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T. S. Eliot



To my ever supportive parents and brother



ACKNOWLEDGEMENTS

I would first and foremost like to thank my current advisor Dr. Sung Kyu Lim for his

great guidance and opportunities he provided me with. This thesis would not be possible

without the opportunities and support from him. I feel truly lucky to have such an intel-

ligent, supportive and enthusiastic scholar as my advisor and mentor. I look forward to

continue working with him for the next couple of years. I am also thankful to Dr. Saibal

Mukhopadhyay and Dr. Arijit Raychowdhury for serving as committee members for my

thesis.

The project that this thesis takes part of would not have been possible without the gen-

erous funds of NASA and Irvine Sensors. I would like to thank all of my sponsors for the

project including James Yamaguchi, Christian Krutzik, and Dan Nakamura.

My personal thanks goes to my colleagues of the GTCAD lab: Kyungwook Chang,

Bon Woong Ku, Rakesh Perumal, Heechun Park, Jinwoo Kim, Anthony Agnesina, Sai

Pentapati, Jee Hyun Lee, Yi-Chen Lu, Lingjun Zhu, Gauthaman Murali, Chengjia Shao,

and Lennart Bamberg. They are truly supportive and great people to work with.

My special thanks goes to my ever supportive parents and brother. I would not have

been able to come this far in my studies if it was not for my father, my forever favorite

mentor, and my most supportive and loving mother. It is also very fortunate to have a

brother who cares a lot about his “always” busy sister. I love each and everyone of my

family and would like to dedicate this thesis to them.

v



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Radiation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 3D Memory cubes . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Stacking Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Re-Distribution Layer . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Research Objective and Main Contribution . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Design of Space Memory Cube . . . . . . . . . . . . . . . . . . . . . 9

2.1 Stacking Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 End Cap Shields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Configuration of the Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



Chapter 3: Design of Memory Controller . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Error Correcting Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Scrubbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Bad Block Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Wear Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.6 SRIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Flash Translation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4: Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Design of Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Implementation of Error Correction . . . . . . . . . . . . . . . . . . . . . 25

4.3 Functions supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 5: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Verification of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 FPGA Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Memory Controller RTL Synthesis . . . . . . . . . . . . . . . . . . 32

5.3 Comparison to Previous products . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 6: Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 40

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



LIST OF TABLES

4.1 Hardware interface signals for the flash controller . . . . . . . . . . . . . . 22

4.2 Hardware interface signals within the flash controller . . . . . . . . . . . . 26

5.1 Controller Parameters at Fastest Clock Frequency . . . . . . . . . . . . 32

5.2 Comparison table of FLASHRAD to RTIMS . . . . . . . . . . . . . . . 33

viii



LIST OF FIGURES

1.1 3D Memory Cubes. Hybrid Memory Cube [6], Samsung 3D VNAND [7] 5

1.2 Stacking Methods (Pancake style vs. loaf-of-bread style) . . . . . . . . . 6

1.3 Re-distribution Layer[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Re-distribution Layer of the Flash cube . . . . . . . . . . . . . . . . . . 10

2.2 Radiation Shield Layering for the 3D Memory Cube Ends . . . . . . . . 11

2.3 The Flash Memory Cube . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Cube Configuration Diagram . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Flash Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . 14

3.2 N-Modular Redundancy Operational Diagram (TMR) . . . . . . . . . . 18

3.3 Logical Block Table Structure . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Hardware diagram of NAND Flash controller . . . . . . . . . . . . . . . 23

4.2 Hardware diagram of Flash controller . . . . . . . . . . . . . . . . . . . 24

4.3 Parameterized values for ECC module . . . . . . . . . . . . . . . . . . . 27

4.4 Hardware diagram of the ECC module (BCH) . . . . . . . . . . . . . . 28

4.5 Necessary ECCs to encode an entire page . . . . . . . . . . . . . . . . . 29

5.1 Simulated waveform for multiple functions . . . . . . . . . . . . . . . . 34

ix



5.2 Simulated waveform for write page operation . . . . . . . . . . . . . . . 35

5.3 Simulated waveform for read page operation . . . . . . . . . . . . . . . 36

5.4 Simulated waveform for BCH Encode . . . . . . . . . . . . . . . . . . . 37

5.5 Simulated waveform for BCH Decode . . . . . . . . . . . . . . . . . . . 38

5.6 Synthesized Memory Controller RTL . . . . . . . . . . . . . . . . . . . 39

x



SUMMARY

With the rapid growth in scope for space missions, the computing capabilities of on-

board spacecraft is becoming a major limiting factor for future missions. This thesis is part

of a project that designs a radiation hardened NAND Flash memory cube for use in space.

Previous stacked memory cube designs focused on horizontal integration of memory dies

through multiple TSVs. Using horizontal integration, however, cannot satisfy the grow-

ing desire to use commercial-off-the-shelf (COTS) dies in the space community. Thus this

thesis presents a new flash memory cube design using a vertical integration method called

loaf-of-bread stacking. This allows the use of COTS dies due to easy connections to the

memory controller with a single TSV per die.

