
THE ROLE OF REPRESENTATIONS IN HUMAN ACTIVITY RECOGNITION

A Dissertation
Presented to

The Academic Faculty

By

Harish Kashyap Haresamudram

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2019

Copyright c© Harish Kashyap Haresamudram 2019

THE ROLE OF REPRESENTATIONS IN HUMAN ACTIVITY RECOGNITION

Approved by:

Dr. Thomas Ploetz
College of Computing
Georgia Institute of Technology

Dr. David V. Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Irfan Essa
College of Computing
Georgia Institute of Technology

Dr. Patricio Antonio Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: April 26, 2019

The greatest challenge to any thinker is stating the problem in a way that will allow a

solution

Bertrand Russell

For my family, who have helped me in all things great and small.

ACKNOWLEDGEMENTS

As I have worked on the Master‘s thesis, I have received a great deal of support and

assistance. First, I would like to thank my advisor Prof. Thomas Plötz. Without Thomas, I

would have never started working on machine learning for wearable devices. His structured

approach brought focus to my research and allowed me to pursue lines of questioning in a

disciplined way. I would also like to thank other members of the Computational Behavior

Analysis (CBA) Lab for their helpful discussions and invaluable feedback. Next I would

like to thank Dr. David Anderson, my co-advisor for his guidance and our many chats

discussing works of fantasy fiction.

A big thank you to Varun Agrawal for his help with PyTorch, and anything imple-

mentation related. I would like to thank Andreas Geist for our philosophical discussions,

technical debates and indispensable feedback. Many thanks to Apoorva Beedu, for the

technical discussions and endless support, without which it would not have been possible

to complete the dissertation.

Finally, I would like to thank my parents and my sister for encouraging me in my

pursuits, and inspiring me to follow my dreams. It would not have been possible for me to

pursue a Master‘s degree without your support.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1

Chapter 2: Related Work . 4

Chapter 3: Datasets . 8

3.1 Opportunity . 8

3.2 Skoda . 9

3.3 PAMAP2 . 9

3.4 USC-HAD . 10

3.5 Daphnet Freezing of Gait Dataset . 11

Chapter 4: Methodology . 12

4.1 Pipeline . 12

4.2 Distribution-based representations . 14

4.3 Autoencoder-based unsupervised representations 15

4.3.1 Vanilla autoencoders . 16

vi

4.3.2 Convolutional autoencoders . 17

4.3.3 Recurrent autoencoders . 18

4.4 DeepConvLSTM-based supervised representations 18

4.5 Classifier . 19

4.6 Performance metrics . 19

Chapter 5: Results and Discussion . 21

5.1 Performance of representations vs the representation dimensions 22

5.2 Time taken to compute the representations 24

5.3 Number of trainable parameters for computing the representations 25

5.4 Memory footprint . 26

5.5 Performance of the representations based on the amount of training data
required . 27

Chapter 6: Conclusion . 31

6.1 Limitations and Future Work . 32

Appendix A: Data Processing . 35

References . 40

vii

LIST OF TABLES

3.1 Summary of the datasets used in this study 10

viii

LIST OF FIGURES

4.1 The Activity Recognition Chain (ARC). 12

4.2 An overview of the vanilla autoencoder architecture used in this study . . . 16

4.3 An overview of the convolutional autoencoder architecture used in this study 17

4.4 An overview of the recurrent autoencoder architecture used in this study . . 18

4.5 The architecture of the common backend classifier 19

5.1 Performance of the models compared to the representation size on Oppor-
tunity and Skoda, respectively. 22

5.2 Performance of the models compared to the latent representation size on
PAMAP2 and USC-HAD respectively. 23

5.3 Performance of the models compared to the latent representation size on
Daphnet FoG . 24

5.4 Comparison of the time taken to compute the representations on different
datasets. 25

5.5 Comparison of the number of trainable parameters required to compute the
representations on different datasets. 26

5.6 Comparison of the amount of memory required to store models for com-
puting representations on different datasets. 27

5.7 Performance of the representations based on the percentage of the training
data required – for Opportunity and Skoda, respectively. 28

5.8 Performance of the representations based on the percentage of the training
data required – for PAMAP2 and USC-HAD, respectively. 29

ix

5.9 Performance of the representations based on the percentage of the training
data required – Daphnet FoG . 29

x

SUMMARY

We investigate the role of representations in sensor based human activity recognition

(HAR). In particular, we develop convolutional and recurrent autoencoder architectures for

feature learning and compare their performance to a distribution-based representation as

well as a supervised deep learning representation based on the DeepConvLSTM architec-

ture. This is motivated by the promises deep learning methods offer – they learn end-to-

end, eliminate the necessity for hand crafting features and generalize well across tasks and

datasets. The choice of studying unsupervised learning methods is motivated by the fact

that they afford the possibility of learning meaningful representations without the need for

labeled data. Such representations allow for leveraging large, unlabeled datasets for per-

forming feature and transfer learning.

The study is performed on five datasets which are diverse in terms of the number of

subjects, activities, and settings. The analysis is performed from a wearables standpoint,

considering factors such as memory footprint, the effect of dimensionality, and computa-

tion time. We find that the convolutional and recurrent autoencoder based representations

outperform the distribution-based representation on all datasets. Additionally, we conclude

that autoencoder based representations offer comparable performance to supervised Deep-

ConvLSTM based representation.

On the larger datasets with multiple sensors such as Opportunity and PAMAP2, the

convolutional and recurrent autoencoder based representations are observed to be highly

effective. Resource-constrained scenarios justify the utilization of the distribution-based

representation, which has low computational costs and memory requirements. Finally,

when the number of sensors is low, we observe that the vanilla autoencoder based repre-

sentations produce good performance.

xi

CHAPTER 1

INTRODUCTION

Human activity recognition (HAR) – which involves the automated inference of what peo-

ple do and when – constitutes a central aspect of wearable computing. Since its inception,

a multitude of sensing modalities have been explored and are used to capture human activ-

ities. Essentially, HAR utilizes body-worn sensors to record movement data, which is then

analyzed through a combination of signal processing and machine learning techniques. The

goal, is to recognize – i. e. segment and classify – either finite sets of activities of interest,

or to study them in an open-ended manner.

In [1], the Activity Recognition Chain (ARC) is defined as a “sequence of signal pro-

cessing, pattern recognition and machine learning techniques that implements a specific

activity recognition system behavior”. Traditionally, HAR using wearables has been based

on (variants of) the ARC, which describes a processing pipeline from sensory data to the

classification of portions (segments) of subsequent readings into activities of interest (or

the null class).

In recent years, end-to-end learning approaches have been adopted for HAR using wear-

ables, primarily due to their promise of integrated learning – which effectively eliminates

manual crafting and tuning of suitable data representations. This advantage, coupled with

astonishing classification capabilities and transfer learning has made end-to-end learning

models the de facto approach studied in the last few years. Although end-to-end learning

models have outperformed the conventional ARC based approaches, the performance boost

comes with the price of requiring substantial computational resources (even though con-

siderable progress has been made in the efficient deployment of deep learning models on

1

resource-constrained devices [2, 3, 4, 5]), and considerable training datasets of annotated

sample data .

