . . . . . 51

5.15 Symmetry reduced space in the coupled asymmetric D-D configuration . . . 52

5.16 Definition of variables in symmetry reduced space in coupled asymmetric

D-D oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.17 Return map in coupled asymmetric D-D oscillators . . . . . . . . . . . . . 54

5.18 Return maps in the symmetric and asymmetric D-D configurations . . . . . 55

5.19 Waveforms and trajectories in the symmetric and asymmetric D-D configu-

rations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.20 Relation between asymmetry and the fixed point . . . . . . . . . . . . . . . 56

5.21 Symmetry reduced space in the D-R coupled oscillator system . . . . . . . 58

5.22 Definition of variables in the symmetry reduced space for the D-R coupled

oscillator system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.23 Return map for the D-R coupled oscillator system . . . . . . . . . . . . . . 60

5.24 Movement of the fixed point in the D-R coupled oscillator system . . . . . 60

5.25 Waveforms and trajectories for the D-R coupled oscillator system . . . . . . 61

5.26 Locking range for coupled D-MOSFET oscillators . . . . . . . . . . . . . . 63

5.27 Trajectories and limit cycles for coupled D-MOSFET oscillators . . . . . . 63

5.28 XNOR output as a function of vgs1 and vgs2 . . . . . . . . . . . . . . . . . 64

5.29 Relation between XNOR output and the steady state periodic orbits . . . . . 65

ix



5.30 Template matching using sveraged XNOR output . . . . . . . . . . . . . . 66

5.31 Effect of mismatch in coupled D-MOSFET oscilators . . . . . . . . . . . . 67

5.32 Experimental setup of coupled VO2 oscillators . . . . . . . . . . . . . . . . 69

5.33 Experimental and simulated time domain waveforms for D-R oscillators . . 70

6.1 Overview of the circuit and system dynamics . . . . . . . . . . . . . . . . 73

6.2 Coupled oscillator circuit schematic . . . . . . . . . . . . . . . . . . . . . 74

6.3 System dynamics and asymptotic permutation . . . . . . . . . . . . . . . . 79

6.4 Phase clustering with time in coupled oscillator network . . . . . . . . . . . 80

6.5 Order of components and flows in a two dimensional linear dynamical system 86

6.6 Order of components and flows in a 2D linear dynamical system with non-

zero fixed point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.7 Meaning and effect of weak coupling in coupled D-R oscillators . . . . . . 96

6.8 Effect of hardness on circuit behavior of coupled oscillators . . . . . . . . . 99

6.9 Simulation results on random graph instances . . . . . . . . . . . . . . . . 100

6.10 Phase dynamics of synchronized VO2 based capacitively coupled relax-

ation oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.11 Experimental results of graph coloring using coupled VO2 based oscillators 105

7.1 Scatter plots of inner products of IMT oscillator model with linear and XY

models for 3 and 5 colors . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Scatter plots of inner products of IMT oscillator model with linear and XY

models for 7 and 9 colors . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Inner products vosc ·vl as a function of (Top) ||A||∗ and (Bottom) ||A||tre . . 119

7.4 Ternary plot of the proportion of instances in each class for which each

model finds the minimum colors. . . . . . . . . . . . . . . . . . . . . . . . 120

8.1 Modified schmitt trigger and corresponding oscillator schematic . . . . . . 123

8.2 The loader circuit is a programmable bank of capacitors . . . . . . . . . . . 123

x



8.3 Phase measurement using a reference signal M . . . . . . . . . . . . . . . . 124

8.4 The programmable capacitive coupling block . . . . . . . . . . . . . . . . 124

8.5 The conectivity array designed by placing the oscillators in a line . . . . . . 125

8.6 Floorplan of the coupled oscillator network . . . . . . . . . . . . . . . . . 126

8.7 Physical design layout of the coupled oscillator chip . . . . . . . . . . . . . 126

8.8 Die shot of the coupled oscillator chip . . . . . . . . . . . . . . . . . . . . 127

xi



Chapter 1

I N T RO D U C T I O N A N D M OT I VAT I O N

Thinking is the most complex phenomenon known to man. We have tried for centuries

to understand brain as a complex machine and thinking as a natural phenomenon which

follows the laws of nature. The process of understanding, by synthesis, led to the creation

of computer, albeit for other useful purposes. Yet, today’s computing systems are hardly a

match for the kind of information processing we can imagine. In fact, on many fronts, these

systems are not adequate even for our present needs. Neither can they predict tornados,

nor can they replace a broken limb. The challenge resides not only in engineering such

systems, but also in the conceptual understanding behind their design. On the contrary,

many computing-like phenomena found in nature, for example rythmic flashing of fireflies,

or pattern formation in microbial systems, show processing of hard problems in a very easy

and efficient manner. As such, it raises the question whether the problems themselves are

hard or is it the style of computing that makes them hard, and whether other alternative

computing systems can be designed which are more efficient in solving such systems.

1.1 A N AT O M Y O F A C O M P U T I N G M AC H I N E

A computing operation involves transformation of information from a given, less useful,

input form to another desired output form which is more useful. A computing machine

is capable of performing a computing transformation by itself, i.e. the transformation re-

sults merely from the physics of its constitution without any external entity governing the

process. As such, any computing process in a computing machine would essentially be a dy-

namical system governed by the physical processes in the machine. The current standard

paradigm of computing is the Turing machine model and the Von Neumann architecture.

In the Turing machine model, every computing operation is broken down into basic binary
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arithmetic operations. And Von Neumann architecture dictates an implementation of such

a system with a separate memory block, and a processor that stores and fetches data from

the memory and performs binary arithmetic. The tremendous success of this paradigm is

partly due to its universal nature, and partly due to the ease of implementing binary logic in

CMOS. Yet, these systems prove inadequate in solving hard problems like combinatorial

optimization. Possible reasons include separation of memory and processing, and redun-

dant enforced accuracy and storage at each step. In fact, it can be argued that many of these

hard problems are not suited to be solved in terms of discrete arithmetic operations, but in-

stead in terms of continuous representations and dynamics which are not easily calculated

using conventional array representations in the digital symbolic metaphor.

1.2 AV E N U E S O F I M P ROV E M E N T

This perspective of the anatomy of a computing system highlights many possible avenues

for improvements. In order to build dedicated hardware accelerators for special opera-

tions, a universal model of computation like the Turing machine is not needed. Also, new

technologies and the physics of devices can enable emulation of many other basic opera-

tions and functions that are not mere binary logic operations. This has been the premise

of analog computation from the beginning [1], but its computational power has always

been compared to the Turing machine model in the light of “absolute” results equating

the computational power of Turing machine with any analog computer that can be built

[2]. Although such results about Turing machine and its universality are some of most

important results in computer science, these are disconnected from the real world imple-

mentation where the costs involved can come from architectural choices as well. A much

better problem specific computing system is possible if an alternative computing model

is complemented with the continuous time dynamics, deterministic or stochastic, of new

beyond CMOS devices. These beyond CMOS devices are new devices being researched

which have different characteristics than the transistors used in conventional semiconduc-
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tor chips. But these efforts face a common challenge - lack of good computational models

which can support the dynamical systems of these new interconnected devices. As such,

these new devices end up aiming for the same old goals of better switches and compact

logical operations that had formed the basis of Turing machine paradigm. The possibility

that physical devices can offer more computing abilities than just switches or logic gates

has been either less explored or challenging. The work described in this thesis lies at this

intersection of design, modeling and architectures to create novel computing systems that

use the continuous time dynamics of interacting devices to solve hard computing problems.

1.3 O B J E C T I V E O F P RO P O S E D R E S E A R C H

The objective of the proposed research is to create alternative computing models and ar-

chitectures, unlike (discrete) sequential Turing machine/Von Neumann style models, which

utilize the network dynamics of interconnected IMT (insulator-metal transition) devices.

This work focusses on circuits (mainly coupled oscillators) and the resulting switched lin-

ear dynamical systems that arise in networks of IMT devices. Electrical characteristics of

the devices and their stochasticity are modeled mathematically and used to explain exper-

imentally observed behavior. For certain kinds of connectivity patterns, the steady state

limit cycles of these systems encode approximate solutions to global functions like domi-

nant eigenvector of the connectivity matrix and graph coloring of the connectivity graph.
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Chapter 2

L I T E R AT U R E S U RV E Y

Even with the tremendous success of digital Von Neumann architecture, researchers have

always been interested in other kinds of analog computing systems where the dynamics

of the system computes by itself in continuous time. Many of these are inspired by com-

puting that occur in nature with different computing entites interacting with each other, for

example, coupled oscillators, neural networks etc.

2.1 T E C H N O L O G I E S F O R C O N T I N U O U S T I M E DY N A M I C A L S Y S T E M S

At the fundamental level, compute technologies have used and manipulated the charge,

spin, or quantum properties of electrons, or used photons. Important technologies include

spin-torque [3–6], insulator-metal-transition [7], optical [5, 8] and quantum [9]. CMOS

(Complementary metal oxide semiconductor) technology based on charge has driven most

of the digital computing machinery by implementing logic gates. Currently, there has been

a lot of emphasis on technologies other than CMOS called beyond-CMOS techonlogies.

Major reasons for not prefering CMOS based continuous time dynamical systems for com-

puting are:

1. CMOS processes introduce non-linearities when dealing with large signal dynamics

which is usually the case for continuous time dynamical systems. This makes it hard

to create circuits with predictable dynamics which can be used for computing.

2. Small signal model based traditional analog circuits could be used for linearity but

such circuits involve high biasing currents resulting in high power consumption.

3. Size of basic components like oscillators built using CMOS technology are much

larger which reduces the density of large arrays of such oscillators.
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2.2 C O U P L E D O S C I L L AT O R S

2.2.1 Theory

Coupled oscillator models can explain many natural, chemical and biological synchroniza-

tion phenomena like the synchronized flashing of fireflies, pacemaker cells in the human

heart, chemical oscillations, neural oscillations, and laser arrays, to name a few [10]. The

simplest theoretical models of oscillators start with sinusoidal oscillators which have been

extensively studied [11–13] and their application in the computational paradigm has been

well demonstrated [14, 15]. A generalized description of oscillators in these models is usu-

ally a canonical phase model [10, 16], and the coupling mechanisms are generally assumed

weak and composed of simple periodic functions which explicitly depend on phases. In

this model the oscillators are simple harmonic and their coupling is assumed to affect each

other’s phases linearly. If the oscillators with phases θ1 and θ2 have frequencies ω1 and ω2

then in Kuramoto models the coupling of two oscillators will result in the phase equations:

θ̇1 = ω1 + k(θ1−θ2)

θ̇2 = ω2 + k(θ2−θ1)

where k is the coupling constant. A Kuramoto system of N oscillators is described by

θ̇i = ω̇i +
K
N

N

∑
j=1

sin(θ j−θi) i = 1, ...,N

where θi and ωi are the phase and frequency respectively of ith oscillator. Several studies

on more general periodic coupling functions have also been studied [17].

Along with sinusoidal oscillators, non-linear Van-der-Pol oscillators [18] and several of

its variants, like the Morris-lecar neuron model [19], have also been studied and the applica-

bility of such models in neurobiological and chemical oscillators have been demonstrated
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[20–22]. A single van-der-pol oscillator is defined by adding a non-linearity in the simple

harmonic oscillator model

u′′+ ε(u2−1)u′+u = 0

which results in relaxation behavior and hence it is also called relaxation type oscillators.

But these analysis also assume non-realistic coupling dynamics like weak or pulse coupling

and do not focus on engineering aspects of building such coupled oscillators.

Such analytic models of coupled oscillatory systems almost always require a canoni-

cal phase description of the oscillators and a periodic phase dependent additive coupling

that can be classified as weak. Strong coupling for relaxation type oscillators built using

electrical circuits lack good explanations. Some theoretical studies have focussed on pulse

coupling [23–25], and injection locking [26, 27] but these are not suitable for understanding

coupled relaxation oscillators of the kind focussed in this thesis.

Another kind of two coupled oscillator study was done in [28] which involved the usual

relaxation type oscillators [29] which work on charging and discharging of a capacitor. As

such, these oscillators show piecewise linear dynamics instead of continuous dynamics as

in the previous models and the analysis of coupling is rather difficult as the limit cycle

spans different “pieces” of the dynamics.

2.2.2 Implementation

It has been always been challenging to create compact as well as low power oscillators. But

more challenging is the coupling of such oscillators to give predictable phase or frequency

dynamics. Basic oscillators in CMOS technology include logical oscillators, which are

square wave oscillators consisting of a chain of odd number of inverters, and LC oscillators

which are sinusoidal harmonic oscillators LC components in the loop.

Non-silicon electrical oscillators include two important kinds which are currently being

developed. One prominent effort is the use of spin torque oscillators (STOs) coupled with

using spin diffusion currents, or electrical signals, for providing a computational platform
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Table 2.1: Comparison of different electrical oscillator technologies with VO2 based oscil-
lators used in this work

This Work TaOx [41] HfTaOx and GeTe6 [42] PLL [43]

Power (µW ) 12 < 100 < 50 < 700

Area (µm2) 0.89 0.5 0.5 -

Max Freq. (MHz) 9 500 350 < 10

for machine learning, spiking neural networks, and others [3–6, 30–32]. However, the high

current densities of STOs and the limited range of spin diffusion currents continue to pose

serious challenges in created coupled networks of such oscillators. Optical oscillators have

been studied [8, 33] and used for computing [5], but challenges include bulky components,

difficult interfacing between electrical and optical mediums and lack of programmability

for any optical computing apparatus. Another promising non-silicon technology for very

compact oscillators is the IMT (insulator-metal transition) material based oscillator technol-

ogy [34, 35] which is the focus in this work. As the oscillation mechanism is completely

electrical, the coupling of oscillators can be done easily using electrical components. There

have been other implementation efforts for elecrical oscillators [36–40] but the focus has

been to build high frequency and low power individual oscillators but not to build coupled

systems or to generate interesting dynamics for computing. The oscillators used in this

work are based on IMT (insulator-metal-transition) devices built using Vanadium Dioxide

(VO2). A comparison of some other computing focussed oscillators with the VO2 based

oscillators is shown in Table 2.1:

2.2.3 Computing models

Coupled oscillator associative memories [15, 44, 45] have been proposed which have been

shown to be equivalent to the Hopfield model of associative memories, but successful im-

plementations have yet to come. Another application can be graph coloring [46, 47], but

its understanding has been limited to two colorable graphs. An interesting Ising Machine
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implementation using Optical Parametric Oscillators (OPO) was shown in [5].

2.3 OT H E R DY N A M I C A L S Y S T E M S F O R C O M P U T I N G

Apart from coupled oscillators, other dynamical system models have been studied for var-

ious applications, but few have been implemented in some kind of hardware with proven

advantages over corresponding digital implementations of algorithms. Hopfield networks

are attractor networks proposed for associative memories [48] where the fixed points (or

stable states) of the system correspond to memories and the dynamics of the network is

such that the system settles to the fixed point which is closest to the initial state the system

starts from. Hopfield style models have also been used for optimization [49]. Cellular neu-

ral networks [50] consist of interconnected nodes where each node has linear or non-linear

dynamics and the connections specify the coupling between their corresponding differen-

tial equations. Their CMOS implementations have been proposed with applications like

pattern matching. Ising Machine [5, 51, 52] models have been proposed based on coupled

spin glasses. The energy minima of such networks correspond to the solutions of an NP-

hard combinatorial optimization problem, and hence can model other NP-hard problems

as well [51]. Another dynamical system for constraint satisfaction [53] is built on similar

principles. An architecture based on non-repeating phase relations [54] between fabricated

CMOS oscillators tries to emulate stochastic local search (SLS) for constraint satisfaction

problems. An interesting approach based on "memory co-processors" was introduced as

Memcomputing in [55]. Interesting insights can be obtained by looking into dynamical

systems like iterated maps [56], cellular automata [57–59], and 0-1 continuous reformula-

tions of discrete optimization problems [60].
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Chapter 3

D E V I C E S , C I R C U I T S A N D O S C I L L AT I O N S

3.1 B AC K G RO U N D

3.1.1 Kinds of oscillators

Not all circuits oscillate and show periodic behavior. For oscillations, a very special kind

of instability is required. Coupled with the fact that with the kind of “simple” electrical

components available, only certain kinds of electrical behavior can be realized in practice.

Here, “simple” components refer to those components which have locally linear relation-

ships between charge, current and voltages. The components assumed in the following

characterization include the passive components - resistance, capacitance, and inductance,

as well as another component - a hysteretic resistance. A hysteretic resistor is a two ter-

minal resistance, but changes between two resistance states - a metallic and an insulating

state. The state switches to metallic when the applied voltage exceeds a higher threshold

vh. The state switches to insulating state when the applied voltage goes below a lower

threshold vl . There is hysteresis in switching, which means that vh 6= vl . When the applied

voltage is between vh and vl the current resistance state is retained. The transition between

metallic and insulatng states is very abrupt/instantaneous. In physical reality, such devices

are usually accompanied with some capacitance, but no inductance. This means that the

current switches abruptly during the transitions but the voltage avoids any abrupt change.

Using these components, 4 kinds of oscillators have been studied in literature. These os-

cillator models are not completely distinct and have some well-defined relationships among

them. These models are:

1. Harmonic oscillators: Also called sinusoidal oscillators, their waveforms are sinu-

soidal and can be created using an inductance and capacitance in a loop. Harmonic
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oscillations have a simple, but second order, diferential equation -

x′′(t) =−kx

whose solutions are sinusoidal functions, which is why they are also called sinusoidal

oscillators.

2. Van der pol oscillators: These are a variation of the harmonic oscillators but with

an added non-linearity, also called damping, and were used to describe oscillations

in early circuits involving vaccuum-tubes. The basic form of such oscillators is:

x′′(t) = µ(1− x2)− kx

These are also called relaxation oscillators as an oscillation cycle shows two stages

which involve charging and discharging of some capacitive element.

3. Hysteresis based: Oscillations in these kinds arise by connecting just a hysteretic

resistance in series with a linear resistance, where the hysteresis resistance is accom-

panied with a parallel capacitor across it. The oscillations arise due to a lack of a

stable point. The oscillations are relaxation oscillations where a capacitance is be-

ing charged or discharged in the two states of the hysteretic resistance. This study

focuses on this particular kind of oscillators.

4. Spiking Neurons: Another kind of commonly discussed oscillators are spiking neu-

rons, which are essentially oscillators but with a bifurcation - the bifurcation being

between oscillating behavior and a constant behavior (stable fixed point). There are 3

common spiking neuron models, which are successive aproximations of the previous

one:

(a) Hodgkin Huxley (HH) model - 4 dimensional
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(b) Fitz-Hugh-Nagumo (FHN) model - 2 dimensional

(c) Integrate and Fire (I&F) model - piece-wise 1 dimensional

3.1.2 Oscillator implementations

Oscillators can be implemented in CMOS technologies. Examples include LC oscillators

which use an inductance and a capacitance to create harmonic oscillations. Problems with

such CMOS oscillators include difficulties integrating large inductances on chip. With-

out the inductance, it becomes difficult to realize a second order differential equation, and

hence harmonic oscillations, in a circuit. As such, from a hardware implementation per-

spective, it is important to consider oscillators which do not use inductances, and as such

are non-harmonic.

This is where hysteresis based oscillators have an advantage. Also, it turns out that not

only do hysteresis based oscillators can be very compact, they also have desirable properties

of coupling with other oscillators - the coupling is easy to implement, and the coupling has

linear characteristics which is easy to analyse.

The reason why oscillator implementations have started involving non-CMOS devices

is because the implementation of oscillators using traditional CMOS technologies either

consume more resources or have a behavior which is not suitable for the applications they

are intended for. Different kinds of device technologies have been used for realizing differ-

ent kinds of oscillator hardware.

3.2 T H I S S T U DY

3.2.1 State-Transition devices

This study focusses on the hysteresis + R kind of oscillators, and was done in collaboration

with a group working on an implementation of such oscillators, specifically the hysteretic

resistance. But as a result of this analysis, certain relationships also emerged between the
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hysteresis + R kind, and the other kinds of oscillators. The implementation of the hysteretic

resistance is based on Vanadium-Dioxide (VO2) based thin-film devices, called insulator-

metal-transition (IMT) devices, or phase-change devices, and the state switching occurs

under the application of heat or an electric field [61]. Interestingly, some other efforts to

create new kinds of post-CMOS devices also resulted in devices with similar hysteretic

resistance behavior like , and the analysis for IMT devices can be extended easily to these

other devices. As such, these devices will all be collectively referred to as State-Transition

(ST) devices. A State-Transition device is defined as a two-terminal device which behaves

as a resistance at a given point in time, but switches between two resistance states. The

state transition of the device has following characteristics:

1. Only the resistance of the device changes with its state; and the resistance is linear;

2. A state transition is triggered by the voltage across the device. This triggering can

be electric field driven or thermally driven, and can be modeled as an equivalent

triggering voltage [62]. When the voltage exceeds a higher threshold vh, the state

changes to a metallic (low resistance) state and when the voltage exceeds a lower

threshold vl , the state switches back to the insulating (high resistance) state. The

thresholds vh and vl are not equal, i.e. there is hysteresis in the switching with vl < vh.

3. A capacitance is associated with the device that ensures gradual build up and decay-

ing of the voltage (and hence energy) across the device.

3.2.2 Oscillator Circuits

We will consider two kinds of relaxation oscillator circuits using such state-changing de-

vices - (a) two state-changing devices in series (3.1). We will refer to this configuration

as D-D. And (b) a state changing device in series with a resistance (3.2)[63]. This con-

figuration will be referred to as D-R. The D-D configuration is enticing in its simplicity,

both in physical realization and analysis as will be evident in the following sections. The
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Figure 3.1: Relaxation oscillator circuit realized using two IMT state-changing devices
in series (D-D configuration), and its circuit equivalent with Rdm and Rdi as the internal
resistance of the IMT devices in metallic and insulating states respectively. When Rdi�
Rdm the device behaves as a parallel combination of a capacitor and a resistor with a switch.
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Figure 3.2: Relaxation oscillator circuit realized with a IMT device in series with a resistor
(D-R configuration), and its circuit equivalent with Rdm and Rdi as the internal resistance of
the IMT device in metallic and insulating states respectively. When Rdi� Rdm the device
behaves as a parallel combination of a capacitor and a resistor with a switch.
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D-R configuration, on the other hand, has been experimentally demonstrated[63] and can

be thought of as an extension of the D-D configuration albeit with more complex dynamics

of synchronization.

