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SUMMARY

This thesis presents a new approach for stochastic model predictive (optimal) control:

model predictive path integral control, which is based on massive parallel sampling of con-

trol trajectories. We first show the theoretical foundations of model predictive path integral

control, which are based on a combination of path integral control theory and an informa-

tion theoretic interpretation of stochastic optimal control. We then apply the method to

high speed autonomous driving on a 1/5 scale vehicle, and analyze the performance and

robustness of the method. Extensive experimental results are used to identify and solve key

problems relating to robustness of the approach, which leads to a robust stochastic model

predictive control algorithm capable of consistently pushing the limits of performance on

the 1/5 scale vehicle.
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CHAPTER 1

INTRODUCTION

Autonomous robotic systems operating in dynamic, uncontrolled environments have the

potential to revolutionize modern industry. The deployment of these systems could increase

the quality and efficiency of solutions to current problems by augmenting the strength of

workers, and they could create new services by performing tasks that are too dangerous

or otherwise not economically feasible for human workers. This could in turn lead to

drastic improvements in the quality of life for people living in highly automated societies.

However, in order to get to this point, there has to be sufficiently advanced technology

available so that creating and deploying robotic systems to solve real world tasks can be

easily done.

In order to operate effectively, autonomous robotic systems need to be able to perceive

their environment through their sensors, create high-level plans based on an interpretation

of the environment, and then effectively control their actuators in order to carry out their

plans. In this thesis we are concerned with the latter of these: once a high-level course of

action has been decided how can an autonomous system use its actuators to best carry it

out? This is an inherently difficult problem, and it has very high real world stakes. The

interaction between the robot and the physical world can be governed by complex physics,

and interactions with the physical world are almost always noisy and uncertain. Addition-

ally, many of the problems we would like robots to solve have task critical constraints, and

violation of these constraints can be catastrophic.

While the goal of ubiquitous autonomous robots increasing productivity and quality of

life is nearly as old as the computer itself, in the last couple of decades the computational

tools available to achieve this goal have exploded, and previously unthinkable algorithmic

approaches are now routine. The clearest example of this technological shift is the advent

1



of deep learning for robot perception, which would not be possible without the massive

parallel computing power of graphics processing units (GPUs). In this thesis, high per-

formance computing with GPUs is also the key tool which enable the development of our

algorithms. But instead of utilizing GPUs for sensor processing tasks critical in percep-

tion, we apply them to massive forward simulation of possible futures (trajectories) for the

robot. The advent of fast forward simulation on GPUs enables new algorithms, that were

once wildly intractable, to be applied in the context of autonomous control.

1.1 Motivating Problem

The mathematics and algorithms that we develop in this thesis can be applied to control-

ling general autonomous systems. However, the primary system that we consider is the

autonomous racing platform developed at Georgia Tech known as AutoRally [1], which is

pictured in Fig. 1.1. AutoRally vehicles are 1/5 scaled autonomous driving platforms. The

1/5 scale size of the platforms makes the systems large enough to carry powerful sensing

and computing hardware, and the dynamics better resemble that of a full-scale vehicle than

the smaller 1/10 scale vehicles commonly used in laboratories and educational settings. On

the other hand, the 1/5 scale is still small enough the vehicle can be handled by a small

team and survive crashes that are inevitable when conducting experimental research.

The canonical task that we consider for the AutoRally is to navigate a dirt track as fast

as possible while staying within the track boundaries. Utilizing the AutoRally system on

this task serves as a source of inspiration for our desired controller properties, provides

a method of experimentally proving our algorithms, and enables us to observe problems

relating to performance and robustness that would be difficult to discover on less capable

systems. Utilizing the AutoRally also enforces a degree of practicality and computational

feasibility on the algorithms we develop, since real-world trials are not cheap, and compute

resources are limited.

One of the main advantages of focusing on the AutoRally system is the direct appli-
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Figure 1.1: AutoRally vehicle. The vehicle is large enough to carry all of the sensors and
computing required for autonomous driving on-board. A: High accuracy GPS enclosure
for localization. B: Wheel speed sensors. C: High performance electric motor capable of
over 50 mph. D: Rugged computer and battery enclose with camera mounts. The on-board
computer carries an Nvidia GTX 1050 Ti GPU.

cability of algorithms developed on the AutoRally to full-size autonomous driving. Au-

tonomous driving is now one of the most important sub-fields in robotics and artificial

intelligence, and the introduction of safe autonomous driving systems is predicted to have

a widespread positive impact on society [2, 3]. While existing control methodologies have

proven to be effective for many standard vehicle tasks such as lane keeping, turning, and

parking, there is an important frontier of control at the limits of vehicle performance that

has not been fully addressed by prior work. This is important, since many collisions can be

avoided or mitigated by performing an appropriate aggressive maneuver, and high-speed

autonomous driving on the AutoRally serves as a direct proxy problem for these types of

tasks.

The main potential drawback of heavily relying on a single experimental system, like

the AutoRally, is the concern that the resulting algorithms will not be applicable to any

other system. However, in the case of this thesis, this potential drawback has some mitigat-

ing features. The first is that the mathematics behind the algorithms are completely general,
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in other words there are no vehicle specific assumptions relating to the AutoRally that limit

the algorithmic generality. The other key feature is that the task we attempt to solve with the

AutoRally: maneuvering around a certain area at high speeds while satisfying constraints,

is a standard type of task that we would like autonomous robots to be able to perform. So,

although we perform all of our real-world experiments on the AutoRally platform, there is

reason to believe that the algorithms developed in this thesis could have broader applica-

bility, and we do spend some time analyzing performance on related (simulated) tasks such

as quadrotor navigation and helicopter landing.

1.2 Controller Desiderata

There are a few key properties that we need an autonomous racing controller to have in

order to effectively handle the AutoRally vehicle. The properties that we want in a control

algorithm, which we outline here, guide the work in the rest of this thesis. In addition to

driving the AutoRally vehicle around a dirt track as fast as possible, we want our approach

to be generalizable enough that it could be plausibly applied to related systems (e.g. a

full-scale car driving on a highway).

The first requirement that we have for an autonomous racing system is the ability to

control the vehicle up to its limits of handling. This trait is necessary since, in order to

drive as fast as possible, the vehicle must push up against these limits. This is especially

important when cornering at high speeds: if the vehicle goes too fast it can spin out or roll

over but playing it safe and going to slow is not desirable in our racing context. In order

to satisfy this requirement, our system needs to be able to operate in a fast control loop,

understand the non-linear dynamics of the vehicle, and understand the consequences of its

current actions far (several seconds) into the future.

The next requirement that we want is for the system to be able to satisfy constraints. In

the AutoRally case, this means that the vehicle needs to stay on the track. This is difficult

because the fastest path around the track often requires driving very close to the boundaries.
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In order to drive as fast as possible, the system therefore needs to know exactly where the

boundary is and know not to cross it. In a more general setting, satisfying constraints could

mean avoiding other vehicles, pedestrians, or obstacles. For an autonomous driving system

in the real world, achieving these tasks is critical, and throughout this thesis we focus much

of our attention in this area.

A final consideration is that we would like all planning and control to take place in

real-time. This means that we are not allowed any expensive pre-planning steps before

executing a maneuver, as done in [4] for instance. The rationale for this restriction is

that such an approach would not be available on a full-size, realistic, deployment of an

autonomous vehicle. This is because the environment cannot be entirely known beforehand

in an on-road setting (e.g. the location of obstacles and other vehicles are unknown). Even

though using an approach involving an expensive pre-planning phase would be possible for

the AutoRally system on the tracks that we have available, we avoid this approach since it

has clear scalability issues.

1.3 Existing Solutions

There are a variety of existing approaches that we could try and utilize in order to accom-

plish our goal of autonomous racing. However, each one of them has a deficiency with

respect to the desired properties of a controller that we outlined in the previous section.

Here, we review the existing approaches that we could use for controlling autonomous

vehicles, and argue that no existing method is suitable for the designated task.

Hierarchical Methods

The dominant paradigm in the autonomous driving literature is to use a hierarchical ap-

proach to control which splits the control architecture into two layers: a motion planning

layer which decides on a kinematically feasible trajectory for the robot, and then a con-

trol layer which attempts to follow the path decided on by the motion planner [5]. This
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was the paradigm utilized in the early days of autonomous driving (during and before the

DARPA Challenges) [6, 7, 8, 9], and it is still the dominant method utilized in current au-

tonomous driving systems (e.g. Apollo [10], and Autoware [11]). The appeal behind this

architecture is that the motion planning layer can utilize simplified dynamic or kinematic

constraints, as opposed to considering a full non-linear vehicle model. Popular constraints

utilized in the planning layer are curvature constraints (e.g. [12], [13]), unicycle type mod-

els [14], or kinematic bicycle models [15]. In addition to making the problem computa-

tionally tractable, the separation of planning and control into separate layers enables the

application of familiar techniques from computer science (e.g. graph search or quadratic

programming) to be applied, which in turn enables various theoretical results about com-

plexity and completeness to be obtained. Then, once the motion planning layer produces a

reference trajectory, the control layer need only follow that reference trajectory and feed-

back controllers can then be designed, for which results about stability can be obtained.

The issue with this approach is that, in general, the path generated by the motion plan-

ning layer will not be dynamically feasible. This means that, regardless of whatever theo-

retical results about stability the controller possesses, there will be tracking error between

the desired and actual trajectory. In the case that a vehicle is safely within its handling

limits, this error may not be significant enough to be of concern, however in the case of

autonomous racing this error is usually prohibitive. For instance, in early experiments with

the AutoRally utilizing a waypoint planner and a tracking controller (we used a pure pursuit

controller which is similar to the controller used in [11]), we found that the system was not

able to operate close to the limits of handling.

There are modifications to this hierarchical control scheme that can be used for racing.

Instead of using a simple constraint model, these methods utilize the non-linear dynamics

of the vehicle to solve an optimization problem which generates an optimal racing line [4,

16]. The difference is that these are much more computationally intensive than the planners

which utilize simplified constraints, which means that they cannot be run online. Instead,
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the track must be known ahead of time (including all possible obstacles), then the solution

is generated for that specific track, and then the solution is executed using a feedback

controller. Although this is effective for racing, this approach is not directly translatable to

autonomous driving in the real world since it does not run in real-time. Moreover, these

methods require precise knowledge of the physical parameters of the vehicle and the road

surface, in the case of off-road driving, this knowledge cannot be obtained ahead of time.

To summarize, even though the hierarchical approach to planning and control is the

dominant paradigm for autonomous driving, it is not straightforward to apply it to the task

of autonomous racing. The methods which run in real-time do not perform well at the

limits of handling, and methods which can perform at the limits of handling do not run in

real-time. Note that we are not necessarily advocating for the dismissal of this hierarchical

approach entirely, and high-level motion plans can still be useful even in the case of au-

tonomous racing (long term planning and strategy for instance). However, for racing, the

low-level feedback controller needs to be more capable than pure tracking feedback con-

trol laws which have no understanding of the high-level task besides a reference trajectory.

This is because constraints can be violated when tracking errors accumulate, unless the

low-level controller has some understanding of the task constraints as well.

Constrained Non-Linear MPC

Another possible solution, besides the traditional hierarchical approach, is to utilize a model

predictive controller which can consider task related constraints during optimization. The

MPC controller could then be directed to follow the track center-line (or a quickly gen-

erated racing line) as fast as possible, without violating the track boundaries. This is the

approach we take, however we do so with a new type of model predictive controller based

on stochastic model predictive controller. There are two previously existing classes of so-

lutions which could be applied in this setting: MPC based on non-linear programming, and

MPC based on differential dynamic programming.
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In the non-linear programming approach, the dynamics and task related objectives are

encoded as constraints, and then a constrained optimization problem is solved which typ-

ically seeks to minimize some overarching objective subject to the specified constraints.

In theory, this is an excellent approach to autonomous racing. We can use any non-linear

dynamics that we like, which means that we will be able to operate close to the limits

of handling, and the method naturally handles state and control constraints. In practice,

however, the non-linear programming approach comes with some significant drawbacks.

The primary issue is that there are not methods for exactly solving non-linear programs,

and the computational cost of approximate methods is prohibitive. In [17] and [18] highly

optimized MPC methods based on non-linear programming methods are utilized to control

autonomous vehicles with full non-linear vehicle models. However, even for these highly

optimized implementations, the maximum planning horizon these methods can achieve is

small (10 - 20 timesteps), and the control frequency is large (around 20 Hz). This means

that these methods may not be able to react fast enough (or plan long enough) in order to

fully utilize the dynamics of the vehicle.

Another issue with these methods is that the high degree of problem specific customiza-

tion required to achieve real-time performance makes them difficult to work with. This is

especially the case for the AutoRally since the off-road vehicle dynamics are significantly

different from standard on-road models, and significant customization would be required. It

should be noted that this is still an active area of research, and progress is being made. How-

ever, at the current time, it is not possible to take an off-the-shelf nonlinear-programming

algorithm and use it as an MPC controller for high-speed autonomous racing.

Another possible existing solution that we consider is MPC based on differential dy-

namic programming (DDP). The original DDP method presented in [19] made quadratic

approximations of the costs and dynamics, which enables the value function for an optimal

control problem to be approximated. Once the value function is computed, it can be utilized

to compute the optimal control. A simpler, more efficient variant of DDP that is commonly
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used in the current robotics literature is iterative Linear Quadratic Gaussian control (iLQG)

[20, 21]. In iLQG a linear approximation of the dynamics is taken instead of a quadratic

approximation, although a quadratic approximation is still taken for the cost function.

DDP/iLQG methods have been applied to a vast number of robotic systems, in domains

ranging from dynamic walking [22], helicopter control [23], and autonomous ground robots

[24]. Model predictive control variants of DDP/iLQG have achieved notable success as

well, in particular [25] achieves real time model predictive control for humanoid robots

using iLQG. The primary issue with DDP/iLQG is its ability to handle hard constraints.

Although there are effective variants for handling control constraints [26], state constraints

cannot be directly handled. Instead, state constraints must be encoded using smooth cost

functions, which then need to be quadratized, and ensuring that the quadratic approximation

is valid (i.e. results in a positive definite Hessian) takes some care [21].

In practice, usually it is not too difficult to tune a smooth cost function which achieves a

given desired behavior (i.e. satisfies task constraints). However, in our case using a smooth

cost function to encode constraints is not ideal: our problem definition ensures that we

will come very close to constraint boundaries, therefore, we would like to be able to very

precisely encode them so that appropriate evasive action can be taken if necessary. More-

over, real world autonomous driving requires the consideration of dozens of constraints

simultaneously, and tuning soft costs may not be scalable to this case.

Reinforcement Learning

A last possible approach we could take is reinforcement learning. Reinforcement learn-

ing can roughly be divided into two groups: model-free reinforcement learning (directly

learning a policy), and model-based reinforcement learning (learning a dynamics model

and using the model to learn a policy).

Model-free approaches to RL such as policy gradient methods have been successfully

applied to many challenging robotics tasks [27, 28, 29, 30, 31, 32, 33, 34]. These ap-
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proaches typically require an expert demonstration to initialize the learning process, fol-

lowed by many interactions with the actual robotic system. Unfortunately, model-free ap-

proaches often require a large amount of data from these interactions, which limits their

applicability. For many robotic systems, it is feasible to allow the robot to fail repeat-

edly when interacting with the system. Unfortunately, this is not the case with high-speed

autonomous driving. Although the AutoRally platform is reasonably robust to crashing,

repeated crashes at high speeds will inevitably damage the system.

On the other hand, model-based RL approaches first learn a model of the system and

then use the learned model [35, 36] to generate a controller. Interacting with the system

can enable a highly accurate dynamics model to be learned, which can enable very precise

control. Our method can be thought of as a combination of model-based RL with stochastic

model predictive control.

1.4 Thesis Outline

In this thesis, we develop a new algorithmic approach to model predictive control that is

applicable to the autonomous racing problem. The method is a sampling-based approach

to stochastic (optimal) model predictive control. Unlike the nonlinear programming and

DDP/iLQG approaches to model predictive control, sampling based methods do not require

making linear or quadratic approximations to the dynamics and costs. Moreover, since

sampling-based methods are gradient free, there is considerable flexibility allowed when

creating cost functions. These factors make sampling-based methods good candidates to

handle non-linear dynamics and constraints.

The difficulty with sampling-based methods, and the reason that they have not been

explored in the context of MPC until now, is the computational cost. In order to be effective,

a sampling based MPC controller must be able to sample thousands of trajectories in real-

time. Until recently this was impossible. However, with the advent of massively parallel

graphics processing unit (GPU) computing architectures, it has now become feasible to run
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sampling based MPC in real-time.

Chapters 3 and 4 deal with the theoretical foundations for sampling based control.

Chapter 3 gives an overview of path integral control theory, which shows how the opti-

mal control can be interpreted as a cost-weighted average over sampled paths. Chapter

4 develops an information theoretic approach to control, which shows how cost-weighted

averaging relates to an optimal control distribution, and discusses the relationship between

the optimal control distribution and the optimal control. The theoretical tools from chapters

3 and 4 are applied to develop a novel model predictive control algorithm, Model Predictive

Path Integral Control (MPPI), in chapter 5. The performance of the algorithm is analyzed

on several simulation systems, as well as the real-world AutoRally vehicle in chapter 6.

Portions of the content in these chapters are drawn from [37, 38, 39, 40].

By the end of chapter 6, we have a highly capable algorithmic approach for autonomous

racing. However, there are some important robustness issues that the experiments in chapter

6 reveal. We found that MPPI needs a well-tuned cost function in order drive at high speeds

and be robust to external disturbances. Chapter 7 analyzes why these robustness issues

emerge, and analyzes a preliminary solution. The ideas from chapter 7 are then further

developed in chapter 8, which lead to a robust version of the MPPI algorithm that is highly

capable and has the desired properties that we previously outlined. The content of chapter

7 corresponds to the material in [41].

Chapter 9 discusses learning and adaptation of neural networks for the AutoRally ve-

hicle dynamics, which is a key component in the MPPI algorithm, and then chapter 10

discusses some future directions for this research. Parts of the content in these chapters

corresponds to [42, 43].
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CHAPTER 2

MATHEMATICAL BACKGROUND

Throughout this thesis we will rely on some mathematical objects that may not be widely

known among roboticists. We give a brief overview of three essential tools here: stochastic

differential equations, the stochastic HJB equation, and Radon-Nikodym derivatives. The

reader already familiar with these tools can safely skip this chapter.

2.1 Stochastic Differential Equations

In standard optimal control theory, we deal with ordinary differential equations of the form:

dx

dt
= f(xt,ut, t).

The analogous mathematical objects in stochastic optimal control are stochastic differential

equations (SDEs). Stochastic differential equations are defined by a deterministic part

(called drift) and a stochastic part (called diffusion), they are commonly written in the

form:

dx = f(xt,ut, t)dt+ B(xt,ut, t)dw, (2.1)

This equation is really just shorthand for the integral description of an SDE:

xt = xt0 +

∫ t

t0

f(xs,us, s)ds+

∫ t

t0

B(xs,us, s)dw. (2.2)

The mathematics required to construct these integrals is quite involved. We do not attempt

to give an overview here, and refer the interested reader to [44]. In this thesis, we will

not often attempt to directly manipulate or solve SDEs, however we often need to forward

simulate the them. Approximate forward simulation of SDEs can be achieved via Euler-
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Maruyama integration [45], which is a generalization of Euler integration to the stochastic

case. The discretization takes the form:

∆x = f(xt,ut, t)∆t+ B(xt,ut, t)∆W,

The term ∆W is a Gaussian random variable with variance ∆t. This means that ∆W =

ε
√

∆t, where ε is a standard normal random variable. So, the final discretization takes the

form:

∆x = f(xt,ut, t)∆t+ B(xt,ut, t)ε
√

∆t. (2.3)

2.2 Stochastic Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman (HJB) equation is foundational to modern optimal con-

trol theory. The stochastic Hamilton-Jacobi-Bellman equation is equally important in the

stochastic optimal control setting, so we review its derivation here. See [46] for a complete

introduction to both the deterministic and stochastic HJB equations. We start by consid-

ering a stochastic differential equation in the form of Eq. (2.1), a running cost defined by

L(x,u, t), and a terminal cost φ(x, t). The value function for a stochastic optimal control

problem is defined as:

V (x, t) = min
u

EQ

[
φ(xT , T ) +

∫ T

t

L(xs,us, s)ds

]
, (2.4)

where the expectation is taken with respect to paths generated by the stochastic dynamics

starting at the initial condition x. Now let (x∗,u∗) denote the optimal state and control

values respectively, we can then re-write the right-hand term as:

V (x, t) = EQ

[
φ(x∗T , T ) +

∫ T

t

L(x∗s,u
∗
s, s)ds

]
.
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Note that xt must equal x, since it cannot be changed by the dynamics. Therefore it must

be the optimal value (since it is the only possible value), and we have:

V (x∗t , t) = EQ

[
φ(x∗T , T ) +

∫ T

t

L(x∗s,u
∗
s, s)ds

]
.

Now, using the Bellman optimality principle, we have:

V (x∗t , t) = EQ
[
L(x∗t ,u

∗
t , t)∆t+ V (x∗t+∆t, t+ ∆t)

]
,

Next, we can re-arrange this equation significantly:

V (x∗t , t) = L(x∗t ,u
∗
t , t)∆t+ EQ

[
V (x∗t+∆t, t+ ∆t)

]
,

V (x∗t , t)− EQ
[
V (x∗t+∆t, t+ ∆t)

]
= L(x∗t ,u

∗
t , t)∆t,

EQ
[
V (x∗t+∆t, t+ ∆t)− V (x∗t , t)

]
= −L(x∗t ,u

∗
t , t)∆t,

and then, in the limit as ∆t→ 0, we have:

EQ[dV (x∗t , t)] = −L(x∗t ,u
∗
t , t)dt (2.5)

The term inside the expectation is the derivative of a function with respect to a stochastic

process. In order to compute this, we need a generalization of the chain rule known as Ito’s

Lemma. Ito’s lemma states that:

dV (x∗t , t) =

(
∂V

∂t
+
∂V

∂x
f(x∗t ,u

∗
t ) +

1

2
tr
(
BBTVxx

))
dt+

∂V

∂x
B(xt,ut)dw. (2.6)

Taking the expectation of this results in:

EQ[dV (x∗t , t)] =

(
∂V

∂t
+
∂V

∂x
f(x∗t ,u

∗
t ) +

1

2
tr
(
BBTVxx

))
dt,

14



since the only stochastic term has an expectation of zero with respect to Q. Now we can

insert this result back into Eq. (2.5), which results in:

(
∂V

∂t
+
∂V

∂x
f(x∗t ,u

∗
t ) +

1

2
tr
(
BBTVxx

))
dt = −L(x∗t ,u

∗
t , t)dt,

∂V

∂t
+
∂V

∂x
f(x∗t ,u

∗
t ) +

1

2
tr
(
BBTVxx

)
= −L(x∗t ,u

∗
t , t),

∂V

∂t
= −L(x∗t ,u

∗
t , t)−

∂V

∂x
f(x∗t ,u

∗
t )−

1

2
tr
(
BBTVxx

)
,

− ∂V

∂t
= L(x∗t ,u

∗
t , t) +

∂V

∂x
f(x∗t ,u

∗
t ) +

1

2
tr
(
BBTVxx

)
,

− ∂V

∂t
= min

u

(
L(x,u, t) +

∂V

∂x
f(x,u) +

1

2
tr
(
BBTVxx

))
(2.7)

The last equation (Eq. (2.7)) is the stochastic Hamilton-Jacobi-Bellman (stochastic HJB)

equation. Note that this is a backwards in time process with the boundary condition

V (xT , T ) = φ(xT , t).

2.3 Radon-Nikodym Theorem

When dealing with probabilities, it is often necessary or convenient to transform an expres-

sion originally written with respect to one probability distribution to an expression written

with respect to a different distribution. This is especially true when handling expectations.

Using the measure-theoretic interpretation of probability, what we need is a tool for relating

integrals taken with respect to one probability measure to integrals taken with a different

measure. This tool is provided by the Radon-Nikodym theorem, which we review here, see

[47] for full detail.

A measure space is defined by a set X , subsets of X denoted B which form a σ-algebra

of X , and a measure µ. The measure space is then denoted by the tuple (X ,B, µ). Now

consider another measure defined over the same space, (X ,B, ν), the Radon-Nikodym

theorem states:

Theorem 1. Let (X ,B, µ) be a measure space, and let ν be a measure defined on (X ,B).
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If, for each set A ∈ B, the following holds:

∫
A

dµ = 0 =⇒
∫
A

dν = 0. (2.8)

Then there is a non-negative measurable function f such that for each set E ∈ B we have:

∫
E

dν =

∫
E

fdµ. (2.9)

The function f is unique in the sense that if g is another measurable function which satisfies

Eq. (2.9), then f = g except for possibly on a set of measure zero with respect to µ.

The condition in Eq. (2.8) is called absolute continuity, and it is denoted as ν << µ. A

common convention, which we follow in this thesis, is to denote the function f as:

f =
dν

dµ
, (2.10)

and to then refer to dν
dµ

as the Radon-Nikodym derivative (it has nothing to do with differ-

ential calculus). Note that the fact that the Radon-Nikodym is unique is significant, since

it enables us to uniquely define measures using an existing measure and a non-negative

function. Radon-Nikodym derivatives have a few important properties, which we list here:

i) If ν << µ and f is a non-negative measurable function, then:

∫
fdν =

∫
f

dν

dµ
dµ

ii) If ν << µ << λ, then:
dν

dλ
=

dν

dµ

dµ

dλ

iii) If ν << µ and µ << ν, then:

dν

dµ
=

(
dµ

dν

)−1
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The example of a Radon-Nikodym derivative that is most familiar is the case of a prob-

ability density function. Consider a probability measure P, and the let p(x) denote its

corresponding density. For a set A we often say:

P(A) =

∫
A

p(x)dx,

Where the right-hand integral is taken with respect to the Lebesgue measure. Equivalently,

we could say: ∫
A

dP =

∫
A

p(x)dx.

Thus, p(x) is playing the role of the Radon-Nikodym derivative between the Lebesgue

measure and the probability measure defined by P (we would denote it as p(x) = dP
dx

).

Another, less familiar, Radon-Nikodym derivative that we heavily utilize is the Radon-

Nikodym derivative between the probability distributions induced by two stochastic differ-

ential equations. Consider the case where we have:

dx = f(x, t)dt+ B(x, t)dw, (2.11)

dx = (f(x, t) + G(x, t)u(t)) dt+ B(x, t)dw. (2.12)

Each one of these stochastic processes defines a probability measure (on infinite dimen-

sional space). Suppose that we denote P as the probability measure associated with Eq.

(2.11) and let Q be the measure associated with Eq. (2.12). The the existence and value of

dP
dQ is provided by Girsanov’s theorem [48], which provides the following result:

dP
dQ

= exp (D(τ,u(·))) . (2.13)

The term D(τ,u) is the sum of a stochastic integral and a standard integral. The stochastic

integral depends on which brownian motion is used to perform the integration. One option

is to perform the integration with respect to brownian motion from the probability measure
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in the numerator (P). We denote this brownian motion as dw(0), the D(τ,u) term in this

case is:

D(τ,u(·)) = −
∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1B(xt, t)dw(0)

+
1

2

∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt. (2.14)

Alternatively, we can perform the integration with respect to the brownian motion from

the probability measure in the denominator (Q), which we denote as dw(1). These two

brownian motions are related via the expression:

B(xt, t)dw(0) = G(xt, t)utdt+ B(xt, t)dw(1). (2.15)

Now if we insert Eq. (2.14) into Eq. (2.15), we get a similar expression in terms of

brownian motion for Q:

D(τ,u(·)) = −
∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1B(xt, t)dw(1)

− 1

2

∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt. (2.16)

Notice that the only difference is that the sign is flipped on the deterministic portion of the

integral. In these equations Σ = BBT, in many cases B has more rows than columns,

in which case Σ does not have full rank and is not invertible. This is called a degenerate

diffusion process, in this case it is possible to pick out a non-degenerate subsystem (see

Appendix A), and then use the non-degenerate sub-system to define the Radon-Nikodym

derivative.
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CHAPTER 3

PATH INTEGRAL CONTROL THEORY

In this chapter we review and slightly generalize the path integral approach to stochastic

optimal control. The path integral control framework was originally developed by Kappen

in [49, 50], and was first applied to robotics in [34]. In this setting, a path integral is an

expectation over all system trajectories (not to be confused with a line integral). The key

element of path integral control theory is the usage of the Feynman-Kac equation [51] to

transform the stochastic Hamilton-Jacobi-Bellman (stochastic HJB) equation into an ex-

pectation over system trajectories. This is the same transformation used in the path integral

formulation of quantum mechanics, hence the usage of the name “path integral” to describe

the resulting expectation. The transformation of the stochastic HJB equation into a path in-

tegral is critical to this thesis because it provides a bridge between the information theoretic

framework that we develop later, and which works with expectations and probability dis-

tributions, with traditional stochastic optimal control theory that deals in partial differential

equations.

Before diving into the derivation of path integral control, it is worth discussing what the

result is and is not. The result in path integral control is a formula for the optimal control at

the current time and state in terms of paths randomly sampled from the system dynamics.

Because there is no explicit parameterization of a feedback control law, and because the

solution is calculated using open loop sampling of trajectories, it is tempting to interpret

path integral control as a type of open loop trajectory optimization. This is especially the

case since the path integral formula for the optimal control at the current time and state can

be heuristically applied to future timesteps in order to generate an entire control sequence.

However, the interpretation of path integral control as open-loop trajectory optimization

is incorrect. Path integral control theory is developed within the stochastic HJB equation
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framework, which deals with optimal feedback control, as such, the result is an optimal

feedback controller. The issue is that the feedback controller is very difficult to implement,

since it requires sampling many trajectories in a fast control loop. We will discuss these

computational issues in more detail in later sections. In this chapter we are only concerned

with the mathematical theory.

We first review the stochastic HJB-PDE, and how it can be used to compute the optimal

control in the control-affine case. We then show how to convert the value function into a

path integral and finally derive the path integral form of the optimal controls.

3.1 Control-Affine Stochastic Optimal Control

In this section we review how the stochastic HJB equation can be used to generate an

optimal feedback control law for a control-affine system. Let xt = x(t) ∈ RN denote

the state of a dynamical system at time t, u(xt, t) ∈ Rm denotes a control input for the

system, τ : [t0, T ]→ Rn represents a trajectory of the system, and dw ∈ Rp is a brownian

disturbance. We suppose that the dynamics have the form:

dx = [f(xt, t) + G(xt, t)u(xt, t)] dt+ B(xt, t)dw. (3.1)

This is called a control-affine system since controls affect the system through a linear trans-

formation. Expectations over trajectories taken with respect to Eq. (3.1) are denoted as

EQ[·]. Now, suppose that the cost function for the optimal control problem has a quadratic

control cost and an arbitrary state-dependent cost. We denote φ(xT ) as a final the terminal

cost, and q(xt, t) as a running cost which together define the state-dependent cost. The

control cost matrix is R(xt, t), and is required to be a positive definite matrix. We allow

R(xt, t) to be time and state dependent as long as it remains positive definite for all values
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of x and t. The value function V (xt, t) for this optimal control problem is then:

V (xt, t) = min
u

EQ

[
φ(xT , T ) +

∫ T

t

(
q(xt, t) +

1

2
u(xt, t)

TR(xt, t)u(xt, t)

)
dt

]
. (3.2)

The Stochastic Hamilton-Jacobi-Bellman equation and boundary condition for this type of

system is then:

−∂tV = min
u

[
(f + Gu)T∇xV +

1

2
tr(BBT∇xxV ) + q +

1

2
uTRu

]
(3.3)

V (xT , T ) = φ(xT ).

Note that we have dropped the functional arguments for convenience. By noting that the

expression inside the parenthesis is convex with respect to the controls u, we can find the

minimum by taking the gradient of the expression inside the brackets in Eq. (3.3) with

respect to u and setting it to zero:

0 =∇u((f + Gu)T∇xV +
1

2
tr(BBT∇xxV ) + q +

1

2
uTRu),

0 =GT∇xV + Ru,

and so the minimum is found as:

u∗ = −R−1GT∇xV. (3.4)

Next, we take this equation for u∗ and plug it back into the stochastic HJB equation. After

some simplifications, we are left with:

− ∂tV = q + fT∇xV −
1

2
∇xV

TGR−1GT∇xV +
1

2
tr(BBT∇xxV ) (3.5)

V (xT , T ) = φ(xT ).
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Equation (3.4) along with Eq. (3.5) provide the necessary mathematical tools to find the

stochastic optimal control. In order to compute the optimal control, one needs to solve the

partial differential equation defined in Eq. (3.5) to find the value function, and then compute

the gradient of the value function and plug the result into Eq. (3.4). Unfortunately, Eq. (3.4)

is a, potentially high-dimensional, non-linear partial differential equation, and standard

solution techniques suffer from the curse of dimensionality in that they scale exponentially

with the size of the state space. This motivates the need to find alternative solution methods.

3.2 Transformation to a Path Integral

In this section we describe convert the stochastic HJB into a path integral using the Feynman-

Kac formula. The Feynman-Kac formula relates linear partial differential equations to ex-

pectations. Thus, we first need to transform the stochastic HJB-PDE into a linear PDE,

which requires and extra assumption on the relationship between noise and control costs of

the system.

Value Function to Desirability Function

The first step in converting Eq. (3.5) into a linear PDE is to make the following exponential

transformation of the value function:

V (x, t) = −λ log(Ψ(x, t)) (3.6)

The function Ψ is called the desirability function. In order to continue we need the deriva-

tives of V (x, t) in terms of Ψ(x, t). The derivatives with respect to x and time are clearly:

∂tV = − λ
Ψ
∂tΨ,

Vx = − λ
Ψ

Ψx.
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Computing a nice expression for the Hessian matrix (Vxx) in terms of Ψ is a little more

difficult. The ijth entry of Vxx in terms of Ψ is:

[∇xxV ]ij = −λ
(

Ψ ∂Ψ
∂xi∂xj

− ∂Ψ
∂xi

∂Ψ
∂xj

Ψ2

)
,

with this equation in hand we can compactly write the Hessian matrix as:

Vxx = − λ
Ψ

Ψxx +
λ

Ψ2
ΨxΨT

x .

The next step in the transformation is to re-write Eq. (3.5) in terms of Ψ in order to

get a partial differential equation with respect to the desirability function as opposed to the

value function. Inserting the appropriate terms for V , ∂tV , Vx, and Vxx yields the following

equation:

λ
∂tΨ

Ψ
= q−λfTΨx

Ψ
+
λ

2

ΨT
x

Ψ
GR−1GT−λΨx

Ψ
− 1

2
tr(BBT(

λ

Ψ
Ψxx))+

λ

2Ψ2
tr(BBTΨxΨT

x ),

now, using basic properties of the trace, we can re-write the last term as:

tr(BBTΨxΨT
x ) = tr(ΨT

xBBTΨx),

and ΨT
xBBT∇xΨx is a scalar so we can drop the trace operator:

tr(BBTΨxΨT
x ) = ΨT

xBBTΨx.

Substituting this expression for the trace, multiplying by Ψ
λ

, and simplifying yields:

∂tΨ =
Ψ

λ
q − fTΨx −

λ

2Ψ
ΨT

xGR−1GTΨx −
1

2
tr(BBTΨxx) +

1

2Ψ
ΨT

xBBTΨx. (3.7)

Notice that the two underlined terms are both quadratic forms with respect to Ψx, the only
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difference being that one is multiplied with respect to BBT and the other with respect to

λGR−1GT. If we select R such that BBT = λGR−1GT, then the two underlined terms

will cancel and what remains is a linear PDE. This leads to the following definition:

Definition 3.2.1. If, for all x ∈ Rn and all t ∈ [0, T ], the following equation:

B(x, t)B(x, t)T = λG(x, t)R(x, t)−1G(x, t)T (3.8)

holds, then we say that the Stochastic-HJB equation is Linearizable.

Initially, this may seem like an unjustified mathematical manipulation. However, it

actually results in a reasonable control cost matrix since this condition implies that the

noise in any given state is inversely proportional the control authority that can be exercised

over that state. In other words if a state suffers from high variance it is necessary that the

state can be directly actuated, and that the cost of actuation is low. Later on, we will see

that there is a more direct mathematical reason (in terms of KL-Divergence) for making

this assumption as well. If we assume that the stochastic HJB equation is linearizable, then

Eq. (3.7) becomes:

∂tΨ(xt, t) =
Ψ(xt, t)

λ
q(xt, t)− f(xt, t)

TΨx −
1

2
tr(B(xt, t)B(xt, t)

TΨxx) (3.9)

Which is a linear PDE in terms of Ψ. This equations is sometimes referred to as the

Chapman-Kolmogorov backward equation.

Application of the Feynman-Kac Lemma

With the stochastic HJB equation transformed into a linear PDE, we can now apply the

Feynman-Kac formula, which gives the solution to the PDE for the initial condition x0 and
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time t = 0 as:

Ψ(xt0 , 0) = EP

[
exp

(
−1

λ

∫ T

0

q(x, t) dt

)
Ψ(xT , T )

]
. (3.10)

In this equation the expectation is taken with respect to P, which is the probability of

trajectories taken with respect to the uncontrolled system dynamics:

dx = f(xt, t)dt+ B(xt, t)dw.

Next, recognize that the term Ψ(xT ) is the transformed terminal cost: e−
1
λ
φ(xT ), so we can

re-write Eq. (3.10) as:

Ψ(xt0 , t0) = EP

[
exp

(
−1

λ
S(τ)

)]
, (3.11)

S(τ) = φ(xT ) +

∫ T

t0

q(xt, t)dt.

where is S(τ) is the state-dependent cost-to-go of the trajectory.

There are several interesting properties of this equations. The most obvious property is

that all of the terms are forward in time processes, whereas the stochastic HJB equation is

purely backwards in time. Another property to take note of is that the expectation is with

respect to the uncontrolled dynamics of the system, and the control costs have completely

disappeared. At first inspection, this appears very strange, since the optimal controls are

being computed without ever explicitly referring to the controlled dynamics of the system

or the control costs. The reason this is possible, is that the controls are linked to the passive

dynamics through the assumption between the noise and controls. The optimization is

taking into account the control matrix G and the control costs, but only implicitly through

the diffusion matrix B and inverse temperature λ.
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3.3 Optimal Control for Decomposed Systems

Equation (3.11) provides a path integral form for the value function, but in order to compute

the optimal control, we need to compute the gradient of the value function with respect to

x. Recall that the optimal control took the form:

u∗ = −R−1GT∇xV,

if we express this equation in terms of the desirability function instead of the value function

we get the equation:

u∗ = λR−1GT Ψx

Ψ
.

