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SUMMARY 

 Metal alloys being explored for structural applications exhibit a complex polycrystalline 

internal structure that intrinsically spans multiple length-scales. Therefore, rational design efforts 

for such alloys require a multiscale modeling framework capable of adequately incorporating the 

appropriate physics that control/drive the plastic deformation at the different length scales when 

modeling the overall plastic response of the alloy. The establishment of the desired multiscale 

modeling frameworks requires the development of low-computational cost, non-iterative, 

frameworks capable of accurately localizing the anisotropic plastic response of polycrystalline 

microstructures. 

This dissertation addresses the outlined needs by defining suitable extensions to the scale-

bridging, data-driven Material Knowledge System Framework. The extensions detailed in the 

subsequent chapters enabled the first successful implementation of this framework for predicting 

the plastic response of polycrystalline microstructures caused by any arbitrary periodic boundary 

condition imposed at the macroscale. The case studies presented in this work demonstrate that the 

localization models developed using the MKS framework are of low-computational cost and non-

iterative. Nevertheless, their predictions are not as accurate as desired. As a result, leveraging the 

insights obtained from the implementation of this framework to polycrystalline plasticity, this 

dissertation provides a robust protocol to incorporate deep learning approaches in order to provide 

better predictions of the local plastic response in polycrystalline RVEs. The final case study 

performed in this dissertation establishes that the most robust approaches to develop accurate 

localization reduced-order models capable of accurately predicting the local anisotropic plastic 

response of polycrystalline microstructures are deep learning approaches such as Convolutional 

Neural Networks. 
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CHAPTER 1:  

Introduction 

Metal alloys explored for structural applications typically exhibit complex polycrystalline 

internal structures at the mesoscale (i.e., at the scale of individual crystals also called grains). 

Therefore, rational design and development efforts for such alloys require a multiscale modeling 

framework that accounts accurately for the different physics at the different length scales in 

modeling the overall plastic response of the alloy [1-7]. As an illustrative example, Figure 1 

schematically shows the specifics of the coupling between the details of material constitutive 

response occurring at the macroscale and the mesoscale in a sheet forming operation. At the 

macroscale (i.e., the scale of the sheet geometry), the material constitutive response is formulated 

using quantities such as the effective stress tensor 〈𝝈〉 and the effective stretching tensor 〈𝑫〉. These 

macroscale effective quantities are defined as volume-averaged quantities over a representative 

volume element (RVE) identified at the mesoscale. In Figure 1, the mesoscale RVE is depicted to 

comprise a multitude of grains with different crystal lattice orientations. The relevant microscale 

quantities are 𝝈(𝒙) and 𝑫(𝒙), where 𝒙 denotes a spatial location in the RVE. Formulation of 

precise mathematical relationships between these different macroscale and mesoscale quantities is 

the main goal of a multiscale materials modeling framework. It is convenient to consider these 

relationships in two distinct directions: (i) homogenization - going from mesoscale to the 

macroscale, and (ii) localization – going from the macroscale to the mesoscale.  
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Figure 1: Schematic of a Multiscale Method that Links Mesoscale Defined Quantities to their 

Effective Macroscale Quantities Via Homogenization and Localization Models. 

Development of high fidelity models for the localization of the plastic response in 

heterogeneous materials has encountered significant challenges because one needs to find 

solutions that satisfy both the governing equilibrium field equations as well as the highly nonlinear 

material constitutive laws throughout the volumetric domain of the RVE. For polycrystalline 

microstructures, the relevant constitutive theories are generally referred as crystal plasticity 

theories[8-12]. These theories incorporate successfully the many intricate details of the plastic 

deformation occurring at the level of individual grains (e.g., crystallographic slip on defined slips 

systems), and are known to result in numerically stiff set of coupled nonlinear equations. 

Consequently, one often has to resort to numerical approaches for addressing multiscale plasticity 

problems in metal alloy components. The most popular approach for simulating the plastic 

deformation in polycrystalline RVEs has been to use the crystal plasticity finite element models 

(CPFEM) [13-18]. The CPFEM have enjoyed tremendous success in explaining the many 

microstructure-sensitive plastic responses of polycrystalline metals. These have included various 

anisotropic responses in metal-forming operations (e.g., [19, 20]), variations in formability of 
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metal sheets (e.g., [21, 22]), and damage initiation in dual phase steels (e.g., [23]). An exhaustive 

summary of the successes and challenges in CPFEM has been expounded in a recent review article 

[24]. In spite of the many successes of CPFEM, their high computational cost prevents them from 

being successfully incorporated into a fully-coupled macroscale-mesoscale simulation of the type 

depicted in Figure 1. This is because one needs to perform a multilevel finite element simulation 

incorporating a CPFEM simulation at each integration point in the macroscale finite element 

simulation to accomplish the stated goal [25-28].Ongoing efforts in this direction typically aim to 

employ major computational resources and clever parallelization of the numerical calculations to 

overcome the inherent challenges [25, 29, 30].  

As an alternative to CPFEM, a fast Fourier transform (FFT)-based method has been 

developed by Lebensohn [31], building on earlier work of Suquet et al. [32]. This approach 

leverages the Green’s function method [33], which computes the local nonlinear response field in 

a heterogeneous medium using an iterative strategy. Each iteration in this approach involves the 

evaluation of a convolution integral that can be efficiently carried out by exploiting the properties 

of discrete Fourier transforms (DFTs) using an FFT algorithm. This approach significantly lowers 

the computational cost involved in solving for the mesoscale response fields (e.g., plastic 

stretching tensors) [34-37]. However, the computational cost of the FFT method is still too large 

to facilitate a fully-coupled multiscale simulation of metal plasticity using only modest 

computational resources. This is mainly because the approach relies on solving the governing 

equations at the microscale iteratively for each integration point at the macroscale. Moreover, if 

one needs to use a relatively large RVE size, the iterations can become computationally expensive 

[38]. Therefore, there still exists a critical need for a low-computational cost, non-iterative, 
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framework capable of accurately localizing the anisotropic plastic response of polycrystalline 

microstructures.  

In recent years, our research group has developed a computational framework called 

Materials Knowledge Systems (MKS) that leverages the statistical continuum theories developed 

by Kröner [39, 40] (the Green’s function method mentioned earlier is also derived from the same 

theories) to obtain a calibrated series expansion that can directly compute (without iterations) the 

localized response field of interest in heterogeneous microstructures [7, 41]. The MKS framework 

also exploits DFT representations (and FFT algorithms) both for efficient calibration of the 

localization models as well as for the predictions of the localized response for new material 

microstructures. This is accomplished by re-organizing the convolution integrals involved in the 

series expansion such that the kernel functions are completely independent of the material 

microstructure and can therefore be calibrated in a one-time computational effort. The calibration 

is usually performed using the results generated by a numerical approach such as the finite element 

method on an ensemble of selected microstructures. Although the computational cost in this one-

time calibration is high, all further use of the calibrated localization models (usually calibrated for 

a selected material class of interest) incurs minimal computational cost [7, 41-45]. The viability, 

remarkable accuracy, and significant computational savings of the MKS localization kernels have 

been demonstrated on a broad range of multiscale materials phenomena [43-48].  

The MKS localization models developed previously for the elastic and the rigid-perfectly 

plastic responses of heterogeneous media form the foundations for the present dissertation. It was 

previously demonstrated that MKS localization models provided excellent predictions of the local 

elastic and thermo-elastic responses in multiphase composites with moderate contrasts (contrast 

here reflects the ratio of the elastic stiffnesses of the constituent phases in the composite material) 
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[44, 49]. It was also discovered that the systematic introduction of the higher-order terms in the 

series expansion showed tremendous potential for improving the accuracy of the localization 

models for the higher contrast composites [50]. Additionally, the validity of the MKS localization 

approaches for rigid-perfectly plastic response of a two phase composite has been initially 

demonstrated in a simple case study [43]. More recently, it was demonstrated that the MKS 

framework can be extended to elastic response of polycrystalline microstructures [45, 48] (here 

the local state at each point in the mesoscale RVE is defined through the specification of a crystal 

lattice orientation expressed in the form of an ordered set of three Bunge-Euler angles [51]). This 

was accomplished by employing Fourier representations of both the kernel function and the 

microstructure function over the orientation space using generalized spherical harmonics (GSH) 

[7, 45, 48, 51]. Most importantly, in all the aforementioned implementations, the MKS localization 

models were found to provide highly accurate predictions of the mesoscale fields with 2-3 orders 

of magnitude savings in the computational cost. Furthermore, these computational savings were 

observed to be relatively independent of the RVE size[41, 44].  

The recent advances in the MKS framework described above set the stage for this 

dissertation, in which suitable extensions to the MKS framework are successfully defined to enable 

the first successful implementation of this framework for predicting the plastic response of 

polycrystalline microstructures. As a result, the protocols outlined in this dissertation enable the 

successful establishment of low-computational cost, non-iterative, localization models for 

localizing the anisotropic plastic response of polycrystalline microstructures. Thus, paving the way 

forward for the development of fully-coupled computationally inexpensive multiscale plasticity 

simulations. This dissertation also provides a robust framework to incorporate deep learning 

approaches to provide better predictions of the local plastic response in polycrystalline RVEs. 
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Therefore, opening new research avenues by providing a clear path forward for successfully 

implementing deep learning techniques to develop accurate and feature-engineering-free 

localization model for complex, heterogenous and non-linear phenomena in complex material 

structures.  

It is important to acknowledge that the localization models developed in this dissertation 

focus solely on localizing the plastic response at an instant in time. In order to apply the developed 

models to finite strain levels, additional advances are needed. These include: the incorporation of 

elastic deformations to allow for a proper treatment of the elastic-plastic deformations in 

polycrystalline metals, and the update of the microstructure after a specified time step with the 

imposed plastic stretching tensor. Finally, it is important to clarify that the localization models 

developed in this work interest focus on localizing the response of polycrystalline RVEs whose 

plastic behavior is modeled by a size-independent crystal plasticity theory. In other words, the 

mechanism that affect/drive the plastic behavior of RVE’s containing a small numbers of grains is 

not considered. All of these problems need further development and are beyond the scope of the 

present dissertation. 
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CHAPTER 2:  

Review of Fundamental Concepts 

The purpose of this chapter is to provide a review of fundamental concepts required to 

follow (and understand) the expressions and derivations developed in this dissertation. It is 

important to acknowledge that this chapter summarizes the most important properties and details 

of the mathematical concepts of interest to this dissertation. Consequently, the reader should bear 

in mind that the treatment of the concepts is far from being comprehensive. For a thorough and 

comprehensive treatment of the concepts introduced in this chapter please confer to the following 

references[7, 41, 51-53].  

 2.1 Generalized Fourier Series 

A function space defined over 0 < 𝑡 < 𝑇 can be spanned by a set of orthonormal basis 

functions Α𝑘(𝑡) (𝑘 = 0,±1,±2,… )that have the following properties:  

〈Α𝑘(𝑡), Α𝑚(𝑡)〉 = ∫Α𝑘(𝑡)
𝑇

Α∗
𝑚(𝑡)𝑑𝑡 = 𝛿[𝑘 − 𝑚] = {

1 𝑘 = 𝑚
0 𝑘 ≠ 𝑚

 
 

(2.1) 

where ∗ denotes the complex conjugate. Generalized Fourier Series (GFS) enable the 

representation of a given function 𝑓(𝑡) defined in this space as an infinite series of the following 

form: 

𝑓(𝑡) = ∑ 𝐶𝑘Α𝑘(𝑡)

∞

𝑛=−∞

 
 
(2.2) 
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where Α𝑘(𝑡) denotes the complete set of orthonormal basis functions and 𝐶𝑘 are the coefficients 

of the GFS. The coefficients 𝐶𝑘 are obtained by performing an inner product of the function 𝑓(𝑡) 

with the basis functions Α𝑘(𝑡) as shown in Eq. (2.3): 

𝐶𝑘 = ∫𝑓(𝑡)
𝑇

Α∗
𝑘(𝑡)𝑑𝑡 

 
(2.3) 

In other words, the 𝑘th coefficient (i.e., 𝐶𝑘) is the projection of 𝑓(𝑡) onto the 𝑘th basis 

function Α𝑘(𝑡). As one can imagine, the basis functions Α𝑘(𝑡) can be many different options. 

However, selecting 𝑒𝑖𝑘𝑡 as a basis function is quite useful if the function of interest 𝑓(𝑡) is periodic. 

A function 𝑓(𝑡) is periodic when the following relationship is satisfied: 

𝑓(𝑡) = 𝑓(𝑡 + 𝑝)  (2.4) 

where 𝑝 is a positive number that represents a period after which the function repeats itself. As a 

result, 𝑓(𝑡) is assumed to be represented as an infinite series sum of harmonic functions (i.e., 

cosine and sine functions) as Eq. (2.5) shows: 

𝑓(𝑡) = ∑ 𝐹𝑘𝑒
2𝜋𝑖𝑘𝑡

𝑝

∞

𝑛=−∞

 
 
(2.5) 

where 𝑖 = √−1. Notice that 𝐹𝑘 simply denote amplitudes of different frequencies indexed by 𝑘, 

given the fact that 𝑒
2𝜋𝑖𝑘𝑡

𝑝 = cos(
2𝜋𝑘𝑡

𝑝
) + 𝑖 sin(

2𝜋𝑖𝑘𝑡

𝑝
). In other words, this Fourier series enables one 

to transform a function 𝑓(𝑡) defined in the space 𝑡 to the frequency space.  
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  2.1.1 The Fourier Transform 

The Fourier transform enables the transformation of a function 𝑓(𝑡) to the frequency space 

by leveraging the orthonormality of the basis functions as follows: 

𝐹𝑘 =
1

2𝜋
∫ 𝑓(𝑡)

2𝜋

0

𝑒−𝑖𝑘𝑡𝑑𝑡 
 
(2.6) 

where the periodicity period is assumed to be 2𝜋. Nevertheless, note that the period of periodicity 

can be suitably modified to accommodate for any periodic period 𝑝. 

  2.1.2 Discrete Fourier Transform 

As it can be observed GFS are an extremely powerful tool to represent a mathematical 

function 𝑓(𝑡). Nevertheless, the series expansion requires an infinite number of terms. A special 

variation of the Fourier series concept, called the Discrete Fourier Transform (DFT) enables for 

one to circumvent this impasse by establishing the complimentary representation in the frequency 

space of a finite number of discrete evaluations of the function 𝑓(𝑡). In other words, assume that 

the function 𝑓(𝑡) has been defined on a discrete grid of points 𝑥𝑛, where 𝑛 takes the value from 0 

to 𝑁 − 1, such that 𝑓𝑛 denotes the value of 𝑓(𝑡) evaluated at 𝑥𝑛. The DFT representation then 

provides a one-to-one mapping between the representation of 𝑓𝑛 in the frequency space (i.e., 𝐹𝑘)  

with the aid of the following expression: 

𝐹𝑘 = ℑ(𝑓𝑛) = ∑ 𝑓𝑛

𝑁

𝑛=0

𝑒
2𝜋𝑖𝑘𝑛

𝑁  

 
(2.7) 
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The relationship that transforms from frequency space back to the real space is the following: 

𝑓𝑛 = ℑ−1(𝐹𝑘) =
1

𝑁
∑ 𝐹𝑘

𝑁−1

𝑘=0

𝑒
2𝜋𝑖𝑘𝑛

𝑁  

 
(2.8) 

where ℑ() denotes the DFT mapping and ℑ−1() the inverse DFT mapping. The relationships 

denoted by Eqs. (2.7-2.8) are capable of being extended for functions with multiple independent 

variables in a trivial manner.  It is important to mention that in order for the function to be faithfully 

represented with a DFT it is necessary for the sampling frequency (i.e. the spacing of the grid used 

to discretize 𝑓(𝑡)) to be able of capturing the highest frequency component of the data. As a result, 

the Nyquist frequency, which is defined as half of the sample frequency, should be greater than or 

equal to the highest frequency component of the function in order to ensure an accurate 

representation. Finally, it should be acknowledged that the DFT representation only becomes 

practical when computed using a special algorithm called Fast Fourier Transform (FFT) that 

leverages the inherent symmetries present in the transformation to compute it efficiently. 

The DFT representation has many properties that can be leveraged to ease analysis in a 

wide array of fields. The convolution and correlation of two functions, 𝑓(𝑡) and 𝑔(𝑡), obtained 

using DFT representations are heavily leveraged throughout this dissertation and is easily obtained 

using the following expressions (for proof cf. [52]): 

Conv(𝑓, 𝑔) = ∑ 𝑓𝑠𝑔𝑟−𝑠

𝑁−1

𝑠=0

= ℑ−1(𝐹𝑘𝐺𝑘) 

 
(2.9) 

Corr(𝑓, 𝑔) = ∑ 𝑓𝑠𝑔𝑟+𝑠

𝑁−1

𝑠=0

= ℑ−1(𝐹𝑘𝐺
∗
𝑘) 

 
(2.10) 
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2.1.3 Trigonometric Interpolation 

An extremely powerful property of DFT representations is the ability to obtain values of a 

continuous function 𝑓(𝑡) at new points in the domain of interest, apart from the sampling points 

where the function values were already known and that were leveraged to procure the DFT 

representation. One specific approach central to the formalisms developed in this dissertation is 

trigonometric interpolation. The interpolation scheme takes advantage of the DFT representations 

to perform an interpolation with global support. The trigonometric interpolation for a function 𝑓(𝑡) 

is obtained with the following relationship: 

𝑓(𝑡) =
1

𝑁
∑ 𝐹𝑘

𝑁
2

𝑘=−
𝑁
2
+1

𝑒
2𝜋𝑖𝑘𝑡

𝑝  

 

(2.11) 

where 𝑁 denotes the total number of grid points on which the function 𝑓(𝑡) was originally 

sampled, 𝑝 denotes the periodicity of the function and 𝐹𝑘 are the DFT coefficients of the function 

at the grid points. It is important to notice that the output of this interpolation is a continuous 

function, which attests to the power of this interpolation since it enables for one to procure the 

value of the function at any desired point. Moreover, this interpolation is extremely well suited for 

interpolation of periodic functions discretized on a regular grid. 