This study of the synchronization dynamics of such coupled systems, although inspired

by the experimental realization of VO2 based oscillators, is not limited to these oscillators

only, but encompasses a class of similar pairwise-coupled relaxation oscillators as well.

The circuit equivalents of D-D and D-R relaxation oscillators are shown in figures 3.1 and

3.2 respectively. The internal resistance of the device Rd has two different values in the two

states of the device - Rdi in the insulating (high resistance) state and Rdm in the metallic (low

resistance) state. C is the internal capacitance of the IMT device (including any parasitic

capacitances) and RS is the series resistance. We will also assume that Rdi� Rdm. In the

D-D configuration, the capacitor being charged can be represented as a single capacitor at

the output circuit node. The coupling circuit is a parallel combination of a capacitor Cc and

a resistor Rc. As shown, the output node of the oscillator is between the device and the

resistance, and the coupling circuit is connected between these output nodes[63].

3.2.3 Modeling

Let us establish the system model and the system of ODEs that define the system. This will

allow us to define the conditions for oscillation as well as the coupling dynamics. We will

first consider D-D configuration and then D-R configuration as an extension of the D-D

configuration. The D-D configuration, owing to its inherent symmetry renders to easier

dynamics and analysis and provides valuable insights into the system.

3.2.3.1 D-D configuration

The circuit equivalent for a D-D type relaxation oscillator is shown in 3.1. For simplicity,

all voltages are normalized to vdd (including vl and vh). We define conductances gdi = R−1
di ,

gdm = R−1
dm and gc = R−1

C . For the conductances, subscript d denotes a state dependent
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device conductance and m/i denotes metallic/insulating state respectively. The subscripts

preceding dm or di refer to the corresponding numbered device as shown in figure. Also, it

is assumed that gdm� gdi, which means that the gdi state essentially disconnects the circuit.

This implies that the effective charging happens through g1dm and effective discharging

through g2dm. The single D-D oscillator can be described by the following set of piecewise

linear differential equations:

cv′ =


(vdd− v)g1dm charging

−vg2dm discharging
(3.1)

where c is the lumped capacitance of both devices along with the parasitics. The equa-

tion can be re-written as:

cv′ =−g(s)v+ p(s) (3.2)

where s denotes the conduction state of the device (0 for metallic, and 1 for insulating)

and g(s) and p(s) depend on the device conduction state s as follows:

g(s) =


g1dm, s = charging

g2dm, s = discharging
(3.3)

p(s) =


g1dm, s = charging

0, s = discharging
(3.4)

3.2.3.2 D-R configuration

The equivalent circuit for a D-R type relaxation oscillator is shown in figure 3.2. As in the

case of D-D configuration, voltages are normalized to vdd . The conductances involved are

gdi = R−1
di , gdm = R−1

dm, gs = R−1
s and gc = R−1

C . Effective charging happens through gdm as

in the previous case but there is an added leakage through gs, whereas effective discharging
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happens only through gs. Following the same methodology as in the D-D case, the equation

for the single D-D oscillator dynamics can be written as:

cv′ =


(vdd− v)gdm− vgs charging

−vgs discharging
(3.5)

which can be re-written as:

cv′ =−g(s)v+ p(s) (3.6)

where,

g(s) =


gdm +gs, s = charging

gs, s = discharging
(3.7)

p(s) =


gdm, s = charging

0, s = discharging
(3.8)

and s denotes the conduction state of the system as before.

3.2.3.3 D-MOSFET configuration

One variation of a D-R configuration is when the series resistor is replaced by a mosfet.

The idea is to be able to control the effective resistance of the series element using a volt-

age signal, so as to control the properties of oscillations, and also to be able to switch them

on or off. The MOSFET is assumed to operate in its saturation region and is modeled us-

ing a voltage controlled current source and an output impedence. As before, the transition

voltages for changing the state of the device from insulating to metallic and vice versa cor-

respond to voltages vl and vh respectively at the output node. Let the following parameters

be defined for the series transistor: gm – trans-conductance of series transistor, g0 – output
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conductance of series transistor. For simplicity, all voltages in the system are normalized to

vdd (including vl , vh and vgs applied at the transistor gates); hence, vdd = 1. When gdi� g0

and gdm� g0, the equation for the system can be simplified to:

cv
′
=−g(s)v+ p(s)

where s denotes the phase of the device (metallic, or insulating) and g(s) and p(s)

depend on the device phase s as follows:

g(s) =


gdm, s = metallic

g0, s = insulating
(3.9)

p(s) =


gdm, s = metallic

−gmvgs, s = insulating
(3.10)

3.2.4 Phase space, flows and oscillation conditions

A series arrangement of two IMT devices (D-D), or an IMT device and a resistor (D-R) will

oscillate only when certain conditions are met. In case of two devices in series (D-D), the

two devices must be in opposite conduction states (one metallic and the other insulating)

all the time for oscillations to occur. If the threshold voltages vl and vh are same for the

devices and the following condition holds

vl + vh =VDD (3.11)

and at t = 0 the devices are in different conduction states, then any time one device switches,

the other will make the opposite transition as well. The basic mechanism of oscillations

is as follows. The device in metallic state connects the circuit and charges (discharges)
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the output capacitor, and the other device in insulating state does not participate in the

dynamics. As the capacitor charges, the voltage drop across the device in metallic state

decreases and crosses the lower threshold vl . At the same instant, the voltage drop across

the other device in insulating state increases and crosses the higher threshold vh because

vD1 + vD2 = VDD. The devices then switch states and the cycle continues. The devices

can be conceived as a switch which is open in insulating state (ignoring any leakage in the

insulating state) and closed in metallic state (figure 3.1). If vl and vh deviate from (3.11),

the devices will not switch at the same instant and oscillations will stop as the system settles

to a stable point where both devices are in same state and the voltage of the output nodes

remains at VDD/2. This may require additional startup circuit in the system, which is trivial

to integrate.

In D-R configuration, another set of conditions have to be met [64] which depend on

the relative values of the device resistances in the two states (Rdm and Rdi) and the series

resistance (RS). These conditions can be described using the phase diagram of the IMT

device (figure 3.3). Lines with slopes ri and rm are the regions of operation of the device

in insulating and metallic states respectively. The intersection of these lines with the load

line due to the series resistance gives the stable points of the system in the two states. For

self-sustained oscillations, the stable points in each state should lie outside the region of

operation, i.e. outside the region defined by horizontal lines passing through the transition

points. This ensures that the system always tries to reach the stable point in the current state

but is always preceded by a transition to the other state. This moves the system towards

the stable point of the other state (away from the previous stable point) and hence the

system never reaches any stable point and oscillates. This configuration is robust towards

deviation of vl and vh from condition (3.11) and as only one device is involved, it does not

require the difficult constraint of simultaneous switching of devices as was in the D-D case.

This reduced requirement of symmetry is an attractive property of the D-R configuration as

initial experiments have confirmed sustained oscillations in this configuration[63].
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We define the region of operation of a device (and hence of an oscillator) as the region

where the device voltage lies between vl and vh (or the output voltage lies between 1− vl

and 1− vh). For the D-D case, the oscillators are expected to remain within the region of

operation all the time. However in the D-R case, the system can go outside the region of

operation in a specific manner as described later.

As in the case of D-R, the D-MOSFET circuit oscillates due to the lack of a stable

point. But the load line can be controlled using the gate voltage vgs which in turn affects the

frequency of oscillations, and can also be used to create a bifurcation between oscillations

and no oscillations. Figure 3.4 illustrates the frequency control of the relaxation oscillator

with vgs and illustrates the capability of the MOSFET to control the oscillation dynamics.
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Chapter 4

S T O C H A S T I C P RO P E RT I E S

A growing need for efficient machine-learning in autonomous systems coupled with an in-

terest in solving computationally hard optimization problems has led to active research in

stochastic models of computing. Optimization techniques [65] including Stochastic Sam-

pling Machines (SSM), Simulated Annealing, Stochastic Gradients etc. are examples of

such models. All these algorithms are currently implemented using digital hardware which

first creates a mathematically accurate platform for computing, and later adds digital noise

at the algorithm level. Hence, it is enticing to construct hardware primitives that can har-

ness the already existing physical sources of noise to create a stochastic computing platform.

The principal challenge with such efforts is the lack of stable or reproducible distributions,

or functions of distributions, of physical noise. One basic stochastic unit which enables a

systematic construction of stochastic hardware has long been known - the stochastic neuron

[66] - which is also believed to be the unit of computation in the human brain. Moreover,

recent studies [67] have demonstrated practical applications like sampling using networks

of such stochastic spiking neurons. There have been some attempts for building neuron

hardware [68–72], but building a neuron with self-sustained spikes, or oscillations, which

are stochastic in nature and where the probability of firing is controllable using a signal

has been challenging. Here, we demonstrate and analytically study a true stochastic neuron

[73] which is fabricated using oscillators [7, 62, 74] based on insulator-metal transition

(IMT) materials, e.g. Vanadium Dioxide (VO2), wherein the inherent physical noise in the

dynamics is used to implement stochasticity. The firing probability, and not just the deter-

ministic frequency of oscillations or spikes, is controllable using an electrical signal. We

also show that such an IMT neuron has similar dynamics as a piecewise linear FitzHugh-

Nagumo (FHN) neuron with thermal noise along with threshold fluctuations as precursors

of bifurcation resulting in a sigmoid-like transfer function for the neural firing rates. By an-
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alyzing the variance of interspike interval, we determine that for the range of thermal noise

present in our experimental demonstrations, threshold fluctuations are responsible for most

of the stochasticity compared to thermal noise.

4.1 I M T P H A S E C H A N G E N E U RO N M O D E L

A stochastic IMT neuron is fabricated using relaxation oscillators [7, 74] composed of an

IMT phase change device, e.g. Vanadium Dioxide (VO2), in series with a tunable resistance,

e.g. transistor [62] (Figure 4.1a). An IMT device is a two terminal device with two resistive

states - insulating (I) and metallic (M), and the device transitions between the two states

based on the applied electric field (which in turn changes the current through the device

and the corresponding temperature) across it. The phase transitions are hysteretic in nature,

which means that the IMT (insulator-to-metal) transition does not occur at the same voltage

as the MIT (metal-to-insulator) transition. For a range of values of the series resistance, the

resultant circuit shows spontaneous oscillations due to hysteresis and a lack of stable point

[74]. Overall, the series resistance acts as a parameter for bifurcation between a spiking (or

oscillating) state and a resting state of an IMT neuron.

The equivalent circuit model for an IMT oscillator is shown in Figure 4.1b with the

hysteretic switching conductance gv(m/i) (gvm in metallic and gvi in insulating state), a se-

ries inductance L, and a parallel internal capacitance C. Let the IMT and MIT thresholds

of the device be denoted by vh and vl respectively, with vh > vl , and the current-voltage

relationship of the hysteretic conductance be

vi = h(ii,s)

where h is linear in ii and s is the state - metallic (M) or insulating (I).
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Figure 4.1: (a) VO2 based IMT spiking neuron circuit consisting of a VO2 device in series
with a tunable resistance. (b) Equivalent circuit of IMT neuron using a series inductance L
and a parallel capacitance C

The system dynamics is then given by:

L
dii
dt

= (vdd−h(ii,s))− vo

C
dvo

dt
= ii−gsvo (4.1)

with ii and vo as shown in figure 4.1b and s is considered as an independent variable.

4.2 M E C H A N I S M O F O S C I L L AT I O N S A N D S P I K E S

In VO2, IMT and MIT transitions are orders of magnitude faster than RC time constants

for oscillations, as observed in frequency [75] and time-domain measurements for voltage

driven [76] and photoinduced transitions [77]. As such, the change in resistance of the IMT

device is assumed to be instantaneous. Figure 4.2a shows the phase space ii× (vdd − vo).

V-I curves for IMT device in the two states metallic (M) and insulating (I) and the load line

for series conductance vo = ii/gs for the steady state are shown along with the fixed points

of the system S1 and S2 in insulating and metallic states respectively. The load line and V-I

curves are essentially the nullclines of vo and ii respectively. The capacitance- inductance

pair delays the transitions and slowly pulls the system towards the fixed points S1 and S2
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even when the IMT device transitions instantaneously. For small L/C ratio, the eigenvector

(of the coefficient matrix) with large negative eigenvalue becomes parallel to the x-axis,

whereas the other eigenvector becomes parallel to AB’ or BA’ depending on the state (M

or I). When the system approaches A from below (or B from above) and IMT device is

insulating (or metallic) with fixed point S1 (or S2), the IMT device transitions into metallic

(or insulating) state changing the fixed point to S2 (or S1). Two trajectories are shown

starting from points A and B each for the system (4.1) - one for small L/C value (solid)

and the other for large L/C value (dashed). After a transition, the system moves parallel to

x-axis almost instantaneously and spends most of the time following the V-I curve towards

the fixed point. Before the fixed point is reached the MIT (or IMT) transition threshold is

encountered which switches the fixed point, and the cycle continues resulting in sustained

oscillations or spike generation.

4.3 M O D E L A P P ROX I M AT I O N S A N D C O N N E C T I O N S W I T H F H N N E U RO N

4.3.1 Non-hysteretic approximation

The model of (4.1) is very similar to a piecewise linear caricature of FitzHugh-Nagumo

(FHN) neuron model [66], also called the McKean’s caricature [78, 79]. Mathematically,

the FHN model is given by:

du
dt

= f (u)−w+ Iext

τ
dw
dt

= u−bw+a (4.2)

where f (u) is a polynomial of third degree, e.g. f (u) = u−u3/3, and Iext is the parameter

for bifurcation, as opposed to gs in (4.1). In the FHN model, one variable (u), possessing cu-

bic nonlinearity, allows regenerative self-excitation via a positive feedback, and the second,

a recovery variable (w), possessing linear dynamics, provides a slower negative feedback.

It was reasoned in Ref. [79] that the essential features of FHN model are retained in a
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Figure 4.2: (a) Trajectories (red) of system (4.1) in the phase space ii× (vdd − vo) for a
small L/C value (solid) and a large L/C value (dashed). The ii-nullclines of system (4.1)
are shown as solid black lines in the metallic (AB’) and insulating (BA’) states of the IMT
device, and S1S2 is the vo-nullcline. Depending on the state, the phase space is divided
into three vertical regions - I, N and M. In the region N the ii-nullclines are dependent on s
(b) Nullclines of the FHN model in the phase space u× (1−w) where f (u) is a piecewise
linear function. The dynamics of FHN neuron are equivalent to the IMT neuron in the
regions M and I. In the region N, for small L/C, the difference is only in the velocity and
not the direction of system trajectories as they are parallel to x-axis

“caricature” where the cubic non-linearity is replaced by a piecewise linear function f (u).

Nullclines of (4.2) with a piecewise linear f (u) are shown in figure 4.2b in the phase space

u× (1−w). A function f (u) is trivially possible such that it is equal to vdd−h(ii,s) in the

regions M and I, hence making the u-nullcline similar to the ii-nullcline in those regions.

In the region N, the difference between f (u) and vdd−h(ii,s) for any state s does not result

in a difference in the direction of system trajectories but only in their velocity, because

for small L/C the trajectories are almost parallel to x-axis. Bifurcation in VO2 neuron is

achieved by tuning the load line using a tunable resistance (gs), or a series transistor (figure

4.3a). Figure 4.3b shows two load line curves corresponding to different gate voltages (vgs),

where one gives rise to spikes while the other results in a resting state.

4.3.2 Single dimensional approximation

Moreover, a single dimensional piecewise approximation of the system can be performed

using a dimensionality reduction by replacing the movement along the eigenvector paral-
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Figure 4.3: (a) IMT neuron with series transistor used to achieve bifurcation between a
spiking and a resting state. (b) Nullclines of the system with series transistor in the phase
space ii× vdd − vo for two different vgs values for spiking and resting states. Bifurcation
occurs when a stable points crosses the boundary of region vdd− vo ∈ [vl,vh].

lel to the x-axis with an instantaneous transition from A to A’, or B to B’. This leaves

a 1-dimensional subsystem in M and I each along the V-I curves AB’ and BA’. Experi-

ments using VO2 show that the metallic state conductance gvm is very high which causes

the charging cycle of vo to be almost instantaneous (figure 4.4) and resembles a spike of

a biological neuron. As such, the spiking statistics can be studied by modeling just the

discharge cycle of vo. The inductance being negligible can be effectively removed and only

the capacitance is needed for modeling the 1D subsystem of insulating state (figure 4.5a)

making vi = vdd− vo.

4.4 N O I S E I N D U C E D S T O C H A S T I C B E H AV I O R

The two important noise sources which induce stochasticity in an IMT neuron are (a) VIMT

(vh) fluctuations [80, 81], and (b) thermal noise. Thermal noise η(t) is modeled in the

circuit (figure 4.5a) as a white noise voltage η(t)dt = σtdwt where wt is the standard weiner

process and σ2
t is the infinitesimal thermal noise variance. The threshold vh is assumed

constant during a spike, but varies from one spike to another. The distribution of vh from

spike to spike is assumed to be Gaussian or subGaussian whose parameters are estimated

from experimental observations of oscillations. If the series transistor always remains in
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Figure 4.4: Experimental waveforms of VO2 based spiking neuron for various vgs values
(1.78V, 1.79V and 1.81V). A VO2 neuron shows almost instantaneous charging (spike) in
metallic state.

saturation and show linear voltage-current relationship, as is the case in our VO2 based

experiments, the discharge phase can be described by an Ornstein-Uhlenbeck (OU) process

dx =
1
θ
(µ− x)dt +σdwt (4.3)

where µ ,θ and σ are functions of circuit parameters of the series transistor, the IMT device

and σt . The interspike interval is thus the first-passage-time (FPT) of this OU process, but

with a fluctuating boundary.

4.4.1 OU process with constant boundary

Analytical expressions for the FPT of OU process (with µ = 0) for a constant boundary

were derived using the Laplace transform method in Ref. [82]. Reproducing some of its

results, let the first passage time for the system (4.3), with µ = 0, which starts at x(0) = x0

and hits a boundary S, be denoted by the random variable tf(S,x0), and its mth moment by

τm(S,x0). Also, let t̃f(S,x0) be the FPT for another OU process with µ = 0, θ = 1 and

σ = 2, and τ̃m(S,x0) be its mth moment. Then time and space scaling for the OU process
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noise voltage source η(t) and the IMT threshold fluctuation. (b) Firing rate plotted against
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imply that

tf(S,x0)
d
= θ t̃f(αS,αx0)

∴ τm(S,x0) = θ mτ̃m(αS,αx0) (4.4)

where α =
√

2
θσ2 . The first 2 moments for the base case OU process τ̃1 and τ̃2 are given

by

τ̃1(S,x0) =φ1(S)−φ1(x0)

τ̃2(S,x0) =2φ1(S)2−φ2(S)−2φ1(S)φ1(x0)+φ2(x0) (4.5)

where φk(z) can be written as an infinite sum

φk(z) =
1
2k

∞

∑
n=1

(√
2z
)n

Γ
(n

2

)
ρ(n,k)

n!
(4.6)

with ρ(n,k) being a function of the digamma function [82].
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4.4.2 OU process with fluctuating boundary

We extend this framework for calculating the FPT statistics with a fluctuating boundary S

as follows. Let the IMT threshold be represented by the random variable vh. For the VO2

based IMT neuron, the 1D subsystem in the insulating phase can be converted in the form

of (4.3) with µ = 0 by translating the origin to the fixed point. If this transformation is T

then x = Tvi = T(vdd − vo), S = Tvh and xo = Tvl . The start and end points are B’ and

A respectively in figure 4.2. vh is assumed constant during a spike, and across spikes the

distribution of vh is vh ∼D , where D is either Gaussian, or subGaussian. For subGaussian

distributions we use the Exponential Power family EP[κ], κ being the shape factor. Let the

interspike interval of IMT neuron be denoted by the marginal random variable timt(D ,vl).

Then timt is related to tf in equation (4.4), given common parameters θ and σ , as follows:

timt(D ,vl)|(vh = v) d
= tf(Tv,Tvl)

The moments of timt can be calculated as:

E[timt(D ,vl)
m] = Evh[E[timt(D ,Tvl)

m|vh = v]]

= Evh[τm(Tvh,Tvl)]

= θ mEvh[τ̃m(αTvh,αTvl)] (4.7)

where α =
√

2
θσ2 . If D is Gaussian or EP[κ] distribution and αT is an affine transforma-

tion, then αTvh also has a Gaussian or EP[κ] distribution.

4.5 E X P E R I M E N T S

IMT devices are fabricated on a 10nm VO2 thin film grown by reactive oxide molecu-

lar beam epitaxy on (001) TiO2 substrate using a Veeco Gen10 system [83]. Planar two

terminal structures are formed by patterning contacts using standard electron beam lithog-
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raphy which defines the device length (LVO2). Pd (20nm) / Au (60nm) contacts are then

deposited by electron beam evaporation and liftoff. The devices are then isolated and the

widths (WVO2) are defined using a CF4 based dry etch.

The IMT neuron is constructed using an externally connected n-channel MOSFET

(ALD110802) and the fabricated VO2 device. A prototypical I-V curve is shown in fig-

ure 4.6a. Within the experimental data, the current is limited to an arbitrarily chosen 200

µA to prevent a thermal runaway and breakdown of the device while in the low resistance

metallic state. It should be noted that as the metallic state corresponds to the abrupt charg-

ing cycle of vo, limiting the current would not have noticeable effect on spiking statistics

of the neuron.

Threshold voltage fluctuations (cycle to cycle) were observed in all devices which were

tested (> 10). Threshold voltage distribution was estimated using the varying cycle-to-

cycle threshold voltages collected from a single device. Thermal noise is not measured

directly, but is estimated approximately by matching the simulation waveforms from the

circuit model (Figure 4.5a) with the observed experimental waveforms. It can be veri-

fied that thermal noise of the transistor is not the dominant noise source by measuring the

threshold variation as a function of the transistor current (Figure 4.6b) and observing that

the distribution of switching threshold does not change with varying transistor current. Fi-

nally, the firing rate and its variation with vgs (Figure 4.5b) were measured for a single

device.