In addition to the stacking method, other radiation effects and the inherent NAND Flash

error prone characteristics are considered in the design of the memory cube. Thus, endcaps

for the Flash cube to shield radiation were designed and error mitigation methods such as

error correcting codes (ECC) and scrubbing are proposed for the design. Other methods

such as bad block management and wear leveling, SRIO interface are also included to make

the NAND Flash cube as robust and reliable as possible.

The main focus of this thesis is on presenting the new design with all the intended

features and showing some validation of the memory controller to show proof of concept

for the cube design. Thus, a preliminary RTL was designed for the memory controller

portion of the design and simulated results are shown in the later part of the thesis.



CHAPTER 1

INTRODUCTION

The current era shows a remarkable amount of interest in space exploration with an in-

crease in the number of space missions. With the increase of space missions and the rapid

growth in scope for each of them, the computing capabilities of onboard spacecraft and the

memory capacity is becoming a major limiting factor for accomplishing future missions.

Technology development to address the limit of space computing capabilities are under-

way with major efforts to improve central processing units (CPU) [1]. However, efforts to

address the limitation of memory systems are rarely made. Recently, a 3D DRAM mem-

ory cube has been designed to improve the active memory portion of high performance

space computers (HPSC) [2]. An equivalent effort should be made for the storage space for

onboard systems.

1.1 Background and Motivation

The scope for space missions are growing rapidly and with the limited capacity of onboard

memory systems, there are difficulties in dealing with the copious amounts of data obtained

during the mission. Missions often require data-intensive operations such as terrain nav-

igation, hazard detection and avoidance, autonomous planning and onboard science data

processing. In addition to capacity improvement, the memory must be reliable and ready to

operate in a radiation environment. The major goal of this thesis is to enhance the storage

portion of onboard systems using Flash memory.

NOR Flash has shorter read times with the ability to randomly access cells, however,

NAND Flash provides higher memory densities owing to it’s smaller cells. NAND Flash

is the more widely used memory in most data storage applications. Therefore, the NAND

Flash is used for the design of the memory cube in this thesis.
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Technology scaling has been the main method of improving NAND Flash memory for

many years. However, despite these efforts by industry and academia, capacity improve-

ment with the planar NAND Flash is slowly reaching its limits due to physical limitations.

With this slowdown, industry has been looking into alternative methods to continue im-

proving memory through 3D integration. After Samsung released the 3D V-NAND in 2012,

other memory companies such as Toshiba, SK Hynix, and Micron brought their own 3D

NAND products to the market one after another. These 3D NAND products stack up Flash

cells vertically within the device which improve the memory capacity of NAND Flash

devices without further technology scaling. Recently, Samsung has announced the mass

production of their 8 tier 3D V-NAND[3]. Unfortunately, these newest products are more

vulnerable to radiation effects due to the small sizes of the transistors. Smaller transistors

have lower tolerances to Single Event Effects (SEE) and Single Event Functional Interrupts

(SEFI) which are major considerations for any electronics meant to be used in space. Many

of the electronic devices for space applications tend to be one to two generations behind

the state-of-the-art technologies for this specific reason.

Despite the low radiation tolerances, there is an ongoing desire to use commercial off

the shelf (COTS) dies in the space community because of it requires shorter design time

and less design efforts. The use of COTS also gives the benefit of being able to use state-of-

the-art devices. However, for the NAND flash memory cubes in the past, the horizontally

stacked die design made it difficult to utilize COTS because it required numerous through-

silicon vias (TSV). In 2014, radiation tolerant intelligent memoery stack (RTIMS) Flash

was released by 3D-Plus as one of the first efforts to stack NAND Flash dies with a memory

controller. This product is a package-on-package (PoP) and is a space-ready flash cube with

protection against radiation. However, it can only offer up to 24Gb of memory per cube

and the size of the cube could be smaller with recent technology improvements. Thus,

the motivation for this thesis comes from the necessity of an NAND Flash device that can

utilize COTS for the space community with improved memory capacity.
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1.2 Related Work

1.2.1 Radiation Effects

As the memory cube to be designed is meant for use in space, it is important to understand

the following radiation effects on electronics. The most common radiation terms used are

as follows:

• Single Event Effects (SEE) : SEEs are radiation effects caused by a single particle

such as protons or cosmic rays from space. SEEs can cause disrupts in the operations

of electronics and thus is an important factor to consider when designing electronics

for use in space. SEE rates is defined as the probability a SEE will occur within a

certain given time.

• Single Event Upset (SEU) : A SEU is the case where the electronics have been af-

fected by radiation and require either a rewrite or a reset to resume operations.

• Single Event Functional Interrupt (SEFI) : A SEFI is a special case of a SEU where

the device has to go through a power reset to recover from the SEU to resume oper-

ations.

• Total Ionizing Dose (TID) : The TID value is usually the most important value that

are considered for electronics meant for space. It is the cumulative degradation of a

device when exposed to ionizing radiation. In the case of the design considered in

this thesis, the TID is expected to be around 90krads or more [4].

With all the radiation effects that could happen in space, error correcting methods and

radiation shielding would be essential for electronics meant to be used in sapce.