2.2 Digital Representation of the Microstructure 

A mathematical representation of the internal structure of the material is needed in order 

to be capable of quantifying the effect that different spatial arrangements/distributions of 

microstructural features (i.e., grains) have on the overall response (i.e., plastic deformation) of the 

material. The microstructure function is a function that enables the mathematical representation of 
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the internal structure of a material [7, 41]. The set of physical characteristics of the internal 

structure is called local state and can have many different descriptors such as phase, chemical 

composition, crystal lattice orientation, crystal structure, etc. The derivations and expressions 

developed in this dissertation denote the physical descriptor of interest with the variable 𝑛. Thus, 

the microstructure function, 𝑚(𝒙, 𝑛), prescribes the probability density associated with finding a 

determined local state 𝑛 (within an invariant measure 𝑑𝑛) at an infinitesimal neighborhood of the 

material point 𝒙 and is formally defined by the following relationship: 

𝑚(𝒙, 𝑛)𝑑𝑛 =
𝑑𝑉

𝑉
 

 
(2.12) 

The microstructure function is most suitably represented using generalized Fourier series 

(GFS) since it has the flexibility to incorporate any arbitrary level of detail desired to be included 

into the description of the microstructure’s feature geometries and local states. It is important to 

recognize that experimental characterization of the internal structure of a material of interest 

inherently provides discrete measurements because it rasterizes the local state with a characteristic 

minimum resolved length-scale defined by the resolution of the specific machine used to acquire 

the information[41]. As one can imagine, different local state descriptors require different GFS to 

represent the microstructure function.  

2.2.1 Digital Representation of Multiphase Composites 

Multiphase composites are comprised by two or more thermodynamically distinct phases 

(labeled 𝛼, 𝛽,… ). As such, one can describe the local state space with a set that lists each of the 

phases (i.e., enumerated by a discrete variable ℎ). The most adequate GFS representation of the 

microstructure function for this type of materials is the following: 
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𝑚(𝒙, 𝑛)∆𝑛 ≈ ∑ ∑𝑚𝒔
ℎ𝜒ℎ(𝑛)𝜒𝒔(𝒙)

𝑺

𝒔=1

𝑁

𝑛=1

 

 
(2.13) 

where 𝑚𝒔
ℎ are the coefficients of the GFS used, ∆𝑛 is the size of the local state bin, and 𝜒𝑖() denotes 

an indicator basis function. An indicator basis function returns a value of one if the argument of 

the function is within the bin indexed by 𝑖. Otherwise it returns a value of zero. This GFS 

representation amounts to discretizing the spatial domain by tessellating it into voxels (spatial 

cells) of uniform volume enumerated by 𝒔 ∈ 𝑺 and to consider each thermodynamic phase as a 

binned local state ℎ ∈ 𝐻. It is important to mention that 𝑁 and 𝑺 indicate the maximum number of 

phases and spatial locations being considered in the description of the microstructure. Notice also 

that 𝒔 can be treated as a vector index for multidimensional domains. For example, in the case of 

3D microstructures 𝒔 can be considered as a three-index vector (i.e. 𝒔 = (𝑠1, 𝑠2, 𝑠3) ).  

  2.2.2 Digital Representation of Polycrystalline Microstructures 

The local state for a general polycrystalline material might encompass various different 

descriptors (i.e. crystal symmetry, orientation, dislocation density, chemical composition, etc.). 

For the specific case of single-phase polycrystalline materials, the local state can be adequately 

determined by the orientation of the crystal lattice. The orientation of the crystal lattice is suitably 

represented with three different angles (𝜑1
𝑐,  𝛷𝑐, 𝜑2

𝑐) commonly referred as Bunge-Euler 

angles[51] and typically compacted into a single continuous variable 𝑔. The probability density of 

an arbitrary orientation 𝑔, also known as the orientation distribution function 𝑓(𝑔), is used to 

determine the local state of polycrystalline materials. Therefore, 𝑓𝑠(𝑔)𝑑𝑔 indicates the spatially 

resolved orientation distribution function (ODF) for a spatial bin 𝑠. In other words, 𝑓𝒔(𝑔)𝑑𝑔 

indicates the probability that the material located in spatial bin 𝒔 is characterized by the crystal lattice 
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orientations that exist within 𝑑𝑔 around 𝑔. With this definition one can clearly see the 

correspondence between 𝑓𝑠(𝑔)𝑑𝑔 and 𝑚𝑠
ℎ.  

Generalized Spherical Harmonics (GSH) are a Fourier basis that enable a computationally 

efficient  handling for functions defined in the orientation space (i.e. 𝑓(𝑔)𝑑𝑔)[45]. The GSH Fourier 

basis, 𝑇𝑙
𝑚𝑛(𝑔), are defined as follows: 

                𝑇𝑙
𝑚𝑛(𝑔) = 𝑇𝑙

𝑚𝑛(𝜑1
𝑐,  𝛷𝑐, 𝜑2

𝑐) = 𝑒𝑖𝑚𝜑1
𝑐
𝑃𝑙

𝑚𝑛( 𝛷𝑐)𝑒𝑖𝑚𝜑2
𝑐
 

 
(2.14) 

where 𝑃𝑙
𝑚𝑛( 𝛷𝑐) are certain generalization of Legendre functions [51] and (𝜑1

𝑐,  𝛷𝑐 , 𝜑2
𝑐) are the 

previously introduced Bunge-Euler angles. The functions described by the GSH basis (Eq. 2.14) 

form an orthonormal basis [41, 45, 51]: 

                ∮ 𝑇𝑙
𝑚𝑛𝑇𝑙′

𝑚′𝑛′∗𝑑𝑔 =
1

2𝑙 + 1
𝛿𝑙𝑙′𝛿𝑚𝑚′𝛿𝑛𝑛′ 

 
  

(2.15) 

where 𝑑𝑔 is the invariant measure of the orientation space and ∗ denotes the complex conjugate. The 

GSH basis functions can be further customized to depict any specific crystal and sample symmetry 

of interest by simply taking a linear combination of the previously introduced GSH functions[7, 51]. 

As a specific example let 𝑇̇̇𝑙
𝜇𝑛

 denote the symmetrized GSH functions for cubic-triclinic symmetry. 

The 𝑇̇̇𝑙
𝜇𝑛

functions are obtained with the following expression: 

                𝑇̇̇𝑙
𝜇𝑛

= ∑ 𝐴̇̇𝑙
𝑚𝜇

𝑇𝑙
𝑚𝑛

𝑙

𝑚=−𝑙

 

 

 (2.16) 

where 𝐴̇̇𝑙
𝑚𝜇

 denote the coefficients of the symmetrized GSH functions that exhibit the desired 

symmetry (cubic-triclinic). Taking advantage of the orthogonality of the GSH functions one can 
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compactly represent the functions defined in the orientation space and efficiently compute any 

mathematical operation of interest on them. As an example: 

                𝑓𝒔(𝑔) = ∑ 𝐹𝑙𝒔
𝜇𝑛

𝜇,𝑛,𝑙

𝑇̇̇𝑙
𝜇𝑛(𝑔), 

             𝐹𝑙𝒔
𝜇𝑛

= (2𝑙 + 1)∫ 𝑓𝒔(𝑔)𝑇̇̇𝑙
𝜇𝑛∗(𝑔)𝑑𝑔

𝐹𝑍

 

 

  

(2.17) 

where 𝐹𝑙𝒔
𝜇𝑛

 are the respective GSH (Fourier) coefficients of  𝑓𝒔(𝑔). The corresponding GSH 

coefficients of 𝑓𝒔(𝑔) for the specific case where a single lattice orientation 𝑔0 is present in a spatial 

bin 𝒔 are obtained by: 

                𝐹𝑙𝒔
𝜇𝑛

= (2𝑙 + 1)𝑇̇̇𝑙
𝜇𝑛∗(𝑔0) 

 
(2.18) 

 2.3 Spatial Statistics 

Spatial statistics in the form of n-point spatial correlations are capable of characterizing 

lower- and higher-order spatial relationships between features of the internal structure of a 

material. Additionally, they inherently capture a majority of the ad-hoc metrics employed in the 

literature. As a result, n-point spatial correlations enable a robust mathematical comparison of the 

internal structures of different materials. Two-point spatial correlations describe the probability of 

finding two local states (indexed by ℎ and ℎ′, respectively) in two different spatial locations 

separated by a vector indexed by 𝒓. The mathematical representation of the microstructure 

introduced previously in this section allows one to express the 2-point statistics of a periodic 

microstructure as follows: 
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                𝑓𝒓
ℎℎ′

=
1

|𝑺|
∑𝑚𝒔

ℎ𝑚𝒔+𝒓
ℎ′

𝑺

𝒔=1

 

 

(2.19) 

where |𝑺| denotes the total number of voxels (spatial bins) present in the spatial domain. This 

dissertation leverages two-point statistics since previous work has demonstrated that they are 

sufficient to perform a robust comparison between different internal structures [46, 54, 55].  

2.4 Multiple Linear Regression 

The central tool used in this dissertation to calibrate the values of the microstructure-

independent localization kernels (explained in detail in Chapter 3) is Multiple or Multivariate 

Linear Regression. This specific model of regression describes a linear relationship between a 

single response variable 𝑦 (e.g., the value of a tensor component at a specific point on the 

microstructure of interest) and more than two predictor variables (e.g., the coefficients associated 

with a GFS). It is important to recognize that even though the relationship between the defined 

predictor variables and the output is linear, the predictor variables can be non-linear terms (for 

example the cosine and sine terms of a Fourier series that uses 𝑒𝑖𝑘𝑡 as a basis function).  

As an example, consider the following model that describes a single variable response 𝑦 as 

a linear combination of  𝑞 independent predictor variables 𝑥1, … , 𝑥𝑞 as Eq. (2.20) shows: 

                               𝑦𝑖  = 𝛽0 + 𝛽1𝑥1 + …+ 𝛽𝑞𝑥𝑞𝑖 + 𝑒𝑖 
 

(2.20) 

where 𝑖 indexes the 𝑖th observation (assume that 𝑛 observations are recorded for the 𝑞 + 1 

variables of interest, where 𝑛 > 𝑞 ), 𝛽𝑞 denote the regression coefficients that establish the linear 

relationship between the single variable response and the 𝑞 independent variables, and 𝑒𝑖 denote 
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the associated error term. One can express the linear relationship described in Eq. (2.20) in matrix 

notation as follows: 

                               𝒚 =  𝑿𝜷 + 𝒆 
 

(2.21) 

Linear regression determines the value of the predictor variables by minimizing the sum of 

the squared error terms using Ordinary Least Square Regression (OLS). One can think of OLS 

regression as fitting a hyper-plane in a 𝑞 + 1 dimensional space that minimizes the sum of the 

squared errors. The general expression obtained using OLS to find the values of the 𝜷 coefficients 

is the following: 

                               𝜷 = (𝑿𝑻𝑿)−1(𝑿𝑻𝒚 ) 
 

(2.22) 

For a more detailed and thorough explanation of the derivation of this model please cf. 

[53]. 

2.5 Representative Volume Element 

A representative volume element (RVE) [41, 56] identifies a finite region that has been 

sampled randomly from an infinite medium. The identified region is “statistically representative” 

of the whole medium, while also capturing the microstructural salient features with a sufficient 

accuracy [41, 57-61]. This concept is central to any multiscale effort since it is the region over 

which the loading conditions are applied, it is also the region where the localization reduced-order 

models predict the response field and finally because the different length scales are integrated by 

exchanging information between RVEs at different length scales with the aid homogenization and 

localization models (as Figure 1 shows)[41, 56]. 
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CHAPTER 3:   

Generalized Material Knowledge Systems Framework for Localization 

This chapter provides an overview of the generalized MKS framework for localization as 

well as the details for extending this framework into plastic deformations.   

 3.1 Theoretical Foundations of the MKS Framework for Localization  

The theoretical foundation behind the localization models developed with the MKS 

framework is the localization tensor. This tensor is defined on the generalized composite theories 

that determine the effective response of heterogeneous materials [39, 40, 62-65]  and is employed 

to link the fields at a lower length scale to a boundary condition imposed at a higher length scale. 

An example of such localization tensor is the fourth-rank elastic localization tensor (𝒂(𝒙)), which 

relates the local elastic strain at any location of interest (𝜺(𝒙)) to the macroscopically imposed 

strain (〈𝜺(𝒙)〉) in the following fashion [41]: 

               𝜺(𝒙) = 𝒂(𝒙)〈𝜺(𝒙)〉 
 

  (3.1) 

and 𝒂(𝒙) is defined as follows: 

        𝒂(𝒙) = (𝑰 − 〈𝜞𝑟(𝒙, 𝒙′)𝐂′(𝒙′)〉 + 〈𝜞𝑟(𝒙, 𝒙′)𝐂′(𝒙′)𝜞𝑟(𝒙′, 𝒙′′)𝐂′(𝒙′′)〉 − ⋯ )  
  (3.2) 

where 𝑰 denotes the fourth-rank identity tensor, 𝐂′(𝒙) denotes the perturbation in the local stiffness 

with respect to a selected reference medium, 𝒙 is the spatial location of interest in the 

microstructure RVE, 𝜞𝑟 is a symmetrized derivative of the Green’s function corresponding to the 

elastic properties of the selected reference medium, and the 〈⋯ 〉 brackets denote ensemble average 

over the RVE being studied (i.e., these brackets essentially represent volume averages over the 

RVE). Eq. (3.2) shows that the localization tensor can be obtained by evaluating the terms of an 
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infinite series. In this series, one systematically adds the contribution from other spatial locations 

in the material microstructure to the localization tensor at the spatial location of interest. For 

example, the second term captures the contribution from spatial location 𝒙′ on 𝒂(𝒙), modulated 

through the kernel 𝜞𝒓 that decays sharply with |𝒙′ − 𝒙|. In a very similar manner, the next term 

captures the combined incremental contribution from spatial locations 𝒙′ and  𝒙′′ on 𝒂(𝒙) tensor, 

once again suitably modulated through Green’s function based kernels. It is important to recognize 

that these terms capture systematically and hierarchically the spatial correlations in the material 

microstructure.  

Although the physics-based models presented in Eq. (3.1) and Eq. (3.2) are rigorously 

derived, their practical implementation in real-world applications has been hampered by the 

inability to establish the 𝜞𝑟 kernels for a broad range of materials phenomena of interest with 

sufficient accuracy due to the following issues [7, 41, 63, 66-70]: 

1. The computation of the ensemble averages (〈⋯ 〉 terms) actually require the 

evaluation of complex convolution integrals whose terms exhibit singularities, 

commonly referred as the Principal Value Problem.  

2. The accuracy of the solutions obtained depends heavily on the selection of the 

reference media employed to define the Green’s Function solution.  

3. The expression of the localization tensor from Eq. 3.2 is not suitable for carrying 

forward to different microstructures calculations that were performed on a previous 

microstructure. Meaning that most of the terms in the expression would need to be 

reevaluated to obtain results for a different microstructure.  

The MKS localization framework addressed these issues by leveraging GFS to obtain 

suitable mathematical representations of the functions comprised in Eq. (3.2) and to decouple the 
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localization relationship into physics-capturing microstructure-independent kernels (also called 

localization kernels that are related to 𝜞𝑟) and terms that capture the microstructure topology [7, 

41, 43, 45, 48, 49]. As a result, Eq. (3.2) can be casted into the following form by suitably 

representing 𝒂(𝒙) with GFS, invoking ergodic hypothesis and substituting 𝒓 = 𝒙 − 𝒙′ and  𝒓 =

𝒙′ − 𝒙′′:  

               𝒂(𝒙) =  (𝐼 − ∫ ∫ 𝜶(𝒓, 𝑛)𝑚(𝒙 + 𝒓, 𝑛)𝑑𝑛𝑑𝒓
𝑁𝑅

 

+∫ ∫ ∫ ∫ 𝜶̃(𝒓, 𝒓′, 𝑛, 𝑛′)𝑚(𝒙 + 𝒓, 𝑛)𝑚(𝒙 + 𝒓 + 𝒓′, ℎ′)𝑑𝑛𝑑𝑛′𝑑𝒓𝑑𝒓′

𝑁𝑁𝑅𝑅

−⋯) 

 

   (3.3) 

where 𝜶(𝒓, 𝑛) denotes the microstructure-independent localization kernel (related to 𝜞𝒓) and 

𝑚(𝒙, 𝑛) denotes the previously defined microstructure function (cf. Chapter 2). Notice also that Eq. 

(3.3) casts the localization relationship as an infinite series sum of convolutions between the 

microstructure-independent localization kernels and the spatial correlations of the material 

microstructure (captured by the microstructure function 𝑚(𝒙, 𝑛)). As a result, these convolutions 

can be most efficiently computed leveraging DFT representations (cf. Eq. (2.7-2.9)). It is needless 

to mention the remarkable complications that an analytical evaluation of the localization kernels 

denoted in Eq. (3.3) will have. For that reason, the MKS localization framework discretizes the 

functions present in the localization relationship depicted in Eq. (3.3) using suitable GFS to enable 

a direct calibration of the kernels to numerical simulations (e.g. FEM) performed on ensembles of 

digitally created microstructures. Thus, the volumetric domain of the microstructure is binned into 

a uniform grid of voxels (spatial cells) enumerated by 𝒔 ∈ 𝑺 (as stated earlier in Chapter 2 this 

index can be treated as a vector index for multidimensional domains). Subsequently, the potential 

material states, also called local states, allowed to occupy each spatial voxel are indexed by ℎ ∈
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𝐻. As a result, the array 𝑚𝒔
ℎ reflects the volume fraction of spatial bin s occupied by local state  𝑛 

(cf. [58, 60, 71]) as an array of discrete values. A similar discretization is performed over the spatial 

domain and the local state space of the influence kernel function (𝜶(𝒓, 𝑛)) to obtain an array of 

discrete values denoted by 𝜶𝒕
ℎ. Notice that the strategy employed to discretize these continuous 

functions corresponds to a GFS representation of the functions using indicator basis functions as the 

following equations show: 

𝑚(𝒙, 𝑛)∆𝑛 ≈ ∑ ∑𝑚𝒔
ℎ𝜒ℎ(𝑛)𝜒𝒔(𝒙)

𝑺

𝒔=1

𝑁

𝑛=1

 

 
(3.4a) 

𝜶(𝒓, 𝑛)∆𝑛 ≈ ∑ ∑𝚨𝒔
ℎ𝜒ℎ(𝑛)𝜒𝒔(𝒙)

𝑺

𝒔=1

𝑁

𝑛=1

 
 

(3.4b) 

As a result, the GFS representation enables the MKS framework to discretize the 

localization relationship depicted in Eq. (3.3) and recast it into the following form:  

                𝒑𝒔 = (∑∑𝜶𝒕
ℎ𝑚𝒔+𝒕

ℎ

𝑺

𝒕

𝐻

ℎ

+ ∑∑∑∑𝜶𝒕𝒕′
ℎℎ′

𝑚𝒔+𝒕
ℎ 𝑚𝒔+𝒕+𝒕′

ℎ′

𝑺

𝒕′

+ ⋯

𝑺

𝒕

𝐻

ℎ′

𝐻

ℎ

) 〈𝒑〉 

 
              

(3.5) 

where 𝒑 denotes the response field of interest (e.g., strain, strain rate), 𝜶 are the microstructure-

independent localization kernels (related to 𝜞𝑟) and 𝑚𝒔
ℎ is the microstructure function. In this 

notation, 𝒕 indexes the discretized vectors needed to identify the relative location of all the voxels 

in the RVE with respect to the voxel of interest (denoted by 𝒔). For a uniformly tessellated periodic 

RVE, the set of values taken by 𝒕 are identical to the values taken by 𝒔 (i.e., 𝒕 ∈ 𝑺). It is important 

to recognize that the localization relationship is now defined as an infinite series sum of arrays of 

discrete values and as such a numerical evaluation of the relationship is possible. The first order 



22 
 

localization kernels (𝜶𝒕
ℎ) capture the influence of local state ℎ on a voxel separated by a vector 𝒕 

from spatial voxel 𝒔. Similarly, the second order localization kernels (𝜶𝒕𝒕′
ℎℎ′

) capture the combined 

incremental contribution of local states ℎ and ℎ′ on voxels separated by vectors 𝒕 and 𝒕′, respectively, 

from spatial voxel 𝒔. As a result, the calibrated series expansion expressed in Eq. (3.5) 

systematically and hierarchically captures the contribution of the local states at other spatial 

locations in the material microstructure to the local value of the response at the spatial voxel 𝒔.  