4.6 S P I K I N G S TAT I S T I C S

4.6.1 First moment and the firing rate

First moment of timt is calculated using (4.5) and (4.7) as

E[timt(D ,vl)] = θ(Evh[φ1(αTvh)]−φ1(αx0))
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Figure 4.6: (a) The prototypical DC voltage-current characteristics for a single VO2 device
exhibits abrupt threshold switching at VIMT and VMIT . The current in the metallic state has
been arbitrarily limited to a 200µA compliance current. (b) VIMT distribution as a function
of the peak current during oscillations (value is set by the MOSFET saturation current).
VIMT is extracted from 300+ cycles.

The expansion for φk(z) in (4.6) can be used to calculate Evh[φk(αTvh)] using the moments

of αTvh as follows

Evh[φk(αTvh)] =
1
2k

∞

∑
n=1

(
√

2)nE[(αTvh)
n]Γ
(n

2

)
ρ(n,k)

n!

Figure 4.5b shows firing rate (1/E[timt(D ,vl)]) as a function of vgs for various σt values and

for 3 distrbutions of threshold fluctuations. The calculations approximate the experimental

observations well for all three vh distributions, the closest being EP[3] with σt = 4.

4.6.2 Higher moments

For higher moments, higher order terms are encountered. For example, in case of the

second moment, using (4.5) and (4.7), we obtain

Evh[τ̃2(αTvh,αTvl)] =2Evh [φ1(αTvh)
2]−Evh[φ2(αTvh)]

−2Evh[φ1(αTvh)]φ1(αTvl)

+φ2(αTvl)
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with a higher order term φ1(αTvh)
2. In the case of the third moment we obtain φ1(αTvh)φ2(αTvh).

As each φk term is an infinite sum, we construct a cauchy product expansion for the higher

order term using the infinite sum expansions of the constituent φks and then distribute the

expectation over addition. For example, if the φk expansions of φ1(z) and φ2(z) are (∑ai)

and (∑bi) respectively, then the cauchy product expansion of φ1(z)φ2(z) can be calculated

as ∑ci, where ci is a function of a1...i and b1...i, and the expectation E[φ1(z)φ2(z)] = ∑E[ci].

Since ci is a polynomial in z, E[ci] can be calculated using the moments of z.

If µimt and σimt are the mean and standard deviation of interspike intervals timt, the co-

efficient of variation (σimt/µimt) varies with the relative proportion of the thermal and the

threshold induced noise. Figure 4.7 shows σimt/µimt (calculated using parameters matched

with our VO2 experiments) plotted against σt for various kinds of vh distributions fitted to

experimental observations. σimt/µimt as observed in our VO2 experiments is about an order

of magnitude more than what would be calculated with only thermal noise using such a neu-

ron, and hence, threshold noise contributes significant stochasticity to the spiking behavior.

As the IMT neuron is setup such that the stable point is close to the IMT transition point

(figure 4.3b), low σt results in high and diverging σimt/µimt for any distribution of thresh-

old noise, and σimt/µimt reduces with increasing σt for the range shown. For a Normally

distributed vh the variance diverges for σt . 8, but for Exponential Power (EP) distributions

with lighter tails, the variance converges for smaller values of σt . Statistical measurements

on experimental data, as indicated in figure 4.7, provide measures of σimt/µimt (dotted line)

and σt (shaded region). We note that EP distributions provide a better approximation of

the stochastic nature of experimentally demonstrated VO2 neurons as the range of σt is

estimated to be less than 5.

4.7 C O M PA R I S O N W I T H OT H E R W O R K

The IMT neuron emulates the functionality of theoretical neuron models completely by in-

corporating all neuron characteristics into device phenomena. Unlike other similar efforts,
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it does not need peripheral circuits alongside the core device circuit (an IMT device and a

transistor) to emulate any sub-component of the spiking neuron model like thresholding, re-

set etc. Moreover, the neuron construction not only utilizes inherent physical noise sources

for stochasticity, but also enables control of firing probability using an analog electrical

signal - the gate voltage of series transistor. This is different from previous works which

control only the deterministic aspect of firing rate like the charging rate. A comparison of

spiking neuron hardware characteristics in different works is shown in Table 4.1.

Such analytical verification of stochastic neuron experiments is one of the first in this

work. It is an important result as it indicates reproducibility of stochastic characteristics

and helps in creating the pathway towards perfecting these devices. With a growing con-

census that stochasticity will play a key role in solving hard computing tasks, we need

efficient ways for controlled amplification and conversion of physical noise into a readable

and computable form. In this regard, the IMT based neuron represents a promising solu-

tion for a stochastic computational element. Such stochastic neurons have the potential to

realize bio-mimetic computational kernels that can be employed to solve a large class of
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Table 4.1: Comparison of this work (experimental details from [73]) with other spiking
neuron hardware works based on different characteristics of spiking neurons 7

Tuma et al. 6 Pickett et al. 7 Sengupta et al. 5 Indiveri et al. 8 This work (VO2)

Neuron type Integrate & Fire Hodgkin Huxley Integrate & Fire Integrate & Fire Piecewise Linear
FHN

Material / Platform Chalcogenide Mott insulator NbO2 MTJ 0.35 µm CMOS Vanadium Dioxide
(VO2)

Material
phenomenon Phase Change IMT Spin transfer torque

(STT) - IMT

Spontaneous spiking
using only device No Yes No - Yes

Peripherals needed
for spiking

Yes, for spike
generation and reset No Yes, for spike

generation and reset - No

Integration
mechanism (I&F) Heat accumulation - Magnetization

accumulation Capacitor charging Capacitor charging

Threshold
mechanism (I&F)

External reset by
measuring
conductance

Spontaneous IMT External reset by
detecting magnet flip

Reset using
comparator Spontaneous IMT

Stochastic Yes - Yes No Yes

Kind of stochasticity
(I&F) Reset potential - Differential - Threshold and

differential

Source of
stochasticity / noise Melt-quench process - Thermal noise -

IMT threshold
fluctuations &
Thermal noise

Control of stochastic
firing rate Only integration rate - Only integration rate Only integration rate Yes

Status of
experiments

Constant stochasticity,
variable integration
rate

Deterministic spiking None Deterministic spiking Sigmoidal variation of
stochastic firing rates

Peak current 750-800 µA - 200 µA
Power or
Energy/spike 120 µW - 900 pJ / spike 196 pJ / spike

Voltage 5.5 V 1.75 V - 3.3 V 0.7V
Maximum firing
rates 35-40 KHz 30 KHz - 200 Hz 30 KHz

Table I. Comparison of this work (experimental details from Jerry et al. 9 ) with other spiking neuron hardware works based on different
characteristics of spiking neurons

10 N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone,
V. Narayanan, H. Wen, Z. Cai, V. Gopalan, R. Engel-Herbert,
D. G. Schlom, A. Raychowdhury, and S. Datta, Scientific Re-
ports 4, 4964 (2014).

11 N. Shukla, A. Parihar, M. Cotter, M. Barth, X. Li, N. Chan-
dramoorthy, H. Paik, D. G. Schlom, V. Narayanan, A. Raychowd-
hury, and S. Datta, in 2014 IEEE International Electron Devices
Meeting (2014) pp. 28.7.1–28.7.4.

12 A. Parihar, N. Shukla, S. Datta, and A. Raychowdhury, Journal
of Applied Physics 117, 054902 (2015).

13 A. Kar, N. Shukla, E. Freeman, H. Paik, H. Liu, R. Engel-Herbert,
S. S. N. Bharadwaja, D. G. Schlom, and S. Datta, Applied
Physics Letters 102, 072106 (2013).

14 M. Jerry, N. Shukla, H. Paik, D. G. Schlom, and S. Datta, in Sili-
con Nanoelectronics Workshop (SNW), 2016 IEEE (IEEE, 2016)
pp. 26–27.

15 T. Cocker, L. Titova, S. Fourmaux, G. Holloway, H.-C. Band-
ulet, D. Brassard, J.-C. Kieffer, M. El Khakani, and F. Hegmann,
Physical Review B 85, 155120 (2012).
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(2003).

17 H. P. McKean, Advances in Mathematics 4, 209 (1970).
18 M. Jerry, A. Parihar, A. Raychowdhury, and S. Datta, in Device
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optimization and machine-learning problems.
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Chapter 5

PA I RW I S E C O U P L I N G

5.1 T H I S W O R K

The circuit diagram of two coupled oscillators, D-D or D-R, is shown in figure 5.1. The

importance of a physical realization of relaxation oscillators can be clearly seen here, as

without it we would not be able to characterize, and hence analyse, the coupling behavior

of oscillators, and by extension we would not be able to understand computational abilities

of such circuits.

5.1.1 Phase space, flows and oscillation conditions

For analyzing the coupled circuits, the phase diagram of a coupled system can be drawn

in the v1× i1× v2× i2 space as was done in figure 3.3. However, we note that in a given

conduction state of the system, s = s1s2, (v1,v2) can uniquely identify the system, and

hence, v1× v2 space is sufficient for a phase diagram. Therefore, we can draw 4 different

phase diagrams of the system for each conduction state s (figure 5.2) with transitions among

them[84] (figure 5.3). The transitions occur at the edges when either v1 or v2 reach the

higher or lower threshold for state change from metallic to insulating or vice versa. The

flows in each of the 4 conduction states are linear flows and hence have a single fixed point

(figure 5.2). The conditions for oscillations can be described using figure 5.4. Analogous to

the case of a single oscillator, these stable points should lie outside the region of operation

(in the shaded region) in a way that the system always tries to move towards these stable

points but should be preceded by a state transition which occurs when the system reaches

the (red) dashed lines.
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Figure 5.1: Circuit equivalent of coupled D-D oscillators of with an RC circuit used as
the coupling circuit. For D-R oscillators, one state-changing resistor of each oscillator is
replaced by a constant linear resistor

5.1.1.1 Monotonic Flows and Periodic Orbits

The conditions of figure 5.4 are general enough to hold for both D-D and D-R configura-

tions and they ensure that the system does not settle down to a stable point and voltages

across oscillators repeatedly increase and decrease. However, these conditions do not en-

sure the existence of a stable orbit which can give periodic oscillations. To ensure existence

of a stable periodic orbit, we consider additional conditions for the systems. For D-D con-

figuration, we consider systems where the flows in the states are monotonic, i.e. v1 and v2

are either constantly increasing or constantly decreasing in the region of operation of any

conduction state. Figure 5.3 show these monotonic directions with the state transitions for

D-D coupled oscillator configurations. It is proved later that for two identical coupled D-D

oscillators, this condition of monotonicity of the flows is sufficient for existence of a stable

orbit and hence for periodic oscillations. For D-R coupled oscillators, we consider systems

where either the direction of flows are strictly monotonic as shown in figure 5.3 or are

non-monotonic in a very specific way as discussed in 5.1.3 (see figure 5.21). In this case,

periodic oscillations can be ensured for certain conditions as described in section 5.1.3. It

should be noted here that in the D-R case, the system can also go outside the region of

operation as seen in figure 5.5b, but if the fixed points lie in the above mentioned shaded
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Figure 5.2: The coupled system can be described by 4 different phase spaces for each state
s = s1s2. This figure shows the system flows of the D-D and D-R coupled oscillator system
in the 4 regions of operation along with the fixed points (shown as red dots) in each state.
This figure also represents the simplified case where the flows are monotonic within the
region of operation

regions, the system will always oscillate. Figure 5.5 shows typical time-domain waveforms

and corresponding phase-space trajectories for the coupled oscillators of the D-D and D-R

types.

For D-MOSFET kind of oscillator circuit, similar phase space and oscillation condi-

tions as D-R hold. Figure 5.6 shows the phase space flows for two coupled D-MOSFET

kind of oscilators, with the red trajectory showing the limit cycle in this case.

38



1 2

3 4

1 2

3 4

D-D D-R

Figure 5.3: Schematic representation showing the monotonic flow directions in the regions
of operation in the simplified model. The monotonicity condition is sufficient for existence
of a steady state periodic orbit in the D-D case. Transitions are shown among the 4 states
1(MM), 2(IM), 3(MI) and 4(II) of the coupled system when the system reaches any edge,
i.e. the voltage of any oscillator reaches a phase change threshold of its IMT device
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Figure 5.4: The stable points of both D-D and D-R coupled oscillator system should lie in
the yellow shaded region for the system to oscillate. The system undergoes a transition to
another state when the system hits the red dashed lines
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periodic orbit is shown in red. The butterfly shaped steady state trajectory corresponds to
waveforms similar to anti-phase locking. The solid and dashed lines represent output of the
two oscillators.
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Figure 5.6: Regions of state space of the D-MOSFET coupled oscillator system with pa-
rameter values g : g0 : gm = 3 : 1 : 3, α = 10, vgs1 = 0.5 and vgs2 = 0.4. Fixed points z1 and
z2 in states MM and II respectively are shown where z1 = gm1vgs1 and z2 = gm2vgs2. Steady
state periodic orbit of the system is marked in red among the flows in the state space. Ar-
rows outside the state space show the transitions between the regions when the system hits
any edge.
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5.1.2 D-D oscillators

5.1.2.1 Modeling

When two identical D-D oscillators are coupled in a manner described in figure 5.1, the

system can be described by the following coupled equations:

c1v′1 =


(vdd− v1)g11dm− ic1 charging

−v1 g12dm− ic1 discharging
(5.1)

c2v′2 =


(vdd− v2)g21dm− ic2 charging

−v2 g22dm− ic2 discharging
(5.2)

where c1 and c2 are the lumped capacitances of the oscillators. For conductances g, the

first subscript denotes the oscillator and the second denotes the device. ic1 = −ic2 is the

coupling current given by:

ic1 = (v′1− v′2)cc +(v1− v2)gc (5.3)

When coupled, the system has 4 conduction states s = s1s2 ∈ {00,01,10,11} corre-

sponding to the 4 combinations of s1 and s2. Analogous to (3.2), the coupled system can

be described in matrix form as:

ccFx′(t) = −gcA(s)x(t)+P(s)

x′(t) = −gc

cc
F−1A(s)

(
x(t)−A−1(s)P(s)

)
(5.4)

where x(t) = (v1(t),v2(t)) is the state variable at any time instant t. The 2×2 matrices
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F and A(s), and vector P(s) are given by:

F =

 1+α1 −1

−1 1+α2

 (5.5)

A(00) =

 −β11−1 1

1 −β21−1

 , P(00) =

 β11

β21


A(10) =

 −β12−1 1

1 −β21−1

 , P(10) =

 0

β21


A(01) =

 −β11−1 1

1 −β22−1

 , P(01) =

 β11

0


A(11) =

 −β12−1 1

1 −β22−1

 , P(11) = 0

(5.6)

Here, αi = ci/cc is the ratio of the combined lumped capacitance of ith oscillator to the

coupling capacitance cc, and βi j = gi jdm/gc is the ratio of the metallic state resistance of

jth device of ith oscillator, where i ∈ {1,2} and j ∈ {1,2}. The fixed point in a conduction

state s is given by ps = A−1(s)P(s) and the matrix determining the flow (the flow matrix

or the velocity matrix) is given by gc
cc

F−1A(s) as can be seen in (5.4). In section 5.1.2.2

we analyze the steady state locking and synchronization dynamics of two such identical

oscillators coupled with a parallel resistive and capacitive element as shown in figure 5.1.

5.1.2.2 Symmetric D-D oscillators

Let us first investigate the case when the D-D oscillators are identical and their effective

charging and discharging rates are equal, i.e. β11 = β21 = β12 = β22 = β and α1 = α2.

This corresponds to a well designed and ideal oscillator system where the pull-up and

pull-down device resistances have been matched to create equal charging and discharging

rates. In such a scenario the velocity matrices in the four conduction states gc
cc

F−1A(s)
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2 4

1 3

p

Figure 5.7: Combined phase space in the symmetric D-D coupled oscillator case showing
4 regions of operation of the four different conduction states such that all states share a
single fixed point p. This is possible as the flow matrices in all the four states are equal and,
hence, all state spaces can be represented in a single space with a single flow but occupying
different regions

become equal. As such, the state spaces in the four conduction states can be represented

in a common state space with the system flow described by the common velocity matrix

and a single fixed point. However, in this common state space, the regions of operation in

the four conduction states will be four distinct regions. The position of these regions for a

conduction state would depend on the position of its respective fixed points in the original

state space. Such a combined phase space is shown in figure 5.7.

The symmetry of the system is apparent in the flow as well. The eigen values λ1,λ2

and eigen vectors e1,e2 of the velocity matrix gc
cc

F−1A of the symmetric system are

λ1 =−
gc

cc

(
β
α

)
, λ2 =−

gc

cc

(
β +2
α +2

)
(5.7)

e1 =

 1

1

 , e2 =

 −1

1

 (5.8)

Real negative eigen values imply that the flow of the system is symmetric about both

the eigen vector directions (i.e. a mirror image of itself about the eigen directions) as shown
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Figure 5.8: In the combined phase space, the flow of the coupled system is a mirror image
of itself about its eigen vector directions e1 and e2 as the eigen values are real and nega-
tive. This symmetry of the flows can be reduced and the state space of the system can be
described by considering just one-fourth of this space as shown in figure 5.9

in figure 5.8. The stable fixed points in the conduction states 1(00), 2(01), 3(10) and 4(11)

are p1 = (1,1), p2 =
(

1− 1
2+β ,

1
2+β

)
, p3 =

(
1

2+β ,1− 1
2+β

)
and p4 = (0,0) respectively.

Hence, the line along the eigen vector e1 is the diagonal for both conduction states 1 and

4. Under the assumption that the vdd normalized thresholds vl and vh are symmetric i.e.

vl = 1− vh, the line along e2 also becomes the diagonal for states 2 and 3. This is because

the fixed points of conduction states 2 and 3 - p2 and p3 lie on x + y = 1 line in their

original state spaces which is same as the eigen direction e2. It should now be noted that

the transitions between the conduction states, the regions of operation and the flow, all have

the same common discrete symmetry - mirroring about e1 and e2. We can do a symmetry

reduction at this point and the system can be completely described by just two states and

two transitions (figure 5.9a).

To study the steady state periodic orbits of this system, we calculate the return map

on the left edge of state 1 in figure 5.9a which is f = f1 ◦ f2. In this case, any periodic

orbit in the symmetry reduced space will correspond to at least one periodic orbit in the

44



e2

e1

f2

f1

M1 ⟶ L2!
N1 ⟶ M2

L1

M1 N1

N2M2

L2

M2 ⟶ L1!
N2 ⟶ M1

(0,0)

e2

e1

f2

f1

(0,0)

x2

x1

y2
B2

A2

B1

A1

y1

(a) (b)

Figure 5.9: (a) Symmetry reduced space (fundamental domain) of the coupled system after
reducing the symmetries shown in figure 5.8. f1 is the mapping from the left edge of state
1 to its top edge and f2 is the mapping from left edge of state 2 to its bottom edge. (b)
Definition of x1, x2, y1 and y2 on the edges of the states in the symmetry reduced space

complete space (see figure 5.11). Also, if no fixed point of the return map exist in the

symmetry reduced space, then there is definitely no periodic orbit in the complete space.

The coordinate measurements on the edges are defined as shown in 5.9b. f1 : x1 → y1 is

the mapping from the left edge of state 1 to its top edge and f2 : x2→ y2 is the mapping

from left edge of state 2 to its bottom edge. x1,x2,x3 and x4 are defined on their respective

edges as shown in figure 5.9b. As both the eigen values λ1 and λ2 are real and negative,

f1(x) will lie above x = y line and f2(x) will lie below it. A representative plot of f1, f2

and f = f1 ◦ f2 (i.e. the return map f : x1→ y2) is shown in figure 5.10 where dv = vh− vl .

The composition f = f1 ◦ f2 lies above x = y if f2 is more curved than f1 and vice versa.

As the return map is always increasing, only the first return map needs to be considered

for finding fixed points and the higher return maps don’t add new fixed points. When the

coupling is more capacitive, the composition function tends to be concave as shown in

figure 5.10a. Proposition 1 gives a mathematical form to this notion where a sufficient

condition is proved for anti-phase locking. We show numerically with simulations in figure
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Figure 5.10: Representative plot of mappings f1, f2 and their composition f = f1 ◦ f2 with
fixed β and varying α . Here dv = vh− vl . β > α is a sufficient condition for a concave
f and hence stable anti-phase locking. As α increases, the curve for f transitions into
a s-shaped curve with both in-phase and anti-phase lockings stable, and then finally to a
convex curve with stable in-phase locking

5.13 the conditions for in-phase locking compared to anti-phase locking.

If the system moves from any arbitrary point on the flow, say (xa,ya) to another point,

(xb,yb) in time t then the following implicit equation can be written:

(
xa + ya

xb + yb

) 1
λ1

=

(
xa− ya

xb− yb

) 1
λ2

(5.9)

In state 1, (xa,ya) lies on the left edge and (xb,yb) lies on the top edge. To define

f1 : x1→ y1 we substitute (xa,ya) = (−vh,−vh+x1) in (5.9) and obtain an implicit equation

for f1 as: (
2vh− x1

2vl + y1

)
=

(
x1

y1

)α+2
β+2

β
α

(5.10)

Similarly, an implicit equation for f2 : x2→ y2 can be written as:

(
kβ + x2

kβ − y2

)
=

(
dv− x2

dv− y2

) β+2
α+2

α
β

(5.11)

where kβ = β
β+2 .
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Equations 5.10 and 5.11 can be solved numerically to obtain the steady state orbits of

the system.

Proposition 1 : Existence of stable periodic orbit and sufficient condition for stable

anti-phase locking in symmetric D-D coupled oscillator system: For β > α > 2dv
1−dv = dv

vl
,

i.e., gdm
gc

> c
cc
> 2dv

1−dv =
dv
vl

the coupled symmetric and identical system has only two steady

state locking orbits - in-phase and anti-phase. Further, the in-phase locking is unstable and

the anti-phase locking is stable.