1.2.2 3D Memory cubes

Technology scaling has been slowing down in the recent years as it gradually reaches

its limits with physical limitations in channel length scaling and lithographic challenges.
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Global Foundries has recently abandoned the development of the 7nm technology node

which is one of the indications that the end of technology scaling is not far away [5]. For

this reason, industry and academia are looking into alternatives to continue improving the

power consumption and performance of electronic devices. One of the most promising

and major efforts is on 3D integration. Research on stacking integrated circuits with TSV

connections show great potential for power and performance improvement. By stacking

dies with reduced footprints instead of a single planar die, 3D ICs benefit from shorter

interconnects.

Similarly, industry has been exploring the feasibility of stacking memory devices in

3D. Instead of expanding the footprint of a memory die or further decreasing the size of

the transistors to increase memory capacity, companies started integrating memory in 3D.

The most well known example of a 3D memory cube is the hybrid memory cube (HMC),

a DRAM 3D memory cube designed by Micron. Following the advent of the HMC, the

high bandwidth memory (HBM) by other competing companies have also appeared (See

Figure 1.1). With the 3D integration, these memory cubes provided higher bandwidths,

lower energy consumption and higher memory densities compared to the conventional 2D

planar memory devices. NAND Flash is also using 3D integration to increase the memory

density of a single device. As shown in Figure 1.1, Samsung has released their 3D V-

NAND which announced the start of 3D NAND Flashes with many competitors following

the trend. However, these 3D NAND devices are not suited for space applications due to

their small transistor sizes.

In the case of memory cubes for space applications, 3D-Plus released the radiation

tolerant intelligent memory stack (RTIMS) Flash in 2014 with a microprocessor based

memory controller for use in space. The RTIMS is a package on package (PoP) in which

two or more packages are stacked together to form a cube. Due to the nature of how PoP

stacks packages instead of bare dies, PoP takes up more space and is more difficult to gain

a higher memory density compared to stacking bare dies. Thus, although 3D Plus provides
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Hybrid Memory Cube (HMC) Samsung 3D V-NAND

Figure 1.1: 3D Memory Cubes. Hybrid Memory Cube [6], Samsung 3D VNAND [7]

a space-ready flash cube with protection against radiation, the memory capacity is not that

high with only 24 Gb of memory. By stacking bare dies with end cap shields and various

error correction methods, it is possible to increase the memory capacity greatly while still

offering similar radiation tolerances to the RTIMS.

1.2.3 Stacking Methods

The conventional way of stacking memory devices has been the “pancake” style shown on

the left of Figure 1.2. Also utilized by HMC, this “pancake” method stacks dies horizon-

tally requiring many TSVs for each die. Due to the difficulty in connecting IOs, this method

limits the number of dies that can be stacked together limiting the memory density [2]. The

“loaf-of-bread (LOB)” stacking method shown on the right of Figure 1.2 offers many ben-

efits over the “pancake” method of stacking. Originally proposed by [8] [9] [10], the LOB

stacking method uses vertical integration with single TSVs per die unlike the “pancake”

style. The biggest advantage of the LOB configuration is that it allows the utilization of

COTS dies and this is only possible because of the easy IO connections through reroute

distribution layers (RDL). With the RDL, the connections come directly out of the edge

through a single TSV. According to [2], LOB also has minimal electrical impedance ow-

ing to its short logic to memory interconnects, has minimal electrical impedance, and it is

5



pancake style loaf-of-bread style (LOB)

flash die

flash die

RDL

RDL Filler

TSV

Logic Tier

UBM

Figure 1.2: Stacking Methods (Pancake style vs. loaf-of-bread style)

possible to have IO connections to an individual die.

1.2.4 Re-Distribution Layer

A re-distribution layer (RDL) is an additional metal layer used to redirect IO pins or pads to

the desired location. Figure 1.3 show an RDL specifically designed for a DRAM cube that

was designed by Agnesina[2]. As shown in the figure, RDLs can be designed to redirect

signals from one side of the metal face to another side. Having multiple layers of metals

for the RDL could also improve impedance control. In the case of the memory cube design

considered in this thesis, an RDL design will be especially necessary with the LOB method

of stacking, as IOs need to be redirected to the bottom of each die to connect to the memory

controller on the bottom.

1.3 Research Objective and Main Contribution

The research objective of the thesis is to design a reliable and robust radiation-hardened

flash memory cube utilizing COTS flash dies for usage in space. This is to address the

limitations of memory and computing capabilities of onboard spacecrafts resulting from
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Figure 1.3: Re-distribution Layer[2]

the fast growth in scope for space missions. With the rapid growth, onboard computing

now require memory devices with high-bandwidth, high-capacity, and high-reliability to

maximize the mission data storage. Due to the radiation exposed operating environment,

the memory cube resulting from this research must be robust and fault tolerant.

The main contribution of this thesis is the design of a reliable 3D NAND Flash memory

cube design and the validation of the design. Thus, this thesis explores a 3D NAND flash

cube design which utilizes 24 COTS dies in a LOB configuration. It will be shown that

this design effectively increases data storage for onboard memory while reducing cost and

design effort. In order to show proof of concept of the design, part of the memory controller

is designed using RTL code. The RTL code is then simulated using the Verilog simulation

model of the selected NAND Flash die.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 discusses the design of the memory

cube itself with discussions on the stacking methods, additional radiation shielding method,

and the configuration of the cube including expected dimensions. Chapter 3 discusses

the memory controller design with necessary functionalities to support the memory cube.