Thus we need only compute Ψx in order to obtain an expression (in terms of a path inte-

gral) for the optimal controls. This can be done analytically in the case that the system is

decomposed into indirectly and directly actuated components. In this case the control and

diffusion matrices take the form:

G(xt, t) =

 0

Gc(xt, t)

 , B(xt, t) =

 0

Bc(xt, t)

 .

Where Gc and Bc are full rank for all (x, t). This is the case originally considered in [34],

the reason this decomposition is necessary is that it enables to probability of a trajectory

to be easily written out in terms of a Guassian probability and dirac-delta function. This

enables to gradient of Ψ to be taken analytically [34], resulting in the path integral form of

the optimal controls:

u∗dt = R−1GT
c

(
GcR

−1GT
c

)−1
Bc

EP̃
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP̃
[
exp

(
− 1
λ
S(τ)

)] . (3.12)
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This expression consists of three distinct steps: the rightmost term is the expectation of the

dw weighted according to the state-cost of a trajectory (S(τ)), this term can be thought

of as the optimal disturbance for the system. The optimal disturbance is then projected

into the directly actuated part of the state-space via multiplication with Bc, this results

in an optimal state-adjustment, which is then projected into control space and scaled via

multiplication with R−1GT
c

(
GcR

−1GT
c

)−1.

In the case that Bc and Gc are square and invertible, this relationship becomes cleaner.

In that case we have:

u∗dt = R−1GT
c

(
GcR

−1GT
c

)−1
Bc

EP̃
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP̃
[
exp

(
− 1
λ
S(τ)

)] ,

= R−1GT
c (GT

c )−1RG−1
c Bc

EP̃
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP̃
[
exp

(
− 1
λ
S(τ)

)] ,

= G−1
c Bc

EP̃
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP̃
[
exp

(
− 1
λ
S(τ)

)] . (3.13)

and the transformation of the optimal state adjustment to the optimal control from the

optimal state adjustment can be achieved simply via multiplication with G−1.

3.4 Optimal Control for General Systems

In the general case we need to be able to handle systems that are not neatly composed into

directly and indirectly actuated components. This situation commonly arises when making

a control-affine approximation to a fully non-linear system. To solve this problem we take

the following approach:

i) We perform a coordinate transformation on the state space which transforms the

G(xt, t) and B(xt, t) matrices into a special form for the initial condition.

ii) We then use the results from the previous section to compute the optimal control for

the transformed system.
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The first step is to perform a coordinate transformation in order to get full rank sub-

matrices from G and B. In order to make such a coordinate transformation, we have to

make the following condition to hold.

Condition 1. For each x ∈ Rn and t ∈ R, there exists an invertible matrix A, possibly

dependent on x and t, such that for G = G(xt, t) and B = B(xt, t) the following holds:

G = A−1

 0

G̃c

 , B = A−1

 0

B̃c

 ,

with G̃c, B̃c, and B̃cB̃
T
c are full rank matrices.

Note that this is not saying that there is a single A matrix which makes this decomposi-

tion hold for all (x, t). It is only saying that for each given (x, t) the control and diffusion

matrices for that specific x and t can be decomposed this way. The main question now is:

when it possible to make this transformation? It turns out that the linearizable condition on

the stochastic HJB equation is sufficient.

Lemma 1. If G is not the zero matrix, then condition 1 is implied by the system being

linearizable (Def. 3.2.1) .

Proof. We can place G in row-echelon form with an appropriate set of elementary matrix

multiplications. Therefore, there exists A such that:

AG =

 0

G̃c

 , 0 ∈ R(n−k)×m, G̃c ∈ Rk×m.

Where G̃c is a full rank matrix (note that this is true generally for all non-zero matrices).

We know that k > 0 since G is not the zero matrix. If n−k = 0, then the system is already

decomposed and we are done. Otherwise, consider the relationship between the noise and

control costs:

BBT = λGR−1GT,
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now applying the coordinate transformation we get:

ABBTAT = λAGR−1GTAT,

and, if we explicitly write out AB as: AB =

Ba

B̃c

 then we get:

BaB
T
a BaB̃

T
c

B̃cB
T
a B̃cB̃

T
c

 = λ

0 0

0 G̃cR
−1G̃T

c

 .

But, BaB
T
a = 0 if and only if Ba = 0. This shows that AB is in the correct form, so we

need only show that B̃c and B̃cB̃
T
c have full rank. We know that B̃cB̃

T
c ∈ Rk×k, and the

rank of GR−1GT must be k since G has rank k and R−1 is positive definite. Therefore

B̃cB̃
T
c has full rank, which implies that B̃c has full rank as well.

Now let A = A(x0, t0) be one such transformation for the initial condition x0 and time

t0. Then we can apply the coordinate transform to the state:

z = Ax,

and the corresponding transformation for the dynamics is then:

dz =
(
Af(A−1zt, t) + AG(A−1zt, t)u

)
dt+ AB(A−1zt, t), (3.14)

dz =
[
f̃(zt, t) + G̃(zt, t)u

]
dt+ B̃(zt, t)dw. (3.15)

It is easy to see that this system is equivalent to our original system. The cost function and
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control matrix are also transformed to:

Sz(τ) = φ(A−1zT ) +

∫ T

t0

q(A−1zt, t)dt, (3.16)

Rz = R(A−1z). (3.17)

It is important to note that, although the transformation matrix A is applied to every state,

only the initial state is transformed into the special form. The reason why we need the

initial condition, and not other states, in this form is because we only have to compute the

derivative of Ψ with respect to the current state. Now, let P̃ be the probability measure

corresponding to the transformed dynamics. The desirability function is then:

Ψ(z0, 0) = EP̃

[
exp

(
−1

λ
Sz(τ)

)]
,

and applying our result from the previous section results in the optimal control for the

transformed system taking the form:

u∗dt = R−1
z G̃T

c

(
G̃cR

−1
z G̃T

c

)−1

B̃c

EP̃
[
exp

(
− 1
λ
Sz(τ)

)
dw
]

EP̃
[
exp

(
− 1
λ
Sz(τ)

)] . (3.18)

Which, once again, is a projection of the optimal disturbance into state-space to get the

optimal state adjustment, followed by the projection of the optimal state adjustment into

control space to get the optimal control. The optimal disturbance is invariant to the par-

ticular state parameterization, since different parameterizations produce the same cost cost

and path probability for a given set of disturbances. This means that we can compute the

optimal disturbance using the standard parameterization instead of the transformed one, so

we have:

u∗dt = R−1
z G̃T

c

(
G̃cR

−1
z G̃T

c

)−1

B̃c

EP
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP
[
exp

(
− 1
λ
S(τ)

)] . (3.19)
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where the optimal disturbance is now computed using the optimal disturbance computed

with the un-transformed dynamics.

Special Case

Equation (3.18) is the form of the optimal control for any control-affine system that satisfies

condition 3.2.1. However, in many cases we are interested in under-actuated systems that

take the special form:

dxt = f(xt, t)dt+ G(xt, t) (udt+ Λdw) (3.20)

where Λ is a diagonal matrix. In these cases, disturbances enter the system directly through

the control input. Additionally, we assume that the system is under-actuated (more states

than controls) and that G(xt, t) ∈ Rn×m always has full rank (this means that the rank

of G(xt, t) is always m). This amounts to a (very light) controllability assumption on the

system, since it ensures that all of the actuators always have at least some effect on the

behavior of the system. The optimal control for this type of system will be:

u∗dt = R−1
z G̃T

c

(
G̃cR

−1
z G̃T

c

)−1 (
G̃cΛ

) EP
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP
[
exp

(
− 1
λ
S(τ)

)] .

Where we have assumed that the system has been appropriately decomposed into indirectly

and directly actuated components using a suitable transformation. Given the assumption on

G(xt, t), we know that G̃c is invertible since it will be a square full rank matrix. Therefore,

we have:

u∗dt = R−1
z G̃T

c (G̃T
c )−1RzG̃

−1
c

(
G̃cΛ

) EP
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP
[
exp

(
− 1
λ
S(τ)

)] ,

= Λ
EP
[
exp

(
− 1
λ
S(τ)

)
dw
]

EP
[
exp

(
− 1
λ
S(τ)

)] (3.21)
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So the optimal control is simply the optimal disturbance scaled by the diagonal matrix Λ.

The reason for this is that subspace containing the disturbance inputs and the subspace

containing the control inputs are the same, so we can skip the various projection steps that

are normally required.

3.5 Approximation for Non-Affine Systems

Path integral control requires the dynamics to be control affine (Eq. (3.1)), although many

systems can be accurately described with control-affine dynamics, there are many systems

for which this is not the case. In particular, if we use function approximation methods

such as neural networks to represent the dynamics, the dynamics will not be control-affine

(unless we give the network with a special structure, which can be detrimental to perfor-

mance). Here we show how to approximate the controls for a non-affine system using path

integral control theory. We start by assuming fully non-linear dynamics:

dx = F(x,u)dt, (3.22)

Now suppose that we have a control, ū(t) : [0, T ]→ Rm, we can then make a control-affine

approximation of Eq. (3.22) by linearizing around ū(t):

dx = F(xt, ūt + δut)dt,

≈
(

F(xt, ūt) +
∂F

∂u
(xt, ūt)δut

)
dt

Now suppose that δu is not deterministic (i.e. there is noise in the actuators), then instead

of δudt we have:

δudt+ Λdw,
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where Λ defines the magnitude of the noise. This leads to the stochastic differential equa-

tion:

dx =

F(xt, ūt)︸ ︷︷ ︸
f(xt,t)

+
∂F

∂u
(xt, ūt)︸ ︷︷ ︸

G(xt,t)

δut

 dt+
∂F

∂u
(xt, ūt)︸ ︷︷ ︸

B(xt,t)

Λdw, (3.23)

as the approximation to Eq. (3.22) with noisy actuators. In the following we will assume

that we are in the special case where the Jacobian ∂F
∂u

is full rank and has more rows than

columns. If the cost function is of the form:

L(x,u) = q(x) +
1

2
δuTRδu, (3.24)

then we can apply the results from the previous section and obtain the path integral form of

the optimal control. This control cost attempts to minimize the control deviation from ū(t),

which often-times is sensible. However, another important case is when the cost takes the

form:

L(x,u) = q(x) +
1

2
(ū + δu)TR(ū + δu),

= q(x) +
1

2
ūTRū + ūTRδu +

1

2
δuRδu,

This cost minimizes the total combined cost, ū + δu, and is equally important. However,

the addition of the cross-term between state and control: ūTRδu, necessitates some mod-

ifications to the path integral equations. We detail the necessary modifications and the end

result in the following subsection.

Path Integral Control with Cross-Term

The new cross-term will appear in the stochastic-HJB equation, and since the cross-term

has a δu in it, it modifies the expression relating the gradient of the value function to the
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optimal control. In particular, Eq. (3.4) becomes:

δu∗ = −R−1GT∇xV − ū (3.25)

Now, when we insert this back into the stochastic HJB equation, instead of Eq. (3.5), we

have:

−∂tV = q+
1

2
ūTRū+fT∇xV−ūTGT∇xV−∇xV

TGR−1GT∇xV +
1

2
tr(BBT∇xxV )

+ ūTR(−R−1GT∇xV − ū) +
1

2
(−R−1GT∇xV − ū)TR(−R−1GT∇xV − ū),

expanding this out further yields:

−∂tV = q+
1

2
ūTRū+fT∇xV−ūTGT∇xV−∇xV

TGR−1GT∇xV +
1

2
tr(BBT∇xxV )

− ūTGT∇xV − ūTRū +
1

2
ūTRū + ūTGT∇xV +

1

2
∇xV

TGR−1GT∇xV ,

notice how the same terms appear in multiple places (the underlined terms). Simplifying

this equation by canceling results in:

−∂tV = q + (f −Gū)∇xV −
1

2
∇xV

TGR−1GT∇xV +
1

2
tr(BBT∇xxV ) (3.26)

Notice that this is the same as the original stochastic HJB equation from Eq. (3.5), but with

a different first order term. In the linearization of the stochastic HJB equation, only the 2nd

order terms play a role, so we can perform the same exponential transformation (Eq. (3.6)

and get another Chapman-Kolmogorov backward equation:

∂tΨ = q
Ψ

λ
− (f(xt, t)−Gū)T Ψx −

1

2
tr
(
B(xt, t)B(xt, t)

TΨxx

)
.

When the Feynman-Kac lemma is applied, the zeroth order term defines the cost, the
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first order term defines the dynamics, and the 2nd order term defines the magnitude of the

noise. So, when we take the Feynman-Kac lemma with Eq. (3.27), we end up with:

Ψ(xt0 , 0) = EP

[
exp

(
−1

λ

∫ T

0

q(x, t) dt

)
Ψ(xT , T )

]
, (3.27)

P : dx = f(x)−G(x)ū + B(x)dw(0). (3.28)

The introduction of the cross-term results in the expectation in the path integral formula

changing, but other than that, everything remains the same. However, it turns out that

even this change can be “undone” by switching the expectation using the Radon-Nikodym

theorem. Define Q as the probability measure corresponding to:

Q : dx = f(x) + B(x)dw(1), (3.29)

then, by using the Radon-Nikodym theorem, we have:

Ψ(xt0 , 0) = EQ

[
dP
dQ

exp

(
−1

λ

∫ T

0

q(x, t) dt

)
Ψ(xT , T )

]
. (3.30)

Where dP
dQ is the Radon-Nikodym derivative between P and Q. In the following we express

dP
dQ using Brownian motion with respect to Q, so we have:

dP
dQ

= exp (D(τ,u(·))) ,

D(τ,u(·)) = −1

2

∫ T

0

ūT
t G̃TΣ̃−1G̃utdt−

∫ T

0

ūT
t G̃TΣ̃−1B̃dw(1)

Where B̃, G̃, and Σ̃ define a non-degenerate sub-system (i.e. they are all full rank). Next,

we can combine dP
dQ with the cost term, and define:

S̃(τ) =

∫ T

0

q(x, t) +
λ

2
uT
t G̃TΣ̃−1G̃ut dt+ λ

∫ T

0

uT
t G̃TΣ̃−1B̃dw(1) (3.31)
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But the linearizable condition for the full system in the stochastic HJB equation implies

that the same condition holds for any subsystem (since we’re just taking rows out of G and

B). This means that we have:

B̃B̃T = λG̃R−1G̃T, (3.32)

but, this is a non-degenerate subsystem and we have assumed that G is full rank with at

least as many rows as columns. This implies that G̃ is invertible, so we can re-arrange this

to get:

λG̃T

(
B̃B̃T︸ ︷︷ ︸

=Σ

)−1

G̃ = R (3.33)

This means that S̃(τ) becomes:

S̃(τ) =

∫ T

0

q(x, t) +
1

2
ūTR−1ūTdt+

∫ T

0

ūTRΛdw(1) (3.34)

And, then we can apply our result from earlier to obtain:

δu∗dt = Λ
EQ

[
exp

(
− 1
λ
S̃(τ)

)
dw(0)

]
EQ

[
exp

(
− 1
λ
S̃(τ)

)] − ū (3.35)

with the slight modification that −ū appears due to the modified stochastic HJB equation.

One last issue is that the optimal control here is computed with respect to dw(0), which is

brownian motion with respect to P. We want this formula with respect to brownian motion

for Q, which is related (in the special case here) via the equation:

dw(0) = Λ−1ū + dw(1) (3.36)
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Replacing dw(0) with the correct brownian motion yields:

δu∗dt = Λ
EQ

[
exp

(
− 1
λ
S̃(τ)

)
dw(1)

]
EQ

[
exp

(
− 1
λ
S̃(τ)

)] . (3.37)

Where the ū term has canceled. The conclusion of all of this is that nothing changes in

the case of a cross term, except that S̃(τ) is modified to include the additional cross term.

This is the expected result, however it takes a surprising amount of work to actually show

this due to having to “undo” the modifications the the uncontrolled dynamics caused by the

change in the stochastic HJB equation.

To summarize the results of this section, if we have a system that does not have control-

affine dynamics, we can make a control affine approximation (Eq. (3.23)) using some

pre-determined control sequence. Once the dynamics are in a control-affine form, we can

sample random trajectories around the pre-determined sequence, and compute the optimal

disturbance. If the control cost is defined purely in terms of δu, then the computation of

the optimal disturbance is the same as in the previous section. If the control cost is defined

in terms of the total control ū + δu, an additional cross term is added into the cost used to

compute the optimal disturbance. In both cases, after the optimal disturbance is computed,

the optimal control deviation is obtained using the same formula as in the previous section.
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CHAPTER 4

INFORMATION THEORETIC FRAMEWORK FOR OPTIMAL CONTROL

In the previous chapter, we saw how path integral control theory enables the transformation

of stochastic optimal control problems into problems involving estimation of expectations.

In this chapter, we show how a related framework can be developed independently of stan-

dard stochastic optimal control theory. The theory developed in this chapter utilizes tools

from information theory, namely free-energy and KL-Divergence, as opposed to tools nor-

mally associated with stochastic optimal control like partial differential equations.

The connection between path integral control theory with the information theoretic no-

tions of free-energy and KL-Divergence were first made in [52], and later expanded on in

[53]. Although these earlier works observed that the free-energy was equivalent to the form

of the value function in path integral control, they did realize the more direct connection be-

tween the optimal distribution and optimal control that we describe here. This connection

was first utilized in [37] to create a slightly generalized version of path integral control, and

then further expanded on in [39, 40]. Some related work, [54], also utilizes the notion of an

optimal distribution to derive an algorithm based on minimizing KL-Divergence. The dif-

ference between our work and [54] is that, in our work, the optimal distribution is derived

independently of path integral control, which makes for a more general result.

4.1 Free-Energy Relative Entropy Inequalities

Here we define two mathematical quantities which will be essential for the development

of the information theoretic control framework. These quantities are the free-energy of

a control system, and the relative entropy between two control systems. The free-energy

terminology comes from the thermodynamic quantity known as the Helmholtz free energy,

which takes the same form of the free-energy in our case, although the meaning of the
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variables differs to reflect the fact that we are describing a control system as opposed to a

mechanical system (for instance the cost-to-go replaces energy).

Let S(·) denote the cost to go of the trajectory, V is a random variable that can either

denote the trajectory itself or some set of variables which generates a trajectory starting at

the initial condition x0. Let P denote a probability measure over V . We will formalize the

description of V and P later on. Also, we define λ ∈ R+ as a positive scalar that is called

the inverse temperature of the system.

Definition 4.1.1. Given a cost-to-go function S(·), probability measure P, initial condi-

tion x0, and inverse temperature λ, the free-energy of a control system is defined as the

quantity:

F (S,P,x0, λ) = −λ log

(
EP

[
exp

(
−1

λ
S(V )

)])
.

Notice that the term inside the expectation is bounded from above by one, so the total

expectation is less than one which implies that the free-energy is always positive. Also,

notice the similarity between the form of the free-energy and the form of the value function

in the linearizable stochastic HJB case.

The next quantity that we need to define is the relative entropy, which is also known

as the KL-Divergence. The relative entropy provides a way to measure distances between

probability distributions, although it is technically not a distance metric due to it lacking

symmetry.

Definition 4.1.2. Let P and Q be two probability distributions, and suppose that the Radon-

Nikodym derivative dQ
dP exists. Then the relative entropy of Q with respect to P is defined

as

KL (Q ‖ P) = EQ

[
log

(
dQ
dP

)]
.

With the definitions of free-energy and relative entropy, we can derive a lower bound

on the cost-to-go of a stochastic optimal control problem. We start by considering the
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free-energy of a control system:

F = −λ log

(
EP

[
exp

(
−1

λ
S(V )

)])
. (4.1)

And now we introduce a second probability measure Q, by using the Radon-Nikodym

derivative, we can re-write the expectation to be with respect to Q:

F = −λ log

(
EQ

[
exp

(
−1

λ
S(V )

)
dP
dQ

])
. (4.2)

The interpretation of P is that it is some natural base measure for system trajectories, for

instance it could be the probability of a trajectory under the uncontrolled system dynamics.

The measure Q will correspond to a controlled distribution, which means that by actuating

the system the measure Q will change accordingly. It is also possible to view P and Q in a

Bayesian framework, where P corresponds to the prior and Q plays the role of the posterior.

Next, we apply Jensen’s inequality to Eq. (4.2). This yields the following:

−λ log

(
EQ

[
exp

(
−1

λ
S(V )

)
dP
dQ

])
≤ −λEQ

[
log

(
exp

(
−1

λ
S(V )

)
dP
dQ

)]
︸ ︷︷ ︸

=?

, (4.3)

and next we can simplify the term on the right-hand side of the inequality to get:

? = −λEQ

[
−1

λ
S(V ) + log

(
dP
dQ

)]
, (4.4)

= EQ[S(V )]− λEQ

[
log

(
dP
dQ

)]
, (4.5)

= EQ[S(V )] + λEQ

[
log

(
dQ
dP

)]
, (4.6)

= EQ[S(V )] + λKL (Q ‖ P) . (4.7)

We then have the following relationship between the free-energy of a system and the

relative entropy between a natural base measure (P) and a controlled measure (Q):
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Theorem 2. Let Q and P be two measures, and suppose that both dP
dQ and dQ

dP exist, then

the following inequality holds:

F (S,P,x0, λ) ≤ EQ[S(V )] + λKL (Q ‖ P)

Proof. Equations (4.1) - (4.7).

On the right-hand side of this inequality, we have the expected cost-to-go under the

probability measure Q. Under the interpretation that Q is defined by a control law, this can

be thought of as the expected cost-to-go for a certain controller. In addition to this cost-to-

go term, there is the KL-Divergence between Q and P. This term acts as a control cost, in

that it enforces the minimal intervention principle [55] by penalizing deviations from the

base distribution P.

4.2 Optimal Distribution

Now that we have a lower bound on the cost of a stochastic optimal control problem, a

natural question to ask is if there exists a controlled distribution Q∗ which is “optimal” in

the sense of achieving the lower bound. Such a distribution would be optimal in the sense

that samples drawn from that distribution would have lower cost, in expectation, than any

other distribution. It turns out, that such an optimal distribution does indeed exist, and it

comes in a relatively simple form:

Theorem 3. Let Q∗ be a distribution such that the Radon-Nikodym derivative with respect

to P is equal to:
dQ∗

dP
=

exp
(
− 1
λ
S(V )

)
EP
[
exp

(
− 1
λ
S(V )

)] ,
then Q∗ is the optimal distribution in the sense that it achieves the lower bound in Thm. 2.
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Proof. Using the form of the Radon-Nikodym derivative between Q∗ and P we have:

KL (Q∗ ‖ P) = −1

λ
EQ∗ [S(V )]− log

(
EP

[
exp

(
−1

λ
S(V )

)])
.

Substituting this equation into the RHS of the inequality in Thm. 2 results in:

F (S,P,x0, λ) ≤ EQ∗ [S(V )]− EQ∗ [S(V )]− λ log

(
EP

[
exp

(
−1

λ
S(V )

)])
,

and then, after cancelation, we have:

F (S,P,x0, λ) ≤ −λ log

(
EP

[
exp

(
−1

λ
S(V )

)])
= F (S,P,x0, λ) ,

which establishes the optimality of Q∗.

Note that the key to the construction of the optimal distribution in Thm. 4.2 is the

augmentation of the base measure with the cost of the state trajectory. As a consequence,

control inputs drawn from the optimal distribution achieve a lower cost, in expectation,

than any other control distribution. This observation gives us an equivalence between opti-

mizing a control trajectory and sampling from the optimal distribution. We can exploit this

equivalence to develop a novel scheme for optimal control: instead of trying to solve for the

optimal control by using the stochastic HJB framework, we can try to push the controlled

distribution Q as close as possible to the optimal distribution Q∗ (see Fig. 4.1). If Q is

aligned with Q∗, then sampling from Q by applying the resulting control input will result

in lower cost trajectories than any other control law.

In this, and the previous section, we have been referring to P and Q as abstract mea-

sures, and not described precisely what the measures represent or how they may change

depending on the control input. In order to develop an optimization approach, we need

to give both P and Q more concrete definitions. One of the benefits of the information

theoretic approach is that the definitions of P and Q are very flexible, and can change de-
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Figure 4.1: Visualization of the information theoretic control objective of “pushing” the
controlled distribution close to the optimal one.

pending on the optimization variables and the control system. In the following sections

we parameterize Q with an open loop sequence of control inputs U and that are disturbed

according to some variance Σ. This type of parameterization is denoted as QU,Σ.

4.3 Application to Continuous Time Systems

Here we show how the information-theoretic inequalities and the form of the optimal dis-

tribution can be used to develop an optimization scheme for continuous time, control-affine

systems. The result ends up being nearly identical to the path integral case, but with some

subtle differences. As in the standard path integral control case, we consider stochastic

dynamics of the form:

dx = [f(xt, t) + G(xt, t)ut] dt+ B(xt, t)dw, (4.8)
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we will then associate the base distribution P with the uncontrolled system dynamics. So

drawing a sample from P is equivalent to simulating a trajectory from the system:

P : dx = f(xt, t)dt+ B(xt, t)dw. (4.9)

The controlled distribution will be denoted by QU,Σ, where U : [t0, T ]→ Rm is a mapping

from time to control inputs, and Σ = B(xt, t)B(xt, t)
T is the covariance matrix. The

control applied to the system at time t is then denoted as U(t) = ut. Drawing a sample

from QU,Σ is equivalent to simulating a trajectory from the system with inputs given by

U(·):

QU,Σ : dx = [f(xt, t) + G(xt, t)ut] dt+ B(xt, t)dw. (4.10)

Next we need to define the cost-to-go. We define a trajectory as a function [0, T ]→ Rn, in

the previous and subsequent sections, we used V to denote a trajectory. However, in order

to keep consistency with previous literature, [37, 52], we will use τ to denote a trajectory

here. So τ : [0, T ] → Rn denotes a trajectory, and the value of this function at time t is a

system state. So we denote τ(t) = xt. The cost-to-go of a trajectory τ is then defined as:

S(τ) = φ(xT ) +

∫ T

0

q(xt, t)dt. (4.11)

We use the convention that t = 0 is always the current time. Notice that the control cost

is omitted here, this is because the control cost will naturally appear in the form of the

KL-Divergence between the controlled and uncontrolled distribution.

In order to compute the KL-Divergence between QU,Σ and P, we first need to com-

pute the Radon-Nikodym derivative between the two measures. This is the same Radon-

Nikodym derivative as in (2.9). Recall that this can be defined using either the brownian

motion with respect to P, or with respect to Q. For now we will use the D(τ,u) which

depends on Q (Eq. (2.12)). Applying the KL-Divergence formula on dQU,Σ
dP yields the
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following:

EQU,Σ

[
dQU,Σ

dP

]
= EQU,Σ [−D(τ, U)].

Where the negative sign is present since we’ve reversed the order of the Radon-Nikodym

derivative. Since the expectation of dw(1) with respect to QU,Σ is zero, this equation sim-

plifies to:

KL (QU,Σ ‖ P) = EQ(u)

[
1

2

∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt

]
,

and then combining everything results in the following Free-Energy inequality:

F (S,P,x0, λ) ≤ EQU,Σ

[
S(V ) +

λ

2

∫ T

0

uT
t G(xt, t)

TΣ(xt, t)
−1G(xt, t)utdt

]
. (4.12)

On the right-hand side we have the cost function used in path integral control, and on the

left-hand side we have the free-energy (which is the value function) for the system. This

means that the optimal distribution from Thm. 3 is optimal with respect to the standard cost

used in path integral control. This correspondence is remarkable, the form of the control

cost from path integral control theory comes from the desire to linearize the stochastic HJB

equations, and although in many cases it is practical, it is not unreasonable to criticize its

usage as an ad-hoc mathematical construction. In this framework, however, the control cost

appears completely organically from the Radon-Nikodym derivative between the controlled

and uncontrolled distribution.

Our goal is to now select U such that QU,Σ is as close to the optimal distribution as

possible. In order to do this we minimize the objective:

U∗ = argmin
U

KL (Q∗ ‖ QU,Σ) , (4.13)
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then applying the definition of relative entropy we have:

KL (Q∗ ‖ QU,Σ) = EQ∗

[
log

(
dQ∗

dQU,Σ

)]
.

In order to optimize this function we need to find an expression for the Radon-Nikodym

derivative dQ∗

dQU,Σ
. To do this, we apply the chain rule property of Radon-Nikodym deriva-

tives:
dQ∗

dQU,Σ

=
dQ∗

dP
dP

dQU,Σ

. (4.14)

We know what dQ∗

dP is from the definition of Q∗, and we can use our earlier result from

applying Girsanov’s theorem to compute dP
dQU,Σ

as:

dP
dQU,Σ

= exp(D(τ, U),

with D(τ, U) defined using Eq. (2.11). This means that we are expressing D in terms of

dw(0) which is a Brownian motion with respect to P(i.e. EP

[∫ t
0

dw(0)
]

= 0, ∀t). Com-

bining this with Thm. 4.2 and inserting into Eq. (4.14), we get the following expression:

KL (Q∗ ‖ QU,Σ) = EQ∗

[
log

(
exp(− 1

λ
S(τ)) exp(D(τ, U))

EP
[
exp(− 1

λ
S(τ))

] )]
,

Next, using basic rules of logarithms and exponents we can re-write this as:

EQ∗

[
−1

λ
S(τ) +D(τ, U)− log

(
EP

[
exp

(
−1

λ
S(τ)

)])]
,

Since S(τ), does not depend1 on the control input, we can remove the first and last terms

from the minimization to get:

argmin
U

KL (Q∗ ‖ QU,Σ) = argmin
U

EQ∗ [D(τ, U)]. (4.15)

1The probability of a trajectory does depend on the controls, but the state cost of the trajectory once it is
given is not affected by U
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The goal is to find the functionU which minimizes (4.15). However, since we inevitably

apply the control in discrete time it suffices to consider the class of step functions:

ut =



u0 if t < ∆t

...

uj if j∆t ≤ t < (j + 1)∆t

...

uN−1 if (N − 1)∆t ≤ t < N∆t

(4.16)

With j = {0, 1, . . . N − 1} and T = N∆t. We will slightly abuse notation and let

U refer to both the continuous function U(·), and the sequence of control inputs U =

{u0,u1, . . .uN−1} which define the function.

Applying this parameterization to D(τ, U) yields:

−
N∑
j=0

(
uT
j

∫ tj+1

tj

B(xt, t)dw(0) +
1

2
uT
j

∫ tj+1

tj

H(xt, t)dt uj

)
(4.17)

Where we have denoted:

i) B(x, t) = G(x, t)TΣ(x, t)−1B(x, t)

ii) H(x, t) = G(x, t)TΣ(x, t)−1G(x, t)

By noting that each uj does not depend on the trajectory taken, when we apply the expec-

tation operator to Eq. (4.17), we have EQ∗ [D(τ, U)] equal to the following:

EQ∗ [D(τ, U)] = −
N∑
j=0

uT
j EQ∗

[∫ tj+1

tj

B(xt, t)dw(0)

]

+
N∑
j=0

1

2
uT
j EQ∗

[∫ tj+1

tj

H(xt, t)dt

]
uj. (4.18)

Now it’s easy to see that this is convex with respect to each uj , so to find u∗j we can take
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the gradient of Eq. (4.18) with respect to uj , set it equal to zero and solve for uj . Doing

this yields:

u∗j = EQ∗

[∫ tj+1

tj

H(xt, t)dt

]−1

EQ∗

[∫ tj+1

tj

B(xt, t)dw(0)

]
,

and for small ∆t we can make the approximations that:

∫ tj+1

tj

H(xt, t)dt ≈H(xtj , tj)∆t,∫ tj+1

tj

B(xt, t)dw(0) ≈ B(xtj , tj)

∫ tj+1

tj

dw(0),

which allows us to obtain:

u∗j =
1

∆t
EQ∗

[
H(xtj , tj)

]−1EQ∗

[
B(xtj , tj)

∫ tj+1

tj

dw(0)

]
. (4.19)

This sequence is optimal in the sense that it minimizes the KL-Divergence between the con-

trolled and optimal distribution, which means that samples drawn from the the controlled

distribution QU,Σ will have the same mean as samples drawn from the optimal distribution

Q∗. This is a powerful notion of optimality since if the optimal distribution is uni-modal

samples drawn from QU,Σ will look just like samples drawn from Q∗, which achieve lower

cost (in expectation) than samples drawn from any other distribution.

We can also interpret this equation by relating it to path integral control. This is the

same equation we obtained in the standard path integral case from chapter 3, with the ex-

ception that it is valid for j = {u0,u1, . . .uN−1} as opposed to just j = 0. What this means

is that the optimal control is the same as the mean of the optimal distribution (projected into

control space), and the optimal control is valid even in the case that the optimal distribu-

tion is uni-modal. This provides a guarantee that symmetry will collapse. Additionally,

it means that all we need to do to compute the optimal control is to maintain an estimate

of the optimal distribution (through the KL-Divergence minimization framework) and then
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continuously execute the mean of the estimated optimal distribution.

Notice that for this derivation we have required the usage of Σ(x)−1, which may not

exist depending on if B(x) is degenerate or not. The presence of Σ(x)−1 comes from the

form of the Radon-Nikodym derivative of the system, and in certain cases it is possible to

define the Radon-Nikodym derivative even if B(x) is degenerate. This derivation is shown

in Appendix A. Once the Radon-Nikodym derivative is defined for degenerate systems it

is relatively straight-forward to achieve an analogue of Eq. (4.19). If the system can be

decomposed into directly and indirectly actuated components, as in chapter 3, then all that

is necessary is to replace B(x) and G(x) with Bc(x) and Gc(x).

4.4 Application to Discrete Time Systems

Here we show how the information theoretic framework can be applied to discrete time

systems. The result in the discrete time case is similar to continuous time, although there

are some slight differences. Namely, the result can be applied even in the case of full non-

linear dynamics, as opposed to just control-affine, and the projection operation from state

to control space is not necessary since noise is inserted directly in control space.

Consider the discrete time stochastic dynamical system:

xt+1 = F(xt,vt). (4.20)

The state vector is denoted xt ∈ Rn, and ut ∈ Rm is the commanded control input to the

system. We assume that if we apply an input ut then the actual input will be

vt ∼ N (ut,Σ).

This is a reasonable noise assumption for many robotic systems where the commanded

input has to pass through a lower level controller. A prototypical example is the steering

and throttle inputs for a car which are then used as set-point targets for low level servomotor
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controllers. We define:

V = (v0,v1, . . .vT−1),

as a sequence of inputs over some number of timesteps T . This sequence is itself a random

variable whose distribution can be changed by modifying the control input sequence:

U = (u0,u1 . . .uT−1).

Once again, we need to define P, and QU,Σ, the advantage that we have in the discrete time

setting is that we can explicitly write down probability density functions2 for P and QU,Σ.

The density function for P is denoted as p(V ) and takes the form:

p(V ) =
T−1∏
t=0

1

((2π)m|Σ|) 1
2

exp

(
−1

2
vT
t Σ−1vt

)
. (4.21)

Whereas the density function for QU,Σ is denoted as q(V |U,Σ) and takes the form:

q(V |U,Σ) =
T−1∏
t=0

1

((2π)m|Σ|) 1
2

exp

(
−1

2
(vt − ut)

TΣ−1(vt − ut)

)
. (4.22)

We now have definitions for the controlled and base distributions. The next step, as in

the continuous time case, is to define the cost-to-go function. Given an initial condition x0

and an input sequence V , we can uniquely determine the corresponding system trajectory

by recursively applying F. We thus have a mapping from inputs V to trajectories, we

denote a trajectory sequence as τ . Now, let Ωτ ⊂ Rn × {0, . . . T − 1} be the space of all

possible trajectories and define:

Gx0 : ΩV → Ωτ ,

2Note that probability density functions are Radon-Nikodym derivatives between a probability measure
and the Lebesgue measure. The reason we cannot write down density functions in the continuous time case
is because the infinite dimensional Lebesgue measure does not exist.
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as the function which maps input sequences to trajectories for the given initial condition

x0. Consider a state-dependent cost function for trajectories:

C(x1,x2, . . .xT ) = φ(xT ) +
T−1∑
t=1

q(xt),

where φ(·) is a terminal cost and q(·) is an instantaneous state cost. We can use this to

create a cost function over input sequences by defining S : ΩV → R+ as the composition:

S = C ◦ Gx0 . (4.23)

Next, we have to compute the KL-Divergence between QU,Σ and P. Unlike the contin-

uous time case, where we had to rely on Girsanov’s theorem, in the discrete time case we

can simply compute:

KL (QU,Σ ‖ P) = EQU,Σ

[
log

(
q(V |U,Σ)

p(V )

)]
=

1

2

T−1∑
t=0

uT
t Σ−1ut,

and then the free-energy lower bound becomes:

F (S,P,x0, λ) ≤ EQU,Σ [S(V,x0)] +
λ

2

T−1∑
t=0

uT
t Σ−1ut. (4.24)

So, once again, the free-energy serves as a lower bound on the expected state-cost of a

trajectory plus a quadratic control cost.

Our goal is to derive an expression the control sequence which pushes the controlled

distribution as close as possible to the optimal distribution. Using the definition of KL
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divergence, we have KL (Q∗ ‖ QU,Σ) equal to:

∫
ΩV

q∗(V ) log

(
q∗(V )

q(V |U,Σ)

)
dV,

=

∫
ΩV

q∗(V ) log

(
q∗(V )

p(V )

p(V )

q(V |U,Σ)

)
dV,

=

∫
ΩV

q∗(V ) log

(
q∗(V )

p(V )

)
︸ ︷︷ ︸

Independent of U

−q∗(V ) log

(
q(V |U,Σ)

p(V )

)
dV.