Proof : The proof can be divided in two steps - (a) There are only two fixed points of f

- at 0 and at dv, and (b) f ′(0)> 1 and f ′(dv)< 1 which implies that the in-phase locking is

unstable and anti-phase locking is stable.

The first part is proved as follows.

As λ1 and λ2 are negative, x1 > y1 and dv− x2 > dv− y2. And as β > α > 2dv
1−dv ,

α+2
β+2

β
α > 1 and β+2

α+2
α
β < 1. Also β > 2dv

1−dv implies kβ > dv> y2. This gives us the following

inequalities:

(
2vh− x1

2vl + y1

)
≥

(
x1

y1

)
(5.12)

and
(

kβ + x2

kβ − y2

)
≤

(
dv− x2

dv− y2

)
(5.13)

where the equality holds at the end points i.e. at x1 = 0 and x1 = dv for (5.12) and at

x2 = 0 and x2 = dv for (5.13). At any fixed point for the return map f , x1 = y2 and y1 =

x2 and equations (5.12) and (5.13) should be consistent with these fixed point equations.

Substituting x1 = y2 and y1 = x2 in (5.12) and (5.13) we get:

dv− ((dv− y1)+ y2)+
2(dv− y1)y2

dv+ kβ
≥ 0 (5.14)

dv− ((dv− y1)+ y2)+
(dv− y1)y2

vh
≤ 0 (5.15)
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These equations are consistent only when

(dv− y1)y2
2

dv+ kβ
≥ (dv− y1)y2

1
vh

(5.16)

which in turn can be true only at the end points, i.e. y1 = 0 or y1 = dv, because kβ < 1.

It can be confirmed that this is indeed the case by inspection of figure 5.9.

The second part of the proof is proved by calculating f ′(0) = f ′1(0) · f ′2(0). f ′1(0) and

f ′2(0) are calculated from (5.10) and (5.11) as:

f ′1(0) =

(
vl

vh

)q

(5.17)

f ′2(0) =
kα +dv
kα −dv

=
kα + vh− vl

kα − vh + vl
>

vh

vl
(5.18)

where q = β+2
α+2

α
β < 1 and kα = α

α+2 . Also α > 2dv
1−dv implies kα > dv. Hence

f ′(0) = f ′1(0) · f ′2(0)>
(

vh

vl

)1−q

> 1 (5.19)

And as f has no other fixed points between 0 and dv and f is continuous, f ′(dv) < 1.

Hence, proved.

It should be noted that this condition is not a strict bound but rather provides key design

insights when a particular form of coupling (anti-phase) is sought[85].

C A PAC I T I V E , R E S I S T I V E C O U P L I N G A N D B I S TA B I L I T Y The two extreme cases

of purely resistive and purely capacitive coupling are of interest. In case of coupling using

only a capacitor, the symmetric and identical coupled system always has a stable anti-phase

and an unstable in-phase locking. This is because in case of purely capacitive coupling,

β→∞ and so β >α for all finite α . Even in practical cases where some parasitic resistance

is included in parallel with the coupling capacitor [63], β is typically much larger than α .
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Figure 5.11: The trajectories (which are periodic orbits) corresponding to the fixed points
in the return maps of figure 5.10b. (a) The unstable fixed point of figure 5.10b corresponds
to two periodic orbits in the unreduced space as shown in red. (b) The fixed point at 0
corresponds to a single periodic orbit shown in blue and the fixed point at dv corresponds
to the green periodic orbit. When the initial state of the system lies in the gray region
(shown in (a)), the system settles down to an in-phase locking state, and otherwise to an
anti-phase locking state
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Figure 5.12: Capacitive coupling leads to anti-phase locking and resistive coupling leads to
in-phase locking in case of symmetric D-D coupled oscillators. The solid and dashed lines
represent output of the two oscillators.

Such anti-phase locking matches well with recent experimental findings of capacitively

IMT coupled oscillators as discussed in [85]. In case of coupling using only a resistor, the

symmetric and identical coupled system will have a stable in-phase and an unstable anti-

phase orbit, as can be predicted from figure 5.13 for α → ∞. Time domain simulations

of the coupled systems with purely capacitive and purely resistive coupling are shown in

figure 5.12. The parameter values for capacitive coupling are α = 5 and gdm = gs = 6cc

and those for resistive coupling are c = 13gc and β = 3.6.

Figure 5.10 (b and c) show cases when β < α . In the intermediate case when the return
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Figure 5.13: Return map type for the symmetric D-D case in the parametric space, β ×α
for vl = 0.2 and vh = 0.8. We can clearly see that for β > α the return map is concave
and anti-phase locking is stable. Also when the coupling is more resistive, the return map
becomes convex with stable in-phase locking. The region between concave and convex
return map is the region with S-shaped return map with both stable in-phase and stable
anti-phase locking

map transitions from concave to convex, the system goes through a state where both in-

phase and anti-phase locking are stable with one unstable fixed point in between (figure

5.10b). In figure 5.13 the two regions for concave and convex return map can be clearly

seen. They are separated by a thin region which represents the case of bistability. Figure

5.14 shows the time domain simulation waveforms of oscillator outputs for β = 3.6 and

α = 13.1. We note that the initial voltage of the first oscillator is 0.2V and depending

on the initial voltage of the second oscillator, the system can either lock in phase or out of

phase. These design parameters correspond to a bistable system of the kind shown in figure

5.10b, and hence the final steady state locking is in-phase or out-of-phase depending on the

initial phase of the system. When the initial phase (or output voltage) of oscillators are

close to each other (represented by gray region in figure 5.11a) the system locks in-phase,

and when they are far the system locks out-of-phase for the same circuit parameters.

5.1.2.3 Asymmetric D-D oscillators

Let us now investigate the case of D-D oscillator dynamics where the two oscillators are

identical but the pull-up and pull-down devices are non-identical thereby giving rise to
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Figure 5.14: Simulation waveforms showing the dependence of final locking to the initial
state of the system in the intermediate case of figure 5.10b when the return map is S-shaped.
The solid and dashed lines represent the two oscillators. Initial v1 = 0.2V in both cases, but
the system locks in-phase when initial v2 = 0.4V , and anti-phase when initial v2 = 0.6V .
With reference to figure 5.11, the intial point (0.2,0.4) lies in the gray region and the point
(0.2,0.6) lies outside the gray region in conduction state 1

asymmetric charging and discharging rates. As the the oscillators are identical, β11 =

β21 = βc and β12 = β22 = βd where subscripts c and d stand for charging and discharging.

The symmetry of the system (due to the identical oscillators) can be seen in the flows of

the states. Flows of conduction states 1(00) and 4(11) are mirror images about the diagonal

x = y and the flow in conduction state 2(10) is equivalent to the flow in state 3(01) with axes

x and y interchanged. This symmetry is also shown in the transitions between states. The

system can be expressed after reducing the symmetry as in figure 5.15. For βc < βd , two

kinds of cycles are possible in the regions 1→ 2b→ 1 and 1→ 2c→ 4→ 2a→ 1. To find

the fixed points of the system, we draw the return map with the bottom edge of state 1 as the

Poincare section. Let f1 be the mapping from bottom edge of conduction state 1 to its right

edge, and f2a, f2b and f2c are the mappings between edges in conduction state 2 as shown.

Also, let f1(x′k) = xk and f2b(0) = yk as shown in figure 5.16. For small asymmetries, the

flows remain monotonic and also yk > x′k. Because it is a symmetry reduced space, we

consider the first return map for trajectories of the type 1→ 2c→ 4→ 2a→ 1 and the

second return map for trajectories of the type 1→ 2b→ 1. Then the return map f is given

by:

f (x) =


f1 ◦ f2c ◦ f4 ◦ f2a(x), 0≤ x < x′k

f1 ◦ f2b ◦ f1 ◦ f2b(x), x′k ≤ x < dv
(5.20)
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Figure 5.15: Symmetry reduced space in the asymmetric D-D configuration with βc > βd
(left) and βc < βd (right). Such configuration will have only a single symmetry. The flow
matrices in the four conduction states are not equal and hence states cannot be represented
in a single combined state space with a single fixed point as was done in the symmetric
D-D case (βc = βd)

Proposition 2 : Sufficient conditions for existence of stable periodic orbit in asymmetric

D-D coupled oscillator system: If in a D-D asymmetric coupled oscillator system the asym-

metries are small enough such that the flows are monotonic and yk > x′k, then the following

are true about the return map f on the bottom edge of state 1:

1. f is continuous

2. f ′(0)> 1 for βc > α and βd > α

3. f has one fixed point at 0 and at least one in the interval x′k < x < dv at, say, x f

4. Either the fixed point at x f is stable, or there exists a stable fixed point at x′f where

0≤ x′f < x f

Proof : (a) The return map is separately continuous in intervals [0,x′k) and (x′k,dv] as it is a

composition of mappings of continuous flows. The continuity of f at xk can be established

by considering two points close to x′k on either side. From (5.20) we can see that f (x′k+) =

f (x′k−) = yk, and hence f is continuous at xk .

(b) It can be proved by similar procedure as adopted before in Proposition 1 that f ′(0)=

f ′1(0) · f ′2c(dv) · f4(0) · f ′2a(0)> 1 for βc > α and βd > α .
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Figure 5.16: Diagram of symmetry reduced state spaces for conduction states 1 and 2 in
the asymmetric D-D configuration. In conduction state 2, the top-left corner does not map
to the bottom-right corner as was the case in the symmetric D-D case. The width of this
middle region where the flow maps the top edge to the bottom edge is defined using xk and
yk

(c) The fixed point at 0 can be seen clearly in the flow diagram. In interval x′k < x < dv,

the fixed points of first return f1 ◦ f2b will also be the fixed points of second return (which

is f ), but not the other way around. Now f1 ◦ f2b(x′k) = dv and f1 ◦ f2b(dv) = yk. As f1 ◦ f2b

is continuous, and hence decreasing, in the interval x′k < x < dv, there exists a fixed point

for f1 ◦ f2b, and hence for f , in the interval x′k < x < dv.

(d) As f is continuous and has fixed points at 0 and x f , one of these two should be

stable if there is no other fixed point in between 0 and x f . If they both are unstable, then a

stable fixed point exists in the interval (0,x f ). Hence proved.

Figure 5.17 shows a representative return map for the asymmetric D-D configuration.

The poincare section chosen in the symmetric D-D case was the left edge of conduction

state 1. Due to symmetry, the left edge of conduction state 1 is same as the bottom edge of

conduction state 1. Hence the return maps in the symmetric D-D case can be compared with

the return maps in the asymmetric D-D case as if they were drawn on the same edge. Figure

5.18 shows a comparison of the return maps of a symmetric case (βc = βd = 60, α = 10)

with that of two asymmetric cases (βc = 50and 40, βd = 60, α = 10). The corresponding

time domain waveforms and phase plots are shown in figure 5.19. The figure clearly shows
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Figure 5.17: Representative plot of the return map on the bottom edge of conduction state
1 in the asymmetric D-D case. The fixed point corresponding to anti-phase locking which
was at dv in the symmetric case is shifted inside away from dv in the asymmetric case

that the steady state periodic orbit changes from a diagonal (perfect anti-phase locking) to a

butterfly shaped curve (imperfect anti-phase locking) as the asymmetry increases. However,

the time domain waveforms for butterfly shaped periodic orbits would still be very similar

in appearance to anti-phase locking. The fixed point close to dv in the return map shifts

away from dv as the difference between βc and βd increases. This trend can be seen in

figure 5.20 which shows the movement of the anti-phase fixed point with βd−βc for fixed

βd = 60 and α = 10. For βc > βd , the cycles will be of the type 4→ 2b→ 4 and 1→ 2c→

4→ 2a→ 1, and the return map will have to be drawn on an edge of state 4. The return

map in this case will be analogous to the βc < βd case with βc and βd interchanged.

5.1.3 D-R oscillators

5.1.3.1 Modeling

In case of coupled D-R oscillators, arguments similar to the previous case lead to the same

matrix equation as (5.4):

x′(t) =−gc

cc
F−1A(s)

(
x(t)−A−1(s)P(s)

)
(5.21)
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Figure 5.18: Comparison of return maps in the symmetric (a) and asymmetric (b and c)
D-D configurations for constant α = 10. Both symmetric and asymmetric configurations
have a fixed point at 0 corresponding to in-phase locking (which is unstable here as β > α
condition is satisfied) along with another fixed point, which in symmetric case, is at dv
(perfect anti-phase locking) but in asymmetric case shifts away from dv
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Figure 5.19: Time domain waveforms and phase plots corresponnding to the configurations
in figure 5.18(a, b and c). The steady state periodic orbits can be seen clearly in the phase
plots to transform from a diagonal (perfect anti-phase locking) in the symmetric case (a) to
a butterfly shaped curve (imperfect anti-phase locking) as the asymmetry increases and the
anti-phase fixed point in the return map shifts away from dv
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Figure 5.20: Numerical simulations illustrating the fixed point close to dv shifts away from
dv with increasing difference between βc and βd in the asymmetric case

where matrices F and P remain the same as before but matrix A changes to the follow-

ing:

F =

 1+α1 −1

−1 1+α2

 (5.22)

A(00) =

 −β1−βs1−1 1

1 −β2−βs2−1

 , P(00) =

 β1

β2


A(10) =

 −βs1−1 1

1 −β2−βs2−1

 , P(10) =

 0

β2


A(01) =

 −β1−βs1−1 1

1 −βs2−1

 , P(01) =

 β1

0


A(11) =

 −βs1−1 1

1 −βs2−1

 , P(11) = 0

(5.23)

Here βi = gidm/gc and βsi = gsi.

For all numerical simulations in the rest of the paper, the normalized values of vl and

vh w.r.t vdd are chosen to be 0.2 and 0.8 respectively.
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5.1.3.2 Limit cycle behavior

In this section we consider the dynamics of a D-R coupled system. This is of interest be-

cause of its ease of fabrication, relaxed conditions for oscillations and already published

reports of such coupled oscillatory systems [63]. We consider coupling of identical os-

cillators and hence we define β1 = β2 = β and βs1 = βs2 = βs. Unlike the D-D coupled

oscillator case, the notion of symmetric charging and discharging does not apply in D-R

coupled oscillator case because the circuit by construction is different for charging and

discharging. During charging a part of the net charging current charges up the output ca-

pacitor whereas the rest of it flows through the pull-down resistance to ground. The process

of discharging has no such leakage component. In terms of the conductance ratio β , this

can be explained by the fact that the net charging component in the matrix A is (β +βs)

and it is always greater than the discharging component βs. However, the flows can still

be simplified for analysis as was described in section 5.1.1. The simplification assumes

that the flows are monotonic in the regions of operation in all four conduction states, but

the direction of monotonicity is different from the D-D coupled oscillator case as shown

in figure 5.3. For our analysis, a particular type of non-monotonicity is allowed in state 2

(and state 3) as shown in figure 5.21. Here the fixed point for conduction state 2 satisfies

the condition of oscillation shown in figure 5.4, but the flow in state 2 as shown in the sym-

metry reduced space (figure 5.21) is non monotonic. We will consider the case of identical

oscillators , and following the methodology of the asymmetric D-D case, we can reduce the

symmetry of identical oscillators as shown in figure 5.21. In this case, two kinds of cycles

are possible - 4→ 2b→ 4 and 4→ 2c→ 4a→ 4. To find the fixed points of the system,

we draw the return map on the top edge of conduction state 4 as the Poincare section. Let

f4 be the mapping from top edge of state 4 to its left edge, f4a be the mapping from the

extended right edge of state 4 to its top edge, f2a, f2b and f2c be the mappings between

edges of state 2. Also let f4(x′k) = xk and f2b(0) = yk as shown in figure 5.22. We consider

the scenario when the flows of the system are as shown in figure 5.21 and yk > x′k. Because
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Figure 5.21: Symmetry reduced space in the D-R coupled oscillator system. There is only
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Figure 5.22: Symmetry reduced space for the D-R coupled oscillator system in states 1 and
4 with the definition of xk, x′k and yk. f4 is the mapping from top edge of state 4 to left edge
of state 4 and f2a, f2b and f2c are mappings between edges of state 2 as shown

it is a symmetry reduced space, we will have to consider the second return map for cycles

of the type 4→ 2b→ 4 but only the first return map for 4→ 2c→ 4a→ 4 type cycles.

Then the return map f is given by:

f (x) =


f4 ◦ f2c ◦ f4a(x), 0≤ x < x′k

f4 ◦ f2b ◦ f4 ◦ f2b(x), x′k ≤ x < dv
(5.24)

Proposition 3 : Sufficient conditions for existence of stable periodic orbit in D-R cou-

pled oscillator system: If in a D-R coupled oscillator system, the flows are as shown in
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figure 5.21 and yk > x′k then the following are true about the return map on the top edge of

state 4 in the symmetry reduced state space (figure 5.21)

1. f is piece-wise continuous with discontinuity at x′k. Moreover, f (x′k+) = yk and

f (x′k−) = dv.

2. f has at least one fixed point in the interval x′k < x < dv at, say, x f

3. f has at least one stable fixed point in the interval x′k < x < dv

Proof : (a) The argument is the same as in Proposition 2. The return map is separately

continuous in intervals [0,x′k) and (x′k,dv] as it is the composition of continuous flows.

From (5.24) we can see that f (x′k+) = yk and f (x′k−) = dv.

(b) In the interval x′k < x < dv, the fixed points of the first return map f4 ◦ f2b will

also be the fixed points for its second return map (which is f ). Now f4 ◦ f2b(x′k) = dv and

f4 ◦ f2b(dv) = yk. As f4 ◦ f2b is continuous (and hence decreasing) in this interval, there

exists a fixed point for f4 ◦ f2b, and hence f , in the interval x′k < x < dv.

(c) As f (x′k+) = yk, f is continuous in the interval x′k < x < dv and f has a fixed point

at x f where x′k < x f < dv, hence either the fixed point at x f is stable or there exists another

fixed point in the interval x′k < x < xk which lies in x′k < x < dv. Hence proved.

Figure 5.23 shows the return map f on the top edge of state 4 for the D-R coupled

oscillator system for varying βs. The return maps in the figure have a single stable fixed

point at x f in the interval x′k < x < dv. The movement of the fixed point x f with βs is shown

in figure 5.24.

Another important design consideration for the coupled oscillator system, is the role of

the coupling circuit on the overall system dynamics, as is seen in figure 5.25. We note that

as the value of α increases the phase diagram in the v1× v2 plane shows strong sensitivity.

In particular, for low values of α , the system shows in-phase locking. As α increases (for

intermediate value of α), the butterfly shaped phase plot widens and the system exhibits

a non-monotonic decrease in the output voltages, v1 and v2 from vh to vl . This can also
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Figure 5.23: Return map on the top edge of state 4 for the D-R coupled oscillator system
for α = 1, β = 150 and β s values of 10, 15 and 20
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Figure 5.24: Movement of the fixed point x f for fixed α = 1, β = 150 and varying βs for
the return map on the top edge of state 4 for the D-R coupled oscillator system

be seen in the time domain waveforms where the output voltages first decrease to an in-

termediate voltage, then increase and again decrease; clearly demonstrating four possible

conduction states (MM, MI, IM and II) in both phase and time domain plots. Finally, for

high values of α the butterfly in the phase plot opens even further, thus making the decrease

of output voltages from vh to vl more monotonic and the system tends to anti-phase locking,

as exhibited in both phase and time (figure 5.25).

5.1.4 D-MOSFET oscillators

5.1.4.1 Modeling

When two D-MOSFET type relaxation oscillators are coupled electrically, their phase dy-

namics would evolve over time till a steady state is reached. The system we consider

consists of two relaxation oscillators that are coupled using a capacitor cc. The equation of
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Figure 5.25: Steady state waveforms and phase trajectories for the D-R coupled oscillator
system with α = 0.1 (top), α = 1 (middle) and α = 10 (bottom). The solid and dashed
lines represent the two oscillators.

the system of coupled oscillators is given by:

cc

α1 +1 −1

−1 α2 +1


v′1

v′2

=

−g1 (s1)v1

−g2 (s2)v2

+
p1(s1)

p2(s2)


where gi(si) and pi(si) are as defined above for each oscillator and α is the ratio c1

cc
= c2

cc
.

We start by defining the state space of the coupled system. At any time, the state of the

system is characterized by (v1,v2,s1,s2). s1 and s2 take only 2 values each – charging and

discharging, as explained before, and v1 and v2 vary between vl and vh. As we did with

previous configurations, we can represent the state space as 4 regions of 2 dimensional

state spaces corresponding to 4 combinations of phases of the two devices – MM (metallic-

metallic), MI (metallic-insulating), IM (insulating-metallic) and II (insulating-insulating)

(figure 5.6). It is assumed that the parameters are varied in a way that the flows in all the

states remain monotonic in the direction as shown. This monotonicity condition guarantees
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oscillations of both oscillators in steady state and can be considered as an extension of the

previous condition for oscillation in case of a single oscillator. As the flow is linear in all

the 4 regions of the state space, there is a single fixed point in all states. The fixed points for

regions MM and II are shown in figure 5.6. Due to symmetry in region MM, if the system

starts from bottom left corner, it ends in the opposite corner and the flow is symmetric along

the diagonal line as shown. Such symmetry is possible in state II only when vgs1 = vgs2.

5.1.4.2 Limit cycle behavior

When two D-MOSFET type oscillators are coupled, the system is expected to lock when the

individual frequencies of oscillators are close. For identical oscillators, closer frequencies

correspond to close values of the corresponding vgs. The mechanism of locking, however,

is different from the mechanism by which coupled sinusoidal oscillators lock. The locking

range in terms of vgs, i.e. the range of vgs for which the system locks and settles to a

stable periodic orbit in steady state, is depicted in figure 5.26. Locking is determined by

monitoring the waveforms of both oscillators to see if the time difference in their successive

peak values become constant after a while or not. The locking range of figure 5.26 describes

the region of a single rational rotation number and the region outside describes irrational or

other rational rotation numbers [84]. The steady state periodic orbits of the coupled system

for vgs1 = 0.3 and varying vgs2 are shown in figure 5.27. As can be seen, the system has a

butterfly shaped stable orbit when vgs values are close, which transitions into a rectangular

orbit as vgs values diverge and finally the system ceases to lock after a certain point. The

symmetric butterfly curve is along the diagonal that corresponds to out-of-phase oscillation

of the oscillators in time domain. As the system moves away from symmetry, the phase

difference between the oscillators in time domain reduces but breaks synchronization much

before reaching in-phase locking state.
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Figure 5.27: Steady state orbits in the state space of the coupled system for fixed vgs1 = 0.3
and varying vgs2. When both vgs values are equal, the stable periodic orbit is butterfly
shaped along the diagonal that correspond to out-of-phase locking. As the difference in
the vgs values increase, the periodic orbit slowly changes to rectangular and finally breaks
synchronization after a point.
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Figure 5.28: XNOR output as a function of vgs1 and vgs2. The surface of the plot resembles
some parabola or some even power of (vgs1− vgs2) in the locking range and settles to a
value around 0.5 outside the locking region.