7



Chapter 4 discusses the implementation aspect of the memory controller hardware and the

parts that are currently designed in register transfer level (RTL) code. Chapter 5 shows

the preliminary results from simulating the memory controller RTL along with a Verilog

simulation model of the selected NAND Flash die. Chapter 6 will discuss conclusions and

future work.
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CHAPTER 2

DESIGN OF SPACE MEMORY CUBE

2.1 Stacking Method

In the considered memory cube design, twenty four identical 32Gb NAND Flash dies are

stacked together with a single memory controller connected to each die separately. In

total, this offers a total memory space of 768 Gb. Each flash die has an 8-bit interface for

input/output.

In order to maximize inter-connectivity and thermal performance, the loaf-of-bread

(LOB) configuration first proposed by Agnesina et al [2] and which was originally used

for a DRAM cube has been used for the Flash memory cube. With the die in LOB config-

uration, straightforward access to individual dies within the cube for power management

and increased bandwidth capabilities can be achieved. It also minimizes electrical para-

sitics which helps reduce IO drive requirements and improves signal integrity.

NAND flash dies from multiple manufacturers have been investigated for acceptable

radiation tolerance. Micron dies have been selected to be used for implementation of our

cube and thus Micron die parameters will be used for comparison against the 3D Plus’

RTIMS.

With the cube being in the LOB configuration, it is necessary to connect the intercon-

nects of each die to the memory controller. In order to bring the necessary interconnec-

tions from the die I/O to the bottom edge of the die, a Reroute Distribution Layer (RDL)

is applied to each die. These dies are then stacked together to form the cube structure.

Figure 2.1 shows the designed RDL for this cube with the dimensions being 13.0mm by

15.5mm. With a multi-layer RDL design, both the impedance control of the design circuit

and the power distribution of the die are improved. The face of the cube where the lead ex-
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Figure 2.1: Re-distribution Layer of the Flash cube

tensions go to the edge will be processed with an isolation dielectric to allow for formation

of interconnect pads that will subsequently be used as the I/O for the cube.

2.2 End Cap Shields

With the LOB stacking method, end caps can be added to each side of the stack for addi-

tional radiation shielding as well. The end cap adds very little additional size and weight for

a stacked structure compared with a 2D layout of individual packages. Figure 2.2 shows

the design of the end cap using both high-z materials to protect the cube against high en-

ergy photons such as X-rays and γ-rays and low-z materials to absorb secondary radiation

from highly penetrative γ-rays. Although the end caps do not provide perfect protection,

they do provide a significant reduction in the overall radiation cross-section of the device.

A design tradeoff can also be made between the shielding effectiveness and the individual

die thickness and number of layers.

2.3 Configuration of the Cube

With 24 NAND Flash dies vertically stacked together, the approximate dimensions of the

cube are 13.8mm by 16.00mm by 15.5mm with increased memory space compared to the

10
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Figure 2.2: Radiation Shield Layering for the 3D Memory Cube Ends

RTIMS from 3D Plus. Figure 2.3 shows the Flash cube with the approximate dimensions.

The configuration of the design can be seen in Figure 2.4 where 24 Flash dies are connected

to the controller and each of the four dies share a capacitor layer. As mentioned earlier, each

of the NAND Flash dies offer 32Gbs of data and with 24 of them, the cube will have a total

of 768Gbs of memory. One page is 17,600 byes with 16,384 of data area and 1216 bytes of

spare area. The ECC data and other meta data will be stored in each of the spare areas of

each page. The MRAMs shown in the figure will be used for caching and Flash Translation

Layer (FTL) which will be further explained in section 3.
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CHAPTER 3

DESIGN OF MEMORY CONTROLLER

In this chapter, the details for the memory controller design is demonstrated. There will be

both detailed block diagrams for the design as well as figures to explain each of the features

to help the understanding of the controller design.

For the memory controller of the Flash cube, a processor based implementation with

firmware based control will be implemented. Figure 3.1 shows the block diagram of the

whole system including both the processor subsystem and the hardware data path. The

hardware data path consists of all Flash controller functions required to decouple the Flash

management from the host system. The interface to the host system will consist of a high-

speed serial IO in the form of daisy-chainable Serial Rapid IO (SRIO). The host will access

the NAND Flash array using the SRIO interfaces as a linear-addressable memory space

with no concerns of typical Flash management as the 3D memory module will handle

all management functions. This will provide a simple to use interface from the host’s

perspective.

The NAND controller and the ECC has been implemented and is marked in Figure 3.1.

The block diagram is color-coded depending on whether the module is implemented via

hardware, software, or a mixture of the two.

3.1 Basic Functions

Basic read, write, erase, and reset functions has been implemented and tested. The test

results of the simulated code can be found in Section 4. The interface will be to each die

individually, so all the dies may be accessed at the same time, i.e. 192bit bandwidth, but not

with the same set of functions. This way, each byte channel can have a different instruction.

By accessing the dies at the same time, the usage of the dies can be distributed and this will
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also be good for wear leveling.