Neither the optimal distribution nor the distribution corresponding to the uncontrolled dy-

namics depends on the control input that we apply. Therefore, the left-most term does not

depend on U and can be removed, which leaves us with:

U∗ = argmax
U

∫
ΩV

q∗(V ) log

(
q(V |U,Σ)

p(V )

)
dV (4.25)

Note that we have flipped the sign and changed the minimization to a maximization. It is

easy to show that:

q(V |U,Σ)

p(V )
= exp

(
T−1∑
t=0

−1

2
uT
t Σ−1ut + uT

t Σ−1vt

)
,

inserting this into Eq. (4.25) yields:

U∗ = argmax
U

∫
q∗(V )

(
T−1∑
t=0

−1

2
uT
t Σ−1ut + uT

t Σ−1vt

)
dV. (4.26)

Next, we can integrate out the probability in the first term. Doing this results in:

U∗ = argmax
U

[
T−1∑
t=0

(
−1

2
uT
t Σ−1ut + uT

t

∫
q∗(V )Σ−1vtdV

)]
.

This is concave with respect to each ut, so we can find the maximum with, respect to each
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ut, by taking the gradient and setting it to zero. Doing this yields:

u∗t =

∫
q∗(V )vtdV (4.27)

Which states that the optimal control, in the sense of minimizing the KL-Divergence, is the

mean of optimal distribution. As in the continuous time case, this has its own interpretation

of optimality if the optimal distribution is uni-modal: executing the mean of the optimal

distribution means that the disturbed input will look like it was generated by the optimal

distribution, which has lower cost in expectation than any other distribution. This expres-

sion can be made a little more intuitive by re-writing q∗(V ) = q∗(V )
p(V )

p(V ). In that case we

have:

u∗t =

∫
q∗(V )

p(V )
p(V )vtdV =

1

η

∫
exp

(
−1

λ
S(V )

)
p(V )vtdV, (4.28)

with the normalizing term η =
∫

exp
(
− 1
λ
S(V )

)
p(V )dV . This equation states that the op-

timal control is simply a cost weighted average over sampled control inputs. The weighting

in this case resembles the output of a Bayes rule, with p(V ) playing the role of the prior

and exp(− 1
λ
S(V )) acting as the observation.

Connection to Path Integral Control

Unlike in the continuous time case, there is not a direct analog to path integral control,

which means there is not a direct relationship between this equation and the stochastic

optimal control. However, if the discrete time system has been obtained via discretization

of a continuous time system, then we can still make an approximate relationship. Consider

the system:

xt+1 = xt + F(xt,ut + εt)∆t, (4.29)
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where ε ∼ N
(
0, Σ

∆t

)
. Now, for a given control sequence Ū = {ū0, ū1, . . . ūT−1}, we can

approximate this system as:

xt+1 = xt +

(
F(xt, ūt) +

∂F

∂u
(xt, ūt)δut

)
∆t+

∂F

∂u
(xt, ūt)εt∆t.

But, if instead of drawing ε ∼ N (0, Σ
∆t

), we draw w ∼ N (0, I), we can re-write this as:

xt+1 = xt +

(
F(xt, ūt) +

∂F

∂u
(xt, ūt)δut

)
∆t+

∂F

∂u
(xt, ūt)Λ

w√
∆t

∆t,

where Λ =
√

Σ. We then have:

∆xt =

(
F(xt, ūt) +

∂F

∂u
(xt, ūt)δu

)
∆t+

(
∂F

∂u
(xt, ūt)Λ

)
w
√

∆t. (4.30)

Next, we can set f(xt, t) = F(xt, ūt), G(xt, t) = ∂F
∂u

(xt, ūt), and B(xt, t) = ∂F
∂u

(xt, ūt)Λ,

and taking the limit as ∆t→ 0 puts it into a control-affine SDE form:

dx = (f(xt, t) + G(xt, t)δu) dt+ B(xt, t)dw,

and the optimal δu for the continuous time system is obtained via Eq. (3.37). Recall that

this takes the form:

u∗dt = ūdt+ Λ
EQ

[
exp

(
− 1
λ
S̃(τ)

)
dw
]

EQ

[
exp

(
− 1
λ
S̃(τ)

)] ,

S̃(τ) = φ(xT , T ) +

∫ T

0

q(x, t) +
1

2
ūTR−1ūTdt+

∫ T

0

ūTRΛdw,

R = λG̃T
(
B̃B̃T

)−1

G̃ = λ
(
ΛΛT

)−1
= λΣ−1.
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In reality, we must discretize these equations in order to implement them on a digital com-

puter. So we will have:

u∗∆t = ū∆t+ Λ
EQ

[
exp

(
− 1
λ
S̃∆t

)
w
√

∆t
]

EQ

[
exp

(
− 1
λ
S̃∆t

)] ,

⇒ u∗ = ū + Λ
EQ

[
exp

(
− 1
λ
S̃∆t

)
w√
∆t

]
EQ

[
exp

(
− 1
λ
S̃∆t

)] . (4.31)

where S̃∆t is the discrete time approximation to S̃(τ).

S̃∆t = φ(xT , T ) +
T−1∑
t=0

(
q(x, t) +

λ

2
ūTΣ−1ūT

)
∆t+ λ

T−1∑
t=0

ūTΣ−1Λw
√

∆t. (4.32)

If we were to use the continuous time path integral equations to compute the optimal

control, Eq. (4.31) is what we would have to implement. We want to know how this relates

to the information theoretic optimal control (Eq. (4.28)) at time t = 0 (i.e. we want to

compare the mean of the optimal distribution at t = 0 to the optimal control). Recall that

this is:

u∗t =

∫
exp

(
− 1
λ
S(V )

)
p(V )vtdV∫

exp
(
− 1
λ
S(V )

)
p(V )dV

, (4.33)

S(V ) = φ(xT , T ) +
T∑
t=0

q(xt)∆t.

Next, we define the discrete time analog of Q as:

q(V |Ū ,Σ) =
T−1∏
t=0

1

((2π)m|Σ|) 1
2

exp

(
−1

2
(vt − ūt)

TΣ−1(vt − ūt)

)
,
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and then using the Radon-Nikodym deriative, we can express Eq. (4.33) as:

u∗ =
1

η

∫
exp

(
−1

λ
S(V )

)
p(V )

q(V |U,Σ)
q(V |U,Σ)vtdV,

=
1

η
Eq
[
exp

(
−1

λ
S(V )

)
p(V )

q(V |U,Σ)

]
.

The term inside the expectation works out to:

exp

(
−1

λ

[
φ(xT , T ) +

T−1∑
t=0

q(xt)∆t

])
exp

(
T−1∑
t=0

[
1

2
ūT
t Σ−1ūt − ūT

t Σ−1vt

]
∆t

)
.

Now, we can replace3 V = {v0,v1, . . .vT−1} with Ū + E = {ū0 + ε0, ū1 + ε1, . . . } where

ε is zero mean noise with variance Σ
∆t

. Doing this yields:

exp

(
−1

λ

[
φ(xT , T ) +

T−1∑
t=0

q(xt)∆t

])
exp

(
T−1∑
t=0

[
−1

2
ūT
t Σ−1ūt − ūT

t Σ−1εt

]
∆t

)
,

then combining the exponentials yields:

exp

(
−1

λ

[
φ(xT , T ) +

T−1∑
t=0

(
q(xt) +

λ

2
ūT
t Σ−1ūt + λūT

t Σ−1εt

)
∆t

])
,

= exp

(
−1

λ

[
φ(xT , T ) +

T−1∑
t=0

(
q(xt) +

λ

2
ūT
t Σ−1ūt

)
∆t+ λ

T−1∑
t=0

ūtΣ
−1Λw

√
∆t

])
,

= exp

(
−1

λ
S̃∆t

)
(4.34)

So, the formula for the optimal control that we obtained in the information theoretic case

3Note that this is the discrete time analog of switching between dw(0) and dw(1) that we had to do
frequently in the continuous time case.
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is equivalent to:

u∗0 =
Eq
[
exp

(
− 1
λ
S̃∆t

)
(ū0 + ε0)

]
Eq
[
exp

(
− 1
λ
S̃∆t

)] ,

= ū0 +
Eq
[
exp

(
− 1
λ
S̃∆t

)
ε0

]
Eq
[
exp

(
− 1
λ
S̃∆t

)] .

The final step, is to write ε0 in terms of w (standard normal gaussian noise), which yields:

u∗0 = ū + Λ
Eq
[
exp

(
− 1
λ
S̃∆t

)
w√
∆t

]
Eq
[
exp

(
− 1
λ
S̃∆t

)] . (4.35)

It should be clear that this is approximately equivalent to the continuous time optimal con-

trol, in the sense that if the continuous time path integral equations are discretized (Eq.

(4.31)), then the result is nearly identical to the information theoretic optimal control ob-

tained in Eq. (4.35). The only difference is that the expectation in the discretized path

integral case is taken with the control-affine approximation (Eq. (4.30)) to the non-linear

system, whereas the the information theoretic formula is computed with respect to the fully

non-linear dynamics (Eq. (4.29). If the control-affine approximation is valid, we should

expect that sampling from the control-affine approximation would yield similar results to

sampling from the fully non-linear dynamics. We can therefore conclude, that the mean of

the optimal distribution at the current time instance is approximately the optimal control

for the best control-affine approximation to the non-linear dynamics.

4.5 Related Work on Sampling Based Control

In the previous sections we have developed a sampling based optimization framework

based on free-energy and relative entropy inequalities, and detailed the relationship be-

tween this framework and path integral control. In this section we detail how the informa-

tion theoretic framework compares with other sampling based optimization methods that
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are popular in robotics.

There are a number of alternative approaches that could be used to derive a similar

update law to Eq. (4.27). The policy gradient theorem, reward weighted regression [56,

57], and black-box stochastic optimization methods [58] could be used, by choosing an

appropriate control parameterization and applying an exponential cost transformation, to

create a similar result. However, in those frameworks, applying an exponential transform

to the cost would be a heuristic without a solid theoretical grounding. In our approach, the

exponential transform appears naturally through the relationship between free-energy and

the cost of a standard stochastic optimal control problem. Furthermore, defining the free

energy using the exponential transform (as opposed to another monotonically increasing

function), is the only way to get a lower bound on the cost of a stochastic optimal problem

through Jensen’s inequality, since it is necessary in order to obtain the KL-divergence from

the likelihood ratio. Therefore, the exponential weighting of trajectories is not a heuristic

guess in our framework, but rather a natural consequence given the form of the optimal

distribution.

Our approach is also similar to Bayesian Inference approach to stochastic optimal con-

trol [59], however our approach differs significantly in both the theoretical framework and

the algorithmic approach. In [59] it is shown that KL
(
δU ‖ Q̂∗

)
is equivalent to the cost of

a stochastic optimal control problem. In that case δU is the dirac-delta function (i.e. there is

no noise in the control input), and Q̂∗ is the optimal distribution with a uniform prior (base

distribution in our terminology). They then use this observation to develop an iterative

scheme based on minimizing KL
(
Qπ,Σ ‖ Q̂∗

)
which has non-increasing costs. However,

in this case, there is not an interpretation of the “optimal distribution” other than the fact

that plugging it into KL
(
δU ‖ Q̂∗

)
reduces to a standard optimal control problem. This is

less direct than our case, where the free energy lower bound provides the form of the opti-

mal distribution and proof that it achieves a cost less than or equal to any other distribution.

This motivates our goal of pushing the controlled distribution as close as possible to the
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optimal distribution, which we achieve by minimizing the KL-Divergence in the opposite

direction as in [59], which leads to a significantly different sampling scheme.

The cross-entropy method for motion planning [60, 61, 62] is the previous work which

is the closest, mathematically speaking, to our approach. As in our case, in the cross-

entropy method the objective function has the form:

θ∗ = argmin
U

KL
(
Q̃∗ ‖ Q

)
,

where Q̃∗ is a target distribution and Q is the distribution induced by the control parameters

θ. However, instead of using the free-energy lower bound as we do, in the cross-entropy

method the density of the optimal distribution is defined as follows:

q̃∗(V ) = I ({C(V ) ≤ γ}) ,

where I is the indicator function, C is the cost-to-go function, and γ is a constant upper-

bound on the trajectory cost that we would like to enforce. In order to optimize this objec-

tive, the following iterative procedure is proposed:

i) Sample parameters {θ1, θ2, . . . θK} from a given proposal distribution P i(θ) (usually

a Gaussian or a Gaussian mixture model).

ii) Determine the elite parameter set threshold: γi = C(V, θj) where j is the index of

the Lth best trajectory sample. L < K.

iii) Compute the elite parameter set: Es = {θk|C(V ; θk) ≤ γi}

iv) Update the parameters using expectation maximization over the elite set: P i+1 ←

EM(Es)

v) If converged end, otherwise repeat.
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In the case of optimizing the mean of a Gaussian distribution, the cross-entropy method

described here is identical to the information-theoretic approach, except that the cross-

entropy method takes an un-weighted average over the top L sampled parameters. In con-

trast, the information-theoretic approach takes a weighted average over all the parameter

samples. This is an important difference: when planning trajectories the information the-

oretic approach has more discriminative power over rejecting (assigning very low weight)

samples, whereas cross-entropy must assign the same weight to the top L samples, even if

those samples have very different cost values. Later on in chapter 6, we compare a model

predictive control version of our approach against an model predictive control version of

cross-entropy.

60



CHAPTER 5

MODEL PREDICTIVE PATH INTEGRAL CONTROL

In the previous two chapters we have provided an overview of path integral control theory,

developed the information theoretic control approach, and discussed the mathematical re-

lationship between the two methods. In this chapter we show how these ideas can be used

in a practical setting for controlling autonomous systems using on-the-fly optimization.

We label the algorithm that we describe as model predictive path integral control (MPPI).

The key idea behind the algorithm is to randomly sample control sequences, compute the

cost when each control sequence is applied to the system model, and then compute a cost-

weighted average over the randomly sampled control sequences. In a typical MPC fashion,

only the first element of the control sequence is executed. Then, the un-executed portion of

the control sequence is used to warm-start the optimization at the next time-step, and the

whole process is repeated.

Path integral control theory and the information theoretic control framework provide

different interpretations for what a computing a cost-weighted average over trajectories

achieves. In the information theoretic framework, the cost-weighted average over the con-

trols is the best approximation of the optimal distribution parameterized by an open loop

control sequence. In path integral control, the interpretation of the cost weighted average

is that it is the optimal control for the current state and time. In developing a model pre-

dictive controller, it is possible to utilize either the stochastic optimal control interpretation

or to purely utilize the information theoretic interpretation. A natural question to ask is:

which interpretation is most useful in this context, and is there a benefit to combining both

interpretations? Although, there is not necessarily a correct answer to this question, in our

view, utilizing both interpretations provides the most complete picture. The advantage of

utilizing both interpretations can be shown with an example of a highly counter-intuitive
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situation.

Consider the following problem: A noisy point mass robot is trying to reach a goal

state, but, directly in between the goal state and the robot is an obstacle. We would like

to compute the a current action to execute, and a control sequence which we can use to

warm-start the optimization at the next time-step.

If we purely utilize the path integral control interpretation, then the cost-weighted av-

erage produces the optimal control, which, surprisingly, directs the robot to move directly

towards the obstacle! The reason that this is the correct action is that, in a continuous time

noisy system, the robot will immediately be pushed either to the left or to the right of the

obstacle by system noise. After this push occurs, symmetry will collapse, and our robot

will move to avoid the obstacle. However, before symmetry collapses it is best not to waste

any energy, since it is unknown if moving left or right will turn out better. Therefore, the

optimal control is to move towards the obstacle. This kind of symmetry breaking feature

of path integral control was first explored by in [49].

Unfortunately, although the path integral control interpretation provides an explanation

for the current control, it does not help to compute an entire sequence that we can use to

warm-start the optimization at the next time-step. It is possible to apply the path integral

control law to future time-steps in order to get a control sequence, but this is merely a

heuristic in the path integral framework. Moreover, it appears that this heuristic fails in

this case, since the result is an open loop control sequence that moves directly through the

obstacle.

The information theoretic framework does provide a mechanism for computing the en-

tire open-loop control sequence, in terms of minimizing the KL-Divergence. In this case

it still results in a control sequence that moves the robot directly through the obstacle.

However, this is actually correct from the perspective of matching the optimal distribu-

tion: sampling around a control sequence going directly through the obstacle will result in

approximately half of the trajectories on appearing on the left and half of the trajectories

62



appearing on the right, just like the optimal distribution. However, it is unclear how to

generate a control from the KL-Divergence minimizing distribution. This is because the

optimal distribution is multi-modal, so applying the mean does not necessarily make sense.

By utilizing both frameworks we have the following interpretation: computing a cost-

weighted average over control sequences approximates the optimal distribution, and the

optimal control is simply the mean of the optimal distribution at time t = 0, even if symme-

tries are present in the optimal distribution. After the first control input has been executed,

we can then re-use the previous estimate of the optimal distribution in order to compute an

updated estimate. In the case of a uni-model optimal distribution, executing the mean of

the optimal distribution is reasonable without the usage of the path integral control inter-

pretation. However, the path integral interpretation guarantees that symmetry breaking will

occur in the case of a multi-modal optimal distribution.

Note that some care must be observed with relying on the symmetry breaking aspect

of path integral control, since the information theoretic approach can be applied to more

general systems than path integral control. In particular, the mean of the optimal distribu-

tion for a discrete time system is only approximately related to the continuous time optimal

control law. Symmetry breaking cannot be guaranteed for discrete time systems, and if the

time-step is large enough this could become a problem. However, in practice, this has not

been observed, even for highly multi-modal cost landscapes [39].

It is also interesting to note that, under this interpretation, using the terminology model

predictive control is a slight misnomer. In MPC, the control sequence that is optimized is

usually assumed to be the optimal open-loop controls for a deterministic system. In our

case, the “optimal sequence” may not actually be a set of controls that we want to execute

in open-loop fashion, it is however, the set of controls which enable us to best approximate

the stochastic optimal control. Thus, our method is better viewed as an implementation of

a computationally expensive feedback control law than a traditional MPC method.

In the next few sections, we describe how the optimal distribution can be approximated
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using iterative importance sampling, and then dive into some practical issues that arise

when trying to implement the algorithm. Lastly, we give a detailed summary of the algo-

rithm at the end of the chapter. For the development of the MPPI algorithm we will assume

that the system takes the form:

xt+1 = xt + F(xt,vt)∆t, (5.1)

vt ∼ N (ut,Σ).

This formulation handles most of the cases that we care about, since even continuous time

systems must be approximated with discrete systems for Monte-Carlo samples to be com-

puted. Note that we are not making any assumptions regarding the system model taking a

control-affine form, since this is not necessary in the information theoretic framework and

we can approximately relate Eq. (5.1) to a control-affine system through linearization.

5.1 Iterative Importance Sampling

We use the technique of importance sampling [63] to construct a set of samples that provide

an unbiased estimate of the optimal control solution given a current control distribution.

Recall that we are trying to estimate:

u∗t = EQ∗ [vt] =

∫
q∗(V )vtdV,

t ∈ {0, 1, . . . T − 1},

Where Q∗ is the optimal distribution. Given an importance sampling control sequence,

denoted by U , we can re-write this equation as:

∫
q∗(V )vtdV =

∫
q∗(V )

q (V |U,Σ)︸ ︷︷ ︸
w(V )

q (V |U,Σ) vtdV,
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This integral expression can be expressed as the following expectation:

EQU,Σ [w(V )vt], w(V ) =
q∗(V )

q (V |U,Σ)
. (5.2)

The weighting term, w(V ), is the importance sampling weight which allows us to com-

pute expectations with respect to Q∗ by sampling trajectories from the system with the

importance sampling sequence applied (denoted QU,Σ).

This weighting term in Eq. (5.2) can be split into two terms: one depending on the

state cost of a trajectory, and the other is a likelihood ratio between the controlled and

base distribution, which acts like a control cost. This split is achieved by using the base

distribution p(V ) as follows:

w(V ) =

(
q∗(V )

p(V )

)(
p(V )

q (V |U,Σ)

)
,

=
1

η
exp

(
−1

λ
S(V )

)(
p(V )

q (V |U,Σ)

)
. (5.3)

In the case that the base distribution takes the form of the uncontrolled system dynamics,

we have the following:

p(V )

q (V |U,Σ)
=

exp
(
−1

2

∑T−1
t=0 vT

t Σ−1vt

)
exp

(
−1

2

∑T−1
t=0 (vt − ut)TΣ−1(vt − ut)

) ,
Which expands out to:

= exp

(
−1

2

T−1∑
t=0

vT
t Σ−1vt − vT

t Σ−1vt + 2vT
t Σ−1ut − uT

t Σ−1uT
t

)
,

And then simplifies to:

= exp

(
−1

2

T−1∑
t=0

2vT
t Σ−1ut − uT

t Σ−1uT
t

)
,
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Now, we can re-write vt = ut + εt, doing this results in:

= exp

(
−1

2

T−1∑
t=0

2εTt Σ−1ut + 2uT
t Σ−1ut − uT

t Σ−1uT
t

)
,

which can be further simplified to:

= exp

(
−1

2

T−1∑
t=0

uT
t Σ−1ut + 2εTt Σ−1ut

)
,

Lastly, we re-combine the two importance sampling terms to get the following importance

weighting and update rule:

w(V ) =
1

η
exp

(
−1

λ

(
S(V ) +

λ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt

))
, (5.4)

u′t = EQU,Σ [w(V )vt], (5.5)

u∗ = u′0. (5.6)

Equation (5.4) describes the importance sampling weight between the distribution induced

by the current importance sampling sequence, and the optimal distribution. Equation (5.4)

describes the update to the importance sampling sequence, and Eq. (5.6) is the first ele-

ment of the importance sampling sequence which can be used as an approximation to the

stochastic optimal control.

5.2 Covariance Variable Importance Sampling

The importance sampling that we described in the previous section involves randomly sam-

pling perturbations around a nominal control sequence, which is iteratively updated accord-

ing to Eq. (5.5). The variance of the random perturbations in the previous section is set

to match p(V ), which, in principle, is the natural variance of the system. However, it can

sometimes be beneficial to use a higher sampling variance than the natural variance in the
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system. This means that the likelihood ratio becomes:

p(V )

q (V |U,Σ)
=

exp
(
−1

2

∑T−1
t=0 vT

t Σ−1vt

)
exp

(
−1

2

∑T−1
t=0 (vt − ut)T(νΣ)−1(vt − ut)

) ,
Where ν ≥ 1 is a multiplier on the magnitude of the variance. It is possible to change the

sampling variance in more complex ways than simply increasing the magnitude (as we do

in [38]), but, increasing the magnitude is the simplest and most useful scenario.

As in the standard case, we can expand out and combine the numerator and denominator

in order to get:

= exp

(
−1

2

T−1∑
t=0

vT
t Σ−1vt − vT

t (νΣ)−1vT
t + 2vT

t (νΣ)−1ut − uT
t (νΣ)−1ut

)
,

Unlike in the standard case, the quadratic function depending purely on v does not cancel,

instead we have:

exp

(
−1

2

T−1∑
t=0

(1− ν−1)vT
t Σ−1vt + 2vT

t (νΣ)−1ut − uT
t (νΣ)−1ut

)
,

Now, let vt = ut + εt, after some simplifications, the term inside of the summation then

becomes:

(1− ν−1)
[
uT
t Σ−1ut + 2uT

t Σ−1εt + εTt Σ−1εt
]

+ ν−1
[
2uT

t Σ−1εt + uT
t Σ−1ut

]
,

When we combine these two terms we are left with:

exp

(
−1

2

T−1∑
t=0

uT
t Σ−1ut + uT

t Σ−1εt + (1− ν−1)εtΣ
−1εt

)
,
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The combined importance sampling weight in the case of increased covariance is then:

w(V ) =
1

η
exp

(
−1

λ

(
S(V ) +

λ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt + (1− ν−1)εtΣ
−1εt

))
.

(5.7)

which is the same as the standard importance sampling weight, but with an extra term which

penalizes large values of ε. Note that ν can also be a time varying parameter, which opens

up the possibility of automatically adapting ν based on the given task. However, extreme

care must be taken when adapting ν on the fly, since decreasing the covariance too much

can lead to task failure in an MPC setting. For instance, in the past we have explored using

the method from [64] to adapt the variance on-the-fly, but without success due to rapidly

decreasing variance.

5.3 Practical Issues

The iterative importance sampling equations in (5.4) - (5.6), along with the equation for

covariance variable importance sampling (Eq. (5.7)), form the basis of our sampling based

control methodology. However, there are a few practical issues to address before describing

the full algorithm. These are:

i) Shifting the range of the trajectory costs.

ii) Smoothing the solution.

iii) Decoupling the control cost and temperature.

iv) Sampling trajectories fast enough for online optimization.

In this subsection we explain effective solutions to these problems which keep the theoret-

ical basis for the algorithm intact.
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Shifting the range of the trajectory costs

The negative exponentiation required by the importance sampling weight is numerically

sensitive to the range of the input values. If the costs are too high then the negative ex-

ponentiation results in values numerically equal to zero, and if the costs are not bounded

from below then the negative exponentiation can lead to overflow errors. For this reason

we shift the range of the costs so that the best trajectory sampled has a cost of 0. This

simultaneously bounds the costs from below and ensures that at least one trajectory has an

importance sampling weight which is not numerically zero. This is done as follows: first

expand out the normalizing term η in (5.4) so that the importance sampling weight is:

=
exp

(
− 1
λ

(
S(V ) + λ

2

∑T−1
t=0 uT

t Σ−1ut + 2uT
t Σ−1εt

))
∫

exp
(
− 1
λ

(
S(V ) + λ

2

∑T−1
t=0 uT

t Σ−1ut + 2uT
t Σ−1εt

))
dV

,

Now define ρ as the minimum cost (in the Monte-Carlo approximation it is the minimum

sampled cost). We then multiply by:

1 =
exp

(
1
λ
ρ
)

exp
(

1
λ
ρ
) ,

which results in:

w(V ) =
1

η
exp

(
−1

λ

(
S(V )− ρ+

λ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt

))
, (5.8)

η =

∫
exp

(
−1

λ

(
S(V )− ρ+

λ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt

))
. (5.9)

Since we have only multiplied by 1, this procedure does not change the optimality of the

approach, however, it does prevent numerical overflow or underflow. Note that η is guaran-

teed to be between [1, K] where K is the number of samples. This observation allows the

value of η to be a useful tool for monitoring the health and debugging the MPPI algorithm.
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If the value of η is close to 1 then the temperature is too high and all but the single best

trajectory are being discarded. If the value of η is close to K than an un-weighted average

is being taken, and the temperature or sampling variance may be to low. Although there

is no single “correct” value for η, we have observed that a value between 1% and 10% of

K generally indicates a healthy algorithm. Also note that the free-energy, which is related

to the value function, can easily be computed from η, and is another good indicator of

algorithmic performance.

Handling Control Constraints

Most interesting control systems, including autonomous vehicles, have actuator limits that

the controller must take into account. A simple method for handling control constraints,

which we utilize here, is to make the problem unconstrained by pushing the control con-

straints into the system dynamics:

xt+1 = xt + F(xt, g(vt))∆t (5.10)

where g(vt) is a clamping function that restricts vt to remain within an allowable input

region. Since the sampling based update law does not require computing gradients or

linearizing the dynamics, adding this additional non-linearity (and non-smooth) component

into the dynamics is trivial to implement, and it works well in practice. Additionally, this

step has no effect on the convergence of the importance sampling, since the clamping is

realized as a change in the system dynamics, as opposed to a change in the algorithm itself.

Control Smoothing

The stochastic nature of the sampling procedure can lead to chattering in the resulting

control, which can be removed by smoothing the output control sequence. One very ef-

fective method for smoothing is by fitting local polynomial approximations to the control
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sequence. Note that the objective in the information theoretic optimization framework (Eq.

(4.26)) can be written as:

u∗t = argmin
ut

(
EQ∗

[
(vt − ut)

T Σ−1 (vt − ut)
])
,

And now consider fitting a local polynomial approximation (at every timestep) so that ut =

a0 + a1t + a2t
2 + . . . akt

k = At, where A = (a0, a1, . . . ak) and t = (1, t, t2, . . . tk). Our

goal is to then find the optimal set of coefficients at each timestep. The optimal coefficients,

at timestep j, can be found through the following optimization:

A∗j = argmin

EQ∗

 j+k∑
t=(j−k)

(vt − At)T Σ−1 (vt − At)

 ,

Note how the optimization now spans multiple timesteps into the past and future in order to

compute a smoother control input. This optimization problem is equivalent to optimizing

the objective:

EQ∗

 j+k∑
t=(j−k)

vT
t Σ−1At + tTATΣ−1At

,
=

j+k∑
t=(j−k)

EQ∗ [vt]
TΣ−1At + tTATΣ−1At,

which is in turn is equivalent to the minimization:

At = argmin

(
j+k∑
t=j−k

(EQ∗ [vt]− At)T Σ−1 (EQ∗ [vt]− At)

)
. (5.11)

This is a convenient expression because it means that we can first compute the weighted

average over trajectories, and then perform a local polynomial approximation in order to

smooth the resulting control sequence. Note that this is equivalent to directly computing

the optimal spline parameters with respect to minimizing the KL-Divergence between the
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optimal distribution and the normal distribution defined by the spline points, however, we

do not have to handle any spline parameters inside the expectation.

The naive method for computing the controls is to then compute EQ∗ [vt] using a Monte-

Carlo approximation, solve for eachAt, and lastly compute the smoothed control inputs ut.

However, a simpler method which achieves the same result is to use a Savitsky-Galoy filter

[65] which implements local polynomial smoothing using a specific set of convolution

coefficients. Using a Savitsky-Galoy filter, we simply compute U ′ = EQ∗ [V ] and then

compute the smoothed control sequence, U , by passing U ′ through the convolutional filter.

Decoupling control cost and temperature

Consider the form of the importance sampling weight from Eq. (5.4) when we take the

uncontrolled dynamics of the system as the base distribution1:

w(V ) =
1

η
exp

(
−1

λ

(
S(V ) +

λ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt

))

The challenge with this formulation is that changing the inverse temperature λ, also changes

the relative control cost and vice versa. The inverse temperature determines how tightly

peaked the optimal distribution is, as λ→ 0, the optimal distribution places all of its mass

on a single trajectory, whereas as λ → ∞ all points in the state space have equal weight.

Figure 5.1 shows the probability weights corresponding to trajectory costs for varying val-

ues of λ. This coupling is sensible from a theoretical point of view: if we are allowed more

control authority over the system, then we should be able to more tightly maintain a given

trajectory. Unfortunately, raising the temperature too high results in numerical instability

since most trajectories are rejected (have weight numerically equal to zero), at which point

the importance sampling oscillates between solutions instead of converging.

Our solution is to change the base distribution which defines the control cost. Let U be

1This is a natural choice from an optimization perspective, since the minimum control cost is achieved
with U ≡ 0.
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Figure 5.1: Effect of changing λ on the probability weight corresponding to a trajectory
cost. Low values of λ result in many trajectories being rejected, high values of λ take close
to an un-weighted average.

the current planned control sequence, and define the new base distribution as:

p̃(V ) = p(V |αU,Σ),

where 0 < α < 1. With α = 0, the base distribution reverts back to the uncontrolled

dynamics and pushes U to zero. And with α = 1, the base distribution is the distribution

corresponding to the current planned control law, which keeps U near the current distri-

bution. This is useful for creating smooth control inputs since it prohibits u0 (the actual

control input about to be applied) from moving to far from u0. To see why this helps create
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smooth motions, consider that the smoothing step at the previous iterations generated u−1

(the last control applied to the system), and û0 as the first two elements in the (smoothed)

sequence. Therefore, applying u0 would result in a smooth action. However, if the updated

solution, u0, is far away from û0 the resulting action will not be smooth. The solution is to

therefore encourage u0 to stay close to û0, a value of α in-between zero and one balances

the two requirements of low energy and smoothness.

The construction of the optimal distribution and the corresponding control law are the

same under this new base distribution. However, the control cost portion of the importance

sampling weight now becomes:

λ

2
(1− α)

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt,

We then have γ = λ(1− α) as the new control cost parameter, resulting in

w(V ) =
1

η
exp

(
−1

λ

(
S(V ) +

γ

2

T−1∑
t=0

uT
t Σ−1ut + 2uT

t Σ−1εt

))
,

as the new probability weighting for the algorithm. Note that in the case of using an ampli-

fied covariance, the multiplier on the exploration variance is still λ, so we have:

1

η
exp

(
−1

λ

(
S(V ) +

1

2

T−1∑
t=0

γ
[
uT
t Σ−1ut + 2uT

t Σ−1εt
]

+ λ
[
(1− ν)εTt Σ−1εt

]))
.

(5.12)

in the most general case.

GPU-Based Trajectory Sampling

The key requirement for applying MPPI is the ability to generate and evaluate a large num-

ber of samples in real time. This can be done by performing sampling in parallel on a

graphics processing unit (GPU) with Nvidia’s CUDA architecture. The CUDA implemen-

tation details differ significantly depending on the specific costs and system dynamics. The
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cost function is usually straightforward to implement in CUDA, but it can be difficult to

implement the dynamics required to simulate the system forward fast enough to achieve

real time performance. A challenging, but also highly effective, implementation that we

cover in this thesis is using a neural network model of the AutoRally dynamics in order to

simulate trajectory samples. An analysis of the different versions of that implementation is

given in Appendix B. The best implementation from Appendix B can achieve control loops

at 50 HZ using approximately 2,500 trajectory samples of 2.5 second long trajectories on

an Nvidia GTX 1050 TI.

5.4 Algorithm Summary

With our iterative importance sampling update, as well as methods for handling control

constraints, smoothing, and real-time sampling, we are now ready to describe the full model

predictive path integral control (MPPI) algorithm. The algorithm (Alg. 1) starts by taking in

the current state from an external state estimator, and then producesK trajectory samples in

parallel on the GPU. Each sample is generated by randomly sampling a sequence of control

perturbations, and then the dynamics are simulated forward and the cost is computed.

Once the costs for each perturbation sequence are computed, they are converted to

probability weights. After the probability weights have been computed, the un-smoothed

control update is computed via a probability weighted average over all the perturbation

sequences. Lastly, this update is smoothed by passing it through a convolutional filter

with the Savitsky-Galoy coefficients. The first control is then sent to the actuators, and the

remaining sequence of length T − 1 is slid down and used to warm-start the optimization

at the next time instance.

75



Algorithm 1: Model Predictive Path Integral Control (MPPI)
Given: F, g: Dynamics and clamping function;
K,T : Number of samples and timesteps;
U : Initial control sequence;
Σ, ν, λ, γ, φ, q: Cost functions/parameters;
SGF: Savitsky-Galoy convolutional filter;

while task not completed do
x← Fn GetStateEstimate();
/* Begin parallel block */
for k ← 0 to K − 1 do

S̃k ← 0;
Sample Ek =

(
εk0 . . . ε

k
T−1

)
, εkt ∈ N (0, νΣ);

for t← 0 to T − 1 do
vt = ut + εkt ;
x← x + F(x, g(vt))∆t;
// State cost and importance sampling weights

S̃k += q(x) + 1
2

(
γ
[
uT
t Σ−1ut + 2uT

t Σ−1εt
]

+ λ
[
(1− ν)εTt Σ−1εt

])
;

S̃k += φ(x);

/* End parallel block */
// Compute trajectory weights

ρ← min{S̃0, S̃1, . . . S̃k};
η ←∑K

k=1 exp
(
− 1
λ
(Sk − ρ)

)
;

for k ← 1 to K do
wk ← 1

η
exp

(
− 1
λ
(Sk − ρ)

)
;

// Control update with smoothing
for t← 0 to T − 1 do

U ← SGF ∗
(
U +

∑K
k=1 wkEk

)
;

Fn SendToActuators(u0);
for t← 1 to T − 1 do

ut−1 ← ut;

uT−1 ← Intialize(uT−1);
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CHAPTER 6

APPLICATIONS OF MPPI TO AUTONOMOUS SYSTEMS

In this chapter we examine the application of MPPI to autonomous control systems. First,

we apply the algorithm to several simulation problems that demonstrate some essential

traits of the algorithm. Namely, we analyze the ability of the algorithm to handle non-

linear dynamics, we verify that symmetry breaking does indeed occur, and we analyze

the performance of the system on a high-dimensional multi-agent quadrotor system. After

analyzing the method in simulation, we turn our attention to our motivating task of high-

speed autonomous driving, and we analyze the strengths and weaknesses of MPPI when

applied to the autonomous racing task.

6.1 Simulation Results

We use four simulated systems in order to test MPPI: a cart-pole, a simulated 1/5 scale

miniature race car, a quadrotor attempting to navigate an obstacle filled environment, and

lastly the same task but with multiple quadrotors. For the race car and quadrotor we used a

model predictive control version of the differential dynamic programming (DDP) algorithm

as a baseline comparison. In all of these experiments the controller operates at 50 Hz.

Cart-Pole

The cart-pole swing up task is a standard test for non-linear MPC controllers, and so it

is important to verify that MPPI can competently handle this task. The swing-up tasks

works as follows: a pendulum is attached to a cart and is initially in a downward position,

the controller has the ability to laterally accelerate the cart, which imparts some angular

velocity to the pendulum, the goal of the controller is to swing-up the pendulum to an

upright facing position.
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Mathematically, this task can be encoded using the following objective:

q(x) = p2 + 500(1 + cos(θ))2 + θ̇2 + ṗ2 (6.1)

Where p is the position of cart, ṗ is the velocity and θ, θ̇ are the angle and angular velocity

of the pole. In this case θ = 0 corresponds to the down pendulum position and θ = π

corresponds to the upward position. The full equations of motion for the cart-pole system

are given in Appendix C.
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Figure 6.1: Performance of MPPI on the cart-pole swing up task. In all cases the algorithm
is successful at the swing up task. The Y-axis is the average running cost achieved during
the trial, and the X-axis is the number of samples used (base 10 log scale).

We set the natural system variance equal 0.1 and λ = γ = 10. The MPPI controller

was given 10 seconds to swing up the cart-pole, and the optimization horizon was 1 second.

After the initial swing up, controller has to keep the pendulum balanced in the upright posi-
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tion for the rest of the 10 second horizon. The variance magnitude parameter, ν, was varied

between 1 and 1500. The MPPI controller is able to swing-up the pole faster with increas-

ing exploration variance. Fig. 6.1 illustrates the performance of the MPPI controller as the

variance magnitude and the number of samples are increased. These results demonstrate

that MPPI performs competently at the cart-pole swing up task.