5.1.5 Computational applications: Analog subtraction

D-R type oscillators (including D-MOSFET) are suited for computing applications as they

can be implemented in practice. D-D oscillators need stringent operating conditions and

as such are not suitable for realiazing in real hardware. In coupled D-R oscillators, the

trajectories in the phase space can be used to capture the difference in the values of vgs1

and vgs2 using an averaged XNOR measure on the output waveforms. The averaged XNOR

measure is defined as first thresholding the output to binary values, second applying XNOR

operation on these binary values at every time instant and finally averaging this XNOR

output over some time duration. The averaged XNOR output for various vgs values is

shown in figure 5.28. We can make the following observations from it:

• It has the least value when vgs1 = vgs2

• Within the locking range, it rises as an even function of
(
vgs1− vgs2

)
resembling a

parabola

• Outside the locking range, it averages to about 0.5

• The selectivity is better at lower vgs values and the XNOR output becomes less selec-

tive as vgs values increase

These characteristics of the curve can be explained by realizing that the averaged XNOR
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Figure 5.29: Plots showing the relation between XNOR output and the steady state periodic
orbit of the system. XNOR operation at a time instant is 1 in the grey region determined
by the thresholds on respective voltages. Averaged XNOR output is equal to the fraction
of time spent by the system in the grey regions. XNOR output is minimum in case of a
butterfly shaped orbit and increases as the orbit transitions to a rectangular orbit.

measure by construction is equal to the fraction of the time the system spends in the grey

region (region where XNOR output is 1, and is determined by the thresholds on v1 and v2)

in steady state (figure 5.29). It can be seen that the XNOR measure should have the least

value in the symmetric case when the system locks out-of-phase and should increase as vgs

values diverge. The thresholds on v1 and v2 can be chosen corresponding to point P which

gives 0 XNOR measure in the symmetric case. Also the XNOR output averages to around

0.5 outside the locking region as the system does not lock and the trajectories visit the grey

and white regions almost equally.

A time domain interpretation can also be given for explaining the nature of the XNOR

surface of figure 5.29. The XNOR operation can also be thought of as a measure of phase

difference between the oscillators, and according to the arguments before, the system locks

out-of-phase when the gate voltages are equal, and hence XNOR value is minimum in this

case. Also the XNOR output should increase as the phase difference reduces when vgs

values diverge.

Such oscillatory subtractors can have many advantageous applications. Firstly, they

would be noise tolerant as they work on fixed-point or attractor dynamics. Secondly, their

compact size would enable building arrays of such subtractors which can be used in par-

allel distributed computing architectures within the sensors, like cameras for pixel-wise

subtraction. An application is template matching for cases where element-wise compar-
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invariant like the rotation number, its value is expected to 
change randomly with time and not converge. 

A time domain interpretation can also be given for 
explaining the nature of the XOR surface of Figure 10. The 
XOR operation can also be considered to measure the phase 
difference between the oscillators, and according to the 
arguments before, the system locks out-of-phase when the gate 
voltages are equal, and hence XOR value is minimum in this 
case. Also the XOR output should increase as the phase 
difference reduces when 𝑣௚௦ values diverge. 

Such comparators would have many advantages. Firstly, 
they would be noise tolerant as they work on fixed-point 
dynamics. Secondly, their compact size would enable building 
of arrays of such comparators which can be used in parallel 
neural-like computing architectures. 

VIII. APPLICATION: TEMPLATE MATCHING 
Arrays of such comparators can be used for template 

matching applications where element-wise comparisons 
suffice to decide a match. We demonstrate this by comparing 
images of faces and hand-written numbers. We first use the 
XOR measure for each pixel and calculate the number of 
pixels with XOR output below a threshold value 𝑣௧௛௑ைோ. 
Figure 13 shows the results of comparing faces with a 

relaxation comparator, where the grey shade corresponds to 
the fraction of pixels with positive match, white being the 
highest. Such system followed by a winner-take-all (WTA), 
i.e. a threshold on the number of pixels that give a positive 
match, can be used to decide if the input image matches a 
stored template pattern. The value of 𝑣௧௛௑ைோ is chosen around 
0.2 considering the minimum values of the XOR surface in the 
operating range of 𝑣௚௦ values. The two thresholds described 
above depend on different factors. The threshold of the 
number of pixels for WTA would depend on the database and 
the error statistics required or estimated. On the other hand, 
𝑣௧௛௑ைோ would be decided more by the nature of the XOR 
surface (Figure 10) and its minimum values. 

A coupled VO2-MOSFET configuration cascaded with a 
XOR provides a way of measuring a form of fractional 
distance using FSK. In this paper we demonstrate, through 
measurements of individual devices and simulations of 
coupled oscillators, the applicability of such pairwise coupled 
systems in template matching. Such concepts may be extended 
to fully connected networks of oscillators, which have been 
shown to provide the basis of associative computation [1,2]. 
Such associative networks can be used in more complex 
pattern matching and classification problems with potentially 
large benefits in energy efficiency [5-8]. 

IX. VARIATION ANALYSIS 
As the XOR measure is a DC measure and because the 

system has fixed point dynamics, temporal noise should not 
affect the steady state output. Hence, we restrict ourselves to 
variations in the form of mismatches in the device parameters 
𝑐, 𝑔 of the MIT devices and 𝑣௧ of the series transistors. Figure 
14 shows the effect of parametric mismatches on the XOR 
output. The coupled system is much more sensitive to the 
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Figure 14: XOR output as a function of 𝑣௚௦ values and its sensitivity to 
mismatch in 𝑣௧  of the series transistor (top), MIT device conductance g 
(middle) and MIT device internal capacitance c (bottom). XOR output is 
much more susceptible to device parameters and for higher values of 𝑣௚௦ 
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Figure 13: XOR outputs for comparing faces (left) and handwritten 
number patterns (right) to stored template patterns using arrays of 
coupled VO2 oscillators. The grey shade corresponds to fraction of pixels 
with positive match, white being the highest 
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Figure 5.30: Averaged XNOR outputs for comparing faces (left) and handwritten number
patterns (right) to stored template patterns using arrays of coupled VO2 oscillators. Grey
shade corresponds to fraction of pixels with positive match, white being the highest.

isons suffice to decide a match. We demonstrate this by comparing images of faces and

hand-written numbers. We first use the XNOR measure for each pixel and calculate the

number of pixels with XNOR output below a threshold value vthXOR. Figure 5.30 shows

the results of comparing faces with an oscillatory subtractor, where the grey shade corre-

sponds to the fraction of pixels with positive match, white being the highest. Such system

followed by a winner-take-all (WTA), i.e. a threshold on the number of pixels that give a

positive match, can be used to decide if the input image matches a stored template pattern.

The value of vthXNOR is chosen around 0.2 considering the minimum values of the XNOR

surface in the operating range of vgs values. The two thresholds described above depend

on different factors. The threshold of the number of pixels for WTA would depend on the

database and the error statistics required or estimated. On the other hand, vthXOR would be

decided more by the nature of the XNOR surface (figure 5.28) and its minimum values.

5.1.5.1 Variations and mismatches

As the XOR measure is a DC measure and because the system has fixed point dynamics,

temporal noise should not affect the steady state output. Hence, we restrict ourselves to

variations in the form of mismatches in the device parameters c,g of the IMT devices

and vt of the series transistors. Figure 5.31 shows the effect of parametric mismatches on
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invariant like the rotation number, its value is expected to 
change randomly with time and not converge. 

A time domain interpretation can also be given for 
explaining the nature of the XOR surface of Figure 10. The 
XOR operation can also be considered to measure the phase 
difference between the oscillators, and according to the 
arguments before, the system locks out-of-phase when the gate 
voltages are equal, and hence XOR value is minimum in this 
case. Also the XOR output should increase as the phase 
difference reduces when 𝑣௚௦ values diverge. 

Such comparators would have many advantages. Firstly, 
they would be noise tolerant as they work on fixed-point 
dynamics. Secondly, their compact size would enable building 
of arrays of such comparators which can be used in parallel 
neural-like computing architectures. 

VIII. APPLICATION: TEMPLATE MATCHING 
Arrays of such comparators can be used for template 

matching applications where element-wise comparisons 
suffice to decide a match. We demonstrate this by comparing 
images of faces and hand-written numbers. We first use the 
XOR measure for each pixel and calculate the number of 
pixels with XOR output below a threshold value 𝑣௧௛௑ைோ. 
Figure 13 shows the results of comparing faces with a 

relaxation comparator, where the grey shade corresponds to 
the fraction of pixels with positive match, white being the 
highest. Such system followed by a winner-take-all (WTA), 
i.e. a threshold on the number of pixels that give a positive 
match, can be used to decide if the input image matches a 
stored template pattern. The value of 𝑣௧௛௑ைோ is chosen around 
0.2 considering the minimum values of the XOR surface in the 
operating range of 𝑣௚௦ values. The two thresholds described 
above depend on different factors. The threshold of the 
number of pixels for WTA would depend on the database and 
the error statistics required or estimated. On the other hand, 
𝑣௧௛௑ைோ would be decided more by the nature of the XOR 
surface (Figure 10) and its minimum values. 

A coupled VO2-MOSFET configuration cascaded with a 
XOR provides a way of measuring a form of fractional 
distance using FSK. In this paper we demonstrate, through 
measurements of individual devices and simulations of 
coupled oscillators, the applicability of such pairwise coupled 
systems in template matching. Such concepts may be extended 
to fully connected networks of oscillators, which have been 
shown to provide the basis of associative computation [1,2]. 
Such associative networks can be used in more complex 
pattern matching and classification problems with potentially 
large benefits in energy efficiency [5-8]. 

IX. VARIATION ANALYSIS 
As the XOR measure is a DC measure and because the 

system has fixed point dynamics, temporal noise should not 
affect the steady state output. Hence, we restrict ourselves to 
variations in the form of mismatches in the device parameters 
𝑐, 𝑔 of the MIT devices and 𝑣௧ of the series transistors. Figure 
14 shows the effect of parametric mismatches on the XOR 
output. The coupled system is much more sensitive to the 
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Figure 14: XOR output as a function of 𝑣௚௦ values and its sensitivity to 
mismatch in 𝑣௧  of the series transistor (top), MIT device conductance g 
(middle) and MIT device internal capacitance c (bottom). XOR output is 
much more susceptible to device parameters and for higher values of 𝑣௚௦ 
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Figure 12: Flowchart for a system using coupled oscillators and XOR 
output for template matching 
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Figure 13: XOR outputs for comparing faces (left) and handwritten 
number patterns (right) to stored template patterns using arrays of 
coupled VO2 oscillators. The grey shade corresponds to fraction of pixels 
with positive match, white being the highest 
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Figure 5.31: XNOR output as a function of vgsvalues and its sensitivity to mismatch in
vt of the series transistor (top), IMT device conductance g (middle) and IMT device inter-
nal capacitance c (bottom). Averaged XNOR output is much more susceptible to device
parameters at higher vgs values.

the XOR output. The coupled system is much more sensitive to the device parameters –

internal capacitance c and metallic phase conductance g, than the threshold voltage vt of

the series transistor. Value of vt is varied around 0.3, normalized to vdd. Also the effect

of mismatches is more for higher vgs values, which implies that deciding the operating vgs

range, apart from operating in the saturation region, will also have a trade-off in terms of

combatting parametric mismatches. Larger overdrive voltages would reduce the effect of

vt variation, but would be more affected by the variations in the IMT device parameters.

5.1.6 A note on stability

For sustained oscillations, the fixed points of the flows should lie outside the region of

operation in all the three cases discussed. When fixed points come inside the region of

operation, the oscillations would stop and the system settles at the fixed points. In the

case of sustained oscillations, the symmetric D-D coupled oscillator system always has

67



monotonic flows and a stable periodic orbit. For the other two cases of asymmetric D-

D and D-R coupled oscillator systems, some sufficient conditions for stability have been

discussed in the previous sections - monotonic flows and yk > x′k. But when these conditions

are not met, the system might not have a stable periodic orbit. For asymmetric D-D coupled

oscillator case, the conditions of monotonicity and yk > x′k hold for small asymmetries, i.e.

small difference between β and βs. For large asymmetries, these conditions might not

hold. In such cases, the system might have periodic orbits with more than 4 transitions

per period or no periodic orbit with irrational rotation numbers [84]. On the other hand, in

the D-R coupled oscillator case, the conditions of monotonicity and yk > x′k hold for large

differences in β and βs and might show irrational rotation numbers otherwise.

5.1.7 Experimental demonstrations

An IMT device can be realized using VO2 (Vanadium dioxide) which exhibits unique elec-

tronic properties like metal-insulator phase transitions. VO2 has been shown to undergo

abrupt first order metal-to-insulator and insulator-to-metal transitions with upto five orders

of change in conductivity[86] and ultra-fast switching times [61]. Transitions have been

shown to be electrically driven, thermally driven or a combination thereof. Recent work

shows that for such a transition, a metallic filament structure is formed which acts as a

conduction pathway in the low resistance state of VO2 [87]. Also, a series circuit of VO2

with a resistive pull down network has been shown to exhibit self-sustained electrical os-

cillations[63] when conditions of oscillations as described above are met. Moreover, two

such relaxation oscillators can be electrically coupled to produce synchronized oscillations

[63].

For experimental validation, we apply our models of coupled relaxation oscillators on

a system of two coupled VO2 oscillators. Figure 5.32 shows a schematic representation

of the coupled circuit with a parallel resistance (RC) and capacitance (CC) as the coupling

circuit. Frequency domain results of this system have been previously reported [63] show-
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Figure 5.32: Schematic of the experimental setup of coupled VO2 oscillators, with series
resistances Rs1 and Rs2 respectively, coupled using a parallel RC−CC circuit

ing a close match between experiments and theoretical results of a D-D model; and are

not reproduced here. Using the D-R model developed in this paper, we obtain close match

in the time-domain and phase plots of the oscillator system as well. With proper calibra-

tion of the system parameters, the D-R model described above shows very close qualitative

match with experimental results. One such experimental result has been shown in figure

5.33 along with model prediction. This validation of the proposed models enables further

design of experiments. It further models and explains both qualitative and quantitative the

role of the system design parameters on the rich synchornization dynamics.

69



0.8 0.9 1. 1.1 1.2 1.3 1.4
0.2

0.4

0.6

0.8

Time HsecL

O
ut
pu
tHV
L

(a) Experiment

(b) Simulation

12

9

7
10 20 30 40 50

O
ut

pu
t (

V
)

Time (μs)

11

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

v1

v 2
1297 11

12

9

7

11

v 2
 (V

)

v1 (V)

0.8

0.4

0.2

0.6

0.80.40.2 0.6

v 2
 (V

)

v1 (V)Time (units)

Figure 5.33: Experimental and simulated time domain waveforms in the steady state and
phase plots for a parallel RC−CC coupled oscillator system. The D-R coupled relaxation
oscillator model is used for model development and simulation. The two waveforms show
close match and validate the model prediction.

70



Chapter 6

N E T W O R K C O U P L I N G A N D G R A P H C O L O R I N G

6.1 P R I O R S T U D I E S

First let us define the concept of network coupling. Previously we have seen how two oscil-

lators, when connected through some coupling circuit, can affect each others oscillations

and eventually synchronize to a specific limit cycle behavior. In network coupling, multiple

oscillators are connected to each other, and as such they all affect the oscillation behavior

of all other connected oscillators. In these cases, even though a single coupling circuit (a

capacitor, or a resistor) connects only two oscillators, we cannot study the behavior of the

circuit by studying such pairs of oscillators separately, but the whole network circuit needs

to be analyzed as a whole.

In this work, the reasons to understand network coupling behavior of oscillators are two

fold:

1. Understand the computational abilities of such oscillators

2. Implement such coupled oscillators in hardware for the next generation of computing

machines

Most of the prior work on network dynamical systems have been done in physics, esp. in

analysis of lattice models, and computational neuroscience, for analysing network of cou-

pled neurons. Unfortunately, almost all the prior work related to coupled oscillators, or

network dynamical systems, have achieved only one of the above objectives, but failed to

achieve both. Theoretical works which could analyse the network behavior, and in some

case connect to computing applications, relied on oscillator models which could not be

realized in hardware. In experimental work where such oscillators were realized in hard-

ware, coupling two or more oscillators in some desired or useful way have always been
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a challenge. Below is a brief review of some prior work regarding network coupling of

oscillators.

6.2 T H I S W O R K

In this work, we establish that a system of coupled relaxation oscillators fabricated using

Vanadium dioxide (VO2) metal-insulator-transition devices and coupled capacitively, can

lead to system dynamics on which vertex coloring of unweighted and undirected graphs

(hitherto referred to as the graph coloring problem) can be successfully mapped (figure

6.1a). We demonstrate experimentally and using simulations that when such relaxation

oscillators are coupled using only capacitances in a manner topologically equivalent to an

input graph, their steady state phases can be used to approximate the solution of the NP-

hard minimum graph coloring problem. For this, we propose a reformulation of the graph

coloring problem where instead of finding a color assignment for each node, the objec-

tive is to find a circular ordering or circular permutation of the nodes such that the same

colored nodes appear together in the ordering. Such a reformulation preserves the hard-

ness of the problem and is useful for interpreting the output of our circuit (figure 6.1a).

We show analytically that the dynamics of such a coupled relaxation oscillator system is

intrinsically connected to spectral algorithms for graph coloring [88–90], which use eigen-

vectors of adjacency matrix of the input graph to approximate the solutions. Alternatively,

the permutation of steady state phases of coupled relaxation oscillators depends on eigen-

vectors of the adjacency matrix in the same way as have been used by spectral algorithms

for graph coloring (figure 6.1b). A programmable circuit for a such a coupled oscillator

system, where the oscillators are coupled in a graph with adjacency matrix A and coupling

capacitance matrix Cc is shown in figure 6.2. Our simulation results show that the hardness

of problem instances has, on average, expected effects on important metrics of solutions

found using such a circuit like the number of colors detected and the settling time.

It is well known that eigen properties of the coefficient matrix in the evaluation equation
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Figure 6.1: (a)Overview of the proposed system for vertex coloring and a simulation exam-
ple. First step is a coupled relaxation oscillator circuit where the oscillators are composed
of a series combination of VO2 device and a resistor (with a loading capacitor in paral-
lel), and are connected in a graph using capacitors. The equivalent circuit diagram of the
VO2 oscillator is shown using an internal capacitance ci and a phase changing conductance
gd(m/i) which switches between metallic conductance gm and insulating conductance gi. An
example 3-partite graph is simulated and the relative phases of these oscillators are shown
in a phase diagram which shows vertex color-sorting in phase, and can be used to calcu-
late vertex-coloring with O(n2) complexity. (b) The circuit is composed of VO2 oscillators
capacitively coupled in a network same as the input graph. The final order of phases, or
charging spikes, of the oscillators is related to the eigenvectors of the adjacency matrix of
the input graph which in turn are related to the solution of the graph coloring problem.

of a dynamical system determine important structural properties of the system including

stability, bifurcation, energy minima(s) and overall system dynamics. Here, we provide

a theoretical bridge and experimental evidence that a dynamical system whose coefficient

matrix inherits properties of the incidence matrix of a graph, can indeed emulate spectral

graph algorithms just through its time evolution. We envision such dynamical systems

to provide foundational paradigms in the development of next-generation computational

accelerators and kernels.
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Figure 6.2: A circuit of 4 coupled oscillators with capacitive connections between oscil-
lators controlled using switches corresponding to the adjacency matrix A and coupling
capacitance cc. The subscripts denote the corresponding entries in A. Note that Ai j = A ji,
Aii = 0 and Ai j ∈ {0,1}.

6.2.1 D-R network coupling

6.2.1.1 Modeling

The mathematical model of the circuit is created as follows. As before, the VO2 devices

switch between a low resistance metallic state with conductance gdm and a high resistance

insulating state with conductance gdi based on the voltage vd across their two terminals. On

increasing vd the device switches to a metallic state (insulator-to-metal (IMT) transition)

after a threshold vh, and on decreasing vd below vl the device switches back to an insulating

state (metal-to-insulator (MIT) transition). Here vh > vl and vh− vl defines the hysteresis

in switching. Consider a supply voltage which is applied across the series combination

of such a hysteretic device and a conductance gs where the subscript s denote a series

conductance. Without loss of generality, we assume that at t = 0 the device is in high

resistance state and the voltage drop across the device vd = 0. The internal capacitance

of the device charges up and vd increases and eventually crosses the threshold vh. Due to

this the device transitions into a metallic state which causes the internal capacitance of the

device to discharge and reduces vd which finally drops below vl . This causes the device to

switch back to the insulating state resulting in oscillations with piecewise linear dynamics.
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In case of the coupled oscillator circuit, a loading capacitance cL of appropriate magnitude

is required as shown in figure 6.1a for correct circuit operation.

Recall that the dynamics of a single oscillator (figure 6.1a) can be written as the follow-

ing piecewise differential equation:

cv
′
(t) =−g(s)v(t)+ p(s)

where c is the lumped capacitance of device along with the loading capacitance and

parasitics, s∈ {0,1} is the state of system - charging (denoted by 1) or discharging (denoted

by 0), and g(s) is the net path conductance in state s, with g(s) = gs +gdms. If the voltage

v is normalized to vdd then p(s) = gdms.