3.2 Error Correcting Code

In general, NAND Flash requires more control and error mitigation compared to the con-

ventional random access memories (RAM) due to their physical properties including but

not limited to bad blocks, limited program/erase cycles, having different sizes for read/write

and erase. Since the memory cube is designed for use in space, it is more vital to have as

much Error Correcting Code (ECC) done as possible in order to deal with the additional

radiation effects on top of NAND Flash’s inherent issues. For performance reasons, di-

rect implementation of ECC in hardware is required. NAND Flash devices inherently have

spare space in them which is typically used for ECC, wear leveling, and other error correct-

ing modules. This spare space in each Flash die will mainly be used for ECC separately

allowing fully parallel operation within the stack. Hamming code is not sufficient enough

for a space application. Thus, in this memory cube, Bose-Chaudhuri-Hocquenghem code

(BCH) is used.

3.3 Scrubbing

In addition to the basic ECC, scrubbing for the cube is used as a background task which

will re-write a whole block if read errors exceed a certain threshold. The scrub rate and

process will be fully programmable and the scrub algorithm will utilize the wear-leveling

meta-data in order to process new address locations if block relocation is required. The

baseline algorithm will be to use a combination of program/erase count and read errors

to determine scrubbing action. If read errors exceed a certain threshold, the block will be

re-written or relocated depending on the program/erase count. The processor will also be

able to perform data movement from Flash to RAM which allows it to temporarily store

the block to be relocated if required.
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3.4 Bad Block Management

NAND Flash has bad blocks issues, but factory bad blocks are usually mapped out during

production and do not become a big issue as they are isolated from the valid blocks. How-

ever, NAND Flash devices can also develop grown bad blocks during their lifetime that

need to be mapped out of usable space when encountered. In order to resolve this issue,

the controller will monitor the write status of every write as well as the maximum bit errors

corrected during a read. These indicators will be used to determine if a block is ready to

be retired. This function is performed on the top level directly in hardware where a faulty

write will trigger a new write using the next available free block address while the failing

address is stored in a small FIFO. This also requires additional logic that ties back to the

write RAM buffer so that new data is not processed into the buffer until a successful write.

The block address is also temporarily removed from the free list. Similarly, on each read

the ECC will determine the read errors. If the errors exceed a threshold, the block address

is entered into the FIFO as well with appropriate bit marker allowing various cases to be

distinguished.

In addition to the hardware path, the processor core will receive an interrupt from the

FIFO alerting it that there is a potential bad block. For the case of a write error, after the

block has already been moved to a new location, the processor will erase the potential bad

block, write a test pattern, and recheck status in the background. If the block passes, then

it will be erased and returned to the free list. If it fails the second time, the block is marked

as bad and added to the bad block table. Note that each block is marked bad in addition

to storing a bad block table in the Flash array which provides redundancy. In the case of

read error count, the processor may choose to reread the address and monitor the errors. If

a potential error condition is ascertained, the processor will trigger the scrubbing module

to move the block. The threshold set to the ECC module would be more conservative

allowing the processor to make a final decision. The processor may then execute additional
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write/read of a test pattern to determine if the block should be retired. The processor code

can be tuned to be more or less aggressive for bad block determination as desired.

3.5 Wear Leveling

In order to implement wear leveling, the Flash controller will be designed to store both the

meta-data of total writes in the first page of each block and a SRAM based lookup table

containing free blocks. The free block table will be maintained as two tables - one that

holds the full free block addresses and a smaller, more optimized, partial table that hold the

blocks addresses with the lowest Program/Erase count. The partial table will be maintained

by the processor and will be implemented as a write-addressable FIFO in hardware in the

background by scanning the Flash array for the lowest Program/Erase cycle blocks. As the

processor scans the array, it will add blocks to the the free block table whenever a block

has less Program/Erase cycles than the lowest Program/Erase cycle block in the table. The

processor will update the table during garbage collection as well as scrubbing as needed.

The partial free block table will be stored in volatile memory as it can be generated on each

power-up.

In addition to the partial free block table, the full free block table is generated from

the FTL (by the logical block table) as it naturally contains all available used/free blocks.

However, as the FTL is addressed by logical blocks, it requires a full scan of the logical

block table to generate. This will be performed at power-up by the processor. Under peak,

sustained write conditions, it is possible for the partial free block table to empty in which

case free blocks will be selected by the FTL in a round-robin fashion. This will incur only

minimal write imbalance and can be throttled by processor if required.

3.6 SRIO Interface

Serial Rapid IO protocol will be used for the interface protocol and will be designed to

support version 3.1 specifications at a minimum which added space compliance support.
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Edge

Module

Host Processor

write

read

Figure 3.2: N-Modular Redundancy Operational Diagram (TMR)

The in/out ports will be fully buffered and the in-out path will be internally processed by

the controller allowing for advanced features. The SRIO will operate at multi giga-bit

speeds which will unfortunately add additional latency to each module in the daisy-chain.

However, the delay can become transparent to each module in the daisy-chain with proper

processing methods and since the daisy-chain works in a pipeline mode, the length of the

delay should not affect the throughput. The SRIO interfaces to the wide-word interface

of the 3D stack through a serializer-deserializer (SERDES) block which takes the SRIO

data at Gbps rates and reduces it to a slower clock domain for processing. Since the cube

includes multiple layers, the wide-word data in the lower clock domain is easily consumed

by the Flash devices.