The MKS framework calibrates the values of the localization kernels (𝜶) from numerical 

results obtained from validated physics-based models (i.e. FEM) over a broad range of 

microstructures. The main advantage of the decoupled localization relationship portrayed in Eq. 

(3.5) is that once the localization kernels have been calibrated they can be subsequently employed 

to predict the results of new microstructures with very little computational cost, as well as with 

negligible loss in accuracy[7, 41-45]. The detailed derivation of Eqs. (3.1-3.5), and the 

mathematical formulation of MKS can be found in prior publications (cf. [41, 43, 49, 72]). Figure 

2 schematically depicts the steps taken by the MKS framework to obtain the microstructure-

independent localization kernels. 
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Figure 2: Flowchart of the Process by which the MKS Localization Kernels are 

Calibrated to Numerical Results of Previously Validated Physics-based Models. 

The viability and remarkable accuracy of the microstructure-independent localization 

kernels obtained following the protocol outlined in Figure 2 has been demonstrated on a broad 

range of multiscale materials phenomena [43-46, 48, 49]. It is important to mention that the 

localization relationship employed for the mentioned worked used only the first order localization 

kernel since the microstructure of interest depicted low to moderate contrast between the properties 

exhibited by the local states. In other words, the heterogeneity of the response field was limited 

and as such the physics captured with the first order kernels were sufficient to procure an accurate 

prediction of the field.  

3.2 MKS Localization Framework Implementation to Plastic Deformation 

The success and accuracy of the MKS framework coupled with the fact that the statistical 

continuum theories on which this framework is based have been successfully applied to non-linear 

phenomena [73, 74] ascertain that this framework is capable of localizing the plastic response.  As 
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a matter of fact, previous work demonstrated that providing the contrast between the composite 

phases is low, (such that the first order kernels are sufficient to procure an accurate response) the 

MKS framework is capable to accurately localize the response of a specific loading condition of a 

rigid-plastic deformation in a composite material made of two isotropic phases [43].  

For the localization of the plastic response, the response field is selected as the strain rate 

tensor (i.e., 𝒑 = 𝑫). Therefore, the relationship that localizes the plastic response, using an 

indicator basis function to discretize the relationship, is the following: 

                𝑫𝒔 = (∑∑𝜶𝒕
ℎ(〈𝑫〉)𝑚𝒔+𝒕

ℎ

𝑺

𝒕

𝐻

ℎ

+ ∑∑∑∑𝜶𝒕𝒕′
ℎℎ′

(〈𝑫〉)𝑚𝒔+𝒕
ℎ 𝑚𝒔+𝒕+𝒕′

ℎ′

𝑺

𝒕′

+ ⋯

𝑺

𝒕

𝐻

ℎ′

𝐻

ℎ

) 

 
              

(3.6) 

where 𝑫𝒔 denotes the spatially resolved strain rate tensor (i.e., stretching tensor) in the 

microstructure, and the dependence of the Green’s function based kernel 𝜶 on the macroscopically 

imposed strain rate tensor (〈𝑫〉) is explicitly noted. The current MKS approach, depicted 

graphically in Figure 2, requires for one to establish a different localization kernel for each 〈𝑫〉 

that can be applied at the macroscale (on the RVE of the microstructure). The number of distinct 

macroscopic strain rate tensors that could be imposed on a microstructure is infinite. Consequently, 

a direct implementation of the current MKS framework is not feasible. Therefore, it is essential to 

seek a formalism that enables an efficient computation/calibration of 𝜶 as a function of 〈𝑫〉. It 

must be acknowledged that prior MKS work on the elastic deformations in composites and 

polycrystalline materials circumvented this challenge by taking advantage of the superposition 

principle. However, superposition principle is not applicable to the plastic deformations.  

This dissertation develops and demonstrates a novel approach that enables the kernels to 

localize any arbitrary periodic boundary condition imposed at the macroscale in an efficient 
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fashion. This dissertation developed this formalism in two-phase composite systems and 

subsequently implements it to single-phase, cubic, FCC materials. Thus, successfully developing 

a computationally efficient/inexpensive, yet robust, computational framework capable of 

predicting the anisotropic plastic response of polycrystalline microstructures. 
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CHAPTER 4: 

Localization Models for Predicting the Local Plastic Response Caused by An Arbitrary 

Periodic Boundary Condition Imposed at the Macroscale Using the Material Knowledge 

Systems Framework 

The plastic response of a material is inherently non-linear and path-dependent. As a result, 

plasticity constitutive laws relate the state of stress to increments in strain, or to the strain rate [75]. 

Eq. (3.6) clearly denotes that the localization kernels are dependent on the macroscopically 

imposed strain rate 〈𝑫〉. Therefore, in order to establish a formalism for an efficient computation of 

𝜶 as a function of 〈𝑫〉 it is first needed to define a suitable parameterization of the function space 

spanned by the imposed stretching tensor. This section describes a strategy that enables a suitable 

parametrization of the function space spanned by the macroscopically imposed stretching tensor in 

order to establish a finite, and sufficiently accurate, spectral database of localization kernels 

capable of capturing this entire space. As a result, the MKS framework will be capable to 

efficiently localize any arbitrary strain rate tensor imposed at the macroscale (i.e. an infinite set of 

loading conditions) with a finite spectral database of localization kernels (𝜶). The strategy defined 

in this Chapter is inspired by certain prior applications in related problems [76-79] and is 

expounded on [80]. 

4.1 Extension of the Generalized MKS Localization Framework for Localizing Any 

Arbitrary Periodic Boundary Condition Imposed at the Macroscale 

The clever parametrization of the stretching tensor will be performed in in two-phase 

composite systems subjected to rigid-plastic deformation. It has been assumed that the constituent 

phases of these systems exhibit rate-independent isotropic plasticity described by the commonly 

employed J2 flow theory [81]. It should be noted that even though the selection of this simple 
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material constitutive theory constrains the local plastic response to be isotropic, the overall 

behavior of the composite is allowed to be anisotropic. The J2 flow theory for the plastic 

deformation under the listed assumptions (rate-independent, isotropic and rigid-plastic) starts with 

the Levy-Misses relation for each constituent phase [75]: 

               𝑫 =  λ𝝈′  
(4.1)  

where λ is related to the magnitude of the imposed plastic strain rate and 𝝈′ is the strain rate-

independent deviatoric component of the symmetric Cauchy stress tensor. In other words, in this 

formulation, λ scales linearly with |𝑫|, while 𝝈′ is unaffected by |𝑫| for a selected direction of 𝑫. 

An important consequence of this feature in the rigid-plastic constitutive behavior (based on J2 

flow theory) is that the partitioning of the imposed strain rate on a two-phase composite is such 

that the local strain rate tensor scales linearly with the magnitude of the macroscale imposed strain 

rate tensor for any selected direction of this tensor. One can reach this conclusion simply by 

recognizing the fact that this simple solution satisfies both compatibility (all local strain 

components are scaled by the same factor) and equilibrium (as stresses are unaffected) throughout 

the microstructure. As a result, the localization relationship for the plastic response can now be 

casted into the following form: 

               𝑫𝒔 = (∑∑𝜶𝒕
ℎ(𝒅)𝑚𝒔+𝒕

ℎ

𝑺

𝒕

𝐻

ℎ

+ ∑∑∑∑𝜶
𝒕𝒕′
ℎℎ′

(𝒅)𝑚𝒔+𝒕
ℎ 𝑚

𝒔+𝒕+𝒕′
ℎ′

𝑺

𝒕′

+ ⋯

𝑺

𝒕

𝐻

ℎ′

𝐻

ℎ

)|〈𝑫〉| 

 

(4.2)  

where 𝒅 =
〈𝑫〉

|〈𝑫〉|
. Notice how the kernels 𝜶 depend only on the direction (unit magnitude) of the 

imposed symmetric traceless strain rate tensor, 𝒅. It can be seen that this specific formulation 

reduces significantly the domain space on which the MKS kernels need to be defined. 
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The strain-rate direction tensor (𝒅) is a symmetric second rank tensor, which guarantees 

real Eigen values and therefore the existence of a Principal Frame [75, 82]. Let 𝑑𝑖𝑗
𝑆𝐹 and 𝑑𝑖𝑗

𝑃𝐹 denote 

the components of this tensor in the sample frame and the principal frame, respectively. Note that 

the off-diagonal terms of 𝑑𝑖𝑗
𝑃𝐹 are zeros. As a result, the complete space of 𝒅 can be efficiently 

parametrized using four angles represented as (𝜑1, 𝛷, 𝜑2, 𝜃) [76-79]. The first three angles 

(𝜑1, 𝛷, 𝜑2), hereafter referred as Euler angles, describe the orientation of the principal frame with 

respect to the sample reference frame. The fourth angle (𝜃) identifies the principal values while 

taking advantage of the unit magnitude and zero trace of 𝒅 [76]. Using this parametrization, one 

can show that: 

     [𝑑𝑖𝑗
𝑃𝐹] = √

2

3

[
 
 
 
 cos (𝜃 −

𝜋

3
) 0 0

0 cos (𝜃 +
𝜋

3
) 0

0 0 −cos 𝜃]
 
 
 
 

 

 

          

(4.3) 

and 

               𝑑𝑖𝑗
𝑆𝐹 = 𝑄𝑖𝑘𝑄𝑗𝑙𝑑𝑘𝑙

𝑃𝐹    
 

  (4.4) 

where 𝑄𝑖𝑗  defines the transformation matrix from the principal frame to the sample reference 

frame and Einstein’s notation is employed for implied summation on repeated indices. The 

transformation matrix is defined through the dot products of the basis vectors in the sample and 

principal frames and is expressed as products of sines and cosines of the Euler angles (𝜑1, 𝛷,  𝜑2).  

A significant benefit of this parameterization is that the domain of 𝒅 is now represented by 

a four-dimensional space over which all physically-based functions of interest exhibit periodicity. 
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Indeed, this is a central element of our strategy for developing a rigorous, compact, and sufficiently 

accurate spectral database for capturing 𝜶𝒕
ℎ(𝒅).  

Taking advantage of the novel parametrization and assuming that the phases of the composite 

exhibit a low to moderate contrast between their local plastic properties (i.e. the ratio between their 

yield strengths), the MKS localization relationship can be truncated to the first order terms and casted 

into to the following expression:  

                  𝑫𝒔 = (∑∑𝜶𝒕
ℎ(𝜑1, 𝛷, 𝜑2, 𝜃)𝑚𝒔+𝒕

ℎ

𝑺

𝒕

𝐻

ℎ

) |〈𝑫〉| 
 

 (4.5) 

It is important to recognize that Eq. 4.5 is a tensorial equation valid in any reference frame. 

Nevertheless, it is to be used in the sample reference frame, since this is the frame on which the 

response is desired to be localized. 

 4.2 Calibration of a Finite Set of Localization Kernels in the Principal Frame of the 

Imposed Periodic Boundary Condition 

The calibration of the localization linkage in the sample frame requires discretizing, and 

sampling of the localization kernel, 𝜶𝒕
ℎ, in a four-dimensional space (see Eq. (4.5)). However, the 

required effort can be significantly reduced if the kernel is established in the principal frame of the 

tensor 𝒅, since it would then be dependent on a single parameter, 𝜃 (see Eqs. (4.3) and (4.4)). In 

addition to reducing the effort involved, the kernel established in the single parameter space would 

result in a compact database. Such a compact representation of the localization kernel would 

reduce significantly the computational memory in the applications of the MKS approach.  

An extended notation is leveraged to describe clearly the important details involved in 

establishing a finite and compact database of MKS localization kernels. The extended notation 
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denotes the quantities of interest as multi-dimensional arrays. As an example, the components of 

the second-rank tensor 𝜶𝒕
ℎ in the sample reference frame on a spatial grid aligned with the sample 

reference frame for the local state indexed by ℎ would be represented as an 

array 𝛼[𝑖, 𝑗]𝑆𝐹[𝒕]𝑆𝐹[ℎ](𝜑1, 𝛷, 𝜑2, 𝜃). Square brackets and round brackets are used respectively for 

indices and the continuous variables needed to describe this tensor; the superscript identifies 

explicitly the associated reference frame. It is also important to mention that the components of 

this tensor are expected to be dependent on continuous variables (𝜑1, 𝛷, 𝜑2, 𝜃). 

This work first calibrated the values of the array 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ](𝜃) using previously 

demonstrated protocols in the MKS framework [43, 44, 49]. Subsequently, a computational 

strategy was defined that enable the efficient calculation of the 𝛼[𝑖, 𝑗]𝑆𝐹[𝒕]𝑆𝐹[ℎ](𝜑1, 𝛷, 𝜑2, 𝜃) 

array required for the actual implementation of the MKS framework in multiscale simulations. 

This array is needed because the material microstructure and the imposed stretching tensor are 

usually defined in the sample reference frame. It is important to recognize that the developed 

computational strategy involves only a suitable coordinate transformation of the influence kernel 

without any rotation of the given microstructure. The steps involved in the transformation of the 

influence kernel from the principal frame of the stretching tensor to the sample reference frame 

are schematically depicted in Figure 3. 
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Figure 3: Schematic of the Transformation of Discrete Values of the Localization Function 

Sampled in the Principal Frame to the Sample Reference Frame. 

Figure 3 shows 2D slices of the different spatial grids on which the continuous localization 

function (𝜶𝒕
ℎ(𝜑1, 𝛷, 𝜑2, 𝜃)) can be discretized (sampled) depending on the desired frame of 

reference. As it can be seen one needs to change both the spatial grid on which the function is 

sampled as well as the orientation of the reference axes in order to recover the values of the 

function on a different reference frame. This is depicted as a two-step process in Figure 3. The first 

step obtains the value of the kernel function at the spatial grid associated with the new frame of 

reference using a suitable interpolation scheme. The second step transforms the orientation of the 

reference frame using a standard coordinate transformation law for second-rank tensors. More 

specifically, the first step requires the use of two different spatial grids denoted in Figure 3 as 

[𝒕]𝑃𝐹and [𝒕]𝑆𝐹. The spatial locations on these two grids are in fact directly related by the set of 

Euler angles (𝜑1, 𝛷,  𝜑2) that describe the relationship between the two reference frames (note that 
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there is only a rotation between these two frames without any translation). Trigonometric 

interpolation is leveraged for re-sampling the function on the new spatial grid. As a result, the 

values of the function on the new spatial grid are calculated with the following trigonometric 

interpolation scheme: 

𝛼[𝑖, 𝑗]𝑃𝐹[𝑥, 𝑦, 𝑧]𝑆𝐹[ℎ](𝜃)  =
1

𝑁𝑥

1

𝑁𝑦

1

𝑁𝑧

1

𝑁𝜃

∑   ∑ ∑ ∑ 𝛽[𝑖, 𝑗]𝑃𝐹[𝑟 𝑠 𝑡]
𝑃𝐹

[ℎ] [𝑞] 𝑒
2𝜋𝑖𝑟𝑥

𝐿𝑥 𝑒
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𝐿𝑦 𝑒
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𝑁𝜃
2
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−𝑁𝜃

2
+1

 

𝑁𝑧
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𝑡=
−𝑁𝑧
2

+1

𝑁
 𝑦
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−𝑁 𝑦

2
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𝑁𝑥
2

  

𝑟=
−𝑁𝑥
2
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(4.6) 

The coordinate transformation involved in the second step is described as follows 

(summation implied on repeated indices): 

𝛼[𝑘, 𝑙]𝑆𝐹[𝒕]𝑆𝐹[ℎ](𝜑1, 𝛷, 𝜑2, 𝜃) = 𝑄[𝑘, 𝑖](𝜑1, 𝛷, 𝜑2)𝑄[𝑙, 𝑗](𝜑1, 𝛷, 𝜑2)𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑆𝐹[ℎ](𝜃)      (4.7) 

A DFT representation of the 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ](𝜃) array is needed in order to be able to 

leverage the trigonometric scheme denoted in Eq. (4.6). The DFT representation was obtained by 

sampling the 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ](𝜃)  array on a regular grid in the periodic domain of 𝜃. The 

definition of 𝜃 in Eq. (4.3) identifies a periodic domain of [0, 120) degrees, with a mirror symmetry 

at 60 degrees [76-78]. This means that mirror symmetry can be leveraged to populate the complete 

periodic domain required to procure the DFTs representations. As a result, it is only necessary to 

generate the data in the 𝜃 = [0, 60) domain. In this work, it was decided to sample the array every 

one degree in the range identified above. Following the protocols described in previous work, the 

values of the 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ](𝜃) array were calibrated to the numerical results of two finite 

element simulations of “delta” microstructures [43, 44, 49] subjected to the periodic boundary 

conditions corresponding to each selected value of 𝜃. A delta microstructure is defined as a 

microstructure in which an element of one phase is surrounded fully by the elements of the other 

phase [43, 49]. 
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The calibration of the values of the array of interest are procured by linear regression (i.e., 

minimizing the sum of squared error) on Eq. (4.5) in the DFT space. Periodic boundary conditions 

are imposed through the displacement degrees of freedom on the boundary nodes. These boundary 

conditions are specifically well suited for the DFT operators used in the linear regression, and are 

expressed as follows: 

𝑢3
3+ − 𝑢3

3− = 〈𝜀33〉𝐿,  𝑢2
2+ − 𝑢2

2− = 〈𝜀22〉𝐿, 𝑢1
1+ − 𝑢1

1− = 〈𝜀11〉𝐿 

𝑢1
3+ = 𝑢1

3−,  𝑢1
2+ = 𝑢2

2−,  𝑢3
1+ = 𝑢3

1−,  𝑢3
2+ = 𝑢3

2−, 𝑢2
1+ = 𝑢2

1−,

𝑢2
3+ = 𝑢2

3−,  𝑢1
𝐶 =  𝑢2

𝐶 =  𝑢3
𝐶 = 0 

 

(4.8) 

where 𝑢𝑖 denotes the ith component of the displacement vector, 〈𝜀𝑖𝑖〉 (no summation implied on the 

repeated indices) are the diagonal components of the macroscopic strain tensor, L represents the 

length of the cuboidal microstructure volume, and the superscript n+ or n– identifies the set of 

nodes on the surface whose normal points in the positive n direction or the negative n direction, 

respectively. The superscript 𝐶 in Eq. (4.6) denotes the corner node located at the (0, 0, 0) 

coordinate. 