The dynamics of the coupled system with n oscillators coupled pairwise to each other

using capacitances can be written as:

(Ci +Cc +Cl)v′(t) =−G(s)v(t)+H(s) (6.1)

where s is the state of the system, s = {s1,s2, · · · ,sn}, sk being the state of kth oscillator

and v(t) is the vector of all the output voltages of oscillators. Ci is the intrinsic internal

capacitance matrix and Cl is the loading capacitance matrix. These are diagonal matrices

with each element equal to the corresponding capacitance of the oscillator.

Ci =


ci1 0

. . .

0 cin

 ,Cl =


cl1 0

. . .

0 cln


where cik is the internal capacitance and clk is the loading capacitance of kth oscillator.
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Cc is the coupling capacitance matrix

Cc =


∑ −cc12 · · · −cc1N

−cc21 ∑ −cc2N

... . . .

−ccN1 −ccN2 ∑


where cci j is the coupling capacitances between ith and jth oscillators, and ∑ represent the

sum of rows (or columns). When all the coupling capacitances are equal to cc, then Cc is

basically the scaled Laplacian matrix L of the graph with Cc = ccL = cc(D−A) where D

is the diagonal matrix of degrees of vertices and A is the adjacency matrix of the graph. It

should be noted that the loading capacitances are chosen such that diag(Cc+Cl) is constant.

We envision a system where the oscillators are connected in a graph which is topologically

equivalent to the input graph. As such the coupling matrix is programmed by the incidence

matrix of the input graph. For each row i in Cc every absent edge i j in the graph adds a

loading capacitance of magnitude cc to the ith node to maintain a constant diag(Cc +Cl).

This ensures equal loading effect for all the nodes and symmetric dynamics.

G(s) and H(s) are state dependent matrices

G(s) =


g1(s1) 0

. . .

0 gN(s2)

 ,H(s) =


h1(s1)

...

hN(sN)


where

gk(sk) =


gdmk +gsk sk = 1,(charging)

gsk sk = 0,(discharging)
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and

hk(sk) =


gdmk sk = 1,(charging)

0 sk = 0,(discharging)

with gik and gsk being the internal conductance and the series conductance of the kth oscil-

lator respectively.

Thus the dynamics of n coupled oscillators can be written as:

v′(t) = (Ci +Cc +Cl)
−1 [−G(s)v(t)+H(s)]

where voltages are normalized to VDD.

Symmetric system with identical oscillators Let us first consider a symmetric sys-

tem, i.e. all oscillators have equal internal capacitances (ci), coupling capacitances (cc), in-

ternal metallic conductances (gdm) and series conductances (gs). In such case, (Ci +Cc +Cl)=

(ciI + ccD− ccA+Cl) where A is the adjacency matrix of the graph and D is the diagonal

matrix of degrees of vertices. One simple choice of Cl is Cl = cc(nI−D) which makes

diag(Cc +Cl) = diag(ccD− ccA+ ccnI− ccD)

= diag(ccnI)

= ccndiag(I)

which is constant. Hence the coefficient matrix becomes

−G(s)(ciI− ccA+ ccnI)−1 = G(s)(ccA− (ci + ccn)I)−1

Let us define B=(ccA− (ci + ccn)I)−1. Also let Ŝ be a diagonal matrix where diag(Ŝ)=

s. Then H(s) = gdms and G(s) = gsI +gdmŜ where I is the identity matrix. The system of
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6.1 can then be written as:

v′(t) = B
(
gdmŜv+gs (s−v)

)
(6.2)

The dynamics of a circuit of identical coupled relaxation oscillators can then be de-

scribed using the following matrix differential equation:

v
′
(t) = (Ci +Cc +Cl)

−1 [−G(s)v(t)+gdms] (6.3)

6.2.1.2 Phase evolution and dynamics

We note two important features about the charging transitions: (a) charging processes are

very fast compared to the period of oscillations (figure 6.3a), which we also refer to as

“charging spikes” and (b) Charging of one oscillator has weak (but finite) effect on the

other oscillators. Hence, we study the dynamics of coupled relaxation oscillator system

in terms of two distinct interacting systems - the linear dynamics in the discharging state

s = 0, and the charging transitions.

As the charging processes are very fast, the relative phases of oscillators are same as

the relative times of the charging spikes in the oscillator waveforms. This gives a good way

to visualize how the relative phases of oscillators evolve with time. For all oscillators, we

first note all the time instants when the charging spikes start. The time differences between

consecutive charging spikes should settle to a constant value if the oscillators settle, say ∆ti

for the ith oscillator. If all the oscillators synchronize to a common frequency then ∆ti = ∆t0

for all i. Then at any nth charging spike which occur at time instant tn, we can calculate the

relative phase of an oscillator w.r.t. a hypothetical oscillator whose charging spikes occur

at regular intervals of ∆ti from the start (t = 0) as:
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Figure 6.3: (a) Simulation waveforms of a circuit connected in the 3-partite graph shown
in Fig. 1a. The gray regions show the time when the system is in state s = 0. (b) Represen-
tative figure showing the relation between the asymptotic order of components of the state
vector and the eigenspaces in a two-dimensional linear system where the coefficient matrix
has negative eigenvalues.

φ(n) = (tn−n∆ti)
2π
∆ti

( mod 2π)

When all ∆ti are equal, i.e. the oscillators synchronize, φ(n) calculates the relative

phases w.r.t. a common ∆t0 for all oscillators. We plot φ(n) vs n for all oscillators in

figure 6.4. What we observe is that the phases φ(n) converge and cluster together for dense

graphs but as the graphs become sparse, which are considered harder, the the phases do not

converge. In the intermediate region between dense and very sparse graphs, the phase do

converge but they do not cluster together in groups. In these cases our proposed algorithm

and reformulation of vertex coloring is particulalry useful because it does not rely on the

clustering of phases. Our algorithm does an O(n2) post-processing on the steady state

order of phases and calculates a color assignment which is always correct but can have

non-optimal coloring, i.e. the number of colors can be more than the chromatic number.
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Figure 6.4: The phases φ(n) plotted against n∆ti for four relaxation oscillator systems
for solving 3-colorable graphs with the same color partition (5,5,5) but with different
connectivities. Case (a) is the case of a complete 3-partite graph, and graphs become sparser
from (a) to (d). The phase clustering degrades as graphs become sparser and for very sparse
graphs (d) the oscillators do not synchronize. The number of colors detected using our
algorithm is shown with each graph and the nodes which are assigned the same color are
indicated.
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6.2.1.3 Dynamics in the discharge state s = 0

In the state s = 0 where all the oscillators are in the discharging state, the system is an

autonomous linear dynamical system

v′(t) =−gs (ciI + ccL+Cl)
−1 v(t)

Hence, the time evolution of this dynamical system is governed by the spectral proper-

ties of the coefficient matrix. In an identical system, the equation is

v′(t) = gs (ccA− (ci +ncc)I)
−1 v(t)

= gsBv(t)

Let the eigenvectors of B be µk.

Proposition 1. The eigenvectors of the coefficient matrix B of the identical system are

the same as those of the adjacency matrix A. The eigenvalues µk of B are related to the

eigenvalues of A as follows:

µk =
1

cc

(
λk− ci

cc
−n
)

Moreover, µk < 0 for 1≤ k ≤ n.

Proof. For any matrix M with an eigenvalue m, the eigenvectors of M+αI and β (M+αI)−1

are same as M for any scalars α and β . This can be seen as follows:

(M+αI)x = Mx+αx

= (m+α)x

And eigenvectors remain unchanged for matrix inverse. Also eigenvalues for β (M+αI)−1
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will be β/(m+ a). Substituting appropriate values for α and β gives us the required rela-

tion between µk and λk.

Now, the Perron-Frobenius theory [91]implies that largest eigenvalue of A is less than

or equal to the maximum row sum which is less than n, i.e.

λmax ≤ rmax < n

Hence,
(

λk− ci
cc
−n
)
< 0 for all k which implies that µk < 0 for all k.

In the linear dynamical system with the state variable v(t), the order of components of

v(t) also define a permutation at any time instant t. In state s = 0, the linear dynamical

system is

v′(t) = Bv(t)

where B is real, symmetric and the initial state of the system v(0) = v0.

Geometry of permutation regions For any ordering P of components vi1 > vi2 >

... > vin, the region that corresponds to this ordering is given by

RP (P) =
n⋂

m=i

(
vim > vi(m+1)

)
(6.4)

RP(P) is a pair of n-dimensional simplexes with one vertex as the origin and are mirror

images of each other about the origin. As such, any line that passes through the origin either

passes through both of them, or none.

Asymptotic direction of trajectories In a linear dynamical system, the asymptotic

order of components is hence governed by the asympotic direction in which the system

state converges to.

Proposition 2. In the linear dynamical system v′(t) = Bv(t), where the coefficient matrix

B is real, symmetric and full-rank, the system trajectory always converges asymptotically
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to a particular direction. Moreover, if the asymptotic direction is given by d(v0,B) where

v(0) = v0, then d(v0,B) lies in the eigenspace of B with the largest eigenvalue (including

the sign) almost everywhere, i.e. when the system starts from anywhere except on a set of

measure 0.

Proof. Let v(t,v0) be the solution of the dynamical system when the initial starting state

v(0) = v0. As the fixed point is 0, the asymptotic direction d(v0,B) to which the system

state converges can be written as

d(v0,B) = lim
t→∞

v(t)
‖v(t)‖

= lim
t→∞

eBtv0

eλ (v0)t

where λ (v0) is the Lypunov exponent of the trajectory starting from v0. As B is real and

symmetric, all its eigenvalues are real and the matrix is diagonalizable. Let B = QΛQT ,

where Λ is the diagonal matrix with of all eigenvalues. Then

d(v0,B) = Q
(

lim
t→∞

eΛtv0

eλ (v0)t

)
QT v0

Let λ1 > λ2 > ... > λl be the l distinct eigenvalues of B, and let Ek, 1 ≤ k ≤ l be the

corresponding eigenspaces. Now, λ (v0) = λ1 for v0 ∈
⊕l

k=1 Ek\
⊕l−1

k=1 Ek. This means
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λ (v0) = λ1 almost everywhere, i.e. everywhere except on a set of measure 0. Hence

d(v0,B) = Q



1 0 0 · · · 0

0 1 0

0 0 . . .
... 0

0 . . .


QT v0

=
(
q1aqT

1a +q1bqT
1b + ...

)
v0

= PE1v0

Here, the diagonal elements of the middle matrix are ones only for the rows corre-

sponding to the eigenvector λ1, and q1a,q1b, ... are orthogonal vectors that span E1. Hence

d(v0,B) ∈ E1 almost everywhere. In case the largest eigenvalue λ1 of B has multiplicity 1,

d(v0,B) is simply q1 a.e.

Asymptotic order of components The asymptotic order of components of v(t) is

determined by the permutation region in which d(v0,B) lie. Let T (v) denote the order of

components of vector v, then T (d(v0,B)) = T (PE1v0) is the asymptotic order of compo-

nents of v(t). The asymptotic order becomes a little more complex when d(v0,B) lies at

the boundary of two or more permutation regions, i.e. some of the components of d(v0,B)

are equal. In such cases, T (d(v0,B)) is only a partial order as determined by d(v0,B).

T (d(v0,B)) can be extended to a total order by the asymptotic direction of the system in

the remaining space E2⊕E3⊕ ...⊕El . Let us denote this by d(v0\E1). Also, let PE1 be the

projection matrix on E1, then

d(v0,B\E1) = lim
t→∞

(I−PE1)v(t)
‖(I−PE1)v(t)‖

Now, d(v0,B\E1) ⊥ d(v0,B). When d(v0,B) is at the boundary of some permutation
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regions, the disambiguation among these regions, i.e. ordering among the components

which are equal, is done by d(v0,B\E1) as it is perpendicular to d(v0,B). Hence, the

asymptotic order is determined by both d(v0,B) and d(v0,B\E1). If d(v0,B\E1) lie at

the boundary of some other permutation regions, then the argument can be extended in a

similar way and the asymptotic order of components is determined by d(v0,B), d(v0,B\E1)

and d(v0,B\E1⊕E2) together, and so on.

The extension of the partial order T (d(v0,B)) using T (d(v0,B\E1)) is similar to the

ordinal sum T (d(v0,B))⊕T (d(v0,B\E1)) but a preferential one, i.e. the orders determined

by T (d(v0,B)) are preferred over those determined in T (d(v0,B\E1)). Let us denote this

operation by the binary operator ⊕′ which acts on an ordered pair of two partial orders and

gives another partial or total order.

The range of (I−PE1) is E2⊕E3⊕ ...⊕El . The dynamics that govern the time evolution

of (I−PE1)x(t) in the space E2⊕E3⊕ ...⊕El is simply determined by the eigenvectors and

eigenvalues corresponding to E2,E3, ...,El . Hence from 2, d(v0,B\E1) ∈ E2. Specifically,

d(v0,B\E1) =
(
q2aqT

2a +q2bqT
2b + ...

)
v0

where q2a,q2b, ... are the eigenvectors corresponding to λ2. Extending the argument, we

have d(v0\E1⊕E2) ∈ E3 and so on. Hence, we have the following:

Proposition 3. The asymptotic order of components of v(t) in the linear dynamical system

v′(t) = Bv(t), where the coefficient matrix B is real, symmetric and full-rank, is determined

by T (d(v0,B)). In case d(v0,B) lies on the boundary of some permutation regions then

T (d(v0,B)) is a partial order which can be extended to a total order as T (d(v0,B))⊕′

T (d(v0,B\E1)). And in case d(v0,B\E1) lies at some boundary then the asymptotic order
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Figure 6.5: Representation of flows in a two dimensional linear dynamical system where
both eigenvalues are negative and |λ2| > |λ1|. (a) The system trajectory approaches the
direction of e1 with time and hence the order of components, i.e. the order of x and y
coordinates is determined by e1. (b) When e1 lies close to the x = y line, the order depends
on which side x0 lies w.r.t. e1 which is given by the projection of v0 on e2.

is determined as T (d(v0,B))⊕′ T (d(v0,B\E1))⊕′ T (d(v0,B\E1⊕E2)) . Moreover,

d(v0,B) =
(
q1aqT

1a +q1bqT
1b + ...

)
v0 = PE1v0 ∈ E1

d(v0,B\E1) =
(
q2aqT

2a +q2bqT
2b + ...

)
v0 = PE2v0 ∈ E2

d(v0,B\E1⊕E2) =
(
q3aqT

3a +q3bqT
3b + ...

)
v0 = PE3v0 ∈ E3

and so on. Hence, the asymptotic order of components is determined as

Q0(v0) = T (PE1v0)⊕′ T (PE2v0)⊕′ T (PE3v0) . . .
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6.2.1.4 Dynamics in the charging states s6=0

When s 6= 0 the system is a linear dynamical system, but the fixed point is not 0. The

identical system in a charging state s can be described as

v′(t) = B [G(s)v(t)−H(s)]

= BG(s)
(
v(t)−G(s)−1H(s)

)
The fixed point of the system in a state s is

G(s)−1H(s) =
gi

gs +gi
s

and the coefficient matrix for the linear flow is

(ccA− (ci + ccn)I)−1 G(s) = BG(s)

where B = (ccA− (ci + ccn)I)−1 as in the previous section about discharging state. When

g� gs, i.e. the chargings are much faster than the dischargings, the fixed points of the

system are close to s which are the corners of the unit cube in n dimensions. Following the

arguments as in section 6.2.1.3, even in this case the system trajectory will converge to an

asymptotic direction. The asymptotic ordering of components would depend on first the

fixed point, and in case the fixed point has equal components then it would also depend on

the asymptotic direction of trajectory. This is explained as:

Proposition 4. In the linear dynamical system of the charging states v′(t)=BG(s)(v(t)−p),

where p = g
gs+gs is the fixed point and the coefficient matrix B is real, symmetric and full-

rank, the asymptotic permutation of the components will be same as the permutation of

components of the fixed points, i.e. T (p). In case the fixed point p lies at (or close) to the

boundary of some permutation regions, i.e. some components of p are equal, the disam-
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biguation of ordering among these components can be done considering the linear dynam-

ics of v′(t) = Bv(t) with fixed point shifted to 0, and following Propositions 3. Hence, the

asymptotic order of components is given by

Qs(v0) = T (p)⊕′ T (PsE1v0)⊕′ T (PsE2v0)⊕′ . . .

= T (s)⊕′ T (PsE1v0)⊕′ T (PsE2v0)⊕′ . . .

where PsE1,PsE2, . . . are the projections on the eigenspaces of BG(s).

In case the matrix B in the equation v′(t) = BG(s)(v(t)−p) is not full rank, the system

trajectory does not converge to the point p. If N is the null space of the matrix B and PN

is the projection on the null space N, then the convergence limit point for the trajectory

starting from v0 is p+PNv0. Also, N is also the null space for BG(s) for all s. Hence,

Proposition 4 can be modified for matrices B which are not full-rank as follows

Proposition 5. In the linear dynamical system as described in Proposition 4, but where B

is not full rank, the asymptotic order of components is given by

Qs(v0) = T
(

gi

gi +gs
s+PsNv0

)
⊕′ T (PsE1v0)⊕′ T (PsE2v0)⊕′ . . .

where PsN is the projection matrix on the null space of BG(s).

When v0 is close to the eigenspaces, i.e. magnitude of PsNv0 is very small, the additive

term of PNv0 in the first term does not change the order determined by s. Formally, when

max{(PNv0)i}< gs
gi+gs

T
(

gi

gi +gs
s+PNv0

)
= T (s)⊕′ T (PNv0)

and hence,

Qs(v0) = T (s)⊕′ T (PsNv0)⊕′ T (PsE1v0)⊕′ T (PsE2v0)⊕′ . . . (6.5)
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Figure 6.6: (a) When the fixed point in a two dimensional linear dynamical system is not
0 then the asymptotic order of the components is determined by the fixed point p. (b) If
the fixed point lies on the x = y line, which is a boundary of permutations regions, then the
disambiguation is done using the eigenvectors.

A P P ROX I M AT I O N B Y I N S TA N TA N E O U S C H A R G I N G If the chargings are very fast,

i.e. gs
gi
→ 0, we can approximate the chargings by an instantaneous change in the state from

v to v+∆v by linearizing the system at the time instant when the state changes from s = 0

to the charging state. Let Ŝ denote a diagonal matrix such that diag(Ŝ) = s where s is the

state vector. When s 6= 0 we have from (6.2)

v′(t) = B
(
giŜv+gs (s−v)

)
= Bgi

(
Ŝv+

gs

gi
(s−v)

)
' giBŜv

If the kth node charges then Ŝv = vlek where ek is the k− axis vector whose all com-

ponents are 0 expect the kth which is 1. If the kth node charges completely from vl to vh

89



without any state transition in between, we have

(∆v)k = dv

=⇒ (v′)k∆t = dv

=⇒ ∆t =
dv

(giBŜv)k

=
dv

givlekT Bek

=
dv

givlBkk

Therefore,

∆v = v′∆t

= dv
vlgiBek
vlgiBkk

=
dv
Bkk

Bek

which is just a scaled column vector of B. We have the following:

Proposition 6. In the dynamical system of (6.2), when s 6= 0 and only a single node charges,

the chargings can be approximated by linearizing the system. If the transition occurs from

v to v+∆v then ∆v is given by:

∆v =
dv
Bkk

Bek

Remark 1. An important point to note here is that this change is independent of v.

6.2.1.5 Minimum Graph Coloring Problem and its reformulation

The main point of studying these oscillators is to use them for some computing problem,

specifically graph coloring. To understand the connection between the dynamics of cou-

pled oscillators and an algorithm of graph coloring, viz. spectral algorithm, let’s first de-

scribe the problem of graph coloring. The objective of graph coloring or vertex coloring is
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to assign one color (out of total k colors) to each vertex of an undirected graph such that no

two adjacent vertices receive the same color. A graph coloring that minimizes the number

of colors k is called minimum graph coloring. The minimum k for which a correct coloring

is possible is called the chromatic number of the graph. A graph which can be colored using

at most k colors is called a k-partite graph. A k-partition of a set, like the set of nodes, is a

grouping of the elements of the set into k groups. Hence, a vertex coloring with k colors is a

k-partition. We reformulate the objective of finding a color assignment to finding a circular

permutation of nodes such that the same colored nodes appear together. We refer to this

reformulation as vertex color-sorting and the corresponding optimal version as minimum

vertex color-sorting.

Definition 1. (k-Color-Sorting) An ordering u = {ui}, i ∈ [1,n] of the n nodes of a graph is

a proper k-Color-Sorting if there exists a proper k-Coloring {ci}, i ∈ [1,n], where ci is the

color assigned to the ith node such that all nodes with the same color appear together in u,

i.e. for any nodes i, j,k with ui < uk < u j, ci = c j =⇒ ci = ck = c j. This can be extended

to a cyclic ordering where the nodes with the same color appear together.

The following results are helpful in understanding coloring in terms of sorting.

Lemma 1. For a graph with n nodes, adjacency matrix A and chromatic number χA:

1. Any ordering of nodes S is a proper k-Color-Sorting for some k such that χA ≤ k≤ n.

2. Let B(M) be the minimum number of diagonal blocks which are identically ′0′ and

which cover the complete diagonal of the matrix M. The minimum k for which S

is a proper k-Color-Sorting is B(PAPT ). If S is a proper k-Color-Sorting and P its

permutation matrix, then

χA ≤ B(PAPT )≤ k

Proof. Any ordering S is a proper n-Color-Sorting, and if S is a proper k color sorting then

minimum number of colors can be χA.
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If P is the permutation matrix of an ordering u, then PAPT is the adjacency matrix of

a graph with the ordering of nodes changed to u. If u is a proper k-Color-Sorting then,

PAPT will have at least k number of ′0′ diagonal blocks, one corresponding to each color

group, hence, B(PAPT )≤ k. Also, the diagonal blocks which are ′0′ also determine a valid

coloring of the graph and hence B(PAPT )≥ χA.

Proposition 7. For a k-chromatic graph, k-Color-Sorting is NP hard. Moreover, finding

the chromatic number χA of a graph with adjacency matrix A and the proper χA-Coloring

is equivalent to the following optimization problem:

minB(PAPT ), P ∈ all permutationso f nodes

where the solution P is a proper χA-Color-Sorting, χA = min{B(PAPT )}.