Unlike other domains where a clear understanding exists on how sensor data is best

represented (e.g., speech – mel frequency cepstral coefficients (MFCC) or log-mel spectro-

grams, vision – image edges), no clear consensus exists regarding the gold standard feature

representation for HAR using wearables. In general, the representations for HAR take the

following forms:

• Statistical features - these include a host of metrics such as the mean and standard

deviation. However, statistical features do not carry any domain related knowledge

but rather aim for generic representations; often requiring tweaking across tasks and

domains [6].

• Representations focusing on specific aspects of the underlying signals, such as spec-

tral methods and Fourier analysis - these methods apply signal processing techniques

to wearable data. However, they face generalization issues [6, 7].

• Distribution-based approaches - completely abstract away from the application do-

main and instead focus on compact signal representation, thereby minimizing recon-

struction loss; have universal applicability [8].

• Learned features - some approaches utilize the raw sensor data itself as input. These

approaches include deep learning based methods (both supervised and unsupervised),

and dimensionality reduction techniques like principal component analysis (PCA) [6,

9, 10].

In light of the advent of end-to-end deep learning approaches, the central question this

work seeks to answer is – What role do the representations play in human activity recog-

nition? In order to answer this, we study representations on a series of datasets which are

2

diverse in terms of the number of subjects, actions performed, goals, settings, and number

of samples.

We develop convolutional and recurrent autoencoder models for application as feature

learners in HAR. These unsupervised representations are contrasted against a distribution-

based representation as well as a supervised representation based on the DeepConvLSTM

architecture [11]. We evaluate the representations from a wearables standpoint and con-

sider factors like memory footprint, computation time, and number of trainable parame-

ters. From our analysis, we observe the efficacy of convolutional and recurrent autoencoder

based representations for the larger datasets with multiple sensors. In resource-constrained

scenarios, the distribution-based representation provides a more advantageous option due

to the low computational requirements.

Our contributions are the following:

• We study the task of human activity recognition from a representation learning per-

spective.

• The experiments are performed on diverse datasets and feature types.

• To our knowledge, this is the first work that utilizes convolutional and recurrent au-

toencoders for representation learning in human activity recognition.

3

CHAPTER 2

RELATED WORK

Activity recognition is a time-series problem, in which the task is generally to segment out

and classify contiguous portions of sensory data. Predominantly, segmentation is achieved

by the use of the sliding window technique, which involves a shifting window of fixed

length moved over time, for the extraction of ‘frames’ of interest. These frames usually

have some degree of overlap (generally around 50%), but are considered to be independent.

The keys to performing successful HAR (as they are for any pattern recognition task),

are: (i) appropriate feature representations of the sensor data; (ii) suitable classifiers. While

the study of classifiers has intensified over the last few years, little systematic research has

been performed towards the design of suitable feature representations; and lesser still is un-

derstood about the role of the representations in HAR. This lack of systematic research has

been identified as one of the major shortcomings of the current systems in activity recogni-

tion [12].

The investigation and understanding of the sensor data‘s properties is key to find a rep-

resentation that directly captures its core characteristics. In HAR, there is no all-encompassing

model that affords the expert-driven design of a universal feature representation [13]. How-

ever, recent developments in machine learning, especially deep learning have the potential

of overcoming this shortcoming by automatically learning relevant feature representations

for sensor data.

In [14], the authors explore the design of representations that would allow the possi-

bility of robust recognition in HAR. However, no feature extraction technique has been

4

established, that tackles this problem by providing a well-motivated representation for hu-

man movement for tasks where prior (or expert) knowledge is unavailable [13].

The authors in [14] distinguish two domains for the preprocessing step in AR, namely

the time domain and the frequency domain. In the time domain, the most widely used fea-

ture extraction scheme computes statistical metrics directly from the raw sensor data, for

every frame in the dataset. These metrics include the mean, standard deviation, entropy,

and correlation coefficient. In the frequency domain, the feature extraction usually involves

Fourier analysis on the frames. An experimental evaluation of the statistical and frequency

domain features was performed in [7], who conclude that the Fourier coefficients represent

the sensor data better than its statistical features.

Another approach to feature extraction has been the use of time-delay embeddings for

activity and gait recognition [15]. This approach has shown good results in the analysis

of repetitive activities. However, the features obtained from this technique are not appro-

priate for non-periodic activities. An alternate approach has been the use of discrete do-

main features to compute distance measures on the string representations of the sensor data

[16]. However, such discretization removes the detailed information present in sensor data;

which is required for robust performance of activity recognition models [13]. Apart from

these, classic dimensionality reduction techniques such as PCA have been used in HAR.

In [6], the performance of representations based on statistical metrics, Fourier coefficients

and PCA are compared on four datasets. The performance of the Fourier coefficients, and

PCA are similar on most of the datasets studied while the statistical features perform worse.

Distribution based approaches comprise the state-of-the-art for feature extraction in

HAR. Introduced in [8], they are based on the empirical cumulative distribution function

(ECDF) of the data within the frame. These representations have shown excellent perfor-

5

mance on a variety of datasets. In [8], the performance of these features is evaluated on

six datasets and they outperform representations based on statistical metrics, Fourier coef-

ficients, and PCA. Additionally, they incur little computational costs for their extraction.

Further analysis is performed on the distribution based representations in [17], where the

focus is on identifying the optimum window lengths for various activities across different

datasets, while [18] adds structural characteristics to these representations.

In contrast to heuristic feature design (or handcrafting of features), feature learning

optimizes an objective function to learn the features, in lieu of requiring domain exper-

tise. Over the last few years, machine learning, especially deep learning, has shown great

promise towards extracting valuable feature representations from large amounts of data.

This includes both supervised models, which require annotations, and unsupervised mod-

els that do not require annotations.

There has been a lot of interest towards developing supervised, end-to-end, deep learn-

ing models for HAR. In [19], CNNs are developed for multichannel time series data. Mean-

while, the authors in [20] design a convolutional neural network (CNN) which outperforms

other representations based on distributions, PCA, statistical metrics, and fully connected

neural networks. The evaluation is performed on three datasets, and further experimenta-

tion is performed to identify the optimum architecture. To utilize the time-series nature of

the sensor data, ensembles of recurrent neural networks (RNN) have been used in [21] for

performing HAR. The application of RNNs for HAR is extended in [22], where continuous

attention mechanisms over the sensory channels as well as time are developed to improve

the performance. DeepConvLSTM [11] uses a combination of convolutional and recurrent

layers. Improvements to the DeepConvLSTM have been proposed in [23], where an atten-

tion mechanism is added on the long short-term memory (LSTM) network to determine the

‘important’ time steps. While the supervised models provide excellent performance, they

6

come with the cost of requiring large amounts of annotated data to perform learning. This

is both time and cost intensive, as it requires domain expert knowledge.

On the unsupervised learning front, deep networks have the capability to learn useful

representations without utilizing class labels [24]. These methods assume that the charac-

teristics of training data can be discovered by learning ‘how’ to generate data, and that a

subset of the characteristics are then suitable to differentiate between classes [25]. Deep

networks have also been applied to tasks in other domains, such as learning unsupervised

representations for video classification [26] and audio scene classification [27], and obtain-

ing vector representations for words from a corpus [28].