All the finite element simulations performed in this study were executed using finite 

element commercial software ABAQUS [83]. Each simulation was performed on a 21x21x21 

finite element mesh of a three-dimensional cuboid, using continuum elements (C3D8) [83]. In 

prior work [49], it was observed that this size was sufficient to capture the details of the localization 

kernel for medium-contrast composites. A high elastic modulus of 1000 GPa was assigned to both 

phases. This was done to minimize the elastic strains and their influence on the plastic localization 

kernel extracted in this work. A contrast ratio of 1.5 between the yield strengths of the constituent 

phases was employed in this study, with the yield strength for the soft phase assigned as 200 MPa. 
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Each simulation (on each cuboidal microstructure volume) was deformed to a total strain of 0.1. It 

is important to mention that the imposition of perfectly-plastic constitutive relations caused the 

appearance of non-physical strain rate fields in the form of bands. Interestingly, these bands were 

most noticeable in the simulations corresponding to  𝜃=30o, which corresponds to overall 

(effective) plane strain conditions on the microstructure volume. After numerous trials (with 

different mesh densities, boundary conditions) it was ascertained that these were indeed caused by 

the perfectly plastic constitutive description. This hurdle was circumvented by adding a small 

amount of hardening in the constitutive responses of the constituent phases. A 15% increase in 

hardening over 8% plastic strain was imposed to avoid the non-physical strain rate fields (i.e., 

bands), while not significantly changing the contrast ratio of the yield strengths of the phases. 

In total, 120 simulations (two delta microstructures subjected to periodic boundary 

conditions corresponding to every one degree value for 𝜃 = [0, 60)) were performed to produce 

the dataset needed to calibrate 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ][𝜃]. The finite element computed plastic strain rate 

field (one averaged value for each spatial cell) for each delta microstructure was used to perform 

the regression analyses and extract the values of the plastic localization tensor of interest (this 

regression takes place in DFT space). Notice that these calculations are performed for discrete 

values of 𝜃 (every one degree). Therefore, performing this calibration step successfully results in 

establishment of 𝛼 [𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ][𝜃]. The square brackets on 𝜃 indicate that this array is 

essentially a uniform sampling of 𝛼[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[ℎ](𝜃). The values of the 

𝛼[𝑖, 𝑗]𝑆𝐹[𝒕]𝑆𝐹[ℎ](𝜑1, 𝛷, 𝜑2, 𝜃) array are then procured by casting the localization linkages in the 

DFT-space and using the computational strategy schematically depicted in Figure 3. 
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4.3 Validation of the Spectral Database of Kernels Calibrated in the Principal Frame 

The critical validation of the computational strategies developed to leverage a discrete, 

finite set of localization kernels in principal frame to localize any arbitrary strain-rate tensor 

applied to the RVE at the macro-scale was performed systematically.  

4.3.1 Validation of the Microstructure Independence of the Spectral Database of 

Calibrated Localization Kernels 

The first validation consists in demonstrating that the calibrated localization kernels are 

independent of the microstructure itself. Following prior MKS implementations [43, 45, 48, 49], 

random microstructures where each spatial cell is randomly assigned one of the two local states 

(see Figure 4). These microstructures are not only very different from the ones used in the 

calibration of the kernels (i.e., delta microstructures), but also provide highly complex 

heterogeneous local fields and therefore serve as challenging validation case studies for our 

purpose.  

 

Figure 4: Example of a Random Microstructure Used as a Validation Microstructure. 
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The following macro scale strain rate was imposed to the generated random microstructure: 

〈𝐷[𝑖, 𝑗]〉𝑆𝐹 = [
−.56 0 0

0 −.24 0
0 0 . 8

]                                                      (4.9) 

Although the applied 〈𝑫〉 is already in a principal frame, it is important to recognize that 

the sample frame corresponds to only one of the six possible principal frames that could be defined 

by choosing to align different sample axes with the three different principal axes. Indeed, the six 

possible principal frames produce the six different values of theta in range [0, 360). In this 

validation study the selected value of theta for the 〈𝑫〉 prescribed in Eq. (4.9) corresponds to 𝜃 =

46.5°. The corresponding 𝑄𝑖𝑗 (defined in Eq. (4.4)) is presented below: 

𝑄[𝑖, 𝑗] = [
0 0 −1
0 1 0
1 0 0

]                                                      (4.10) 

Note also that this value of 𝜃 was not sampled in the calibration. Therefore, this case study 

represents a true validation.        

A finite element simulation imposing the 〈𝑫〉 defined on Eq. (4.9) on the selected 

microstructure (Figure 4) was performed to obtain numerically the localized values of the plastic 

strain rate tensor in each spatial bin. The local values of the plastic strain rate tensor were also 

computed separately using the database developed in the previous section and following the 

approach described schematically in Figure 3. These results are compared in Figure 5. 
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Figure 5: Comparison between the Results Obtained with the Spectral Database of Localization 

Kernels and those Obtained from the FE Simulation For the microstructure shown in Figure 4 

subjected to the Stretching Tensor Described by Eq. (4.9). 

The first two columns of Figure 5 compare the fields of the orthogonal components of the 

plastic strain rate tensor obtained by using the calibrated localization kernels (i.e., the MKS 

method) as well as the response fields obtained using the FE simulation on a mid-section of the 

microstructure volume. It can be clearly seen that there is excellent agreement between the results 

obtained by the extended MKS protocols developed in this work and the FE results. Similar results 

were also obtained for the off-diagonal components of the strain rate fields (not shown in Figure 

5). The percentage error in the MKS predictions can be quantified for each spatial cell in the 

microstructure volume using the following error definition: 

𝐸𝑟𝑟[𝑖, 𝑗][𝒔]% =
|𝐷𝑃𝑙𝑎𝑠𝑡𝑖𝑐[𝑖,𝑗][𝒔]𝐹𝐸𝑀 −𝐷𝑃𝑙𝑎𝑠𝑡𝑖𝑐[𝑖,𝑗][𝒔]𝑀𝐾𝑆 |

|〈𝑫〉|
× 100                      (4.11) 
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where 𝐷𝑃𝑙𝑎𝑠𝑡𝑖𝑐[𝑖, 𝑗][𝒔]𝐹𝐸𝑀  denotes the value of the [𝑖, 𝑗] component of the plastic strain rate tensor 

obtained from the FEM simulation for bin s, and 𝐷𝑃𝑙𝑎𝑠𝑡𝑖𝑐[𝑖, 𝑗][𝒔]𝑀𝐾𝑆  corresponds to the value 

predicted by the MKS approach. The mean value of this error for each of the six components of 

the plastic strain rate tensor is shown in Table 1.  

Table 1: Mean Error (%) between the FEM and the MKS predicted values. 

Strain Rate Tensor 

Component 

Error (%) 

D11 .83 

D22 .69 

D33 .60 

D12 .58 

D13 .73 

D23 .58 

Table 1 shows that the mean error in the MKS predictions is less than 1% for all the six 

components of the tensor. The accuracy obtained here is consistent with those obtained in prior 

applications of the MKS approach (cf. [43, 45, 48, 49] ). The last column of Figure 5 compares 

the frequency histograms for the orthogonal components of the plastic strain rate tensor predicted 

for the selected microstructure with both methods. It can be seen that there is an excellent 

agreement between the histograms of the local plastic strain rate components obtained by both 

methods. The MKS predictions for the validation microstructure were produced with significant 

computational savings. The FE simulation for the new microstructure took 17 minutes on a single 

2.4 GHz AMD processor node in the Georgia Tech super computer cluster, while the MKS 

predictions were obtained in only 2.4 seconds on the same resource. This validation example 

clearly demonstrates that the calibrated MKS localization kernels are independent of the 
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microstructure and attests to the accuracy and computational efficiency of trigonometric 

interpolation scheme previously outlined. 

4.3.2 Validation of the Length-scale Independence of the Spectral Database of 

Calibrated Localization Kernels 

The second validation shows the extensibility of the calibrated spectral database of 

localization kernels for RVEs of different sizes and demonstrates that the computational savings 

obtained with the MKS framework are independent of the RVE size. For this validation, a new 

random microstructure was created on a 43X43X43 spatial grid and a finite element simulation 

was performed with the macroscopic strain rate tensor in Eq. (4.9).  

Following  the strategies performed in previous MKS implementations [44, 45, 48, 80, 84], 

the size of the localization kernels contained in the calibrated spectral database (recall that the 

MKS kernels obtained in section are defined on a 21X21X21 spatial grid) are extended using a 

resampling strategy called spectral interpolation, which corresponds to simply padding the 

calibrated kernels with zeros. As a result, by leveraging spectral interpolation the MKS calibrated 

spectral database is able to obtain a prediction of the local values for the new extended RVE size. 

The MKS predictions are compared to the FE obtained values in Figure 6. 
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Figure 6: Comparison Between the Results Obtained using the Calibrated Spectral Database of 

Localization Kernels and the Results of the FE Simulation for a Microstructure Discretized on a 

43x43x43 Grid. 

From Figure 6 it can be clearly seen that the calibrated localization kernels contained in the 

previously established spectral database provide remarkably accurate predictions for the larger 

RVEs without the need to recalibrate them. The mean errors (obtained using Eq. (4.11)) for this 

validation study are summarized in Table 2 and are less than 1.2%.  The slight increase in error 

from the earlier validation case study (see Table 1) is attributed to the spectral interpolation 

employed in resampling the calibrated kernels on a finer spatial grid. However, this small increase 

is quite acceptable in most practical applications. It should be noted that the computational savings 

obtained by employing the MKS framework on the larger RVE are even more significant. The 

FEM analysis required 15 hours (54,000 seconds) on a single 2.4 GHz AMD processor node in the 

Georgia Tech super computer cluster, while the MKS predictions were obtained in 2.4 seconds on 
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the same resource. This case study demonstrates the versatility of the MKS kernels for a broad 

range of microstructures and RVE sizes. It is also important to highlight that the computational 

efficiency of the MKS framework is much more noticeable when the RVE size is increased. 

Table 2: Mean Error (%) between the FEM and the MKS predicted values for a 43x43x43 random 

microstructure subjected to boundary conditions expressed in Eq. (13). 

Strain Rate Tensor 

Component 

Error (%) 

D11 1.1 

D22 .42 

D33 1.1 

D12 .66 

D13 .94  

D23 .64 

4.3.3 Validation of the Frame Independence of the Spectral Database of 

Calibrated Localization Kernels 

The last validation consisted in demonstrating the applicability of the calibrated spectral 

database for localizing the response of an arbitrary strain rate tensor imposed at the macroscale. 

As a critical validation, the local values will be predicted for a case in which the computational 

strategy that obtains the localization kernels for any arbitrary sample frame (cf. Figure 3) is most 

likely to fail. This case corresponds to a 45 degree rotation of the spatial grid in all three angles 

because the new grid points are most distinctly away from the original grid points before rotation. 

As a result, this case study will localize the response for a strain rate macroscopically imposed on 

a sample frame corresponding to 𝜑1 = 45°, 𝛷 = 45°, 𝜑2 = 45°. The predictions for the local 

values using the calibrated spectral database are readily obtained with the developed computational 
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strategy. Ironically, obtaining the corresponding FE results is not a simple matter because it was 

observed that when periodic boundary conditions corresponding to a macroscale stretching tensor 

with off-diagonal components were applied to a finite amount of plastic strain (~0.1), the overall 

shape of the periodic domain changed significantly making it difficult to compare directly (voxel by 

voxel) the FE results with the MKS predictions. Note that the MKS kernels presented here only 

localize the strain rate tensor. One needs to adequately evolve the microstructure to be able to 

apply these kernels to simulate plastic deformation over an imposed finite strain on the 

microstructure; this is yet an unsolved problem (cf. [85]). As a result, it was not possible to conduct 

a direct voxel to voxel comparison between MKS predictions and FE predictions in this final 

validation case study. Instead, the performed validation focused on comparing the frequency 

histograms of the microscale stretching tensor components between the FE and the MKS 

predictions. 

The first step consisted in a macroscale strain rate tensor expressed in the sample and 

principal frames as follows: 

〈𝐷[𝑖, 𝑗]〉𝑆𝐹 = [
−0.028 −.022 −.006
−.022 . 043 −.056
−.006 −.056 −.015

]      〈𝐷[𝑖, 𝑗]〉𝑃𝐹 = [
0.079 0 0

0 −0.21 0
0 0 0.06

]     (4.12) 

The Euler angles that define the transformation matrix between these two frames are 𝜑1 =

45°, 𝛷 = 45°, 𝜑2 = 45°. As stated earlier, the prediction of the local values caused by the tensor 

defined in Eq. (4.12) using the MKS method are obtained in a straightforward manner by simply 

following the computational strategy defined in 4.2 and schematically shown in Figure 3. In this 

case study the macroscopic strain rate tensor is imposed on a random microstructure (assumed to 

be close to a perfectly disordered microstructure) gridded along the sample frame (indexed with 
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the 𝑚[𝒔]𝑆𝐹[ℎ] array). This random microstructure was generated by randomly placing different 

phases on a 43x43x43 voxel grid to attain a volume fraction of 59%.  

However, the FE simulation was performed on an equivalent microstructure gridded along 

the principal frame (i.e., 𝑚[𝒔]𝑃𝐹[ℎ]) in order to correctly impose the periodic boundary conditions 

associated with the defined macroscopic stretching tensor. It is important to recognize that given 

the discretized nature of the RVEs employed in this study, it was impossible to create an exactly 

equivalent microstructure in the gridded along principal frame, given the microstructure in the 

sample frame. However, it was relatively easy to produce a statistically equivalent microstructure by 

simply defining a new random microstructure gridded along the principal frame with the same 

volume fraction. The equivalence between the two defined structures can be ascertained from their 

2-point statistics maps [58, 71] shown in Figure 7.  

 

Figure 7: a) Random 43x43x43 Microstructure Defined in the Sample Frame along with Three 

Center Sections of the 3-D Autocorrelation Plot. b) Another 43x43x43 Statistically Equivalent 

Microstructure Defined in the Principal Frame with the Same Volume Fraction as the One Shown 

in (a) along with Three Center Sections of the 3-D Autocorrelation Plot. 
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The 2-point statistics maps shown in Figure 7 shows that the two defined RVEs are fairly 

close to being perfectly disordered. As a result, it can be concluded that the two defined RVEs are 

statistically equivalent microstructures. Furthermore, since the perfectly disordered structures do not 

exhibit any directionality, the rotation from the sample frame to the principal frame does not change 

the statistics of the microstructure. Once the FE analysis completed on the microstructure gridded 

along the principal frame, the local plastic stretching tensor components in each voxel were 

converted to the sample frame to facilitate comparison with the MKS predictions. The MKS and 

FE predictions for this case study are compared as frequency histograms in Figure 8. 

 

Figure 8: Comparison of the Frequency Distributions of the Local Values of the Stretching 

Tensor Components in the Sample Frame Obtained with the MKS Approach and the 

Corresponding FE Simulation. 

As it can be clearly seen from Figure 8 the frequency distributions obtained with both 

methods show excellent agreement. Thus, demonstrating the applicability of the calibrated spectral 

database of localization kernels to localize the response of an arbitrary strain rate tensor imposed 

at the macroscale. It is also important to highlight the computational savings associated with 
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implementing the MKS framework. The FEM analysis required 15 hours (54,000 seconds) on a 

one 2.4 GHz AMD processor node in the Georgia Tech super computer cluster, while the MKS 

predictions were obtained in 2.4 seconds on the same resource. 

 4.4 Summary and Conclusions 

The case studies performed in this chapter demonstrate that the MKS localization 

framework has been successfully extended and is now capable of accurately predicting, and in a 

computationally efficient manner, the local plastic response caused by imposing any arbitrary 

plastic strain rate tensor at the macroscale for an RVE of a material made of two isotropic phases. 

Therefore, eliminating one the main impediments in advancing the adoption of the MKS approach 

as a practical scale-bridging framework in fully-coupled multiscale modeling efforts.  
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CHAPTER 5: 

 Localization Models for the Plastic Response of Polycrystalline Materials Using the 

Material Knowledge Systems Framework 

This chapter integrates all the previously developed enhancements that have enabled the 

MKS localization framework undertake the localization problem for complex material structures 

and non-linear phenomena and defines suitable extensions in order to enable this framework to 

predict the local plastic response in polycrystalline microstructures caused by any arbitrary 

periodic boundary condition imposed at the macroscale. As a result, this chapter reports the first 

successful application of the MKS framework for modeling the localization of the plastic response 

in polycrystalline microstructures. This chapter provides the details of the implementation for 

single-phase, fcc, cubic polycrystalline materials. It is important to acknowledge that the choice of 

the crystalline structure and of sample and crystal symmetry is arbitrary. However, it is more 

important to establish that the protocols described in this chapter are agnostic to these parameters 

and as such can be repeated for any other crystal structures and symmetries of interest.  