Proof. Computing B(PAPT ) is a O(n2) problem, n being the number of nodes because there

are n2 elements in PAPT . And for a k-chromatic graph, χA = B(PAPT ) = k where P is a

proper k-Color-Sorting. Hence, χA can be computed in O(n2) if a proper k-Color-Sorting

P can be found.

Also, for any permutation P, B(PAPT )≥ χA as stated above, where equality holds only

when P is a proper χA-Color-Sorting. Hence, finding chromatic number is equivalent to

the stated optimization problem. Also, once a proper χA-Color-Sorting is known, the ′0′

diagonal blocks also determine the proper χA-Coloring.

Using this method, any permutation P gives a correct color assignment but a better per-

mutation gives lesser number of colors, and an optimal color-sorting permutation gives the

minimum number of colors. In the proposed coupled oscillator system, each oscillator rep-

resents a vertex (or node) of the graph. Any two nodes connected in the original graph by an

edge (as indicated by a ‘1’ in A), are capacitively coupled in the hardware implementation.

As the coupled system evolves, the relative phases of the oscillators are ordered, and we
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observe that the relative ordering of the phases approximates minimum vertex-color-sorting

of the original graph.

6.2.1.6 Connection to Vertex Coloring

The eigenvectors with least negative eigenvalues determine not just the asymptotic order in

state s = 0 but also the limit cycle. To obtain an intuitive understanding of how the system

settles to a limit cycle with the correct color-sorting, i.e. steady state oscillations where

order of charging spikes become constant and equal to a correct color-sorting, we consider

the following proposition.

Proposition 8. The following three conditions when satisfied result in the existence of a

cycle and helps us understand why the possibility of it reduces as graphs become sparser,

and hence harder.

1. Attractor: The system in state s = 0 tries to order the components of the state vector

in the correct vertex color-sorting. Hence, if the system starts from a state x0 whose

order of components is same as the final asymptotic order, i.e. T (x0) = Q0(x0), then

with time T (x(t)) remains constant.

2. Ordering: The charging spikes just change the order of components of x by a circular

permutation. If the kth oscillator charges from vl to vh then the order of all other

components remains same.

3. Sustaining the cycle: If condition 2 is true then the charging transitions cycle the

order of x0 to all the circular permutations. For a cycle to exist, the state s = 0

should not only preserve the order of x0 when T (x0) = Q0(x0) but it should also

have lower tendency to change the order when T (x0) is any circular permutation of

Q0(x0).

Why these conditions hold in the prototypical case of complete graph with equal num-

ber of nodes in each color class can be seen as follows.
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Explanation for condition 1: The adjacency matrix A in the prototypical case is a low

rank matrix with the rank equal to the number of colors, i.e. if it is a k-partite graph

then rank is n. The adjacency matrix is a block matrix with equal sized k2 blocks and the

diagonal blocks are 0 and the non-diagonal blocks are 1. One eigenvector of the matrix A is

the constant vector [1,1,1, ...] which is the diagonal of the n-dimensional cube [vl,vh]
n and

also lies at the intersection of all the simplexes of the permutation regions (equation 6.4) and

does not affect the asymptotic order of components of x. Hence all the other eigenvectors

decide the asymptotic order and lie in the non-positive quadrants. The eigenvectors of

B with least negative eigenvalues (which are the eigenvectors of A with most negative

eigenvalues) have components which are equal on each color class (Appendix A.1.1) and

hence should direct the system towards a correct vertex color-sorting in state s = 0. We

also know that all the eigenvalues of the coefficient matrix in the state s = 0 are negative,

and hence, if the system starts with the correct order of components, i.e. T (x0) = Q0(x0)

then the system state x will continue to lie in the same permutation region with time.

Explanation for condition 2: Assuming very fast charging and using the instantaneous

charging approximation, we see from Proposition 6 that the state transition ∆x is in the

direction of the kth column vector of B when the kth node charges. As shown in appendices

A.1.2 and A.1.3, in case of weak coupling, i.e. ci� cc the kth column vector is constant for

all non-charging components and hence ∆x does not change the order of the non-charging

components. The variation in the non-charging components of ∆x is inversely propotional

to n+m and hence with larger n and m the charging transition x→ x+∆x tries to preserve

the order of non-charging components more (Appendix A.1.3). As shown in figure 6.7 the

effect of charging transitions can be seen as small kinks in the waveforms of non-charging

components. The magnitude of these kinks is negligible for weak coupling (a), and is

clearly visible for stronger coupling (c). Even though the charging transitions affect the

non-charging components in the case of a stronger coupling, the order of non-charging

components is not disturbed, i.e. the change in all the non-charging components is almost
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the same (Appendix A.1.3).

Explanation for condition 3: If the system state x is close to the eigenspace of B with

least negative eigenvalue, say E1, then x has components which are close for the same

color class (Appendix A.1.1) and components of different color classes will have more

separation between them by comparison. If the components of x are ordered in increasing

order then it will have a pattern {xa1,xa2, ...,xb1,xb2, ...,xc1,xc2, ...}, where ai are the indices

for one color class, bi for another etc. If the order among the color classes is changed, say

{xb1,xb2, ...,xa1,xa2 , ...,xc1,xc2, ...} even then x will be close to the eigenspace E1 because of

the multiplicity of the least negative eigenvalue (Appendix A.1.1). The charging transitions

of nodes of the same color class will occur consecutively with little time durations between

them. This little time does not allow the system state s = 0 which occurs between these

transitions to change the order. When all nodes of one particular class have undergone

charging processes, the system state x again comes close to the eigenspace E1 because the

components of x belonging to the same color class are again close to each other. Hence, the

state s = 0 does not disurb this order as well. The cycle repeats with very fast consecutive

charging processes of the next color class. This also gives rise to clustering of the phases

of nodes w.r.t. their color classes.

Adjacency matrices of non-simple graphs can be considered as perturbations to the

prototypical cases of complete graphs, and using perturbation theory of matrices we can

say that the eigenvectors of perturbed matrices are rotations of the original eigenvectors

[92], where the extent of rotation depend on the amount of perturbation. Hence, even in

non-simple cases, the eigenvectors with most negative eigenvalues of the adjacency ma-

trix will tend to have components which are close to each other within the same color

class and away from those of different color classes. This property has been explored with

mathematical detail in works related to spectral algorithms for graph coloring [Alon:aa,

Aspvall:aa, McSherry:aa]. When viewed from the perspective of a coupled relaxation
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Figure 6.7: Simulation waveforms of a coupled relaxation oscillator circuit connected in a
complete 3-partite graph with 3 nodes in each color class for different ci/cc values (a) 100,
(b) 10, and (c) 2. As can be seen, the charging transitions do not affect the non-charging
components of the state vector xin case of weak coupling (a). In case of stronger coupling
(c), even though the charging transitions affect the non-charging components (seen as small
kinks in the waveforms), the order of non-charging components is undisturbed.
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oscillator system of (6.2), the above mentioned property of eigenvectors of the adjacency

matrix A with most negative eigenvalues will be shared by the eigenvectors of B with the

least negative eigenvalues because of Proposition 1. As shown above, the asymptotic or-

der of components of the system state in the discharge phase s = 0 of coupled relaxation

oscillator systems depend on the least negative eigenvalues of B. Hence, the relaxation os-

cillator systems in state s = 0 is expected to direct the system towards correct vertex color

sorting, which satisfies condition 1 of Proposition 8. Conditions 2 and 3 also depend on

eigenvectors and hence similar arguments of matrix perturbation can be applied. This also

explains why vertex color-sorting using the coupled relaxation oscillator circuit becomes

less optimal as graphs become sparse. This is known to be true for spectral algorithms as

well as heuristics that dense graphs are easier to color than sparser ones.

6.2.1.7 Simulation Results and Performance Assessment

We simulate the dynamical system as described by (6.3) for random graph instances of 3-

colorable graphs. The initial conditions are chosen at random x0 ∈ [0.35,0.65]n and s = 1

at t = 0 because all oscillators are in charging state when the power is switched on. Without

loss of generality, vl and vh are chosen as 0.2 and 0.8. To assess the performance of such

circuit on random graphs, we use a random graph generation model G(n,k, i) to generate

instances of colorable k-partite graphs with total n nodes. The graphs are generated by

first choosing a random k-partition of n nodes, then creating a complete k-partite graph

with this k-partition and finally removing random i number of edges from this complete

graph. Average connectivity is defined as the ratio of total number of edges in the generated

graph G(n,k, i) to the total number of edges in the complete k-partite graph with the same

partition.

As is true with hard problems, even in graph coloring problems no heuristic algorithm

works best for all graph instances [93]. Also different heuristics work better for different

instances, and hence no single order parameter can account for the hardness of an instance
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of a graph coloring problem [94–96]. The most commonly used order parameter is average

connectivity [97]. We use this parameter to account for the hardness of the problems being

solved and observe how a coupled relaxation oscillator network behaves for problems with

varying levels of average connectivity. Observations are made particularly about the cluster

diameter, the number of colors detected and the settling time, which are defined as follows.

When the coupled oscillator circuit settles to a correct color-sorting, the phases of oscil-

lators or nodes with the same color form a cluster for many graphs, esp. the dense graphs.

The maximum phase difference of two oscillators in the same cluster, i.e. with the same

color, is called the cluster diameter. The number of colors detected is calculated using the

order of charging spikes at the end of the finite time period for which the circuit is sim-

ulated. Settling time is the defined as the time after which the number of colors detected

does not change till the end of the simulation time.

Figure 6.8 gives a visualization to how the order of charging spikes evolves with time

for 3 different graphs of 20 nodes with decreasing average connectivity. All three graphs

are 3-partite with partition (8,2,10). For a single simulation instance, we note the order

of charging spikes at various time instances and associate a unique number (within a sim-

ulation instance) to each permutation. A plot of this permutation number with time shows

how the order, or permutation, of the charging spikes evolve with time. Figure 6.8 shows

this plot along with plot of the number of colors detected using the order of charging spikes

at various times. Figure 6.8a shows the typical case of a complete partite graph where

the order of charging spikes settles quickly to a correct color-sorting, and the number of

colors detected falls quickly to the minimum number of colors (3 in this case). Figures

6.8b and 6.8c show graphs with lower connectivity but the same partition structure. We

make two observations. Firstly, even after the number of colors detected settles down, the

permutation or order of charging spikes can evolve. Secondly, figure 6.8c shows lower

number of colors detected than figure 6.8b but the settling time is higher for figure 6.8c.
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Figure 6.8: (Above) Graph diagram and (below) waveforms of permutation number (a
unique number corresponding to each permutation) of charging spikes and number of colors
detected with time. All graphs are 3-partite with partition (8,2,10) with varying levels of
average connectivity: (a) 1.0, (b) 0.57 and (c) 0.48. All triangles in the graph are shown
with red edges and the rest edges are shown in blue.
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Figure 6.9: (a) Maximum cluster diameter for those graphs for which 3 colors were de-
tected. (b) (Top) Number of colors detected plotted against the average connectivity. (Be-
low) Mean colors detected in connectivity intervals. (c) (Top) Settling time plotted against
the average connectivity. (Below) Mean settling time in connectivity intervals. (d) Number
of colors detected using the relaxation oscillator circuit plotted against number of colors de-
tected using Brelaz heuristics for the random graph instances used in b and c. Each graph
instance represents a point whose coordinates are denoted by the pair of colors detected
using the two methods. The size of dots represents the percentage of instances which lie at
the center of corresponding dot.

As such, both settling time and number of colors detected can be considered as imperfect

order parameters for hardness of graph coloring just like average connectivity.

Figure 6.9 shows the performance of such network on random graph instances. We

generate 3-partite graphs using G(10,3, i), G(20,3, i) and G(30,3, i) with increasing values

of i. The graphs which become bipartite after removing i edges are discarded. Various met-

rics to evaluate the circuit output are plotted against average connectivity. We see that as

graphs become sparse with decreasing average connectivity, the cluster diameter increases

(figure 6.9a). This comparison is made only among those graphs where the final phases are
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clustered correctly into 3 clusters, i.e. the number of colors detected is 3. When graphs are

dense and closer to being complete partite, the possibility of them being optimally colored

with 3 colors is high, and the settling time on average is less (figure 6.9b,c). As graphs

become sparser, the number of colors detected (figure 6.9b) as well as settling time (figure

6.9c) increase statistically on average. It also follows our intuitive understanding that hard

computational problems remain hard even under domain transformation, albeit with poten-

tial practical implications such as increased energy-efficiency and performance benefits of

continuous time systems over their digital counterparts. A comparison of colors detected

from simulating the coupled oscillator network with that using Brelaz Heuristics [98] (fig-

ure 6.9d) shows the effectiveness of the circuit as a tool to approximate the minimum graph

coloring problem. Number of colors detected by simulating sample graphs from the sec-

ond DIMACS implementation challenge [99] are shown in Table 6.1, where for certain

instances we note that the dynamical system outperforms heuristic algorithms.

As such, it is established that a system of capacitively coupled relaxation oscillators can

perform graph coloring, which is a commonly studied and practically useful combinatorial

optimization problem. Further, the connection between system dynamics and the order

of steady state phases of oscillators with spectral techniques for graph coloring has been

discussed and it shows an innate, yet, hitherto unexplored, connection between the time

evolution of dynamical systems and computationally hard problems that have solutions or

approximations in the spectral domains.

6.2.1.8 Experimental Demonstrations

As was done in previous experiments, a relaxation oscillator is constructed by exploiting

the electrically induced large and abrupt change in resistance across the insulator-to-metal

transition (IMT) in Vanadium Dioxide (VO2) [34, 35], and stabilizing it with a negative

feedback from a series conductance gs.
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Table 6.1: Comparison of the number of colors detected using Brelaz heuristics with those
detected using a coupled relaxation oscillator circuit for various graph instances from the
second DIMACS implementation challenge.

Graph Number of
Nodes

Chromatic
Number χ

Brelaz
Heuristics

Coupled
Oscillator

huck 74 11 11 12

myciel3 11 4 4 4

myciel4 20 5 5 5

myciel5 47 6 6 6

myciel6 95 7 7 8

david 87 11 11 13

queen5_5 25 5 7 6

queen6_6 36 7 10 12

queen7_7 49 7 12 12

queen8_8 64 9 15 14

DSJC125 .1 125 - 8 9

DSJC125 .5 125 - 24 34
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Figure 6.10: (a,b) Schematics of two representative configurations (a: delta configuration;
b: cross-connected ring) of capacitively coupled VO2 based oscillators, and their corre-
sponding graphs. (c,d) Time domain waveforms from experiment and simulations for the
two coupled oscillator configurations in (a,b), respectively, showing that while the oscilla-
tors are synchronized in frequency, no two directly coupled oscillators are in-phase. This
important property of the coupled oscillator system enables graph coloring. (e,f) Time av-
eraged XNOR of thresholded outputs of oscillators (each w.r.t. oscillator number 1), and
respective polar phase plots showing steady state relative phases detected using PFDs. The
XNOR values are normalized with respect to the maximum value.

Figure 6.10 shows two representative configurations of graphs (figure 6.10a: delta con-

figuration; figure 6.10b: cross-connected ring configuration) along with their equivalent

implementations using coupled oscillators. The respective time domain waveforms of the

oscillators (figure 6.10c,d) reveal a unique relationship among the phases of the oscillators:

there is a distinct non-zero phase difference between any two directly coupled oscillators.

This is because the nature of capacitive coupling among the relaxation oscillators ensures

that two adjacently connected oscillators will tend to force each other out of phase. Ad-

ditionally, when an oscillator is connected to multiple other nodes, the net phase of the
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oscillator is the aggregate of the ‘repelling effect’ of all the other connected oscillators. As

such, in the light of vertex coloring, such a circuit is expected output phases which are

clustered by color, i.e. oscillators with the same color have phases which are close together.

But such an interpretation of oscillator phases is weak and is difficult to apply for most

cases of graphs which either do not have well clustered phases or have incorrect clusters.

Our interpretation of outputs as color-sorting solves all these problems and is well defined.

As will be discussed in the next section, the combined repelling effect in a network of oscil-

lators gives special properties to the order of phases of oscillators in steady state, viz. they

approximate minimum vertex-color-sorting. As discussed earlier, this steady state ordering

of phases is then used to calculate a vertex-coloring.

Since the oscillators in this work are non-sinusoidal in nature, the steady state phase dif-

ferences among the coupled oscillators can be calculated using phase-frequency detectors

(PFDs) or the time-averaged XNOR metric as discussed in previous chapters. The time-

averaged XNOR measure of any two oscillator outputs is calculated by first thresholding

the outputs to binary valued waveforms and then taking the average difference in time of

these thresholded waveforms over the complete steady-state periodic orbit of the system.

The time-averaged XNOR metric is proportional to the absolute value of phase difference

between the oscillators, and hence it does not differentiate between lead or lag. Figures 3e,f

show the relative phases detected using a PFD (shown using the polar phase plots) and the

XNOR measures of each oscillator with respect to a common reference oscillator (shown

as bar graphs).

Next, we experimentally investigate the coloring of some other graph configurations

with up to five vertices, using the system of VO2 based oscillators (figure 6.11). The cou-

pled oscillators are configured to represent the respective graphs as discussed earlier, and

the corresponding values of the time-averaged XOR along with the respective phase plots

of the oscillators are shown in figure 6.11. It can be observed that the hardware is able to

optimally color all the graphs investigated here.
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Chapter 7

N E T W O R K M O D E L S

There has been lot of work asserting graph coloring (or some other form of clustering) capa-

bilities of network dynamical systems, ranging from linear dynamics to coupled oscillator

networks to neuron models. One reason is because the relationship of network models to

coloring, or clustering, have much more general and common underlying principles. This

underlying principle arises from the basic notion of framing the graph coloring problem as

a minimization problem, the key elements to which are (a) the cost function, and (b) the

constraints. The next section describes such formulation of the coloring problem and two

other equivalent problems, their approximations, and their continuous vector relaxations.

These vector relaxations are closely related to the network dynamical systems mentioned

above, and as such represent the common principles that impart graph partitioning capabil-

ities to steady states of network dynamical systems. The steady states of the IMT coupled

oscillator systems are compared to two such vector relaxations - Spectral and Rank con-

strained SDP - and it is shown that for some connectivity patterns, the steady states of the

coupled oscillator system resemble and encode solutions to these relaxations. The solution

to the Spectral relaxation is the eigenvector of the adjacency matrix with most negative

eigenvalue, and as such the IMT coupled oscillator model encodes an eigenvector of the

adjacency matrix in its steady state.

7.1 B AC K G RO U N D

7.1.1 Colors, Cuts, and Clusters

Vertex coloring [100] (or graph coloring) of a graph is defined as assigning a unique color

to each node such that no two connected nodes receive the same color. The minimum

vertex coloring problem aims to achieve this by using minimum number of total colors.
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The minimum number of colors for a graph is called the chromatic number χ(G). Given an

undirected graph G with n nodes, let the edge set be E and vertex set be V . The graph can

be described using an adjacency matrix A = {wi j} which has 0/1 elements wi j depending

on which edge is present in A, and is symmetric. We need to find an assignment of colors

c ∈ Zn. Let δ denote the knonecker delta function defined on Z, where

δ (a,b) =


0 a = b

1 a 6= b
, a,b ∈ Z

As such, the minimum graph coloring problem can be framed as follows:

min
c∈Zn

distinct(c)

s.t. wi j
(
1−δ (ci,c j)

)
= 0 ∀i, j ∈V (7.1)

Another formulation of coloring is to fix the number of colors to say k, i.e. distinct(c) =

k and find a feasible solution. This problem is called k-coloring. But k-coloring is feasible

only if k≥ χ(G), and hence, k-coloring has to be preceded by the question of k-colorability,

which is to find whether k ≥ χ(G). k-coloring and k-colorability can be considered in a

combined manner in the following way. We can move the constraints to the objective by

trying to minimize the number of violated constraints, which gives

min
c∈Zn ∑

i, j∈V
wi j
(
1−δ (ci,c j)

)
s.t. distinct(c) = k (7.2)

where ∑wi j
(
1−δ (ci,c j)

)
is the number of violated constraints, also called defects, i.e.

number of monochromatic edges. This formulation does not need us to consider k-colorability
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separately, because if the graph is k-colorable the optimal solution above is 0, and the ar-

gument c is the coloring. On the other hand, if the optimal solution is not 0, the graph

is not k-colorable, but in this case, we get an approximate k-coloring which violates the

minimum number of constraints. In this paper, we will refer to (7.2) as the minimum defect

k-coloring.

A closely related problem to coloring is the cut cover problem. For any graph G=(V,E)

as above, a cut is defined as a partition of vertices into 2 sets such that every edge has its

one end in one set, and the other end in the other set. It is obvious that a cut is exactly

same as 2-coloring the graph. This can be extended to the k-cut cover problem as follows.

A k-cut cover is partitioning the vertices into k sets such that every edge has its end in any

two different sets. As such, a cut cover is equivalent to a coloring.

The number of cuts in a cut-cover is called the cardinality of the cut cover. The minimum

cardinality cut cover problem is to find a cut cover with minimum number of cuts, and the

minimum cardinality of any cut cover for a graph G is usually denoted by c(G). It can be

seen that the minimum graph coloring problem is exactly same as the minimum cardinality

cut cover problem. The relationship between c(G) and χ(G) can be written as [101]:

c(G) = dlog(χ(G))e (7.3)

This relationship can be derived by constructing a coloring using a cut cover. If we have

a cut cover with p cuts, then let us assign a binary vector xi of dimension p to each node

i. Also, let us say that every cut divides the vertices into two sides - left side (0) and the

right side (1). Now for every cut j, assign the jth component of xi to 1 or 0 depending on

which side of the cut the node lies. Using this process, we have assigned a p dimensional

binary vector to every node such that no two nodes connected by an edge recieves the same

vector. If every binary vector used in the graph is mapped to a unique color, then we have a

valid coloring with colors no more than 2p. Similary, a cut cover can be easily constructed
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using a coloring. Based on these conversions, we can get the equality of (7.3) as was done

in [101].

The relationship of the above two problems with cliques is also a simple deduction.

Coloring a graph is same as finding cliques in the complementary graph. This is because

in a coloring, if we consider the nodes with the same color, none of them are connected.