The focus of unsupervised deep learning methods in HAR has been towards developing

Restricted Boltzmann Machines (RBM) and stacked autoencoders for learning representa-

tions. In [6], Restricted Boltzmann Machines were compared to PCA for feature learning,

while [29] utilize a sparse coding framework to learn features on unlabeled data. State as-

sessment of Parkinson’s Disease in naturalistic environments is performed using RBMs in

[9]. Both [30] and [10] utilize stacked, vanilla autoencoders to learn features.

While vanilla autoencoders have been evaluated for their feature learning, little work

exists utilizing the more powerful variants of autoencoders which involve convolutional

and recurrent layers. These layers can take advantage of the inherent time-series nature

of sensor data to learn richer representations. This leads us to study their effectiveness as

unsupervised feature learners for HAR.

7

CHAPTER 3

DATASETS

In this chapter, we detail the datasets used in this study. Since the goal is to understand

the role of the representations in HAR, we choose a wide variety of datasets. Five datasets

are studied, where the number of subjects ranges from 1 to 14, and the activities vary

from opening/closing doors to walking/jumping to detecting freezing of gait in patients

with Parkinson‘s Disease (PD). Such diversity aims to capture the scope of applicability

of feature representations for different activities and tasks. A summary of the datasets is

detailed in Table 3.1.

Opportunity

Opportunity is a benchmark dataset for human activity recognition using bodyworn sensors

which contains annotated recordings from four participants [31]. The data has been col-

lected for every-day life domestic activities especially focusing on kitchen routine. Inertial

Measurement Units (IMU) attached to 12 on-body positions, sampled at 30Hz were used

to collect the data. The annotations are provided for 18 mid-level activities such as Open

Door / Close Door. Each participant performed five different runs of kitchen activities.

For the training and evaluation, we utilize the same protocol as [32]. Accelerometer

recordings from the upper limbs, back and complete IMU data from both feet were used,

resulting in a 77 dimensional dataset. The data is normalized to have zero mean and unit

variance. As per the protocol, the second run from participant 1 is used as the validation

set, while runs 4 and 5 from participants 2 and 3 are used as the test set. The rest of the data

is used for training (approximately 700k samples). We utilize the sliding window approach

to obtain frames of 1 second, with 50% second overlap.

8

Skoda

The Skoda dataset has been recorded in a manufacturing scenario and covers the problem

of recognizing the activities of assembly-line workers in a car production environment [33].

A worker wore a plethora of sensors while undertaking manual quality checks for the cor-

rect assembly of parts in newly constructed cars. These checks involve 10 manipulative

gestures of interest, such as checking the boot, opening/closing the bonnet, boot and doors,

and turning the steering wheel. The accelerometer data is downsampled to 33Hz and nor-

malized to have zero mean and unit variance. The data is recorded using 10 accelerometers

on the right arm of the worker, resulting in 60 dimensional data. The training set consists

of the first 80% of each class, followed by the validation and test sets taking up a remaining

10% each. The sliding window approach is utilized to obtain frames of 1 second and 50%

overlap.

PAMAP2

PAMAP2 is a dataset recorded under scripted, and hence rather constrained conditions

where the participants were instructed to carry out a total of 12 activities of daily living

such as domestic activities, and various sportive exercises (nordic walking, running, etc)

[34]. Full IMU data along with temperature and heart rate were recorded using devices

attached to the chest, hand and ankle. Over 10 hours of data were collected, with the re-

sulting dataset having 52 dimensions.

We downsample the data to 33Hz and normalize it to have zero mean and unit variance.

Replicating the protocol from [32], we used runs 1 and 2 from participant 5 for validation

and runs 1 and 2 from participant 6 for testing. The remaining data is used for training.

As for the previous datasets, the sliding window approach is utilized to obtain frames of 1

second and 50% overlap.

9

USC-HAD

The USC-HAD dataset [35] was collected on the MotionNode sensing platform and con-

sists of data from 14 subjects. The sensors include three-axis accelerometers and gyro-

scopes resulting in six channels. Particular emphasis was placed to ensure divergence in

gender, age, height and weight of subjects. The activities correspond to the most basic and

common human activities in daily lives. Twelve activities were recorded and they include

various walking motions, jumping, sitting, etc. Seven male and seven female subjects par-

ticipated in the data collection, with age between 21 − 49 years (30.1 ± 7.2 years), height

between 160− 185cm (170± 6.8) and weight between 43− 80kg (64.6± 12.1kg).

Dataset Sensors
Partic
-ipants Monitored activities

Opportunity
Accele

-rometer 4

Null, open door 1, open door 2,
close door 1, close door 2, open fridge,

close fridge, open dishwasher, close dishwasher,
open drawer 1, close drawer 1, open drawer 2,
close drawer 2, open drawer 3, close drawer 3,

clean table, drink from cup, toggle switch

Skoda
Accele

-rometer 1

Null, write on pad, open hood,
close hood, check gaps, open left front door,

close left front door, close both left door,
check trunk gaps

PAMAP2
Accele

-rometer 9

Lying, sitting, standing, walking,
running, cycling, nordic walking,

ascending stairs, descending stairs,
vacuum cleaning, ironing,

rope jumping

USC-HAD

Accele
-rometer,

Gyroscope,
Magne

-tometer

14

Walk forward, walk left, walk right,
walk upstairs, walk downstairs, run forward,

jump, sit on a chair, stand,
sleep, elevator up, elevator down

Daphnet
FoG

Accele-
rometer 8

no movement, trembling in place,
shuffling forward

Table 3.1: Summary of the datasets used in this study

10

Daphnet Freezing of Gait Dataset

The Daphnet Freezing of Gait Dataset is a publicly available dataset which contains data

from eight subjects with Parkinson’s Disease (PD), who experience regular Freezing of Gait

(FoG) in daily life[36]. FoG is a common gait impairment defined as a “brief, episodic ab-

sence or marked reduction of forward progression of the feet despite the intention to walk”

[37].

The data was recorded using three 3D accelerometers attached to the shank, the thigh

and the lower back of the subjects. The collection was performed in the lab with an em-

phasis on generating many freeze events. The sessions were 20 − 30 minutes each, and

consisted of three walking tasks: straight line walking, walking with numerous turns and a

more realistic activity of daily living (ADL), where users went into different rooms while

performing tasks such as fetching coffee, opening doors, etc. More than eight hours of data

were recorded in which professional physiotherapists identified 237 FoG events in a post

hoc video analysis . The duration of the events varies between 0.5s and 40.5s (7.3 ± 6.7s)

[36].

11

CHAPTER 4

METHODOLOGY

Pipeline

Data Recording Preprocessing Segmentation Feature extraction Classification

Figure 4.1: The Activity Recognition Chain (ARC).

In [1], the Action Recognition Chain is defined as a “sequence of signal processing,

pattern recognition, and machine learning techniques that implements a specific activity

recognition system behavior”. The sequence is shown in Figure 4.1, and comprises of five

steps.