Race Car

The next simulated task tests MPPI’s ability to control a simulated 1/5 scale vehicle similar

to the real-world AutoRally vehicle, and compares its performance against an MPC imple-

mentation of an iterative linear quadratic gaussian controller (MPC-DDP). In this task the

goal was to minimize the objective function:

q(x) = 100d2 + (vx − 7.0)2, (6.2)

d =

∣∣∣∣( x13

)2

+
(y

6

)2

− 1

∣∣∣∣ .
Where vx is the forward (in body frame) velocity of the car. This cost ensures that the

car to stays on an elliptical track while maintaining a forward speed of 7 meters/sec. The

elliptical track is roughly the same size as the real-world Marietta street track. We use a

non-linear vehicle model [66] which takes into account the (highly non-linear) interactions

between tires and the ground.

Figure 6.2 illustrates the comparison of MPC-DDP (left) and MPPI (right) performing a

cornering maneuver along the ellipsoid track. MPPI is able to make a much tighter turn than

MPC-DDP while also carrying more speed in and out of the corner than MPC-DDP. MPPI

is able to do this by sliding slightly into the corners, which shows that it can effectively

handle the non-linearities in the vehicle model. Figure 6.3 illustrates the corresponding

longitudinal and lateral velocities attained during the trial.

The MPPI controller is able to enter turns at close to the desired speed of 7 m/s and then
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Figure 6.2: Comparison of MPC-DDP (left) and MPPI (right) performing a cornering ma-
neuver. The direction of travel in these figures is counter-clockwise.
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Figure 6.3: Velocity comparison of MPC-DDP (left) and MPPI (right) performing a cor-
nering maneuver. MPPI is able to attain a faster top speed and carries more speed into and
out of the corners than MPC-DDP, while also sliding slightly into the turns.

slide through the turn. The MPC-DDP solution does not attempt to slide and significantly

reduces its forward velocity before entering the turn, this results in a higher average cost

compared to the MPPI controller. Figure 6.4 shows the performance comparison in terms

of average cost between MPPI and MPC-DDP as the exploration variance ν changes from
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50 to 300 and the number of rollouts changes from 10 to 10000.
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Figure 6.4: Performance comparison in terms of average cost between MPPI and MPC-
DDP for the Race Car. With a high enough exploration variance and enough rollouts MPPI
is able to outperform MPC-DDP.

Quadrotor

The quadrotor task was to fly through a field filled with cylindrical obstacles as fast as

possible (see Fig. 6.6). We used the quadrotor dynamics model from [67], which is detailed

in Appendix C. This is a non-linear model which includes position, velocity, euler angles,

angular acceleration, and the rotor dynamics. We randomly generated three forests, one

where obstacles are on average 3 meters apart, the second one 4 meters apart, and the third

5 meters apart. This task tests two key traits of the MPPI controller:

i) How well the MPPI controller can satisfy constraints (i.e. avoid obstacles).
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ii) The effectiveness of symmetry breaking in a practical setting, since there are multiple

paths around all of the obstacles.

The running cost function for MPPI was of the form:

2.5(px−pdesx )2 +2.5(py−pdesy )2 +150(pz−pdesz )2 +50ψ2 +‖v‖2 +350 exp(− d

12
)+1000C

Here (px, py, pz) denotes the position of the vehicle, ψ denotes the yaw angle in radians, v is

velocity, and d is the distance to the closest obstacle. The variable C indicates whether the

vehicle has crashed into the ground or an obstacle, and it acts to enforce the task constraints.

We found that the crash indicator term is not useful for the MPC-DDP based controller,

this is not surprising since the discontinuity it creates is difficult to approximate with a

quadratic function. The term in the cost for avoiding obstacles in the MPC-DDP controller

consists purely of a large exponential term: 2000
∑N

i=1 exp(−1
2
d2
i ), note that this sum is

over all the obstacles in the proximity of the vehicle whereas the MPPI controller only has

to consider the closest obstacle.
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Figure 6.5: Sample trajectory through 4m obstacle field DDP (left) and MPPI (right). The
MPPI controller is able to safely navigate the obstacle field, and goes faster than MPC-DDP.

Not only is the MPPI controller able to navigate the forst, but, since it can explicitly
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reason about crashing (as opposed to just staying away from obstacles), it is able to travel

faster and closer to obstacles than the MPC-DDP controller. Figure 6.5 shows a trajectory

taken by MPC-DDP and one of the MPPI runs on the forest with obstacles placed on

average 4 meters away. Since the MPPI controller can directly reason about the shape of

the obstacles, it is able to safely pass through the field by taking a much more direct route.

Fig. 6.7 shows the performance difference between the two algorithms in terms of the time

to navigate through the forest.

Figure 6.6: Simulated forest environment used in the quadrotor navigation task. There are
multiple paths through the obstacle field, but symmetry breaking proves to be an effective
mechanism with MPPI.

Multiple Quadrotors

We also tested MPPI’s ability to simultaneously control multiple quadrotors operating in

close proximity to each other, this was done by combining several quadrotors into one large

system and then attempting the same obstacle navigation task. This results in an extremely

high-dimensional system (for 9 quadrotors the system has 144 states and 36 control inputs).

The algorithm was always able to successfully control 3 quadrotors at once moving through
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Figure 6.7: Time to navigate the obstacle field for MPC-DDP and MPPI.

the obstacle field, and most of the time it was able to control 9 quadrotors performing the

same task. In order to further increase the task difficulty, we also set the obstacles to move

at a rate of 3 m/s in a random direction.

Figure 6.8 illustrates trajectories of the 9 quadrotors moving through the cluttered envi-

ronment with constant obstacles, and Fig. 6.9 illustrates the performance of the 9 quadro-

tors in terms of success rate as a function of the number of the samples for the case of

moving and static obstacles.

Lastly, Fig. 6.10 includes the time for each iteration of the MPPI controller as a function

of the number of the rollout for the case of 1, 3, and 9 quad rotors. The dashed line in Fig.

6.10 represents the real time requirement, which is in the order of 20ms. For the case of a

single quadrotor, the optimization time crosses the real time for 4000 rollouts. In the case

of 3 and 9 quadrotors the optimization time exceeds the real time for 1200 and 500 samples
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Figure 6.8: Trajectory trace of MPPI navigating the 9 quadrotor system through the obstacle
field. MPPI considers all the quadrotors to be one, very large, system and then has to find
controls which jointly guides all of the quadrotors through the field.
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field, taken over 100 trials. With 6000 rollouts MPPI is always able to successfully guide
the system through the obstacle field for static obstacles, but still occasionally fails when
the obstacles are in motion.
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respectively. 1200 samples is sufficient to control the three quadrotor system, however, for

the 9 quadrotor system more than 500 rollouts are needed. In the case of the 9 quadrotor

system, 6000 trajectories are required which runs in about 6x real-time. More importantly,

the growth in computational time is approximately linear in the order of the state space. It

therefore seems reasonable to believe that with near-term hardware improvements, MPPI

with a system of the size of the 9 quadrotor system (144 state variables and 36 control

inputs) will be possible in real-time.

0 2000 4000 6000 8000 10000

Number of Rollouts

0

50

100

150

200

250

O
pt

im
iz

at
io

n
It

er
at

io
n

T
im

e
(m

s)

CUDA Optimization Times

1 Quadrotor
3 Quadrotors
9 Quadrotors
Real-Time

Figure 6.10: Time per iteration of the MPPI controller as a function of the number of
sampled trajectories.

6.2 AutoRally Experimental Results

In this section we apply MPPI to our motivating research problem: autonomous racing on

a dirt test track. Recall that there were three different criteria we want our controller to be

able to satisfy: we want our controller to be able to perform at the limits of handling, satisfy

constraints, and optimize for reasonably long time horizons. We conducted an extensive

set of experiments with MPPI, and analyze the algorithms ability to satisfy these three
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requirements. In the previous section, we compared MPPI against DDP and showed the

MPPI can attain comparable or superior performance. In this section, we compare MPPI

against a competing sampling based controller: a model predictive control version of the

cross-entropy method (CEM-MPC).

AutoRally Dynamics Models

In order to push the system to its performance limits, we require an accurate dynamics

model which can capture where the limits are. In the case of the AutoRally vehicle, ob-

taining an accurate dynamics model is highly non-trivial. Within the autonomous driving

literature there exist several types of models for full-scale vehicles [68, 69], as well as

simplified “bicycle” vehicle models. However, there are a number of challenges in apply-

ing these models to the AutoRally system. Most notable among these are the dirt track

which makes applying friction models meant for pavement difficult, and the significant roll

dynamics of the vehicle which makes applying simplified models inaccurate.

The flexibility of MPPI to handle many different types of models is useful here, since we

can use a machine learning approach to create a highly accurate data-driven as opposed to

applying an inaccurate physics model. In this chapter we examine two different approaches:

one hybrid-physics based approach, and a pure machine learning approach using a fully-

connected feed-forward neural network.

Both models have the same state-space description of the AutoRally vehicle with seven

state variables: x-position, y-position, heading, roll, longitudenal (body-frame forward)

velocity, lateral (body-frame sideways) velocity, and heading rate. These are denoted as(
px, py, θ, r, vx, vy, θ̇

)
respectively. The two control variables are the steering and throttle

inputs, which are denoted by u1 and u2.

A certain subset of the equations of motion are kinematically trivial given the state

space representation. We therefore partition the state space into kinematic state variables,
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xk, and dynamic state variables, xd, such that:

x =

xk

xd

 .

Let xk = (px, py, θ)
T, then we can write the equations of motion for the kinematic variables

as:

xkt+1 = xkt + k(x)∆t,

where the function k(x) is defined as:

k(x) =


cos(θ)vx − sin(θ)vy

sin(θ)vx + cos(θ)vy

θ̇

 .

Given these kinematic updates, the dynamics model only has to determine the update equa-

tions for the dynamic state variables:

xd =
(
r, vx, vy, θ̇

)T

.

The dynamics of these variables do not depend on the global coordinate frame, and there-

fore are not functions of the kinematic state variables. Therefore the equations of motions

for the dynamic state variables can be written as:

xdt+1 = xdt + f(xdt ,vt)∆t,

Where vt = (u1(t) + ε1(t), u2(t) + ε(t)) is the randomly perturbed control input. The full
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equations of motion are then:

xt+1 =

xk(t)

xd(t)

+

 k(x(t))

f(xd(t),v(t))

∆t.

Given these equations, the challenge is to determine the function f . Both methods fit their

parameters using a system identification dataset collected by a human pilot executing a

series of choreographed maneuvers:

i) Slow driving (3 - 6 m/s) around the track.

ii) Zig-Zag maneuvers at slow speeds (3 - 6 m/s).

iii) High acceleration maneuvers by applying full throttle at the beginning of a straight

and applying full brake before entering the next turn.

iv) Sliding maneuvers where the pilot attempts to slide as much as possible.

v) High speed driving where the pilot simply attempts to drive around the track as fast

as possible.

Each maneuver was executed for 3 minutes going counter-clockwise and 3 minutes going

clockwise for a total of 30 minutes worth of driving data.

Basis Function Model

The basis function model has the form:

f(xd) = ΘTφ(xd),

where Θ ∈ Rb×4 and φ(x) = (φ1(x), φ2(x), . . . φb(x))T ∈ Rb is a matrix of coefficients and

a vector of non-linear basis functions respectively. The term b denotes the number of basis

functions in the model. Given this model form, there are two challenges: determining an

89



appropriate set of basis functions, and computing the coefficient matrix Θ. For determining

an appropriate set of basis function we analyzed the non-linear bicycle model of vehicle

dynamics from [66], and extracted out all of the non-linear functions that appeared in the

algebraic equations. This led to a set of 21 basis functions, and then, using trial and error,

we added 4 more basis functions to account for the roll dynamics and the non-linear throttle

calibration. The vehicle model and the basis functions extracted from it are described in

Appendix C.

Given a set of basis functions and some data collected from the system, determining

the coefficient matrix Θ is an unconstrained linear regression problem which is easy to

solve. We used linear regression with Tikhonov regularization to solve for Θ given the basis

functions and the system identification dataset. Even though we are interested in simulating

entire trajectories forward in time, we train the model to minimize the one-step prediction

error (i.e. given (xdt and ut) predict xdt+1) as opposed to the multi-step prediction error.

Minimizing multi-step prediction error is technically the correct objective, but considerably

more difficult as the problem becomes non-convex [70]. An important detail to note is that

performing standard linear regression (without Tikhonov regularization) does not work for

multi-step prediction as the weights tend to be very large which results in unstable forward

simulation, even if the one-step prediction error is lower than the regularized method.

Neural Network Model

The second model that we trained to approximate the dynamics function was a multi-layer

neural network model. We use a two hidden layer, fully connected model with hyperbolic

tangent non-linearities. Each hidden layer had 32 neurons for a total of 1412 parameters.

The neural network model is trained using the same 30 minute system identification dataset

as the basis function model, and again we minimize one-step prediction error. The model

is trained with mini-batch gradient descent using the RMSProp optimizer [71] and L2 reg-

ularization.
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Table 6.1: Errors for Basis Function and Neural Network

Basis Function Neural Network
R2 Score .68 .78

Mean Squared Error 2.07 1.39
Mean Absolute Error .93 .76

The neural network significantly outperformed the basis function model on the valida-

tion dataset. The coefficient of determination, mean squared error, and mean absolute error

for the two models on the validation set are shown in Table 6.1. Despite the inferiority

of the basis function model on these testing metrics, we still tested both models in order

to determine whether the physics based features provided superior generality to the purely

black-box neural network. Both models suffer from inaccuracies due to the effect of hid-

den variables, like track condition and battery voltage, that affect the dynamics but are not

represented in the state space representation of the system.

Cost Function and Algorithm Parameters

There are a number of free parameters in the MPPI and CEM-MPC algorithms. We used

simulation experiments to initially determine these parameters, and then used a small num-

ber of real-world experiments in order to fine tune them. The same cost function and

algorithmic parameters were used across all the experimental settings (except for the speed

target which modulates how fast the vehicle goes). Table 6.2 lists the parameter values used

during the experiments.

Table 6.2: MPPI and CEM-MPC Parameters

Parameter Value
Control Frequency 40 Hz

Time Horizon 2 seconds
λ 12.5
γ 0.1
ν 1.0
Σ Diag(0.0306, 0.0506)

Initialize(xT−1) (0, 0)
Eliteness threshold (Cross-Entropy only) > 0.8 percentile

91



Since the MPPI and CEM-MPC are both sampling based methods, we did not design

separate cost functions for the two algorithms. This would not be the case in comparing

with a gradient based method, where smoothness would have to be enforced. The state-

dependent cost function that we used was of the form:

α1Track(x) + α2Speed(x) + α3Stabilizing(x) (6.3)

The three components of the cost function are as follows:

Track Cost

For the track cost we require a map representation of the track which gives an indication of

how close to the edge the vehicles position is. There are a variety of ways to create such

a map, our approach was to take a GPS survey of the boundaries of the track, then a cubic

2-dimensional spline was used to regress a cost map with points on the outer boundary set

to 1 and points on the inner boundary set to -1. The absolute value of this map was taken to

produce the overall cost map. Lastly, the total cost was capped at 2.5 in order to avoid re-

gression artifacts far away from the track. The cost-map is stored in CUDA texture memory

which enables fast lookups for data exhibiting 2-d locality, it also automatically interpolates

the grid so that look-ups with continuous positions are efficient. Letting h(px, py) denote

the value returned by the cost map, the overall track cost is then:

Track(x) = h(px, py) + .9t (10000I({h(px, py) > .99})) .

In the second term t is the timestep and I is an indicator function. This is a time-decaying

impulse penalty for being located outside the track boundaries. It is necessary to include the

time-decay because of disturbances and errors in the dynamics. Not using a time-decaying

penalty is effective in simulation with perfect dynamics, but fails on the actual system.

This is because a strong disturbance can push the importance sampling trajectory far off
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the track, which results in most samples receiving the impulse cost and being rejected,

this destabilizes the optimization. Including the time-decay term enables trajectories which

stay on the track until the very end of the horizon to play a role in the optimization, while

still enforcing a hard constraint like objective by rejecting trajectories that are immediately

about to exit the track.

Speed Cost

The speed cost is a simple quadratic cost for achieving a desired forward speed:

Speed(x) = (vx − vdes)
2 ,

where vx is the longitudinal velocity in body-frame.

Stabilizing Cost

The stabilizing cost penalizes samples which exhibit extreme maneuvers that are known to

result in undesirable behaviors (e.g. rollovers and spin-outs). This cost follows the track

cost pattern where there is both a soft and hard cost. The stabilizing cost is:

Stabilizing(x) = ζ2 + 10000I ({|ζ| > .75}) (6.4)

ζ = − arctan

(
vy
‖vx‖

)
,

the term ζ is known as the side slip angle of the vehicle and measures the difference between

the velocity vector of the vehicle and heading angle. Under normal driving conditions the

side slip angle of the vehicle is zero. The stabilizing cost function provides a quadratic

penalty for slip angles up to .75 radians (approximately 42 degrees), and then rejects any

trajectories with a slip angle greater than 0.75 radians.
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Results

All experiments were conducted at the Georgia Tech’s Marietta Street Autonomous Racing

facility. The facility consists of a roughly elliptical dirt track which is 30 meters across at

its widest point. An image of the track with the robot is shown in Fig. 6.11. A ground

station is set up in the center of the track which consists of an operating control system

(OCS) laptop, runstop, and a base station GPS module to provide RTK corrections to the

GPS module on-board the robot. The OCS laptop is used to remotely communicate with

the robot and monitor its status over WiFi. However, all of the software required for au-

tonomous operation runs on the vehicle’s on-board computer. We want to emphasize that

all computations used for driving were performed on-board. In our experiments, we tested

3 different speed targets (6 m/s, 8.5 m/s, and 11 m/s) for each of the two control methods

with each of the two different dynamics models. Each setting was tested by maneuvering

the vehicle clockwise and counter-clockwise around the track for 100 laps. Out of the 24

different scenarios, we were able to successfully collect 100 laps for 17 of the test scenarios,

for a total of over 1700 laps around the track. This is equivalent to over 100 kilometers of

driving data1. The other 7 settings resulted in controllers that were too reckless or unstable,

so we were unable to complete those trials in their entirety.

Each lap was classified as either a success, a failure, or invalid if the cause of a failure

was external to the controller. The controller is not the only part of the system that can cause

a failure, much more common are state estimator errors due to loss of the GPS signal. In

addition, the first lap in each batch of data was discarded. This is because the starting lap

has slightly different statistics than the other laps, due to the vehicle accelerating up from

zero velocity.

1The data from these experiments is publicly available at the AutoRally project page:
https://autorally.github.io
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Figure 6.11: Experimental setup at the Georgia Tech Autonomous Racing Facility. All of
the state estimation and control software is run on-board the robot itself, making it fully-
autonomous and self-contained.

Overall Performance

Table 6.3 shows lap time, success rate, and speed statistics for each of the tested settings,

and Table 6.4 shows the raw trajectory traces overlayed onto the track for all of the runs

at each setting. The vehicle’s behavior differed significantly depending upon the choice of

algorithm (MPPI or CEM-MPC), the dynamics model (basis function or neural network),

and the speed target (6m/s, 8.5m/s, or 11m/s).

At the 6 meter per second target, the MPPI controllers all perform very consistently,

albeit conservatively. Using both the basis function and neural network model the con-

troller navigates the vehicles around the track at speeds varying from just over 1 m/s to a

maximum of 5.77 m/s. This keeps the vehicle below the friction limits of the track and

vehicle system, which means the car does not slide. The performance of MPPI with the

neural network is remarkably consistent, especially from a stochastic controller, as the 100

laps in both counter-clockwise and clockwise have extremely low variance from lap to
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Table 6.3: MPPI and CEM-MPC Performance Statistics

Method Lap Success Rate Average Lap Time (s) Speed Range m/s

MPPI-NN 6 m/s CC 100% 16.98± .32 1.99− 4.96

CEM-NN 6 m/s CC 100% 12.61± .26 2.86− 6.63

MPPI-BF 6 m/s CC 100% 18.42± .21 1.28− 5.65

CEM-BF 6 m/s CC 83.16% 11.82± .43 0.39− 6.90

MPPI-NN 6 m/s C 100% 16.03± .22 2.58− 4.78

CEM-NN 6 m/s C 100% 12.58± .25 2.33− 6.28

MPPI-BF 6 m/s C 100% 16.00± .37 1.97− 5.77

CEM-BF 6 m/s C 97.30% 12.14± .31 1.85− 7.17

MPPI-NN 8.5 m/s CC 100% 11.78± .26 1.84− 7.5

CEM-NN 8.5 m/s CC 91.20% 10.74± .41 1.60− 8.39

MPPI-BF 8.5 m/s CC 89.10% 11.30± .70 1.16− 7.71

CEM-BF 8.5 m/s CC <50% N/A N/A

MPPI-NN 8.5 m/s C 100% 12.16± .33 2.09− 7.46

CEM-NN 8.5 m/s C 85.42% 10.83± .55 N/A

MPPI-BF 8.5 m/s C 89.00% 9.81± .31 4.22− 9.72

CEM-BF 8.5 m/s C <50% N/A N/A

MPPI-NN 11 m/s CC 100% 9.27± .30 3.46− 9.06

CEM-NN 11 m/s CC 66.32% 8.42± .23 4.00− 10.01

MPPI-NN 11 m/s C 76.00% 10.09± .35 1.47− 9.37

CEM-NN 11 m/s C <50% N/A N/A
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Table 6.4: Trajectory traces of MPPI and CEM-MPC during testing runs.

MPPI-NN CEM-NN MPPI-BF CEM-BF

CC-6ms

C-6ms

CC-8.5ms

C-8.5ms

CC 11ms

C 11ms
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lap. Figure 6.12 shows the 100 laps collected at the 6 m/s target with the MPPI algorithm

and neural network model traveling counter-clockwise. The cross-entropy method using

the neural network model performs perfectly at this settings as well, and actually achieves

significantly faster speeds than the MPPI algorithm. However, the cross-entropy method

cannot be as discriminative as the MPPI controller, since MPPI can discard, by assigning

a low weight, any trajectories that leave the track. In contrast, the cross-entropy method

must accept the top 20% of trajectories into its solution. Even at the slow setting of 6 m/s

the cross-entropy method has a failure with the basis function model, and only achieves

an 83.16% (79/95 successful laps) success rate going clockwise around the track using the

basis function model. The trajectory traces for each of the different settings at the 6 m/s

target are displayed in the first two rows of Table 6.4.

At the 8.5 meter per second target, differences between the algorithms and models be-

come more apparent. MPPI using the neural network model is the only method which

performs flawlessly going both clockwise and counter-clockwise at this setting. MPPI is

still more cautious than the cross-entropy method, and achieves maximum speeds about 1

m/s slower than the target velocity. This is consistent with the performance at the 6 m/s tar-

get. The speed ranges also start to become dramatic at this setting, for instance MPPI with

the neural network model (in the counter-clockwise direction) had speed ranges between

1.84 m/s and 7.5 m/s during the approximately 100 laps collected at that setting. The 1.84

m/s speed at this setting was not typical, but was the result of the vehicle encountering a

large disturbance (due to a bump in the track), and it demonstrates the controller’s ability

to make drastic mode shifts in order to react to disturbances. Also, note that the MPPI

controller no longer maintains the extremely tight variance that it did at the 6 m/s target, as

the speed cost at 8.5 m/s reduces the relative importance of staying near the center of the

track.

The cross-entropy method has significant difficulty at this setting. At the 8.5 m/s set-

ting using the basis function model, the algorithm was unable to complete the trials at a
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Figure 6.12: Top: Trajectory traces of MPPI controller using the neural network model
at the 6 m/s (Top), 8.5 m/s (Middle), and 11 m/s (Bottom) target velocity. Each figure
represents 100 laps, or approximately 6 kilometers of driving. Direction of travel is counter-
clockwise.
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Figure 6.13: Time-lapse image of the vehicle making a cornering maneuver. Notice how
the front left wheel is off the ground as the vehicle enters the turn.

satisfactory rate, and was generally unsafe to run. The issue was that it disregarded the

track boundaries, and collided with either the inside or outside track barrier on over 50%

of the trials. The cross-entropy method still maintained a high success rate using the neural

network model.

At the fast speed target of 11 m/s only the MPPI controller traveling in the counter-

clockwise direction is able to complete all 100 laps without a significant violation of the

track boundaries. Note that actually achieving the 11 m/s target is very difficult on this track

(a skilled human driver is not able to consistently achieve a top speed of 11 m/s). The top

speed achieved by MPPI at this setting is 9.06 m/s, or approximately 20 miles per hour. The

cross-entropy method is still faster than MPPI, however the success rate of the algorithm

for actually completing laps is very low (only 66.32%). Figure 6.12 shows the trajectory

traces for the MPPI controller with the neural network traveling counter-clockwise. The

trajectory traces come extremely close to the barrier, but do not collide with it.
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Cornering Maneuvers

The most difficult part of aggressive driving, from a control perspective, is cornering. Suc-

cessful cornering requires significantly reducing speed, and then applying the throttle as

the vehicle exits the turn. Failing to reduce speed or applying the throttle too soon can

result in spin-outs (uncontrolled high heading rate). Using the neural network model, the

MPPI controller decreases speed by performing a small slide into turns. This is a delicate

maneuver that often results in the left front inside wheel momentarily lifting off the ground.

Once the vehicle straightens out, the controller hits the throttle and resumes sliding slightly

as it exits the turn and enters the straight. Figure 6.13 shows a time lapse image of the

vehicle entering the turn at the 11 m/s target, and fig. 6.15 shows the same maneuver from

an overhead perspective.

Another common behavior of the controller is counter-steering (steering right to turn

left) when exiting turns. This is a behavior which requires taking advantage of the non-

linear dynamics of vehicle, and is only effective at high speeds. Figure 6.14 shows this

behavior as the car exits a turn on one of the 11 m/s trials.

Robustness to Model Error

In order to navigate the vehicle around the track, the controller has to be robust to modeling

error (Table 6.1). Figure 6.16 shows how the predicted model differs from reality around a

typical turn at the 11 m/s target with the neural network model. Going counter-clockwise

the model is able to accurately predict out to the 2 second time horizon. However, in

the clockwise direction the model incorrectly predicts over-steer when in fact the vehicle

under-steers.

This behavior is likely due to a mismatch in track conditions between the clockwise

training data and the conditions of the track during the tests: the track was much drier (see

Fig. 6.11) during the system identification data collection than during the testing runs (see

Fig. 6.13). A drier track means a lower coefficient of friction, which makes it easier to turn
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Figure 6.14: Example of the AutoRally executing a controlled powerslide while cornering
while under the control of MPPI.

by sliding the back end of the vehicle. However, with a wet track, the coefficient of friction

is higher, so the back end of the vehicle is harder to break free and attempting a similar

maneuver results in under-steer. It is unclear why the counter-clockwise direction was not

similarly effected due to this mismatch.

Disturbance Recovery

In addition to systemic modeling error, the dirt track provides a source of strong distur-

bances which cannot be modeled using our state representation. This includes environment

effects like holes and lose patches of dirt. This became especially difficult during the 8.5

m/s test runs when dry weather and hundreds of consecutive laps around the track made

it very difficult to drive. Despite these effects, the neural network model with MPPI was
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Figure 6.15: Trajectory and heading trace of cornering maneuver. The direction of travel is
counter-clockwise, heading indicator is not to scale.

able to successfully complete all 100 laps. Figure 6.17 shows a series of images which

demonstrate the effect of these disturbances on the vehicle.

Failure Modes

Although the neural network model generally outperformed the basis function model, and

MPPI generally outperformed the CEM-MPC in terms of success rate. All of the methods

suffered some failures. With MPPI and the neural network, the only failures came from
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Figure 6.16: Neural network modeling error at 11 m/s target. Going counter-clockwise
the model prediction is accurate, but clockwise the model predicts severe over-steer when
it should have predicted under-steer. The predicted trajectory is generated by taking the
applied input sequence from the data recording and running it through the neural net model
starting from the same initial condition.

attempting to navigate the track clockwise at the 11 m/s target. The problem in this case

was systematic modeling error which caused the vehicle to under-steer around the corners.

Figure 6.18 shows all of the trajectories generated by the MPPI controller at this setting

which failed. Notice that all of the trajectories fail in a similar manner, note that the track

boundaries were pushed out a little bit so that we could continue collecting data even when

the vehicle violated the boundary. In the case of cross-entropy, the failure come from not

respecting the track boundary. Even when going clockwise with the neural network model,

which is very accurate, the cross-entropy method consistently violates the track boundary.

This is due to the sampling method used by cross-entropy, which allows trajectories into

the sampling even if they violate the track constraint.
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Figure 6.17: Disturbance rejection by the MPPI controller. The car hits a large hole in the
track and the front and rear wheels leave the ground in alternating fashion while the vehicle
is attempting to steer around the corner.
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Figure 6.18: Failure mode of the MPPI algorithm. Speed setting is 11 m/s and the direction
of travel is clockwise. The model under-estimates the amount of steering input required,
which results in under-steer and collision with the barrier.
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6.3 Discussion

In this chapter we have examined the performance of MPPI on a variety of simulation ex-

periments and on the AutoRally platform. The simulation experiments demonstrate that

MPPI can handle high-dimensional non-linear systems, and they demonstrate some of the

advantages that MPPI has over gradient based methods when it comes to handling con-

straints (avoiding obstacles in the quadrotor case). Since MPPI can use costs with impulse

like penalties it can discriminate very finely between actions that do or do not violate con-

straints, which results in increased performance. This contrasts with MPC-DDP which

needs finely tuned gradients in order to satisfy constraints.

In the real-world AutoRally experiments, the ability to satisfy constraints (in this case

staying on the track) was once again the differentiating factor between MPPI and CEM-

MPC. In this case, the difference in performance is not due to the difference between a

gradient based vs. gradient free method, but due to the way MPPI and CEM-MPC com-

putes the averaged update. CEM-MPC takes an unweighted average over the elite trajec-

tories, which may include trajectories that violate constraints. MPPI, on the other hand,

takes a weighted average which means that it can virtually eliminate trajectories that vio-

late constraints from the optimization - so long as at least one constraint free trajectory is

sampled.

If we return to the desired features of our controller: performance at the limits of han-

dling, constraint satisfaction, and real-time computation. We see that MPPI can satisfy

these three criteria, and it has an advantage over both the cross-entropy method and MPC-

DDP when it comes to satisfying constraints. However, if we dig a little deeper into MPPI’s

performance it becomes apparent that MPPI’s ability to satisfy task constraints still leaves

something to be desired, especially considering its performance in the real-world on the

AutoRally system.

In the simulation experiments the term in the cost function which was responsible for
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obstacle avoidance was of the form:

350 exp(− d

12
) + 1000C.

Here d is the distance to the nearest obstacle, and C a indicator variable denoting if a

crash occurred or not. The first term encourages the quadrotor to keep a cushion between

itself and the obstacle, which is preferable since there is additional state-dependent noise

in the system that the MPPI controller is not aware of. If the cushioning term is removed

the overall performance remains largely the same, except the overall success rate drops

slightly since the quadrotor starts traveling close enough to obstacles that an unfortunate

state disturbance can cause a collision. If the constraint term is removed, the success rate

for the system decreases dramatically. Also, as opposed to the soft cushioning term, we

could have instead simply enlarged the radius of the obstacle and used purely an indicator

function to achieve the same effect. This is how constraint satisfaction in MPPI is supposed

to work: a very sharp (in this case discontinuous) function is the main source of constraint

information, and an additional cushioning function can optionally be added in order to

provide some insurance.

In the AutoRally experiments we initially tried to use a similar cost function for the

quadrotor task:

h(px, py) + 10000I({h(px, py) > .99}).

Using this type of cost function in simulations of the AutoRally (simulations where the

model used by the controller is the model used in the simulation) works well. However, in

the real world the controller occasionally makes inappropriate actions that result in a failure

when using this type of cost function. The occurrence of these failures can sometimes be

hard to observe because they only happen once every several laps when the vehicle is di-

rected to drive fast. Nonetheless, they are a major problem. The underlying cause of these

failures is that disturbances in the real world can cause almost the entire “spray” of trajec-
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tories to move off the track, at which point the sampling starts rapidly jumping between

solutions instead of converging. Sometimes, especially at lower speeds, the controller is

able to recover but occasionally this behavior in the underlying optimization will result in

a series of uncoordinated actions being executed, causing a failure.

Our solution was to use a modified cost function:

Track(x) = h(px, py) + .9t (10000I({h(px, py) > .99})) .

with a time decay on the penalty term for leaving the track. Although this is effective at

enabling the vehicle to drive, it turns the paradigm that was so effective in the quadrotor

case on its head: now the soft cost is being utilized as the main source of information which

keeps the vehicle on the track, and the indicator type function exists in order to make last

second aggressive maneuvers to avoid the boundary.

Using this combination of a soft cost and then a time-decaying hard penalty does pro-

vide a benefit. For instance, MPPI was much better at CEM-MPC at staying on the track.

However, it nullifies the primary advantage that MPPI had against MPC-DDP in our earlier

experiments: which was the ability to use a simpler cost function for satisfying constraints

while simultaneously achieving better performance. Since this is the major benefit of MPPI

over competing methods, it is essential that we find a way to overcome the issues which

prevent us from using the simpler cost functions that we utilized earlier. In the subsequent

chapters, we explore solutions to the underlying causes of this problem: the numerical

instability of the sampling-based optimization, and mitigating modeling error.
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CHAPTER 7

ROBUSTNESS IN SAMPLING BASED CONTROL ARCHITECTURES

The results in the previous chapter demonstrate the applicability of MPPI to solve chal-

lenging control problems. However, in order to get results with MPPI on a real-world

system, we needed to create and tune soft constraint terms in the cost function. Although

it is possible to make this work for certain situations, from a general constraint satisfaction

perspective it is unsatisfactory. Tuning soft constraints is a tricky task, and it is generally

difficult or impossible to systematically tune soft constraints and determine when or how

they might fail. Particularly troubling is the fact that changing the relative values of the

speed cost and track cost can have unpredictable results. For instance, if the track cost is

set too low relative to the speed cost the car tends to intentionally drive off the track. More-

over, if extensive tuning of the cost function is still required for constraint satisfaction, it

is unclear what advantage MPPI has over current methods. For instance, an MPC-DDP

controller can perform the same task of driving fast around the nearly elliptical Marietta

street track [72], using a carefully tuned cost function.

Ideally, instead of tuning soft constraints, we could directly specify constraints or

use cost terms that easily specify constraint violations. In the information theoretic and

stochastic HJB-PDE frameworks, directly encoding hard state constraints is difficult. How-

ever, what worked effectively with MPPI, in simulation, was encoding constraints using

weighted indicator type functions:

N∑
i=1

wi1Ci(x). (7.1)

Where the value of wi is set very high so that if a cost above wi is ever achieved we know

that a constraint has been violated. Later, it will become clear that utilizing these types of
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costs is not ideal, because cost terms of this form are not Lipshitz continuous, and therefore

not amenable to analysis which makes providing any sort of guarantee about performance

difficult. However, looking at some of the benefits and issues of using these types of cost

terms is instructive. Therefore, in this chapter we will consider cost terms consisting of

these weighted indicator functions for encoding constraints.

MPPI can, in principle, handle cost functions of the form of Eq. (7.1). Unfortunately, in

practice, when using cost functions with such sparse objective information, sampling-based

methods like MPPI are brittle and prone to failure in the face of unexpected disturbances.

The fundamental problem is that sampling-based methods, while gradient free, are still

iterative local search methods. This is simply because it is intractable to fully sample high

dimensional state spaces. As a result, it is still possible for MPPI to become stuck in local

minima, and the local minima it finds is highly dependent on its initialization.

In an MPC setting, initialization takes the form of a warm start. If (u0,u1, . . .uT−1) is

the current control solution, then (u1,u2, . . . ) will be used to initialize the next iteration.

Implicit in this procedure is the assumption that the actual next state is close to the predicted

next state. In the presence of disturbances, that assumption may fail. Figure 7.1 gives

an example. In the worst case, a disturbance can move push the solution towards a bad

(high cost) local minima. In the case of optimizing with weighted indicator functions, bad

(a) (b) (c)

Figure 7.1: Effect of disturbances on sampling based MPC. In (a), an autonomous vehi-
cle has a good sampling distribution. In (b) the vehicle executes the control, but hits a
disturbance, resulting in (c) the sampling distribution leads to high cost.
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local minima are common since they have zero gradient everywhere, which can cause the

algorithm to fail.

In this chapter, we investigate a solution to this robustness problem. The key idea is

to augment a sampling based MPC method with an ancillary controller for disturbance re-

jection by utilizing Tube-MPC. Tube-MPC was originally developed as a way to guarantee

robustness for constrained linear systems [73] in the presence of disturbances and was later

extended to non-linear systems [74]. The original version of non-linear Tube-MPC, which

we utilize in this work, consists of two model predictive controllers. The first controller,

termed the nominal controller, attempts to solve the primary optimal control problem for

an idealized nominal state, and the second controller, called the ancillary controller, has the

goal of rejecting disturbances in order to keep the actual system state close to the nominal

state. We also make use of some of the suggestions from [75], in order to improve the

performance of the method. This is only one variant of Tube-MPC, and there are other

non-linear versions which utilize a separate feedback controller instead of another MPC

controller [76, 77] in order to devise an ancillary controller.

7.1 Tube-Based MPPI

Once again, we consider general discrete time non-linear systems, but this time with an

extra disturbance on the state:

xt+1 = xt + F(xt,ut + εt)∆t+ wt, (7.2)

where x ∈ RN is the state, u ∈ RM is the control input, and the term ε ∈ N (0,Σ) is a dis-

turbance directly on the control input. The term w is an external disturbance, which exists

due to a combination of modeling error and purely stochastic or unobserved environmental

effects. The goal is to optimize systems with running costs in the standard path integral
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form:

L(x,u) = q(x) + λuTΣ−1u, (7.3)

q(x) = c(x) +
N∑
i=1

wi1Ci(x). (7.4)

The state dependent portion of the cost is composed of c(x), and the weighted indicator

function terms. The goal of the first portion of the cost is to encode some overarching

directive to the robot (e.g. go a certain speed), and the second portion of the cost acts to

encode constraints into the system.