This means in the complementary graph, they all will be connected to each other. To define

it formally, every coloring corresponds to a clique-partition, which is a covering of all the

vertices using cliques, in the complementary graph. Hence, minimum graph coloring is

equivalent to the minimum clique partition problem in the complementary graph where the

number of cliques has to be minimized. Approximation of clique partition is in general

referred to as graph clustering [102], where the task is to group the vertices into clusters in

such a way that there should be many edges within each cluster and relatively few between

the clusters.

The importance of considering clique partitions is that it relates the clustering problems

to coloring problems. The most ideal clustering problem would be formulated on graphs

made of disjoint cliques, where each clique is a cluster. What is less obvious is the relation-

ship of approximations of clique partition to those of coloring and cut covers, and in turn

their relationship to continuous network dynamical systems.

7.1.2 Vector relaxations

The coloring problem can be relaxed by assigning vectors instead of colors to each node.

This is called vector coloring. The notion of distinct colors is captured by inner prodcts,

where two vector colors are considered different if they have low inner product. Finally, the

last step is to convert a vector coloring to a coloring, i.e. partition the vectors {vi} into k

clusters, which can be done by any usual clustering algorithm like the K-means algorithm.
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As such, we arrive at the well-known semidefinite relaxation of max-k-cut [103]:

min
vi∈Rn ∑wi jvi ·v j

s.t. 〈vi,vi〉= 1 ∀i ∈V

(7.4)

Although this process converts a coloring problem, which itself is a form of clustering,

to another clustering problem, the preprocessing with the inner product based semidefinite

program helps cluster the vertices more closely. To see this, lets consider coloring as a

connectivity based clustering problem without the above inner product preprocessing. This

can be done by assigning the ith column of the {1,−1}-adjacency matrix of the graph as the

vector-color of the ith node and then perform the same clustering. Consider two adjacent

nodes i and j and their respective vectors (columns) wi and w j from the adjacency matrix.

Their inner product can be as high as (n−4)/n which is much larger than−1/(k−1) which

is targeted by the kind of preprocessing mentioned above.

The other comon vector relaxation of graph coloring is the spectral relaxation [89]

which aims to find a coloring using eigenvectors of W = {wi j} (the adjacency matrix)

which have the most negative eigenvalue(s). For instance, to 3 color a graph, this method

finds two eigenvectors of the adjacency matrix with the most negative eigenvalues and uses

their components to assign a 2D vector to each node which is used for coloring. Similar

spectral relaxation for clustering also exists [104].

7.1.3 Continuous network dynamics

Many continuous dynamical systems for computing have been proposed, some of which

are a model of a physical system and some aren’t. A majority of these systems are pro-

posed for graph partitioning. In this section we review the common properties of some of

these dynamical systems and their connection with the relaxations described in the previous

sections.
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7.1.3.1 Linear Dynamics - Raleigh Quotient Gradient Flow

A gradient descent dynamical system for the spectral relaxation can be easily created to

find the eigenvectors vi of W by minimizing the function:

vi = argmin
x

xTWx
xT x

which yields various vi as local minima. Here, xTWx/xT x is also called the Rayleigh

Quotient, and the corresponding gradient descent the Raleigh Quotient Gradient Flow.

Although simple to write, this gradient descent dynamical system is very difficult to con-

struct in a hardware mainly because of the normalization xT x in the denominator which is

a global function.

It is important to note here that for clustering, usually the eigenvectors of the Laplacian

matrix are used instead of the Adjacency matrix. This is because usually the interpretation

of clustering is not the minimum clique partition which uses ∑wi jvi · v j as the objective

function, but instead another interpretation which uses (1/2)∑wi j(vi−v j)
2 as the objective

function. It can be easily seen that:

1
2 ∑wi j(vi−v j)

2 = ∑ li jvi ·v j

where L = {li j} is the Laplacian matrix. As such, in this interpretation of clustering,

the spectral properties of the laplacian matrix are the solutions for clustering. Due to this

importance of eigenvector of Laplacian matrix, the second eigenvector of the Laplacian

matrix is called the Fiedler vector [104].

7.1.3.2 Lattice Models

Lattice models are models about solid state lattices, which assume some simplistic interac-

tion behavior between neighboring atoms or molecules to explain macroscopic phenomena.

Although the graphs involved in these lattice models are only neighborhood lattice graphs,
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we will be considering these models over general graphs. This also highlights that the kinds

of models used in various fields are very similar, but vary only in few characteristics, like

the connectivity graphs. Such simplistic assumptions in the initial works on lattices were

justified because the major objective was to find some “mean” critical properties at the

macroscopic level arising from the microscopic interactions. The details of nature of inter-

actions at the microscopic level does not have significant effects on the mean macroscopic

properties. It should be noted that when the focus is shifted from the mean macroscopic

properties to computing behavior, we are looking for complex details even at the macro-

scopic level, and as such, simplifying assumptions about interactions and universality may

no longer be justified.

One particular example of a lattice model which will be used here is the XY model.

The XY lattice model is a 2D lattice model, which means each lattice point is associated

with a 2D vector, say vi and the overall energy of the physical system is assumed to be

∑wi jvi ·v j. The ground state is the stable state of the lattice when the energy is minimized.

As such, this model is equivalent to the relaxation model of 7.4 as discussed above with

he additional constraint that the number of partitions is 3 (because the dimension of vi is

constrained 2). As such, it is exactly a Rank-2 constrained Semidefinite Program.

7.1.3.3 Coupled oscillators

As we are discussing coupled oscillators, it is imperative to consider already existing cou-

pled oscillator models. Also, there have been some incomplete studies indicating some

coloring capabilities in the phase dynamics of these models. Here, it is shown why they

are incomplete, how can they be made complete, and how these models are essentially

equivalent to the XY models discussed above. The most commonly known model is the

Kuramoto model. This model assigns a single scalar θi to each node (or oscillator) which

is the phase of the oscillator. As such, the complete state of the coupled oscillator system

can be described by the phases θi. The time evolution of the phases of each oscillator is

112



given by:

∂θi

∂ t
= fi +∑

j
wi j sin(θi−θ j)

where wi j is the connection between ith and jth nodes as before and fi is the intrinsic

frequency of ith oscillator. With some transformations, it can be seen that this model is

exactly the gradient descent of the XY model, as shown below. The frequencies fi are

assumed equal for all i, i.e. fi = f , ∀i.

As vi are 2 dimensional unit vectors in the XY model, they can be written as vi :=

(cosφi,sinφi). Also, vi ·v j = cos(φi−φ j). Hence, the energy function for the XY models

is

EXY = ∑
i

∑
j<i

wi jvi ·v j = ∑
i

∑
j<i

wi j cos(φi−φ j)

and the gradient descent for this energy is

∂φk

∂ t
=−∂EXY

∂φk
= ∑

i
wki sin(φk−φi)

It can be easily seen that this gradient descent is equivalent to the Kuramoto model with

a simple change of variables - θi(t) = f t +φi(t).

7.2 T H I S W O R K

7.2.1 Characterizing IMT coupled oscillators as a network model

As discussed in the above section, there are two simplest dynamical system network mod-

els whose steady states correspond to some kind of graph partitioning. As the circuit for

the IMT coupled oscillator system is also a very simple circuit with elements of linear dy-

namics, it would be useful to compare the above discussed two models - Linear, and XY

(Kuramoto) model, with the IMT coupled oscillator model in terms of their similarity of
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Table 7.1: Comparison of various dynamical systems, their analogous algorithms and their
energy landscape

Dynamical
System Algorithm Vector output Energy

landscape

Raleigh Quotient
Gradient Flow

Gradient descent
of Spectral
relaxation

Eigenvector
closest to initial

vector

Non-Convex, but
with fixed (<=n)
number of local

minima

Kuramoto (XY)
Gradient descent

of Rank-2
constrained SDP

Ground state of
XY converted to

polar form as
single vector of
oscillator phases

Non-Convex

Hysteresis + R -

Steady state spike
times with

reference to the
first spike in the

limit cycle

Non-Convex

local minima, basins of attraction, and performance of coloring. This comparison also high-

lights whether the basic elements present in the simplest network models are present in the

IMT coupled oscillator model which impart coloring capabilities to its steady state. These

models are summarized below. All these models have non-convex energy landscapes, and

as such for comparison the direction of the initial vector for simulations is chosen the same

- [1,1,1, ...]. This initial vector also represents the bias, or prior information we have about

coloring the given graph, and a vector of 1s represent no bias. As they all produce a vector

output, with one scalar associated with each node, the post-processing of this vector output

for coloring is exactly the same for all models.
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7.2.1.1 Similarity of local minima

To compare the similarity of solutions, we first create random graphs using the same ran-

dom graph model as in previous chapter G(n,k, i) to generate instances of colorable k-

partite graphs with total n nodes. The graphs are generated by first choosing a random

k-partition of n nodes, then creating a complete k-partite graph with this k-partition and fi-

nally removing random i number of edges from this complete graph. Average connectivity

p is defined as the ratio of total number of edges in the generated graph G(n,k, i) to the total

number of edges in the complete k-partite graph with the same partition. For this compari-

son, we generate graphs with n= {50,100,150,200}, c= {3,5,7,9}, p= {0.5,0.6, ...,1.0},

50 random partitions for each c and 5 initial conditions for each graph. For each graph, we

run the 3 models using 5 initial conditions chosen at random x0 ∈ [0.4,0.6]n.

B A S E D O N P L A N T E D PA R A M E T E R S Figures 7.1 and 7.2 show the inner products

between the models and how the distributions of these inner products change as the struc-

ture of the adjacency matrix varies. The adjacency matrix derives its stucture from the

planted partition model, and hence its structure inherits 2 basic parameters from the gen-

eration model - the number of planted partitions (colors) and the edge density. As can be

seen, for 3 partitions, the inner products of the 3 models are high (angles are low) and as

the number of partitions increase, the angles increase. Also, the edge density affects the

inner products, where complete partite graphs have higher inner products which decrease

as the edge density reduces.

B A S E D O N T H E A D JAC E N C Y M AT R I X The analysis using planted parameters are

based on prior information about the random generating model. Here we restrict to poste-

rior information of the given adjacency matrix, which is to say restricting to some function

of the adjacency matrix A itself, without considering the planted parameters. The previous

observation about the dependence on the planted parameters imply that rank of A would be
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Figure 7.1: Scatter plots with marginal histograms of inner products of IMT oscillator
model with linear and XY models for 200 nodes with (top) 3 colors and (bottom) 5 colors
in the planted partition model.

116



de
ns

ity

0

15

30

45

60

75

90
xy

−
os

c

0

15

30

45

60

75

90

0.5

0.6

0.7

0.8

0.9 1

0 15 30 45 60 75 90

0 15 30 45 60 75 90

l−osc
density

0.5

0.6

0.7

0.8

0.9

1

de
ns

ity

0

15

30

45

60

75

90

xy
−

os
c

0

15

30

45

60

75

90

0.5

0.6

0.7

0.8

0.9 1

0 15 30 45 60 75 90

0 15 30 45 60 75 90

l−osc
density

0.5

0.6

0.7

0.8

0.9

1

Figure 7.2: Scatter plots with marginal histograms of inner products of IMT oscillator
model with linear and XY models for 200 nodes with (top) 7 colors and (bottom) 9 colors
in the planted partition model.
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a good metric for characterizing the inner products. But the rank of a matrix is a discrete

function which is also very sensitive to matrix elements.

Instead of rank, we can look at some relaxations of rank like the nuclear norm ||A||∗.

Figure 7.3 shows vosc ·vl plotted against the nuclear norm ||A||∗. We define another kind of

norm of the adjacency matrix ||A||tre which gives better predictability as shown in the same

figure. These norms are defined as

||A||tre = log(tr(e−A)) = ∑
i

e−λi

||A||∗ = tr(
√

AT A) = ∑
i
|λi|

where λi are the eigenvalues of the adjacency matrix.

7.2.1.2 Coloring performance

We can also compare the coloring performance of the three models. We find the number of

colors detected for each graph and x0 for the three models. These graphs are grouped into

classes of {n,c, p}. For each class, we note the number of instances when IMT oscillator

system achieves minimum colors as minosc. Similarly minl and minxy are defined. For ties

between 2 models, 1/2 points are counted for each model, and for 3-way ties 1/3 points

are counted. As such, we arrive at a triplet {minosc,minl,minxy} for each class. Note that

minosc +minl +minxy = k for a constant k which is same across all classes. As such, we

can make a ternary plot of the these points as shown in Figure 7.4 where each point denotes

a class, colored by the edge density p. An interesting observation here is that if we find the

quantity logc n for each class, then as this quantity decreases, the points shift more towards

minosc, i.e. for larger logc n the IMT oscillator model performs better. This is shown as

arrows on the lines joining the classes with the same p.
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Chapter 8

T OWA R D S A C M O S I M P L E M E N TAT I O N

This chapter deals with the challenges in designing a CMOS coupled oscillator chip. The

major objectives of this design are:

1. 100 Oscillators - Schmitt trigger oscillators which resemble the D-D kind os oscilla-

tors discussed earlier.

2. All-to-all connectivity - Each oscillator is capacitively coupled to all other oscilla-

tors.

3. Programmable connections - Each connection is programmable, i.e. the capacitive

coupling can be switched on/off.

8.1 D E S I G N C H A L L E N G E S

This kind of design has following challenges:

1. This is an analog-on-top design, which means the whole circuit is a big analog block,

as opposed to different analog blocks interacting digitally. The current EDA tools

cannot automate the placement and routing of the number of analog blocks in a 100

coupled oscillator chip. For instance, the number of coupling blocks in a 100 all-to-

all connected coupled oscillator circuit is 1/2×100×99 = 4950.

2. All-to-all connectivity for 100 oscillators with 4950 connections can be very hard

to implement physically on a 2D chip with limited number of metal layers. Also

ensuring symmetry, like the length of connection wires between the oscillators can

be very challenging.
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3. As the circuit involves switching, the simulation complexity and time increases a

lot with the number of oscillators. Also, the number or test instances (adjacency

matrices) are too many to run simulations for verification.

4. The parameter space (coupling capacitances, oscillator frequencies, oscillator inter-

nal capacitances and resistances etc.) have to be explored with respect to the final

computational outcome of either graph coloring, or eigenvector computation, using

the synchronized phases. It can be hard to exactly define the metric that distinguishes

better parameters from the worse ones.

5. Characterizing the effect of noise on the steady state synchronization of oscillators

can be very hard.

8.2 O S C I L L AT O R D E S I G N

A schmitt trigger oscillator was chosen as the oscillator design because it resembled the

D-D oscillator configuration, and hence would show similar switched linear network dy-

namics as the IMT coupled oscillators analysed before. The usual schmitt trigger oscillator

was modified to increase the oscillation amplitude as shown in Figure 8.1.

8.3 L O A D E R C I R C U I T

As mentioned in Chapter 6, loading capacitances are needed at each oscillator node to

convert the Laplacian coefficient matrix to Adjacency matrix. This loader circuit is shown

in Figure 8.2, which is a programmable bank of capacitors and is programmed based on

the input Adjacency matrix.

8.4 P H A S E M E A S U R E M E N T

The phase measurement is done by using a fast clock and counting the number of clock

cycles it takes from a reference time point (specified by a step signal M) to the first edge
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Figure 8.1: Modified schmitt trigger and corresponding oscillator schematic

Phase Pulse Generator

D Q
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2
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Figure 8.2: The loader circuit is a programmable bank of capacitors
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Figure 8.3: Phase measurement using a reference signal M
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Figure 8.4: The programmable capacitive coupling block

of the square wave output of each oscillator. The circuit of this phase read out is shown in

Figure 8.3.

8.5 C O N N E C T I V I T Y A R R AY

The connectivity array is the most challenging part of this design because connecting all

100 oscillators to all other 100 oscillators is challenging on a 2D chip with limited number

of metal layers available for routing. The programmable coupling circuit is shown in Figure

8.4. To achieve all-to-all connectivity, instead of arranging oscillators in a grid, they need to

be arranged in a line as shown in Figure 8.5. This makes it possible to place the connectivity

blocks in a triangle pattern which resemble the lower triangle of the adjacency matrix as

well. After the placement, the routing can be done by connecting the oscillator outputs to

the loader circuit as well as the corresponding rows of the connectivity array.
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Figure 8.5: The conectivity array designed by placing the oscillators in a line

8.6 C O U P L E D O S C I L L AT O R N E T W O R K

The overall floorplan and architecture of the complete coupled oscillator circuit is shown

in Figure 8.6. The final chip layout is shown in Figure 8.7, and the die shot is shown in

Figure 8.8. At the time of writing this thesis, the measurement data was not available.
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Figure 8.6: Floorplan of the coupled oscillator network

Figure 8.7: Physical design layout of the coupled oscillator chip
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Figure 8.8: Die shot of the coupled oscillator chip
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Appendix A

M AT H E M AT I C A L R E S U LT S

A.1 T H E C O E F F I C I E N T M AT R I X I N P ROT OT Y P I C A L C A S E

In this section we give an analytical treatment of the structure of the coefficient matrix and

its eigen spectrum in the prototypical case. We consider the prototypical case where the

graph is complete and the number of nodes in each color class is equal. When n identical

oscillators with internal capacitances ci are connected in a k-partite graph, and the coupling

is purely capacitive with same coupling capacitances cc used for all pairs, then the system

evolution is described as in equation 6.2. In the simple case when each partition has equal

number of nodes m = n/k, then more can be said about the coefficient matrix B = (ciI−

ccA+ ccnI)−1. Let F = (ciI− ccA+ ccnI)−1 so that B = F−1. Then F can be written as a

repeated partitioned matrix as

F =U⊗G+V ⊗E

where ⊗ is the kronecker product of matrices, U and V are k× k matrices, G and E are

m×m matrices, and the matrices are given by

U = cicIk

G = Im

V = Ik− Jk

E = ccJm

with Im being the m×m identity matrix, Jm the m×m matrix with all ones, and cic =

(ci +ncc).
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A.1.1 Eigenvectors of B in prototypical case

For n nodes and k color classes, let U be a n×m matrix where each column vector corre-

sponds to one color class where the components of that particular class are k/n and rest

are 0. As such, UT AU is a k× k matrix with each entry equal to the average of entries

of the corresponding block in A. In the simple case of complete graph with equal number

of nodes in each class, UT AU = J− I where J is a square matrix of all ones and I is the

identity matrix. If x is an eigenvector of UT AU then

UT AUx = λx

UUT A(Ux) = λ (Ux)

Now UUT A is just the scaled version of A and hence,

αA(Ux) = λ (Ux)

Therefore if x is an eigenvector of UT AU then Ux is an eigenvector of A. Also the

number of non-zero eigenvalues of A are k which is equal to the rank of UT AU which is

full-rank. Hence all the eigenvectors of A can be described using the eigenvectors of UT AU

and they have equal components in a single color class. J− I has an eigenvalue −1 with

multiplicity n− 1, and an eigenvalue n− 1, and so does A. Now the eigenvectors of B

with the least negative eigenvalues are same as that of A with most negative eigenvalues

(Proposition 1). Hence, the eigenvalues of B with least negative eigenvalues are constant

on each color class.
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A.1.2 Structure of the inverse of F in prototypical case

Proposition 9. If F = (ciI− ccA+ ccnI) is the coefficient matrix of the network, then B =

F−1 has the same partitioned form as F. More precisely, B = F−1 can be written as

F−1 =
1

cic

(
1

cic
U⊗G+D⊗E

)

where U, G and E are the same matrices that describe F, cic is as defined above, and D is

a k× k matrix given by

D =
1

ci +(n+m)cc
(βJk− Ik)

and

β =
ci +ncc

ci +mcc

Proof. As described above, F =U⊗G+V ⊗E. Here G is a identity matrix and E is a rank

1 matrix. Hence, as shown in [105], the inverse for F can be calculated as

F−1 =U−1⊗G− [U +(trE)V ]−1VU−1⊗E

Now,

trE = mcc

U−1 =
1

cic
Ik

VU−1 =
1

cic
(Ik− Jk)

[U +(trE)V ]−1 = [U +mccV ]−1

= [(ci +(n+m)cc) Ik−mccJk]
−1

:= [P−Q]−1
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As Q is a rank 1 matrix, we can use another result from [105]:

[U +(trE)V ]−1 = [P−Q]−1

= P−1 +
1

1− trQP−1 P−1QP−1

=
1

ci +(n+m)cc
Ik +

1
1− ncc

ci+(n+m)cc

1

(ci +(n+m)cc)
2 mccJk

=
1

ci +(n+m)cc

(
Ik +

mcc

ci +mcc
Jk

)

Combining the parts, and noting that J2
k = kJk, we get

[U +(trE)V ]−1VU−1 =
1

ci +(n+m)cc

(
Ik +

mcc

ci +mcc
Jk

)
1

cic
(Ik− Jk)

=
1

cic (ci +(n+m)cc)
(Ik−βJk)

where,

β =
ci +ncc

ci +mcc

Finally,

F−1 =
1

cic

[
Ik⊗ Im +

1
ci +(n+m)cc

(βJk− Ik)⊗ ccJm

]
and hence,

B = F−1 =
1

cic

(
1

cic
U⊗G+D⊗E

)
(A.1)

A.1.3 Column vector of B in prototypical case

Using equation A.1 we can deduce properties of the column vector of B.

Proposition 10. Let Bk be the kth column vector of B and Bkl be the (k, l)th element of B.

For the components of Bk there are only 3 kinds of values.
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1. For the kth component,

Bkk =
1

cic
(1+α(β −1))

2. For all other components in the same class as the kth component, i.e. when kth and

lth node are in the same color class

Bkl =
1

cic
α(β −1)

3. For all other components of Bk which are not in the same partition/color class as the

kth node, i.e. when kth and jth node are not in the same class

Bk j =
1

cic
αβ

where

α =
cc

ci +(n+m)cc

4. The difference between Bkl and Bk j w.r.t. Bkk is given by:

Bk j−Bkl

Bkk
=

1
r+n+m+ n−m

r+m

where r = ci/cc. As can be seen, this difference can be made very small by weak

coupling, i.e. cc � ci, but more importantly for increasing n and m this difference

reduces
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