• Data recording - measurements of one or more sensors are captured for a period of

time.

• Preprocessing - the impact of sensor noise, artifacts and the environment are reduced

using data transformations.

• Segmentation - after preprocessing, the signal is split into short segments (called

frames), that are likely to contain activities or movements of interest.

• Feature extraction - the raw sensor data is used to extract useful representations so

that activities of interest may be differentiated with more ease.

• Classification - a probability is assigned to each activity class of interest, thereby

producing a hypothesis for each extracted segment.

12

The pipeline defines a series of discrete steps, where each step has a clearly defined

goal. However, substantial manual optimizations are necessary for each part of the pipeline

– with known issues such as poor generalization, thereby causing the need for specialized

domain knowledge which hinders widespread adoption. On the other hand, this process

can be heavily optimized with respect to computational resources (such as memory and

processing power). In this manner, the pipeline can be deployed with ease on wearables

themselves, without the need for offloading the computation to external servers over the

internet.

In this study, we focus on the fourth step of the pipeline - Feature Extraction. A number

of previous works exist - which utilize statistical features, data-driven representations like

PCA or distribution-based representations. Papers such as [6] and [30, 10] study deep-

learning based RBMs and stacked autoencoders. However, little analysis has been done

towards utilizing more powerful variants of autoencoders - ones which have convolutional

and recurrent layers. While there exist many supervised models such as DeepConvLSTM

(which utilizes convolutional and recurrent layers to capture the temporal aspect of data),

there has been no exploration to utilize these layers towards learning unsupervised feature

representations. The lack of work on unsupervised learning in HAR, along with their abil-

ity to learn from unlabeled data sets motivates us to study their effectiveness as feature

learners for HAR.

We study three types of autoencoders – vanilla, convolutional and recurrent. In [30]

and [10], vanilla (or stacked) autoencoders have already been studied. In order to capture

the temporal aspect of the sensor data, we study recurrent autoencoders. On the other hand,

the spatio-temporal aspect of data is exploited using convolutional autoencoders.

The performance of these autoencoder-based unsupervised feature representations is

13

contrasted against a distribution-based representation, and a representation based on the

widely used supervised classifier – DeepConvLSTM [11]. The rest of the chapter details

the representations studied – distribution-based representation, autoencoder-based unsuper-

vised representations, and DeepConvLSTM-based supervised representation – along with

the common backend classifier and the core metric used in this study.

Distribution-based representations

Since the sensor data in HAR is time-series, the samples are correlated to their neighbors.

Distribution-based representations take advantage of these correlations by computing the

empirical cumulative distribution (ECDF) of the data in each frame. At the heart of ECDF

lies the idea to extract a fixed set of real-valued coefficients that best represents the under-

lying distribution for each degree of freedom within a frame (i. e. each sensing axis of the

accelerometer data) [8].

The ECDF representation fi for a degree of freedom of analysis frame i is obtained by

first estimating the ECDF P i
c , given by

P i
c = P (X ≤ x) (4.1)

The distribution is quantified by selecting d equally spaced and monotonically increas-

ing points C = p1...pd between 0 and 1. For each of those points, the value xk is estimated,

for which P i
c(x) = pk

C = pi ∈ Rd
[0,1], pi < pi+1 (4.2)

fi = x,∃j : P i
c(x) = pj (4.3)

14

where cubic interpolation is used as necessary to obtain each x. The new representation for

each analysis frame i then corresponds to the concatenated ECDF representations of the

individual degrees of freedom. In effect, this process provides an estimate for the quantile

function for each of the selected points in C. The d dimensional representation fi fully

covers the spatial position of a distribution, as well as its overall shape. The only parameter

that can be tuned is the number of points at which the inverse of Pc is interpolated. This

parameter controls the granularity with which the shape of Pc is captured in the resulting

representation [8].

Autoencoder-based unsupervised representations

An autoencoder is an unsupervised neural network that is trained to reconstruct the input

after being passed through a series of layers. Internally, an autoencoder has a hidden layer

h, that performs linear as well as non-linear function operations on the layers input data to

obtain a ‘latent representation’ of the data. We can view the network as consisting of two

parts – an encoder function h = f(x) which transforms the input data x, and a decoder that

produces the reconstruction r = g(h). The network is restricted, e. g. h has smaller dimen-

sions than x, thereby creating an intentional bottleneck. Thus, an autoencoder is forced to

prioritize some aspects of the input data that need to be copied and thereby learns useful

representations of the data [38].

The learning process is described as minimizing the loss function -

L(x, g(f(x))) (4.4)

where L is a loss function that penalizes g(f(x)) for being dissimilar from x. Typically,

mean squared error (MSE) is used as the loss function and h is used as the latent represen-

tation (or the bottleneck feature) for tasks such as classification and clustering.

15

An autoencoder is said to be ‘undercomplete’ when its hidden dimension is less than

the input dimension. Learning an undercomplete representations forces the network to

capture the most salient features of the training data. If the decoder is linear and the loss

function is MSE, then the autoencoder learns to span the same space as the input datas

principal component analysis (PCA). Thus, the autoencoder trained to perform the copying

(or reconstruction) task has learned the principal subspace of the training data as a side

effect. The utilization of non-linear activations in the network results in more powerful

generalizations of PCA [38].

Vanilla autoencoders

Input
vector

2048

1024
512

BN
512

1024

2048

Output
vector

FC

FC
FC

FC
FC

FC

FC

Figure 4.2: An overview of the vanilla autoencoder architecture used in this study

In vanilla autoencoders, both the encoder and decoder consist of multi-layer perceptrons

(MLP). The architecture for the vanilla autoencoder is shown in Figure 4.2. Excluding the

bottleneck layer, the encoder consists of three layers, which have 2048, 1024 and 512 units

respectively. The decoder is a mirror of the encoder. One frame of data (or features) is

vectorized and passed as input to the model.

16

Convolutional autoencoders

64

Conv

Input

Reshape
Deconv

Deconv

Deconv

Conv
Conv

Conv

Flatten FC

BN

Output

Deconv

128
256

512
256

128
64

1

Figure 4.3: An overview of the convolutional autoencoder architecture used in this study

Convolutional autoencoders utilize convolutional layers in lieu of the fully connected

layers. The architecture of the convolutional autoencoder is shown in Figure 4.3. The input

is one second of data (or frame), and the autoencoder considers it a single channel image.

The encoder contains four convolution blocks, leading to the bottleneck layer. Each of

these blocks contains two 3× 3 convolution layers with the same number of filters. Batch

normalization is performed after each layer, and the convolution layers are followed by

2× 2 max-pooling. The output of the last convolution block in the encoder is flattened into

a vector, and is then connected to the bottleneck layer (from which the latent representa-

tions are taken).

The decoder begins with the a fully-connected (FC) layer containing the same number

of units as the flattened output. It is reshaped to the same size as the fourth convolution

block. Each deconvolution layer consists of an upsampling layer, appropriate padding and

a 3× 3 convolution layer to match the sizes to the corresponding convolution blocks. The

choice of utilizing this combination instead of transposed convolutions is motivated by

[39], which provides an illuminating illustration of the undesirable checkerboard artifacts

that transposed convolution layers exhibit. The last deconvolution block results in the re-

constructed output. Throughout, ReLU is the activation function used and the hyperbolic

tangent function is used on the output.