The linear version of Tube-MPC utilizes a nominal controller, a nominal state, an ancil-

lary controller, and the real system state. The nominal controller is able to select the initial

nominal state (subject to it being nearby the actual system state) and the nominal solution,

both of which are readily available via the solution of a quadratic program. The ancillary

controller then takes the form of a simple linear feedback gain, which maintains the actual

state of the system in a tube around the nominal state solution. In non-linear Tube-MPC,

which is the basis for our approach, much of the convenience of the solution for the linear

case is lost. However, the algorithmic structure and the end result remain the same.

We consider the augmented system:

x∗t+1 = x∗t + F(x∗t ,u
∗
t )∆t, (7.5)

xt+1 = xt + F(xt,ut + εt)∆t+ wt. (7.6)

These systems are identical, except that one is disturbed via noise, and the other is distur-

bance free. The nominal state and control are denoted by x∗ and u∗ respectively. The nom-

inal controller is a non-linear model predictive controller, which can consider general costs

and constraints, and it computes a solution {
(
x∗0,x

∗
1, . . .x

∗
T−1,x

∗
T

)
,
(
u∗0,u

∗
1, . . .u

∗
T−1

)
}.

The nominal system is allowed to ignore system disturbances, so we can have x∗0 6= x0,
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where x0 is the real state of the system. The role of the ancillary controller is to then track

the nominal system state. We implement the ancillary controller using an MPC-DDP/iLQG

controller, which solves a standard tracking problem.

Unlike the linear Tube-MPC case, in the non-linear case the nominal controller does

not consider the initial nominal state as an input variable, however in certain instances, the

nominal state can be reset back to the actual state. There are then 3 components of the

Tube-MPC algorithm that we need:

i) A nominal controller.

ii) A method for setting the nominal state.

iii) An ancillary controller.

We will hereon refer to our method as Tube-MPPI.

Nominal Controller - Model Predictive Path Integral Control

For the nominal controller we use the MPPI controller developed in chapter 5. Besides the

fact that the initial condition utilized may not be the real system state, there is another mi-

nor variation that needs to be done in order for MPPI to be suitable for usage as a nominal

controller. The difference is that instead of directly returning the optimal control, the al-

gorithm returns a control and state sequence that the ancillary controller attempts to track.

This means that we are using the cost-weighted average as an optimal control sequence,

which is potentially problematic given our previous observations about the difference be-

tween the optimal importance sampler and an optimal control sequence. This issue will

be addressed in the next chapter, but for this chapter we will treat the optimal importance

sampler as an optimal control sequence. An iteration of the modified algorithm is shown in

Alg. 2.
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Algorithm 2: Nominal Controller (MPPI)
Given: F, g: Dynamics and clamping function;
K,T : Number of samples and timesteps;
U : Initial control sequence;
Σ, ν, λ, γ, φ, q: Cost functions/parameters;
SGF: Savitsky-Galoy convolutional filter;

while task not completed do
// Nominal state instead of real state
x← Fn GetNominalState();
/* Begin parallel block */
for k ← 0 to K − 1 do

S̃k ← 0;
Sample Ek =

(
εk0 . . . ε

k
T−1

)
, εkt ∈ N (0, νΣ);

for t← 0 to T − 1 do
vt = ut + εkt ;
x← x + F(x, g(vt))∆t;
S̃k += q(x) + 1

2

(
γ
[
uT
t Σ−1ut + 2uT

t Σ−1εt
]

+ λ
[
(1− ν)εTt Σ−1εt

])
;

S̃k += φ(x);

/* End parallel block */

ρ← min{S̃0, S̃1, . . . S̃k};
η ←∑K

k=1 exp
(
− 1
λ
(Sk − ρ)

)
;

for k ← 1 to K do
wk ← 1

η
exp

(
− 1
λ
(Sk − ρ)

)
;

for t← 0 to T − 1 do
U ← SGF ∗

(
U +

∑K
k=1 wkEk

)
;

// Simulate state sequence
X ← Fn Simulate(x0, U);
return (U,X);

Selecting the Nominal State

The key feature of Tube-MPPI differentiating it from standard MPPI is the usage of a

nominal state as the initial condition. The role of the nominal state is to prevent MPPI from

jumping into high-cost local minima, and the mechanism for selecting the nominal state is

essential to the Tube-MPPI algorithm. In the original description of non-linear Tube-MPC,

the nominal state is initially set equal to the actual state, and then it is simulated forward
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without ever receiving feedback from the actual system. This scheme has two primary

drawbacks:

i) Using pure forward simulation means that the algorithm is completely reliant on the

tracking ability of the ancillary controller. In cases where the ancillary controller

fails, the nominal state and real state will quickly diverge resulting in a failure of the

overall control scheme. In real world experiments on the AutoRally system, purely

relying on forward simulation and the ancillary controller to keep the ancillary and

actual states close together never succeeded in completing an entire lap.

ii) Most disturbances are not catastrophic to the nominal controller, and in those cases,

it is preferable to let feedback enter the nominal controller in order to re-plan from

the actual system state. In some cases, disturbances can even be beneficial. If the

fortunate situation occurs where a disturbance improves the current solution, then

that disturbance should be taken advantage of, not rejected.

In [75] a modification to Tube-MPC is suggested whereby two copies of the nominal

controller are run, one from the nominal state and one from the real system state. If the

nominal controller finds a better solution using the real state of the system, then the su-

perior solution is used, and the nominal state is reset back to the real system state before

moving onto the next time-step. We propose a similar, albeit more relaxed version of this

mechanism, where we accept the solution from the nominal controller using the real system

state if the cost is less than the nominal state solution plus some threshold. The threshold

is set as follows: let {Ci0 , Ci1 , . . . CiM} denote the sets of constraints that are considered

safety critical, then the minimum of {wi0 , wi1 . . . wiM} is set as the threshold. This mecha-

nism ensures that a disturbance can never push the solution of the nominal controller into

a constraint region.
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Ancillary Controller - MPC-DDP

The last component of the Tube-MPPI controller is an ancillary controller which solves

a tracking problem in order to keep the actual system state within a tube centered about

the nominal state. This is a standard tracking problem, where there is a small initial error

and a quadratic cost, and there are numerous effective solutions. We elected to use an MPC

version of differential dynamic programming (the iterative linear quadratic gaussian control

(iLQG) variant), as in [21, 25]) as the ancillary controller, and we found that it provided

good performance at a mild computational cost.

This algorithm works by iteratively linearizing the system dynamics, and quadratizing

the cost function to create a linear-quadratic approximation of the control system. Then

the approximate system is optimized for using standard tools from linear systems theory.

After the optimal correction for the linear system is found, an optimization step is taken,

and the state and control sequences are updated before re-approximating the system and

taking another step. Usually the most difficult part of DDP is creating a cost function that

is well conditioned for quadratization, however, for the tracking problem this is trivial since

we have a purely quadratic cost to begin with. Although, we still need to define running

state, terminal state, and control cost matrices (Q, P , and R respectively), which define

how important the states are relative to each other.

Algorithm Summary

Now that we have descriptions of the three main components of the Tube-MPPI algorithm,

we can give its full description. The steps in the algorithm are given in psuedo-code in Alg.

3. Initially, the nominal and real state are set equal to each other. Entering into the main

loop, solution sequences for both the nominal and real state are computed. If the real state

is below the given threshold, then the real state is set equal to the nominal state and the real

solution is set equal to the nominal solution. Next, the tracking problem is solved, note that

this is trivial if the “IF” condition immediately above was triggered. Lastly, state feedback
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is received and the control sequences are slid down one step in order to warm-start the next

iteration.

Algorithm 3: Tube-MPPI
Given: F, g: System dynamics;
S: State-sequence cost function;
P,Q,R: Terminal state, running state, and control cost matrices;
T : Threshold for accepting solution from real state;
Input : x,x∗: Initial real and nominal state;
Uinit: Solution initialization;

// Initialization
U ← Uinit;
U∗ ← Uinit;
x← Fn StateEstimator();
x∗ ← x;
while Task Not Finished do

// Compute solution from nominal and real state
U∗, X∗ ← MPPI(U∗,x∗);
U,X ← MPPI(U,x);
// Condition for accepting real state
if S(U,x) ≤ S(U∗,x∗) + T then

x∗ ← x ;
U∗, X∗ ← U,X;

/* Asynchronous Block: Run ancillary controller */
u← Fn ILQG(x, P,Q,R, U∗, X∗);
Fn SendToActuators(u);
/* End Asynchronous Block */
x← Fn StateEstimator();
x∗ ← x∗ + F(x∗, g(u∗0))∆t;
// Slide control sequences in order to warm-start
for t← 0 to T-2 do

ut ← ut+1;
u∗t ← u∗t+1;

uT−1 ← uinit;
u∗T−1 ← uinit;

In our real-time implementation, which we used for the AutoRally, the two MPPI itera-

tions run simultaneously on the GPU. Each instantiation of MPPI samples 1,200, 2 second

long trajectories with a control frequency of 50 Hz. The nominal controller publishes so-

lutions at a rate of 50 Hz. The ancillary controller runs asynchronously on a separate CPU
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thread, and performs optimization for the latest solution published by the nominal con-

troller. The ancillary controller optimizes for a shorter time horizon (1 second), but runs at

a faster frequency (100Hz).

7.2 Experimental Results

We tested the Tube-MPPI algorithm on a simulated linear point mass system, a simulated

helicopter landing task, and both a simulated and real-world autonomous racing task. These

experiments were chosen in order to highlight both the advantages and disadvantages of

the proposed method. Through-out these experiments we refer to 3 different experimental

conditions for MPPI:

i) Baseline-MPPI refers to MPPI operating on a system where there is no additional

disturbance beyond the control dependent noise assumed in the MPPI framework.

ii) Disturbance-MPPI refers to the normal MPPI algorithm operating on a system with

additional disturbances besides what has been assumed by the MPPI algorithm. De-

pending on the system, this additional noise takes the form of extra noisy control

inputs or non-control dependent noise.

iii) Tube-MPPI refers to Alg. 3 operating on the same extra-noisy system as disturbance

Disturbance-MPPI.

Note that the Baseline-MPPI method is impossible to implement in the real-world, since it

requires a perfect description of the systems dynamics and noise distribution. We include

it in the experiments in order to highlight the fundamental role that disturbances which

violate MPPIs underlying noise assumptions have on the algorithm.

Illustrative Example: Point Mass System

This illustrative example concretely demonstrates the susceptibility of standard MPPI to

catastrophic failure in the case of large disturbances and shows how Tube-MPPI can be an

118



effective remedy. Consider the simple 2-D double integrator system:

xt+1 =

I2 I2∆t

0 I2

xt +

 0

I2∆t

 (ut + εt) . (7.7)

The goal is to move this system at a constant velocity while staying within a ring centered

about the origin, this can be interpreted mathematically as1:

q(xt) =
(√

v2
x + v2

y − vdes
)2

+ 1000 (1C(x)) , (7.8)

C ′ = {x | 1.875 <
√
x2 + y2 < 2.125}. (7.9)

The level of noise that MPPI assumes present is ε ∈ N (0,Σ) with Σ = I . For Disturbance-

MPPI and Tube-MPPI the actual noise present in the system is set ten times higher at

Σ̃ = 10I .

Figure 7.2 shows the accumulation of the warm-start trajectories for each condition.

These trajectories are obtained by simulating the control sequence used to warm-start MPPI

at each iteration from the new initial state of the system. This trajectory defines the mean

of the sampling distribution, so it is essential that it lies in a good region of the state-space.

Baseline-MPPI performs perfectly, and the system state is always kept outside of C. With

Disturbance-MPPI the increased noise in the system results in the state consistently enter-

ing C, and eventually diverging. The reason for this failure is that the system disturbances

push the warm-start trajectories into poor regions of the state space, since sampling takes

place locally around the warm-start trajectory, it then becomes likely that no trajectory that

stays outside ofC is sampled. With Tube-MPPI, the nominal control plan is prevented from

entering the constraint set due to the condition for selecting the nominal state, this results

in the importance sampling behaving similarly to the Baseline-MPPI condition, even with

the increased system noise.

1Note that we have defined C through its complement
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Figure 7.2: Point mass system results for Baseline-MPPI (top-left), Disturbance-MPPI
(top-right), Tube-MPPI’s nominal controller’s importance sampling (bottom left), and the
ancillary controller’s solution (bottom right).

Simulated Helicopter Landing

In this simulated example we consider the task of landing a helicopter on a circular pad sub-

ject to Gaussian disturbances. This example demonstrates a few important aspects of the

proposed approach. First, it shows how the proposed approach can effectively be applied

to a system with non-trivial dynamics performing a task with many different constraints.
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However, it also highlights one of the main downsides of non-linear Tube-MPC: the op-

timal control is not being directly computed. Instead of directly computing the optimal

control, the control is a combination of the optimal control for the nominal system and the

ancillary controller attempting to track that system. Even if the nominal system is oper-

ating perfectly, if the error between the nominal and real system is large then the system

could still violate constraints. Therefore, in order for this type of approach to be effective

a method for approximating the tube-size would be required.

For helicopter dynamics we use the non-linear model described in [23]. In this model

the state space for this helicopter is position (x, y, z), orientation (φ, θ, ψ), body frame

velocity (vx, vy, vz), and body frame angular velocity (p, q, r). The control inputs are col-

lective thrust uτ , roll rate up, pitch rate uq, and yaw rate ur. The cost function for the

landing task then takes the form:

q(x) = xTQx +
8∑
i=1

wi1Ci ,

C1 = {x | (|φ| > .15 ∨ |θ| > .1) ∧ z < −9.5},

C2 = {x | (‖(vx, vy, vz)‖ > 5 ∨ vz > 2.5) ∧ z > −8},

C3 = {x | ‖(x, y)‖ > 1.0 ∧ z > −8},

C4 = {x | x < −1.0}, C5 = {‖(vx, vy, vz‖ > 12},

C6 = {x | z > max(−.5‖(x, y)‖ − 7.5,−50) ∧ ‖(x, y‖ > 1},

C7 = {x | |φ|+ |θ| > .33},

C8 = {x | z > −7.5 ∧ x /∈ C1 ∧ x /∈ C2 ∧ x /∈ C3},

w1 = w2 = w3 = w4 = 10000, w5 = w6 = 1000

w7 = 100, w8 = −10000.

The first three terms direct the helicopter to land in the proper area with limits on the

orientation and speed. The fourth term disallows the helicopter from over-shooting the
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landing area, the fifth and sixth terms prevent the helicopter from going too fast or using

too aggressive of a combined roll and pitch angle, the seventh term directs the vehicle to

stay above a certain glide-path, and the last term is a reward for successfully meeting all the

landing criteria. The constraints are tightened to allow for some error in the final landing

criteria.

Note that creating a cost function with a smooth gradient for this task, with either soft

or hard constraints, would be extremely challenging! Many of the conditions have non-

differentiable components (e.g. the max and norm operators) and composing a cost with

eight different non-linear terms could easily result in local minima being created. In this

case, specifying the cost function is easy and intuitive, and results in predictable behavior.

MPPI assumes that there is noise in the control inputs with:

Σu = Diag(0.75, 0.125, 0.125, 0.125),

for Disturbance-MPPI and Tube-MPPI we inject additional noise into the system by in-

creasing Σu and adding the additional disturbances for the velocities and orientation ac-

cording to:

Σu = (1.25)I4, Σvx,vy ,vz = (1.25)I3, Σφ,θ,ψ = (0.0125)I3.

Figure 7.3 shows the results over 100 randomized trials for Baseline, Disturbance, and

Tube-MPPI. Baseline-MPPI performs perfectly, and never violates any constraints while

landing the helicopter. Disturbance-MPPI ends most trials with a satisfying landing. How-

ever, there are several large outliers that significantly miss the target region, this would

be catastrophic on an actual helicopter system. The distribution for Tube-MPPI closely

mirrors that for Baseline-MPPI, but with a higher covariance.

Figure 7.4 shows the resulting orientations for the trials with the highest pitch magni-

tude, in the case of Tube-MPPI the worst case pitch is still within an acceptable landing
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Figure 7.3: Helicopter landing positions (left) and orientations (right) for 100 random trials
of Baseline-MPPI, Disturbance-MPPI, and Tube-MPPI with large noise. Dashed lines are
specified landing area, colored line indicate 3-sigma bounds for a Gaussian distribution
fitted to the 100 trials.

envelope, whereas with Disturbance-MPPI the result would be the tail contacting the plat-

form before the wheels touched down.

(a) (b) (c)

Figure 7.4: Results of helicopter landing experiment for ((a)) Baseline-MPPI, ((b))
Disturbance-MPPI (worst trial by pitch magnitude), ((c)) Tube-MPPI (worst trial by pitch
magnitude).

Table 7.1 shows the mean, standard deviation, and worst case over the 100 trials for

total distance from origin, roll angle, and pitch angle at touch-down. Although, Tube-

MPPI does improve the overall system performance, in a real application it could still be

problematic: since we do not have a precise bound for how large the tube can be, we cannot

systematically tighten the constraints to ensure that the task is completed successfully.
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Table 7.1: Helicopter landing statistics with Tube-MPPI

Distance Roll Pitch
MPPI - Small Noise 0.66 +/- 0.025 0.02 +/- 0.03 -0.09 +/- 0.00
MPPI - Large Noise 0.77 +/- 0.25 0.0 +/- 0.08 -0.04 +/- 0.05

Tube - MPPI 0.69 +/- 0.15 0.02 +/- 0.05 -0.07 +/- 0.02

Simulated Autonomous Racing

In this simulation experiment, we used a Gazebo simulation of the AutoRally vehicle oper-

ating on a roughly elliptical track shown in Fig. 7.5. In this simulation environment, we do

Figure 7.5: Gazebo simulation environment used for comparing Tuned-MPPI and Tube-
MPPI.

not have access to the underlying model, so we fit one using a hybrid physics-neural net-

works approach. The state space of the vehicle is x = (x, y, θ, r, vx, vy, θ̇), and the model

has the form: F(x,u) = xt +
(
WTφ(x,u) +N(x,u; θ)

)
∆t where W is a linear weight

matrix, and N(x,u; θ) represents a neural network. This model is fit via a combination of

linear regression and stochastic gradient descent, and there is a significant error between

the learned model and the actual system dynamics. This error is the source of disturbances

in this experiment.

Learning a model means that we cannot apply the Baseline-MPPI condition (since we
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cannot remove the extra disturbances), so instead we compare Tube-MPPI to a version of

MPPI that has been extensively tuned with a cost function for this track. We refer to this

as Tuned-MPPI. This is an important comparison, as it quantifies our ability to use an

intuitive indicator function-based cost structure to approach a level of performance only

achievable previously through extensive hand-tuning. The cost function for Tube-MPPI

was set as:

q(x) = ‖vx − vdesx ‖2 + w11Ctrack(x) + w21Cslip(x),

Ctrack =
{

x
∣∣∣(px, py) /∈ Points contained in Track

}
,

Cslip =

{
x
∣∣∣ ∥∥∥∥arctan−1

(
vy
|vx|

)∥∥∥∥ > 1.25

}
,

w1 = w2 = 10000.

The first component of the cost tells the vehicle to try and achieve a desired velocity, the

second component tells the vehicle to stay on the track, and the last term tells the vehicle

to keep the slip angle below 1.25 radians (70 degrees). In the case of Tuned-MPPI the cost

function takes the same form as in chapter 6:

q(x) = w1M(x,y) + w2‖vx − vdesx ‖2 + w3 tan−1

(
vy
vx

)2

+ βtw41Ctrack(x) + w51Cslip(x),

w1 = 100, w2 = 4.25, w3 = 250, w4 = 10000,

w5 = 10000, β = 0.9.

The first term M(x, y) is a signed distance function for the set Ctrack. This term helps push

the sampling distribution back towards the track if large disturbances are found. Note the

presence of the time-decay on the constraint, which prevents the optimization within vanilla

MPPI from becoming unstable and diverging.

For each experimental condition, the target speed was gradually increased by 1 m/s

starting from 5 m/s until the algorithm could no longer consistently complete 100 laps
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Table 7.2: Gazebo racing statistics for Tube-MPPI and Tuned-MPPI

Avg. Lap Time Max Speed Max Slip
Disturbance -MPPI 11.87 +/- .47 5.22 +/- 0.06 0.04 +/- 0.04

Tuned - MPPI 8.33 +/- 1.05 7.53 +/- 0.04 0.09 +/- 0.15
Tube - MPPI 9.39 +/- 0.76 7.51 +/- 0.18 0.12 +/- 0.10

while staying on the track. For Tuned-MPPI the maximum target speed was 8 m/s, and

for Tube-MPPI this was 9 m/s. For Disturbance-MPPI there was a massive performance

drop-off, with the maximum target speed only reaching 5 m/s.

The performance statistics for each of the three trial conditions is shown in Table 7.2.

Both Tube-MPPI and Tuned-MPPI achieve top velocities slightly over 7.5m/s, and sub 10

second lap times. However, since Tube-MPPI optimizes with slightly tightened boundaries

it takes a longer overall path around the track, which results in longer lap times than Tuned-

MPPI

AutoRally Experimental Results

Here we examine the real-world performance of Tube-MPPI on the AutoRally platform.

This was the first set of autonomous vehicle experiments at the larger Autonomous racing

facility at Cobb County Research Facility (CCRF), see Fig. 7.6. This track features a

variety of different radius turns, and a long straight-away. An important detail of this track

is that there are several areas where the boundaries for different segments of the track either

touch or are very close to each other. This makes designing a smooth cost or constraint

function based on a signed distance function difficult, since such a function would have

local minima that would encourage the vehicle to drive over the track boundaries. However,

using only weighted sums of indicator functions we obtain a very simple cost design based

on a grid of binary values that represent the set of points on the track. The cost function

for this task is the same as for the Gazebo simulation environment, where there is a term

for speed, a term for staying on the track, and a term for avoiding excessive slip angle. The

desired speed was set to 9 m/s, and we collected 12 laps around the test track, which is
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Figure 7.6: Test track for the AutoRally vehicle at the Cobb County Research Facility
(CCRF).

Table 7.3: Racing Experiment Statistics

Avg. Lap Time Max Speed Max Slip
Tube - MPPI 32.02 +/- 7.27 8.52 +/- -0.26 0.88 +/- 0.48

approximately 2 kilometers worth of driving data.

Figure 7.7 depicts the trajectory traces of the 12 trial laps around the track. This figure

identifies one of the main benefits of using sparse indicator cost functions: since the vehicle

is only penalized for leaving the track, it is free to use the entire track surface in order to

achieve its primary goal of going fast. As a result, the position of the vehicle on the track

does not follow the center line, but significantly varies depending on the upcoming track

geometry (note that the overall direction of travel is clockwise). Also depicted in Fig.

7.7 is the state divergence as the vehicle navigates the track over the course of one lap,

which indicates how well the ancillary control is performing. Overall, the magnitude of

the positional state divergence stays relatively small compared to the overall track width.

The mean state divergence for the lap shown is 14 centimeters, and the maximum is 47

centimeters.
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Figure 7.7: Top: Trajectory traces of test run on the CCRF track using Tube-MPPI. The
desired speed during this run is 9 m/s. Direction of travel is clockwise. Bottom: Magnitude
of the state divergence (distance between the nominal and actual state) over the course of a
test lap at CCRF.
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7.3 Discussion

The focus of this chapter has been on demonstrating some of the problems that arise when

trying to utilize cost functions mimicking hard constraints in MPPI, and to show the path-

way to a potential solution method in Tube-MPPI. By default, MPPI is brittle and prone to

failure when operating in noisy real-world environments unless the cost function possesses

a strong gradient signal. This nullifies one of the main advantages we observed when using

MPPI in idealized simulations: which was its ability to use simple cost functions with very

sharp slopes (or discontinuities) in order to act as constraints.

Tube-MPPI offers the pathway to a potential solution. The main idea with Tube-MPPI

is to protect the importance sampling by using a noise free nominal state to compute a solu-

tion, and to then use a tracking controller to compute the actual control input. This enables

the usage of simple functions for constraint satisfaction, but it introduces a couple of new

problems. The first issue is that, for Tube-MPPI to be practically useful, a bound on the size

of the tube has be estimated. Once this bound is estimated, the constraints need to be tight-

ened in order to account for the potential divergence between the idealized and nominal

state. While this is technically feasible, it introduces a couple of very complex operations

(tube-size estimation and constraint tightening) that go against our goal of using simple

cost functions for constraints. The other significant issue with the Tube-MPPI approach

we have outlined here, is that it is not clear how compatible the underlying mathematics of

MPPI are with the Tube-MPC framework. This goes back to the issue of treating the opti-

mal importance sampling distribution as the optimal control sequence, although this did not

seem to be an issue in any of the experiments here, this treatment is not always theoretically

justified. Nevertheless, Tube-MPPI does serve to be a useful guide in the development of a

far superior optimization scheme, which we describe in the next chapter.
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CHAPTER 8

ROBUST MODEL PREDICTIVE PATH INTEGRAL CONTROL

In the previous chapter we saw the types of difficulties sampling based controllers like

MPPI encounter when trying to utilize cost functions that incorporate terms acting as hard

constraints. The fundamental issue is that, for a warm-started model predictive controller,

a system disturbance can change the initial condition so that the seed trajectory lies in an

undesirable local minima. If this occurs, then there is little hope that the optimization will

recover - the system will immediately execute a control computed from the bad estimate

bringing it even closer to failure. Tube-MPPI offers a potential solution method by opti-

mizing with a nominal state that is protected from catastrophic disturbances, however it

comes with some significant theoretical and practical drawbacks.

In this chapter we examine another solution technique, which we term augmented im-

portance sampling. Augmented importance sampling is related to Tube-MPPI in that it also

utilizes a fictitious nominal state in order to stabilize the importance sampling distribution.

However, unlike Tube-MPPI the output of the augmented importance sampling method is

an unbiased estimate of the optimal control. This means that we do not need to explicitly

worry about bounds on the tube size in order to tighten constraints, which simplifies the

overall algorithm design. Additionally, it is possible to obtain a theoretical bound on how

much the solution can degrade from iteration to iteration when using the augmented impor-

tance sampler, which prevents sudden jumps into bad local minima. In general, we believe

the augmented importance sampling method to be superior to the Tube-MPPI method in

every area.

One might wonder, why present the Tube-MPPI method at all, given that the augmented

importance sampler solves the same problem better. The reason that we have presented

Tube-MPPI first is that it is a straightforward implementation of an existing technique,
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Tube-MPC, but simply utilizing MPPI as the nominal controller. In other words, the novel

part of Tube-MPPI is the usage of MPPI as the nominal controller, as opposed to the method

itself. This makes the approach easy to understand for those already familiar with the Tube-

MPC literature. However, the augmented importance sampling technique is fundamentally

new. Even though we borrow some ideas and terminology from Tube-MPC, it would not

be accurate to characterize it as a Tube-MPC method. However, it will be helpful to have

a firm grasp of Tube-MPPI in order to understand some of the mechanisms and design

choices made in the augmented importance sampler.

Up until now, we have been rather informal about precisely what a “jump into a bad

local minima” means and what observable effect it has. In plain language, what it means

is that previously when we solved the problem, we had a good solution, and then after

receiving state feedback and resolving the problem we had a much worse solution. Mathe-

matically, this means that a jump into a bad local minima is characterized numerically by a

large increase in the estimated value function. Recalling the relationship between the value

function and free-energy established in chapter 4, we use the free-energy in this chapter

as a surrogate for the value function. Therefore, we want to prevent large increases in the

estimate of the free-energy, which means our goal is to provide a bound on how much the

estimate of the free-energy can increase from time-step to time-step. In order to do this,

we need to distinguish between two possible underlying causes of unbounded free-energy

growth.

The first possible cause, which is our main concern, is that the true free-energy has

not changed significantly, but the numerical estimate provides an incorrect result show-

ing a high free-energy. The reason this type of numerical instability occurs is because the

sampling-based optimization is reliant on the importance sampling distribution to compute

a good estimate. Since the importance sampling distribution is defined by an open-loop

control sequence, there is no guarantee that the importance sampling distribution will be

useful from iteration to iteration since the initial condition is subject to disturbances en-
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countered by the system.

The second possible cause is that the underlying free-energy really has significantly

increased. For general stochastic non-linear dynamics and costs, there is no way to ensure

that free-energy growth is bounded. In order to make the problem approachable we there-

fore must assume that both the costs and dynamics are Lipshitz continuous. This rules out

the usage of the weighted indicator type functions that we utilized in the previous chapter,

however we can still construct similar functions that are Liptshitz continuous and quickly

ramp up to the maximum value as opposed to immediately jumping to one.

8.1 Augmented Importance Sampling

In this section, we describe an idealized scheme, which provides a bound on the growth of

the free-energy function. The scheme we describe here is impractical to deploy, however

we will use it as a guide towards implementing a practical approach later on. The key idea

in this approach is to augment the importance sampling with an idealized nominal state,

whose evolution we control. This is similar to Tube-MPC approaches, however, it differs

in that nominal system only indirectly affects the solution through the importance sampler.

This means that we are still directly computing the optimal control, which is not the case

in Tube-MPC.

Nominal System

The nominal system is denoted x∗, and has dynamics equivalent to the real system:

x∗t+1 = x∗t + F(x∗t ,ut + εt)∆t. (8.1)

These are the dynamics used for the purposes of estimating the free energy, whose value

depends on the cost function, probability induced by the system dynamics, initial condition,

and inverse temperature. As before, the free energy is denoted as F(S,P,x∗, λ). We will
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also want to distinguish between the true free-energy, and the free-energy obtained through

a Monte-Carlo estimate. Monte-Carlo estimates of the free-energy are actually random

variables, which we can describe as:

FMC(S,P,x∗, λ) = F(S,P,x∗, λ) + eBM + εVM . (8.2)

As the value returned by our Monte-Carlo estimator. Here eBM is the bias of the estimate,

and εVM is a random variable that depends on the noise distribution used to compute the es-

timate. The presence of the bias term may seem initially strange, since we use an unbiased

importance sampler. Using an unbiased importance sampler means that as the number of

samples goes to infinity the estimate converges to the correct estimate. However, when the

value computed is a non-linear function of the sampled mean, it does not imply that repeat-

edly calling an estimator which uses a finite number of samples will result in a distribution

of values whose mean is equal to the true value. We will assume that eBM is deterministic,

but possibly large, and that εBM is a small random number. This matches up well with em-

pirical observations about fluctuations of the free-energy when making repeated estimates

with the same importance sampler.

For the nominal system, we perform the same standard type of importance sampling as

described in chapter 5, where the importance sampler is defined by an open loop control

sequence:

U = {u0,u1, . . .uT−1},

but, instead of updating the nominal system state using a state estimate, we control the

evolution of the system through the following update rule:

x∗t+1 = argmin
z
‖z− xt+1‖, s.t (FMC(S,P, z, λ) < α) ∨ (z = x∗t ) (8.3)

Where xt+1 is the state of the real system given by the state estimator. This update rule tries
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to move the nominal state as close as possible to the real system state, while ensuring that

the estimate of the free energy from the nominal state stays below a threshold, α, which we

set.

The condition on the right-hand side of the logical “OR” says that the current nominal

state is always considered a valid nominal state. The rationale behind this is that (assuming

we initialized the nominal state such that FMC < α) the current nominal state is close

to the desired threshold since a previously estimated free-energy value estimated it to be

beneath the threshold. This ensures that there is always a feasible solution to (8.3).

Tracking Controller

Now, consider a trajectory generated by sampling from the system dynamics with the initial

condition set as the nominal state. We would like to generate a corresponding trajectory

sample from the real system state, which closely tracks the nominal sample. In order to do

this we assume that there exists a feedback controller which, for any given sequence of con-

trol and disturbance inputs, drives the real system state to the nominal state exponentially

fast. We thus have:

x∗t+1 = x∗t + F(x∗t ,ut + εt)∆t, (8.4)

xt+1 = xt + F (xt,ut + εt + k(xt,x
∗
t )) ∆t, (8.5)

‖xt+1 − x∗t+1‖ ≤ γt‖x0 − x∗0‖, 0 < γ < 1. (8.6)

The disturbance, ε, is shared between the nominal and real system, so it can be treated as

an additional deterministic control input by the feedback controller. This is only possible

because we are only going to use the feedback controller to generate samples in simulation.

For non-linear systems it can be very difficult to design a global stabilizing tracking

controller. However, for a completely controllable linear system one such option is to use
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a controller of the form:

k(x,x∗) = K(x− x∗) (8.7)

where K is chosen in order to make the closed loop system asymptotically stable. In

practice, we will utilize locally linear approximations of the system dynamics in order to

get a feedback controller which is effective in a local region of the state space.

Importance Sampler

With the definition of the nominal system, and the tracking controller, we can now define

the augmented importance sampler. The idea behind the augmented importance sampler

is to use the system augmented by the nominal state ((8.4) - (8.5)) to generate trajectory

samples. Recall that an importance sampler biases the distribution in order to achieve

a more efficient estimate of the expectation. In order to compute an unbiased estimate

it is necessary to compute an importance sampling weight (Radon-Nikodym derivative).

Therefore, in order to define a valid importance sequence we need:

i) A method for generating a random variable

ii) A formula for computing the importance sampling weights

In the augmented importance sampling framework, samples are generated by simulating

the combined system forward:

x∗t+1 = x∗t + F(x∗t ,ut + εt)∆t,

xt+1 = xt + F (xt,ut + ε+ k(xt,x
∗
t )) ∆t.

Where the feedforward control, U = {u0,u1, . . .uT−1}, comes from the importance sam-

pler for the nominal system. Although we simulate both the nominal and real system

forward, we only utilize the real system trajectories for computing the optimal control. The
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nominal system trajectories are just a tool which provide input to the feedback controller

in the evolution of the real system.

Next we need to derive a formula for the importance sampling weights. This is rel-

atively straightforward. Since ε appears linearly in the combined control input, u + ε +

k(xt,x
∗
t ), we can view the combined control input as a Gaussian random variable with

mean: u + k(xt,x
∗
t ).

Lemma 2. Let QA denote the probability distribution defined by sampling from the aug-

mented system dynamics, and let P be the distribution defined by the uncontrolled system.

Then the importance sampling weight (Radon-Nikodym derivative) takes the form:

dP
dQA

= exp

(
−1

2

T−1∑
t=0

(ut + k(xt,x
∗
t ))

T Σ−1 (ut + k(xt,x
∗
t )) + εTt Σ−1 (ut + k(xt,x

∗
t ))

)
.

Proof. We start by writing the weight as the ratio of two Gaussian distributions:

dQA

dP︸ ︷︷ ︸
=?

=
exp

(
−1

2

∑T−1
t=0 (vt − ut + k(xt,xt∗))T Σ−1 (vt − ut + k(xt,x

∗
t ))
)

exp
(
−1

2
vT
t Σ−1vt

) ,

We can simplify this by combining the exponential terms and canceling:

? = exp

(
−1

2

T−1∑
t=0

(ut + k(xt,x
∗
t ))

T Σ−1 (ut + k(xt,x
∗
t )) + vT

t Σ−1 (ut + k(xt,x
∗
t ))

)
,

but, we can re-write vt in terms of zero-mean noise ε, so vt = u + k(xt,x
∗
t ) + ε. Incorpo-

rating this into the importance sampling weight yields:

? = exp

(
1

2

T−1∑
t=0

(ut + k(xt,x
∗
t ))

T Σ−1 (ut + k(xt,x
∗
t )) + εTt Σ−1 (ut + k(xt,x

∗
t ))

)
.

Notice that the sign of the first term has been flipped. For un-biasing the expectation esti-

mated with samples from QA, we need the inverse of this derivative dP
dQA

, this is computed
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simply by flipping the sign inside the exponential. So we have:

dP
dQA

= exp

(
−1

2

T−1∑
t=0

(ut + k(xt,x
∗
t ))

T Σ−1 (ut + k(xt,x
∗
t )) + εTt Σ−1 (ut + k(xt,x

∗
t ))

)

Which is the desired result.

Bounding Free-Energy Growth

We now have a method for generating samples using the augmented importance sampling

system, and a formula for the importance sampling weight. Next, we can examine the

consequences of utilizing it to compute the free-energy, and show how it can be used to

bound the growth in free-energy. Recall the definition of free-energy:

F(S,P,x0, λ) = −λ log

(
EP

[
exp

(
−1

λ
S(V,x0)

)])
,

by using the standard importance sampling trick we can write this as:

F(S,P,x0, λ) = −λ log

(
EQA

[
exp

(
−1

λ
S(V,x0)

)
dP

dQA

])
.

The cost function S(V,x0) is the cost of the real system’s trajectory for a given disturbance

input. This cost takes the form:

S(V,x0) = φ(xT ) +
T−1∑
t=0

q(xt),

but we can re-write this in terms of the nominal system state as:

S(V,x0) = φ(x∗T + eT ) +
T−1∑
t=0

q(x∗t + et),
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where et = xt − x∗t . Now, if we assume that both q and φ are Lipshitz continuous, with

Lipshitz constants Lφ and Lq respectively, we have:

S(V ) = φ(x∗T +eT )+
T−1∑
t=0

q(x∗t +et) ≤ φ(x∗T )+
T−1∑
t=0

q(x∗t )+Lφ‖eT‖+
T−1∑
t=0

Lq‖et‖. (8.8)

Using Eq. (8.6), along with standard results from the geometric series, we have:

S(V,x0) ≤ S(V,x∗0) +

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖. (8.9)

Since both the exponential and logarithm functions are monotonically increasing, we can

insert this inequality into the expectation to get:

F ≤ −λ log

(
EQA

[
exp

(
−1

λ
S(V,x∗0)− 1

λ

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖

)
dP

dQA

])
,

and then we can pull the constant terms outside of the expectation, so that we have:

F ≤ −λ log

(
EQA

[
exp

(
−1

λ
S(V,x∗0)

)
dP

dQA

])
+

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖.