Using SRIO as the Flash IO along with daisy chain support allows the Flash controller

to be designed with support for host-independent, n-modular redundancy (NMR) modes

when required for increased reliability operation. Additionally, for cases where only cer-

tain data is system critical, the redundancy can be implemented within a subset of modules

in a chain as shown in Figure 3.2 which shows a Triple-Modular Redundancy (TMR)

technique. The redundancy can be supported in a transparent manner such that the host

processor requires no additional processing or decoding. This means that a redundant con-

figuration of Flash modules is accessed in the same manner as a single device as far as the

host processor is concerned. The Flash controller would take the responsibility of passing
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along write operations to replicate the data among grouped modules, issuing reads to the

redundant modules, and performing the voting. The device closest to the host processor in

the chain is referred to as the ”edge” module as shown in Figure 3.2 and performs as the

additional processor in terms of replicating and addressing additional modules, off-loading

the host processor from any special duties; the ”redundant” modules are those that contain

redundant data copies along with the edge module.

3.7 Flash Translation Layer

The Flash Translation Layer (FTL) will perform the logical to physical block mapping.

This allows the external interface to have consistent block addressable interfaces without

having to know the internal remapping operations. FTL needs fast access to the logical

block table as address translation will be required for every read and write operation. A

separate RAM device stores the logical block table during operation to provide fast access.

The RAM device is part of the stack and will be transparent to the users.

To reduce controller complexity, the logical block table is designed as a 4-byte wide

lookup table on a 16 sector (8kB) granularity. Basic operation is shown in Figure 3.3 and

will be implemented in hardware. The block table stores the physical block number such

that the upper bits of the sector address can be used to directly address the RAM memory

to obtain the corresponding physical block. Within the physical block, the sectors will be

distributed sequentially and will therefore be addressed without further translation.

The logical block table will be stored into Flash at various checkpoints during operation

to reduce impact of potential unexpected power loss or other radiation effects. Redundant

copies is stored across multiple dies to mitigate radiation effects and Flash block failures.

For further protection, the logical block address will be stored as part of the meta-data

for each page. This allows reconstruction of the block table if required. Furthermore, it

provides a mechanism for the Flash controller to verify that the proper block has been

addressed to reduce potential radiation induced errors on the control logic. As multiple
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pages are stored per block, there is an inherent level of redundancy that further protects

block mapping info.

976

26

4

1384

free

76

Sector 32

33

34

35

36

46

47

Physical

Block Number

Block #4

0

16

32

48

64

n

Logical Block Table

Physical Block

Figure 3.3: Logical Block Table Structure

3.8 Garbage Collection

The garbage collection will be performed as a background process. Primary garbage col-

lection occurs via a FIFO interface from the management module and NAND controller

module that keeps track when Flash blocks are relocated. The processor will interrogate

the FIFO and erase those blocks in idle periods. Furthermore, the processor can scan the

logical block table and Flash array to determine any erasable stale blocks that may be a

result of incomplete collection due to power-down or radiation effects.

Most of this section was published in an IEEE Aerospace conference paper.
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CHAPTER 4

IMPLEMENTATION

For proof of concept for the NAND Flash memory cube, the memory controller hardware

has been implemented in Verilog with the simplest functionality. The Register Transfer

Level (RTL) code was simulated with along with a Verilog simulation model of the Micron

NAND Flash die selected. In this chapter, the implementation of the memory controller

RTL code is described in detail.

4.1 Design of Hardware

The memory controller hardware design was based off of an open source NAND Flash

controller developed by Lattice [11] and has been adjusted to meet the design requirements

of the memory cube. The original Lattice code was written to work with a single Samsung

NAND Flash die. It has been adjusted to work with twenty four of the Micron dies at the

same time instead. Figures 4.1 and 4.2 are the block diagrams of the new RTL adjusted

to support twenty four 32Gb Micron dies. Figure 4.1 show the overall structure with the

testbench wrapper and how the Flash controller interact with the flash cube of twenty four

dies. The “test case generation” block is not an actual physical block but was inserted in

the figure to help understand how the testbench works. Figure 4.2 shows the modules

within the flash controller module. The “logic” block within this figure is also not an actual

module but represent all the necessary muxes and combinational logic circuits within the

flash controller module.

The testbench was written to test the basic functionalities of the flash controller such

as “reset”, “program page” and “read page” for the twenty four dies at once. As shown in

Figure 4.1, the flash controller and the twenty four NAND dies are simulated within the

testbench wrapper. The generated test cases within the testbench simulate a NAND Flash

21



Table 4.1: Hardware interface signals for the flash controller
Signal Type Description
CLK input Clock
rst input reset

DIO inout [191:0] IO port to the cube (8bits each for 24 dies)
CLE output Command latch enable
ALE output Address latch enable
WE n output Write enable
RE n output Read enable
CE n output Chip enable
Wp n output Write protect
R nB input Ready/Busy

cmd code input command code
cmd start input indicates start of a command
cmd done output indicates the command is done

block value input block address
page value input page address
col value input column address

data to be written input [191:0] data to be written in the Flash

function issued from the CPU. Once the test case starts, the flash controller will send the

control signals such as “CLE”, “RE n” and the corresponding wires connected to the cube

model will go high and low depending on the command and the cycles. The bandwidth of

the chosen Micron Flash die is 8 bits and thus with twenty four of them, the IO will be 192

bits at once. Table 4.1 details the hardware interface signals for the flash controller shown

in Figure 4.1.