17

Recurrent autoencoders

Encoder RNN0

i0 i2 in-1
Input sequence

i1

Decoder RNN

Copied n times

o0 o2 o1 on-1
Output sequence

Encoder
final
state

BN

FC

Figure 4.4: An overview of the recurrent autoencoder architecture used in this study

In a recurrent autoencoder, Vanilla RNNs or more powerful variants such as long short-

term memory networks (LSTM) [40], gated recurrent units (GRU) [41] are used for the

encoder and decoder. In order to formulate the design of the recurrent autoencoder, we turn

to [26], who develop recurrent autoencoder models to learn representations for videos.

In our model (shown in Figure 4.4), both the encoder and decoder are initialized with

zeros and the input sequence, which has n timesteps, is passed to the encoder. The final

state of the encoder is passed through the bottleneck layer before being connected to an-

other fully-connected (FC) layer. The resulting output is replicated (or copied) n times,

and used as input to the decoder. The loss between the input and output (or reconstructed)

sequences is used to update the model parameters.

DeepConvLSTM-based supervised representations

The DeepConvLSTM architecture was introduced in [11]. It consists of four convolutional

layers with 64 filters, and a filter size of 5× 1. The output of these convolutional layers is

connected to a two-layer LSTM with 128 hidden units. The last hidden state of the LSTM

is connected to the softmax output layer.

18

One of the analyses we perform is studying the effect of dimensionality of represen-

tations on the performance. In order accomplish this, we add another fully-connected

layer after the LSTM whose dimension can be varied. To compute the DeepConvLSTM-

based supervised representations, we perform a forward pass until the penultimate fully-

connected layer.

Classifier

The common multi-layer perceptron (MLP) classifier has two layers, followed by the soft-

max output layer. These layers contain 2048 and 512 units respectively, and each layer

is followed by batch normalization. The activation function used is ReLU. The model is

shown in Figure 4.5.

Input
vector

2048

512

FC

FC
Softmax

Figure 4.5: The architecture of the common backend classifier

Performance metrics

The mean f1-score is utilized as the core metric. The datasets used in this study, Opportu-

nity in particular, are imbalanced and hence require performance metrics that are indepen-

dent of the class distribution. Thus, we use mean f1-score, which is given by -

19

Fm =
2

|c|
∑
c

precc × recallc
precc + recallc

(4.5)

where precc and recallc are the precision and recall for each class.

20

CHAPTER 5

RESULTS AND DISCUSSION

This section examines the performance of the representations on the common backend clas-

sifier. As our focus is on understanding the role of these representations from a wearables

standpoint, the considerations go beyond mere performance. Some other factors which

affect the adoption of these representations for human activity recognition include time

requirements for the computation of representations, the memory footprint and computa-

tional costs.

In order to assess the performance of the representation on these factors, we perform

the following analyses –

• Performance of the representations vs the representation dimensions: we study how

the performance of the representations is affected by the number of dimensions. This

is an important factor for HAR as lower feature dimensions result in lower computa-

tional costs and computational time during classification.

• Time taken to compute the representations: the goal of HAR is to perform real-time

recognition and lowering the latency in obtaining the representations results in better

performance.

• Memory footprint: the onboard memory on wearables is limited, and hence, the

memory required to store the models used to compute the representations is a vital

factor.

• Number of trainable parameters for computing the representations: many represen-

tations in this study are obtained from deep learning based methods, in which the

21

number of trainable parameters offers insight into the effort required to compute the

representations.

• Performance of the representations based on the amount of training data required:

the size of the datasets in HAR is generally smaller than in other domains. Hence,

representations which require less data to perform comparably are more suitable for

HAR.

Performance of representations vs the representation dimensions

0 250 500 750 1000 1250 1500 1750 2000
Dimension of the latent representation

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 f1
-s

co
re

Opportunity

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
DeepConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(a) Opportunity

0 250 500 750 1000 1250 1500 1750 2000
Dimension of the latent representation

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 f1
-s

co
re

Skoda

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(b) Skoda

Figure 5.1: Performance of the models compared to the representation size on Opportunity
and Skoda, respectively.

In Figure 5.1a, the performance of various models on the Opportunity dataset is illus-

trated. The Convolutional AutoEncoder (CAE) outperforms the other models at around 500

dimensions. DeepConvLSTM and Recurrent AE (LSTM) only match the performance of

the CAE at 2000 dimensions. The distribution-based representation (ECDF) 1 obtains sim-

ilar performance as the CAE at 250 dimensions. Thus, CAE and ECDF provide excellent

1Note: The number of dimensions of the distribution-based representation depends on the number of
components (which is the number of points at which the inverse of P c

i is computed, see Equation 4.1). For
this study, we set the number of components so that the resulting feature dimensions match the dimensions
of the latent representation for the other autoencoder models. However, the number of components is also
limited by the length of the frame (which is 30 in our case). Thus, for the USC-HAD and Daphnet FoG
datasets, the maximum number of dimensions possible is limited to around 250 (see Figures 5.2b and 5.3).

22

0 250 500 750 1000 1250 1500 1750 2000
Dimension of the latent representation

0.5

0.6

0.7

0.8

0.9

Te
st

 f1
-s

co
re

Pamap2

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(a) PAMAP2

0 250 500 750 1000 1250 1500 1750 2000
Dimension of the latent representation

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 f1
-s

co
re

USC-HAD
Vanilla autoencoder - Raw
Vanilla autoencoder - ECDF
Convolutional autoencoder - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(b) USC-HAD

Figure 5.2: Performance of the models compared to the latent representation size on
PAMAP2 and USC-HAD respectively.

performance at a fraction of the number of dimensions other representations require.

Next, we consider Skoda, which was recorded in a manufacturing scenario with a sin-

gle worker performing tasks. Here, DeepConvLSTM provides the best performance (at 50

dimensions), with the CAE and Recurrent AE (GRU) providing similar performances. The

worst performance is shown by the Vanilla AE on the distribution-based ECDF feature. In

this case, both DeepConvLSTM or CAE at around 50 dimensions provide viable options

for performing HAR with low dimension representations.

For PAMAP2, the performance of each representation is seen in Figure 5.2a. The Re-

current AE (LSTM) offers peak performance at 2000 dimensions, but also provides compa-

rable performance at 250 dimensions (an eightfold reduction in the number of dimensions).

The distribution-based representation performs best at 250 dimensions, but offers around

5% lower mean f1-score than the Recurrent AE (LSTM). Other representations require

1000 dimensions to perform well.