5.1 Derivation of the MKS Localization Framework for the Plastic Response of 

Polycrystalline Materials 

The general localization relationship denoted in Eq. (3.5) is suitable for materials whose 

internal structure can be adequately represented by two or more thermodynamically distinct phases 

(enumerated by a discrete variable ℎ). However, this expression is not ideal/adequate for the 

polycrystalline structures of interest in this chapter since their internal structure is significantly more 

complex. Section 2.2.2 shows that the adequate microstructure function (i.e., the mathematical 

function used to represent the internal structure of the material) for single-phase polycrystalline 

structures is adequately characterized by the spatially resolved ODF (𝑓𝑠(𝑔)𝑑𝑔). Incorporating the 
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new microstructure function (𝑓𝑠(𝑔)𝑑𝑔) into Eq. (3.5) requires for one to replace the summations 

over ℎ ∈ 𝐻 with suitable integrals over 𝑔 ∈ 𝐹𝑍, where 𝐹𝑍 denotes the fundamental zone in the 

orientation space [7] representing the complete set of all physically distinct lattice orientations (i.e., 

after accounting for all relevant crystal symmetries). For the same reason, the localization kernels 

also need to be expressed as functions of the lattice orientation, 𝑔. These changes produce the 

relevant MKS formulation for the localization relationship applicable to single-phase polycrystalline 

structures as follows:  

𝒑𝒔 = (∑ ∫ 𝜶𝒕(𝑔)𝑓𝒔+𝒕(𝑔)𝑑𝑔
𝐹𝑍

𝑺

𝒕
+ ∑ ∑ ∫ ∫ 𝜶𝒕𝒕′(𝑔, 𝑔′)

𝐹𝑍

𝑓𝒔+𝒕(𝑔)𝑓𝒔+𝒕+𝒕′(𝑔, 𝑔′)𝑑𝑔′𝑑𝑔
𝐹𝑍

𝑺′

𝒕′

𝑺

𝒕
+  …) 〈𝒑〉  (5.1) 

where the dependence on the orientation of the crystal lattice is clearly noted on both the 

microstructure function and the localization kernels. It should be noted that Eq. (5.1) (limited to first-

order kernels) has been successfully applied to obtain a high fidelity localization model for elastic 

deformations in polycrystalline microstructures [45].  

For the application to plastic deformations on polycrystalline RVEs one needs to apply this 

equation on a variable that characterizes the rate of deformation that the polycrystalline RVE is 

experiencing. The plastic component of the velocity gradient (𝑳𝑝) is the logical choice since it is 

related to the shearing rate experienced by the slip systems on the polycrystalline RVE (assuming 

that the plastic deformation in the polycrystal is caused solely by the motion of dislocations along 

the slip systems) by the following relationship [13-18]: 

𝑳𝑝 = ∑𝛾̇(𝛽)𝒎𝑡
𝛽

⊗ 𝒏𝑡
𝛽

𝛽

 
 

(5.2) 

where 𝛾̇(𝛽) is the shearing rate, 𝒎𝑡
𝛽

 is the slip direction at the current time 𝑡 and 𝒏𝑡
𝛽

 is slip plane 

normal also at the current time 𝑡. It is important to notice that each of these quantities correspond to 
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a slip system 𝛽. The plastic component of the velocity gradient can be decomposed into a symmetric 

part that captures the rate of stretch on the polycrystal (typically denoted by 𝑫𝑝) and an anti-

symmetric that part captures the total rate of spin on the polycrystal.  

Therefore, decomposing 𝑳𝑝 into its symmetric and antisymmetric components and 

leveraging the previous implementation of the MKS localization framework to polycrystalline 

structures [45], as well as the previous implementation to plastic deformations in multiphase 

composites [43, 80], enables one to define the following localization relationship of the plastic 

response for single-phase polycrystalline materials: 

              𝑳𝒔
𝑝

= (∑∫ 𝜶𝒕(𝑔,  𝒅𝑝)𝑓𝒔+𝒕(𝑔)𝑑𝑔
𝐹𝑍

𝑺

𝒕

+ ∑∑∫ ∫ 𝜶𝒕𝒕′(𝑔, 𝑔′,  𝒅𝑝)
𝐹𝑍

𝑓𝒔+𝒕(𝑔)𝑓𝒔+𝒕+𝒕′(𝑔′)𝑑𝑔′𝑑𝑔
𝐹𝑍

𝑺′

𝒕′

𝑺

𝒕

) |〈𝑫𝑝〉| + |〈𝑾〉| 

 

 

(5.3) 

where 𝑳𝑝
𝒔 denotes the value of the plastic component of the velocity gradient at voxel 𝒔, 

〈𝑫𝑝〉

|〈𝑫𝑝〉|
  

denotes the direction (unit magnitude) of the macroscopically imposed symmetric and traceless 

plastic stretching tensor and 〈𝑾〉 denotes the macroscopically imposed spin tensor. Notice that the 

imposed spin rate needs not to be localized because every point in the RVE experiences the same 

spin rate as the one that is being macroscopically imposed. Also notice that the localization 

relationship defined in Eq. (5.3) shows that the calibrated localization kernels are not only dependent 

on the crystal lattice orientations (𝑔) but also on the direction (unit magnitude) of the 

macroscopically imposed symmetric and traceless plastic stretching tensor denoted by  𝒅𝑝 = 
〈𝑫𝑝〉

|〈𝑫𝑝〉|
. 

Looking at the kernel 𝜶𝒕(𝑔,  𝒅𝑝) in the first term in Eq. (5.3), it becomes clear that this 

kernel is defined over a total of seven independent variables (three variables defining the crystal 



49 
 

lattice orientation 𝑔 and four variables defining the traceless unit tensor  𝒅𝑝). These seven variables 

are in addition to the variable , which is a three-dimensional vector indexing the set of discretized 

vectors used to represent the difference between any two spatial points in the RVE. In prior work 

on multiphase composites [80], the first order kernel was similarly defined over four variables 

(since the local state did not need a prescription of 𝑔), and it was shown that one can effectively 

reduce the number of independent variables to one by choosing to establish the kernel in the 

principal frame of  𝒅𝑝. In this work, we employ the same strategy to reduce the number of 

independent variables in the kernel 𝜶𝒕(𝑔,  𝒅𝑝) from seven to four. In other words, we will choose 

to express the second-rank tensor 𝜶𝒕 in the principal frame of  𝒅𝑝, where the traceless unit tensor 

 𝒅𝑝 can be expressed using a single variable 𝜃 [76]. As a result, it is also needed to re-define the 

crystal lattice orientation 𝑔  as the set of Bunge-Euler angles that rotate the principal frame of  𝒅𝑝 

to the crystal frame. These definitions are clarified in Figure 9, where the three different reference 

frames of interest are depicted. These include a sample reference frame, a crystal reference frame, 

and a principal reference frame for  𝒅𝑝. The transformation matrix from the sample reference frame 

to the principal frame of  𝒅𝑝 is denoted by [ ], and is obtained by solving for the eigen vectors of 

 𝒅𝑝. Note that all components of  𝒅𝑝 can be expressed as functions of a single independent variable 

𝜃. The transformation from the principal frame of  𝒅𝑝 to the crystal reference frame is denoted by 

the set of Bunge-Euler angles, 𝑔 = (𝜑1
𝑐,  𝛷𝑐, 𝜑2

𝑐) . Taking advantage of the simple structure of  

 𝒅𝑝 in its principal frame, one can express the components of the kernel in the same principal frame 

as 𝜶𝒕[𝑖, 𝑗]
𝑃𝐹(𝑔, 𝜃) . In this notation, the indices in the square brackets enumerate the tensorial 

components, and the superscript on the square brackets indicate the frame in which they are 

expressed. The variables 𝑔 and 𝜃 are shown in curved brackets to indicate that they are treated as 

continuous variables in the functional dependence expressed. 
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Figure 9: Clarification of the different reference frames and the coordinate transformation 

matrices used in this work. 

The orientation dependence of the 𝜶𝒕[𝑖, 𝑗]
𝑃𝐹(𝑔, 𝜃) can be captured with  a compact set of 

coefficients by using generalized spherical harmonics (GSH) [51] as a Fourier basis (cf. [7, 41, 45, 

51]) as 

     𝜶𝒕[𝑖, 𝑗]
𝑃𝐹(𝑔, 𝜃) = ∑ 𝑨𝑙𝒕

𝜇𝑛[𝑖, 𝑗]𝑃𝐹(𝜃)

𝜇,𝑛,𝑙

𝑇̇̇𝑙
𝜇𝑛(𝑔) = ∑𝑨𝒕

𝐿[𝑖, 𝑗]𝑃𝐹(𝜃)

𝐿

𝑇̇̇𝐿(𝑔)   
 

(5.4) 

where 𝑨𝒕
𝐿[𝑖, 𝑗]𝑃𝐹(𝜃) denote the GSH coefficients and 𝐿 enumerates over all relevant and distinct 

combinations of (𝜇, 𝑛, 𝑙) in the symmetrized GSH basis functions 𝑇̇̇𝑙
𝜇𝑛

(𝑔) (these implicitly account 

for the crystal symmetry) [51].  The 𝜃-dependence of kernel coefficients in Eq. (4) will be captured 

using DFT (discrete Fourier transform) representation, the same way we will also address the 𝒕-

dependence. The advantages of using DFTs for such representations has been demonstrated in prior 
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work on related problems [77, 78, 80]. Specifically, they allow for computationally efficient and 

accurate interpolations of the values of highly complex functions sampled on a uniform grid on any 

new point in the complete domain space.  Adoption of this strategy entails representing the kernel 

coefficients in Eq. (4) as an array 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃], where [𝒕]𝑃𝐹 represents a uniform spatial grid 

aligned with the principal frame of  in the vector space and [𝜃] denotes a uniform grid in the 𝜃-

space, and performing DFTs on [𝒕]𝑃𝐹and [𝜃] using the FFT (fast Fourier transform) algorithms [52, 

86].  Let 𝓐𝒕
𝐿[𝑖, 𝑗]𝑃𝐹[𝒌]𝑃𝐹[𝑞] denote the DFTs obtained by this process. Note that in three 

dimensional space,  and  would comprise three integer indices, i.e., 𝒕 = (𝑡1, 𝑡2, 𝑡3) and 𝒕 =

(𝑘1, 𝑘2, 𝑘3). 

In the actual application of the MKS approach on a new microstructure with a new periodic 

boundary condition, one needs to transform the established 𝓐𝒕
𝐿[𝑖, 𝑗]𝑃𝐹[𝒌]𝑃𝐹[𝑞] (in a one-time 

computational effort described in subsequent section; cf. [45, 80]) to the 𝑨𝐿[𝑖, 𝑗]𝑆𝐹[𝒕]𝑆𝐹(𝜃) needed 

for the specific application. In other words, we would need to recover the kernel coefficients on a 

spatial grid aligned with an arbitrarily specified sample reference frame and an arbitrarily specified 

value of 𝜃 for a general application of the MKS framework. Moreover, this recovery has to be 

accomplished in a computationally efficient manner. This can be accomplished in two steps. In the 

first step, one would use a well-established trigonometric interpolation strategy (commonly used 

in DFT representations; cf. [87]) to recover 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑆𝐹(𝜃). In the second step, these kernel 

coefficients are transformed into the sample frame using the standard coordinate transformation laws 

for second-rank tensors (using the [Q] matrix identified in Figure 2; cf. [7, 41]). The transformed 

kernel coefficients are denoted as 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑆𝐹(𝜃), and represent the GSH coefficients of the MKS 

kernel needed for the selected application. 
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It is important to acknowledge that the MKS localization framework presented above deals 

only with the localization of the imposed plastic velocity gradient at any instant in time. In order 

to apply the framework to finite strain levels, additional advances would be needed. These include 

(i) incorporation of elastic deformations to allow for a proper treatment of the elastic-plastic 

deformations in polycrystalline metals, and (ii) update of the microstructure after a specified time 

step with the imposed plastic velocity gradient. Both of these problems need further development 

and are beyond the scope of the present dissertation. As stated in the introduction of this chapter, 

in this dissertation the focus will exclusively be on the localization of the imposed plastic velocity 

gradient in fcc (face-centered cubic) polycrystalline microstructures that exhibit cubic-triclinic 

symmetry. It is important to acknowledge and that the choice of the crystalline structure and of the 

sample and crystal symmetry was arbitrary. However, it is more important to establish that the 

calibration protocol described in the subsequent section is agnostic to these parameters. Therefore, 

the described calibration protocol can be implemented for any other crystal structures and 

symmetries of interest. 

5.2 Calibration of MKS Localization Kernels for the Plastic Response of 

Polycrystalline Materials 

In this first application of the MKS localization framework to fcc polycrystalline 

microstructures, the attention is focused on the first-order kernel in the first term of the expansion 

in Eq. (5.3). With the introduction of the GSH as a Fourier basis for the functions defined on the 

orientation space and the other notation described in the previous section, Eq. (5.3) limited to the 

first term in the series expansion can be expressed in the principal frame of 𝒅𝑝 as: 
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              𝑳𝑝[𝒔]𝑃𝐹 = (∑𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹(𝜃) 𝑀𝐿[𝒔 + 𝒕]𝑃𝐹

𝐿

) |〈𝑫𝑝〉| + |〈𝑾〉| 
 

(5.5) 

with  𝑀𝐿[𝒔]𝑃𝐹 denoting the GSH coefficients of the spatially resolved orientation distribution 

function defined by 

     𝑓[𝒔]𝑃𝐹(𝑔) = ∑ 𝑀𝑙
𝜇𝑛[𝒔]𝑃𝐹

𝜇,𝑛,𝑙

𝑇̇̇𝑙
𝜇𝑛(𝑔) = ∑  𝑀𝐿[𝒔]𝑃𝐹

𝐿

𝑇̇̇𝐿(𝑔)   
 

(5.6) 

In deriving Eqs. (5.5) and (5.6) from Eq. (5.3) certain constants arise in the integration over 

the orientation space. However, these were absorbed into the kernel coefficients 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹(𝜃) 

to simplify the expression in Eq. (5.5), keeping in mind that the kernel coefficients in the MKS 

framework are calibrated to the results from FE simulations.   

It is clear from Eq. (5.5) that the 𝜃-dependence in 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹(𝜃) can be treated 

efficiently by considering one value of 𝜃 at a time. Because of our interest in using DFTs for 

effective interpolation in the 𝜃-space, the values of 𝜃 were sampled on a uniform grid in the 𝜃-

space. In other words, the 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹(𝜃)  is established through a suitable calibration with FE 

results on the 𝜃-space of interest of [0, 60), since it can then be expanded to [0, 120) using a mirror 

symmetry at 𝜃 = 60 degrees [76-78].  The 𝜃-space [0, 120) exhibits the periodicity needed for 

efficient DFT representations. In this work, the [0, 60) is sampled every 10 degrees. Although it 

is desirable to employ a higher sampling, it should be noted that the computational cost of the 

calibration increases with higher sampling. Furthermore, in the MKS framework, it is always 

possible to add new data points in subsequent refinements of the localization kernels. For example, 

one can decide in the future to sample every 5 degrees and enhance the kernel coefficients (this 

will improve the interpolation in the 𝜃-space). This is because the kernel coefficients at the 
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different 𝜃 values are stored separately from each other in the representation 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃]; 

the only requirement in the MKS framework is that the sampling is performed on a uniform grid 

to allow the use of FFT algorithms and DFT representations.      

As already mentioned, the values of the 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹(𝜃) are calibrated to the results 

obtained from CPFEM simulations performed on synthetically generated microstructures (i.e., a 

calibration ensemble). The protocols for the calibration have been established in prior work [43-

45, 80]; these are extended in this work for the application to the formulation of localization models 

for the plastic stretching tensor in polycrystalline microstructures. Broadly speaking, these 

protocols involve two main steps: (i) generation of a training dataset using CPFEM, and (ii) 

calibration of 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃].  

The generation of the training dataset requires generation of a diverse and large set of 

polycrystalline microstructures exhibiting a rich variety of microstructural features that might be 

encountered in the subsequent application of the MKS models to new microstructures. Ideally, one 

would cover a very large range of potential grain shape, size, orientation, and misorientation 

distributions in generating these synthetic microstructures. Clearly, the space of polycrystalline 

microstructures that could be explored is unimaginably large. Building on prior experience [45], 

this work focused on three classes of polycrystalline microstructures when generating the training 

dataset.  
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Figure 10: Calibration Ensemble Used to Train the Localization Kernel Coefficients in the 

Principal Frame of the Macroscopically Imposed Plastic Velocity Gradient. 

Figure 10(a) shows 20,000 Bunge-Euler angles uniformly sampled from the fundamental 

zone of cubic lattice orientations. These Bunge-Euler angles were used to build the training dataset 

of the localization kernels. Figure 10(b)-(d) shows examples of the three different microstructure 

classes employed for generating the training dataset used in this dissertation. The example shown 

in Figure 10(b) is referred as a delta microstructure [43, 44, 49] and is generated by placing a cubic 

“grain” of a selected lattice orientation at the center of the RVE surrounded by cubic elements of 

a different selected lattice orientation. As mentioned earlier and demonstrated in prior work, delta 

microstructures are extremely efficient for the calibration of the first order MKS localization 

kernels because they capture accurately the impulse response [43, 44]. As a result, in principle, if 

one can systematically explore, in sets of two at a time, all possible combinations of the lattice 

orientations sampled from the fundamental zone of cubic lattice orientations (shown in Figure 10 
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(a)), this class of microstructures alone is adequate to calibrate the first-order MKS localization 

kernels to a high level of accuracy. However, this is not practical as the fundamental zone of the 

orientation space is quite large. Figure 10(c) depicts an example equi-axed microstructure 

generated using the Dream.3D software package [88]. Each equi-axed microstructure used in the 

training set was generated to contain approximately 25 grains, and the lattice orientations assigned 

to the grains were sampled randomly from the fundamental zone of the cubic orientation space 

(from the individual points shown inside the fundamental zone in Figure 10(a)). Figure 10(d) 

shows an example microstructure with cube “grains”, whose lattice orientations were also assigned 

through random sampling of the fundamental zone of the cubic orientation space shown in Figure 

10(a). Microstructures of the type depicted in Figure 10(d) exhibit rich heterogeneity in the 

variation of the plastic stretching tensor at the microscale and are effective in training the MKS 

localization models. It is important to note that the training dataset is being constructed to inform 

the MKS localization models (i.e., capture the complex interactions that occur at the microscale in 

the polycrystalline microstructures). Therefore, it is better to pick microstructures that exhibit 

complex microscale interactions for the training of the MKS localization kernels. A total of 9000 

polycrystalline microstructures (3000 from each of the three classes described above) were 

generated for the training dataset.  

