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SUMMARY 

The process of engineering design is characterized by a series of decisions that 

determine the performance of the final product. Engineers are faced with decisions, such 

as choices pertaining to the type of model to be used, appropriate parameter settings, 

system architecture etc., all through the design process and these decisions are undertaken 

with a desired goal in mind. The decisions themselves manifest as a planned set of 

actions that are informed by observed behavior and domain expertise. The mathematical 

formalization of such a design process would resemble that of a sequential decision 

process. 

It is natural to ponder if the underlying logic behind these decisions can be 

abstracted into a computer program such that, when faced with a similar situation, an 

intelligent system can aid the ensuing design process. To satisfy this need, expert 

systems, capable of incorporating design expertise and domain knowledge, have been 

designed. The state-of-the-art for such systems view them as static entities that are 

configured to operate on a predefined problem using some variant of rule-based or case-

based decision-making methods. The lack of a dynamic quality in the face of evolving 

design environments and processes necessitates frequent updates and redesign of these 

systems making their use infrequent in a typical engineering environment.  

Recent developments in the field of reinforcement learning have demonstrated 

significant success in their application to sequential decision-making problems. The 

reinforcement learning setup of an agent learning from interactions with the environment 

makes these class of methods a perfect alternative to the static expert systems with 
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predefined rules. In such scenarios, expert interactions can serve as demonstrations for 

the learning algorithm and could help train the agent. Further, the exploratory nature of 

the learning algorithm leads to the possibility that the training agent would identify 

decision paths that outperform the ones demonstrated by an expert, thereby enabling the 

system to self-learn to improve the resulting design or process. 

The current research work implements a reinforcement learning framework that 

relies on the principles of life-long learning in order to assist engineering design 

processes. Assistance is provided in the form of recommendations of design decisions to 

the design engineer in the course of utilization of the design environment for a given 

problem. The framework implements aspects of machine learning such as imitation 

learning from human demonstrations in order to train intelligent agents. The life-long 

learning aspect of the framework enables adaptation of the trained agents to new and 

incoming data such that both newly explored portions of the design space and new 

demonstrations from design engineers are incorporated into the decision making model. 

The exploratory nature of reinforcement learning algorithm enables the possibility of 

identifying decision paths that are better that the ones demonstrated by design engineers 

hence enabling the system to self-learn with the goal of improving the resultant design. 

An adaptive knowledge graph, representing interactions and effects of human actions, is 

utilized to encode the sequence of states experienced by the design system with each state 

represents some unique configuration of a design. An automated approach to the creation 

of the knowledge graph is implemented through the automation of the knowledge 

extraction and representation processes. The knowledge is then utilized through an 

imitation learning process which generates recommendations of actions to design 

engineers. 
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The framework investigates aspects of the problem of decision making, namely, 

the mathematical formulation of an engineering design problem in order to enable 

sequential decision making, the automation of the knowledge extraction and 

representation processes and the corresponding adaptive encoding of the extracted 

knowledge and finally, the ability to learn from the extracted knowledge when the 

knowledge is extracted from multiple different sources of varying expertise. The 

framework generalizes the process of knowledge-based engineering across multiple 

different applications through the utilization of an automated knowledge extraction, 

representation and utilization scheme. A novel adaptive encoding scheme based on 

computation of tree-isomorphic differences and generation of a natural language 

representation feeding to a Doc2Vec algorithm is utilized. The generated encoding is 

utilized in a demonstration-enabled reinforcement learning algorithm that couples 

capabilities of deep Q-learning from demonstrations and deep deterministic policy 

gradients from demonstrations with a modified priority experience replay formulation 

that accounts for the source of the demonstration to enable real-time in-product 

contextual recommendations for the purpose of engineering design. 

The analysis of the implemented framework is carried out on three fronts. First, it 

is shown that an agent trained on the problem of UAS design is capable of replicating 

human-like decisions in the presence of demonstrations. Further, it is shown that if a 

better decision path is available, the exploratory nature of the algorithm enables the 

identifications of designs that are better than the best demonstrated one. Finally, an 

analysis of the robustness of the agent to changes in the set of requirements is performed 

in order to estimate the flexibility of the framework and its capability to generalize across 

different but similar problems. A rigorous analysis on the impact of training times, 
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amount of data and the size of the problem is performed in conjunction to the first 

problem setup. Second, an approach to automate the extraction, representation and 

utilization of knowledge from multiple sources of information is demonstrated on the 

problem of automation of engineering systems. Finally, it is shown that the implemented 

framework outperforms existing state-of-the-art systems that rely on rule-based inference 

and case-based reasoning. It is shown that the agents trained by the implemented 

framework are more adaptive to the problem at hand and require less configuration in 

comparison to the state-of-the-art systems. 
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CHAPTER 1. INTRODUCTION 

The problem-solving capabilities demonstrated by humans are unparalleled in 

nature. While not unique to humans, researchers have shown a direct correlation in the 

size of a mammal’s brain to its problem-solving capability [1]. Given that human beings 

boast the largest Encephalization quotient [2] amongst all mammals, the conclusion that 

our problem-solving capabilities outshine other animals is aptly justified. In fact, it has 

been argued and recognized that problem-solving is one of the fundamental cognitive 

process in human beings [3], [4]. While humans rely on experience and knowledge to 

inform actions related to problems similar to the ones that one may have encountered [5], 

creativity in humans drives the manner in which unique issues are addressed [6]. This 

creative outlook to problems, through history, has resulted to some, though intermittent, 

significant changes in the way human life has been carried out. For example, in 

comparison to life of our ancestors, there is, in general, a significant difference in the 

quality of life and the way in which day-to-day activities are carried out. This difference 

is a result of the creative innovations that have resulted in era-defining solutions which 

transform human lifestyle. While the impact of these innovations on the quality of life 

may have been inadvertent, they are without a doubt a result of the capabilities offered by 

human intelligence. A handful of such examples are: the use of the first stone tools over 

two million years ago, the development of writing over the five millennia ago, the 

inception of the concept of medicine around the turn of the common era, to the invention 

of the steam engine in the year 1712 [7], electricity in the early 19th century [8], penicillin 
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in the year 1912, transistors in the year 1947 and the world wide web in the year 19891. A 

trend that can be observed with the progression of these innovations is the transition in 

the nature of the innovation from the physical to the intellectual. It is, hence, reasonable 

to assume that future innovations too will push the boundaries of our intellect. Another 

trend that is evident when the duration between these innovations is analyzed is the 

increase in the frequency of highly intellectual innovations in the recent past. If one were 

to define quality of life as an estimate of the comfort and ease with which life is carried 

out at any instant of time and at a given location, a drastic change to this measure can be 

observed at instances where human creativity has resulted in an innovation that has 

attempted to automate some of the menial and tedious tasks associated with daily 

activities. This can be observed with inventions even before that of the introduction of the 

printing press in the 1440s [9] to the launch of the first personal computer in the year 

1976 [10] and since, a large number of engineering inventions have aimed at addressing 

the automation problem. Some of the more recent innovations, such as smart phones, 

robotic agents and intelligent systems, have taken a unique perspective to the problem of 

automation, one that has never been observed in history. A key aspect common to these 

newer innovations is the presence of some element of smartness or intelligence. The 

realization of the zenith of our current understanding of automation would be the creation 

of an intelligent systems or artificial agents that would be capable of replicating human-

like reasoning, deduction and decision-making, in other words, the creation of artificial 

intelligence.

                                                
1 The author recognizes that there are several other innovations in other fields such as the discovery of 
micro-organisms in the 17th century that dictates all of modern medicine, or the development of artificial 
satellites from the late 1970s that have resulted in the modern global environment. But in order to establish 
a connection to the rest of the thesis work, these are left out of the discussion both here and in the 
subsequent Figure 1. 
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Figure 1.1: A timeline of some of the key innovations through history 
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Engineering innovations since the 17th century can be categorized into three 

revolutions that have impacted the manner in which products have been manufactured. 

The first revolution, more popularly known as the steam revolution or the industrial 

revolution, was triggered in the early 18th century as a result of the development of the 

steam powered engine. This in turn lead to the mechanization of the world resulting in the 

creation of factory floors. The result of this revolution was the transition of production of 

products from being a household occupation to the factories; greatly increasing the 

production rate and significantly reducing the cost [11]. The second revolution, often 

termed the electric revolution, was a result of the introduction of electricity and electrical 

power to the factory floors. The result of this electrification of the factory floor was the 

replacement of outdated steam powered machines with newer electrical ones. The second 

industrial revolution culminated with the introduction of mass-production in the factory 

floors where a cheaper standardization of products was adopted in place of expensive 

specialization. Moving through the course of the years, through the first and second-

world wars, and arriving at 1947, a year that introduced the transistors. The introduction 

of transistors altered the human perception of computers, which from being large bulky 

machines transitioned to entities that are now handheld and more powerful that all of 

history put together. These developments in the computational capabilities lead us to 

what is commonly believed to be the third industrial revolution – the digitalization of the 

world. The digitalization era has seen the wide spread use of computers and 

computational devices, a result of the increasing computational power and memory and 

an accompanying reduction in prices, for the purposes of automation, entertainment, and, 

in general, the day-to-day activity management. These computational systems are so 
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prevalent in modern society that most people carry on about their daily activities without 

knowing that there is, in fact, a computational system in the background aiding them in 

said activity. While these past three industrial revolutions have been an inadvertent result 

of a set of innovations, humans have not consciously attempted to alter the status quo. In 

contrast, the several prominent entities [12], [13] around the world are now consciously 

attempting to trigger the fourth industrial revolution; one that involves automation of the 

world. This attempt, originally launched as INDUSTRIE4.0 [12], attempts to create a 

fully connected production plant through the use of cyber-physical agents capable of 

making autonomous decisions and communicating with other entities through the use of 

the internet-of-things. A key aspect of each of the characteristics, i.e., cyber-physical 

systems, autonomous agents and internet-of-things, is the presence of artificial 

intelligence. This has led to the belief that, as with the replacement of steam power 

machines with the introduction of electricity during the electrical revolution, the 

introduction of artificial intelligence will trigger the start of the fourth industrial 

revolution impacting the manner in which modern digitalized environments are designed 

and behave in the future. 
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Figure 1.2: The Progression of Industrial Revolutions occurring over the past 300 years 

 “Artificial Intelligence is the new electricity” – Prof. Andrew Ng 
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1.1 Artificial Intelligence 

Homo-sapiens – literally the “wise man” [14], so called as a result of what is 

understood to be the distinguishing feature from our ancestors, our intelligence. The topic 

of intelligence is one that has been studied philosophically, for thousands of years. 

Intelligence has often been seen as a distinguishing characteristic of the human mind that 

has separated us from other creatures. Thus, historically, philosophers have attempted to 

understand the nature of human intelligence by pondering on two primary questions, 

rewritten in general terms as, 

• How does the human mind work? 

• Can non-humans have “minds”? 

This foray into an attempt at understanding the human mind has been made with a hope 

of attaining an understanding of intelligence. But, as with every topic, following the 

natural progression of thought, one ought to first define the term mind, paraphrased as 

[15],  

Mind 

“The element in an individual that enables the activity of feeling, 

perception and reasoning about one’s surroundings.” 

Using this definition, a computer science perspective to the latter of the questions 

would lead one to the conclusion that any non-human would be adequately capable of 
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replicating what is perceived to be the rational portion of the human mind. This rational 

portion that is dictated by logical reasoning is of utmost importance in one’s ability to 

perceive and understand one’s surroundings. Owing to the nature of logical reasoning, it 

is a just assumption that the rational portion of the human mind can be represented by a 

machine that is capable of reproducing human intelligence; providing our first glimpse 

into artificial intelligence. But before addressing the topic of artificial intelligence, it is 

essential to formally define intelligence. Owning to the nature of linguistics, one could 

assemble an assortment of definitions for the term intelligence, starting off with [16], 

[17], 

Intelligence 

“The ability to think and understand things” 

“The ability to apply knowledge to manipulate one’s surroundings” 

While these definitions, pedantic as they are, provide an insight into intelligence, 

they raise a few additional questions by defining intelligence in terms of three additional 

terms that require further investigation, i.e., thinking, understanding and knowledge. But 

before the open questions about the pending definitions is addressed, one needs to close 

the loop on the definition of artificial intelligence. With an understanding of the term 

intelligence, taking a linguistic perspective, once more, one would arrive at the definition 

of artificial intelligence as being “a branch of computer science that deals with the 

simulation of intelligent behavior in computers” [18]. While this definition does provide 

a general outlook for the term artificial intelligence, it fails to provide any insight into its 



 9 

nature or characteristics. To accomplish this, one needs to approach the problem of 

generating a definition from a technical perspective. A definition that is supported by 

some of the leading technical experts in the field of artificial intelligence can be 

paraphrased [19] as follows, 

Artificial Intelligence 

“Artificial Intelligence is the study of computations that makes it 

possible to perceive, reason and act in one’s environment.” 

This definition of artificial intelligence distinguishes the field from that of 

philosophy and psychology by emphasizing the computational realization of the 

capabilities of the intelligence machine and also ensures its distinction from the field of 

computer science due to the importance placed on the realization of perception, reasoning 

and action. This, in essence, establishes the field of artificial intelligence as a distinct 

field in the domain of science and engineering focusing on solving real-world problems 

by the development of means for the representation and utilization of information 

gathered from one’s environment. 

1.2 Knowledge 

Before decomposing the definition of artificial intelligence with the hope of 

identifying its characteristic features, the open-question related to the definitions of 

thinking, understanding and knowledge have to be addressed. While these are terms used 

in the English vernacular all around the world, they are often difficult to explicitly define. 

An analogy to the mathematical world would indicate these terms as being similar to 
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prime numbers as they are, perhaps, indivisible into their constituent components. But 

these issues having already been addressed in linguistics which provides us a set of 

definitions for the terms thinking and understanding, amongst which are [20], 

Thinking 

“The activity of using one’s brain to understand a problem, making 

judgements about it to develop a solution.” 

This definition of thinking simplifies the considerations to be made as one now 

has the term thinking defined in terms of understanding. One final linguistic peek – now 

at the term understanding reveals its definition as definition being [21], 

Understanding 

“The act of possession of knowledge about a certain subject.” 

which further simplifies the considerations to be made as both thinking and 

understanding are expressed in terms of one single concept, knowledge. This now leave 

just one unanswered question, “What is knowledge?”. Sadly, the answer to this question 

is not as easy as the identification of a single definition for the term knowledge. This is 

due to the difficulties offered by the technical considerations of the term. From a 

linguistic perspective, there are three terms that are scarcely distinguished in everyday 

vernacular. But the technical consideration of the term knowledge demands that a 
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distinction be established between these concepts which results in a confusion regarding 

their definitions when translated from the vernacular. These concepts are, 

• Knowledge 

• Information 

• Data 

 

Figure 1.3: Process in which knowledge, data and information interact in the 
process of decision making [22] 

One may develop a distinction in the associated value with each one of these 

terms, but that hardly serves as a clear definition from the perspective of gaining insight 

into their characteristics. A more precise distinction granting the necessary insight into 

the intricacies of the differences between these terms follows from the work of [22]. In 

addition to the establishing a distinction between the terms themselves, their relationship 

amongst themselves and to the concept of human intelligence is offered by [22] and is 

highlighted in Figure 1.3. The process of generating a distinction between the three terms 

starts with identification of the source from and manner in which the three are gathered. 

Data often comes as the raw representation or observations that can be gathered from 
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one’s environment and is a result of one’s perception of the surroundings. These bits of 

data are things for which the mind has gained an ability to gather, represent and quantify. 

Information, on the other hand, refers to processed data that is a result of execution of 

one’s judgement for the identification of data relevant to a particular context. 

Information, thus, is a product of an analysis of a large quantity of data resulting in the 

identification of a set of key bits that are essential for consideration for the problem at 

hand. Finally, knowledge would represent a more generic understanding of the concepts 

represented by any gathered information enabling its generalization across multiple 

contexts. This is often a result of experience and typically exists in two forms, tacit and 

explicit [23]. Tacit knowledge refers to an understanding of a problem that is innate to a 

person that is often difficult to transfer, while explicit knowledge refers to the 

transferrable knowledge that can explicitly specified, written or coded and often relies on 

one or more bits of tacit knowledge. 

1.3 Characteristics of an Intelligent Machine 

Having gained an insight into the differences between the terms data, information 

and knowledge and having defined the terms thinking, understanding and knowledge, one 

may, once more, return to the identification of the characteristic features of the field of 

artificial intelligence. To identify the characteristics of artificial intelligence, it serves to 

first define the goal that is to be served by the development of an artificial intelligence 

application for an engineering problem. This problem has been addressed before and a 

key target of artificial intelligence is identified as being [24] “the application of 

intelligent machines to tasks that requires considerable intelligence from a human 

operator”, i.e., in essence, the development of an intelligent machine. Prof. Minsky, in the 
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book The Emotion Machine [25], theorizes a process for the development and operation 

of one such machine. The conclusions reached are based on similarities drawn from 

observations of human behavior, in particular, infants. Owning to the instinctive nature in 

which infants make decisions, the machine is termed as an “instinct machine”. This 

machine, illustrated in Figure 1.4, is theorized to comprise of three modules, 

• a sensory module, such as the eyes, ears, skin, etc., whose primary function is to 

perceives both the problem and the state of one’s environment 

• a knowledge module, which houses a set of relationships that map perceived 

states to actions 

• and, finally, a motor module, which applies actions in response to the problem 

faced. 

 

Figure 1.4: A block diagram of Minsky’s Instinct Machine 

Given this understanding of the instinct machine and based on the definition of 

artificial intelligence, one can identify a set of five key characteristics for the any 

artificial agent. These are given as, 

1. The machine should have a capability to perceive the environment. 

2. Decisions made by the machine should be knowledge-based. 

3. The machine should have the capability to plan a course of action based on 

perceived and expected states of the environment. 