From Figure 5.2b, one can see that the Vanilla AE on raw data provides the best per-

formance on USC-HAD. At higher dimensions, the DeepConvLSTM and Vanilla AE on

23

0 250 500 750 1000 1250 1500 1750 2000
Dimension of the latent representation

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 f1
-s

co
re

Daphnet

Vanilla autoencoder - Raw
Vanilla autoencoder - ECDF
Convolutional autoencoder - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Figure 5.3: Performance of the models compared to the latent representation size on Daph-
net FoG

ECDF features offer similar performance. The best test F1-score is obtained at 500 dimen-

sions by the Vanilla AE on raw data. In contrast, the ECDF features perform considerably

worse (around 8% at 50 dimensions). While the Convolutional AE matches the perfor-

mance of the Vanilla AE on raw data, it happens at 2000 dimensions.

Daphnet FoG is a dataset which is used to study the freezing of gait using wearable

sensors. From Figure 5.3, we can see that DeepConvLSTM and Vanilla AE on raw data

have similar performances. At around 100 dimensions, the performance of ECDF features

is similar to both DeepConvLSTM and Vanilla AE on raw data. In contrast, the Convolu-

tional AE outperforms all other models even at 10 dimensions (0.684 mean f1-score). The

best performance is achieved by the Convolutional AE at 1500 dimensions.

Time taken to compute the representations

Figure 5.4 compares the average time required to compute the representation for one frame

of data. For this setup, the size of the representations is set to 500 dimensions. The

time taken to compute the convolutional, recurrent, and DeepConvLSTM representations is

comparably high (around 0.0004 seconds). In comparison, the Vanilla AE (both on the raw

data as well as the ECDF features) take much lesser time to compute the representation.

24

Opportunity Skoda PAMAP2 USC-HAD Daphnet FoG
Dataset

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005
Ti

m
e

ta
ke

n
in

 se
co

nd
s

Time taken to compute feature representations
Vanilla AE - Raw
Vanilla AE - ECDF

Conv. AE - Raw
ECDF features

Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Deep ConvLSTM

Figure 5.4: Comparison of the time taken to compute the representations on different
datasets.

The ECDF features require around 0.0001 seconds to compute, which is slightly higher

than the Vanilla AE. Thus, analyzing purely in terms of time required to compute the rep-

resentations, we conclude that it is advantageous to utilize the distribution-based or Vanilla

AE based representations.

Number of trainable parameters for computing the representations

In this section, we compare the number of trainable parameters required to compute rep-

resentations. For the deep learning models, the parameters include both the encoder and

decoder. The distribution-based representation does not have any trainable parameters and

hence the bar plot shows zero (ECDF features are marked in dark green). As shown in Fig-

ure 5.5, the Vanilla AE possess a large number of trainable parameters (due to the presence

of multiple fully connected layers). In comparison, the DeepConvLSTM based features

have fewer trainable parameters (less than 0.25 ∗ 107 parameters).

25

Opportunity Skoda PAMAP2 USC-HAD Daphnet FoG
Dataset

0.0

0.5

1.0

1.5

2.0

Tr
ai

na
bl

e
pa

ra
m

et
er

s

1e7 Number of trainable parameters for different feature representations
Vanilla AE - Raw
Vanilla AE - ECDF

Conv. AE - Raw
ECDF features

Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Deep ConvLSTM

Figure 5.5: Comparison of the number of trainable parameters required to compute the
representations on different datasets.

Models having larger number of trainable parameters are more prone to overfitting and

poor generalization. Thus, models with fewer trainable parameters are preferred – such as

DeepConvLSTM and Convolutional AE.

Memory footprint

Figure 5.6 details the amount of memory required onboard the wearable for the compu-

tation of representations. Since the distribution-based representation is computed directly,

the bar plot shows a zero (or the gap). The Recurrent AE (GRU and LSTM) require the

highest amount of memory (around 40 MB). In comparison, the Convolutional AE requires

around 20MB. Among the learned features, the DeepConvLSTM based features require the

least amount of memory. Thus, in terms of memory requirements, the distribution-based

and DeepConvLSTM-based representations present the best option. Additionally, while

the memory requirement for the Convolutional AE is higher, the potential improvements in

performance render it a good alternative.

26

Opportunity Skoda PAMAP2 USC-HAD Daphnet FoG
Dataset

0

10

20

30

40

50

M
em

or
y

fo
ot

pr
in

t o
n

di
sk

 (M
B)

Memory required for feature extraction
Vanilla AE - Raw
Vanilla AE - ECDF

Conv. AE - Raw
ECDF features

Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Deep ConvLSTM

Figure 5.6: Comparison of the amount of memory required to store models for computing
representations on different datasets.

Performance of the representations based on the amount of training data required

In this section, we analyze the performance of the features when the amount of training data

is limited. Representations displaying good performance even on small datasets are criti-

cal for HAR as the datasets are generally smaller in size when compared to other domains

such as vision. We set the size of the representations to 500 for this analysis since Figures

5.1a-5.3 suggest it to be a reasonable compromise between performance and representation

dimensionality.

In Figure 5.7a, we analyze the percentage of training data required by the representa-

tions to obtain good performance on the Opportunity dataset. The distribution-based rep-

resentation obtains the best performance at 100% (around 0.71), but also exhibits similar

performance at 70% (around 0.694). Thus, the distribution-based representation requires

30% fewer training samples to produce similar performance. In case of the Recurrent AE

27

20 40 60 80 100
% of training data used

0.50

0.55

0.60

0.65

0.70

Te
st

 f1
-s

co
re

Opportunity

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features - Raw
DeepConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(a) Opportunity

20 40 60 80 100
% of training data used

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 f1
-s

co
re

Skoda

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw
Recurrent AE (GRU) - Raw

(b) Skoda

Figure 5.7: Performance of the representations based on the percentage of the training data
required – for Opportunity and Skoda, respectively.

(GRU), the peak performance is obtained at 90% (0.7) but at 50%, it results in 0.6876.

Thus, with 50% fewer training samples, the performance is reduced by ∼ 0.11 mean F1-

score.

Next, we study the relationship between performance and the amount of training data

required, for Skoda. As seen in Figure 5.7b, most representations (apart from the Vanilla

AE trained on ECDF features) result in similar performance. In the case of the Convolu-

tional AE, the performance at 100% is 0.9126, and it shows 0.9096 at 60%. Thus, with

60% of the available data, approximately similar performance can be achieved. DeepCon-

vLSTM displays the best performance at 60% (0.9175), which is slightly higher than the

performance at 100% (0.9155). While the difference is not very high, it still shows that

the performance of the DeepConvLSTM when trained on 40% fewer samples equals the

performance when trained on the entire dataset.

The analysis for PAMAP2 is shown in Figure 5.8a. The Vanilla AE trained on ECDF

features gives the worst performance. The Recurrent AE (LSTM) exhibits the best per-

formance at 60% and the distribution-based representation achieves its best performance

utilizing just 40% of the data.

28

20 40 60 80 100
% of training data used

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 f1
-s

co
re

Pamap2

Vanilla AE - Raw
Vanilla AE - ECDF
Convolutional AE - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(a) PAMAP2

20 40 60 80 100
% of training data used

0.2

0.4

0.6

0.8

1.0

Te
st

 f1
-s

co
re

USC-HAD
Vanilla autoencoder - Raw
Vanilla autoencoder - ECDF
Convolutional autoencoder - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

(b) USC-HAD

Figure 5.8: Performance of the representations based on the percentage of the training data
required – for PAMAP2 and USC-HAD, respectively.