Each training microstructure was then analyzed for each selected value of 𝜃 by imposing 

suitably defined periodic boundary conditions[80]. Since we explored six different values of 𝜃, 

this meant executing 54000 CPFEM simulations. These simulations were performed using the 

commercial FE package ABAQUS [83], which allows the specification of the material constitutive 

laws through a user subroutine called UMAT. The UMAT used in this work employed the elastic-

viscoelastic crystal plasticity theory (with a rate-sensitivity of 0.01) along with a computationally 
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efficient implicit time-integration scheme that was extensively validated in prior work for fcc metals 

[14, 89]. Size dependent effects [90, 91], which become of increasing importance when procuring 

the plastic response of a polycrystalline  RVE  with small number of grains [92], are not considered 

in this work. As a result, the crystal plasticity theory used to obtain the local values of the plastic 

response does not incorporate size-dependence effects since they complicate the behavior, and the 

calibration effort, because one needs more advanced crystal plasticity theories to obtain the plastic 

response (cf. [93] for a comparison of several size dependent crystal plasticity theories). Moreover, 

the incorporation of these effect needs also to define a microstructure function that incorporates the 

descriptors that drive/control these effects, such as back stress [93]. As it can be seen, the 

incorporation of these effects needs further development. Consequently, it will be addressed in 

future work and is not considered in the scope of this work. 

  Each FE model of the training microstructure employed a uniform mesh of 21x21x21 

cubic continuum elements with eight nodes (C3D8) [83] (prior MKS implementations have 

demonstrated that this size of mesh is sufficient to calibrate the first-order localization kernels [44, 

80]). High values of elastic moduli were assigned in all the FE simulations to limit the elastic 

strains to small numbers (~0.001), and slip hardening rates were set to zero. The volume and time 

averaged local plastic velocity gradient over the 0.01-0.02 range of the total imposed plastic strain 

was extracted from the FE simulation for each voxel (corresponding to an element in the FE model) 

and documented as 𝑳𝑝[𝒔]𝑃𝐹.  

 Looking at Eq. (5.5), it should be clear that each voxel of the FE training simulation 

provides one training data point, as 𝑳𝑝[𝒔]𝑃𝐹 serves as the target (output) and the details of the 

microstructural neighborhood (captured in  𝑀𝐿[𝒔 + 𝒕]𝑃𝐹) serve as the inputs (features) for the 

calibration of the desired MKS localization kernels. Therefore, each FE simulation performed as 
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described earlier generates a set of 9261 (=213) training data points.  The generation of the training 

set described above involved 54000 CPFEM simulations and as such incurred a substantial 

computational cost since each CPFEM simulation took approximately 90 minutes on a single 2.4 

GHz AMD processor node in the Georgia Tech super computer cluster. However, the central 

benefit of the MKS framework is that subsequent evaluations of new microstructures (after the 

calibration process is completed) incur only modest computational cost. 

In order to calibrate the 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃] depicted in Eq. (5.5), we employ the DFT-based strategy 

demonstrated in prior MKS applications [44, 45, 48, 49, 80]. More specifically, it can be seen that 

the DFT representation of Eq. (5.5) allows calibration of significantly smaller subsets of the kernel 

coefficients (one value of 𝜃 at a time) dramatically reducing the computational cost of the calibration. 

Therefore, performing the liner regression for each sampled value of 𝜃 results in the establishment 

of the desired 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃] array. This work calibrated the values of the localization kernels 

for five different truncation levels of GSH Fourier basis (i.e., five different values of the maximum 

value of 𝐿). 

5.3 Validation of the calibrated MKS Localization Kernels for Polycrystal Plasticity 

In this section it will be systematically demonstrated that one can leverage the DFT 

representation of the calibrated 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑆𝐹(𝜃) kernels coefficients to localize any arbitrary 

macroscopically imposed plastic stretching tensor and that the computational savings obtained are 

independent of the RVE size. 

The first validation case study consists in demonstrating that the calibrated localization 

kernels are capable of accurately localizing any arbitrary macroscopically imposed plastic velocity 

gradient. As in prior MKS implementations, a brand new ensemble of microstructures (i.e., a 
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validation ensemble) was defined. This new validation ensemble contains four new different 

microstructure types and sampled 3500 new (i.e., not contained in the original orientation 

calibration ensemble) Bunge-Euler angles from the 𝐹𝑍𝐶 . As a result, the morphology (i.e., shape, 

size and spatial arrangement of the grains) as well as the crystal lattice orientations of the 

microstructures in validation ensemble are completely different from the microstructures 

comprised in the calibration ensemble. Figure 11 shows the validation ensemble used to 

demonstrate the evaluate the performance of the calibrated localization kernels. 

 

Figure 11: Ensemble Used to Validate the Calibrated Localization Kernels. 

Figure 11a shows the 3500 new crystal lattice orientations (Bunge-Euler angles) sampled 

from the 𝐹𝑍𝐶 . Figure 11b-e show the new different microstructure types comprised in the 

validation ensemble. Figure 11 b-d depict rolled microstructures with grains elongated along the 

X, Z and Y directions, respectively, with approximately 120 grains, 50 instantiations of these types 
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of microstructures are comprised in the validation ensemble. Figure 11e shows a new type of 

equiaxed microstructure that comprises approximately 120 grains (note that the equiaxed 

microstructure in the calibration ensemble had 25 grains) 50 instantiations of this new equiaxed 

microstructure type are comprised in the validation ensemble. As a result, the validation ensemble 

encompasses a total of 200 new microstructures.  

Following the validation strategy defined in the last chapter a macroscopically imposed 

plastic stretching tensor not contained in the sampled 𝜃-domain was defined and imposed to all 

the microstructures in the validation ensemble. The new macroscopic plastic velocity gradient 

tensor imposed to all the microstructures in the validation ensemble is the following: 

          〈𝐿𝑝[𝑖, 𝑗]〉 = [
. 0111 0 0

0 . 0047 0
0 0 −.0159

] 
 

(5.7) 

The macroscopic plastic velocity gradient denoted by Eq. (5.7) corresponds to imposing the 

following macroscopic stretching and spin rate: 

                         
〈𝐷𝑝[𝑖, 𝑗]〉

|〈𝐷𝑝[𝑖, 𝑗]〉|
= [

. 5568 0 0
0 . 2387 0
0 0 −.7956

] 

 

                            where |〈𝐷𝑝[𝑖, 𝑗]〉| = .02 

 

                         〈𝑊[𝑖, 𝑗]〉 = [
0 0 0
0 0 0
0 0 0

] 

 

(5.8) 

The macroscopic plastic stretching tensor defined by Eq. (5.8) corresponds to 𝜃 = 13°, a 

boundary condition not sampled when evaluating the 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃] array. Consequently, this 
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new macroscopic plastic velocity gradient tensor needs to be localized using the trigonometric 

interpolation scheme outlined in the previous section (and developed in [80]). The local values 

caused by imposing the macroscopic plastic velocity gradient defined in Eq. (5.7) were obtained 

for each microstructure in the validation ensemble using the five different localization kernels 

calibrated in the last section (corresponding to the five different levels of truncation for the GSH 

Fourier basis) and also by performing a CPFEM simulation. The error difference between the MKS 

predicted values and the CPFEM values is defined as follows[50]: 

         𝐸𝑟𝑟[𝑖, 𝑗]% = ∑
|𝐿𝑝[𝑖, 𝑗][𝒔]𝐶𝑃𝐹𝐸𝑀 − 𝐿𝑝[𝑖, 𝑗][𝒔]𝑀𝐾𝑆 |

𝑺 × |〈𝐿𝑝〉|

𝑺

𝒔=1

× 100 

 
(5.9) 

where 𝐿𝑝[𝑖, 𝑗][𝒔]𝐶𝑃𝐹𝐸𝑀  denotes the value of the [𝑖, 𝑗] component of the plastic velocity gradient 

obtained from the CFEM simulation for bin 𝒔, 𝐿𝑝[𝑖, 𝑗][𝒔]𝑀𝐾𝑆 corresponds to the value predicted 

using the MKS localization framework and 𝑺 denotes the total number of spatial bins comprised 

in the microstructure volume. In order to observe the influence of the truncation level on the 

accuracy of the prediction of the local values, the error between the MKS predicted values and the 

CPFEM results was obtained (using the error definition shown in Eq. (5.9)) for all the 

microstructures comprised in the validation ensemble for the five different localization kernels for 

each one of the components of the plastic velocity gradient tensor. Figure 12 shows the distribution 

of the calculated errors for all the components of the plastic velocity gradient as a function of the 

truncation level with the aid of an error bar plot.  



62 
 

 

Figure 12: Distribution of Error Between the MKS Results and the CPFEM Results for All the 

Microstructures Comprised in the Validation Ensemble for Each One of the Components of the 

Plastic Velocity Gradient as a Function of the Truncation Level. 

The error bar plots depicted in Figure 12a-f show the mean value of all the errors calculated for 

each different truncation level (i.e., maximum value of 𝑅), which corresponds to the number of 

GSH basis functions used, as well as the standard deviation from the obtained mean error (the error 

bars in Figure 12 corresponds to one standard deviation) for each component of the plastic velocity 

gradient tensor. The maximum value of deviation from the mean value of all the errors for all the 

components is 3.6%. From Figure 12 it can be seen that beyond 23 GSH basis functions, increasing 

the truncation level does not reduce the error between the MKS predicted values and the CPFEM 

predicted values. It is relevant to acknowledge that the error values presented in Figure 12 are not 

consistent with the error obtained in prior applications of the MKS approach (cf. [43-45, 48, 80] ), 

as a matter of fact the error values shown are higher than prior MKS implementations. Also,  notice 
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that the error of the off-diagonal components are significantly higher than the error of the diagonal 

components, a scenario also not consistent with prior MKS implementations where the error is 

constant throughout all the components being predicted[80]. Decomposing the plastic velocity 

gradient into its symmetric and antisymmetric components shows that the increment in error is 

caused by a subpar prediction of the anti-symmetric component of the plastic velocity gradient (cf. 

Figure 13 and Figure 14).  

Figure 13 compares the local values predicted using the localization kernel that has 23 GSH 

basis functions (i.e., a truncation level of 𝑙 = 6) of one of the microstructures of the validation 

ensemble to the local values obtained using a CPFEM simulation.  

 

Figure 13: Comparison of the Predictions Obtained for One of the Components of the 

Symmetric Part of the Plastic Velocity Gradient Using the Calibrated Localization Kernels and 

the Results Obtained by Performing a CPFEM Simulation on the Polycrystalline RVE Shown 

Subjected to the Macroscopically Imposed Plastic Velocity Gradient Described by Eq. (5.7). 
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Figure 13a shows the response fields obtained using the calibrated localization kernels in 

conjunction with the trigonometric interpolation scheme (i.e., the MKS method) as well as the 

response fields obtained by performing a CPFEM simulation for one of the symmetric components 

of the plastic velocity gradient tensor (𝐷𝑝[1,1]) for the polycrystalline RVE shown. Figure 13a 

also shows a comparison of the histograms of the frequency of the values predicted using both 

methods (MKS and CPFEM). Figure 13 shows reasonable agreement between the spatial response 

fields predicted using the MKS localization framework and the fields predicted using CPFEM. 

Finally, Figure 13also shows that the distribution of the values predicted by the MKS framework 

agree adequately with the distribution obtained by performing a CPFEM simulation. Similar 

results were also obtained for the fields of the off-diagonal components of the symmetric part of 

the plastic velocity gradient tensor (not shown in Figure 13). 

Figure 14 compares the local values of the symmetric and anti-symmetric components for 

one of the off-diagonal components of the plastic velocity gradient (𝐿𝑝[1,3]) predicted using the 

localization kernel that has 23 GSH basis functions (i.e., a truncation level of 𝑙 = 6) for the same 

microstructure as Figure 13  to the local values obtained using a CPFEM simulation.  
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Figure 14: Comparison of the Predictions for the Symmetric and Anti-Symmetric Parts of the 

Plastic Velocity Gradient Obtained Using the Calibrated Localization Kernels and the Results 

Obtained by Performing a CPFEM Simulation on the Polycrystalline RVE Shown Subjected to 

the Macroscopically Imposed Plastic Velocity Gradient Described by Eq. (5.7). 

Figure 14a shows the response fields obtained using the calibrated localization kernels in 

conjunction with the trigonometric interpolation scheme (i.e., the MKS method) as well as the 

response fields obtained by performing a CPFEM simulation for one of the off-diagonal 

components of the plastic velocity gradient tensor (𝐿𝑝[1,3]) for the same polycrystalline RVE 

shown in Figure 13. Figure 14a also shows a comparison of the histograms of the frequency of the 

values predicted using both methods (MKS and CPFEM) and the associated error for that 

component (calculated using Eq. (5.9)). The fields and histograms shown in Figure 14a denote that 

the MKS method is not capable to predict the extreme values present in this component. 

Consequently, the MKS predictions have a high error. Figure 14b shows the response fields and 

histograms of the frequency of the values for the symmetric part of the plastic velocity gradient 

(i.e. 𝐷𝑝[1,3]) obtained via the MKS method and the traditional CPFEM method. As it can be seen, 
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Figure 14b shows reasonable agreement between the spatial response fields predicted using the 

MKS localization framework and the fields predicted using CPFEM and it also shows that the 

distribution of the values predicted by the MKS framework agree adequately with the distribution 

obtained by performing a CPFEM simulation. As a result, the error obtained for the symmetric 

component of the tensor is lower. Finally, Figure 14c shows the response fields and histograms of 

the frequency of the values for the anti-symmetric part of the plastic velocity gradient (i.e. 

𝑊𝑝[1,3]) obtained via the MKS method and the traditional CPFEM method. The response fields 

shown in Figure 14c indicate that the MKS prediction for the anti-symmetric component of the 

tensor is not adequate and the histogram of values clearly demonstrates that the MKS method is 

not capable to predict the extreme values present in the anti-symmetric component of the plastic 

velocity gradient. Consequently, the error of the anti-symmetric component is quite high.  

The decrease in accuracy exhibited by the local values predicted using the MKS framework 

in this chapter is caused by the significant heterogeneity present in the local values being predicted, 

which is in turn derived from the orientation dependence of the plastic deformation mechanisms 

that that drive/control the plastic deformation of the polycrystal (recall that “weak” 

crystallographic orientations will deform more than “strong” crystallographic orientations). The 

increased heterogeneity causes for the predictions obtained using only the first-order localization 

kernels to be adequate for the symmetric component of the tensor and subpar for its anti-symmetric 

component. Indeed, this limitation of the first-order terms has been observed in prior MKS 

implementations where the contrast in the microstructure of interest is high and only the first order 

localization kernels are used for predicting the local values[50]. The accuracy of the MKS 

framework was increased in this previous implementation when higher order terms were 

incorporated. Consequently, increasing the level of truncation of GSH basis functions will not 
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enable the calibrated kernels to provide better predictions of the local value (as Figure 12 shows). 

As a matter of fact, in order to obtain a more accurate prediction of the local values it is needed to 

incorporate the higher order localization kernels shown in Eq. (5.1). However, this is not a trivial 

task since the computational cost augments significantly if a direct incorporation is attempted, but 

promising new implementations of deep learning techniques have enabled a computationally 

efficient  solution[94]. A protocol to increase the accuracy of the predicted responses by suitably 

training a deep learning model is developed and preliminarily validated in the next chapter.  

Nevertheless, despite the increase in error observed, the predicted local values (and their 

associated distributions) for the symmetric-component of the plastic velocity gradient tensor 

(i.e. 𝑫𝑝) using only the first-order localization kernels show adequate agreement with the values 

obtained using CPFEM (cf. Figure 14b). Therefore, demonstrating that the calibrated first-order 

localization kernels are capable of adequately predicting the plastic stretching tensor (i.e., the 

symmetric part of the plastic component of the velocity gradient) for polycrystalline 

microstructures on which they were not calibrated for any arbitrary plastic velocity gradient 

imposed at the macroscale. It is also important to recognize the significant computational savings 

obtained by predicting the local values using the MKS calibrated kernels. The CPFEM simulations 

took on average 90 minutes (5,400 seconds) on a single 2.4 GHz AMD processor node in the 

Georgia Tech super computer cluster to obtain the local values for each microstructure in the 

validation ensemble. On the other hand, the MKS predictions were obtained in only 4 seconds 

using the same resource. Thus, the MKS localization kernels are capable to predict reasonable 

predictions for the local values of the plastic stretching tensor two orders of magnitude faster than 

CPFEM.  
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The second and final validation case study in this section demonstrates that the calibrated 

first-order localization kernels are capable to procure adequate predictions of the local values of 

the symmetric component of the plastic velocity gradient for RVEs of different sizes. This 

validation also demonstrates that the computational savings obtained with the MKS framework 

are independent of the RVE size. For this case study, a new equiaxed microstructures containing 

approximately 1100 grains was created on a 43x43x43 spatial grid. Subsequently, the following 

macroscopic plastic velocity gradient tensor was imposed to the polycrystalline RVE of increased 

volume: 

          〈𝐿𝑝[𝑖, 𝑗]〉 = [
. 0159 0 0

0 −.0050 0
0 0 −.0109

] 
 

(5.10) 

The macroscopic plastic velocity gradient denoted by Eq. (5.10) corresponds to imposing the 

following macroscopic stretching and spin rate: 

                         
〈𝐷𝑝[𝑖, 𝑗]〉

|〈𝐷𝑝[𝑖, 𝑗]〉|
= [

. 7986 0 0
0 −.2523 0
0 0 −.5463

] 

 

                            where |〈𝐷𝑝[𝑖, 𝑗]〉| = .02 

 

                         〈𝑊[𝑖, 𝑗]〉 = [
0 0 0
0 0 0
0 0 0

] 

 

(5.11) 

The macroscopic plastic stretching tensor defined by Eq. (5.11) corresponds to 𝜃 = 48°, a 

boundary condition not sampled for when evaluating the 𝑨𝐿[𝑖, 𝑗]𝑃𝐹[𝒕]𝑃𝐹[𝜃] array. Nevertheless, 

as the previous case study showed the calibrated localization kernels can be used to localize the 
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macroscopic plastic velocity gradient defined in Eq. (5.10) by using the trigonometric interpolation 

scheme outlined in the previous section. However, it is important to recall that the calibrated 

kernels are defined on a 21x21x21 spatial grid. Therefore, their size needs to be extended in order 

to be employed for the larger polycrystalline RVE. Prior work has demonstrated that the required 

extension can be easily achieved using a resampling strategy called spectral interpolation, which 

corresponds to simply padding the calibrated kernels with zeros[44, 45, 48, 80, 84]. As a result, 

the local values of the plastic stretching tensor (i.e. the symmetric component of the local plastic 

velocity gradient) caused by imposing the macroscopic plastic velocity gradient defined in Eq. 