The Flash controller module in Figure 4.2 consists of three modules: Main FSM, Tim-

ing FSM, and the module responsible for ECC. The Main FSM and the Timing FSM mod-

ules take care of the control signals and thus are shown together in the control block. When

a command such as “read page” or “write page” is received from the testbench through the

command start and command code wires, the “main FSM” will go through the states and

change the “t start” and “t cmd” wires to the appropriate values depending on the com-

mand. The “main FSM” module takes care of each of nand flash commands while the

“timing FSM” takes care of the “CLE”, “ALE”, “WE n”, “RE n”, “CE n” signals for the
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command latch, address latch and other cycles. These signals generated by the “timing

FSM” module is then used by the NAND Flash simulation modules to carry out each com-

mand. The “ECC” module takes care of the BCH encoding and decoding of the data to

and from the NAND Flash model. Table 4.1 details the hardware interface signals shown

in Figure 4.2 excluding the signals already detailed in Table 4.1.

4.2 Implementation of Error Correction

An open source BCH code has been parameterized and used for the purpose of this imple-

mentation [12]. The original code was paramaterized to match the needs of the memory

cube. In this implementation the BCH[4382, 4096] was used which corrects 22 bits per

4096 bits. With this BCH code, 286 ECC bits are created for each 4096 bits and the ECC

bits would be stored in the spare area of the NAND Flash die. This would be enough to

meet the requirements of the specific NAND die used for the memory cube. However,

the code itself is a generic BCH and configurable if more ECC would be necessary in the

future.

Figure 4.4 show the ECC block with the encoder, the decoder and the necessary pa-

rameter generator block inside. The parameter generator first takes in the “data bits” and

“target t” signals which are 4096 and 22 respectively in the case of this design. The block

calculates the necessary parameters and outputs the parameter “P”. The resulting “P” looks

like Figure 4.3 in this case where each 4bits have a meaning that is indicated in the Fig-

ure. Some of them are numbers inputted such as the total number of data bits to be used

(4096bits in this case) and the target correction bits (up to 22bits can be corrected from this

code). Others are used for calculating the syndrome and decoding. As shown in Figure 4.5,

a total of 32 encoders are necessary to encode a whole page for the size of the NAND Flash

die chosen.
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Figure 4.3: Parameterized values for ECC module

4.3 Functions supported

The current flash controller RTL supports the following NAND Flash commands:

• Reset : The basic reset function of NAND Flash.

• Read Page : The basic read page function of NAND Flash. The BCH decoding

is embedded and for each and every page read, the data will be decoded through

the controller. This is done by first encoding the data read out from the page and

comparing the encoded data to the ECC data that was originally stored in the Flash

for that specific data.

• Program Page : The basic program page function of NAND Flash. The BCH en-

coding is embedded and for each and every page is encoded when programming the

data.

• Erase Block : The basic erase block function of NAND Flash. The erase block

function erases a whole block of 256 pages. It is one of Flash’s characteristics that it

programs and read in units of pages but erases in units of blocks.

• Read ID : The basic read ID function. Each and every Flash device has an ID and

this function reads the ID of the device.
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Figure 4.4: Hardware diagram of the ECC module (BCH)
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Figure 4.5: Necessary ECCs to encode an entire page

• Read status : The basic read status function. This gives back whether the NAND

Flash device is busy or not. Due to the nature of the command, this function can be

issued when the Flash is busy. This is also used as a second command in read or

program functions.
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CHAPTER 5

RESULTS

5.1 Verification of Code

A preliminary verification of the memory controller’s RTL code has been done using a

Micron Verilog model of the 32Gb NAND Flash die and the simulaiton software Vivado.

Figures 5.1, 5.2, 5.3 show the simulation results of the basic functionalities of the memory

controller. In Figure 5.1, the memory controller is tested for “reset”, “program page”, and

“read page” functions. The start of each function is indicated in the waveform and it can be

seen that the IO is 192bits for each cycle with 8 bit bandwidth per die and 24 NAND Flash

dies. Figure 5.2 shows a more detailed waveform of a “program page” operation while

Figure 5.3 shows a more detailed waveform of a “read page” operation. It is shown in the

waveforms in Figures 5.2 and 5.3 that each function consists of 5 address latch cycles and

the “Cle” signal goes high when starting a new function.

The waveforms shown in Figures 5.4 and 5.5 each show the encoding and decoding

simulations of the BCH code. At the start of an encoding cycle, the “start” and “ce” signals

go high and this is indicated by the red box in Figure 5.4. The signal boxed in yellow

captures where the “first” signal goes high and this is when the first encoded data is returned

through the “data out” wires. The encoder first mirrors the input data and outputs it through

the “data out” wires. Once it is done mirroring the 4096 bits of input, it outputs 286

more bits that are the encoded ECC data. Thus, the “data bits” and “ecc bits” signals are

necessary to indicate whether the current outputs are part of the original data bits or the

encoded ECC bits. The blue box shows the cycles where the “data bit” signal goes low

and the “ecc bits” go high indicating that the output data at those cycles are ECC data. In

Figure 5.5, the decoding cycles are shown. The “errors present” signal is low throughout
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the whole decoding cycle as no error was introduced to the data. The “err count” signal is

also counting “0” which is expected of the code.