Considering USC-HAD, Figure 5.8b depicts the performance of the representations

based on the amount of training data used. The best performance utilizing the entire dataset

is achieved by the Vanilla AE on raw data. It achieves similar performance at 80%. On this

dataset, the more complex models perform worse. This could probably be explained by the

fact that USC-HAD has only two sensors, resulting in a feature size of 6 dimensions.

20 40 60 80 100
% of training data used

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 f1
-s

co
re

Daphnet

Vanilla autoencoder - Raw
Vanilla autoencoder - ECDF
Convolutional autoencoder - Raw
ECDF features
Deep ConvLSTM - Raw
Recurrent AE (LSTM) - Raw
Recurrent AE (GRU) - Raw

Figure 5.9: Performance of the representations based on the percentage of the training data
required – Daphnet FoG

The Daphnet FoG dataset is studied for performing recognition on the freezing of

gait. Considering the entire dataset, the Convolutional AE obtains the best performance

(0.6964). But, it also achieves 0.6940 utilizing only 50% of the data. Similarly, the Deep-

29

ConvLSTM shows performance approximately equal to using the entire dataset using 50%

of the data.

30

CHAPTER 6

CONCLUSION

Human activity recognition (HAR) involves the development of systems for the automated

inference of peoples’ activities. The feature representations used for the development of

these systems are central to their performance. Previously, carefully designed features were

utilized to represent the sensor data. However, the advent of deep learning has brought the

promise of integrated learning – which eliminates the manual crafting and tuning of repre-

sentations. In light of the developments in deep learning, we study the following question

– ‘What role do the representations play in HAR?’

From a wearables standpoint, the performance of a variety of representations is eval-

uated on a group of diverse datasets in order to establish their scope of applicability. The

major contribution of this study lies in the application of convolutional and recurrent au-

toencoder based unsupervised feature learning methods for HAR. This allows us to poten-

tially leverage large, unannotated datasets to derive rich representations.

We studied three categories of representations – distribution-based, deep learning based

unsupervised representations (autoencoders), and deep learning based supervised represen-

tation (DeepConvLSTM). Further, we analyzed the computation time and computational

costs of these representations using criteria relevant to wearable computing such as repre-

sentation dimensionality, memory footprint, computation time, number of trainable param-

eters and amount of training data required.

The unsupervised deep learning representations outperform the distribution-based rep-

resentation on all five datasets. The deep learning based approaches perform better in the

31

presence of abundant data. Therefore, on relatively larger datasets such as Opportunity

and PAMAP2, the Convolutional and Recurrent AE outperform the other representations.

However, this increase in performance comes at the cost of increased memory footprint,

computational time and number of trainable parameters. On the other hand, the Vanilla AE

based representations require lower computational time, but have a high memory footprint,

as well as a large number of trainable parameters. However, the Vanilla AE based repre-

sentations work well with datasets having few sensors such as the USC-HAD dataset.

The performance of the learned representations is contrasted against the distribution-

based representation, which can be computed on-the-fly, and does not have any trainable

parameters. Based on our experiments, we conclude that these properties – coupled with

low computation time and comparable performance on multi-sensor datasets such as Op-

portunity – renders distribution-based representations a good option for usage in applica-

tions with constraints on memory and computation power.

We systematically demonstrate the effectiveness of Convolutional and Recurrent AE

approaches for HAR. We believe that the increase in computational capabilities of wearable

hardware in the years to come presents a great opportunity for the utilization of autoencoder

based representations for HAR.

Limitations and Future Work

A challenge that requires further attention is the tradeoff inherent to deep learning models

between being very flexible function approximators and being prone to overfitting. This

tradeoff – which is caused by the large number of network parameters – is especially pre-

dominant in smaller HAR datasets. Due to the difficulty in creating large annotated HAR

datasets, an interesting avenue of research is the study of data augmentation techniques.

In computer vision, the datasets are augmented by adding image transformations, random

32

flips and crops. However, no such standard augmentation techniques exist in sensor based

HAR. There is some preliminary work such as [42], which details jitter, crop and rotation

techniques for Parkinson’s Disease monitoring using CNNs. However, there is no work

which systematically analyzes these augmentation techniques. Another approach to data

augmentation would be the use of generative adversarial networks. Such data augmentation

techniques could improve the performance by increasing variability in the training set.

As we have seen in Chapter 5, the autoencoder representations trained on the mean

squared error (MSE) objective provide discriminative representations in an unsupervised

manner. We hypothesize that adding another clustering objective to the MSE objective

could improve the clustering ability of the representations. The clustering objective has

been defined in Deep Embedding Clustering [43] where the authors improve the clustering

performance on vision based datasets by utilizing a clustering objective along with the

MSE. Improvements have been proposed in works such as [44, 45] which detail different

training schedules and utilize convolutional layers for the encoding and decoding.

33

Appendices

34

APPENDIX A

DATA PROCESSING

The frames of data used in this study are 1 second long. While the original sampling rate

varies with the dataset (30Hz for Opportunity and 100hz for USC-HAD for example), we

downsample the data to 30Hz to maintain uniformity. Additionally, the data is normalized

to have zero mean and unit variance.

The neural network architectures are implemented using the PyTorch framework 1 [46].

The learning rate is set to 0.001 and is reduced by a factor of 0.8 every 25 epochs. The

Adam optimizer is used to update network parameters [47]. The autoencoders are trained

for 150 epochs, while the common backend MLP classifier is trained for 300 epochs. The

batch size is set to 100.

The distribution-based representation is computed using the code released on GitHub 2

by the authors of [8].

1https://pytorch.org/
2https://github.com/nhammerla/ecdfRepresentation

35

REFERENCES

[1] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition
using body-worn inertial sensors,” ACM Computing Surveys (CSUR), vol. 46, no. 3,
p. 33, 2014.

[2] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning
layers for constrained resource inference on wearables,” in Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM, ACM, 2016,
pp. 176–189.

[3] M. Alizadeh and N. D. Lane, “Using pre-trained full-precision models to speed up
training binary networks for mobile devices,” in Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications, and Services, ACM, 2018,
pp. 528–528.

[4] P. Georgiev, N. D. Lane, C. Mascolo, and D. Chu, “Accelerating mobile audio sens-
ing algorithms through on-chip gpu offloading,” in Proceedings of the 15th Annual
International Conference on Mobile Systems, Applications, and Services, ACM,
2017, pp. 306–318.

[5] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi, and F. Kawsar,
“Squeezing deep learning into mobile and embedded devices,” IEEE Pervasive Com-
puting, vol. 16, no. 3, pp. 82–88, 2017.

[6] T. Plötz, N. Y. Hammerla, and P. L. Olivier, “Feature learning for activity recogni-
tion in ubiquitous computing,” in Twenty-Second International Joint Conference on
Artificial Intelligence, 2011.