(5.10) to the 43x43x43 polycrystalline RVE were obtained using the MKS framework by 

leveraging the trigonometric interpolation scheme (to obtain the kernels for the new imposed 

condition) and spectral interpolation (to extend the size of the kernels to match the size of the 

RVE). The local values of this polycrystalline RVE were also obtained by performing a CPFEM 

simulation.  

Figure 15 compares the local values predicted using the localization kernel with the 𝑙 = 4 

as the level of truncation (which corresponds to 10 basis functions) for the 43x43x43 

polycrystalline RVE to the local values obtained using a CPFEM simulation.  
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Figure 15: Comparison of the Predictions for Two Components of the Symmetric Part of the 

Plastic Velocity Gradient Obtained Using the Calibrated Localization Kernels and the Results 

Obtained by Performing a CPFEM Simulation on the 43x43x43 Polycrystalline RVE shown 

Subjected to the Macroscopically Imposed Plastic Velocity Gradient Tensor Described by Eq. 

(5.10). 

Figure 15a-b shows the response fields obtained using the MKS method (i.e., using the 

calibrated localization kernels in conjunction with the trigonometric interpolation scheme and the 

spectral interpolation) as well as the response fields obtained by performing a CPFEM simulation 

for the 43x43x43 polycrystalline RVE of two components of the plastic stretching tensor (𝐷𝑝[1,1] 

and 𝐷𝑝[1,2]). Figure 15a-b also shows a comparison of the histograms of the frequency of the 

values predicted using both methods (MKS and CPFEM). Figure 15 shows reasonable agreement 

between the spatial response fields predicted using the MKS localization framework and the fields 

predicted using CPFEM. Finally, Figure 15 also shows that the distribution of the values predicted 
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by the MKS framework agree adequately with the distribution obtained by performing a CPFEM 

simulation. It is important to acknowledge that similar results were also obtained for all the other 

components of the plastic stretching tensor (not shown in Figure 15). Table 3 shows the error 

between the MKS predicted values and the CPFEM values (calculated using the definition of error 

between established in Eq. (5.9)) for each one of the six components of the plastic stretching tensor 

for the RVE shown in Figure 15.  

Table 3: Mean Error (%) between the CPFEM and the MKS predicted values for the 

microstructure shown in Figure 15 subjected to boundary conditions expressed in Eq. (5.10). 

Strain Rate Tensor 

Component 

Error for 

Equiaxed 

Microstructure 

(%) 

𝐷[1,1]
𝑝

 12.1 

𝐷[1,2]
𝑝

 7.4 

𝐷[1,3]
𝑝

 7.9 

𝐷[2,2]
𝑝

 8.7 

𝐷[2,3]
𝑝

 8.8 

𝐷[3,3]
𝑝

 11.4 

The performed validation case study demonstrates that the calibrated localization kernels 

can be extended as needed to obtain adequate predictions of the local values of the symmetric part 

of the plastic component of the velocity gradient for RVEs of extended size. Finally, it is important 

to recognize that the computational savings obtained by predicting the local values using the MKS 

framework are significantly more evident in this case because the CPFEM simulation took on 77 

hours (277,200 seconds) on a single 2.4 GHz AMD processor node in the Georgia Tech super 

computer cluster to obtain the local values for the 43x43x43 polycrystalline RVE. On the other 
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hand, the MKS predictions were obtained in only 21 seconds on the same resource. As a result, 

the MKS framework is up to 4 orders of magnitude faster than CPFEM. Thus, demonstrating that 

the computational savings obtained by using the MKS framework are independent of the RVE size 

and actually much more noticeable when the RVE size increases.  

 5.4 Summary and Conclusions 

The case studies performed in the last section demonstrate that the MKS localization 

framework is capable providing good predictions for all components of the second-rank local 

plastic stretching tensor for any given macroscale imposed plastic velocity gradient and for any 

desired volume of polycrystalline RVE with significant computational savings. Thus, successfully 

achieving the first implementation of the MKS framework to polycrystalline plasticity. 

Unfortunately, these case studies also demonstrated that suitable extension need to be defined in 

order to enable more accurate predictions of the complete local plastic response (i.e., the local 

values of the plastic stretching tensor and the local values of the spin tensor).  
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CHAPTER 6:  

Establishing Accurate Localization Linkages for the Plastic Deformation of Polycrystalline 

RVEs using Deep Learning Approaches 

The case studies performed in the last chapter demonstrated that the localization 

relationship defined in Eq. (5.5) is capable of providing adequate responses of the local plastic 

stretching tensors caused by an arbitrary macroscopically imposed plastic velocity gradient. 

Unfortunately, these case studies also demonstrated that the first-order localization kernels provide 

a subpar prediction of the local values of the spin tensor (cf. Figure 14). This means that the physics 

captured with the first-order kernels are not sufficient to procure accurate predictions of the local 

values of the plastic component of the velocity gradient. Consequently, the first-order kernels fail 

to capture the highly heterogeneous physics that control the plastic deformation in polycrystalline 

RVEs. Therefore, in order to increase the accuracy of the predicted local values it is needed to 

incorporate in a more detailed manner the contribution that local states at other spatial locations in 

the material microstructure have in the value of the local response of interest.  

A direct manner to accomplish this goal is by incorporating the higher-order kernels 

denoted in Eq. (5.3). However, calibrating the values of the higher-order localization kernels to 

the results from numerical simulations is not trivial because the number of terms is unimaginably 

large and also because the DFT transformation does not fully decouple all the higher-order 

localization kernels. Therefore, one cannot leverage the protocols used previously in this 

dissertation to calibrate the values of the higher-order kernels. Nevertheless, previous work defined 

a robust and systematic approach to calibrate the values of higher-order localization kernels for 

multi-phase composites by adequately incorporating details of the neighborhood into the 

microstructure function [50]. Therefore, in order to enable the calibration of the higher-order 
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localization kernels one needs to reformulate the microstructure function of polycrystalline RVEs 

to incorporate the details of the neighborhood. As an example, let 𝑓𝒔(𝑔0, 𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5, 𝑔6) 

denote a reformulated microstructure function that enumerates all the possible combinations of 

local states that can exist on a neighborhood comprised by the first nearest neighbors in a 3D 

polycrystalline RVE for seven different given Bunge-Euler angles at bin 𝒔. Figure 16 

schematically shows the different voxels that define the aforementioned neighborhood in a 3D 

polycrystalline RVE as well as the index used to identify each of the different orientations being 

considered.  

 

Figure 16: Schematic of the Reformulated Microstructure Function that Incorporates the Details 

of the First Nearest Neighbors in a 3D Polycrystalline RVE. 

Figure 16 shows that the reformulated microstructure function defined for the bin indicated 

with a yellow color contains information about the local state of seven different voxels. Let 𝐹𝒔+𝒕𝑖 
𝑅  

denote the GSH coefficients associated with the crystal lattice orientation of the 𝑖th voxel in the 

neighborhood depicted in Figure 16. Therefore, in order to obtain all the possible combinations of 

local states that can exist on the neighborhood depicted in Figure 16 one needs to successively 

multiply the GSH coefficients of the voxels comprised in that neighborhood as Eq. (6.1) shows:  
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𝐹̃𝒔 
𝑅 = 𝐹𝒔+𝒕𝟎 

𝑅 ∙ 𝐹𝒔+𝒕𝟏 
𝑅 ∙  …  ∙ 𝐹𝒔+𝒕𝟔 

𝑅   (6.1) 

where 𝐹̃𝒔 
𝑅 denotes the result of successive multiplication for the voxel 𝒔. Therefore, reformulating 

the microstructure function such that the local state characterizes not only the voxel of interest, but 

the neighborhood of its first nearest neighbors enables one to recast Eq. (5.3) into the following 

expression: 

𝑳𝑝
𝒔 = (∑ ∫ 𝐴̃𝒔+𝒕 

𝑅
(

〈𝑫𝑝〉

|〈𝑫𝑝〉|
) 𝐹̃𝒔+𝒕 

𝑅
(

〈𝑫𝑝〉

|〈𝑫𝑝〉|
)𝑑𝑔

𝐹𝑍

𝑺

𝒕
 ) 〈𝑫𝑝〉 + 〈𝑾〉  (6.2) 

where 𝐴̃𝒔 
𝑅 (

〈𝑫𝑝〉

|〈𝑫𝑝〉|
) denote the influence kernels that capture the effect of the first nearest neighbors 

corresponding to a macroscopically imposed plastic velocity gradient. As a result, directly 

incorporating information about the neighborhood of a voxel into the microstructure function 

enables one to systematically capture the contribution of the local states at other spatial locations 

in the material microstructure. Therefore, this new formulation will enable a better prediction of 

the local values. Finally, it is important to recognize that this new microstructure function can be 

subsequently extended to incorporate other neighborhoods of the voxel such as the second-nearest 

neighbors, etc. (cf. [50]). The localization relationship defined in Eq. (6.2) enables for one to 

leverage the traditional calibration protocols to obtain the values of the kernels [43, 49] because a 

DFT transformation successfully decouples the kernels from the microstructure function. 

However, calibrating the value of these reformulated coefficients for the polycrystalline structures 

of interest in this work will not only require significant power but also an absurd amount of time 

due to the massive amount of terms that need to be calibrated. For example, using the smallest 

level of truncation for the GSH basis functions for single-phase cubic triclinic polycrystalline 
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RVEs (which is 𝑙 = 4  and corresponds to 10 basis functions) requires for one to calibrate for 107 

features. 

As one can imagine there are significant challenges that need to be addressed in order for 

one to establish a robust model capable of predicting 107 features. Among these many challenges 

the most obvious one is the fact that one would need at least 107 numerical simulations results to 

calibrate the values of the kernels in order to lower the chances of overfitting. As a result, one can 

clearly see that the main impasse hindering the efficient implementation of the localization 

relationship defined in Eq. (6.2) is caused by the vast number of features that need to be generated, 

and subsequently calibrated, in order to incorporate details about the neighborhood. Recall that the 

increased number of features was needed to enable the localization kernels to capture the effect 

that local states present in the neighborhood of the voxel of interest have on the response.  

Therefore, there is a clear need for a strategy that enables one to identify a set of consistent features 

that are transferable from one material system to another and to subsequently train the identified 

features in a computationally efficient manner.  

 6.1 Deep Learning Approaches to Localization 

Deep learning approaches are a viable solution to this problem because their great learning 

capability enables them to automatically identify salient features that capture the details of the 

neighborhood directly from the raw input data and also enables them to train the identified features 

better than traditional machine learning methods[95-97].A deep learning model of particular 

interest to this dissertation is the Convolutional neural network (CNN). CNNs automatically 

identify (i.e., with no human intervention and completely driven by the data) local patterns of 

features, commonly referred as feature maps, from the provided raw data by superimposing 

different filters and then convolving them with the input data (hence the name). Subsequently, 
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CNNs link the identified features maps to the response of interest by feeding these features maps 

into fully-connected layers. Therefore, in few words, CNNs are a robust machine learning 

technique that enables one to identify a set of consistent (spatially localized) features (i.e., local 

patterns in the neighborhood) and subsequently use them to build accurate models. The way in 

which CNNs builds models makes them specifically suitable for pattern/image recognition 

applications [95, 98, 99].  Prior work from our research group has successfully implemented this 

machine learning technique to train accurate models for both localization and homogenization 

relationships for multi-phase composites with high contrast difference [94, 100, 101]. Therefore, 

leveraging the previous successes of deep learning implementation, this chapter provides the 

details for developing a CNN capable of predicting the local plastic response caused by a plastic 

velocity gradient imposed at the macroscale in 3D polycrystalline aggregates. Thus, representing 

the first successful implementation of deep learning models for localizing the plastic response in 

polycrystalline RVEs. The developed deep learning model is trained on the same types of 

polycrystalline microstructures used throughout this dissertation (i.e., FCC, single-phase and with 

cubic-triclinic symmetry).   

 It is important to acknowledge that the implementation of deep learning approaches needs 

to be systematic. As a result, this dissertation will focus solely on localizing a single plastic velocity 

gradient imposed at the macroscale. The subsequent extension to enable an efficient localization 

for any arbitrary plastic velocity gradient imposed at the macroscale will be addressed in future 

work and will not be considered in the scope of this dissertation. However, it is important to 

recognize that the protocols developed in Chapter 4 and 5 can be suitably leveraged to train a deep 

learning model in the principal frame of the imposed deformation. Moreover, the interpolation 

scheme that enables the appropriate resampling and transformation of the localization kernels can, 
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and must, also be leveraged to suitably transform the filters comprised in the convolutional layers 

that create the feature maps that link the local values of the plastic response to the tensor imposed 

at the macroscale in any arbitrary sample frame. 

  6.1.1 Development of Deep Learning Model 

This section leverages the typical CNN architecture (illustrated in Figure 17) to build and 

accurate deep learning model capable of accurately predicting the local plastic response caused by 

imposing a macroscopic plastic velocity gradient. 

 

Figure 17: CNN Architecture Leveraged to Build a Robust and Accurate Deep learning Model 

for Predicting the Local Plastic Response Caused by a Macroscopically Imposed Plastic Velocity 

Gradient. 

Figure 17 shows the general CNN architecture used in this section to develop an accurate 

localization model for the plastic response of polycrystalline materials. The input of the CNN is 

the local state that describes the internal structure of the polycrystalline RVE. Recall that the local 

state for single-phase polycrystalline materials is characterized by the spatially resolved ODF (cf. 

Chapter 2 section 2.2) suitably represented with GSH basis functions. Remember that the GSH 

representation of the local state is leveraged because it provides a compact representation of the 

functions defined in orientations space that inherently accounts for all symmetries present in the 



79 
 

polycrystalline RVE. Therefore, the input channels to the CNN are the GSH coefficients that 

represent the crystal lattice orientation at each point on the RVE.  

The architecture of the CNN shown in  Figure 17 denotes that different convolutional layers 

are used to identify feature maps that will be subsequently used to localize the plastic response in 

polycrystalline materials. Recall that this type of layers identify the feature maps from the input 

data by convolving different superimposed filters with the input data. The microstructures of 

interest in this dissertation are 3D polycrystalline RVEs. As such, 3D filters are leveraged in this 

work. A general convolutional layer leveraged in this work takes as an input a 3D polycrystalline 

volume discretized into voxels of uniform volume (the size used in this dissertation corresponds 

to a 21x21x21 volume) with 𝑁 channels (corresponding to the GSH coefficients that represent the 

crystal lattice orientation at each voxel). The 3D volumes associated with each channel are 

convolved with 3-D convolutional filters each of size 𝑚 × 𝑚 × 𝑚. The mathematical 

representation of the described convolutional layer is the following: 

𝑂(𝑥, 𝑦, 𝑧) = ∑ ∑ ∑ ∑ 𝐼 (𝑥 −
𝑚 − 1

2
+ 𝑖, 𝑦 −

𝑚 − 1

2
+ 𝑗, 𝑧 −

𝑚 − 1

2
+ 𝑘, 𝑞) × 𝒲(𝑖, 𝑗, 𝑘, 𝑞) + 𝑏

𝑚−1

𝑖=0

𝑚−1

𝑗=0

𝑚−1

𝑘=0

𝑁−1

𝑞=0

 
 

(6.3) 

where 𝑂 denotes the output of the convolution with the filter, 𝑞 denotes the channel, 𝐼 denotes the 

input and 𝑥, 𝑦 and 𝑧 denote the position of a voxel in the 3D volume. Finally, 𝒲 and 𝑏 are the 

weight and bias of the filters that once trained, generate the desired feature maps when convolved 

with the input RVE.  CNNs enable one to capture non-linear functional mappings between the 

input and the output by passing the output 𝑂 through a non-linear activation function in order to 

obtain the final value of 𝑂 at voxel (𝑥, 𝑦, 𝑧). This dissertation applies the typically used ReLU 

(rectified linear unit) [102], defined as follows 𝑓 = max (0, 𝑥), to all the voxels in the output 3D 

volume from the convolution. Superimposing various convolutional layers enables a CNN to 
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define more and more intricate features maps that incorporate more and more details of the 

neighborhood defined by the size of the filter being convolved. Notice that the successive 

convolution of filters causes for the output volume to be smaller than the input volume. Therefore, 

in this dissertation adequate “wrapping” (i.e., repeating the information contained in the defined 

RVE volume) was leveraged in order to ensure that the output of the developed models to be of 

the same size as the input RVE volume.  

Finally, the architecture depicted in Figure 17 shows that the last layers of the CNN are 

fully-connected (FC) layers. This type of layers train the model that links the response of interest 

to the feature maps (flatted to a one-dimensional vector) generated from the various stacked 

convolutional layers by leveraging multiple layers of fully connected neurons (hence the name). 

Neurons are the basic computing unit for artificial neural networks and compute an output from 

an input by performing the following operation:  

𝑜𝑘 = 𝑓(∑ 𝑥𝑘(𝑖) × w𝑘(𝑖) + 𝑏𝑘

𝑛−1

𝑖=0

) 
 

(6.4) 

where 𝑜𝑘denotes the output computed for the 𝑘th neuron in the FC layer, 𝑓( ) represents the non-

linear activation function (ReLU is used as well for this type of layer), 𝑥𝑘(𝑖) denotes the 𝑖th input 

and 𝑤𝑘(𝑖) and 𝑏𝑘 are the weight and bias (respectively) that compute the output of the neuron 

(their values are obtained during the training of the model). Finally, 𝑛 specifies the total number 

of inputs to the neuron. It is important to recognize that all the neurons in a fully connected layer 

are connected to all the neurons or outputs of the previous layers. Therefore, one can see that the 

addition of fully connected layers enables one to obtain linear and non-linear combinations of all 

the feature maps previously identified with the help of the convolutional layers.  
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Once the main components of the architecture of the CNN have been discussed and 

introduced it is necessary to define a calibration ensemble on which to train the CNN. In this work, 

local values of the plastic component of the velocity gradient obtained from CPFEM simulations 

performed over synthetically generated microstructures were used to train the weights and biases 

of the different convolutional and fully connected layers. The calibration ensemble needs to be 

diverse and vast in order to capture as much interactions as possible between the local states. 

Specially, when the expected number of parameters to be trained is significant. For that reason, it 

was decided to extend the calibration ensemble depicted in Figure 10. Figure 18 shows the new 

calibration ensemble of microstructures and orientations used to train the deep learning model.  

 

Figure 18: Calibration Ensemble Used to Train the Deep Learning Model. 