Sensor Knowledge Base Motor
Perception

Planning

Learning

Reasoning
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4. The machine has to be capable of learning from the perceived value of any action 

taken. 

5. The machine ought to be capable of reasoning to justify the decisions made and 

the actions taken. 

Given that they form an important part of an artificially intelligent machine, this analysis 

requires one to now define two additional concepts; planning [26] and learning [27]. 

Planning 

“Planning refers to the process of generating a representation of future 

behaviors of an environment prior to the utilization of a plan in order 

to constrain or control the behavior of an organism.” 

Learning 

“Learning refers to the process of changing an organism’s capacities 

or behavior through experience.” 

1.4 History of Research in and Modern Applications of Artificial Intelligence 

(State-of-the-art in Artificial Intelligence) 

Through humble beginnings in the early 1940s to rather complex applications in 

the recent past the field of artificial intelligence has seen its application to a variety of 

problems in the field of science and engineering. Though still in its infancy in 

comparison to fundamental sciences such as physics, chemistry or biology, the field of 
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artificial intelligence has shown tremendous promise as being the next frontier for science 

and technology. In fact, the field, along with molecular biology, is cited to be one of the 

most desired field of research and work by engineers in other fields. Figure 1.5 

summarizes some of the key developments that have occurred over the past seventy years 

in the field of artificial intelligence demonstrating not only a facet of the variety in the 

application fields, but also the complexity of some of the applications that have been 

addressed. 

Research in the field of artificial intelligence began in the early 1940s with the 

development of the neuron model [28]. This artificial neuron model was composed of a 

set of neurons, each activated by the effective stimulus resulting from its neighboring 

neurons, laying the groundwork for the original neural networks. The model also laid the 

foundation for trainable networks by suggesting that the network models could learn 

representations of problems. This particular topic was addressed in the late 1940s with 

the release of the Hebbian model [29] for the adaptation of neurons in the brain during 

the learning process. The concept of neural computing was realized with the first neural 

network computer being built in the year 1950. But it wasn’t until the year 1956 that the 

term artificial intelligence was coined [30] at a workshop at Dartmouth. The period 

before 1956 that resulted in the inception of the field of artificial intelligence is often 

termed the “Dark ages of Artificial Intelligence”. 

The period following the workshop at Dartmouth, was one filled with great 

expectations from the field of artificial intelligence. In the early 1950s a computational 

program capable of playing the game Checkers was developed. It was demonstrated to 

learn and perform significantly better that the creator of the program. This effectively 
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silenced some of the critics of the field who argued that computational algorithms would 

be incapable of doing things that they weren’t explicitly programmed to. Around the 

same period the high-level programming language Lisp was designed and developed [31] 

which quickly established itself as the standard programming language for the purpose of 

artificial intelligence. The expectations from the field of artificial intelligence were 

bolstered by developments in artificial intelligence applications such as the General 

Problem Solver [32] and Geometry Theorem Prover [33] that were capable of imitating 

problem-solving protocols demonstrated by humans. The period also saw developments 

in the field of vision, reasoning, and natural language understanding through the late 

1960s and early 1970s. One of the key contributions that remains valid even today was 

the publication on the perceptron convergence theorem in 1962 [34] that forms the basis 

for the backpropagation algorithm utilized in the training of modern neural networks. 

But, in the latter half of the 1960s funding to most artificial intelligence research 

programs was cut in the western world. As a result of this, the developments in the 1970s 

and 1980s were commercial in nature. Several commercial applications for the purpose of 

medicine, mining, and molecular analysis were formulated through the use of a heuristic-

driven knowledge base [35]–[39]. In 1969 a publication [40] revealed the limitations of 

the perceptron model, effectively bursting the bubble on the expectations of artificial 

intelligence. 

Following some of the difficulties in the realization of the expectations of the 

artificial intelligence programs, focus in the 1970s and 1980s were primarily on the 

commercialization of artificial intelligence applications. The period saw a shift of focus 

in the means in which artificial intelligence algorithms were developed. Supervised 

learning algorithms were prioritized over others approaches as these algorithms were 
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demonstrated to efficiently recognizing patterns in data. These demonstrations further 

bolstered research efforts in the field of supervised learning. This period of change in the 

focus of research is often termed the “AI Winter”, which, perhaps, ended with the 

reintroduction of the backpropagation algorithm in the 1980s [41]. At about the same 

time significant developments were seen in the field of reinforcement learning, a concept 

originally introduced by Alan Turing in the 1950s. Bolstered by the improvements in 

computing power, the realization of the marriage between neural networks and 

reinforcement learning was demonstrated in the year 1994 with the implementation of the 

IBM’s backgammon player [42]. 

The recent resurgence in the field of artificial intelligence has been guided by the 

goal to reproduce “human-level AI” and is aided by developments in the neural network 

training routines and improvements in the computational capabilities. The availability of 

large amount of training data further bolsters the application of artificial intelligence to 

new fields. Developments in the field of neural networks, such as the creation of 

advanced neural network architectures, such as convolution neural networks, recurrent 

neural networks etc., have propelled the field of artificial intelligence to new applications 

related to vision, text and speech processing [43]–[46]. The introduction of deep neural 

network has been another factor that has lent itself to the further the research activities in 

the field. In particular, the combination of deep neural networks with the methods of 

reinforcement learning, resulting in deep reinforcement learning, have recently shown to 

be capable of producing human-like performances on certain tasks. Complementary 

developments in supervised learning and the underlying numerical optimization routines, 

too, have been significant contributions to the development of the field. Recent 

developments have not only included improvements to the training algorithms and 
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application to new fields, but also investigation of applications to different domains. For 

example, while in the past human-like AI was primarily applied to problems involving 

discrete decision making, new algorithms have been developed to enable the application 

of intelligent machine to problems in the continuous domain [47], [48] or even, mixed 

discrete-continuous domains.  

 

Figure 1.5: Some of the major developments in the field of artificial intelligence 
since its inception 

While the preceding passages briefly summarize some of the key developments 

observed in the field of artificial intelligence over the past seventy years, it is essential to 

note that the field is very much in its infancy and new developments are being reported 

rather frequently, making the estimation of the state-of-the-art for such a field rather 

difficult. Another factor that makes the establishment of the state-of-the-art difficult for 

the entire field is the differences in the implementation for each application. For example, 

the application of end-to-end learning for computer vision would comprise of a different 

network architecture and training algorithm in comparison to another application such as 
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self-driving vehicles. But having made these notes, one could argue that the artificial 

intelligence methods that are enabled through the use of a variety of architectures of deep 

neural networks and generalized reinforcement learning algorithms for the purpose of 

end-to-end learning would be an apt representation of the state-of-the-art in the field of 

artificial intelligence, without any loss of generality. 

Based on the information presented in the preceding sections, one could tally up 

the set of application where the field of artificial intelligence has seen significant 

application. These would include, 

• Autonomous vehicles 

• Computer vision 

• Logistics and planning 

• Gaming 

• Natural Language Processing and Speech Recognition 

• Robotics 

• Expert and Decision support Systems 

Prior to addressing the motivation for the thesis work presented in this 

dissertation, it is essential to gain an understanding of the concepts of a complex system 

and the complexity in modern engineering design systems. These topics are addressed in 

the following sections. 

1.5 Complex Systems 

Before the topic of complex system is addressed, it is essential to develop an 

understanding of the term complexity. To do so an answer to the question, “What is 
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complexity?” is sought. The concept of complexity varies in both its definition and 

metrics of consideration depending on the application considered [49], to an extent that 

there is neither a single science of complexity nor a complexity theory that exists solely 

for the generalized measurement of the complexity of a certain entity [50]. For example, 

in the context of computation, complexity, or computational complexity is defined to be 

the metric of interest and is typically given by the number of operations or time taken to 

perform a certain computation. But, on the other hand, in the example of information 

relay, complexity is often represented as the minimum of bits of information necessary to 

convey a concise description of the entity’s regularities. While this interpretation of 

complexity does not lend itself to comparison across different contexts of problems, it, 

certainly, is suitable in establishing a means of comparison for problems of the same 

context. The lack of consensus and, in fact, vast difference in interpretation of complexity 

in different contexts, necessitates a more abstract perspective of the problem. This 

abstract view is guided by set of questions posed in the early 2000s [51] that helps 

quantify the degree of complexity of any entity or process, these questions being, 

• How hard is the entity or process to describe? 

• How hard is the entity or process to create? 

• What is the degree of organization in the entity or process? 

Using these guiding considerations, it would now be possible to determine if a 

given system behaves as a complex system. The analysis of the term “complex system” 

must being with a consideration of its definition. As with complexity, while there is 

generally an agreement on the presence of one such entity as a complex system by the 

members of the scientific community, it is rather difficult to find a consensus on the 
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definition for one [52]. Perhaps, one of the better definitions for a complex system was 

offered by Simon [53] that roughly relates the system complexity to the number of 

interacting parts of the system, the manner and impact of these interactions. In essence, 

complex systems contain a large number of interacting components that interact in a non-

trivial manner such that the resulting system as a whole is greater than the sum of the 

individual components. Researchers [52] have identified a set of key characteristics to 

help classify a system as being complex. These characteristics demand, 

• a non-linear system  

• having a notion of order, i.e., not completely random nor completely 

deterministic,  

• yet robust with some sense of autonomy 

• demonstrating emergent behavior 

• with a hierarchical organization 

• and having feedback of information for each component based on the manner in 

which the components neighbors interact  

Several naturally occurring entities can be classified as being examples satisfying 

these characteristics of complex system, such as an organism’s brain, fluid turbulence, 

etc. Likewise, several engineered products, too, demonstrate the necessary characteristics 

to be classified as complex systems, for example, an automobile, a gas turbine, the world 

wide web etc. A technical definition of a complex system can be given as, paraphrased 

from [50], 
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Complex Systems 

Complex systems are interdisciplinary entities in which a large number 

of relatively simple entities organize themselves, without a central 

controller, to create a whole capable of exhibiting patterns, utilizing 

information and, also, demonstrating the ability to evolve and learn. 

1.5.1 The Aircraft as a Complex System 

The manner in which aircrafts are designed have seen a drastic change over the 

course of the past century. From the inception of flight through to the early 1940s, 

aircrafts were predominantly designed from a mechanical system and aerodynamic 

design perspective. Components were designed so as to involve very few interactions, 

with each being designed to operate in independent silos. The goal of such as design was 

typically a reduction in system weight to ensure that the generated lift enabled flight. 

Though over time with improvements in the capabilities offered by the computational 

resources and as a result of improvements made to the electronics onboard the vehicle, 

the design paradigm has transitioned towards a multidisciplinary setting. The 

incorporation of avionics onboard the aircraft, in particular, brought forth with it an 

increase in the number of interacting components. On the other end of the spectrum, 

developments in computational capabilities have enabled the consideration of the 

complexity associated with the physics of flight during the design process. Although the 

elementary components onboard perhaps still remain simple in nature, the magnitude and 

nature of their interactions makes the entire aircraft system complex. 

 



 23 

1.6 Complexity in Engineering Design Applications 

As with engineering products and processes, complexity can exist in the 

applications used to realize these products and processes. In fact, owing to the growing 

demand for a flexible and all-encompassing design environment in the modern 

engineering workplace, modern design applications can often be quite complex in nature. 

The competitive nature of the modern engineering marketplace bolsters the demand for 

high efficiency from design teams which is in turn is relayed to demands of flexibility 

and efficiency from the design applications used. This trend of heightened complexity in 

the application development process has been observed in the field of enterprise 

application development [54] and relates directly to the complexity observed in 

engineering design applications. A key contributor to the complexity is the adopted trend 

in the development of software applications for the purpose of design engineering. The 

development of modern engineering design applications is typically driven by a 

commercial aspect where third-party developers provide the necessary software 

capabilities to design teams enabling them to accomplish the desired goals. These third-

party organizations, though in a bid for market superiority, often attempt to generalize the 

developed applications so as to be suitable to a variety of fields. While this makes the 

developed application extremely flexible, in the context of one single application, it also 

adds an undue burden on the design engineer who now have to overcome the learning 

curve associated with an extremely flexible new software application. It is often the case 

that the flexibility of the system is directly proportional to the associated learning curve, 

which make most modern software rather difficult to use out-of-the-box. Engineering 

corporations that develop commercial products, while aware of the complexity in modern 

design system, often prefer to spend the capital necessary to train engineers in the use of 
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off-the-shelf software rather than the development of a more simplified in-house 

alternative. This behavior can be attributed to two primary factors, 

• The time, effort and expertise required to develop an effective and efficient 

software application that can be reused across several projects is often quite high. 

This is evident with an analysis of the annual revenue of ANSYS Inc., which 

provides solutions to engineering design problems in multiple disciplines. The 

company boasts an annual revenue of over $1 billion for the year 2017 [55]. Even 

a modest assumption of 10% of this revenue being fed back into product 

development would imply a $100 million development expenditure for the 

software application on a yearly basis. Similar trends are seen by other major 

players in the engineering software world such as Siemens Digital Factory [56], 

Dassault Systèmes [57], Mathworks [58] just to name a few. 

• The time and costs associated with the verification and validation of any software 

developed in-house often prove exorbitant for design companies that are driven 

by the requirements of reduction in design cycle times and faster times to markets. 

This is a direct result of the competitive nature of the modern market 

environment.  

As a result, in place of a specialized application, that are suited for the problem 

context, a much more flexible application is utilized as it is typically usable out-of-the-

box and adheres to strict validation guidelines.  

As the primary function of these design application is to enable the execution of 

the design process, they need to be able to retain some representation and display of the 

instantaneous state of the design under consideration. These displayed states guide the 
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decisions taken by the design engineer during the design process. But owning to the 

flexibility in these systems, there is a considerable amount of complexity introduced due 

to the nature of the representation chosen. This is a result of the fact that the detailed 

representation of the design has to be abstract enough to capture the common features 

across multiple fields of engineering. This abstraction is typically achieved by relying on 

high fidelity representation through the use of geometry modeling and detailed physics 

modeling which is one of the primary causes for the complexity in modern engineering 

design applications. 

1.7 Motivation 

The process of engineering design is one that is increasingly being recognized as 

being characterized by a series of decisions [59] in which design engineers are tasked 

with making appropriate decisions for the purpose of the creation of the final designed 

product. Design engineers are faced with decisions at multiple different levels and of 

multiple different natures, such as choices related to the type of model used, choices 

related to the settings of different analysis and design parameters, and, also, architectural 

choices, to name a few. These decisions can be viewed as being made at different levels 

of abstractions and they are always driven by a certain design goal and scenario in mind. 

A representative example of the design goal may be given by the task of identification of 

a set of suitable values for design parameters in an exploratory search scenario where a 

feasible and viable design is sought, and, on the other hand, an example for a scenario 

could correspond to analysis performed for the identification of a set of performance 

parameters. In this process of decision making, the choices made by the design engineer 

manifest themselves as a sequence of actions. These actions in turn are informed by the 



 26 

observed instantaneous state of the design, the goal or target in mind and also the domain 

expertise pertaining to the problem under consideration.  

In the modern digital setting, design processes are exercised through the use of 

design tools that manifest in the form of software applications. Most design application 

utilize the abstract framework of product design, modeling and simulation as the de facto 

standard means for a design engineer to interact with the state of a design and its estimate 

the performance at any instant of time. Given that the design process is characterized by a 

sequence of decisions that relies on the application of engineering judgement and domain 

expertise, it is natural to ponder if the underlying patterns in the engineering logic that 

dictates the decisions made can be identified, captured and abstracted into a computer 

program such that the program can intelligently support and guide the design engineer 

when faced with similar design scenarios in the future. 

The increasing demand for accuracy in the design simulations results in an 

increase in the complexity in the design applications. This has in turn resulted in the 

adoption of a more complex representation for the state of the design through the use of 

visual representation schemes such as the ones enabled through the use of computer aided 

design or ones enabled by complex system block diagrams. As a result of increasing 

complexities in the design applications themselves, design engineers now have to 

overcome a steep learning curve. This requires both a significant amount of exposure to 

the design application, achieved by hours of training logged on the application, and also 

exquisite command of the subject matter which takes years of studies and experience in 

the field. These factors result in a very long lead time in achieving a mastery over most 

modern design applications. Another factor that contributes to the difficulty in achieving 
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mastery over an application is that the expertise gained by one engineer is not readily 

transferrable to another. While engineers may collaboratively gain expertise in the usage 

of an application, through trainings and workshops, effectively reducing the number of 

hours spent, the resultant lead time would certainly not correspond to that of the ideal 

scenario; where knowledge is transferred from one engineer to another or shared between 

engineers. A typical example of the collaborative learning setting may involve an 

“expert” engineer training a set of “novice” engineers in the intricacies of the 

application. But, in reality, access to such expertise is often limited, partly due to the lack 

of pervasive presence of such expert engineers and, in part also, due to the limitations of 

a typical work environment. Hence, any organization that relies on the utilization of 

complex design applications would benefit from the computational representation of the 

design expertise. If such a representation is achievable, then the applications could be 

implemented in such a way so as to train novice design engineers in place of the expert. 

Current standards in engineering design applications do implement some aspect of these 

training routines, typically represented in the form of, 

• Design applications enhanced with the user guides and documentations. 

• Design applications that have embedded training routines. 

• Decision support and expert systems capable of providing real-time 

recommendations for design engineers. 

Traditional design systems that are used in the engineering workplace fall under 

the first and second categories. Both these categories rely on a predefined set of scenarios 

that are to be used to educate a design engineer, which of course means that they lack any 

sense of adaptability. Further as these documentations and training routines are typically 
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written/developed by application developers, they may not reflect use cases that are of 

interest to the design engineer. The third category represents a more dynamic system that 

is utilized to provide recommendations to “users” based on historical data and/or current 

application state. But these systems are not as prevalent as the other categories in 

engineering design field and have historically been applied for websites, such as Google, 

Amazon, etc. and entertainment applications, such as Netflix, Hulu, Facebook, etc.  