This implies the following relationship between the free-energy of the nominal and real

system:

F(S,P,x0, λ) ≤ F(S,P,x∗0, λ) +

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖. (8.10)

This shows that the value function is bounded by the value function for the nominal system,

plus a term depending on the steepness of the cost function, the distance between the nom-

inal and real state, and the rate of convergence achieved by the tracking controller. This

inequality also holds if we replace the true free-energy values by the estimated free-energy

values (as long as the same noise profiles are used to generate both estimates), since the

expectations can be replaced with summations over a finite number of samples and the
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derivation will still hold. Therefore, we can write:

FMC(S,P,x0, λ) ≤ FMC(S,P,x∗0, λ) +

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖. (8.11)

Now let us assume that, at some point, our Monte-Carlo estimator had returned an estimate

below the threshold for the current nominal state: FMC(S,P,x∗0, λ) < α. We thus have:

F(S,P,x0, λ) + eBM + εVM < α,

for some value of εVM . Recalling our assumption that εVM is small, we can bound it by some

value EV
M , and we then have that any new estimate must satisfy:

FMC < α + 2EV
M . (8.12)

So, the worst that the nominal free-energy will be is α plus twice the expected amount

fluctuation in the estimator. We thus have the bound:

FMC(S,P,x0, λ) ≤ α +

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x0 − x∗0‖+ 2EV

M . (8.13)

This gives an upper bound on the estimate of the free-energy from the current real system

state.

Now, given the current estimate of the free-energies at the nominal and real states (de-

noted x0, and x∗0), we would like to provide a bound for what the free-energy estimate at

the next real state will be (denoted as x1). Using Eq. (8.13), we know that:

FMC(S,P,x1, λ) ≤ α +

(
Lφγ

T + Lq
1− γT
1− γ

)
‖x1 − x∗1‖+ 2EV

M (8.14)

Now, we need to examine ‖x1 − x∗1‖. In the worst case, x∗1 will be the same as x∗0, so we
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have:

‖x1 − x∗1‖ ≤ ‖x1 − x∗0‖,

but the real system state evolves according to:

x1 = F(x0,u) + w,

where w incorporates both the control dependent and any additional state-dependent noise.

In the worst case, w could be unbounded, however it is usually possible to at least provide

a probabilistic bound for w. For now, we assume that ‖w‖ ≤ D. So we have:

‖x1 − x0‖ ≤ ‖F(x0,u)‖+D.

We have that ‖x1 − x∗0‖ = ‖x1 − x0 − (x∗0 − x0)‖, and then, using the triangle inequality,

we have:

‖x1 − x0 − (x∗0 − x0)‖ ≤ ‖x1 − x0‖+ ‖x∗1 − x0‖ = ‖F(x0,u)− x0‖+ ‖x∗0 − x0‖+D,

denoting ‖F(x0,u)− x0‖+ ‖x∗0 − x0‖ as DF(x0,x
∗
0,u), we then have:

FMC(S,P,x1, λ) ≤ α +

(
Lφγ

T + Lq
1− γT
1− γ

)
DF(x0,x

∗
0,u) + 2EV

M .

Lastly, we can subtract FMC(S,P,x0, λ) from both sides to get:

∆FMC ≤ (α−FMC(S,P,x0, λ) +

(
Lφγ

T + Lq
1− γT
1− γ

)
DF(x0,x

∗
0,u) + 2EV

M . (8.15)

Note that this is a numerical result, which are typically difficult to obtain in stochastic

optimal control. The maximum increase in the estimate of the free energy is determined by

three terms:
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i) The first term is defined by a threshold which we set, below which it is assumed that

the system is satisfying all task related constraints. The augmented importance sam-

pling scheme places no restriction on the free-energies ability to jump between values

below α. This term is only large if the current free-energy is well below α, which

indicates that a large change in the free-energy is allowable without endangering any

task related constraints.

ii) The second term depends on three major components: how steep the cost function is,

how fast the dynamics/disturbances are, and the rate of convergence of the tracking

controller. This provides a useful guide for designing cost functions: if we have slow

dynamics and a very good tracking controller then this bound will be small even with

a steep cost. However, with fast dynamics we may need to tune the cost in order to

reduce the Lipshitz constants.

iii) The last term encodes the amount of fluctuation we can expect to see from the Monte-

Carlo estimator working on the nominal system, and is a function of both the number

of samples used and the exploration variance.

The key point of this analysis is that, when utilizing augmented important sampling, the

growth in the free-energy estimate cannot suddenly increase far above the performance

threshold set by α, which is the cause of most catastrophic failure. Instead, the algorithm

can only fail gradually if the nominal and real state drift apart. This is the same type

of failure mode that Tube-MPC have, but in this case, we are still directly computing an

estimate of the optimal control.

8.2 Practical Algorithm

The idealized scheme from the previous section provides the mathematical motivation for

pursuing an augmented importance sampling scheme, however the algorithm described in

the previous section is impractical for two reasons. First the evolution of the nominal sys-
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tem involves solving a constrained optimization problem which is intractable, and second

finding a tracking controller with the desired properties is difficult for non-linear systems.

In this section we describe practical solutions to these problems, which results in an algo-

rithm that is easy to implement and deploy on a real system.

Nominal System Propagation

Recall that the update rule for the nominal system was defined as:

x∗t+1 = argmin
z
‖z− xt+1‖, s.t (FMC(S,P, z, λ) < α) ∨ (z = x∗t ) . (8.16)

Obviously, we cannot search over every state and compute an estimate of the free-energy.

Even computing one estimate of the free-energy is equivalent to a path integral iteration,

which for the AutoRally vehicle takes between 5-15 milliseconds depending on parameter

settings and system load. So we have to be able to approximately solve Eq. (8.16).

This first step we can take is to reduce the computation time required for a free-energy

approximation. This can be done simply by reducing the number of samples used when

computing the free-energy, although this results in a lower quality estimate, it is acceptable

in this scenario since the estimate is not being directly used to compute the control law.

Note that the reduced sample estimate is only used for propagating the nominal state, not

in the estimation of the optimal control. In practice, on the AutoRally system we can

utilize as few as 64 samples to get a quick estimate free-energy, whereas 1200 samples are

typically used to compute the optimal control.

By reducing the number of samples used to estimate the free-energy, we are able to

evaluate around 10 points in real-time. One possibility is to do a line search from the

current nominal state, and the new real state, and pick the point closest to the new real state

that satisfies that free-energy threshold. The issue with the aforementioned approach is that

it can easily result in the nominal state getting “stuck”, and then the nominal and real state
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diverge. Another possibility is to copy the approach suggested in non-linear Tube-MPC

from the previous chapter. In that approach, the nominal state is propagated according to

the undisturbed dynamics. If the disturbances are small compared to the dynamics, then

the newly propagated nominal state will be close to the new real state. The problem with

this approach is that, while there is a high probability that the new nominal state has a low

free-energy, there is no guarantee that it does.

The approach we take is a hybrid between the line search approach and the non-linear

Tube-MPC approach. First the nominal state is propagated according to the mean of the

importance sampler, this gives us three base points which we use to create a two-step line

search. The first line goes from the current nominal state to the propagated nominal state,

and the second line goes from the propagated nominal state to the current real state, this is

visualized in Fig. 8.1. There are 3 intermediate points on each line, which yields a total of

Figure 8.1: Nominal state propagation. The three base points are the current nominal state,
the nominal state simulated forward, and the real state which differs by a disturbance w
from the forward simulated state.
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9 search points. From each candidate point, a small number of trajectories are sampled in

order to preview the free energy approximation from that point. Then the point which is

closest to the real system state is selected. Mathematically, this operation is described by

the following constrained optimization problem:

x∗ = argmin
pi

‖pi − x‖ (8.17)

s.t FMC(S,P,pi, λ) ≤ α (8.18)

i ∈ {0, 1, . . . 8} (8.19)

p0 = x∗0, p4 = x∗1, p8 = x (8.20)

pi =
1

4
(jp4 + (4− j)p0) , 0 < j < 4, 0 < i < 4 (8.21)

pi =
1

4
(jp8 + (4− j)p4) , 0 < j < 4, 4 < i < 8 (8.22)

Algorithm 4 summarizes the steps in selecting the nominal state. Note that in addition

to selecting the nominal state, this algorithm also slides down the nominal control if the

nominal state is selected has not been frozen at the old nominal state.

In practice, the real state is usually selected as the nominal state, in which case the

augmented importance sampling scheme reverts back to standard importance sampling.

Less often, one of the points in between the forward propagated nominal state and real state

is chosen. This indicates that the previous solution was good, but a disturbance knocked it

off course. Note that even though this rarely happens, the unprotected importance sampling

scheme would fail in these cases, so the presence of the augmented importance sampling

is critical. In the AutoRally experiments, it was never observed that one of the points

in between the old nominal and forward propagated nominal state was chosen (such a

selection could indicate a loss of recursive feasibility).
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Algorithm 4: Nominal State Propagation
Given: F, Uinit: System Dynamics ;
Σ, φ, q, T , N , γ, ν: Cost function and sampling parameters;
λ, α: Temperature and cost thresholds;
Input : U : Current control sequence;
x∗: Old nominal state;
x: Current real state;
{p0, . . .p8} ← Fn GenerateCandidates(x,x∗,F, U0);
for i← 0 to 8 do

x∗ ← pi;
if i > 0 then

for t← 1 to T − 1 do
uit−1 = ut;

uiT−1 = 0;
else

U i = U ;
for n← 1 to N do

Sample En =
(
εn0 . . . ε

n
T−1

)
, εnt ∈ N (0,Σ);

for t← 0 to T − 1 do
x∗ = x∗ + F(x∗,uit + εnt )∆t;
Sn += q(x∗) + λ

2

(
uT
t Σ−1ut + 2uT

t Σ−1εt
)
;

Sn += φ(x∗);

for n← 1 to N do
η += exp

(
− 1
λ
Sn
)
;

Fi = −λ log (η);

// Select best nominal state
a = argmini (‖pi − x‖) , s.t Fi ≤ α ;
if a = NULL then

a = 0 // Select old nominal state if no solution found
return pa, Ua ;

Nominal System Importance Sampler

In addition to the forward propagation step, we need a method for estimating the impor-

tance sampler associated with the nominal system. This is just a standard open loop se-

quence of control inputs (U = {u0,u1, . . .uT−1}). Since the entire goal of introducing the

augmented importance sampler is to keep the importance sampling distribution of the real

system close to the importance sampling distribution of the nominal system, it is essential
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that this distribution remains in a good region of the state space.

The most obvious choice for computing the importance sampling estimate is to treat

the nominal system independently of the real system, and perform the standard importance

sampling as done in chapter 5. This finds the optimal importance sampler for the system

and state cost:

x∗t+1 = x∗t + F(x∗t ,vt)∆t, vt = ut + εt,

S(V,x∗0) = φ(x∗T ) +
T−1∑
t=0

q(x∗t ).

However, performing importance sampling for the nominal system in this manner misses

a key opportunity. Since the goal of the nominal system is to help the optimization of the

real system, it makes sense to include the real system cost in the objective for the nominal

system. To do this, we can have the nominal importance sampler consider the dynamics of

the full augmented system:

x∗t+1 = x∗t + F(x∗t ,vt)∆t,

xt+1 = xt + F(xt,vt + k(xt,x
∗
t ))∆t,

and then optimize a combined cost between the two systems.

When creating a combined cost, some care must be taken. A first consideration is that

we need to be sure that the free-energy evaluated from the nominal state always remains

below α. Let S̃(V,x0,x
∗
0) be the combined cost function, what must be satisfied is that

the free-energy evaluated with S̃(V,x0,x
∗
0) is less than α if and only if the free-energy

evaluated with S(V,x∗0) is less than α. This rules out the simplest possible strategy, which

would be taking a convex combination of the two costs. A second issue is that the mean

of the importance sampler here is u, not u + k(x,x∗), which means that the control cost

on k(x,x∗) is left out. It can be beneficial, therefore, to reintroduce the control cost that
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appears as the importance sampling weight in evaluating the free-energy from the real state.

Taking both of these considerations together, the final combined cost, denoted S̃, that we

use is:

S̃(V,x0,x
∗
0) =

1

2
S(V,x∗0) +

1

2
max

(
min

(
Ŝ(V,x0,x

∗
0), α

)
, S(V,x∗0)

)
, (8.23)

Ŝ(V,x0,x
∗
0) = S(V,x0) +

λ

2

T−1∑
t=0

k(x0,x
∗
0)TΣ−1k(x0,x

∗
0). (8.24)

Note the introduction of the quadratic cost penalizing the activation of the tracking con-

troller on the cost for the real part of the system, this satisfies the second requirement. The

form of Eq. (8.23) is chosen so that the first requirement is satisfied, as we show in the

following lemma.

Lemma 3. S(V,x∗0) ≤ α if and only if S̃(V,x0,x
∗
0) ≤ α.

Proof. We start with the forward direction. Suppose that S(V,x∗0) ≤ α, we know that

min(Ŝ(V,x0,x
∗
0), α) ≤ α. So we have:

S̃(V,x0,x
∗
0) ≤ 1

2
S(V,x∗0) +

1

2
max (α, S(V,x∗0)) (8.25)

But, since S(V,x∗0) ≤ α, we have: S̃(V,x0,x
∗
0) ≤ 1

2
S(V,x∗0) + 1

2
α ≤ α, which demon-

strates the forward direction.

Next, suppose that

S̃(V,x0,x
∗
0) ≤ α (8.26)

We have two cases to consider, the first case is when: min
(
Ŝ(V,x0,x

∗
0), α

)
> S(V,x∗0).

In this case we have:

S̃(V,x0,x
∗
0) =

1

2
S(V,x∗0) +

1

2
min

(
Ŝ(V,x0,x

∗
0), α

)
(8.27)
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Which means we have:

S̃(V,x0,x
∗
0)− 1

2
min

(
Ŝ(V,x0,x

∗
0), α

)
=

1

2
S(V,x∗0) (8.28)

But, since 1
2

min
(
Ŝ(V,x0,x

∗
0), α

)
> 1

2
S(V,x∗0), we have:

S̃(V,x0,x
∗
0)− 1

2
min

(
Ŝ(V,x0,x

∗
0), α

)
︸ ︷︷ ︸

= 1
2
S(V,x∗

0)

≤ 1

2
S̃(V,x0,x

∗
0) ≤ 1

2
α (8.29)

Which which shows that S(V,x∗0) ≤ α.

We now only need to worry about the case where S(V,x∗0) > Ŝ(V,x0,x
∗
0). In that case

we have:

max
(

min
(
Ŝ(V,x0,x

∗
0), α

)
, S(V,x∗0)

)
= S(V,x∗0) (8.30)

Which implies that S(V,x∗0) = S̃(V,x0,x
∗
0) ≤ α, which proves the result.

What we have shown is that the cost function for S̃ is equivalent to the standard nominal

cost in the sense that either both cost functions are above the threshold α, or neither of

them are. Assuming that α corresponds to violating constraints, this means that both cost

functions agree if constraints have been violated. This is useful because optimizing using

the combined cost takes into account both the nominal and actual system state, which leads

to improved performance. However, it does not enable the system to violate constraints any

more easily than the using the standard nominal cost.

Algorithm 5 summarizes the steps in generating and evaluating samples in for the nomi-

nal system with the combined cost. The first step is to generate samples from the augmented

system, this is done by simulating the system forward using the system dynamics and initial

conditions for the nominal and real state. Next, the cost is computed for the resulting state

and controls pairs. There are three costs that are then computed.

i) The state cost for the real system augmented with the penalty on applying control
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Algorithm 5: Augmented Importance Sampler (AIS)
Given: F, k: Transition model and feedback controller;
Σ, φ, q: Cost function/sampling parameters;
T,N : Time horizon and number of samples;
λ, α: Temperature and cost threshold
Input : x0,x

∗
0: Real and nominal state;

U : Current importance sampling sequence;

for n← 1 to N do
x← x0;
x∗ ← x∗0;
S, Ŝ, Sreal ← 0;
Sample En =

(
εn0 . . . ε

n
T−1

)
, εnt ∈ N (0,Σ);

for t← 0 to T − 1 do
x← F (x,ut + εnt + k(x,x∗));
x∗ ← F (x∗,ut + εnt );
Ŝ += q(x) + γ

2
k(x,x∗)TΣ−1k(x,x∗);

S += q(x∗) ;
Sreal += q(x) + λ

2
(u + k(x,x∗))T Σ−1 (u + ε+ k(x,x∗));

Ŝ += φ(x) ;
S += φ(x∗) ;
Sreal += φ(x) ;

Snom = 1
2
S + 1

2
max

(
min

(
Ŝ, α

)
, S
)

;

for t← 0 to T − 1 do
Snom += λ

2

∑T−1
t=0

(
uTΣ−1ut + 2uTΣ−1εnt

)
;

return {Snom1 , Snom2 , . . . SnomN }, {Sreal
1 , Sreal

2 , . . . Sreal
N } {E1, E2, . . . EN};

action to drive the real system state to the nominal state.

ii) The state cost for the nominal state.

iii) The total (state and control) cost for the real system.

The first two costs are used for updating the importance sampling sequence, and propagat-

ing the nominal state forward, and the last cost is used for computing the optimal control.

After the costs for the entire state and control sequence is computed the first two costs are

combined according to Eq. (8.23), and then the control cost is added to the combined cost.
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Tracking Controller

The last issue that needs to be addressed in order to make a practical algorithm is that

a feedback controller, which drives samples generated from the real system to the corre-

sponding sample from the nominal system, must be designed. In order to obtain the the-

oretical guarantee, we need the tracking controller to do this exponentially fast. However,

the AutoRally dynamics are described by a neural network, and as such are non-linear and

hard to work with from an analysis perspective. In particular, parameters usually required

for applying tracking controller designed for autonomous vehicles are not available when

utilizing learned dynamics.

As opposed to a hand-designed a tracking controller, we can linearize the system and

use a linear quadratic regulator (LQR) to obtain time-varying linear feedback gains. This

means that k(x,x∗, t) takes the form:

k(xt,x
∗
t ) = Kt (xt − x∗t ) (8.31)

Note that by doing this we lose the the theoretical guarantee, since we are using a linear

approximation of a non-linear system. However, LQR is very general, easy to implement,

and works well in practice which justifies its usage.

In order to apply LQR, we need to linearize the system about a nominal trajectory. Ide-

ally, we could generate a set of optimal feedback gains for each nominal sample. However,

this would involve computing thousands of LQR gains every iteration, which is intractable

with current hardware. Instead, we can linearize about the current nominal solution, and

then compute LQR gains around that single trajectory. These gains are then re-used for

all of the generated samples. This is sub-optimal, however it is effective in practice. One

reason for its effectiveness is that, initially, all the samples are tightly clustered together

close to the nominal solution. This means that the corresponding feedback gains are close

to optimal, and drives the real state to the nominal state before the trajectory samples spread
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apart significantly. Once the nominal and real states are close together, the feedback con-

trollers contribution is negligible. It should also be noted that the feedback controller is

only used in simulation, where there is no uncertainty. In this setting, the LQR controller

is highly effective.

Algorithm Summary

With tractable methods for updating the nominal state, updating the nominal importance

sampling sequence, and computing a feedback control law, we can now describe the full

implementation of MPPI with augmented importance sampling. We refer to this algorithm

as robust model predictive path integral control (R-MPPI). The psuedocode for the algo-

rithm is given in Alg. 6.

In the first initialization step, the nominal and actual states are set equal to each other,

and the nominal control sequence is specified. In the case of a ground vehicle Uinit can be

randomly initialized or set to zero. Then the algorithm enters into the main MPC loop. The

first step in the MPC loop is to simulate the system forward from the nominal state using

the current importance sampling sequence. This generates a state trajectory, for which the

system is linearized around and feedback gains are computed. Note that this step requires

the specification of quadratic state and control costs for which the optimal feedback gains

are computed with respect to. These costs must make a trade-off between smoothness and

performance. Even though the samples generated by the augmented importance sampler

are unbiased, in practice the limited number of samples available makes the selection of

these tracking costs important. If the tracking costs are very low then samples generated

by the augmented importance sampler can fail to track the corresponding nominal state

sequence, which can result in constraint violation. If the tracking costs are too high, than

the resulting gains will be high, and result in jerky control inputs.

After the feedback gains are computed, samples are generated from the augmented im-

portance sampler (Alg. 5) utilizing the feedback control law specified by the gains returned
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Algorithm 6: Robust Model Predictive Path Integral Control (R-MPPI)
Input: F, Uinit: Dynamics and initial control sequence ;
Σ, φ, q, T , N : Cost function and sampling parameters;
λ, α: Temperature and cost thresholds;

// Initialization
U ← Uinit;
x← Fn StateEstimator();
x∗ ← x;

// Main Loop
while Task Not Finished do
{K0, K1, . . . KT−1} ← Fn LQR(x∗, U);
{Snom1 , . . . SnomN }, {Sreal

1 , . . . Sreal
N }, {E1, . . . EN} ← Fn AIS(x,x∗, U);

uopt ← U0 +K0(x− x∗) +
∑N

n=1

exp(− 1
λ
Srealn )εn0∑N

n=1 exp(− 1
λ
Srealn )

// Optimal control

U ← U +
∑N

n=1

exp(− 1
λ
Snomn )En∑N

n=1 exp(− 1
λ
Snomn )

// Update importance sampler

Fn SendToActuators(uopt);
x← Fn StateEstimator();
x∗, U ← Fn NominalStateUpdate(x∗, U);

by LQR. The augmented importance sampler returns disturbance sequences along with two

different cost weightings for each sample. One cost is the combined nominal and real cost

given by Eq. (8.23), and the other is purely the cost function of the real system.

After samples are generated and cost weightings computed, the optimal control and

updated importance sampler can be computed. The optimal control is the combination

of the importance sampling input computed using the current feed-forward control and

feedback control: U0 + K0(x − x∗), plus the optimal disturbance computed according to

the real cost. The optimal importance sampler is updated using the optimal disturbance

sequence computed according to the combined cost plus the current importance sampling

sequence.

Lastly, the optimal control is executed, state feedback is received, and then the nominal

state is updated (Alg. 4). Note that the nominal control sequence is slid down during the

nominal state update according to where the nominal state is selected. This whole process

is executed in a fast control loop (40 - 50 Hz for the AutoRally). In practice, the state
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estimator and actuator interface execute in separate threads, so Fn SendToActuators and

Fn StateEstimator only require reading and writing results from the perspective of the

thread running R-MPPI.

8.3 Experimental Results

We implemented R-MPPI on the AutoRally vehicle and tested it on the autonomous racing

task at the CCRF research facility. The track cost here consists of a piece-wise linear

function of normalized distance from the centerline. The distance is normalized so that

(−1, 1) denotes the track boundaries. In between (−0.75, 0.75) the track cost is simply

3.3‖d‖where d is the normalized distance. Then, between 0.75 and 1 (or−0.75 and−1) the

cost linearly ramps up to 1250. After reaching its maximum value at the track boundaries,

the cost is completely flat afterwards. A cross section of the cost function is shown in Fig.

8.2.
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Figure 8.2: Cross section of the track cost function used by R-MPPI. There’s a small cost
on staying near the centerline, and then the cost quickly ramps up to indicate the presence
of a constraint (the barrier). On the right is a zoomed in version of the graph on the left
which contrasts the steepness of the performance cost (staying near the centerline), with
the cost enforcing the constraint.

This type of cost can be more formally described as a function of distance from some
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desired operating point (denoted d) using the following function:

B(d; β, κ, T ,M) =


κ · d if d < T

κ · d+ β · d−T
M−T if T ≤ d < M

κ ·M + β if M ≤ d

(8.32)

which is parametrized by 4 values: the small slope (3.3 in this case), the penalty thresh-

old (0.75), the steep slope (1250 here), and the maximum violation threshold (1.0). The

total running cost we used for R-MPPI was then:

q(x) = B(dtrack; 1250, 3.3, 0.75, 1) +B(dslip; 1250, 0, 0.75, 0.9) + 25 · |vx − 25|. (8.33)

This cost consists of two constraint type costs, and then the cost for going fast. Notice that

this is now an absolute value instead of a squared cost, using an absolute value instead of

a squared cost. We have observed that using an absolute value cost is helpful for inducing

racing type behavior, since it can be set far above what the robot is reasonably capable

of achieving without creating unstable behavior (the AutoRally physically cannot go 25

m/s on the CCRF facility). For the dynamics model we used a neural network with the

same structure as in chapter 6, however we improve on the model by adapting it online, the

method for online adaptation with a neural network is described in the next section.

High-Speed Driving Results

We conducted approximately 50 laps of driving both counter-clockwise and clockwise

around the CCRF track, after discarding the starting lap from each trial (the starting lap

has slightly different statistics than the other laps), we ended up with 45 counter-clockwise

laps and 47 clockwise laps. The trajectory traces of these runs are shown in Fig. 8.3.

Note that the amount of driving recorded here amounts to approximately 17 kilometers (10

miles) of driving.
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Figure 8.3: Trajectory traces of test runs with R-MPPI at CCRF autonomous racing facility.
The top image shows the counter-clockwise laps and the bottom image shows the clockwise
laps. The top speed on the straight can exceed 50 kph.
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Table 8.1 shows the performance statistics achieved over these tests. The top speed

achieved over these trials is 14.11 m/s, which is slightly over 50 kilometers per hour. This

is a significant performance increase from the Tube-MPPI method (Table 7.3). Besides the

Table 8.1: R-MPPI High-Speed Driving Performance at CCRF

Avg. Lap (s) Best Lap (s) Max Speed (m/s) Max Slip (Rad)
Counter-Clockwise 28.40 +/- 0.95 27.13 14.11 0.90

Clockwise 28.76 +/- 0.83 27.42 13.93 0.91

lap times and top speeds, the maximum slip angle recorded during the runs is a positive

sign that the method is working well. The maximum slip angle that we set was 0.9 radians,

and this constraints is always satisfied in the counter-clockwise case, and in the clockwise

case it is violated just slightly. This is even with the vehicle driving near its performance

limits in a highly stochastic environment.

Augmented Importance Sampling Statistics

It is clear that the R-MPPI algorithm achieves good, robust performance based on the re-

sults from the previous section. Here, we take a closer look at exactly how this is achieved

through the augmented importance sampling procedure. There are a few variables inter-

nal to the augmented importance sampling procedure that are of interest: what index the

nominal state is at, the free-energy of the nominal system, and the free-energy of the real

system. It is easiest to understand the role of the augmented importance sampler if we

examine a specific lap, since we can see how different maneuvers correspond to changes in

the free-energy and nominal state.

First we can see how often and precisely where the nominal and real state differ. The

nominal state differing from the real state indicates that the estimated free-energy of the

open-loop importance sampler violates our constraint threshold, this is when the augmented

importance sampling kicks in and starts making a difference. Figure 8.4 shows a plot of the

nominal state index over the course of a lap, and the corresponding lap with annotations
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denoting the locations where the nominal state index drops below 8. The vast majority of

the time, the nominal state index is 8, in which case augmented importance sampling is the

same as standard importance sampling. However, there are a few cases where the nominal

state index drops below 8 and the augmented importance sampler is activated. This usually

occurs during hard accelerations into and out of turns.

1

2
3

4
5

6

7

8
9

Figure 8.4: Top: Nominal state index of the augmented importance sampler during a fast
lap. Their are 9 events where the nominal state index is below 8 (which means that the
nominal and real state differ). This indicates times where the estimate of the free-energy
using the open-loop importance sampler from the nominal state violates the α. Bottom:
Pose history as the vehicle completes a fast clockwise lap at CCRF. The numbers indicate
areas where the nominal state differed from the real state.
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When the augmented importance sampler is active, the free energy estimates from the

nominal and real states differ. However, if the stabilizing feedback controller is perform-

ing its job, the free-energy estimate from the real state (using the augmented importance

sampler) should be close to the free-energy estimate from the real state. Figure 8.5 shows

the plot of the free-energy over the course of the same lap as in Fig. 8.4. During the high-
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Figure 8.5: Free energy estimate calculated from the nominal and real state. Note that α is
set to 1000 here, and 1250 indicates a predicted constraint violation.

speed run, there is only one instance where the real and nominal free energy significantly

diverge. This shows that the tracker (sub-optimal LQR) is largely successful at keeping the

trajectories generated from the real state close to the trajectories generated starting from

the idealized nominal state. Note that without the augmented importance sampler, every

time the nominal and real state differ, the free-energy calculated from the real state would

be at least 1000, and possibly much higher.

Extreme Maneuvering Example

With the level of noise in the environment, and the speeds that the AutoRally is oprating

at, there are times when the vehicle can get itself into trouble. One of the major benefits

of R-MPPI is that it knows very precisely where the track boundaries are (based on the
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shape of the cost function), and it is capable of executing extremely aggressive maneuvers

in order to avoid them. Figure 8.6 illustrates one such maneuver.

Figure 8.6: Aggressive maneuver by R-MPPI in order to avoid the barrier. Note that the
augmented importance sampling is active here.

The setup for this maneuver is that the vehicle did not turn sharply enough (due to
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modeling error) on the previous turn. The result is that the vehicle ends up heading straight

towards the barrier at nearly 30 mph with only a few meters distance to maneuver away

from the barrier. In order to avoid the barrier, the vehicle initiates a spin, and then counter-

steers in order to stabilize itself. This gets the vehicle pointed towards the center of the

track, once the vehicle is pointed this way, it applies full throttle in order to accelerate away

from barrier, and then continues. In order to execute this maneuver, the controller must be

operating in a fast control loop, be aware of precisely where the barrier is, and understand

the non-linear dynamics enough to spin and counter-steer.

8.4 Discussion

In this chapter we presented the augmented importance sampling approach, and its resulting

application to model predictive path integral control, which we call robust model predictive

path integral control. Robust MPPI significantly improves on MPPI, as it can work with

very simple cost terms in order to represent constraints, and it is also a major improvement

on Tube-MPPI. As opposed to Tube-MPPI, which places the MPPI algorithm into the ex-

isting Tube-MPC literature, the augmented important sampling approach brings ideas from

the Tube-MPC literature into the importance sampling framework that is native to MPPI.

Since the nominal state indirectly affects the stat through the importance sampling, we can

compute an unbiased estimate of the optimal control like in standard MPPI, but the nominal

state keeps the importance sampling distribution stable from iteration to iteration.

The Robust MPPI algorithm achieves all of the objectives that we initially outlined as

goals for our control algorithm all the way back in chapter 1. Control is performed in real-

time completely on-the-fly, the controller is clearly able to handle the non-linear dynamics

and perform at the limits of handling, and we can handle constraints by using very simple

cost formulations.

In addition to a highly practical algorithm, augmented importance sampling provides

a potential route towards providing performance guarantees, and we have shown how the
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growth in the free-energy can be bounded for the idealized scheme. We did not end up

computing this bound for the AutoRally, since finding a tracking controller with the desired

properties was not feasible. However, for other systems such controllers do exist, and

computing the bound may be possible.
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CHAPTER 9

MODEL LEARNING AND ADAPTATION

The application of model predictive control on physical systems requires highly accurate

dynamics models. Even methods like R-MPPI which are robust to stochastic disturbances

need a good model of the system dynamics in order to plan intelligently. One of the most

promising approaches to obtaining accurate dynamics models is to learn them by utilizing

function approximation methods (e.g. neural networks). We initially explored the combi-

nation of neural networks with MPPI for autonomous driving in chapter 6. In that case,

there was nothing particularly unique about the way the neural network was trained: some

system identification data was collected, and then the model is trained using mini-batch

stochastic gradient descent. After the model is trained, it is used just like any other ma-

chine learning or physics based model would be.

Although this approach proved to be effective, it ignores a major issue in that the system

dynamics are constantly changing. Changes in the dynamics can occur either due to envi-

ronmental factors (e.g. the road surface condition), or due to internal factors that are hard to

measure (e.g. weight distribution, suspension stiffness, steering slop). Therefore, we would

like to be able to adapt the neural network online in order to fit the current environment.

Unfortunately, adapting neural networks online is a notoriously difficult problem. The key

issue that must be overcome is catastrophic forgetting [78, 79], which is the tendency for

neural networks to forget old data when fed new data from a different distribution. This is

especially problematic in the case of autonomous control, where catastrophic forgetting in

the system model can lead to a (catastrophic) controller failure.

In this chapter we propose a method to overcome the catastrophic forgetting problem

in neural networks. In order to do this we make use of a class of modeling techniques

which are naturally immune to catastrophic forgetting: locally weighted linear regression
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[80]. Locally weighted linear regression methods work by building a global model up from

a set of many small local linear models. Each model is equipped with a receptive field,

which determines how much the model should respond to a given input. The output of the

global model is then computed as a weighted average of all the local model outputs [81,

82]. Since a given training pair only affects a highly localized region of the state space,

locally weighted regression methods can safely make incremental updates. One of the

most mature local modelling methods is locally weighted projection regression (LWPR)

[82]. LWPR has proven successful in modeling robot dynamics, even for high-dimensional

systems in online learning scenarios.

Given the success of LWPR at the task of learning robot dynamics, and the ability

for it to be used in an incremental online setting, one may wonder: why not use LWPR

instead of neural networks for learning system dynamics? The issue with utilizing locally

linear methods in model predictive control is the computational cost. In the past, locally

weighted regression methods have been limited to inverse control, which only requires a

single prediction per timestep, or offline trajectory/policy optimization [80, 83]. In cases

where they have been used in MPC [84], the model had to be severely restrained in order

to control the number of local models generated. The issue is that, for local linear methods

to achieve high accuracy, usually thousands or even tens of thousands of local models are

required to be effective. This requires an order of magnitude more floating point operations

than a neural network to get comparable prediction accuracy. Therefore, utilizing locally

linear methods instead of neural networks inside of an MPC method would come at a

significant opportunity cost, if it were even possible to run in real-time.

Instead of directly utilizing LWPR in the MPC controller, our approach will be to main-

tain both a neural network model and an LWPR model. The neural network model is used

by an MPC controller and it is updated online using data recently collected from the system,

but it is also regularized using pseudo-samples generated by an LWPR model. The LWPR

model is updated in an incremental online manner, in order to ensure that the artificially

163



generated data matches the current target distribution.

This is a similar approach to some of the earliest methods proposed for mitigating catas-

trophic forgetting in neural networks: rehearsal and pseudo-rehearsal [79, 85, 86, 87, 88].

In rehearsal methods, the original training data is retained and used alongside the new data

in order to update the model. Pseudo-rehearsal methods do not retain old data, but instead

they randomly create input vectors (pseudo-inputs) that are then fed through the current

network in order to produce a corresponding output point (pseudo-output). The resulting

artificially generated sample (pseudo-sample) can then be used for training the network

alongside newly received data. The idea is that, by using the pseudo-samples alongside

real data, the network can be encouraged to learn the new data without forgetting the cur-

rent mapping. Recently, there has been success using rehearsal [89] and pseudo-rehearsal

based methods for vision tasks [90, 91, 92, 93]. In these methods the primary challenge

that must be overcome is either storing previous data samples (in rehearsal methods) or

randomly generating realistic inputs (for pseudo-rehearsal methods).

In the case of learning vehicle dynamics, generating pseudo-inputs is relatively easy

due to the low dimensional state-space representation of a vehicle. Instead, there is another

challenge that must be overcome that cannot be handled by the usual rehearsal or pseudo-

rehearsal techniques: both the input and target distributions are non-stationary. This means

that sometimes we need to learn new data while retaining old data, which is the case when

encountering a novel region of the state space. But, other times, we need to learn new data

which overwrites old data, this is the case if we are in a familiar region of the state-space

but the target distribution has changed. The approach we develop to handle this problem is

best thought of as a type of pseudo-rehearsal method, with the key innovation being the use

of an incrementally updated LWPR model to produce the pseudo-outputs. We also make

use of a constrained gradient descent update rule in order to prevent large errors on new

training data from overwhelming the training signal on previously seen data.

Besides rehearsal and pseudo-rehearsal methods, there are a variety of methods for up-
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dating neural networks which mitigate catastrophic forgetting by controlling how far the

parameters of the model can move away from the current model. For instance, this is the

approach taken in [94, 95, 96]. However, as in the case of rehearsal and pseudo-rehearsal,

it is not clear how controlling changes in the weights works when the target distribution

is variable, since in that case the network weights corresponding to previously learned

data will need to be changed as well. Another promising approach to online adaptation

for neural networks that has recently been explored is meta-learning [97]. However, the

meta-learning approach does not have an explicit mechanism to combat catastrophic for-

getting, and it is currently unclear how to perform the meta-training in order to ensure that

catastrophic forgetting cannot occur.

9.1 Online Learning Problem Formulation

Consider an autonomous vehicle operating at some task, while performing the task the

vehicle encounters system states, which we denote by z in this case, and executes controls,

denoted u. Our goal is to update the model of the vehicle dynamics, which is defined using

the discrete time dynamical system:

zt+1 = zt + F(zt,ut; θ)∆t (9.1)

Where θ denotes the parameters of the model, in our case these are the weights of a neural

network. The system states for the vehicle are position, heading, roll, velocities, and head-

ing rate, and the control inputs are steering and throttle commands. In the case of a ground

vehicle, the position and heading updates are kinematically trivial, so we can re-write the

dynamics as:

zkt+1 = zkt + k(zt)∆t (9.2)

zdt+1 = zdt + f(zdt ,ut; θ)∆t (9.3)
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Here zk denotes kinematic states, which are position and heading, and zd denotes dynam-

ics states, which are roll, body-frame longitudinal and lateral velocity, and heading rate.

The motion update for the kinematic states is trivial, so we need only focus on learning

f(zdt ,ut; θ). Now, we define the following variables:

x =

zdt

ut

 , y =
zdt+1 − zdt

∆t
(9.4)

as the inputs and targets for our learning algorithm. Now, as the vehicle moves about in the

world, it encounters states and controls according to some probability distribution:

Local Operating Distribution : x ∼ PL(X ). (9.5)

The distributionPL is called the local operating distribution, and it is highly task dependent.

In addition to the local operating distribution, we assume that there is a system identification

dataset, which contains data consisting of all the various maneuvers that the vehicle needs

to learn in order drive competently. The system identification dataset consists of samples

drawn from another distribution:

System Identification Distribution : x ∼ PID(X ). (9.6)

which we denote as PID, and refer to as the system identification distribution. Note that

this distribution is constant, but the mapping which takes input points drawn from this

distribution to the corresponding dynamics output is not. Our goal is to incrementally

update a neural network describing the system dynamics. However, we must be sure that

by updating the model we do not forget any of the system modes contained in PID.