Figure 18 shows 20,000 different crystal lattice orientations sampled from the fundamental 

zone of cubic lattice orientations and Figure 18 b-h show the seven different microstructure types 

comprised in the calibration ensemble. Figure 18b shows an instantiation of a delta microstructure. 

Figure 18c shows an instantiation of an equiaxed microstructure, all instantiations of this type of 
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microstructure were generated using the Dream.3D software package[88] and each one of them 

has an approximate of 25 grains. Figure 18d shows a schematic of a random microstructure 

instantiation. These types of microstructures are generated by randomly placing an orientation into 

each one of the volume elements of the RVE. Figure 18e-g depict rolled microstructures with 

grains elongated along the X, Z and Y directions, respectively, each instantiation contains 

approximately 25 grains and Figure 18h shows another type of equiaxed microstructure (also 

generated using Dream.3D) but with more grains since each instantiation has between 300 and 800 

grains. The calibration ensemble shown in Figure 18 considers 3000 different instantiations of 

each microstructure type. Thus, comprising a total of 21,000 different microstructures capturing 

the interaction of 20,000 different Bunge-Euler angles. The plastic velocity gradient tensor 

imposed to all the microstructures in the calibration ensemble is the following: 

          〈𝐿𝑝[𝑖, 𝑗]〉 = [
. 008 0 0

0 . 008 0
0 0 −.016

] 
 

(6.5) 

Similarly, as performed in Chapter 5, the numerical results of the calibration ensemble 

were obtained by performing a CPFEM simulation for each microstructure on the calibration 

ensemble for the macroscopic plastic velocity gradient described by Eq. (6.5). Each microstructure 

instantiation in the calibration ensemble was discretized with a 21x21x21 finite element mesh 

using continuum elements (C3D8)[83]  and subsequently deformed to a total strain of 0.02 using 

periodic boundary conditions and the commercial FE package ABAQUS [83], which allows the 

specification of the material constitutive laws through a user subroutine called UMAT. The UMAT 

used in this work employed the elastic-viscoelastic crystal plasticity theory (with a rate-sensitivity 

of 0.01) along with a computationally efficient implicit time-integration scheme that was extensively 

validated in prior work for fcc metals [14, 89].  High values of elastic moduli were assigned in all 
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the CPFE simulations to limit the elastic strains to small numbers (~0.001), and slip hardening 

rates were set to zero. The volume and time averaged local plastic velocity gradient over the 0.01-

0.02 range of the total macroscopically imposed plastic velocity gradient was extracted from the 

CFEM simulation for each voxel (corresponding to an element in the FE model) and documented 

as 𝑳𝑝[𝒔]𝑃𝐹. Once the numerical results of the calibration ensemble were obtained different 

variations of the CNN architecture depicted in Figure 17 were explored in order to define the best 

deep learning model capable of accurately localizing the plastic response in polycrystalline 

materials. The parameter explored were the number of convolutional layers, the number of 

channels in each convolution, the size of the convolutional kernel/filter, the number of fully 

connected layers and the number of neurons in each fully connected layer. The architecture of the 

CNN that yielded the best model is shown in Table 4. It is important to mention that the 

convolutional layers used in this architecture have 64 5 × 5 × 5 3D filters.  

Table 4:Details of the best performing CNN architecture (bs. denotes the batch size). 

Layer Dimension 

Input Layer  bs. × 41 × 41 × 41 × 10 

Convolutional Layer 1 bs. × 37 × 37 × 37 × 64 

Convolutional Layer 2 bs. × 33 × 33 × 33 × 64 

Convolutional Layer 3 bs. × 29 × 29 × 29 × 64 

Convolutional Layer 4 bs. × 25 × 25 × 25 × 64 

Convolutional Layer 5 bs. × 21 × 21 × 21 × 64 

Fully Connected Layer 1 bs. × 1024 

Fully Connected Layer 2 bs. × 512 

Output Layer bs. × 9 
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It is important to notice that the size of the 3D volume in the input layer is bigger than the 

21x21x21 defined RVE size. This bigger volume was generated by adequately “wrapping” the 

input 3D RVE volume to ensure that the final feature map is the size of the input volume. Notice 

that this CNN architecture creates a 3D feature map with 64 features that characterize the whole 

neighborhood of the voxel of interest (i.e., each feature in the feature map incorporates details of 

all the voxels in the microstructure) at the end of convolutional layer 5. Subsequently, the identified 

feature map is “flattened” to a one dimensional vector and fed as an input to 2 fully connected 

layers that adequately train the localization model. Finally, the output layer generates nine values 

per voxel, each value representing the prediction of each component of the plastic velocity 

gradient. The CNN architecture depicted in Table 4 was implemented in PyTorch and was trained 

using the  Adam optimizer [103] with default parameters. The batch size used during the training 

was set to one. The training process of the CNN was stopped after 40 epochs (i.e., 40 complete 

passes of the entire calibration dataset). 

Finally, in order to provide a benchmark of performance, the first-order MKS localization 

kernels were calibrated to the same numerical results by performing linear regression (i.e., 

minimizing the sum of squared error) on Eq. (5.5) in the DFT space and by selecting a truncation 

level 𝑙 = 6, which corresponds to 23 GSH basis functions. Recall that beyond this level of 

truncation the predictions of the local values did not improve (cf. Figure 12).  

6.1.2 Validation of the developed Deep Learning Model and Performance 

Comparison with the MKS First-Order Localization Kernels Predictions. 

In this section it is demonstrated that the deep learning model trained with the CNN 

architecture shown in Table 4 is capable of procuring accurate predictions of the local plastic 

response for polycrystalline RVEs on which the model was not trained. In other words, the weights 
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and biases of the trained CNN are independent of the microstructure and can be leveraged to 

procure accurate prediction for new, unseen polycrystalline RVEs. This section also demonstrates 

the performance improvement of the predictions obtained with the CNN-trained deep learning 

model by comparing the deep-learning predictions to the first-order MKS localization predictions 

(i.e., the localization relationship express in Eq. 5.5).  

The local values of the plastic response will be obtained for a brand new ensemble of 

microstructures (i.e., a validation ensemble). This new validation ensemble contains four new 

different microstructure types and sampled 3500 new (i.e., not contained in the original orientation 

calibration ensemble) Bunge-Euler angles from the 𝐹𝑍𝐶 . As a result, the morphology (i.e., shape, 

size and spatial arrangement of the grains) as well as the crystal lattice orientations of the 

microstructures in validation ensemble are completely different from the microstructures 

comprised in the calibration ensemble. Figure 19 shows the new validation ensemble used in this 

section. 

 

Figure 19: Ensemble of Microstructures and Orientations Used to Validate the CNN-Trained 

Deep Learning Model. 
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Figure 19a shows the 3500 new crystal lattice orientations (Bunge-Euler angles) sampled 

from the 𝐹𝑍𝐶 . Figure 19b-e show the new different microstructure types comprised in the 

validation ensemble. Figure 19b-d depict rolled microstructures with grains elongated along the 

X, Z and Y directions, respectively, with approximately 120 grains, 50 instantiations of these types 

of microstructures are comprised in the validation ensemble. Notice that the rolled microstructures 

present in the calibration ensemble only had 25 grains. Figure 19e shows a new type of equiaxed 

microstructure that comprises approximately 120 grains, 50 instantiations of this new equiaxed 

microstructure type are comprised in the validation ensemble. Again, it is important to note that 

the equiaxed microstructure depicted in Figure 19 is different from the one present in the 

calibration ensemble because it has a different number of grains. As a result, the validation 

ensemble encompasses a total of 200 new microstructures. The local values caused by imposing 

the macroscopic plastic stretching tensor defined in Eq. (6.5) were obtained for each microstructure 

in the validation ensemble using the deep learning model trained in the previous section, these 

values were also obtained by using the first-order MKS localization kernels. Finally, the local 

values were also obtained by performing a CPFEM simulation, these values are considered to be 

the ground truth. The error difference that the CNN predicted values and the first-order MKS 

predicted values have with the ground truth values (i.e., the CPFEM values) is defined as 

follows[50]: 

         𝐸𝑟𝑟[𝑖, 𝑗]% = ∑
| 𝐿̂𝑝[𝑖, 𝑗][𝒔] − 𝐿𝑝[𝑖, 𝑗][𝒔]|

𝑺 × |〈𝐿𝑝〉|

𝑺

𝒔=1

× 100 

 
(6.6) 

where 𝑺 denotes the total number of spatial bins comprised in the microstructure volume, 

 𝐿̂𝑝[𝑖, 𝑗][𝒔] denotes the model predicted value of the [𝑖, 𝑗] component of the plastic velocity gradient 

for bin 𝒔 and 𝐿𝑝[𝑖, 𝑗][𝒔] corresponds to the ground truth value obtained from the CPFEM 
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simulations. In order to observe the difference between the deep learning model and the MKS 

model, the error difference was obtained for all the microstructures comprised in the validation 

ensemble. Table 5 shows the mean error obtained for all the microstructures in the validation set 

along with the standard deviation for each component of the plastic velocity gradient.  

Table 5: Mean Error (%) table for the deep learning model predictions and the first-order MKS 

localization model predictions for the entire validation set shown in Figure 19 when subjected to 

the boundary condition defined in Eq. (6.5). 

 

 

 

 

 

 

 

 

 

 

 

Table 5 demonstrates the palpable improvements of the predictions across the whole 

validation ensemble since it clearly shows that the mean error for the CNN-trained deep learning 

is consistently lower than the mean error obtained for the first-order MKS localization model for 

all the components of the plastic velocity gradient. Therefore, demonstrating that the deep learning 

Strain Rate Tensor 

Component 

Error for the CNN 

trained model 

(%) 

Error for the first-order 

MKS localization model 

(%) 

𝐿[1,1]
𝑝

 6.45 ± .66 8.91 ± 1.21 

𝐿[1,2]
𝑝

 8.07 ± .35 13.72 ± .61 

𝐿[1,3]
𝑝

 10.29 ± .51 19.75 ± .96 

𝐿[2,1]
𝑝

 8.09 ± .34 13.74 ± .61 

𝐿[2,2]
𝑝

 6.41 ± .69 8.89 ± 1.3 

𝐿[2,3]
𝑝

 10.31 ± .50 19.81 ± .98 

𝐿[3,1]
𝑝  10.55 ± .53 20.02 ± .96 

𝐿[3,2]
𝑝  10.53 ± .52 20.02 ± .91 

𝐿[3,3]
𝑝  7.79 ± .98 10.38 ± 1.55 
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predicted values are more accurate than the ones obtained using the first-order MKS localization 

model. Figure 20 compares the fields of the local plastic response predicted using the deep learning 

model, the first-order MKS localization model and the CPFEM simulation. 

 

Figure 20: Comparison of the Predictions for one of the Components of the Plastic Velocity 

Gradient Obtained using the Deep Learning Model, the First-Order MKS Localization Model 

and the CPFEM Simulation for One of the Polycrystalline RVEs in the Validation Ensemble 

Subjected to the Macroscopically Imposed Plastic Velocity Gradient Described in Eq. (6.5). 

Figure 20 reveals that the local plastic velocity gradient fields obtained using the deep 

learning model show better agreement with the ground-truth fields obtained by performing the 

CPFEM simulation. Figure 20 also shows that the deep-learning model is capable to predict better 

the extreme values present in the field. As a result, the distribution of values predicted using the 

deep learning model is closer to the distribution of values obtained using the CPFEM simulation. 

The local fields of the plastic velocity gradient for the same RVE shown in Figure 20 were 
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decomposed into its symmetric and anti-symmetric components to assess the performance of the 

deep learning model at capturing these two different components.  

Figure 21 shows the fields of the local values of the plastic component of the plastic 

velocity gradient for a center slice of the same polycrystalline RVE depicted in Figure 20  as well 

as its symmetric and anti-symmetric components predicted using the deep learning model, the first-

order MKS localization model and the CPFEM simulation. The fields shown correspond to one of 

the off-diagonal components of the plastic velocity gradient (𝐿𝑝[1,3]).  

 

Figure 21: Comparison of the Symmetric and Anti-symmetric Fields Obtained for One 

Component of the Plastic Velocity Gradient Using the Deep Learning Model, the First-Order 

MKS Localization Model and the CPFEM. 

Figure 21a clearly shows that the fields of the local values of the plastic component of the 

plastic velocity gradient obtained with the deep learning model show better agreement with the 

fields obtained with the CPFEM simulation. Not only that, the histogram that compares the 
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distribution of values obtained using the three different methods shows that the deep learning 

model was capable to predict the extreme values and therefore shows better agreement. A similar 

behavior is observed for the symmetric part of this component (𝐷𝑝[1,3]) where the fields and 

values predicted with the deep learning model show better with the CPFEM fields. Finally, the 

greatest improvement is observed in the anti-symmetric part (𝑊𝑝[1,3]) of this component. The 

distribution of values obtained with the deep learning model shows a clear improvement from 

those obtained with the first-order MKS localization model as well as the resultant fields. The 

improvement of the predictions using the deep learning model is substantial. Therefore, 

demonstrating that the deep learning model is capable to capture the highly heterogenous physics 

associated with the plastic deformation of polycrystalline materials better than the first-order MKS 

localization model. 

6.2 Summary and Conclusions 

The validation case study performed in this chapter demonstrated that accounting in a more 

detailed manner for the effect that local states at other spatial locations in the RVE have in the 

value of the local response of interest yields better predictions of the local values. This case study 

also demonstrated that the most robust technique to incorporate these effects is through deep 

learning approaches such as CNNs.  
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CHAPTER 7:  

Conclusions 

The work presented in this dissertation culminated in palpable and measurable 

advancements relevant to hierarchical multiscale modeling efforts. Specifically, this dissertation 

introduced three major advancements relevant to these efforts. 

The first advancement eliminated one of the major impediments that hindered the wide-

spread adoption of the MKS localization framework as a practical scale-bridging framework in 

fully-coupled multiscale modeling efforts by enabling it to accurately predict the local plastic 

response caused by any arbitrary periodic boundary condition imposed at the macroscale. The 

advancement consisted on defining a computational strategy that facilitated the efficient 

calculation of the localization kernels at any desired sample reference frame from a finite and 

compact spectral database of localization kernels calibrated in the principal frame of the 

macroscopically imposed periodic boundary condition.  

The second advancement consisted in successfully implementing the MKS framework for 

modeling the localization of the plastic response in polycrystalline microstructures. This 

advancement was achieved by effectively incorporating the previously enhancements that enabled 

the MKS localization framework undertake the localization problem for complex material 

structures and non-linear phenomena into a newly defined localization relationship. As a result, a 

spectral database of localization kernels suitably represented with GSH functions was calibrated 

in the principal frame of the macroscopically imposed periodic boundary condition.  

The third advancement consisted in the development of a robust methodology that enables 

the successful incorporation of deep learning techniques for modeling the localization of plasticity 

in polycrystalline microstructures. In this advancement the details to train a CNN capable of 
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accurately localizing the plastic response of polycrystalline RVEs are presented. This advancement 

leveraged the insights obtained from incorporating the MKS localization to polycrystalline 

plasticity to define a robust CNN architecture.  

As a result, this dissertation brings closer to reality the development of fully-coupled 

computationally inexpensive multiscale plasticity simulations by successfully establishing low-

computational cost, non-iterative, localization models for localizing the anisotropic plastic response 

of polycrystalline microstructures. In addition, this dissertation also opens new research avenues 

by providing a clear path forward for successfully implementing deep learning techniques to 

develop accurate and feature-engineering-free localization model for heterogenous and non-linear 

phenomena in complex material structures. 
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CHAPTER 8:  

Future Work 

This dissertation demonstrated the developed localization models were not only accurate 

but also computationally efficient. However, there are still certain aspects that need to be explored 

and suitably incorporated in order to bolster a widespread adoption of the models and protocols 

developed in this framework.  

The material strengthening mechanisms that drive/control the work hardening that metal 

alloys experience when subjected to plastic deformation (e.g., metal-forming processes) have 

significant impact on the resulting properties and structure of the deformed metal. As a result, in 

order for the developed models to be suitably accepted by the metal working industry they need 

not only need to incorporate work hardening but also account for the size-dependent mechanisms 

that control the hardening behavior of metals. Specially, when localizing the plastic response of 

an RVE containing small number of grains. All the localization models developed in this 

dissertation leverage Generalized Fourier Series (GFS) to adequately represent the 

important/necessary descriptors of the internal structure of the material. Subsequently, the 

developed localization models are obtained by either calibrating a set of microstructure 

independent kernels or a suitably defined CNN-based deep learning model to numerical results 

obtained from previously validated physics-based models. Therefore, the developed calibration 

protocols exhibit exceptional modularity since one can readily incorporate the physics that control 

the phenomenon of interest (e.g., size dependent crystal plasticity) by suitably incorporating new 

descriptors into the microstructure function and calibrating the kernels or the CNN to numerical 

simulations that account for the desired physics. As a result, one can readily incorporate the size-

dependent mechanisms that control the hardening behavior of polycrystalline materials by suitably 
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representing them with a Legendre polynomials (a GFS useful for representing non-periodic 

domains) and aggregating them to the descriptors considered in this dissertation (i.e., the 

orientation of the crystal lattice and the macroscopically imposed plastic stretching tensor). 

Subsequently, the kernels or the CNN-based model can be adequately trained to CPFEM 

simulations that account for the effects of the size-dependent strengthening mechanisms such as 

micropolar crystal plasticity simulations.  

It is important to notice that even though the incorporation of more complex plastic 

behavior is readily possible, the calibration effort increases significantly. Consequently, a data-

driven and automatic calibration protocol needs to be suitably defined, and ultimately leveraged, 

because a direct calibration effort will require significant time to perform a thorough sampling of 

the new space spanned by the expanded description of the microstructure. A viable way forward 

is to incorporate uncertainty quantification into the protocols developed in this dissertation such 

that the developed models provide not only a response, but its associated uncertainty. For example, 

leveraging Gaussian processes in order to obtain a distribution of responses and their associated 

uncertainty. This new envisioned protocol is capable of predicting robust models using a smartly 

defined and reduced set of training points. As a result, incorporating uncertainty analysis will 

enable an efficient exploration of the expanded training space and the definition of a robust model 

using an optimized amount of training points because the training of the model will occur on the 

points that yield the greatest uncertainty. Finally, it must be acknowledged that none of the 

suggested advancements would even be possible without the work performed in this dissertation 

since this work not only demonstrated that robust, reduced-order, computationally inexpensive 

localization models for the plastic response of polycrystalline materials are able to be developed 

but it also provided robust training protocols to establish them.   
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