In light of the limitations of traditional training systems and the lack of the 

pervasive use of recommender systems in engineering design, the thesis work presented 

here aim to develop a generic framework that can enable the use of techniques offered by 

the field of machine learning in order to provide recommendations assisting design 

engineers in the process of making design decisions. It is sought to base the 

recommendations on the knowledge extracted during a design engineer’s interactions 

with the design application. As a design engineer interacts with the application, i.e., 

exercises the design process, all the necessary knowledge associated with the creation of 

the design would be encoded in some means within the application. This encoded 

knowledge shall be extracted and utilized to train a learning algorithm such that patterns 

in engineering decisions can be exploited and recommendations based on these patterns 

made. Thus, the overarching goal guiding the research work is stated as follows, 

Research Goal 

Develop a methodology, founded on strong mathematical principles, 

that enables the automatic extraction and representation of design 

knowledge such that the extracted knowledge can be utilized by a 
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learning agent to aid, automate or replace design engineers in new, but 

similar, scenarios. 

1.8 Scope of the Research Work 

As the current research work attempts to apply techniques in the field of artificial 

intelligence to engineering design, the scope of the research work is multi-disciplinary in 

nature. The necessity for an in-product, contextual recommendation capability 

necessitates the consideration of disciplines such as machine learning, software 

development in addition to traditional engineering design. While the research work either 

utilizes capabilities offered by these disciplines out-of-the-box or results in evolutionary 

improvements to each some of these topics, the cumulative impact of the research work 

would be novel in nature. Thus, the research work is scoped to two particular 

applications, first to a design application that utilizes a Model-based Systems Engineering 

approach for the design of unmanned aerial vehicles with the aim of identifying patterns 

in observed data to improve performances of new generated designs and second to a 

commercial application, Siemens NX, that enables computer aided design where in an 

expert engineer’s actions and decisions are identified and tailed in order to generate in-

product and contextual recommendations for others. 

1.9 Organization of the Dissertation 

Having introduced the motivation and the goal of the research work, the following 

passages outline the organization of the dissertation. The document is organized into 

three sections. The first section reviews the state-of-the-art in the field of automation of 

design systems and decision support systems and establishes a methodology for the 

research carried out. These are covered in the CHAPTERS 2-6, with CHAPTER 2 
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reviewing the state-of-the-art in application of decision support systems to the 

engineering domain in the research and industrial setting. CHAPTER 2 concludes with a 

set of observations about the shortcomings of the established approaches. CHAPTER 3 

proposes a means to address these shortcomings with the development of the primary 

hypothesis and the proposal of a generic computational framework. A research 

methodology is then established to aid the development effort of this framework. The 

chapter concludes with the identification of a set of three research areas and associated 

research questions that are to be addressed in order to develop the proposed framework. 

CHAPTER 4 addresses the three research areas identified and provide justifications the 

hypotheses developed for the research questions posed.  

The second section of the dissertation documents the developed framework and 

its application to a set of three applications ranging from a canonical problem to its 

implementation to a commercial-off-the-shelf application. CHAPTER 5 documents the 

software application and the framework developed for the purpose of automation of 

design systems and also introduces the methods and algorithms considered in the 

implementation. CHAPTER 6 and CHAPTER 7 each address one instance of application 

of the framework for the automation of engineering design process (in CHAPTER 6) and 

the automation of an engineering design application (in CHAPTER 7). 

CHAPTER 8 concludes the dissertation with a look back at the accomplishments 

of the thesis work and proposes a set of future developments to further extend the 

developed application. 
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CHAPTER 2. GAP ANALYSIS 

Having introduced the background and the premise for the research work, it falls 

upon the author to now tackle the evaluation of the state-of-the-art in establishing 

potential areas for contribution, prior to establishing the methodology for the research 

work. The current chapter performs said evaluation of the state-of-the-art and is 

segmented into two. The first section of the chapter deals with the background of 

decision making and the processes involved in decision making in humans, while the 

latter section deals with solutions available for the implementation of the processes for 

decision making in a computational framework, and the evaluation of a set of the 

alternatives of these computational frameworks. The section concludes by highlighting 

some of the shortcomings of the practices in the development of these frameworks 

leading to a set of observations that guide the research methodology. 

2.1 Decisions and Decision-making 

2.1.1 Decisions 

Decisions are central to all beings. Decisions are made every day by every one of 

us in one form or another. Decisions that have little impact on our lives are made every 

day quite frequently and, often, without much thought while those that are of greater 

significance are deliberated to greater length to judiciously arrive at, what is perceived to 

be, the best possible decision. The significance of a decision made and hence the problem 

of decision making, itself, has been identified to be influenced by three primary factors, 

the problem context, cognitive capabilities of the decision maker and the social 

implications as perceived by the decision maker, as illustrated in Figure 2.1. In fact, every 
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scenario that necessitates a decision, from the perspective of the decision maker, is 

unique owning to the impact the decision has on the decision maker. That is, it is the 

result of the influence of a decision on the cognitive capabilities of the decision maker 

that brings about the differences in the decision driving circumstances as no decision 

maker can return to a previous state of knowledge or the status-quo [22]. 

 

Figure 2.1: Factors affecting the decisions as identified by [60] 

2.1.2 Types of Decisions 

Decision behavior in humans, often, varies depending on the circumstances that 

drive the decisions being made to an extent that small changes to the circumstances could 

results in significant changes the final decision made. This is observed in the scenario 

where for the same problem context, given a different number of alternatives to choose 

from, the manner in which information is processed to arrive at a decision has been 

observed to be significantly different [60]. In general, it is a comparison of the available 

alternatives that drives the process of decision making. A common distinction in these 

Decision 
Making
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types of comparative decision making is as originally described for the purpose of 

management systems by the “strategy pyramid” [61] in which the decisions are classified 

as strategic, tactical and operational. But the nature of engineering design is such that, in 

addition to the three comparative decision types, there is usually a fourth. This fourth 

decision making type is one that relies on the ability to draw similarities between decision 

circumstances and is often terms the recognition-primed decision making [62]. Such 

decisions involve little or no comparison of alternatives but, instead, rely on instinct to 

dictate the decision made. It has to be noted that this structure of decision making in the 

strategy pyramid indicates that the decisions with higher consequence are those of the 

strategic nature while the instinctive decisions are ones that are made quite often and 

rather mundane in nature. Given that there is a recognizable pattern to the circumstance 

dictating the decision; it aligns well with the core concept of programming, where the 

patterns in decisions and their circumstances from the past can be exploited to arrive at 

decisions in new but similar circumstances. Further, the mundane nature of these 

decisions is the primary target for the task of automation, which attempts to remove the 

burden of making tedious and mundane decisions in order to free up the decision maker 

to more pressing and demanding tasks. 

2.1.3 Topology of the Problem Context 

A further classification of decisions comes from the circumstances driving the 

decisions made. A cynefin model [63] categorizes the problem contexts into four, 

illustrated in Figure 2.2 and described below, 

• The known problem context where a complete description of the cause and effect 

of a circumstance is available to the decision maker in addition to the information 
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regarding the choices and their consequences. Decisions made under these 

circumstances are dictated by the recognition of patterns leading to actions based 

on experience, i.e., recognition-primed decisions. 

• The knowable problem context where the cause and effect relationships are 

clearly defined, but there is insufficient information to accurately predict the 

consequence of the decision made. Decisions made in problems of these settings 

involve a more detailed analysis of the circumstance aiming to understand and 

develop models representing the trends in the decisions based on similar 

experienced situations. Thus, as with the known problem context, problems of this 

type are characterized by their repeatability. 

• The complex problem context where a considerable number of interactions in the 

cause and effect of decisions that makes the prediction of the consequence of one 

single decision difficult. Circumstances classified as complex are characterized by 

an underlying uncertainty in their impacts which makes the process of decision 

making difficult. In such scenarios, decisions are often based on subjective 

judgements rather than objective facts. 

• The chaotic problem context in which there exists no pattern dictating the cause 

and effect of a decision hence rendering it impossible for the determination of 

consequence of the decision. Decisions in such problems do not rely on any 

analysis but instead require an exploratory search of the available alternatives or 

require the simplification of the problem to one of the other contexts in order to 

utilize an analytical approach for the decision making. 
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Figure 2.2: Categorization of the problem context based on Snowden's Cynefin 
model [63] 

An alternate, yet synonymous, view of the topology of the problem context is 

attributed to Simon [64], [65] who classified the problems into programmed or structured 

and ill-structured or non-programmed. While originally classified as two alternatives of 

the problem context, the structured and unstructured problems can be viewed as two ends 

of a spectrum of problems that vary in the definition of the problem context. A structured 

problem would be one in which all the elements of that lead to the decision, such as the 

data, process and the analysis carried out, would be determinate and could be generated 

through a rigorous analysis of the problem. Such a problem enables the development of a 

framework that can be utilized to mimic the process of decision making and hence 

coincides with what is typically understood as being programmed. The unstructured 

problems, on the other hand, while having the same components as the structure 

problems, i.e., the data, process and analyses, are characterized by an absence of a 

definition of a methodology for the process of decision making. This lack of framework 

for decision making implies that each decision maker could utilize a different 

combination of the three attributes to arrive at a decision indicating an absence of 
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understanding in portions of the problem. Along the spectrum, in between the structured 

and the unstructured problems, would lie the semi-structured decision problems. These 

problems, while utilizing a standardized methodology in the decision making also rely on 

human judgement and experience to make the decision.  

Table 2.1 [61] illustrates the orthogonality between the structure of the problem and 

type of decisions that are available while identifying representative problems that are 

applicable for each cell. 

Table 2.1: Grid showning the orthogonality between the decision structure and the 
type of decisions executed [61] 

 Recognition-

based 

Operational  Management Strategic 

Structured  

Contextual Low-level Control 

Mid-level Control High-level Control 

   

Unstructured  Unplanned Decision Long-term 

Planning 

2.1.4 Problem Representation and the Rational Decision Model 

Having categorized the types of decisions and the circumstances that call for 

decisions, it now falls upon the author to introduce the means in which decisions are 

made. But prior to this analysis, means for the representation of the decision problem are 

introduced and the background for a commonly used decision model is addressed. Formal 

mathematical descriptions of the problem, while enabling a structured representation of 
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the decision problem, would not be the best means for communication of the decision-

making problem. Thus, the following section reviews a set of representations for the 

decision problem that are suitable for a computational representation but also 

comprehensible to decision makers. 

 

Figure 2.3: Decision tree and decision table aproaches to decision modellling [66] 

Perhaps, the simplest means of representing a decision problem and the decision 

alternatives available is represented by a decision table, illustrated in Figure 2.3. In this 

framework, it is the task of the decision maker to identify and relate a set of available 

choices, i.e., decisions, to the corresponding states of the environment. These states of the 

environment may be exogenous factors that represent the manner in which the 

environment reacts to a decision being made. The relationship between the states of the 

environment and the set of decisions are established through a matrix of consequences 

that dictate/predict the impact of making a certain decision for a given state of the system. 

While this modelling approach provides a comprehensive overview of all the choices and 

the consequence of those choices, the framework requires knowledge about the state in 

which the environment is at any point a decision is to be made. Further, the consequence 

of a decision need not necessarily be numeric in nature and could remain descriptive 

which does not lend itself to comparison due to the lack of objectivity, making the choice 
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amongst the decision alternatives difficult. The mathematical representation for the 

decision table follows from [22] as, 

!"	⨁	%&
',)
*+ ,"& 

where, ! represents the decision made, % represents the state of the environment, , 

represents the consequence perceived, - represents the problem faced by the decision 

maker, and . the history of events observed by the decision maker.  

The two issues with regards to decision tables can be alleviated through the use of a 

specification for the belief of and the preference for both the state of the environment and 

the consequence as defined by the decision maker, respectively. While decisions made 

under such settings still remain subjective, this approach permits a comparative analysis 

of the possible actions. One of the most common means of defining these preferences is 

through the creation of a subjective expected utility (SEU) estimate which attempts to 

model the belief in the environment state as a distribution about the possible states that 

the environment can occupy, and the preference for the decision as an expected utility of 

the consequence of the action. It has to be noted that decision tables, through this 

extension, are applicable to structured and semi-structured problems which reside in the 

known, knowable or complex problem domains, and enable decisions of any of the four 

types defined in the modified strategy pyramid. This model for decision making with the 

utilization of SEU has been shown simulate the behaviour of a decision maker adhering 

to the axioms of perfect rationality [67], a characteristics that is strongly desired in the 

development of computational alternatives for decision makers. While such behaviour is 

certainly ideal, reality is often quite different as societal circumstances have a significant 

impact on the decision maker biasing the decisions away from the rational.  
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As an alternative to the decision table, a typically used representation for the 

decision problem is the decision tree, illustrated in Figure 2.3. A decision tree is a means 

of representing a sequence of decisions in which the set of possible decision alternatives 

from an initial state of the system are plotted against the progression of time. As with the 

decision table, decision trees require an enumeration of the decision alternatives and the 

resultant consequence of the decision, but only requires the specification of the initial 

state of the environment. These characteristics can be viewed as being both a pro and a 

con of the decision tree as follows,  

• the decision maker is able to make a sequence of decisions using a single tree and 

only requires information about the initial state of the environment in order to 

make these sequence of decisions 

• given a decision tree and the state of the environment, the choice of an alternative 

would require the decision maker to back-track decisions made to the initial state 

to evaluate the tree’s applicability to the problem context 

It has been argued [68] that, in the presence of numerical attributes for the decision 

criteria, decision trees can be geometrically interpreted as a collection of hyperplanes, 

each orthogonal to one of its axes. Due to this representation, it is often the case that 

decision makers prefer handling smaller decision trees as these are easier to comprehend. 
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Figure 2.4: Generic Influence Diagram as defined by [69] 

Another alternative to the representation of a problem is through the use of 

influence diagrams [69], illustrated in Figure 2.4. The influence diagram, in contrast to 

the decision tree is designed to represent the dependency between the decisions available 

to and the set of beliefs held by the decision maker, i.e., building a relationship between 

the decision parameters and the uncertain parameters. These diagrams require a 

specification of the set of beliefs regarding the states of the environment in addition to the 

specifications of the decision alternatives available to the decision maker from which a 

graphical model is developed where each one of the uncertain beliefs and the decision 

alternatives forms a node of the graph and the edges indicate the relationship between the 

decisions made and the “influenced” state. An intrinsic advantage of the influence 

diagram over the decision trees is its comprehensibility in the presence of large decision 

problems that typically results in them being favoured for real-world problems as applied 

for the problem of medical diagnostics [70]. In the example given in Figure 2.4 there is a 

presence of two decision nodes that relies on knowledge of a set of preceding nodes, in 

the first case that of / and , and in the second case that of 0, while the remaining portion 

of the graph indicates the influence of the belief of the environment state on other state 

parameters. 
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It has to be noted that owning to the complexity of decision problems, it is often the 

case that decision makers rely on a complementary set of representations in order to 

model the context to guide the choice of the alternative. Thus, there is rarely a necessity 

to evaluate amongst the alternatives means of representation to trigger the decision 

analysis process [22]. 

2.1.5 Decision-making Process and Decision Analysis 

While there exist numerous models that have attempted to explain the process of 

decision making [71], most rely on Simon’s model [72], illustrated in Figure 2.5, as the 

basis for the development of a rational decision-making process. Simon’s model for 

rational decision making is divided into a set of three primary phases followed by an 

implementation and analysis phase. Simon argues that the decision-making process 

begins with the intelligence phase in which the problem being addressed or the 

opportunity for an improvement in some established methods is identified. The phase 

entails the identification of the three characteristics of the decision-making process, i.e., 

the collection or generation of all relevant data to inform the modelling of the decision 

problem, the identification of the process for the evaluation of the decision problem that 

results in the selection of a decision-making technique and also the definition of the 

evaluation metrics that serves as the compare various decision alternatives. These 

parameters are based on the requirements and constraints posed by the decision problem. 

The intelligence phase is followed by the design phase where the primary focus of 

the decision maker is the identification of decision alternatives. In the absence of a 

suitable decision alternative, a detailed investigation of the decision problem has to be 

performed to generate a suitable set of alternatives. Having generated a suitable set of 
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decision alternatives, the identified analysis is to be exercised in order to generate the set 

of metrics to enable a comparison amongst the alternatives, concluding the design phase. 

The final phase as identified by Simon in his model for rational decision making is 

the choice phase. The choice phase involves the comparison of the set of identified 

alternatives with the goal of selecting the “best”. The definition of the best alternative is, 

of course, subject to the preferences of the decision maker thereby making biases inherent 

to the process of decision-making. The choice exercises the decision-making process 

identified in the intelligence phase so as to filter out subpar alternatives yielding the best. 

Owning to the nature of the decision-making processes, parameters associated with the 

methods are defined thereby enabling the comparison of the alternatives in a quantitative 

sense. The definition of parameters of the decision-making parameter, too, permits the 

infusion of bias into the final decision. The phase then concludes with the selection of an 

alternative. 

While not originally included by Simon, research later have included the 

implementation of the alternative as an intrinsic component to the decision-making 

process. The phase involves the realization of the decision, where an action is taken 

committing a finite amount of resources with the hope of realizing the expected 

consequence. This effect of the realized action is analysed to ascertain the degree to 

which the realized product meets the expected consequences, thereby triggering a 

diagnostic on the failure to meet the expected consequences with the goal of identifying 

the source of the difference, triggering an iterative decision-making process. 
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Figure 2.5: Simon's model for Rational Decision-making process [64], [73] 

At this point, it is essential to distinguish between an action and a decision. A 

comprehensive description of the differences between an action and a decision as applied 

to a generic engineering context is provided by Hazelrigg [74] and is summarized here. 