First consider a simple approach to performing online model adaptation based on stan-

dard stochastic gradient descent (SGD). Suppose that we have access to streaming data, and
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that we maintain a set of recently encountered input and output pairs. By randomly drawing

pairs from this set, we can get independent and identically distributed (I.I.D.) samples from

the local operating distribution. The standard SGD rule updates the parameters as follows:

θi+1 = θi − γ∇θi‖y − f(x; θi)‖2 (9.7)

since training pairs are drawn from the local operating distribution, this update will improve

the model’s performance for the inputs drawn from that distribution. Mathematically, this

means that we are optimizing for the objective:

Ex∼PL
[
‖y − f(x; θ)‖2

]
(9.8)

This is not what we want. The issue with this is that the local operating distribution may not

contain all the maneuvers that the vehicle needs to operate effectively. A typical example in

the case of autonomous driving is highway driving: a vehicle operating on a highway only

needs to maintain a constant velocity and make slight turns the vast majority of the time,

if the model is updated with inputs purely drawn from a highway driving dataset, there is

no guarantee that the model will remember the basic maneuvers necessary for other types

of driving. This problem, known as catastrophic forgetting, is a well known deficiency of

neural networks, and it is especially problematic when the model being updated is being

used to control the vehicle.

If we had access to I.I.D. samples from the system identification dataset, we could

instead use an SGD update law that jointly learns the target mapping for inputs drawn both

from the system identification dataset and the local operating distribution. For instance, the

167



following update law achieves this:

θi+1 = θi − γ (GL(θi) +GID(θi)) (9.9)

GL = ∇θi‖yL − f(xL; θi)‖2 (9.10)

GID = ∇θi‖yID − f(xID; θi)‖2 (9.11)

(xL,yL) ∼ PL, (xID,yID) ∼ PID (9.12)

This update balances optimizing the model on the local operating distribution and the sys-

tem identification dataset, and it is the basic idea behind traditional rehearsal and pseudo-

rehearsal techniques. In the case of classification, this type of update is effective at prevent-

ing catastrophic forgetting. But, in the regression setting, even this type of update could

be problematic since the magnitude of the error incurred by the network can vary greatly

depending on the region of state-space the system is in. If the error incurred by the lo-

cal operating distribution is very high it can overwhelm the error signal from the system

identification part of the data, which can still lead to the vehicle forgetting basic maneuvers.

Instead, we want to ensure that the model cannot forget the system identification dataset,

in this context “forgetting” means intentionally degrading the performance of the model on

input data drawn from PID. One way to enforce that is to ensure that update steps always

move in the direction of the local minima for input data drawn from the system identifica-

tion distribution. This constraint can be enforced by ensuring that the cosine of the angle

between the update direction and the gradient computed from the system identification data

is always positive, and it can be achieved with the following update law:

θi+1 = θi − γ (αGL(θi) +GID(θi)) (9.13)

α = max
a∈[0,1]

s.t 〈aGL(θi) +GID(θi), GID(θi)〉 ≥ 0 (9.14)

This update law still balances the objective of simultaneously optimizing for the local op-

168



erating distribution and system identification distribution. However, it constrains the com-

bined gradient to always point in the same direction as the gradient computed from system

identification data.

The problem with implementing the update rule defined by Eq. (9.13) is that, in an

online setting, we only have access to data generated from the local operating distribution.

Additionally, since the target mapping is changing, we cannot simply re-draw samples from

the original system identification dataset or generate pseudo-outputs by running random

inputs through the current model like in standard rehearsal and pseudo-rehearsal methods.

9.2 Locally Weighted Projection Regression Pseudo-Rehearsal

Our goal is to approximately implement the constrained gradient update defined in Eq.

(9.13). Our strategy will be to use artificially generated pseudo-training points to enforce

the constraint, with the additional requirement that the pseudo-training points must some-

how match the changing target distribution. This means that artificially generating training

points requires two steps:

i) A method for generating artificial input points that are I.I.D. samples from PID(X ).

ii) A method for computing the corresponding target, y, for an artificially generated

input point. This should be a function approximator that is capable of online adapta-

tion, since the target mapping y is actively changing.

Given these requirements, it appears as though we cannot go anywhere, since the pre-

ceding discussion can roughly be summarized as: in order to perform online adaptation

we first need a method that can do online adaptation in order to constrain the stochastic

gradient descent update. The reason why this is not the case, is that the speed requirements

on the model used for artificial data generation are much less strenuous than the speed

requirements for a model used in model predictive control.
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Suppose that we are receiving inputs points at a rate of 40 Hz, a reasonable number for

a robotic system, then in order to produce an equal number of artificial points for regular-

ization our model needs to be able to produce 40 predictions/second. In contrast, for our

sampling based MPC controller we require the model to produce on the order of millions

of predictions per second. Even less computationally intensive MPC algorithms (iLQG

for instance) require on the order of tens of thousands of predictions (plus derivative com-

putations) per second. So, even for relatively inexpensive MPC algorithms the computa-

tional demands on the model used for artificial data generation are 3 orders of magnitude

less than the model used for MPC, and 5 orders of magnitude less than for our sampling

based controller. This means that we can use more computationally demanding models that

are specifically suited to online adaptation in order to generate the artificial data, such as

LWPR.

Algorithm Description

Our approach will be to train an LWPR model, which will be updated online, in order to

compute the target mapping for artificially generated input points. For the generation of

the input points, a gaussian mixture model (GMM) is used. The GMM is trained offline

and kept static, which reflects the fact that the input distribution defined by the system

identification dataset does not change. The artificial input/output pairs are then used to

compute a synthetic gradient, which is used to regularize the online stochastic gradient

descent. The algorithm consists of four sub-modules, which we now describe in detail.

The overall flow of the algorithm is shown in Fig. 9.1.

Gaussian Mixture Model

The purpose of the GMM is to generate synthetic input points consistent with the system

identification dataset. We denote a mini-batch of synthetic input points as Xs. The GMM

uses diagonal covariance matrices, and is trained using standard expectation maximization.

170



Figure 9.1: LW-PR2 Algorithm. The GMM produces synthetic input points which are com-
bined with predictions from LWPR to create synthetic training pairs. These are combined
with randomized mini-batches created from recently collected data in order to compute the
constrained gradient update.

We use the Bayesian Information Criterion (BIC) in order select the number of gaussian

models used. After the initial training the GMM is not modified again. This is because the

input distribution for the system identification dataset should be carefully curated in order

to ensure that it contains a balance of all necessary maneuvers.

LWPR Module

The LWPR module takes in the synthetic input points generated by the Gaussian mixture

model, and then runs those input points forward through the LWPR model in order to

produce synthetic output points. If we let yi and ci be the mean and center of the ith local

model and let Di be the distance metric which defines the receptive field for the ith model,

then LWPR computes the global prediction as:

y(x) =
L∑
i=1

wi · yi(x− ci) (9.15)

Where the weight governing the response of each local model is:

wi =
exp

(
−1

2
(x− ci)

TDi(x− ci)
)∑L

j=1 exp
(
−1

2
(x− cj)TDj(x− cj)

) (9.16)
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Since the response of a given model to an input decays exponentially fast, model updates

have only a negligible impact on models with centers far from the current input point. This

is the feature that makes LWPR largely immune to catastrophic forgetting, and it ensures

that LWPR can be safely updated online.

The mini-batch output of the LWPR module is denoted Ys. The LWPR model is initially

trained over several epochs on the system identification dataset using the standard LWPR

update rule. Online, the local linear models making up the LWPR model are continually

updated. We train one LWPR model for each different output dimension (roll rate, longi-

tudenal acceleration, lateral acceleration, and heading acceleration). The LWPR module is

implemented using [98].

Local Operating Set

The local operating set consists of the last several seconds of training points received from

the stream of data generated by the system. In our implementation this set contains between

500 and 1000 (10 - 20 seconds) of data. Out of this set of data, randomized mini-batches

are created (denoted as (Xd, Yd)) and then fed into the model updater.

Model Update

The synthetic mini-batch and the mini-batch generated by the local operating set are fed

into the model updater module which computes the gradient. The constrained gradient is

computed via equations (9.9) - (9.13), with the synthetic data acting as the data drawn from

the system ID dataset. After the gradient is computed we use the ADAM optimizer [99] to

perform the update step.

Neural Network Initialization

Before the neural network can be updated, an initial model needs to be trained on the

original system identification dataset. One option is to initialize the model using standard
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stochastic gradient descent (i.e. without taking into account the other modules), but we

have found it is more effective to jointly train the initial model with the LWPR model and

GMM model. This means that the actual system identification dataset takes the place of the

local operating set, but synthetic data is still generated by the GMM and LWPR modules,

which is used to compute the constrained gradient. We have observed that training the

initial model in this manner has a negligible effect on the initial performance of the trained

model, but helps with the adaptation.

9.3 Experimental Results

We tested our locally weighted projection regression pseudo-rehearsal (LW-PR2) approach

using four different sets of experiments in simulation and on the AutoRally platform. Our

first experiment tests the algorithm’s ability to prevent catastrophic forgetting, using a

dataset designed specifically to induce catastrophic forgetting on naive adaptation meth-

ods. The second experiment tests the method’s ability to adapt to drastic changes in the

system dynamics using a driving dataset collected on a muddy surface. The third exper-

iment tests how effective the updated model is when used as part of an MPC algorithm.

Lastly, the fourth experiment consists of running the model adaptation during a full day

of testing with the AutoRally, and measures how well the algorithm works in a practical

setting. Throughout these experiments there are 3 different types of experimental modes

that are run:

i) An offline test is a test where the model is not allowed to adapt during the experiment.

ii) An online test is a test where the model is allowed to adapt during the experiment,

but the adapted model is not used to control the vehicle.

iii) An active test is a test where the model is allowed to adapt during the experiment,

and the adapted model is used to control the vehicle.
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Recall that in an online training scenario, there is not an explicit training, validation, and

test set. Instead, as each training pair is received, we compute the current error on that train-

ing pair, and we then record the result. After the error has been computed and recorded, the

training pair is fed into the model updater. We compare our method against the base model

(no adaptation), and the base model adapted with standard stochastic gradient descent. We

also record the performance of the LWPR model used to generate synthetic training inputs.

It is important to realize that the LWPR model we use for generating synthetic data

would not be feasible for use in a real-time control loop. Tables 9.1 and 9.2 detail the

computational requirements of the neural network and LWPR respectively. For these

calculations, we assume that a dot product operation takes 2N − 1 floating point opera-

tions (FLOPs) for vectors of dimension N , and that a matrix-vector multiplication takes

2MN − M FLOPs where the matrix has dimension M × N . We also assume that any

non-linear function (exp, tanh, (·)2) takes a FLOP. For LWPR it can be difficult to predict

the throughput required since the number of active local models can vary greatly, so we

compute a lower bound based only on how many local model activations must be com-

puted. Computing a local model activation requires first subtracting the mean for the local

model from the current input point (6 FLOPs), then individually squaring each result (6

FLOPs), then computing the dot product between the result and the receptive field weight

(2·6−1 FLOPs), and then computing the negative exponential of the result (2 FLOPs). This

results in a total of 25 floating point operations for each local model, plus the additional

computations required to actually compute the weighted average. The neural network sim-

ply consists of matrix-vector multiplies, the additions of the bias, and tanh non-linearities.

Note also, that LWPR works best when a separate model is used for each output dimension,

whereas only one neural network is required.

The key takeaway from Tables 9.1 and 9.2 is that making predictions with the neural

network is two orders of magnitude cheaper than making predictions with LWPR mod-

els. Since MPC controllers need to make tens of thousands or millions of predictions per
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Table 9.1: LWPR Computational Requirements

Output Variable Receptive Fields FLOPs/Pred
Roll Rate 162 > 4, 050

Longitudinal Acc. 1, 409 > 35, 225
Lateral Acc. 1, 738 > 43, 450

Heading Acc. 2, 336 > 58, 400
Total 5, 645 > 141, 125

Table 9.2: Neural Network Computational Requirements

Layer Transition Input - Output Neurons FLOPs/Pred
Input - Hidden 1 6 - 32 416

Hidden 1 - Hidden 2 32- 32 2,080
Hidden 2 - Output 32 - 4 256

Total 6-32-32-4 2,688

second, this is important. For instance, our MPC controller performs 6 million dynamics

predictions every second. If we used the LWPR model that we have trained we would

need to achieve a throughput of at least 847 GFLOP/S to run in real time. Although this

number is technically achievable for modern graphics cards on dense matrix multiplication

benchmarks (the 1050 Ti in AutoRally has a peak measured performance of 1.8 TFLOPS),

it is not currently possible for algorithms with more complicated memory usage, control

flow and synchronization requirements - such as forward propagating an LWPR model.

In contrast, the synthetic data generation only requires on the order of tens or hundreds

of predictions per second, which is easily manageable on any reasonably capable modern

processor.

Catastrophic Interference Test

In this experiment we test the ability of LW-PR2 to improve online modeling performance

while simultaneously “remembering” other parts of the system identification dataset. These

experiments utilize two datasets, which we selected from the publicly available dataset

accompanying [40]. The first dataset we call the online training dataset and the second is

called the offline validation dataset. These datasets were collected on the same day, so the
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environmental differences are minimal1. The online training dataset consists of 100 laps

(approximately 27 minutes) of slow speed driving around a roughly elliptical track in the

clockwise direction. This is an extremely monotonous dataset, as the robot mostly follows

the same line over the 100 laps.

Given the monotonous nature of the online training dataset, it is easy for the online

adaptation to overfit to the local operating distribution and forget parts of the system iden-

tification dataset. In order to test how well the model adaptation is able to remember other

system modes, we utilize the offline validation dataset. The offline validation dataset con-

sists of the same type of low speed monotonous driving in the opposite (counter-clockwise)

direction of the online training dataset. If the model adaptation algorithm is successful at

remembering the system identification dataset, then we should be able to run the adaptation

on the online training dataset and see minimal degradation when testing the final adapted

model on the offline validation dataset.

Table 9.3: Online Training Dataset Errors

Base SGD LW-PR2 LWPR
Roll Rate (rad./s) 0.01 0.01 0.01 0.01

Longitudinal Acc. (m/s2) 0.35 0.33 0.32 0.33
Lateral Acc. (m/s2) 0.69 0.63 0.61 0.65

Heading Acc. (rad./s2) 2.11 0.46 0.49 0.53
Total MSE 0.79 0.36 0.36 0.38

Table 9.4: Offline Validation Dataset Errors

Base SGD LW-PR2 LWPR
Roll Rate (rad./s) 0.01 0.01 0.01 0.00

Longitudinal Acc. (m/s2) 0.20 0.22 0.20 0.17
Lateral Acc. (m/s2) 0.99 1.56 1.10 0.83

Heading Acc. (rad./s2) 1.47 2.11 0.83 0.42
Total MSE 0.67 0.97 0.53 0.36

The testing procedure works as follows: we first test the online performance of each

of the methods using the online training dataset. Then, after the online test is finished, the
1The offline validation dataset was collected approximately 30 minutes before the online training dataset
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final adapted model is taken and an offline test (no adaptation allowed) is performed on the

offline validation dataset. The results of these tests are shown in Tables 9.3 and 9.4.

For the online training dataset all of the adaptive methods perform similarly, and they

all significantly decrease the total mean-squared error of the model predictions compared

with the base neural network model. However, when using the final adapted model from the

online training dataset on the offline validation dataset, the differences between the meth-

ods become apparent. The standard SGD methods suffers the characteristic catastrophic

forgetting, particularly in the heading acceleration which makes sense given the difference

in the direction of travel between the two datasets. As expected, LWPR is unaffected by the

change in local operating distribution, and performs better than the base network. Our LW-

PR2 method performs only slightly worse than LWPR and outperforms the base network.

This shows that the method is not only capable of preventing catastrophic forgetting, but

that it is actually able to generalize knowledge gained in one dynamics regime to another

related dynamics regime.

Modified Dynamics Test

In this experiment we test the ability of the algorithm to adapt to highly modified vehicle

dynamics. The dynamics are modified by running the vehicle on a muddy track surface.

The mud changes the dynamics because it clings to the tires and reduces the friction be-

tween the vehicle and the ground. Additionally, the mud clinging to the body of the vehicle

adds over 10 kg of extra weight (the normal weight is 21 kg), which has a significant effect

on the vehicle’s dynamics. All of the system identification data was collected on a dry sur-

face with a mud free robot, so this is a completely novel dynamics regime for the system.

The vehicle is driven by an expert 1/5 scale RC car driver in the muddy conditions.

Despite the poor driving conditions, the driver is still able to attain speeds over 50 kph and

slip angles in excess of 60 degrees. This means that the dataset is challenging not only
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Figure 9.2: AutoRally vehicle after running on muddy surface. Notice the depressed rear
suspension, which is caused by the extra weight from the mud accumulating on the chassis
and body.

because of the changing conditions, but also because of the highly dynamic regime that the

vehicle operates in. This dataset consists of slightly more than 2.5 minutes of data, which

is 5 laps around our test track. The results are given in Table 9.5.

Table 9.5: Modified Dynamics Dataset Errors

Base SGD LW-PR2 LWPR
Roll Rate (rad./s) 0.02 0.02 0.02 0.02

Longitudinal Acc. (m/s2) 2.42 1.52 1.60 1.70
Lateral Acc. (m/s2) 1.04 1.02 0.96 0.98

Heading Acc. (rad./s2) 4.96 2.64 2.74 3.10
Total MSE 2.11 1.29 1.33 1.45

All of the incremental methods achieve a better total MSE than the un-modified base

network. The LW-PR2 method actually outperforms LWPR by a significant margin. The

standard SGD method performs best, as it did in the catastrophic forgetting test on the
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online training dataset. The weakness of SGD is not that it does not fit the local operating

distribution, but that it can easily forget the system identification dataset.

Simulated Autonomous Driving Tests

The previous two experiments tested our method on datasets where the model being pro-

duced by the model adaptation was not being used to control the vehicle. In this section,

we test the algorithm in an active setting where a model predictive controller uses the up-

dated model to control the vehicle. We use the same open source Gazebo simulation of

the AutoRally vehicle from [1] for these experiments. The system identification dataset

that we use to train the base model is the same as in the previous sections (i.e. it is based

on real world data). Note that the simulation dynamics are significantly different from the

real-world AutoRally dynamics, so the starting base model is highly inaccurate.

We ran three different model adaptation settings: standard SGD, LW-PR2, and no adap-

tation. For each setting we performed trials running 10 laps around the track, and we

collected 5 trials for each different setting. The vehicle is driven using the model predictive

path integral controller from [40], with a desired speed set2 at 8m/s. In order to emphasize

the impact of the model adaptation, we set the maximum slip angle the vehicle is allowed

to achieve to be relatively low (≤ 13 degrees). Since the vehicle slides less easily in the

gazebo simulation than in the real world, this results in a very conservative controller when

using the base model (which has only seen real-world data). As the model adapts, the

controller should realize that it can increase speed without slipping, leading to improved

performance.

The results of all of the trials are shown in Table 9.6. Using either the base model or

the LW-PR2 adapted model, the controller is able to successfully navigate around the track.

However, when using standard SGD to update the model the controller consistently fails

2For speeds higher than 8m/s the accelerations reported by the simulator exhibited high frequency oscil-
lations indicating numerical instability of the simulator, this prevented us from trying faster speeds using the
model adaptation.
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after completing 1 lap, typically the controller tries to take a turn too fast, which results in

the vehicle rolling over.

Table 9.6: Gazebo Simulation Results

Base Network SGD LW-PR2

Avg. Laps Completed 10 1 10
Avg. Trial MSE 1.84 2.49 0.65
Avg. Lap Time 34.78 N/A 32.04

Trajectory traces for the base model and LW-PR2 are shown in Fig. 9.3. The base model

performs adequately, and the controller is able to consistently drive the vehicle around the

track using the base model. However, the controller with the updated LW-PR2 model is able

to attain a higher average velocity around the track. Figure 9.4 shows the progression of lap
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Figure 9.3: Trajectory traces for simulated autonomous driving runs with model adaptation.
Top: Base Model, Bottom: Updated model with LW-PR2. Notice the increased areas of
high speed for the LW-PR2 setting compared with the base model.

times and total MSE per lap as each trial progresses. On average, it takes less than one lap

for the MPC controller to start benefiting from the model adaptation: as the model adapts it

realizes it can go faster without slipping in the simulation than it can in the real world and

the result is a performance increase. The performance on the second lap is significantly

better with the LW-PR2 adapted model than with the base model. After the second lap, the

model continues to make small improvements in the per lap MSE.
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Figure 9.4: Improvement in lap time and total MSE accumulated per lap for the updated
LW-PR2 model versus the base model.

AutoRally Experimental Results

In the previous sections we tested our model adaptation approach in three essential areas:

robustness to catastrophic interference, ability to adapt to drastic changes in the dynamics,

and effectiveness when utilized by an MPC controller. These experiments were conducted

in a controlled manner using either simulation or specially collected datasets. In this sec-

tion, we examine how the model adaptation scheme works in a more natural environment

- the model adaptation is turned on at the beginning of a day of testing and allowed to

run uninterrupted3 for the entire day. The resulting dataset consists of over 1 hour of au-

tonomous data collected over a period of 4.5 hours. The 1 hour of autonomous data consists

of approximately 18 kilometers of driving data with speeds up to 50 kph. Note that this

dataset contains a significant amount of natural variation: the early morning runs are with

a fresh damp track, whereas test runs in the afternoon are with a drier track that has less

grip. Many of the tests start when the vehicle has a fully charged battery, and then end with

a dead battery, and then are continued with another fully charged battery, this means that

the adaptation has to constantly re-learn similar parts of the dynamics over again. The tires

3Technically the actual program running the model adaptation is interrupted when there are long pauses
in testing. However it saves the current parameters, and reloads them when testing resumes.
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also become gradually worn out, which has a significant effect on the friction available.

For this dataset we record the same performance metrics as in the earlier online dataset

experiments for each of the four adaptation strategies. Additionally, we have available the

active performance of LW-PR2 data since the model produced by LW-PR2 was being used

to drive the vehicle autonomously. For the active version of LW-PR2 we used a slightly

more conservative learning rate, which explains the performance difference between the

active and non-active LW-PR2-SGD algorithms. Note that the errors produced by the ve-

hicle running autonomously in these experiments are on average higher than the errors

reported in the previous sections. This is due to a combination of speed and control style:

moving faster produces higher accelerations which lead to higher errors than in the catas-

trophic forgetting test, and the autonomous control system does not produce as smooth of

control inputs as the expert human which can also lead to high accelerations relative to the

expert.

The results over the full day of testing are given in Table 9.7. Once again, all of the

incremental method significantly improve the performance from the base model. The SGD

and LW-PR2 methods perform nearly identically on the online test, but the method updated

with LW-PR2 is able to be safely utilized by an MPC controller.

Table 9.7: Autonomous Field Test

Base SGD LW-PR2 LWPR
Roll Rate (rad./s) 0.01 0.01 0.01 0.01

Longitudinal Acc. (m/s2) 2.73 2.28 2.30 2.06
Lateral Acc. (m/s2) 1.71 1.29 1.24 1.28

Heading Acc. (rad./s2) 8.28 4.48 4.87 4.54
Total MSE 3.18 2.10 2.11 1.97

Active Performance (MSE) N/A N/A 2.54 N/A

9.4 Discussion

The key contributions from this chapter are:
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i) Using an incrementally updated LWPR model in order to create artificial training

pairs. The use of incrementally updated LWPR enables pseudo-rehearsal to be ap-

plied to systems where both the input and target distributions are non-stationary.

ii) Using a constrained gradient update, which ensures that the adaptation cannot move

away from the system identification dataset, no matter how large the errors it encoun-

ters in other regions of the state-space are.

In order to test our method we created a series of datasets and simulation tests that stressed

essential requirements for an online adaptation scheme: the ability to prevent catastrophic

forgetting, adapt to drastic changes in the dynamics, and the ability to produce models

usable by an MPC controller. These experiments demonstrated the capability of our ap-

proach and also highlighted some of the nuances involved in validating online adaptation

algorithms: in all of the online experiments the standard SGD method performed at the

level of the LWPR and LW-PR2 algorithms, it was not until the SGD method was tested on

a specifically collected validation dataset or tried to be combined with an MPC controller,

that the deficiencies of the SGD method became apparent. We have also demonstrated the

practicality of the approach by performing an extended test of the method, where it is re-

quired to run continually for hours at a time while producing models that are capable of

high speed driving.
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CHAPTER 10

CONCLUSIONS AND FUTURE DIRECTIONS

We started this thesis by outlining the autonomous racing problem, and defined three key

criteria that we wanted an autonomous control system to be able to achieve: performance

at the limits of handling, constraint satisfaction, and real-time performance. The method

which finally achieves these criteria is the Robust-MPPI algorithm developed in chapter 8,

along with online model adaptation from chapter 9.

In order to get to that point, we first developed new theory based on an information

theoretic interpretation of stochastic optimal control. The information theoretic framework

relies on a fundamental inequality between free-energy and KL-Divergence and gives rise

to an optimal distribution. The free-energy of the system can be related to the value func-

tion, and the mean of the optimal distribution can be related to the path integral form of the

optimal control.

The information theoretic framework, with path integral control theory, and advances

in GPU computing, led to the MPPI algorithm in chapter 5. Extensive experiments on the

real-world AutoRally system highlighted the strengths and deficiencies of MPPI in chapter

6, and further analysis identified key issues and potential solutions in chapter 7. In total, the

experiments in chapter 6 consists of over 100 kilometers of autonomous driving. Finally,

chapter 8 brings all of the theoretical results and experimental findings together to create

an algorithm that satisfies our criteria, and is capable of consistently driving the AutoRally

at speeds over 50 kilometers per hour.

10.1 Future Directions

There are several exciting research directions that are natural extensions of the work con-

tained in this thesis. One of the most obvious research directions is applying the algorithms
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developed in this work to higher dimensional robotic systems. Legged locomotion tasks are

an especially interesting direction where the algorithms applied in this work could be highly

effective: differentiating through contact is one of the most challenging aspects for locomo-

tion control, and in our sampling-based frameworks this step can be bypassed altogether.

The primary challenge with applying sampling-based algorithms in the context of locomo-

tion is the cost of evaluating the system dynamics, which usually involves solving linear

complementarity problems, and can be very expensive. However, with continual increases

in parallel architectures it is looking increasingly likely that sufficient computational power

could exist in the next few years to apply sampling-based methods to locomotion problems.

Another important area that could be further developed is the theoretical treatment of

robust MPPI in chapter 8. The theoretical work in that sections illustrates how useful

performance guarantees could reasonably be obtained in a sampling-based architecture.

However, the treatment there is preliminary, and used more of a guide towards develop-

ing a practical algorithm that performs well. In fact, in the final algorithm we end using

LQR, which forgoes the theoretical guarantees that the idealized algorithm could achieve.

Although this led to an effective algorithm, there is still significant room for improvement.

The theoretical analysis is especially important in applications to aerospace systems and

applying sampling-based methods to systems such as hypersonic vehicles is a promising

direction given the challenging hybrid dynamics that such systems have.

The most exciting future direction for this research, however, can be found by returning

to the AutoRally system. In this thesis we considered the case of a single vehicle driving

fast, but we now have the capability of running multiple AutoRally platforms (see Fig. 10.1,

which creates new challenges and opportunities related to autonomous racing. Interactive

racing against an adversarial opponent requires solving an extremely difficult prediction

problem in a fast, dynamic environment, and it can serve as a motivating proxy problem for

multi-agent interaction, much as we have considered the single vehicle case in this thesis. In

fact, we have already taken some preliminary steps in this direction in the cooperative case:
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best-response MPC. This initial research is highlighted in the next section. It should be

emphasized that this work is highly preliminary and should be thought as a useful potential

direction for future research as opposed to completed work.

Figure 10.1: Two AutoRally vehicles operating on the dirt test track at the Georgia Tech
Autonomous Racing Facility.

10.2 Head-to-Head Autonomous Racing

Consider a scenario where two vehicles are operating in close proximity to each other and

cannot directly communicate. The alternative is to develop methods which do not require

explicit coordination. The main problem which we must overcome in the multi-vehicle,

non-communicative setting is that the robot must be able to “guess” at the other vehicles’

current plans and predict how the other vehicles might react to changes it makes in its own

policy. The usual methods for predicting the behavior of other vehicles are to treat them as

obstacles moving at a constant speed subject to stochastic disturbances [100, 101], or to use

predefined behavior models [102, 103]. Although these methods can be effective, they both

have significant drawbacks: treating other intelligent vehicles as unintelligent obstacles is
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inaccurate in many cases, and predefined behavior models are computationally expensive

and require careful data collection and analysis to train [104].

As opposed to pre-specifying a behavior model, we can attempt to formulate the prob-

lem as a differential game, and then use optimization to approximately solve the problem.

The game-theoretic approach treats each vehicle as an independent agent attempting to

optimize an objective, subject to their internal dynamic constraints, and it can be viewed

as the generalization of optimal control to multiple, potentially competing, agents. This

approach can generate realistic predictions of the behavior of other vehicles, while only

requiring knowledge of the other vehicles’ dynamics, objectives, and current state. This is

advantageous because, in many cases, it is fundamentally easier to infer intent than to pre-

dict behavior. For example, during highway driving, activating a turn signal almost always

means that a vehicle would like to change lanes. However, the precise behavior that results

from that intent is dependent on the density of traffic, geometry of the road, etc. In the

game theoretic approach, the result of this interaction between intent and environment can

be determined immediately by the optimization, whereas in a behavioral model approach it

would be necessary to collect data and verify the model for each environmental sub-case.

The drawback of the game-theoretic approach is that the resulting optimization prob-

lem is very difficult to solve. For example, it is not practical to develop even a general

numerical scheme which converges to a solution (a Nash Equilibrium) in the case of non-

linear stochastic differential games. Instead, we propose to use a simple numerical method,

known as best-response iteration, which is an iterative system of equations with the so-

lutions to the differential game as fixed points. We then combine best-response iteration

with MPPI, and we demonstrate the ability of the resulting best response model predictive

control algorithm to independently control two one-fifth scale autonomous ground vehicles

operating in close proximity. As a baseline method for comparison, we utilize the method

of treating the other vehicle as an obstacle moving in a straight line with constant velocity

and compare its performance to that of the best response controller.
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Best-response iteration is one of the oldest methods in game theory [105] and can be

applied to any game. Although the idea of best response iteration is old, its use in the

control of autonomous robotic systems fairly new, although a couple of recent papers have

appeared recently promoting the use of the method [106, 107], including our work in [42].

Problem Setup

We begin by describing the differential1 game problem formulation for a general two-player

system (the generalization to more than two is straight-forward). Let Fa and Fb be the

dynamics of player A and player B respectively. We assume that the equations of motions

for the players are stochastic, discrete time equations of the form:

xt+1
i = fi(x

t
i,v

t
i) (10.1)

vt+1
i ∼ N (uti,Σi) (10.2)

i ∈ {a, b} (10.3)

where uti is the commanded input for player i at time t, and vti is the input perturbed by a

Gaussian disturbance. This is the same type of control-dependent noise we have assumed

throughout this text. Next x0
a ∈ Rna and x0

b ∈ Rnb denote the initial conditions of the two

players, Ua and Ub denotes the set of admissible control inputs for the systems, and Ca and

Cb are the cost functions for the two players. It is assumed that both cost functions take the

form:

Ci = EFa,Fb

[
φi(x

T
a ,x

T
b ) +

T−1∑
t=0

Li(xta,xtb,uta,utb)
]

(10.4)

Li = ci(x
t
a,x

t
b) + λ(uti)

TΣ−1
i uti (10.5)

1Technically a difference game, since we will consider discrete time dynamics.
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where t ∈ {0, 1, . . . T} and i ∈ {a, b}. Note that although both players cost functions

have the same general structure, the two cost functions need not be the same. The resulting

differential game can then be described by the tuple:

G = {Fa, Fb,x0
a,x

0
b , Ca, Cb,Ua,Ub} (10.6)

Each players’ objective is to minimize their cost function subject to their own dynamical

constraints. However, since the costs are functions of both players, and each players’ costs

may not be aligned, it may be impossible to find a set of control which minimizes the

cost functions for both players simultaneously. This creates the need for an alternative

solution concept to functional minimization. The most appropriate notion of solution in

this setting is the Nash equilibrium. Let X denote the concatenated states of both players

Xt = (xta xtb)
T, and let πa(Xt) and πb(Xt) denote policies for players A and B respectively,

we then have the following definition:

Definition 10.2.1. A set of policies πa(X ) and πb(X ) are said to be in a Nash Equilibrium,

for the game G, if:

∀i ∈ {a, b}, Ci(πa, πb) = min
π

[
Ci
(
π, π(a,b)\i)]

That is, each players policy is optimal given that the policy of the other player is fixed.

If the players’ policies are in Nash equilibrium then neither player has an incentive to

unilaterally change their policy, thus the Nash equilibrium acts as a natural solution concept

for multi-player games. Our goal will therefore be to find a Nash equilibrium for our game.

We use open-loop control laws πi = {u0
i ,u

1
i , . . .u

T−1
i } as the policy parameterization,

although it is theoretically possible to work with more powerful policy parameterizations.

189



Semi-Stochastic Game

In our initial problem formulation, we assumed that both of the systems under consideration

have stochastic dynamics. This is a realistic assumption, however it creates a very difficult

objective function from an optimization standpoint. When both systems have stochastic

dynamics, the objective takes the form of an expectation over the joint distribution of Fa

and Fb, which then needs to be estimated in order to approximate a solution.

A more tractable approach is to treat the problem as semi-stochastic, where each player

assumes the other player acts in a noise-free manner, but treats their own dynamics as

stochastic. The underlying assumption behind this approach is that the other player will be

able to effectively correct for any stochastic disturbances that they encounter, with mini-

mal changes to their trajectory. This semi-stochastic game set-up can be described using

dynamics and costs for each player that take the form:

Fa(x
t
a,v

t
a,u

t
a) =

fa(x
t
a,n,v

t
a)

fa(x
t
a,d,u

t
a)

 , vta ∼ N (uta,Σa) (10.7)

Fb(x
t
b,v

t
b,u

t
b) =

fb(x
t
b,n,v

t
b)

fb(x
t
b,d,u

t
b)

 , vtb ∼ N (utb,Σb) (10.8)

The state of each player consists of a noisy copy of the state, xti,n and a deterministic copy

xti,d, with i ∈ {a, b}. The objective functions then take the form:

Ca = Efa

[
φ(xTa,n,x

T
b,d) +

T−1∑
t=0

L(xta,n,x
t
b,d,u

t
a,u

t
b)

]
(10.9)

Cb = Efb

[
φ(xTb,n,x

T
a,d) +

T−1∑
t=0

L(xtb,n,x
t
a,d,u

t
a,u

t
b)

]
(10.10)

Note how each players’ objective function only considers the stochastic copy of their own
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state, and the deterministic copy of the other player’s state. This eliminates the need to

compute the expectation over the joint distribution, but still enables some stochasticity to

enter into the problem through the dynamics.

Best Response Model Predictive Control

Our problem formulation results in a differential game with non-linear stochastic dynamics,

and a potentially non-convex cost function. This type of problem generality is required for

controlling ground vehicles in agile close-quarters maneuvers, however it makes finding

a solution in an online optimization framework extremely difficult. Here, we propose a

simple iterative solution method, best response iteration, which has Nash equilibrium as

fixed points. The fundamental object that we consider in iterated best response is the best

response set:

Definition 10.2.2. Assume that player B follows the policy πb, then the best response set

for player A is the set:

{
πa | Ca(πa, πb) = min

π
[Ca(π, πb)]

}
(10.11)

A similar definition applies for best response set for player B. Observe how if both

players are playing policies that are best responses to each other, then the game is in a Nash

equilibrium. Now let Ha(X , πb) and Hb(X , πa) be functions which take the current state

of the game and the opponents strategy, and returns a strategy from the best-response set.

The iterative best response system is then defined by the dynamical system:

πk+1
a = Ha(X , πkb ) (10.12)

πk+1
b = Hb(X , πka) (10.13)

At each iteration of this system, each player responds by playing their best-response to

the other players current policy, and a point is a fixed point in the system if and only if

191



it is a Nash equilibrium. For certain classes of games exhibiting cooperative properties

(e.g. potential games), the iterated best response system converges to a Nash Equilibrium.

However, in general the system may not converge, but instead cycle between policies. Our

key assumption is that the dynamic constraints of the system combined with the stochastic

nature of the environment are enough to either prevent cycling, or quickly break it if it does

occur. This is similar to symmetry breaking in standard stochastic optimal control theory

[49].

In order to utilize iterated best response in an online optimization scheme, we need a

method for rapidly approximating a best-response. In order to perform this computation,

we use the MPPI controller (Alg. 1). Note that we are using the standard MPPI algorithm

here as opposed to the robust version, this is because these experiments pre-dated the work

on robust MPPI. In fact, difficulties with tuning a cost function that could enable safe agile

interaction between two vehicles was one of the motivating factors in developing a more

robust version of the MPPI algorithm.

The best response model predictive control algorithm combines the concept of iterated

best response with the information theoretic optimization procedure from chapter 4. The

algorithm starts with an initial guess of the other vehicle’s control plan, and then estimates

the current state of both vehicles. Then, it uses the information theoretic optimization

procedure to simultaneously compute an estimate of the control sequences for both itself

and the other agent. Next, it executes the first element in the control sequence, and lastly it

slides down the remaining elements in the sequence by one timestep and uses that sequence

to start the optimization on the next round.

A key detail in the best response MPC algorithm is that the best responses for both

players are computed simultaneously. This is important, because it enables calling the two

MPPI optimizers in parallel, which significantly reduces the run time of a single best re-

sponse iteration. The best response MPC (BR-MPC) algorithm is given in Alg. 7. Also,

notice how the semi-stochastic game formulation enables the MPPI algorithm to run with
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only a single sampling loop, if the game were formulated as fully stochastic, there would

need to be a sampling loop for both players. This would either significantly increase the

number of samples required, or drastically increase the variance of the stochastic optimiza-

tion.