[7] T. Huynh and B. Schiele, “Analyzing features for activity recognition,” in Proceed-
ings of the 2005 joint conference on Smart objects and ambient intelligence: Inno-
vative context-aware services: Usages and technologies, ACM, 2005, pp. 159–163.

[8] N. Y. Hammerla, R. Kirkham, P. Andras, and T. Ploetz, “On preserving statistical
characteristics of accelerometry data using their empirical cumulative distribution,”
in Proceedings of the 2013 International Symposium on Wearable Computers, ACM,
2013, pp. 65–68.

[9] N. Y. Hammerla, J. Fisher, P. Andras, L. Rochester, R. Walker, and T. Plötz, “Pd dis-
ease state assessment in naturalistic environments using deep learning,” in Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

36

[10] B. Almaslukh, J. AlMuhtadi, and A. Artoli, “An effective deep autoencoder ap-
proach for online smartphone-based human activity recognition,” Int. J. Comput.
Sci. Netw. Secur, vol. 17, p. 160, 2017.

[11] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition,” Sensors, vol. 16, no. 1, p. 115,
2016.

[12] P. Lukowicz, S. Intille, Ward, and e. . J. A., Proc. Int. Workshop on How To Do
Good Research In Activity Recognition: Experimental methodology, performance
evaluation and reproducibility,

[13] N. Y. Hammerla, “Activity recognition in naturalistic environments using body-worn
sensors,” 2015.

[14] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso, “Preprocessing techniques for
context recognition from accelerometer data,” Personal and Ubiquitous Computing,
vol. 14, no. 7, pp. 645–662, 2010.

[15] J. Frank, S. Mannor, and D. Precup, “Activity and gait recognition with time-delay
embeddings,” in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[16] D. Minnen, T. Westeyn, T. Starner, J Ward, and P. Lukowicz, “Performance metrics
and evaluation issues for continuous activity recognition,” Performance metrics for
intelligent systems. NIST, Gaithersburg, pp. 141–148, 2006.

[17] H. Li, G. D. Abowd, and T. Ploetz, “On specialized window lengths and detector
based human activity recognition,” in Proceedings of the 2018 ACM International
Symposium on Wearable Computers, ACM, 2018, pp. 68–71.

[18] H. Kwon, G. D. Abowd, and T. Ploetz, “Adding structural characteristics to distribution-
based accelerometer representations for activity recognition using wearables,” in
Proceedings of the 2018 ACM International Symposium on Wearable Computers,
ACM, 2018, pp. 72–75.

[19] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep convolutional
neural networks on multichannel time series for human activity recognition.,” in
Ijcai, vol. 15, 2015, pp. 3995–4001.

[20] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang, “Con-
volutional neural networks for human activity recognition using mobile sensors,”
in 6th International Conference on Mobile Computing, Applications and Services,
IEEE, 2014, pp. 197–205.

37

[21] Y. Guan and T. Plötz, “Ensembles of deep lstm learners for activity recognition using
wearables,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, vol. 1, no. 2, p. 11, 2017.

[22] M. Zeng, H. Gao, T. Yu, O. J. Mengshoel, H. Langseth, I. Lane, and X. Liu, “Un-
derstanding and improving recurrent networks for human activity recognition by
continuous attention,” in Proceedings of the 2018 ACM International Symposium on
Wearable Computers, ACM, 2018, pp. 56–63.

[23] V. S. Murahari and T. Ploetz, “On attention models for human activity recognition,”
ArXiv preprint arXiv:1805.07648, 2018.

[24] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief
nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[25] G. E. Hinton, “To recognize shapes, first learn to generate images,” Progress in brain
research, vol. 165, pp. 535–547, 2007.

[26] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of video
representations using lstms,” in International conference on machine learning, 2015,
pp. 843–852.

[27] S. Amiriparian, M. Freitag, N. Cummins, and B. Schuller, “Sequence to sequence
autoencoders for unsupervised representation learning from audio,” in Proc. of the
DCASE 2017 Workshop, 2017.

[28] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, 2013, pp. 3111–3119.

[29] S. Bhattacharya, P. Nurmi, N. Hammerla, and T. Plötz, “Using unlabeled data in
a sparse-coding framework for human activity recognition,” Pervasive and Mobile
Computing, vol. 15, pp. 242–262, 2014.

[30] J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang, “Device-free wireless localization
and activity recognition: A deep learning approach,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 7, pp. 6258–6267, 2017.

[31] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán,
and D. Roggen, “The opportunity challenge: A benchmark database for on-body
sensor-based activity recognition,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2033–
2042, 2013.

38

[32] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and recurrent mod-
els for human activity recognition using wearables,” ArXiv preprint arXiv:1604.08880,
2016.

[33] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and G. Tröster, “Wearable activity
tracking in car manufacturing,” IEEE Pervasive Computing, no. 2, pp. 42–50, 2008.

[34] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity moni-
toring,” in 2012 16th International Symposium on Wearable Computers, IEEE, 2012,
pp. 108–109.

[35] M. Zhang and A. A. Sawchuk, “Usc-had: A daily activity dataset for ubiquitous
activity recognition using wearable sensors,” in Proceedings of the 2012 ACM Con-
ference on Ubiquitous Computing, ACM, 2012, pp. 1036–1043.

[36] M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi, and G.
Troster, “Wearable assistant for parkinsons disease patients with the freezing of gait
symptom,” IEEE Transactions on Information Technology in Biomedicine, vol. 14,
no. 2, pp. 436–446, 2010.

[37] J. G. Nutt, B. R. Bloem, N. Giladi, M. Hallett, F. B. Horak, and A. Nieuwboer,
“Freezing of gait: Moving forward on a mysterious clinical phenomenon,” The Lancet
Neurology, vol. 10, no. 8, pp. 734–744, 2011.

[38] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[39] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,”
Distill, 2016.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[41] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recurrent neural
networks,” in International Conference on Machine Learning, 2015, pp. 2067–2075.

[42] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fietzek,
and D. Kulić, “Data augmentation of wearable sensor data for parkinson’s disease
monitoring using convolutional neural networks,” ArXiv preprint arXiv:1706.00527,
2017.

[43] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering
analysis,” in International conference on machine learning, 2016, pp. 478–487.

39

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[44] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering with local
structure preservation.,” in IJCAI, 2017, pp. 1753–1759.

[45] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional autoen-
coders,” in International Conference on Neural Information Processing, Springer,
2017, pp. 373–382.

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W,
2017.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ArXiv
preprint arXiv:1412.6980, 2014.

40

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Related Work
	Datasets
	Opportunity
	Skoda
	PAMAP2
	USC-HAD
	Daphnet Freezing of Gait Dataset

	Methodology
	Pipeline
	Distribution-based representations
	Autoencoder-based unsupervised representations
	Vanilla autoencoders
	Convolutional autoencoders
	Recurrent autoencoders

	DeepConvLSTM-based supervised representations
	Classifier
	Performance metrics

	Results and Discussion
	Performance of representations vs the representation dimensions
	Time taken to compute the representations
	Number of trainable parameters for computing the representations
	Memory footprint
	Performance of the representations based on the amount of training data required

	Conclusion
	Limitations and Future Work

	Data Processing
	References