Hazelrigg defines a decision as a commitment to an action of uncertain  effect 

involving some irrevocable allocation of resources, which is made in the present while 

being different from the actual action as it is contained in the mind of the decision-maker 

and involves a choice from a set of alternatives with the aim of reaching a certain desired 

pre-determined goal. Further, Hazelrigg defines actions as the physical manifestation of a 

decision on the environment. 
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Figure 2.6: Howard's model for Decision Analysis [75] 

Howard [75] proposed a framework that attempts to explain the manner in which 

the decision analysis is undertaken in humans. The framework, illustrated in Figure 2.6, 

attempts to reason the manner in which an analysis of the decisions made by humans are 

carried out so as to impact and alter the nature of future decisions. The framework of 

decision analysis, as defined by Howard, functions to “systematically transform decision 

problems that are difficult to solve and understand into ones that are clear and lucid by a 

sequence of transparent steps”. Howards process of decision analysis comprised of three 

primary steps working towards the goal of providing insight into a decision problem so as 

to result in the recommendation of an action. This process of decision analysis is 

triggered with the formulation of a model for the opaque decision problem. Howard 

termed this representation a “decision basis” and proposed that the basis be comprised of 

three entities that help the decision-maker arrive at their decisions, i.e., the alternatives 

from which to choose, the information relevant to the problem and biases or preferences 

of the decision-maker. The basis when computationally evaluated through a series of 

analyses yields the alternative that would be most logically consistent with the defined 

parameters. This is followed with an appraisal of the analysis to not only determine the 

logical consistency of the recommended decision, but also if it is persuasive enough to be 

preferred by the decision-maker. If such an appraisal process indicates any shortcomings 

in the analysis process, the formulation is to be refined to be a more accurate 
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representation of the decision problem. The refinement may be repeated until the 

appraisal process identifies a decision alternative the is appropriate for the decision-

maker, i.e., one that is both the logical and preferred by the decision-maker. 

Having identified a framework for both the rational decision making and decision 

analysis, it is essential to note that the decisions made by humans are driven by biases 

and preferences leading to the two models of decision-making, the rational (or normative) 

and the real (or descriptive) decision-making model. Given the rigid framework 

governing the normative models of decision-making, there have been considerable 

developments in computational systems that aim at supporting the decision-making 

process. These computational systems are often termed Computer-based Information 

Systems, or CBIS in short and the topics of interest, decision-support systems and expert 

system form a subset of such computational systems. 

2.2 Decision-Support Systems 

With developments in the field of artificial intelligence, there have been attempts to 

automate the process of decision making with the development of decision-support 

systems – computational programs attempt to replicate human like decision making based 

on the knowledge stored to them. In the field of engineering design, these systems are 

often termed expert systems as they play the role of an expert engineer by assisting the 

process of decision making. The systems typically have vast amounts of domain 

knowledge applicable to the problem’s contexts stored in them making the replications of 

expert-like decisions possible. Such systems are designed so as to accept knowledge from 

“expert engineers” and develop an encoding mechanism in a means so as to not only 

enable the application of the encoded knowledge to other problems in the manner that an 
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expert engineer would, but also enable reasoning as to the decisions that are made by the 

system [76]. The analysis of such computational systems begins with a dissection of the 

decision support systems, starting with a technical definition [77] of one such system, 

Decision Support Systems 

Decisions support systems are anthropocentric and evolving 

information system that are meant to implement the function of a 

human support system in order to overcome the limitations of a human 

decision-maker while solving complex and complicated decision 

problems. 

An analysis of the definition highlights three characteristics of the decision support 

systems, 

• Decision support systems are evolving informational systems. While insight into 

the evolving nature of the system is not attained by the above definition, a 

decomposition, performed later, of the system provides this answer. Informational 

systems, in this context, refers to computational software that relies on the 

utilization and communication of information in the process of making decisions 

although the type of information utilized differs based on the type of decision 

support system developed. 

• The primary directive of decision support systems is the support human decision 

making in circumstances where human decision-maker capabilities are limited, 

for example, due to lack of experience or lack of information. While the definition 
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does not limit the application of decision support systems to a particular type of 

problem, analysis [78] has demonstrated that such systems are predominantly 

used to address semi-structured problems and tackling tactical and strategic 

decisions associated with the problem. This is illustrated in Figure 2.7 where the 

Raymond’s interpretation of decision support systems is overlaid on the Gorry 

and Morton [61] grid. 

 

Figure 2.7: Raymond's interpretation of the Gorry and Morton grid indicating the 
type of problems suited for decision support systems [78] 

• Finally, the definition highlights that decision support systems are designed to 

operate on a particular problem context, i.e., these computational systems are 

designed to operate in a certain area and are configured to operate under strict 

guidelines in order to arrive at decisions. 

Having gained an understanding of what decision support systems are, the different 

types of decision support systems have to be identified. To accomplish this, Power’s [79] 

taxonomy for the classification of decision support systems is utilized. The classification 

is driven by the identification of the primary component that drives the decision making 

leading to five distinct classifications that are described briefly below, 
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• Model-based systems in which a qualitative model drives the process of decision 

making in which the parameters for the model are provided by the decision 

maker,  

• Data-based systems where the decisions are based on analysis of vast quantities of 

data,  

• Knowledge-based systems that recommend or suggest actions to a user based on 

specialized information stored in a knowledge bank. 

• Communication-based systems whose primary function is to enable decision-

relevant collaboration based on communication technologies.  

• Document-based systems that rely on document analysis to assist the decision-

making process, for example search engines [80]. 

As indicated, decision support systems are directed at strategic and tactical 

decisions, a classification that perhaps is more managerial rather than engineering. But 

the nature of two of the identified systems, the knowledge-based and data-based decision 

support systems are such that they can be extended to operational and recognition-based 

decision making. In the engineering field, such systems are called knowledge-based 

information systems or expert systems [81], the primary topic of this dissertation. 

2.3 Expert Systems 

It is the nature of human beings to rely on past experience to derive decision rules 

to address problems requiring the evaluation of decision alternative to meet a set of 

requirements [82]. The field of engineering design is one where there is often a choice 

among several alternatives at design decision. This nature of engineering design has led 

researchers [59] to characterize the engineering design problem as being similar to that of 
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sequential decision making, i.e., essentially one involving the arrival of a series of 

decisions based on the nature of the design. But relevant experience, in such scenarios, 

does not come by easily. It has been identified that experience in the field of engineering 

design typically takes several years [76] to attain and this is, typically, not transferrable 

across domains or engineers. In such scenarios, often as an alternative to expensive and 

time-consuming workforce training, expert systems are utilized. Such systems are 

prevalent in several fields such as engineering decision making [73], medicine[35], 

finance [83] and computer-aided design [84]. To better understand expert systems, it is 

essential to first define the term. 

Expert Systems 

Expert Systems are intelligent computer systems that are comprised of 

heuristic rules and detailed domain facts and use knowledge and 

inference procedures to solve difficult problems that require significant 

human expertise for their solution. 

The definition of expert systems given above [85] establishes that expert systems 

form a subset of the decision support systems, in particular knowledge-based decision 

support systems. Building off of this, one could identify a set of characteristics of expert 

systems that are highlighted in its definition, given below: 

• Firstly, the expert systems are computational software that are developed to 

address a certain problem. Hence, one such system would rely on software 
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development practices in its development and further, would only applicable to 

the problem context defined during its development. 

• These systems rely on heuristic rules and domain facts in the process of making 

decisions. These heuristics and domain facts need to be provided by expert 

engineers and represented in the computational software so that they can be called 

upon at any time. 

• Expert systems rely on an efficient means of encoding knowledge gathered 

through years of intensive exercise on relevant problems by a human expert into a 

knowledge database, such that the developed encoding mechanism enables 

recovery of decision rules leading to an action. 

• Finally, expert systems need to rely on a decision-making scheme that can utilize 

recovered encoding of the knowledge in order to evaluate several decision 

alternatives and identify the “best” alternative under the given problem context. 

In summary, given the two paths in which a human decision-maker can arrive at a 

decision, i.e., the path where human reasoning and knowledge is used to make a judicious 

choice of a decision and the utilization of an expert system to recommend a decision, the 

primary purpose of an expert system can be viewed as ensuring a compatibility between 

the two generated decision alternatives. Hence, given a problem context, there should, at 

all times, be an agreement in the decision made by an expert engineer and the decision 

recommended by the expert system. 

Taking a brief digression from expert systems to categorize the field of artificial 

intelligence, one would find that on one end of the spectrum of capabilities involving 

artificial intelligence are the methods and capabilities that are enabled through machine 
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learning techniques while on the other end of the spectrum would be the decision support 

and expert systems. This categorization is illustrated in Figure 2.8. While these two 

branches (or categories) do not, traditionally, overlap, the goal of the current thesis work 

is to bridge the gap between the two branches thereby leveraging methods offered by the 

framework of machine learning in the development of expert systems for its application 

to engineering design problems. 

 

Figure 2.8: Decomposition and categorization of the artificial intelligence domain 

2.3.1 Expert Engineers and Expertise 

In order to better understand the role and behaviour of an expert system, it is 

essential to first gain an understanding into the term expert and its derivative expertise2. 

While historically expertise in a certain field has been treated as an innate ability of an 

individual, recent definitions of the term have instead indicated that expertise to the skill 

and knowledge gained by a practicing individual in a certain field over a course of 

several years [76], [86], [87]. That is, expertise is something that can be gained by any 

practicing engineer regardless of their “natural” abilities. The statement is backed by 

                                                
2 In the ensuing discussion an engineering setting is considered, and the term expert is often replaced with 
expert engineer. 
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research work demonstrating the progression of an individual’s the performance in a 

certain task with the amount of time spent on the problem [87] and is illustrated in Figure 

2.9. Further, since expertise in a certain field can be measured as the performance of an 

individual in the field, one could use the performance measure as a surrogate for 

expertise, thus relating expertise to training or exposure duration. 

 

Figure 2.9: Phases of development towards expertise [86], [88] 

Dr. Benjamin Bloom [88] proposed a three-stage development approach in which 

he argued expertise can be attained in a certain field. Drawing parallels to the phases 

proposed by Bloom [88] to the engineering domain, the first of these three stages 

involves the introduction of a practitioner to the field of interest. Such a phase either 

starts with the practitioner being exposed to the engineering field as a student in a formal 

academic setting or through deliberate investigations by the practitioner to gain some 

knowledge about the field. In both settings, the practitioner’s performance is often poor, 

and is guided by educational guides such as in an academic education or other resources. 

The phase serves to pique the practitioner’s interest in the field, which if successful 

triggers the second phase of learning. The second phase would correspond to the rigorous 
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education (or training) and the acquisition of professional practice in the engineering field 

where the practitioner would adopt a full-time commitment to improving his/her 

performance in the field. The culmination of such a phase would be the transition of the 

practitioner from an academic setting to a full-time professional career in the engineering 

field, which would correspond to the third phase of performance development. In the 

engineering domain, the third phase would involve the practitioner being exposed to 

problems that customized to a small section of the engineering field, thereby focusing on 

honing a select aspect of the practitioner’s skills. At this point, the practitioner would 

have likely made a full-time commitment to the profession such that they are able to live 

off of it. Thus, “the best human expertise is often a result of years, perhaps decades, of 

practical experience” [76]. To identify a concrete measure of the duration it takes to 

attain expertise in the field of engineering and science, it has been observed that it 

typically take on the order of a decade or longer for an engineer to attain expertise in the 

domain of practice [87], [89].  

2.3.2 Desired characteristics of an Expert System 

Given the long durations in acquisition of expertise and expertise not being readily 

transferrable across engineers, expert systems have traditionally been used as alternatives. 

As with most computational programs, expert systems, too, are characterized by speed, 

accuracy, reliability and cost-effectiveness, to an extent that they often outperform the 

human equivalent. But in order to justify the use of expert systems as a rational 

replacement for an expert engineer, certain key, and often overlooked, characteristics of 

the human equivalent have to be computationally reproduced. These include the ability to 

justify, reason and explain a decision, the ability to make decisions in the presence of 
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missing information, the ability to translate knowledge, and the ability to acquire 

knowledge through experience. These characteristics establish a set of criteria that can be 

used to subjectively evaluate any expert system and compare them to the performance of 

an ideal expert in the field. Table 2.2 highlights these characteristics and provides a 

description of the interpretation of these evaluation criteria. 

Table 2.2: Evaluation criteria guiding the comparison of state-of-the-art Expoert 
Systems 

Desired Characteristics Interpretation 

Adaptability 

A measure of the amount of modifications 

required to apply the system to a problem 

in a different domain. 

Learning Capability 

A measure of the system’s capability to 

adapt to new observations and self-correct 

based on exploration. 

Inference Engine Development 
A measure of the difficulty in training and 

tuning of the inference engine. 

Explanation Capability 
A measure of the system’s capability to 

explain a recommended decision. 

Uncertainty Tolerance 

A measure of the system’s capability to 

handle absence of data or uncertainty in 

decisions. 
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Maintainability 

A measure of the ease with which a 

continuous development cycle can be 

incorporated into the system. 

Table 2.2 (Continued) 

2.3.3 Constituent components of an Expert System 

The traditional structure of an expert system with the constituent interactions and 

relations is illustrated in Figure 2.10. It indicates that expert system are comprised of 

three primary components [22], [76], [90], the knowledge-base, that stores the 

information supplied by the expert engineer, an inference engine, that utilizes decision-

making rules to evaluate decision alternatives, and the user interface, that eases the 

utilization of the system and serves to both accept information and display decisions, 

reasoning and the associated logic. 

 

Figure 2.10: A representation of the components of an Expert System and their 
interactions [90] 
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• The knowledge base stores all the necessary information related to the heuristics that 

assists problem solving process in the application domain. The knowledge base 

typically contains the theoretical concepts associated with the problem domain, the 

empirical rules obtained from an experienced expert, models that are a representation 

of a collection of models and high-level strategies that dictate the decision-making 

behavior when a problem is encountered. Efficient encoding and representation 

mechanisms are typically adopted enabling quick access and retrieval of knowledge 

to aid the process of decision making. 

• The inference engine serves as the computational block emulating the decision-

maker. The inference engine attempts to break down a problem in order to search the 

knowledge base for decision-making strategies or relational models and thereby draw 

inferences based on the results found. This process utilizes the theoretical knowledge 

stored and practical observations made by expert engineers. The inference engine 

interacts with a temporary local memory unit, the working memory, where the 

problem specifics and information regarding the solutions identified are stored.  

• The user interface serves as the visible interface that an engineer interacts with. The 

user interface provides the results and any additional information sought from the 

inference engine. 

The operation life cycle of an expert system can be viewed as being comprised of 

two phases. The first phase would involve an expert engineer interacting with the system 

to define the domain knowledge that is to be encoded within the knowledge base. This 

establishes the basis used in the process of decision making. In such a mode of operation, 

also known as the knowledge acquisition mode, the user interface serves the function of 

eliciting information from expert engineers. The information gathered is utilized by 
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knowledge engineers who develop appropriate encoding and representation mechanisms 

such that vast quantities of knowledge can be easily stored, parsed, analyzed and 

retrieved from within the knowledge database at any instant of time. 

The second phase of operation involves a design engineer, or a novice engineer 

who interacts with the system aiming to acquire guidance in the process of decision 

making. In such a scenario, the user interface would relay information about the active 

problem context to a working cache memory storing all the information about the 

problem that is necessary to facilitate decision making. The inference engine, in the 

process of decision making, queries the cache for information about the problem. The 

nature of the query depends on the inference mechanism used. Commercially used 

interference mechanisms include forward and backward rule-chaining [76], [90] and tree 

searches [73]. Rule-chaining approaches rely on arriving at conclusions by chaining at set 

of conditions to arrive at a conclusion in either direction, while the tree search methods 

rely on comparison of nodes in the knowledge base represented as a tree to the problem 

context to identify the closest matching leaf node. Once a decision is arrived at, the user 

interface displays the conclusions, reasonings and justifications for the decisions to the 

user. It then falls upon the user to implement the recommended conclusion, and the 

process repeats until the entire sequence of decisions have been exhausted. 

It is essential to note that while the separation of the operation of the expert system 

into two phases provides a clear distinction between the roles in which the user functions, 

these phases need not be sequential. While a populated knowledge base is bare minimum 

necessity to enable the transition to the second phase of operation, dynamic changes to 

the knowledge base can be permitted by implementing a decoupled offline knowledge 

acquisition process. In such a setting, the knowledge base continuously evolves with 
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incorporation of new information and the inference mechanism would adapt to this 

evolving knowledge base enabling a growing and dynamic system. Of course, in order to 

enable such a capability, appropriate measure have to be taken during the architecting of 

the expert system. 

2.3.4 Types of Expert Systems 

The classification of expert systems is predominantly driven by the inference 

mechanism used. Alternate classifications exist on the means in which the knowledge is 

represented and encoded. The following passages introduce some of the commonly used 

expert systems that have found commercial success. 

2.3.4.1 Rule-based Expert Systems 

Although the knowledge processing capability of human beings is too complex to 

be represented in a computational routine, with expertise humans gain an ability to 

express knowledge required for problem solving in the form of decision rules [91]. These 

rules guide the decision by establishing a conditional relationship between a conclusion 

(or consequent) and an antecedent (or condition) through the use of IF-THEN statements. 