Algorithm 7: BR-MPC for Player i
Given: G: Differential game description;
MPPI-OPT: MPPI optimizer;
Ua, Ub: Initial control sequences;
θMPPI: MPPI hyper-parameters;
while task not completed do
X ← GameStateEstimator();
U ′a = MPPI(Ua, Ub,X , Ca, fa, fb, θMPPI);
U ′b = MPPI(Ub, Ua,X , Cb, fb, fa, θMPPI);
Ua = U ′a;
Ub = U ′b;
Execute(u0

i );
for t← 0 to T − 2 do

U t
a ← U t+1

a ;
U t
b ← U t+1

b ;

UT−1
a = 0;

UT−1
b = 0;

We want to emphasize that the algorithm described here (Alg. 7) is meant for a single

vehicle, and that the two vehicles are not iteratively transmitting any internal planning

information to each other. Even though in the BR-MPC algorithm two control plans are

computed, one is simply an informed guess at the other vehicles motion, and only one of

the control plans is actually used to control a vehicle.

Implementation Details

The goal in our experiments was to have two AutoRally vehicles autonomously operate in

close proximity to each other, and to test the limits of the best response MPC algorithm as

the target speed was increased. In order to implement the BR-MPC controller for this task,

we require two key components: a cost function encoding the task, and vehicle dynamics
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models.

Cost Function Design

The state-dependent cost for the task that we are trying to achieve has three main compo-

nents: stay on the track, go close to the set target speed, and stay 1 meter away from the

other vehicle, but do not hit the other vehicle. This last condition is particularly challeng-

ing since at 1 meter distance between center of masses, the vehicles are nearly touching, so

the algorithm has to balance this objective with the stochastic dynamics of the system. We

describe the cost from player A’s perspective, the cost for player B is the same, but with the

a and b subscripts swapped. Recall that the state of the game is Xt = (xta xtb). For player

A, the cost components encoding the first two instructions are only concerned with the xa

portion of the state. For the individual portion of the cost we use Eq. (6.3).

In addition to the individual portion of the cost function, the two vehicles have an

interaction cost which forces them to stay close to each other:

Cmix
a = w1 (‖(xposa , yposa )− (xposb , yposb )‖ −D)2 (10.14)

where D is the target distance (set to 1 meter in all of our experiments). Lastly, a crashing

cost is added which is activated if the vehicle either collides with the other:

Ccrash
a = w2β

tI (10.15)

here β is a time-decay rate, and I is an indicator variable which is 1 is the vehicle crashed

and 0 otherwise.

Vehicle Dynamics Models

Pushing the vehicles to their limits while operating nearby each other requires precise agile

maneuvering. This means that we need a high-fidelity, non-linear model capable of captur-
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ing sliding dynamics, and therefore rules out using simple kinematic models. Additionally,

the nature of the dirt track that we perform experiments on makes traditional system iden-

tification difficult, so we use a data-driven approach and model the dynamics of the vehicle

with a multi-layer neural network. This is the same network used in 4.

Although the neural network that we trained is highly accurate, a drawback is that it

is computationally expensive, and running two simultaneous MPPI optimizations with the

neural network is too slow to operate in real-time. As a solution we use two dynamics

models, the more accurate neural network is used for the optimization of the vehicle being

controlled, and a faster, less accurate model is used to predict the motion of the other

vehicle. The faster model is the non-linear basis function model from chapter 4. The idea

behind this double model approach is that, since we do not actually have to control the

other vehicle, a less accurate model can be effective if it captures the dynamics constraints

of the other vehicle.

Experiments

Experimental data was collected using a pair of AutoRally robots at the Georgia Tech Mari-

etta Street Autonomous Racing Facility. Each AutoRally robot ran the BR-MPC algorithm

on-board in order to control the vehicle and estimate the future motion of the other vehi-

cle. In principle, no vehicle to vehicle communication is required for BR-MPC where the

requisite information can be inferred from onboard sensor information. However, in order

to simplify the experiments we chose to enable the AutoRally robots to share their pose

estimates over low-bandwidth XBee Radios. This removes the requirement of estimating

the other vehicles pose using on-board sensors, which is a difficult perception problem by

itself.

Each robot runs a standalone state estimator to produce an accurate state estimate at

200 Hz. The high rates are necessary for high speed, real time control, but would saturate

the XBee network with even two vehicles within communication range. For that reason,
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Figure 10.2: Vehicle to vehicle system for broadcasting state estimates at 10 Hz from one
robot to all other robots within communications range.

we implemented a configurable rate, currently set at 10Hz, to down sample pose estimates

before transmission over the XBee network. Figure 10.2 shows the wireless pose commu-

nication system for two vehicles and the routing of signals within each robot between the

state estimator, XBee interface software, and each robots BR-MPC controller.

As a baseline comparison, we implemented a version of MPPI that treated the other ve-

hicle as a “dumb” obstacle with a constant velocity. All of the other implementation details

are the same, but instead of using a second MPPI optimization to simulate the motion of

the other vehicle, it is simulated according to the linear extrapolation:

xposi (t) = xposi (0) + t (dxposi (0)) (10.16)

yposi (t) = yposi (0) + t (dyposi (0)) (10.17)

This type of model is reasonably accurate on the straights, and on the corners at slow

speeds. However, it quickly starts to become inaccurate around corners as the vehicle

speed is increased. We refer to this method as Velocity-Obstacle Model Predictive Control

(VO-MPC for short).

We tested both the BR-MPC algorithm and the VO-MPC algorithm at the task of ma-

neuvering two AutoRally vehicles around an elliptical dirt track. The desired distance
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Figure 10.3: View from the rear vehicle exiting a turn with BR-MPC at the 10 m/s target.

between the two vehicles center of mass was one meter, and the target speed was varied

between 5, 6, 7, 8, 9, and 10 m/s. Each speed setting was tested for 10 laps around the test

track, except for the 7 m/s VO-MPC setting which was only run for four laps due to safety

concerns. This amounts to a total of 84 laps, which is roughly 3.5 miles worth of driving

data for each robot. Figure 10.4 and Table 10.1 show the change in distance between the

two vehicles as the desired speed is increased from 5 to 10 m/s.

At the slowest speed setting of 5 m/s, there is minimal performance difference between

the simple baseline method, and the BR-MPC method. This is expected, since the distances

the AutoRally vehicles travel during the two second time horizon are very short and can

roughly be approximated with straight lines. They both maintain approximately 2.5 m

between the two vehicles, even though the desired distance is 1 m, this extra cushion is

automatically included due to the collision penalty and the stochastic dynamics. As the

desired speed is increased, the VO-MPC method quickly degrades. At the 6 m/s target,

VO-MPC results in 4 distinct collision events during the 10-lap trial run, with one collision

requiring a manual take-over of the system. Then, at the 7 m/s target, the two vehicles
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Figure 10.4: Following distance and standard deviation for best response dynamics and
velocity obstacles. Distance is measured from the center of mass, so a distance of less than
one meter indicates a collision if the two vehicles are oriented end-to-end.

Table 10.1: Following Distance Performance

Method Target Min Dist.(m) Max Dist.(m) Avg. Dist (m)
BR-MPC 5 m/s 2.04 3.40 2.52
BR-MPC 6 m/s 1.92 3.22 2.54
BR-MPC 7 m/s 2.03 3.09 2.56
BR-MPC 8 m/s 1.80 3.80 2.46
BR-MPC 9 m/s 1.83 4.91 2.73
BR-MPC 10 m/s 1.59 10.65 3.16
VO-MPC 5 m/s 1.79 3.25 2.45
VO-MPC 6 m/s 0.58 5.09 1.93
VO-MPC 7 m/s 0.22 7.03 2.01

consistently collide with each other when controlled using VO-MPC.

At the 6 m/s and 7 m/s targets, the BR-MPC method performs nearly identically, in
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Table 10.2: BR-MPC Performance Statistics (Lead / Trail)

Target Avg. Lap Time (s) Max Speed (m/s) Max Slip (Deg.)
5 m/s 20.85 / 20.84 3.8 / 4.3 5.6 / 8.8
6 m/s 15.53 / 15.51, 5.1 / 5.4 9.0 / 10.3
7 m/s 12.82 / 12.79 6.0 / 6.2 11.6 / 15.2
8 m/s 11.06 / 11.07 7.2 / 7.3 18.6 / 20.4
9 m/s 9.96 / 9.94 8.0 / 7.9 19.0 / 25.6
10 m/s 9.66 / 9.65 8.2 / 8.1 23.9 / 26.0

terms of following distance, as the 5 m/s target. As the desired speed is further increased

from 7 m/s to 10 m/s, the mean and variance of the following distance both increases.

However, the two vehicles avoid ever colliding with each other during the trial runs. Table

10.2 shows the lap statistics for the lead and trail vehicles with the BR-MPC method during

the trial runs. At the highest speed target, the vehicles obtain maximum speeds over 8 m/s,

while maintaining an average distance of 3.16 meters between their center of mass (this

is 2.16 meters from bumper-to-bumper). Additionally, at the highest speed target both

vehicles attain a significant side-slip angle, which is the difference between the heading

angle and the vehicle’s velocity vector, indicating highly dynamic maneuvers. One of the

key benefits of the stochastic optimization approach is that only the high-level objective

needs to be specified, and the precise method for achieving that objective is left to the

autonomy system. This is illustrated by Fig. 10.5, at the 5 m/s target the two vehicles follow

nearly the same track with the trail vehicle directly behind the lead vehicle. However, at

the 10 m/s target, the behavior looks considerably different, with the two vehicles entering

the turns in a staggered formation. This formation enables there to be more room for error

in the estimate of the other vehicles longitudinal direction, which is critical for operating at

high speeds.

These experiments show that the best response model predictive control strategy can

control fast ground vehicles operating near each other. This is one of the first approaches

to autonomous racing which takes a game-theoretic optimization approach to the problem,

and which can anticipate and react to the other vehicles in the environment only using
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Figure 10.5: Top: Following behavior at the 5 m/s target. Bottom: Following behavior at
10 m/s target. The blue marker indicates the lead vehicle, and the red the trail vehicle, with
the dashed line showing which markers are synced in time. Colors on the trajectory traces
indicate vehicle speed range.

knowledge of the other vehicles pose, dynamics, and objective.

This is only the beginning of research into what is an extremely challenging problem.

We avoided attempts at performing passing maneuvers or setting up the game in an ex-

plicitly adversarial method. Part of the issue was the difficulty in tuning MPPI for these

experiments, which is a challenge that has mostly been overcome with robust MPPI and

applying robust MPPI in this framework could lead to better results. The more fundamen-

tal issue though, is that the best response mechanism we have proposed is only useful for

obtaining coarse grained information about other agents actions. This is because the we

have restricted the strategies to open-loop feedback policies, using a more powerful policy

representation is possible, but complicates the problem significantly. Despite these issues,

exploring generalization of best response MPC is a good initial step at achieving head-to-

head autonomous racing, and it moves us closer to the goal of out-performing an expert

human driver in a head-to-head race.
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APPENDIX A

DEGENERATE DIFFUSION RADON-NIKODYM DERIVATIVES

We consider two stochastic diffusion processes of the form:

dx1 = F(x,u)dt+ B(x)dw1 (A.1)

dx2 = F(x,v)dt+ B(x)dw2 (A.2)

Where x ∈ Rn,u ∈ Rm,v ∈ Rm, dw ∈ Rp and the diffusion matrix B(x) ∈ Rn×p

with (possibly state-dependent) rank k(x) > 0. Our goal is to find the Radon-Nikodym

derivative between the distributions P,Q induced by (A.1) and (A.2) respectively. This

result is well known in the case of a square invertible diffusion matrix B(x), and comes

as a result of Girsanov’s theorem. In the following we will derive a form for the Radon-

Nikodym derivative under the relaxed assumption:

Condition 2. Consider the two diffusion processes (A.1) and (A.2), and suppose that ∀x ∈

Rn, ∀u ∈ Rm, and ∀v ∈ Rm, ∃y ∈ Rp such that:

B(x)y = F(x,v)− F(x,u) (A.3)

This assumption ensures that any change in the drift can equivalently be achieved by

random noise, and it ensures the absolute continuity of the two measures. It is a gen-

eralization of the usual requirement that B(x)B(x)T be invertible, since in that case the

system of linear equations described by (A.3) has at least one solution. However, it also

holds in situations where B(x)B(x)T is not invertible. For instance suppose that the dy-

namics are control affine, with the diffusion and control matrices identical. Then we have:

G(x)y = G(x)(v − u), which is clearly satisfied for any non-zero G(x) and any choice
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of u,v.

The strategy for deriving the radon-nikodym derivative is as follows: first we discretize

the system and split it into a non-degenerate system and a degenerate system, next we

derive the expression for a one-step transition probability of the discretized system which

takes the form of a gaussian and an impulse (dirac-delta function), then we show that the

impulse function cancels out in the ratio. Once this is done we’re left with a product of

gaussians, which when we take the limit as ∆t→ 0 produces the desired result.

A.1 Discretization and Non-Degenerate Subsystem

The first step in the derivation of the ratio is to make a discrete time approximation of the

dynamics:

∆x1 = F(x,u)∆t+ B(x)ε1
√

∆t (A.4)

∆x2 = F(x,v)∆t+ B(x)ε2
√

∆t (A.5)

Here ε1 and ε2 are p-dimensional standard normal random variables. We can then approxi-

mately describe the distributions P and Q in terms of the probability density functions:

P ≈
T∏
t=0

p(xt+1|xt,ut) (A.6)

Q ≈
T∏
t=0

q(xt+1|xt,ut) (A.7)

Now, let 0 < k ≤ p be the rank of B(x). Then, we can select k rows from B(x) such

that they are all linearly independent. We denote the set of indices of these rows as ζ so

that Bζ1(x) is the first row selected, Bζ2(x) is the second, etc. Then the dynamics of the ζ
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sub-system of P are described as:

∆xζ1 = Fζ1(x,u)∆t+ Bζ1(x)ε1
√

∆t

∆xζ2 = Fζ2(x,u)∆t+ Bζ2(x)ε1
√

∆t

...

∆xζk = Fζk(x,u)∆t+ Bζk(x)ε1
√

∆t

And we can denote this system of equations more compactly as:

∆x̃1 = F̃(x,u)∆t+ B̃(x)ε1
√

∆t (A.8)

This sub-system describes a non-degenerate diffusion process, since the diffusion ma-

trix, B̃(x), has rank k (it was explicitly constructed from k linearly independent vectors).

This implies that Σ̃(x) = B̃(x)B̃(x)T has rank k as well. Thus Σ̃(x) is invertible, and the

one-step transition distribution is described by a multi-variate Gaussian:

p(∆x̃t|xt,ut) = Z−1 exp(− 1

2∆t

(
∆x̃− F̃(x,u)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,u)∆t
)
(A.9)

Now, since B̃(x) was constructed using all of the linearly independent rows of B(x). The

rest of the rows must be linearly dependent on B̃. This implies that we can write the

remaining random variables as deterministic functions of x̃. To see this more clearly, let s

be the index of a row of B(x) where s is not in ζ . Then:

∆xs = Fs(x,u)∆t+ Bs(x)ε1
√

∆t (A.10)
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Using the linear dependence relationship we can write Bs(x) as:

Bs(x) =
k∑
i=1

αiB̃ζi(x) (A.11)

So we have:

∆xs = Fs(x,u)∆t+

(
k∑
i=1

αiB̃ζi(x)

)
ε1
√

∆t

∆xs = Fs(x,u)∆t+
k∑
i=1

(
αiB̃ζi(x)ε1

√
∆t
)

And each Bζi(x)ε can be expressed in terms of ∆xζi:

Bζi(x)ε1 = − (Fζi(x,u)∆t−∆xζi) (A.12)

So the final result is that:

∆xs = Fs(x,u)∆t−
k∑
i=0

αi (Fζi(x,u)∆t−∆xζi) (A.13)

Therefore, knowing x̃t completely determines the rest of the variable transitions at time t.

Denoting the variables not included in x̃ as x̂. We have the following:

p(∆x̂|∆x̃,x,u) = δ (∆x̂− h(∆x̃)) (A.14)

With the function h(∆x̃) defined as:

hs(∆x̃s) = Fs(x,u)∆t−
k∑
i=0

αi (Fζi(x,u)∆t−∆xζi) (A.15)

and δ is the dirac delta function which is zero everywhere except when its argument is zero

and is then a unit impulse.
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A.2 Ratio of One-Step Dynamics

Using the results from the previous section, it is possible to describe the full one-step

transition probabilities as:

p(xt+1|xt,ut) = p(∆xt|xt,ut) = p(∆x̃t,∆x̂t|xt,ut) (A.16)

and using the chain rule this is:

= p(∆x̃t|xt,ut)p(∆x̂t|∆x̃t,xt,ut) (A.17)

The first term is the multi-variate Gaussian describing the transition probability for the non-

degenerate sub-system, and the second term is the dirac-delta prescribing the result of the

remaining variable changes given the changes in the non-degenerate subsystem. Mathe-

matically this is expressed as:

=

(
Z−1 exp(− 1

2∆t

(
∆x̃− F̃(x,u)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,u)∆t
))

δ (∆x̂− h(∆x̃))

(A.18)

Now an identical procedure can be done for q(xt+1|xt,ut), so that we have:

q =

(
Z−1 exp(−1

2

(
∆x̃− F̃(x,v)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,v)∆t
))

δ (∆x̂− g(∆x̃))

(A.19)

where:

gs(∆x̃) = Fs(x,v)∆t−
k∑
i=0

αi (Fζi(x,v)∆t−∆xζi) (A.20)

Note that the αi terms are the same for both p, and q. This comes from the fact that the

αi terms are chosen based on the relationship between B̃(x) and B̂(x) and nothing else.
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Dividing these two terms yields the ratio between the one-step probabilities as:

p

q
=

(
Z−1 exp(− 1

2∆t

(
∆x̃− F̃(x,u)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,u)∆t
))

δ (∆x̂− h(∆x̃))(
Z−1 exp(− 1

2∆t

(
∆x̃− F̃(x,v)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,v)∆t
))

δ (∆x̂− g(∆x̃))

(A.21)

In order to proceed it is necessary to remove the dirac delta functions. This is possible

if we can show that the two conditions are actually identical. In other words we need to

show that h(∆x̃) = g(∆x̃). If this is the case, then the two delta functions will always be

in agreement, and therefore cancel out. Consider:

hs(∆x̃)− gs(∆x̃) (A.22)

= Fs(x,u)∆t−
k∑
i=0

αi (Fζi(x,u)∆t−∆xζi)−
(

Fs(x,v)∆t−
k∑
i=0

αi (Fζi(x,v)∆t−∆xζi)

)
(A.23)

= (Fs(x,u)− Fs(x,v)) ∆t−
k∑
i=0

αi (Fζi(x,u)− Fζi(x,v)) (A.24)

Now recall the assumption that ∀x,u,v,∃y such that B(x)y = F(x,u)−F(x,v). Let us

pick some y which satisfies this condition, we can then substitute:

(Fs(x,u)− Fs(x,v)) ∆t−
k∑
i=0

αi (Fζi(x,u)− Fζi(x,v)) = Bs(x)y −
k∑
i=0

αiBζiy

(A.25)

But, recall that
∑k

i=0 αiBζi = Bs(x). So we’re left with:

Bs(x)y −Bs(x)y = 0 (A.26)

Therefore, the delta functions are identical, and cancel out of the equation leaving us with:
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p

q
=

(
exp(− 1

2∆t

(
∆x̃− F̃(x,u)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,u)∆t
))

(
exp(− 1

2∆t

(
∆x̃− F̃(x,v)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,v)∆t
)) (A.27)

A.3 Taking the limit

The last part of the derivation is to simplify and take the limit as ∆t→ 0 of p/q. Expanding

out A.27 yields:

= exp
(
− 1

2∆t

(
∆x̃− F̃(x,u)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,u)∆t
)

+

1

2∆t

(
∆x̃− F̃(x,v)∆t

)T

Σ̃(x)−1
(

∆x̃− F̃(x,v)∆t
) )

And then expanding the term inside the exponent further yields:

− 1

2∆t
∆x̃TΣ̃−1(x)∆x̃ + F̃(x,u)Σ̃−1∆x̃− 1

2
F̃(x,u)TΣ̃(x)−1F̃(x,u)∆t+

1

2∆t
∆x̃TΣ̃−1(x)∆x̃− F̃(x,v)Σ̃−1∆x̃ +

1

2
F̃(x,v)TΣ̃(x)−1F̃(x,v)∆t

Which simplifies to:

−
(
F̃(x,v)− F̃(x,u)

)
Σ̃−1∆x̃− 1

2
F̃(x,u)TΣ̃(x)−1F̃(x,u)∆t+

1

2
F̃(x,v)TΣ̃(x)−1F̃(x,v)∆t

Now recall that ∆x̃ = F̃(x,u)∆t+ B̃(x)ε1
√

∆t, and equivalently. So we have:

−
(
F̃(x,v)− F̃(x,u)

)
Σ̃−1∆

(
F̃(x,u)∆t+ B̃(x)ε1

√
∆t
)

− 1

2
F̃(x,u)TΣ̃(x)−1F̃(x,u)∆t+

1

2
F̃(x,v)TΣ̃(x)−1F̃(x,v)∆t
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which simplifies to:

p

q
= exp

(
−∆F̃(x,v,u)TΣ̃(x)−1B̃(x)ε1

√
∆t+

1

2
∆F̃(x,v,u)TΣ̃(x)−1∆F̃(x,v,u)T∆t

)
(A.28)

Where ∆F̃(x,v,u) = F̃(x,v)− F̃(x,u). Lastly we have:

dP
dQ

= lim
∆t→0

T∏
t=0

p

q

dP
dQ

= lim
∆t→0

T∏
t=0

exp

(
−∆F̃(x,v,u)TΣ̃(x)−1B̃(x)ε1

√
∆t+

1

2
∆F̃(x,v,u)TΣ̃(x)−1∆F̃(x,v,u)T∆t

)

dP
dQ

= lim
∆t→0

exp

(
T∑
t=0

−∆F̃(x,v,u)TΣ̃(x)−1B̃(x)ε1
√

∆t+
1

2
∆F̃(x,v,u)TΣ̃(x)−1∆F̃(x,v,u)T∆t

)

dP
dQ

= exp

(∫ T

0

−∆F̃(x,v,u)TΣ̃(x)−1B̃(x)dw1 +
1

2

∫ T

0

∆F̃(x,v,u)TΣ̃(x)−1∆F̃(x,v,u)Tdt

)
(A.29)

Which is the desired result. This implies that in order to compute the Radon-Nikodym

derivative between two diffusion processes it is necessary to (1) Ensure that the assumption

B(x)y = F(x,u) − F(x,v) is satisfied, and (2) Pick out a non-degenerate sub-system

which has as many equations as the rank of the diffusion matrix. Then the radon-nikodym

derivative of the two diffusions is given by A.29.

Note the subscript of dw1. This notation means that dw1 is a brownian motion with

respect to the first process: EP[dw1] = 0. However, it is generally not the case that it is a

brownian motion with respect to the second one, i.e. EQ[dw1] 6= 0. We could have just as

easily used dw2 in place of dw1, the two quantities are related via the transformation:

dw1 = B̃(x)−1F̃(x,v,u)dt+ dw2 (A.30)
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So it is straight-forward to replace one with the other. If expectations are being taken, it

is good practice to align the subscript with the distribution the expectation is taken over.

Otherwise, the results can seem counter-intuitive.
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APPENDIX B

GRAPHICS PROCESSING UNIT IMPLEMENTATION

In this appendix chapter we examine a few different approaches for sampling trajectories in

parallel on a GPU, in the case that the system dynamics are described by a neural network.

We suppose that we are given a single network, and K input sequences, and that we would

like to quickly compute all of the K output sequences using a GPU. Our focus is solely on

how to efficiently perform this computation utilizing CUDA with the single thread multiple

instruction (SIMT) execution model. In particular, we want to understand how the mapping

from thread blocks to warps occurs in our computation, and what consequences this has

for the overall performance of our algorithm. Note that this section assumes some basic

familiarity with GPU programming (CUDA specifically), and we do not attempt to give an

introduction to GPU programming. A good introduction to CUDA is [108].

Recall that a dynamical system described by a neural network can be written as follows:

xt+1 = xt + F(xt,ut; θ)∆t (B.1)

Where θ is some set of parameters: θ = {W1, b1,W2, b2, . . .WM , bM}, and then the func-

tion F is computed via the recursive formula:

z0 = (xt,ut) (B.2)

zi = σ(Wizi−1 + bi) (B.3)

F = WMzM−1 + bM (B.4)

The function σ is some element-wise non-linearity. To simplify the problem, we con-

sider only one particular neural network, which is the neural network used to represent the

AutoRally dynamics. In this case the (dynamic) state dimension is 4 (roll, longitudenal
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velocity, lateral velocity, and heading rate) and the control dimension is 2 (steering and

throttle). We consider the case where we want to simulate 100 timesteps, and the number

of trajectories varies between 1200 and 10800. The neural network for the AutoRally has

two hidden layers with 32 hidden units each, this corresponds to about 1500 parameters.

B.1 Kernel Implementations

There are five different kernel implementations that we examine here, and three different

types of mappings from blocks to warps. The only significant difference between the ker-

nels is in how the matrix-vector multiplication is performed. Although initially it may seem

that this is a standard matrix-vector multiplication, there is a key difference in that these

matrix-vector multiplications are relatively small (the largest matrix we have in the com-

putational graph is 32× 32), but there are many, many repetitions of this procedure in both

time and space.

Vanilla Implementation

The first kernel we implement is called the ”vanilla” kernel. With this kernel, each CUDA

thread computes an entire RNN sequence by itself. This means that the parallelism only

exists because multiple sequences are being computed. This is the easiest kernel to imple-

ment, and also the least efficient. Figure B.1 demonstrates the layout of the matrix-vector

multiplication for this kernel. Matrix elements are stored in global memory, and vector

elements are stored in shared memory. Note that its not feasible to store all of the matrix

parameters in shared memory without running into space limitations since the intermediate

activations take up most of the shared memory space.

Baseline Implementation

In the baseline implementation, each thread computes a single dot product in the matrix

vector multiplication. In this implementation the x-indices of the threads runs across the
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Figure B.1: Diagram of neural network computation for the vanilla kernel. Each thread per-
forms a full matrix-vector multiplication. Shown is the traversal pattern for threadIdx.x=0,
which has a warp and lane id of zero, blue denotes the vector elements that are worked on
by threadIdx.x=0. Each shared memory block represents the intermediate layer computa-
tions of a single sample.

samples, which means that threads next to each other in a warp compute same element,

but for different samples. This is demonstrated in Fig. B.2, notice how the lane indices

increase along the x-axis. In the actual implementation the block dimension in the x-axis

is 16, which means every thread in a half-warp performs the same portion of the matrix-

vector multiplication. This enables fast access to global memory, but it also requires that

a synchronization across all the threads in a block before the computation can move on to

computing the next layer or output in the sequence.

Optimized Baseline Implementation

The optimized baseline implementation is the same as the baseline implementation except

for two key differences:

i) The parameters of the neural network are stored in constant memory, as opposed to

normal global memory.
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Figure B.2: Diagram of neural network computation for the baseline kernel with a block-
Dim=(8,8,1). Each thread performs a single dot product in the matrix-vector multiplication.
Shown is the traversal pattern for threadIdx.x, threadIdx.y = (0,0), (0,1), and (0,4).

ii) The shared memory array which holds the intermediate computations are padded in

order to remove shared memory conflicts.

These two changes significantly improve the performance of the method. Although, they

don’t fundamentally change the computational structure of the kernel.

Warp-Synchronous Implementation

In the warp-synchronous implementation, the x and y axis in from the baseline implementa-

tion are flipped so that each warp is responsible for computing a single sample (as opposed

to computing the same element across different samples). This is illustrated in Fig. B.3.

Note that the traversal pattern for threads remains the same, however the warp lane ID now

runs across the output vector indices, not the sample index. This means that all of the com-

putations for a single sample are contained within a single warp. Since warps are executed

in lockstep (and the warpsync() command can be used to ensure this this), this alleviates

the need to perform a synchronization step across all the threads in a block.
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Figure B.3: Diagram of neural network computation for the warp synchronous kernel with
a blockDim=(8,8,1). Warps are organized so that each sample is computed by threads in a
single warp.

Figure B.4: Optimized warp-synchronous kernel diagram.

Optimized Warp Synchronous Implementation

The fact that all of the computation for a sample is contained in a warp can be further

taken advantage of to create an optimized warp synchronous kernel. This kernel is the

same as the warp synchronous kernel, but it has the following differences: (1) instead of

storing intermediate computations in shared memory, intermediate computations are stored
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in registers. This is possible because all the threads in a warp can access the registers of

the other threads in the warp, (2) storing intermediate computations in registers frees up

the shared memory that was being used to store intermediate computations, which enables

the parameters of the neural network to be stored in shared memory. The computational

diagram with these changes is shown in Fig. B.4.

B.2 Timing Results

Here we report timing results for the five kernels for performing the sampling operation

where the number of samples ranges from 1200 to 10800. We report results for four differ-

ent GPUs: (1) GTX 1050 TI, (2) GTX 1060, (3) Quadro K5200, (4) Titan XP.

On every GPU, the optimized baseline kernel performs the best. On 2 out of the four

cards the optimized warp synchronous kernel performs second best, and is competitive with

the second best implementation, which was the normal baseline kernel. The vanilla kernel
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always performs poorly, although it starts to become more competitive as the number of

samples increases towards 10,000. In terms of overall performance, the optimized baseline

kernel on the Titan XP performs extremely well, and is able to compute over 10,000 sam-

ples (1 million forward propagations through the neural network) in under 10 milliseconds.

Out of the three different strategies implemented (vanilla, baseline, and warp synchronous),

the timing ordering based on the results can roughly be summarized as:

vanilla > warp synchronous > baseline.

Using the NVIDIA profiler, it is easy to see why the vanilla implementation performs

so poorly: the kernel launches to few threads to achieve full occupancy. The achieved

occupancy for the vanilla kernel is only .06 for 1200 samples, as the number of samples

increases to 10800 this becomes .44. In contrast, the baseline kernels always achieve >

.99 occupancy, and the warp synchronous kernels .75. So, although the vanilla kernel

has some beneficial properties (easy to implement, good memory access pattern, and no

synchronization required), the low occupancy severely limits the performance when fewer

than 10,000 samples are computed.

It is more difficult to understand why the performance gap between the optimized

baseline kernel and the warp synchronous kernel exists. From an abstract programmatic

point of view, there is actually no difference between the optimized baseline and the (non-

optimized) warp synchronous kernel, its just that the x and y axis of the computational grid

have been flipped, the only real difference is the direction that the warp lane IDs increase

(across samples in the baseline case, and across vector elements in the warp synchronous

case). They both have a theoretical occupancy of 1, although the achieved occupancy for

the warp synchronous kernel is lower. Additionally, the warp synchronous kernel does

not have any stalls due to synchronization, this can be confirmed using the Nvidia visual

profiler:
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Figure B.5: Output of stall analysis from the NVIDIA visual profiler. Left: Optimized
baseline kernel. Right: Warp Synchronous Kernel. Output is from Quadro K5200 with
2400 samples.

Based on this chart, one might conclude that the warp synchronous implementation

has done its job. It eliminated the synchronization stalls, and now execution dependencies

account for almost all the latency in the kernel. The only problem is that the kernel now

runs over 6 times slower. The issue, is the access pattern for the constant memory array

containing the neural network parameters. In the case of the baseline kernel, each lane

in a half warp accesses the same element of constant memory at the same time. This

is an ideal access pattern for constant memory. However, in the warp-synchronous case,

threads in a warp access different elements at the same time, which is not ideal. This can

be confirmed with the nvidia profiler, the Global Load Throughput (gld throughput) for

the optimized baseline is 11.595 GB/s, whereas the throughput for the warp synchronous

kernel is nearly 6 times slower at 2.083 GB/s. The optimized warp synchronous kernel

performs slightly better, due to its usage of shared and register memory. However, it is

unable to perform as well as the optimized baseline. There are two primary reasons for

this (1) When sharing registers across threads in a warp extra computations are required

in order to determine which register to read/write to, and (2) The implementation uses too

many registers, which means that occupancy must be reduced or local memory must be

used (utilizing local memory by setting a maxrregcount was slightly faster).
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APPENDIX C

DYNAMICS MODELS

C.1 Cart pole dynamics

The state of the cart-pole is described by the location of the cart, x, the velocity of the cart

ẋ, the angle of the pole with the vertical, θ, and the angular velocity of the pole, θ̇. An

additional state, f , is used to model the horizontal force supplied to the cart via a simple

motor. The full state equations for the analytic model of the cart-pole dynamics are given

below:

ẍ =
1

mc +mp sin2 θ

(
f +mp sin θ

(
lθ̇2 + g cos θ

))
θ̈ =

1

l(mc +mp sin2 θ)

(
− f cos θ −mplθ̇

2 cos θ sin θ −
(
mc +mp

)
g sin θ

)
ḟ = 20 (fdes − f)

Where fdes is the desired motor force, g = 9.81 m
sec2 is the gravitational acceleration, mc =

1.0 kg is the mass of the cart, mp = 0.01 kg is the mass of the pole, and l = 0.25 m

is the length of the pole. The cart-pole swing-up task required the algorithm to bring the

system from the initial state, stationary with the pole pointed straight down at the origin

(x = ẋ = θ = θ̇ = 0), to the final state, stationary with the pole pointed straight up at the

origin (x = ẋ = θ̇ = 0, θ = π).

C.2 Race car dynamics

We used an analytic model of vehicle dynamics derived in [66] as the ground truth model

for the simulator. This model makes the simplifying assumption that the two front tires and

two back tires are lumped into one tire at the front and the back (and is therefore known as
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a bicycle vehicle model), this assumption makes tractable the incorporation of lateral tire

forces into the model which are an essential aspect of car dynamics when operating at high

speeds. The full state equations are for the model are given below:

ẋ = vx cos(ψ)− vy sin(ψ), ẏ = vx sin(ψ) + vy cos(ψ), ψ̇ = r

β̇ =
FyF + FyR
Mvx

− r, v̇x =
Fx − FyF sin(δ)

M
+ rvxβ, v̇y =

FyF + FyR
M

− rvx

ṙ =
aFyF − bFyR

Iz
, δ̇ = 10(δ − δdes), Ḟx = 10(Fx − F des

x )

Where (x, y) is position, ψ is the heading, β is the side-slip angle, (vx, vy are longitudinal

and lateral velocity in the body frame of the vehicle, r is the heading (yaw) rate, δ is the

steering angle, and Fx is the longitudinal force imparted by the rear wheels. The inputs to

the model are desired commands δdes and F des
x . (a, b) are the distances from the center of

mass to the front and rear axles. The terms FyF and FyR are the lateral tire forces imparted

by the front and rear wheels respectively. This force is a function of the slip angle α which

we compute based on a brush tire model.

αF = tan−1(β + a
r

vx
)− δ, αR = tan−1(β − b r

vx
)

and then the lateral forces are:

Fyi =


−C tan(αi) + C2

3ξµFz

tan(αi)
3

| tan(αi)| −
C3

27µ2ξ2F 2
z

tan(αi)
3

−µξFz |αi|αi if αi ≥ γi

Here C is the cornering stiffness of the tire, and µ is the co-efficient of friction between the

tire and the ground. These values were set to 1200 and .55 respectively. The terms γ and ξ

are computed as:

ξ =

(
µ2F 2

z − F 2
x

µFz

)1/2

, γ =

∣∣∣∣tan−1

(
3ξFz

|α|
α

)∣∣∣∣ (C.1)
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C.3 Quadrotor dynamics

The dynamic model of the quad-rotor was introduced in [67]. The model includes 16

states: 3 for position (r), 3 for translational velocity (ṙ), 3 for Euler angles (Φ), 3 for the

body angular rates (ω), and 4 for motor speeds (Ω). The full state equations are given

below:

Φ̇ =


cθ 0 −cφsθ

0 1 sφ

sθ 0 cφcθ


−1

p

q

r

 , r̈ =


0

0

−g

+R


0

0

1
m

∑
Fi



ω̇ = I−1




L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4

−

p

q

r

× I

p

q

r


 , Ω̇ = km





ωdes1

ωdes2

ωdes3

ωdes4


−



ω1

ω2

ω3

ω4




Where φ, θ, and ψ are the components of Φ, p, q, and r are the components of ω, and

ω1, ω2, ω3, and ω4 are the components of Ω. Additionally, m = 0.25 kg is the mass of

the quad-rotor, g = 9.81 m
sec2 is gravitational acceleration, L = 0.1 m is the length of the

moment arm from the body of the quad-rotor to the motor,

I = diag(2.5× 10−4, 2.5× 10−4, 1.2× 10−3) kg m2,

is the mass moment of inertia matrix for the quad-rotor in the body frame, and km = 20 is

the motor constant. The forces and moments Fi and Mi used above are given by:

Fi = kFωi
2

Mi = kMωi
2
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Where kF is the motor force constant equal to 6.11×10−8 N
rpm2 and kM is the motor moment

constant equal to 1.5 × 10−9 N m
rpm2 . The rotation matrix, R, between the body and inertial

frames is given by:

R =


cψcθ − sφsψsθ −cφsψ cψsθ + cθsφsψ

cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ

−cφsθ sφ cφcθ



C.4 Basis Function Model

We used an analytic model of vehicle dynamics derived in [66] as a source of physics based

knowledge about vehicle dynamics. Based on the equations in [66] we picked out the key

non-linearities found in the previous model and used them to form 25 basis function. The

equations of motion are then:

ẋ = θTΦ(x),

In the following we define:

αf = arctan

(
vy
vx

+ .45
r

vx
− uδ

)
, αr = arctan

(
vy
vx
− .35

r

vx

)

The basis functions that we choose for the AutoRally model are then:

φ1 = uF , φ2 = vx/10, φ3 = sin(uδ) tan(αf )/1200

φ4 = sin(uδ) tan(αf )‖ tan(αf )‖/12002

φ5 = sin(uδ) tan(αf )
3/12003

φ6 = rvy/25, φ7 = r/10, φ8 = vy/10, φ9 = sin(uδ)

φ10 =


vy
vx
/40 if vx > 0.1

0 otherwise
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φ11 = tan(αf )/1400, φ12 = tan(αf )‖ tan(αf )‖/14002

φ13 = tan(αf )
3/14003, φ14 = tan(αr)/40

φ15 = tan(αr)‖ tan(αr)‖/402, φ16 = tan(αr)
3/403

φ17 = rvx/50, φ18 = θ

φ19 = θr, φ20 = θvx/3, φ21 = θvxr/5, φ22 = v2
x/100

φ23 = v3
x/1000, φ24 = u2

F , φ25 = u3
F .
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