5.2 FPGA Prototyping

The processor subsystem will make extensive use of the DesignStart Cortex-M0/3 pro-

cessor available from ARM which provides configurable RTL for the core processor and

application examples for peripheral connectivity and development. It also provides nec-

essary tools to design and test on a simulator and then proceed with hardware prototyping

using an FPGA. The first part of the RTL coding will use the MPS2+ platform as it provides

ready-to-use processor evaluation designs.

After updating and testing the core configuration and peripheral connectivity on the

MPS2+ platform, the design will be migrated to the selected FPGA (Xilinx FPGA) used

for the 3D module Prototype system. The MPS2+ will provide a valuable reference for

test and debug throughout the development. However, the MPS2+ board does not have

sufficient FPGA resources to implement the necessary Flash connectivity and SRIO which

is why a custom board must be developed to interface with the 3D stack.

The processor subsystem will be then further developed using a combination of the

DesignStart Processor IP and custom logic circuitry. Sample projects and RTL are provided

by ARM for this board and can be used to develop and debug an initial processor subsystem.

Only the skeleton connectivity will be evaluated at this time. Development of the necessary

peripherals including the internal bus structure and definition of the peripheral memory map

will also be developed. The DesignStart includes integration tests to validate the integration

in a structured way once the overall subsystem is designed.

The processor subsystem development will also include the RTL for necessary test and

debug features such as trace and JTAG ports. Programming of the processor core will

be performed during this task to validate end-to-end operation. This will include setup

and execution of the ARM toolchain (compiler, assembler, linker, etc). The ARM Mbed
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Table 5.1: Controller Parameters at Fastest Clock Frequency
Parameters Flash Controller Values
Cell Count 6520
FFs Count 851
Wirelength 152967.6050µm
Wire Cap 8.465pF
Pin Cap 14.442pF
Switching Power 3.3031mW
Internal Power 3.59mW
Leakage Power 81.4µW
Total Power 6.706mW

cloud program may be used for initial development as it provides evaluation designs for the

MPS2+. Eventually, the gcc suite of tools is preferred as it is open source and can establish

a baseline development path that can be easily utilized by potential customers of the 3D

module.

Similar to the Flash controller module RTL, a COTS FPGA development board, such

as a Xilinx Kintex-7 KC705, will be used for hardware testing while the final FPGA based

3D module prototype board is being designed. The COTS FPGA board will be selected to

match the FPGA used in the prototype board so it will be a straightforward migration.

5.2.1 Memory Controller RTL Synthesis

The RTL for the memory controller was synthesized using the NANGATE 45nm library.

The fastest clock that could be achieved was 1.5ns (666.67MHz). Innovus was used to

create the layout and run place and route (PnR) while Primetime was used to do static

power analysis. Figure 5.6 shows the resulting layout and Table 5.1 shows the parameters

for the controller when it is running on fastest clock frequency of 666.67MHz. It shows

that the resulting design of the memory controller only consumes a total of 6.706mW of

power.
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5.3 Comparison to Previous products

The cube’s expected radiation tolerance and memory capacity has been compared to the

previous Flash cube products. The comparison of the cube’s estimated radiation tolerance

to the 3D plus RTIMS’ radiation tolerance is shown in Table 5.2. The radiation tolerance

data from [13] has been used for the purpose of the comparison due to difficulties in custom

radiation testing and lack of radiation testing information from the manufacturers. It is eas-

ily seen that the memory cube design from this thesis has 16 times more memory capacity

compared to the RTIMS while occupying a smaller space and providing better TID values.

However, it must be noted that the radiation tolerance values used for comparison are not

from direct testing of the cube and thus rigorous radiation testing must be done once the

cube is manufactured.

Table 5.2: Comparison table of FLASHRAD to RTIMS
Parameters 3D Plus RTIMS Our Cube : FLASHRAD
TID >50krad (Si) >90 krad (Si)
SEU Immune by design Immune by design
SEFI Immune by design Immune by design
Capacity 48Gb 768Gb
Dimensions 31mm*28mm*11.2mm 13.8mm*16.00mm*15.5mm
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Figure 5.6: Synthesized Memory Controller RTL

39



CHAPTER 6

CONCLUSION AND FUTURE WORK

A 3D NAND Flash cube design that effectively increases memory capacity while using

COTS dies to decrease cost and design effort was presented and explored in this thesis.

Although further efforts will be necessary to complete and put the memory cube into use,

preliminary results of the RTL simulations and ASIC design have shown promising results

that indicate that the memory cube will succeed to support future space missions. Thus, the

main purpose of the thesis which was to explore and validate the 3D Flash memory cube

has been fulfilled.

Future works for the cube include implementation of scrubbing, bad block manage-

ment, wear leveling and garbage collection as well as the flash translation layer (FTL). In

addition to the additional functions for the memory controller, the fabrication of the mem-

ory cube itself is necessary. Once the cube is ready, further radiation testing would be

necessary to validate the expected radiation shielding values.
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