Traditionally labelled as categorical knowledge, the IF-THEN rule only contain logical 

relationships between facts, without any ambiguity [92]. Expert systems that mimic this 

nature of decision making rely on the representation of the domain knowledge in the form 

of decision rules and are termed rule-based expert systems. Rules-based expert systems 

are the most commonly used type of expert systems and have found applications in 

several fields such as engineering, medicine, mining, power systems, etc. The structure of 

a rule-based expert system is illustrated in Figure 2.11 where encoding of knowledge in 
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the knowledge based in the form is IF-THEN rules specifying a “relation, 

recommendation, directive, strategy, or heuristic”, is shown. 

 

Figure 2.11: Structure of a rule-based Expert System [91] 

In its simplest form, the structure of this knowledge representation is given as, 

IF  <antecedent> 

THEN  <consequent> 

As with logic circuits, rule antecedents can be combined to build rather complex 

representations through the use of conjunction (AND) and/or disjunction (OR) 
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conditions. The antecedent of the rule is comprised of three parts, a relational metric, an 

operator and an associated value. The goal of such a representation is the generation of a 

mathematical expression enabling the comparison of the metric against the specified 

value such that the validity of the expression can be evaluated. The computational 

representation of the rule in the knowledge base involves the storage of the three term 

tuple representing the rule antecedent. 

<antecedent>: (relational metric, operator, value) 

On the other hand, the consequent can be of a complex nature where it is comprised 

of multiple clauses. In such cases, when the rule is satisfied each one of the clauses are 

triggered, with the details of the execution synchronicity depending upon the individual 

problem case considered and the architecting of the system. As with the antecedent, the 

consequent, too, is comprised of three parts, the relational metric (or a linguistic object), 

an operator and the value (or expression). In most cases, though, the operator is one of 

assignment, the linguistic object is preferred in place of the relational metric and an 

expression is used in place of a single value. In contrast to the antecedent with executes a 

logical comparison, the consequent executes the in-memory assignment when the logical 

conditions defined by the antecedents are met. But owning to the similarity in 

representation, the knowledge base treats stores the consequent in a manner similar to 

that of the antecedent of the rule.  

<consequent>: (linguistic object, assignment operator, expression) 

Owning to the nature of the definition of rules, it is relatively easy to define such 

rule-based systems where the representation of domain knowledge utilizes declarative or 

high-level language, such as Prolog [93], Lisp [31], etc., thereby making it easier for 
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expert engineers to define the knowledge in natural language (or close to it) rather than a 

complex programming language. 

An inherent characteristic of rule-based expert systems is its ability to encounter 

conflicts as a result conflicting rule definition due to improper knowledge acquisition. 

Rule-based expert systems have the capability to resolve these conflicts where the 

mechanism utilized for conflict resolution depends on the inference mechanism used. In 

forward chaining inference, the conflicting rules are visited in sequence in a synchronous 

execution system, and in parallel in an asynchronous one. Thus, the asynchronous system 

would lead to inconsistency and would not be a viable setup. Several approaches have 

been proposed to alleviate this issue [81], [83], [91], [94]: 

• A goal can be established for each consequent such that when the value or 

state associated with the linguistic object representing the goal is altered, the 

processing of the rule is terminated. 

• Rules can be associated with priorities such that in conflicting cases, 

consequents of rules with the highest priority are executed. 

• In the case of conflicting rules with different number of antecedents, the most 

specific rule is prioritized and executed. 

• The time sequence of the rules is exploited such that in conflicting cases, rules 

that have been entered into the knowledge base more recently are prioritized 

and executed. 

• Metaknowledge can be utilized to guide the expert system in the process of 

decision making providing the system a guideline about the encoded 
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knowledge. These “metaknowledge manifest as metarules that dictate the 

strategies for use of task-specific rules in an expert system” 

An extension to the traditional framework of definition of explicit rules through the 

use of Bayesian reasoning [95] or Certainty Factor [96] permits the handling of 

uncertainty in the definition of rules. Uncertainty could arise from a variety of sources, 

such as, missing data, conflicting views of different experts, imprecise language in the 

definition of rules and weak associations in the definition of rules. In such scenarios, the 

rules structure can be modified to include a probabilistic definition such that in the case 

of Bayesian reasoning, 

IF <antecedent>  

THEN <consequent> [with probability P] 

and in the case of Certainty Factor modeling, 

IF <antecedent>  

THEN <consequent> [,1] 

where ,1 would represent the belief that the associated consequent would occur 

given that the antecedent is satisfied. Thus, in both cases, probabilistic modeling can be 

leveraged in expert systems to account for any uncertainty in the definition of knowledge 

rules. The Bayesian approach to modeling of uncertainties is supported by a strong 

mathematical background relying on probability theory. An inherent drawback of this 

approach is its reliance on statistical data in the modeling approach and also its 
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assumption of independence of the rule antecedents. On the other hand, certainty factors, 

being subjective estimates representing the expert’s beliefs, lack the mathematical 

foundation of its counterpart and may be better suited in situations where probability 

measures are unobtainable. 

Though rule-based expert systems offer a variety of advantages ranging from the 

use of natural (or high-level) knowledge representation, the decoupling of the knowledge 

representation from the subsequent processing steps to the ability to deal with incomplete 

and uncertain knowledge, they suffer from a complicated interactions between rules in 

large scale systems that makes the tracing of decisions difficult, the inability to learn and 

adapt the knowledge base and inference mechanism to new scenarios and also the 

inability to adequately index the knowledge base to efficiently search for the appropriate 

rules set that are to be evaluated typically leading to exhaustive searches. 

2.3.4.2 Fuzzy Expert Systems 

The definition of a rule in an expert system requires the specification of a real 

valued number in order to enable comparison during the inference process. Though rule-

based expert systems establish a guideline for the replicating human like decision 

making, there is a tendency in experts to be vague in the definition of these comparison 

values. While other experts may have no issues interpreting these vague definitions, it is 

not possible for a computational system to do so. In order to address the issue of 

vagueness and ambiguity in the definition of rules, the concept of Fuzzy Sets [97] is 

borrowed upon. Fuzzy set theory enables the comparison of vague definition of objects 

and is based on the philosophy that all things are comparable and can be represented on a 

sliding scale. Relying on the theory of Fuzzy Logic [98] which restrains from making a 
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binary distinction in comparisons, but instead represents the truth of a statement as a real 

number in the range of 0 (false) to 1 (true), thus leading to multi-valued comparisons. 

Under the fuzzy set theory, each element belongs to a fuzzy set with a certain degree of 

membership, as a result of which under the multi-valued comparison rule, an evaluation 

of the element can be partly true to a certain degree. Thus, this real-valued representation 

would enable a graceful transition across the binary boundary that traditional comparison 

would resort to. Fuzzy logic finds application in a wide variety of products, such as 

household products, and control systems [99]. 

The relationship between the binary boundary and a fuzzy boundary is illustrated in 

Figure 2.12 where the horizontal axis represents the universe of possible values 

associated with the element (or variable) called the “universe of discourse” and the 

vertical axis would represent the membership value for certain set. Thus, the curves 

shown in the figure establishes a mapping between the variable value and the 

memberships to a certain set. 

 

Figure 2.12: Membership functions for multi-valued relationships 

The mathematical representation of the Figure 2.12 defining the mapping between 

an element of a set to its membership value is given as, 
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 23(5) ∶ 8 → [0, 1]  

where, 23 represents the membership function, ! represents the fuzzy set, 5 the 

element of a universe 8. Having obtained a mathematical representation, its equivalent 

computation representation is tackled. The representation of a rule with the incorporation 

of fuzziness beings with the definition of a membership function. Typically used 

functions include linear, sigmoid, gaussian or pi functions, but are these are used to 

establish the degree of membership, computation time is an important consideration that 

has to be considered. Owning to this, most commercial applications restrict the modeling 

of fuzziness to linear fit functions [91]. This information is then encoded into a vector 

stored in the knowledge base where the information contained in case of the linear 

function would be represented as, 

<Set>: (0/Value@0, 5>/Value@5>, …, 5"/Value@5", …, 5?/Value@5? 1/Value@1) 

Using the above representation of a fuzzy set, fuzzy rules [97] can be defined in a 

manner similar to that of crisp rule of the rule-based expert systems, while retaining the 

fuzziness in the specification of the linguistic variable’s values. This capability has been 

seen to have the capability to merge rules together effectively leading to a 90% reduction 

in the number of rules [91]. The process of inference using fuzzy rules varies slightly 

from that of the rule-based expert systems. In the classical setting, when an antecedent is 

evaluated as being true, all the corresponding consequents are assumed to be true as well. 

But in the fuzzy setting, since there is a degree of membership associated with the 

antecedent, their corresponding consequent would be partially true to the same degree. 

Thus, in these settings, in the presence of multiple rules, each rule contributes to a certain 
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degree to a consequent where these effects are aggregated to result in a single crisp value 

for the consequent. Having obtained a membership metric for the consequent, a process 

of defuzzification is undertaken to yield a crisp output representing the decision. Figure 

2.13 illustrates the steps undertaken in the fuzzy expert system by which a decision is 

made. The structure of the system is identical to that of the rule-based expert system but 

for the incorporation of fuzziness in the definition of the rules. 

 

Figure 2.13: Steps involved in the decision-making process for a fuzzy expert system 

Ignoring the obvious differences in the knowledge acquisition, the two keys steps 

that are different from the operational life cycle of rule-based expert systems are the 

aggregation of evaluated rules, the mathematical foundation for which is provided by 

fuzzy set theory, and the defuzzification of the aggregated metric. There are two types of 

fuzzy expert systems that are commonly used that differ in the method of aggregation 

used. These are: 

1. Mamdani-style inference system [100]: Given a set of crisp inputs for each of 

the variable, the degree of membership is estimated based on the defined fuzzy 

functions. This is the process of fuzzification. With the degree estimates from the 
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membership functions, the antecedents of the fuzzy rules are evaluated such that a 

single metric is derived for each rule based on fuzzy set theory. These metrics are 

then mapped to the rule member functions that determine the degree of 

membership of the set of consequents, which too would typically be fuzzy in 

nature. These consequent memberships are aggregated through a set-based union 

resulting in a single fuzzy set for the consequent. This is followed by the 

defuzzification which results in a single metric representing the decision. While 

several methods exist for the defuzzification process [101], the most commonly 

used on is the centroid method which identifies the decision as being a the 

centroid of the aggregated set area and the consequent value as being the crisp 

value corresponding to the evaluated centroid. 

2. Sugeno-style inference system [102]: The construction of an aggregate fuzzy set 

as an 2D surface results in a computational burden during the defuzzification 

stage when its centroid is to be evaluated. To alleviate this issue, the membership 

functions for the rule consequents can be replaced with spike functions thereby 

enabling the development of a zeroth-order approach. The spike function 

effectively leads to the final decision being a weighted average of all the rules 

consequents. 

While fuzzy expert system shares most of the advantages of rule-based expert 

systems, they are able to account for ambiguity in the definition of the rules, a capability 

that broadens the scope of applications for the field of expert systems. But the necessity 

for the definition of fuzzy sets exacerbates the reliance on expert engineers thereby 

worsening the knowledge acquisition process. The calibration of the fuzzy sets and rules 
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is found to be the tedious and laborious aspect of the development process of a fuzzy 

expert system [91]. 

2.3.4.3 Frame-based Expert Systems 

Frame-based expert systems differ from the previously introduced types as these 

systems utilize a different means for the representation of knowledge. The frame [103] 

forms the basic entity that is used to represent knowledge in such systems. Frames are 

defined as “a data-structure for representing a stereotyped situation”. These data-

structures are used to the knowledge representation method of choice for the frame-based 

expert systems where each entry in the knowledge base represents a particular object or 

concept. Frames are identified by their names and are comprised of a set of attributes or 

slots. Each attribute is assigned a value or a procedure that can be called upon to extract a 

value. It has been argued [103] that frames are the most natural way to represent the 

knowledge and is well aligned with the means in which humans organize perceive the 

surroundings and organize knowledge. From a computation perspective, a frame-based 

system represents an application object-oriented programming to expert systems. Due to 

the presence of all the necessary attributes for the representation of a concept, frames 

have been noted as being an efficient and concise means of representation of knowledge. 

Extensions to the attributes-value data structure can be achieved by the use of facets. 

Facets enable the association of additional properties with the attributes defined on a 

frame that can help the knowledge engineer in the representation of the knowledge. 

While attributes act as containers for knowledge, frames also support the capability to 

manipulate knowledge elements. These are achieved through the use of methods and 

demons, both associated with frame attributes. These capabilities enable frames to handle 
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both procedural and declarative knowledge, a capability that rule-based systems lacked. 

Methods represent the procedural code that is executed on demand while utilizing on 

knowledge stored in the frame. Demons on the other hand manifest in the form of IF-

THEN rules and represent the declarative aspect of the frame.  

As with object-oriented programming, each instance of the frame occupies a unique 

location in memory and can be related to other frames through a set of three relational 

possibilities: inheritance (generalization), aggregation (composition) and association. The 

concept of inheritance leads to the presence of classes and instances that enables the 

development of an ontology to guide the representation of knowledge. Though the 

creation of efficient and generic structure for the representation of the knowledge may be 

a tedious and difficult task for the knowledge engineer, it can greatly simplify the work of 

an expert engineer during the knowledge acquisition phase. This is due to the nature of 

inheritance where characteristic and attributes of a class are assumed by the inheriting 

instance thereby reducing the amount of knowledge that is supplied by the expert 

engineer. The capability of inheritance leads to the representation of knowledge in the 

form of a tree, with highest level of abstraction in the knowledge representing the root 

nodes, and lower level of abstraction representing the branches from the root with the 

knowledge instances representing the leaves of the tree. 

The concept of frames serves as a replacement for the means of representation of 

knowledge to that used in rule-based or fuzzy expert systems. But in order to enable 

efficient means of knowledge analysis, frame-based systems enable the incorporation of 

rules in the definition of frames. Thus, the inference mechanism in the frame-based 

expert systems utilizes a combination of both a rules and frames. The inferencing using 
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frames is achieved by a set of rules defined to evaluate the knowledge contained in the 

frames. The structure of these rules is identical to that defined in the rule-based or fuzzy 

expert system, however the processing of the rules relies on a pattern matching clause 

that enables the identification of the appropriate frame to operate on. In contrast to rule-

based reasoning, goals in the frame-based reasoning can be both declared or evaluated 

through methods and demons. This provides the framework a dynamic outlook such that 

different inferences can be drawn based on varying states of the system. 

In terms of the operational life cycle of the system, the basic steps remain identical 

to that of the rule-based expert system. The operation beings with the knowledge 

engineer defining the hierarchical structure of the knowledge and the creating the 

appropriate class-frames. The attributes for these classes are defined, and relationships 

are established between the various classes. Following this, instances are created in 

collaboration with expert engineers. The knowledge acquisition ends with the definition 

of the actions in terms of the methods and demons for the class attributes. At this point, 

the set of rules guiding the inference mechanism has to be defined. Following the 

acquisition phase, the system is evaluated and tested by expert engineers who tune, 

expand and revise the knowledge base so as to enable its usage by the target end-users. 

The frame-based expert systems leverage the advantages of the frame data-structure 

of having an efficient and concise representation mechanism for knowledge. This 

representation scheme makes the evaluation of rules quite efficient in comparison to that 

of rule-based systems. But, on the other hand, the definition of the frame hierarchy 

requires considerable expertise from the knowledge engineer making the lead-time in the 

development of these expert systems higher. Owning to the nature of object-oriented 
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programming such an improper use of inheritances in such systems may lead to 

incoherent hierarchies. 

2.3.4.4 Case-based Reasoning Expert Systems 

The previously introduced classifications of expert systems were of the heuristic-

based nature where the inference mechanism was driven by heuristic and domain facts 

explicitly defined in the knowledge base. An alternative to the explicit definition of 

heuristics can be achieved through the use of a data-driven inference mechanism. One 

example of such an expert system is the case-based reasoning expert system where the 

inference process in the system is driven by the identification of statistical patterns in 

observed data. In contrast to logical decision-making of rule-based systems, data-based 

approaches rely on statistical and probabilistic models enabling the generalization of the 

inference process across a variety of problem contexts. Systems that rely on case-based 

reasoning find application in a variety of fields ranging from entertainment and arts [104] 

such as music [105], computer gaming [106], to science and engineering [104] such as 

molecular biology [107], image classification and annotation [108].  

The term case in case-based reasoning reflects experience. The experience in expert 

systems refers to the process of sequential decision-making undertaken by expert in the 

process of addressing a complex problem. The philosophy of case-based reasoning is the 

process of utilization of a collection of such experiences in the process of reasoning. 

Intuitively, these decisions made by such an approach are quite similar to the recognition-

primed decisions where instinctive reflexes are trained and tuned by experience. Thus, 

decisions made by the such approaches are mathematically quite different from the logic-

based reasoning as they do not stem from the flow of logic from true antecedent (or 
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assumption) to a true consequent (or conclusion), thus making them applicable in 

scenarios where antecedents and consequents do not hold a cause-effect relationship. In 

fact, it can be argued that the case-based reasoning framework emulates the instinctive 

nature of humans far better than the rule-based reasoning approach, as suggested by 

Minsky’s Instinct Machine [25]. It will be argued that case-based reasoning provides a 

means for approximate reasoning where the similarity in the experiences is leveraged in 

the process of decision-making. 

As indicated by its name, cases or experience form the fundamental entity in such 

systems. Cases form the underlying unit of knowledge stored in the knowledge base and 

all subsequent activities in the decision-making are driven by it. In general, each case 

represents a single instance of a recorded episode consisting of a sequence of decisions 

taken by a decision-maker. Cases are comprised of three components, a problem 

description, an associated solution and the outcome of the experience. The identification 

of the description of the problem refers to the generation of a series of attributes for the 

problem context, i.e., “the identification of those characteristic of the problem that are 

relevant and useful for solving the problem” [109]. Such a process, though, can be 

difficult for complex problem contexts. The solution in a case represents the decision (not 

the action) taken by the decision-maker in response to the problem. The underlying 

ideology of case-based reasoning is to repeat solutions that lead to a positive result while 

avoiding solutions whose outcomes are perceived to be negative. Thus, it is essential for 

each case to be associated with measure of the solution’s merit, the outcome. Additional 

optional information can be associated with cases making it easier for the inference 

algorithm to identify relevant case to the problem at hand. This can be achieved by the 
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incorporation of meta-experiences such as rules to guide the use of a case, its frequency 

of usage, and so on. 

Animals have a tremendous and unique capability to process natural language in 

the recognition of similarities between cases. In order to enable a computational system 

to reproduce such a capability, a level of formality is essential in the representation of a 

case. The purpose of the formality is to enable the estimation of a measure of similarity 

between the cases recorded in the knowledge base and the new one presented by the 

problem at hand. There have been several approaches established for the representation 

of cases depending on the data-structure of choice. The data-structures used for case 

representations include the feature vector or propositional representation where a vector 

of attributes describing cases that have no relation are stacked in a flat array, structured or 

hierarchical representation where cases are represented at different levels of abstraction 

and finally the unstructured representation for the use of representation of cases defined 

using text or images [110]. Depending upon the type of data-structure used different 

approaches to knowledge representation are chosen such as attribute-value [111] 

representation for flat array data structures, frame-based [112] and object-oriented 

representation [113] for hierarchical data-structures, and semi-structured and unstructured 

textual representation [114] for complex data-structures. Knowledge containers [115], 

attempt to merge the representation schemes with the similarity measurement, case bases 

and the adaptation rules to create a generic entity for the storage of knowledge in a case-

based reasoning system. 

The process of case-based reasoning is one that exploits the concept of similarities 

between cases in order to identify the stored case that is most similar to the case at hand. 
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The means of estimation of similarities between cases heavily depends on the 

representation chosen, but in most cases relies on the identification of the nearest 

neighbor to the new case. The process of design of the system relies on the identification 

of the appropriate representation scheme and the similarity measurement scheme would 

automatically follow. Schemes used for similarity measurement would yield an estimate 

of the distance between the two cases such that comparison between cases in the 

knowledge base can be perform for the identification of the appropriate number of 

neighbors.  

 

Figure 2.14: Classical operation cycle of a Case-based Reasoning System [109] 

Figure 2.14 illustrates the classical model utilized by a case-based reasoning system 

in the process of problem solving where there are four primary steps identified in the 

process. The process begins with the system being exposed to a new problem. The system 

then utilizes the similarity measurement routine to estimate the similarity between the 
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new case and the ones in the database, so as to retrieve a set of the most similar cases. 

Having retrieved a selection of the most similar cases, the solutions associated with these 

are reused to propose a, perhaps new, solution to the problem at hand. This process may 

require adaptation of the existing solution in cases where no retrieved case is identical to 

the one at hand. The general concept of adaptation of a solution is illustrated in Figure 

2.15. The proposed solutions are then evaluated in a revision step where the validity of 

the solution is evaluated which can be at the discretion of the decision-maker or it can be 

achieved computationally. This culminates with the implementation of a solution which 

results in the generation of a new case. Depending upon the performance of the new case, 

it may be incorporated into the knowledge base so as to guide future decisions 

represented by the retain step in the Figure 2.14. 

 

Figure 2.15: Generation of a solution in a case-based reasoning system [116] 

One of the primary differences between rule-based methods and case-based 

methods is the ability of case-based methods to adapt to knowledge and learn from 

experience. The utilization of learning in reasoning forms a bridge between the branches 

of artificial intelligence where the expert systems are imbued with a capability for the 
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utilization of machine learning techniques in the process of decision-making. The 

learning process leverages trainable models and utilizes methods of supervised learning 

to adapt to the cases contained in the knowledge base thereby enabling generalization of 

cases across situations that hasn’t been explicitly added to the knowledge base. The 

implementation of learning capabilities comes at the cost of computational expense. 

Training a model to perform satisfactorily in most cases requires a significant expenditure 

of computation resources and also expertise to achieve the correct configuration of the 

model. Further in order to train a satisfactory model, a significant amount of data may be 

required that prolongs the lead-time in the development of such systems.  

2.3.4.5 Evaluation of the different types of Expert Systems 

Section 2.3.2 identifies a set of desirable characteristics for expert systems. These 

characteristics are now used to evaluate the previously introduced classifications of 

expert systems in order to identify their suitability as a surrogate for expert engineers in a 

general sense. The results of this analysis are presented in Table 2.3 from which it is 

evident from the table that no single system performs satisfactorily in all categories, thus 

necessitating the development of a more generic framework capable of better 

representing expert reasoning. 
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Table 2.3: A comparative analysis of the existing alternative for Expert Systems 

 

2.4 Shortcomings of Expert Systems 

In order to identify areas where the current research work is to contribute, an 

analysis of the shortcomings of traditional expert systems is carried out. The purpose of 

the analysis is to highlight portions of established development processes for expert 

systems that lack rigorous foundation or lack to adequately capture human reasoning. 

There are three aspects of expert systems considered in this analysis, the software 

development process utilized, the established process of knowledge acquisition and the 

inference mechanism utilized. 

2.4.1 Development Process 

The development process of an expert system is one that follows a software 

development process, an iterative and incremental development process of evolutionary 

prototyping [117] with both the waterfall and spiral development models being applied to 

the development of expert systems [118]. The development process of a knowledge-

based expert system is highlighted in the Figure 2.16 where shows the iterative nature of 
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the development process where three different teams of engineers, the software 

engineers, knowledge engineers and domain experts, are involved. While there is no 

consensus on a single established development process for the lifecycle of an expert 

systems, most proposed processes [81], [119] include a common set of steps that 

represent the technical implementation of the expert system, the knowledge acquisition, 

the knowledge representation, the knowledge implementation and that of the verification 

and validation. 

 

Figure 2.16: Lifecycle of a Knowledge-based Expert System [120] 
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The process of the development of an expert system begins with the identification 

of a problem context in which the system is required to operate. Expert systems are 

developed to operate within that particular scope to an extent that Waterman [81] defined 

expert systems as being applicable to narrow field in order to show reasoning capabilities 

similar to that of expert engineers. Having defined the problem and identified the 

necessary elements for the implementation of the expert system, an iterative process of 

configuring the knowledge base of the system is triggered. The process begins with the 

knowledge acquisition process where domain experts and knowledge engineers interact 

to identify elements of the domain knowledge that are relevant to the problem and is to be 

encoded in the system. Having identified a preliminary knowledge set, the process of data 

modelling and knowledge representation is triggered where the knowledge engineers 

collaborate with software developers to identify means of encoding the knowledge so as 

to be usable by the computational software. The step of knowledge representation is 

followed by one of implementation. Here implementation refers to the implementation of 

both the utilization of knowledge through the development of the inference system and 

the display means for the reasoning outcomes via the user interface. The development of 

the inference system is a process that is driven by the software engineer in collaboration 

with the knowledge engineer, while the development of the user interface is one that is 

driven by the software engineer in conjunction with the domain experts. The final step of 

the iterative process is the verification process in which the domain expert would test the 

completeness and validity of the knowledge base and also the inference mechanism. This 

steps involves the identification of shortcomings in the knowledge gathered so as to 

expand and revise the knowledge base and to tune and calibrate the inference system to 

account for the changes made.  
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Due to the iterative nature of the development process of an expert system, there is 

considerable lead-time in the system development due to the necessity for a collaborative 

environment involving different engineering teams, while having the entire system be 

applicable only to the identified problem context. This implies that in scenarios involving 

changes to design practices or design standards, the expert system would have to be 

redesigned which would involve repeating the entire iterative process. This leads to the 

first observation related to this iterative nature of the development of the expert system. 

Observation 1 

The expert system development life cycle follows process parallel to that of an iterative 

software development process involving several engineering teams to create a software 

product whose scope is limited to that of the identified problem. 

2.4.2 Knowledge Acquisition 

The purpose of knowledge acquisition is to convert the domain knowledge 

possessed by expert engineers to computational models that can be utilized in the expert 

system for the purpose of decision making. This process of knowledge acquisition and 

representation involves the knowledge engineers functioning as mediators between the 

domain experts and the software developers. The process of knowledge acquisition is 

typically implemented as an offline process in which the design engineers would interact 

with domain experts through a variety of means more often than not interactive and 

manual in nature. These include settings such as interviews, questionnaires, protocol 

analysis, interruption analysis or process replays [90], [121] each of which represent a 

manual interaction between the knowledge engineer and the domain expert. 
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Given that modern engineering problems are multi-disciplinary in nature, there is a 

considerable amount of domain knowledge that is required in order to create an expert 

system to represent the design process. But, as previously discussed, expertise is a rather 

rare commodity, even in large organizations, furthermore have access to expert engineers 

in each of the discipline constituting the design process would likely be even more 

difficult. Even with the assumption that there is sufficient access to domain expert at all 

times, and there is a sufficient number of domain expert available, the sheer volume of 

expertise that needs to be represented with the system to enable the usage for a complex 

design process would make the entire process time consuming. Finally, the process of 

knowledge encoding traditionally involves the hand crafting of features by knowledge 

engineers. If such a manual process has to be undertaken on large volumes of data that is 

needed to build an effective expert system, the resultant time in the development of the 

system would be quite large. 

The above factors lead to what is known as the “knowledge acquisition bottleneck” 

[122]. This results in an extended development life-cycle for the expert system and has 

been observed as being the primary factor contributing to the lack of prolific use of 

expert systems in modern design environments. 

This leads to the second observation, related to the process in which knowledge is 

extracted and encoded in the system. The offline knowledge extraction process could 

with the manual feature encoding results in the popularly known knowledge acquisition 

bottleneck that severely limits the application of expert systems to modern design 

environments. 
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Observation 2 

Expert systems rely on the incorporation of knowledge in order to generate 

recommendations, but the process of incorporation of knowledge is the primary 

bottleneck in the development of such systems. 

2.4.3 Inference Mechanism 

The function of the inference system is to replicate human like decision-making so 

as to serve as a surrogate for expert engineers. Analysing the types of expert systems, the 

alternatives to the decision-making tactics are through the use of either decision rules or 

historical experience. The rule-based decision making, while not representative of the 

manner in which humans make decisions, was developed to serve as a replacement for 

the complex decision framework of the human mind. Rules represent the summarization 

of the guiding principles driving the decision-making process. 

On the other hand, while experience-based decision making is representative of the 

manner in which humans undertake decisions, there is an inherent aspect of human 

decision making that is overlooked by the framework of case-based reasoning. This is the 

aspect of planning in decision making. Decisions made by humans, and animals, are a 

result of planning where long-term effects of decisions are considered. Each decision 

made is in response to a problem or a requirement and at every instant of time, a set of 

decision alternatives are evaluated and the one perceived to be the best is selected. 

An inherent flaw in both approaches is their inability to plan. The established 

frameworks rely on the instantaneous knowledge and problem context at hand in order to 

make a decision that is considered optimum for that state without any consideration of 
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future impacts of such a decision. This is due to the lack of a sense of a long-term value 

of the decision. The long-term value associated with decisions have been seen as the 

primary drivers in the decision-making in animals. In fact, it has been argued that the 

primary function of the prefrontal cortex in humans is to account for planning and long-

term decision making [123], [124]. It has to be noted that the process of planning 

involves the estimation of values of the decision alternative, and these values are often 

uncertain in nature. This could be a result of the nature in which the decisions manifest 

into actions, wherein actions can result in an uncertain effect on the system.  

This leads to the third and final observation about the shortcomings of traditional 

expert systems. The inability to plan results in decisions made based on immediate 

returns which is not a true representation of the nature in which humans make decisions. 

This inability to plan results in situations where long-term plans have to be accounted for 

in the representation of the knowledge and associated inference mechanisms utilized, an 

additional consideration that is to be made by the knowledge engineer in collaboration 

with the domain experts. 

Observation 3 

Expert systems are only capable of making decisions that have immediate returns but are 

incapable of replicating animal behavior of long-term planning, a scenario in which 

impacts are often uncertain.  
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CHAPTER 3. RESEARCH METHODOLOGY 

The review of the structure of and the types of expert systems in CHAPTER 2 

concluded with the identification of a set of issues, that prevents the acceptance and 

usage of expert systems in most modern design environments, resulting in a set of 

observations regarding the state-of-the-art for expert system development. Guided by 

these observations, the current chapter aims to establish a research methodology so as to 

address the shortcomings identified in the observations. In the way of developing a 

methodology, first, the observations are formalized to generate a directed motivation for 

the research from which the research goal is established. The research goal is then 

decomposed to identify the objectives of the research work which in turn lead to the 

hypothesis and the questions guiding the research work. A plan for the validation of the 

research work is introduced in terms of engineering applications and finally, an analysis 

plan is introduced to evaluate the capabilities of the output of the methodology. 

3.1 Research Motivation, Goal and Objectives 

3.1.1 Research Motivation 

The problem of engineering design has been identified as being one of sequential 

decision-making [59]. This is evident in all phases of design, be it the conceptual design, 

where decisions are less expensive but made affect an abstract representation of the 

product, or the detailed design, where the process involved in the decision making are 

costly but the return on the decisions made are more significant. Further given that the 

engineering design process is one that is often standardized and follows a well-

established set of protocols, there is a significant room for automation in such practices, 
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its key hurdle being the necessity for engineering judgements and domain expertise. As a 

result of the inaccuracy in physics modeling, insufficient computational capabilities or 

just an imperfect understanding of the governing physics, expert knowledge and 

judgement is an irreplaceable commodity in modern design processes and environments. 

As indicated in the introduction to expert systems, the purpose of expert systems 

is the utilization of human knowledge in the replication of the decision-making resultant 

from it. But, through its evaluation, there have been several shortcomings identified in the 

adopted development and implementation process. These shortcomings make such 

systems inefficient in or incapable of replicating human-like decision making and, thus, 

their application to real-world engineering problems infrequent. The field of engineering 

relies on the availability of mathematical guarantees before the adoption of certain 

practice or process. While expert systems, traditionally, utilize the logical reasoning 

paradigm, that has its foundations in sound mathematical principles, it is almost 

impossible to represent the vast variety of engineering cases in such a format. This often 

results in expert systems being designed for applications that are but a semblance of the 

true engineering problem representing a narrow sliver of the original problem.  

The ever-improving computational capabilities have resulted in a change in the 

paradigm of design engineering where there is now, 

• the utilization of advanced design processes such as numerical simulations 

and statistical methods 

• reliance on third party engineering application providers in lieu of in-house 

custom designed applications for engineering 
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• the incorporation of multi-disciplinary analysis techniques and the 

development of integrated design and analysis environments 

As a result of this change in the design environment and design paradigm, a 

traditional outlook to the development of expert systems would not suffice. With such a 

perspective the current research work draws motivation to address some of the identified 

shortcomings of expert systems so as to make them reasonably applicable to the modern 

engineering design paradigm. 

Research Motivation 

The current research work is aimed at the development of a framework for knowledge-

based expert systems that enables its application to modern design environments by, 

• Improving the process of knowledge acquisition with the removal of the offline 

and manual knowledge acquisition process. 

• Improving the process of autonomous decision-making by enabling capabilities 

such as learning and planning. 

• Developing a generalized framework for the resultant system such that it is 

applicable to a wide-variety of problems and processes. 

3.1.2 Research Goal and Objectives 

The formalization of the research motivation is carried out with the development 

of a research goal. The research goal highlights not only the expected output of the 
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research process, but also the expected benefits from the research work. The research 

goal for the dissertation is stated as, 

Research Goal 

The research work aims to develop a framework that enables the extraction of 

knowledge from a design system such that an intelligent agent can learn to mimic the 

extracted behavior with an ability to self-learn in order to assist design engineers 

during the usage of the design system so as to develop products with shorter time to 

market, improved process efficiency and improved product flexibility and quality. 

The goal for the research work is rooted in the development of a comprehensive 

framework to enable knowledge-based decision making in engineering design. While the 

goal does not yet address any of the shortcomings of expert systems, it does note that the 

developed framework has to enable knowledge-based decision making. Thus, such a 

framework would serve to replace traditional knowledge-based expert systems but is 

primarily targeted at the engineering design problems. In order to achieve the above 

stated goal, a set of three objectives aligned with the “gaps” observed are identified. This 

is illustrated in Figure 3.1 where a set of research objectives are developed from the 

previously observed gaps, thereby leading to the identification of an area of research 

corresponding to each objective from which methods and capabilities are borrowed upon 

for the realization of the objective. 
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Figure 3.1: Mapping of observed shortcomings to the research goals, research 
objectives and the areas of research 

1. First, the framework has to be capable of being applicable to a wide variety of 

problems and should be capable of handling dynamic nature of the engineering 

design process. Thus, there is a necessity for the development of a generic 

framework capable of being designed on one but applied to other problems as 

well. Due to the nature of engineering, such a framework should rely on sound 

mathematical principles in the process of knowledge extraction, representation 

and decision-making. It is claimed that if the developed framework decouples the 

process of knowledge extraction, representation and that of the decision-making 

from the actual knowledge being extracted, represented and utilized, then the 
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resultant framework would be applicable to any problem, regardless of its nature 

or complexity. 

2. The second observed gap in the expert system corresponds to the manner in which 

knowledge is extracted and represented even in the state-of-the-art systems. When 

a designer (expert engineer or otherwise) exercises a design process, all the 

necessary knowledge about the process is exposed to the design system in one 

way or another. In such a scenario, it stands to reason that an offline process of 

knowledge extraction would be unnecessary provided that a means of 

identification of the necessary knowledge entities can be established and an 

associated means of representation of the identified knowledge can be developed. 

This leads to the second research objective in which the target is to identify a 

means to extract and represent engineering knowledge directly from the design 

process in an automated fashion without the reliance on an offline knowledge 

acquisition process. 

3. The final observation related to the manner in which the inference mechanisms 

operate in traditional expert systems. In particular, the lack of the ability to plan in 

established approaches to inference. The objective stems from the assumption that 

an imitation of human-like decision making in a computational framework results 

in replication of human-level results. Thus, the third and final objective of the 

research work involve the identification of means to replicate human-like decision 

making. In other words, enabling the capability for planning based on experienced 

behavior of the system. 
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3.1.3 Generalized methodology guiding the development of the framework 

In contrast to the existing approach for development of expert systems, the current 

research work attempts to develop a framework and not a software application. The 

purpose of the framework is to enable the utilization of any existing engineering design 

application and imbue them with the capability for knowledge-based decision-making so 

as to either train, assist or replace novice users of the design application in problems 

related to the knowledge extracted. Although, the methodology utilizes a well-established 

process in the expert system development life cycle, an attempt to generalize it across all 

problem contexts is made. Figure 3.2 illustrates the generalized process for the 

framework development and is comprised of the “three K’s”, the knowledge extraction, 

knowledge representation and the knowledge utilization, driving the development cycle 

of the framework. At all times during the development of the framework, the target of 

enabling the utilization of the generated knowledge from a design system or process is 

considered and hence the steps are inherently designed to generate the knowledge in a 

fashion optimized for the purpose of utilization for decision-making. It is argued that the 

implementation of the “three K’s” would yield a framework that can enable knowledge-

based decision-making for any design application. 

 

Figure 3.2: The "three K's" in the development of the knowledge-based decision-
making framework 
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3.1.3.1 Knowledge extraction 

The process of knowledge extraction refers to the automated extraction of 

pertinent data and decisions related to the design application. The primary necessity for 

the generalization of the knowledge extraction is that there should be no human input in 

the knowledge extraction process thereby making the entire process generic and 

automated. This places rather strict requirements on the design application and design 

processes that can be considered as being suitable applications for the expert system, 

addressed in 3.3.  

The assumption of the application of engineering design as the target application 

directs the type of knowledge that is to be extracted. Each engineering design process is 

driven by a set of requirements and the design process is carried out in a software 

application whose primary function is the representation of the design and its 

performance. Thus, the necessary information to be extracted from the system/process at 

any instant of time would be the requirements driving the design process and the visible 

representation for the design. 

3.1.3.2 Knowledge representation 

The task of knowledge representation refers to the identification of appropriate 

means of storing of the extracted knowledge for the downstream decision-making 

process. As the extracted knowledge would consist of requirements, design representation 

and design performances the representation scheme chosen would likely have to account 

for differences in the type of extracted knowledge. For example, requirements are 

typically specified in natural language, while the design representation would typically be 

parameterized in terms of a set of key design features.  
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The constraint placed on the knowledge representation is that the generated 

representation scheme is required to dynamically adapt to a growing knowledge database. 

Owing to the dynamic nature of the knowledge base it is certainly a possibility that the 

representation data are subject to change. Thus, any preconfigured representation scheme 

would not be suitable as it would be unable to adapt to the dynamic nature of the design 

environment, which in turn makes the process of knowledge representation generic. 

3.1.3.3 Knowledge utilization 

The manner in which humans utilize knowledge is two-fold, first in the process of 

decision-making where knowledge is utilized to make inferences, drawing conclusions 

and reasoning about a certain problem and secondly in the process of learning, where 

knowledge about a problem is utilized to derive strategies, decision rules and often 

aiming at the optimization of the result of the decisions emerging from the knowledge 

gathered, i.e., identifying how and when to best use the knowledge gathered.  

In a computational sense, the process of knowledge utilization refers to the 

identification and exploitation of patterns in the extracted knowledge thereby guiding the 

decision-making process. While there are several established means of utilizing extracted 

knowledge, most rely on approaches that are not replicative of human-like decision 

making. In order to reproduce such a capability, the utilization scheme chosen should be 

capable of not only learning from the demonstrated knowledge, but also acquiring 

additional knowledge to further influence the learning process. Another aspect of the 

utilization of knowledge is the conversion of the extracted and represented knowledge 

into a format that enables the application of the inference mechanism for decision-



 93 

making. This refers to the problem of knowledge encoding and is dependent on the 

utilization method chosen. 

In order to generalize the knowledge utilization scheme, the constraint placed on 

the selection of a scheme is that it should first and foremost be capable of imitating the 

demonstrated human behaviour, i.e., reproduce human-level decision-making in an 

automated fashion. Further, the utilization scheme should be capable of automatically 

adapting to changes in the knowledge extracted so as to refine decisions as and when new 

information is available. Finally, the entire process of decision-making has to be founded 

on mathematical principles, i.e., data-driven, that can guarantee the choice of appropriate 

decisions based on the knowledge available. These requirements placed on the 

knowledge utilization scheme ensure that the selected process would be generic enough 

to be applicable to any application, as it would be data-driven with the data being 

generated by the knowledge extraction and representation processes.  

3.2 Research Questions and Hypothesis 

In order to guide the research work carried out, a set of three research questions 

are formulated, each associated with an objective and the corresponding area of research. 

The research questions, while being abstract, provide insight into the capabilities that 

have to be used to realize the goal of knowledge-based decision-making for engineering 

design. Thus, they help identify the key enabling methods that a researcher would require 

to enable the implementation of a generic framework capable of incorporating knowledge 

in the process of artificial decision-making.  
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3.2.1 First Research Question 

The first research question deals with the identification and selection of a 

mathematical framework that is suitable to address the problem of decision making in 

engineering. If one such framework can be identified, its computational equivalent is 

required to be developed. With the implementation of the computational approach for 

solving the decision-making in engineering domain, it is required to evaluate if the 

capability can be applied an entire engineering design process. The application of the 

problem to engineering design is a highlight of this research question as it scopes the 

focus of the research work purely to workflows, processes and applications used in the 

field. These issues are formalized in the form of the first research question, given below. 

Research Question 1 

What are the desired characteristics of the framework that enables the utilization of 

knowledge in the process of addressing an engineering design problem? 

• What are the available mathematical tools that reflect these characteristics? 

• What is the computational representation of such a mathematical tool? 

• Can a computational implementation of such a framework be applied for 

general purpose engineering design? 

These set of questions address the first objective, i.e., the creation of a generic 

framework that addresses the abstract problem of decision-making in engineering design 

without any constraints on the engineering application. The computational representation 

of the framework is prioritized as it is imperative that artificial agents are created so that 
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design processes can be improved upon by leveraging the sheer power of computing. In 

addition to the necessity for a computational implementation, its mathematical 

background stresses the importance of theoretical backing for the process of decision-

making, a criterion that is a necessity in the field of artificial decision-making. Given that 

artificial agents are designed to recommend to and take the place of design engineers, the 

presence of a sound mathematical background ensures adequate justification for the 

decisions made by an agent. 

 An answer to the first research question can be established through first, an 

identification of the key characteristics of engineering design. These characteristics can 

establish the desired capabilities that have to be provided by the mathematical and 

computational frameworks. Upon identification of these capabilities, a review of the 

established mathematical methods should identify one or more suitable candidates that 

also provide sufficient mathematical justification. Following an evaluation of the 

identified candidates and the selection of one of them, a computational representation for 

the mathematics has to be identified and implemented. The identification of the means of 

a computational implementation can be accomplished by a review of the literature, while 

its implementation would require the development of the methods and algorithms 

identified. A proof-of-concept can be utilized for the validation of the computational 

implementation and to also evaluate its applicability to the field of engineering design. 

The description of the proof-of-concept is addressed in 3.3. 

3.2.2 Second Research Question 

The second research question addresses the area of knowledge extraction and 

representation. In particular, it deals with the identification of the knowledge that is to be 
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extracted from the design application, the means for doing so and also the identification 

and implementation of the means for representation and storage of the extracted 

knowledge. The research question builds on the findings of the first research question. In 

fact, it is posed in an abstract sense so as to help identify the necessary knowledge to 

uniquely represent the design application and/or process. The research question also deals 

with the issue of knowledge representation where a means for the storage of the 

knowledge is required to be assessed. In order to ensure the generalized nature of the 

process, no assumptions are permitted on the nature of the knowledge that can be 

extracted. These issues are, again, formalized in the form of the second research question, 

given below. 

Research Question 2 

In the presence of a design environment, how can extract knowledge in an automated 

fashion so that an adequate representation of the design application can be generated? 

• What does it mean to adequately represent the design application, i.e., what is 

the knowledge that is to be extracted from a design application to completely 

and uniquely represent it? 

• In a dynamic setting where knowledge is extracted continuously resulting in 

changes to the knowledge database, how can extracted knowledge be stored? 

The above question addresses the second objective, i.e., the development of an 

automated online approach to the problem of knowledge acquisition. The research 

question prioritizes the presence of a dynamic knowledge base in order to prevent the 
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hand-coding of the representation there by enabling the automation of the knowledge 

extraction process. Further, to ensure that any representation chosen is “discovered” by 

an algorithm a dynamic nature of the knowledge database is assumed. While the premise 

of the research question, the automated online knowledge extraction, guarantees a 

dynamic knowledge database it is still stated as an assumption as a solution to the 

research question is still pending. 

The answer to the research question can be realized through a set of two 

experiments. There is, in fact, a necessity for two experiments in order to validate the 

generalization capability of any developed process. While the answer to the sub-

questions, i.e., adequate representation of the design application and dynamic adaptation 

to the stored knowledge, are dependent on the solution to the first research question, 

general guidelines can be established for these. First, in order to generate an adequate 

representation of the system, every generated representation has to uniquely describe the 

system at that instant of time. This can range from a vectorized representation of the 

product being design to an image representation of the active design application screen. 

As these are application dependent, the issue is addressed further in Section 3.3 when the 

problem scope is introduced. Second, in order to adapt to the dynamic nature of the 

knowledge, the representation scheme should either represent the entire state of the 

application at every instant of time or dynamically adapt the representation to correspond 

to changes in the state representation. Since a restriction is placed on the involvement of 

humans, it is not possible to specify the necessary representation a priori. Thus, the 

generation of a complete representation of the system at the start of the design process 

would be impossible, which leave the option of a dynamic adaptation of the 

representation scheme.  
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3.2.3 Third Research Question 

The final research question deals with the implementation of a mechanism for the 

utilization of the extracted knowledge to enable the process of decision-making in an 

artificial agent. The research question is framed so as to identify an appropriate algorithm 

that enables an agent to not only learn from expert behaviour but also, self-learn through 

exploration. In particular, it deals with address the question of learning from a 

combination of both expert demonstrations and acquired knowledge. A consideration 

inherent in this is the encoding scheme utilized for the expert demonstrations that is 

suitable for the application of the learning mechanism. These concepts are formalized in 

the form of the third research question, given below. 

Research Question 3 

How can the combination of demonstrated data and experience data be used to train an 

agent to make effective decisions? 

• How can the extracted knowledge be encoded so that learning techniques can 

be applied?  

• What is the process that enables the encoding of different sources of 

knowledge? 

• In the presence of a dynamic knowledge database, how can an agent adapt to 

changes in the knowledge database? 

• In the presence of both demonstrated and experienced data, what are the 

necessary modifications to the framework so that a hybrid learning strategy can 
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be utilized? 

The research question posed above addresses the third objective, i.e., imbuing a 

learning capability to the inference mechanism. Prior to enabling learning in an artificial 

agent, any knowledge acquired has to be encoded in a means that is suitable for the 

learning algorithm. This first requires the identification of a learning algorithm which 

would establish the encoding format necessary. A process for the encoding would then 

follow, with the consideration that knowledge can be in different formats and can be 

gathered from multiple sources. Following this, the basic necessity of being able to learn 

from expert demonstrations is framed with the goal of replicating human-level 

performance so that the artificial agent results in performance identical to that of the 

demonstrations. This is then expanded so that a capability for the improvement over 

demonstrated performance is evaluated. The purpose of this formulation is to capture 

scenarios where expert demonstration as insufficient to find the optimum sequence of 

decision in the design problem. In such cases, the artificial agent would need to 

outperform the human equivalent through the utilization of an exploration policy where 

alternative decision-making policies are explored. Finally, due the presence of both 

expert demonstrations and explored knowledge, the presence of a suitable means of 

mixing these different sources of knowledge is evaluated. 

The research question can be addressed in two sections, the first dealing with the 

identification of the learning strategy and the second its implementation and evaluation. 

A survey of the literature related to the identified mathematical and computational 

framework should reveal suitable alternatives of algorithms for the implementation of the 

learning capability. Since the second part of the research question primarily deals with 
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the evaluation of the performance of the learning capability, a series of analysis 

experiments can be devised to perform such an evaluation. The details of the experiment 

are addressed in 3.4. A prerequisite for these experiments, though, is the presence of a 

framework capable of knowledge acquisition both from expert engineers and artificial 

agents. Thus, any experiment devised would build on the solutions to the previous two 

research questions. 

3.2.4 Overarching Research Hypothesis 

Having established the questions to guide the research work, a formal hypothesis 

establishing the central theme for the dissertation is presented. It is hypothesized that 

there exists an approach that can be leverage so that knowledge can be extracted and 

utilized from generic design applications such that artificial agents can be utilized to 

reproduce human-like decision making based on the knowledge acquired. This is stated 

formally in below. 

Hypothesis 

• It is possible to develop a process that enables the extraction of expert 

knowledge from most design applications. 

• Having extracted the necessary knowledge sound mathematical principles can 

be exploited for the reproduction of expert-like decision-making in the very 

same environment, through the use of an artificial agent.  

• The creation of an artificial agent would in turn enable the automation of 

decision-making enabling a capability of self-learning, i.e., learning through 
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exploration. 

• In scenarios where expert demonstrations are suboptimal, a self-learning agent 

would be able to improve upon the demonstrated behaviour. 

3.3 Research Scope 

This section scopes the research work by identifying a set of applications and 

experiments which help in answering some of the research questions previously 

introduced. In particular, the section identifies a set of desirable characteristics from the 

design applications to which the process of automated knowledge extraction and 

utilization is to be applied.  

In identification of appropriate characteristics of design application, first an 

analysis of the types of design applications is to be performed. In terms of the visibility of 

the design application, each application can be categorized as falling somewhere along a 

spectrum of applications, with the spectrum denoting the visibility of the system. The two 

ends of the spectrum are denoted by black-box systems, where there is no visibility into 

the operations of the system and all interactions by an engineer are restricted to the 

presented interface, and white-box system, where there is complete visibility in the 

operations of the application and any information contained in the application can be 

queried at any instant of time. This categorization of design application is based on the 

manner in which interactions are undertaken with a design application, illustrated in 

Figure 3.3. 
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Figure 3.3: Categorization of design applications based on available interaction 
mechanism 

As illustrated in Figure 3.3, white box systems offer complete control to the 

engineer where all the necessary information regarding the product being designed or the 

design process undertaken can be queried in order to populate a knowledge base. In such 

a system, there is a clear visibility of each action undertaken by a designer indicating a 

decision made, and the effect of the action can also be ascertained. Such applications 

include open-source frameworks and in-house codes that permit an automated callback 

for the extraction of knowledge from the design application. Moving along the spectrum 

towards the other end, one would encounter grey-box systems that are closer in nature to 

the white-box systems. In such a system, while a designer may not have complete 

freedom to query any knowledge imaginable, the system does provide a means to query 

the entire state of the design process or the product. Further, such system does indicate 

human actions so that an analysis can be performed to identify the type of decision made. 

An example of such an application would be an MBSE framework that supports event 

notifiers. Moving further along the spectrum close to the black-box applications, one 

would encounter applications which support a capability for automation but fail to reveal 

any information about the manner in which the design process or product is represented. 

Such applications are quite similar to the black-box systems where user interactions are 

primarily carried out through an interface, but there is the possibility of a programmatic 

Design System

White-box System Black-box System

Gray-box Systems
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extraction of information enabling the automation of the system. Examples of such 

system include commercial and free software that support automation through an API 

such as Siemens NX, ANSYS, etc. The final variety of system are the complete black-

box systems whose only means of interactions are through the established user interfaces 

and the supplied user entry points. The dissertation work does not address the problem of 

a generic black-box system and the extension of the framework presented in the current 

work is addressed in the future work section in CHAPTER 8. 

Thus, based on the above-mentioned categorization of the design applications, a 

set of two use-cases are developed to evaluate and demonstrate the applicability of the 

framework to a range of design applications. The developed processes for knowledge 

extraction, representation and utilization are to be maintained the same across each use-

case. This in turn establishes the desired characteristics for the design applications that 

can be considered for the application of the framework, shown below.  

• It has to be possible for an external process to connect to the design 

application to extract knowledge from the system. 

• It has to be possible for an external process to connect to the application in 

order to automate its behaviour. 

• The application has to provide some means of indication that a user-

interaction has occurred. 
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3.3.1 Use-case 2: A Design Application implemented using principles of Model-based 

Systems Engineering  

The second use-case deals with the application of the automated decision-making 

framework to a grey-box system. The use-case is applied to the architectural and 

conceptual design of an unmanned aerial vehicle for a undergoing a fixed design process. 

In order to enable the use of such an application, a model-based systems engineering 

application is developed such that the process of conceptual design from the definition to 

the verification requirements can be carried out within a single integrated environment. 

The nature of model-based systems engineering is such that the state of the active design 

is represented in terms of a model which is an object-oriented representation of the 

design. In addition, these framework enables the definition of requirements in natural 

language that serve as indicators for the performance of the design. Finally, a signal-slot 

paradigm for event notification is adopted such that decisions made by the user can be 

traced to identify and evaluate them. Thus, while the entire application is developed in-

house, from the perspective of the framework, it is treated as a grey-box system. The 

details of the application and the associated use-case are discussed in CHAPTER 6. 

3.3.2 Use-case 3: A black-box System with API access 

The final use-case deals with the application of the framework for the purpose of 

automation of a generic commercial engineering design application. For the purpose of 

the dissertation the investigation is limited to Siemens NX. In contrast to other case 

considered, Siemens NX there are multiple sources from which knowledge can be 

extracted from the Siemens NX application. Thus, the framework would have to be 

configured to be able to handle the incorporation of multiple sources of knowledge. 
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Further, the representation of the design product within the application is not visible to 

the user. Instead a select few attributes and properties are exposed to the user via the 

application’s API. Thus, the type of knowledge that can be extracted from the application 

is restricted by the information that can be gathered. In the application of the framework 

to the final application, there is not one particular design product that is considered, but 

instead it is desired to capture patterns in the operation of the application that result from 

the specified set of requirements. In contrast to the other applications, the goal of the 

framework when applied to Siemens NX is scoped to the imitation of human-like 

behaviour and not improvement of it. The details of the configuration of the framework 

in order to enables its application to the large-scale problem of Siemens NX is discussed 

in CHAPTER 7. 

3.3.3 Summary 

Thus, owning to the complexity in the development of a framework that is 

capable of automated decision-making and is generic enough to be applicable to a variety 

of engineering design applications two use-cases established. Each of these use-case 

serve to answer a portion of the second and third research questions, mainly the process 

in which knowledge is extracted, represented and utilized and the framework for doing 

so. While these use-cases serve to demonstrate the ability for the automated decision-

making they do not evaluate the extent of these capabilities, i.e., they do not serve as a 

stress test evaluating the extent to which the capability can be exploited. These are 

discussed next where a set of analysis experiments are devised to assess the 

computational performance of the framework. 

 



 106 

3.4 Analysis of the decision-making capability of artificial agents 

While the use-cases previously established define the problems on which the 

framework is tested, the analysis experiments establish the suitability of the framework as 

a replacement for established approaches to knowledge-based decision-making. In order 

to draw such a conclusion, the artificial agent enabling the knowledge-based decision-

making has to be able to first and foremost, imitate human-like decision-making and then 

outperform it in cases where human-like decision-making is suboptimal. Finally, the 

capability of the framework to adapt to changes in the problem context needs to be 

evaluated to estimate its robustness to changes in the learning conditions. These settings 

are illustrated in Table 3.1 and these experiments are carried out on the second use-case 

of UAV design. As depicted in Table 3.1, the experiments of imitation and improvement 

can be viewed as satisfying the necessary and sufficient conditions for a large-scale 

development of the framework while the adaptability experiment can serve to provide 

insight into the framework and processes’ robustness. The details of the experiments and 

the setup of the analysis are discussed in CHAPTER 6. 

Table 3.1: Experiments planned to evaluate the performance of the developed 
framework 

Experiment Condition Criterion Evaluation Metric 

Replication 
Necessary 

Condition 

Can an artificial agent 

learn to perform as 

well as a human-

operator in the 

• Output performance of the 

design or designs selected. 

• Amount of learning steps 

required. 
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presence of human 

demonstrations? 

• Amount of demonstration 

data required. 

Improvement 
Sufficient 

Condition 

Can the artificial agent 

learn to perform better 

than the human 

demonstrations 

through explorative 

schemes? 

• Output performance of the 

design or designs selected. 

• Amount of exploratory 

data required. 

• Amount of training steps 

required. 

Adaptability 
Robustness 

Condition 

Can the artificial agent 

apply learnt 

knowledge to different 

problems, without 

additional training? 

• Output performance of the 

design or designs selected. 

• Estimate of similarity 

between the problems. 

Table 3.1 (Continued) 
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CHAPTER 4. RESEARCH BACKGROUND 

The previous chapter established a methodology for the research work by 

identifying a set of guiding research questions. The current chapter addresses these 

questions by establishing a hypothesis for each of them. The hypothesis in the current 

chapter is driven by a survey of the available literature and concludes with the 

identification of a concrete plan for the implementation of the knowledge-based decision-

making framework. The chapter is structured such that each research question is 

addressed in sequence with the investigations into the later questions building on the 

hypothesis developed in former ones.  

The first research question investigates the feasibility of utilizing existing 

mathematical tools for the automation of an engineering design process and then looks 

into the computational representation of one such mathematical framework. The 

computational representation dictates a series of necessities in terms of the knowledge 

extraction, in particular, it answers the question “What is the knowledge that is to be 

extracted?”, but there is freedom for the means in which the knowledge is extracted and, 

also, represented. Finally, the computational framework, also, establishes a set of 

guidelines for the manner in which the knowledge is to be encoded so as to enable data-

driven learning and the possible learning schemes are investigated in the final third of the 

chapter. 
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4.1 Research Area 1: Mathematical framework for Computational Decision 

Making 

As previously indicated, the purpose of the first research question is to ensure that 

the adopted process of decision-making relies on sound mathematical principles. Prior to 

the identification of an appropriate framework that enables the process of autonomous 

decision-making, it falls upon the author to justify the capability of representation of an 

engineering design process as a mathematical problem. This is addressed by analyzing a 

handful of characteristics of the engineering design process with the hopes of relating 

them to that of autonomous decision-making. 

4.1.1 Engineering Design 

A comprehensive review into the concept of a design is provided by Ralph and 

Wand [125]. In their review, several different definitions of the concept of design are 

analysed and a proposal for a formal definition is made. The definition, given below, 

establishes a formal set of interacting components, illustrated in Figure 1, that help 

identify some of the basic elements leading to the creation of a design and thus 

establishing the context for engineering design and the engineering design process. 

Design 

A design is the specification of an object, manifested by some agent, 

intended to accomplish goals, in a particular environment, using a set 

of primitive components, satisfying a set of requirements, subject to 

some constraints. 
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Figure 4.1: Conceptual model of a design [125] 

Based on the generic definition given in Figure 4.1, with the application of an 

engineering context, one could arrive at the definition of engineering design by adding on 

the requirements for the use of scientific, technical and/or statistical knowledge in the 

production of the design [126]. Several models have been proposed to outline to process 

in which engineering design is carried out. For example, an abstract view of the process 

of engineering design is provided by the iterative interactions between the problem 

identification, information gathering, alternative generation, alternative evaluation and 

the testing and implementation steps, illustrated in Figure 4.2, while the details of each of 

the individual step is omitted in favour of abstraction. 

 

Figure 4.2: Abstraction of the iterative engineering design process [127], [128] 
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A more detailed representation of the steps involved in the design process is 

provided by Dieter [129], illustrated in Figure 4.3, provides a comprehensive overview of 

the entire process. The process is divided into three phases, the conceptual design, 

embodiment (or preliminary) design and that of the detailed design. The conceptual 

design revolves around the generation of a set of feasible and viable design concepts that 

are capable of addressing the customer requirements. The set of designs generated in such 

a setting remain abstract in nature and their analyses are, typically, performed at a lower 

fidelity. Having identified a set of feasible designs, the phase of embodiment design 

involves the generation of a physical layout for the conceptual design. Along the process, 

component models are utilized to ensure each subsystem or component of the system 

performs to the specified tolerances thereby ensuring the given customer requirements 

are satisfied in the presence of increased analysis fidelity. The final phase of detailed 

design phase involves the generation of part specifications for the manufacturability of 

the constituent components. This involves the generation of 3D models or detailed 

drawings while accounting for both an improved fidelity in any physics-based analysis 

and constraints introduced by the available manufacturing processes. 

An important aspect of the above detailed description of the engineering design 

process is necessity for decision making at every step of the process. It has been argued 

[59] that the entire design process can be represented as a sequence of decisions. Thus, in 

order to replicate the decisions made during design, it is necessary to incorporate the field 

of decision analysis in any considerations made.  
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Figure 4.3: The three phases of the engineering design process [129] 

4.1.2 Sequential Decision Making 

The problem of sequential decision making [130] is one that has been studied in 

great detail with well-established approaches being readily available to address this task. 

Typical approaches rely on the framework of Markov decision processes [131] that 

necessitates the presence of a model of the decision making environment. The Markov 

decision processes are an extension of the Markov chains and the Markov process which 

build on the concept of the Markov property. The Markov property can be stated as 

follows: 

The state of the system is only dependent on its most recent state, and 

not its history of states. 

In addition to the Markov property, the Markov chains assume that there is a time 

independence in the event being modelled. This implies that transitions between states 

are independent of the instantaneous time of the system. With these fundamental 
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assumptions, a Markov Process [132] can be defined as a mathematical model of a 

system in which the system dynamics is represented by a series of “states” and 

“transitions” where the variables of the state provide a mathematical description of the 

system and the transition accounts for the changes in these variables. 

 

Figure 4.4: An illustrative example of a Markov Process 

 The Markov Process is probabilistic in nature in the sense that the transitions from 

one state to another is dictated by the system model and is mathematically represented by 

the transition probabilities. If each transition is assumed to occur at a discrete time point, 

say @", then the transition from state A to B is purely a function of the probability at state A 

and not any previous state. Figure 4.4 provides an illustration of a Markov Process in 

which the states are represented within the ellipses and defined by the set of state 

variables s, the transitions are indicated by the arrows connecting the states and the 

transition probabilities by pij such that the probabilities satisfy the conditions, 

and  Σpij = 1 0 ≤ pij ≤ 1
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Another component of Markov Processes is the concept of “rewards”. A reward is 

indicative of the returns observed when the system transitions from one state to another. 

These rewards are, thus, random variables whose distribution is governed by the system 

dynamics, i.e., the transition probabilities. The reward parameters play an important role 

in the field of computational decision making as the goal of such a framework would be 

to identify the sequence of states that maximizes the expected cumulative reward 

observable to the system. The established approach for the computation of decision is 

through the use of dynamic programming and Bellman equation [133].  

The mathematical representation of a system whose states are affected by an external 

operator, i.e., an agent is modified from the standard setting of the Markov Process to 

incorporate the concept of “actions”. An action represents the interactions an agent can 

have with the system in order to affect, or alter, the system’s state. The mathematical 

representation of the system3 is termed as the Markov Decision Process [131], illustrated 

in Figure 4.5, and is the accepted standard for solving sequential decision making 

problems [134], [135]. 

Markov Decision Process 

A Markov Decision Process is represented by the tuple < D, !, E, F > 

where S is the finite set of states, A the finite set of actions, E:	I(•

|L, /)	represents the state transition probability and F:	M(L|/) is a 

reward function. 

                                                
3 In some future occurrences of the term, the terms environment and system are used interchangeably. 
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Figure 4.5: An illustrative example of a Markov Decision Process 

 The process of sequential decision making involves the computation of the series 

of transitions to reach a defined goal. This sequence of transitions is termed as the policy 

(N) and it, mathematically, is the function representing a mapping from the state space, D, 

to the action space, !, i.e.,  

N: D → O(!) 

In solving a problem formulated as a Markov Decision Process, an optimum 

policy is sought. In the execution of the policy a series of states are realized, given as, 

N[(L>, />, LP, /P, … , LR)] → [M>(L>, />), MP(LP, /P), … , MR(LR)		 



 116 

 In order to enable comparisons between policies, the concept of partial ordering 

between the policy realizations is to be developed. Puterman [131] defined this partial 

ordering as the “transitive, reflective and antisymmetric relationship between the 

elements” of the realization set. The definition of utility [136] for the realization set 

provides a concept of total ordering for the policies enabling their comparison along a 

real-axis. Due to the stochastic nature of the policy, two of them are ordered based on 

their expected utility [136] such that a policy N> is preferred over another NP if and only 

if, 

ΕTU[V(F>, … , FR)] > 	ΕTW[V(F>, … , FR)]	 

where V is the utility function and F" = M"(L", /") 

 Puterman [131] suggested the use of a linear additive utility model in the 

comparison of the policies to model a risk neutral decision maker indifferent to the timing 

of the reward. Having established the ability to compare policies, the task of finding the 

optimal policy reduces to that of identifying the polity that maximizes the expected 

utility. Thus the framework of Markov Decision Processes provides a mathematical 

framework for the formulation of the sequential decision making process. 

4.1.3 Reinforcement Learning 

The field of reinforcement learning [137] is one of the branches of machine 

learning whose behavior lies in between that of supervised learning and unsupervised 

learning. The framework of Markov decision processes provides formalization for the 

definition of a reinforcement learning problem. In the standard representation of the 

framework, an agent interacts with a black box environment while attempting to optimize 
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its policy based on the returned signals and observed states without having been given 

specific guidance as to the actions that are to be taken. The set of actions to optimize the 

policy are expected to be learnt through experience. This process is illustrated in Figure 

4.6. 

 

Figure 4.6: Standard definition of the reinforcement learning problem 

 The field of reinforcement learning has its roots in experimental psychology and 

the study of animal behavior, where the term “reinforcement” refers to the process of 

increasing the probability of reoccurrence of an event under certain conditions by 

rewarding the actions leading to the event [138]. This principle of learning from 

reinforcement is prevalent in engineering design, for example in the iterative design 

procedure, and motivated the earliest studies in artificial intelligence. The reinforcement 

learning framework all the treatment of partially-observable Markov decision processes 

along the same lines as that of the fully-observable Markov decision processes, granting 

it a distinct advantage over other methods, thereby enabling a unified framework all types 

of problems. The field of reinforcement learning finds its application in a vast variety of 

problems, for example, optimal control [139], [140], decision making in computer games 

[141], [142], resource management [143], robotics [48], [144], chemistry [145] etc. 
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 The mathematical description of the reinforcement learning problem is slightly 

modified from that of the Markov decision process that was introduced in the preceding 

section through the introduction of a discount factor, Y, modifying the mathematical 

representation to < D, !, E, F, Y >. In the case of an infinite-horizon4 problem, the total 

expected reward of the Markov decision process that was previous introduced tends to 

infinity when each individual reward is positive. To overcome this issue, the rewards are 

weighted as per their occurrence using the discount factor thereby keeping the total 

expected reward finite. This new policy utility, termed the “total expected discounted 

reward”, is given by: 

ZT[V(F>, … . , FR)] = 	 lim
R→_

Z`
T abYcd>Mc(Lc, /c)

R

ce>

f 

for the case of infinite-horizon Markov decision processes, and for the finite case by, 

ZT[V(F>, … . , FR)] = 	Z`
T ab Ycd>Mc(Lc, /c)

Rd>

ce>

+ YRd>MR(LR)f 

In the infinite-horizon case, inclusion of a Y	h	[0, 1], ensures that the cumulative reward 

is finite when all the individual transition rewards are finite. That is,  

|ZT[V(F>, … , FR)]| = i < ∞		 

when, 

sup
`	no

sup
p	n3q

|M(L, /)| = r < ∞ 

                                                
4 An infinite-horizon Markov decision process is one which has no terminal state and continues 
indefinitely. 
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 Exploration plays an important role in the field of reinforcement learning in 

finding the optimal policy. Implementations of the reinforcement learning methods have 

to effectively balance the exploitation-exploration problem in order to ensure sufficient 

portion of the state space has been visited. A typical approach to this problem is to 

employ a decaying h-greedy policy [146] in which greedy actions are chosen based on a 

probability mass function, skewed towards the greedy action by a factor of 1	 − h, with 

the value of h reducing at every timestep.  

The reinforcement learning concept of learning through observations differs from 

the theory of both supervised and unsupervised learning. In supervised learning, the 

learner is presented with a dataset consisting of labelled data in which a relationship is 

sought between the input values 8, which is usually a MxN matrix and the output values 

t which would be a Mx1 column vector of either real or discrete values. The relationship 

that is developed would be represented in the form of a function approximation given by,  

t = 1(8; v) 

 and the supervised learning framework relies on finding the appropriate values for 

the parameters w. As 1(8; v) represents an approximation of the true relationship 

between the inputs 8 and the outputs t, the parameters v are typically computed by 

minimizing a loss function representing the deviation of the estimated value from the true 

value. The regression loss is defined as: 

xyLLzt, 1(8; 	v){ = 	‖t − 1(8; v)‖P
P 

In most practical applications, a regularization loss is added to the loss term to 

protect the model from over-fitting the input data. The primary objective in supervised 
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learning is to generate a generalization of an unknown model in order to accurately 

predict model’s behavior in previously unseen regions. The reinforcement learning 

problem on the other hand attempts to learn in an interactive setting, i.e., it is 

characterized by a dynamic environment, one where supervised learning is often 

impractical [137]. 

 In unsupervised learning, the learning algorithm attempts to discover statistical 

structures in the input data without external supervision [147]. When provided with an 

input dataset 8 of size MxN, unsupervised learning methods either attempt to extract 

features by exploiting statistical regularities or attempt to build statistical models of the 

data for the purpose of density estimation, In both cases, unsupervised learning methods 

attempt to find the appropriate values for a series of parameters v which minimizes the 

degree of mismatch introduced due to the statistical modeling. In the case of Maximum 

Likelihood based density estimation methods, the degree of mismatch is given by the 

Kullback-Leibler divergence [148], 

}x[O~(8), O(8; v)] = 	bO~(8) log
O~(8)

O(8; v)
		

Å

 

As the primary objective of unsupervised learning is to identify patterns in the 

input data, it too differs from the formulation of the reinforcement learning problem 

which seeks to optimize the agent’s policy while maximizing the observed cumulative 

reward. 
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4.1.4 Hypothesis 1 

These differences in the theory of reinforcement learning, supervised learning and 

unsupervised learning necessitate the development of methods designed to enable 

learning in the reinforcement learning setup. Thus the framework of reinforcement 

learning provides the necessary computational tools necessary for the realization of the 

mathematical formulation of the Markov decision process. This leads to the formalization 

of the first hypothesis addressing the first research question, which deals with the 

application of the techniques of reinforcement learning for the purpose of automation of 

engineering decisions in a complex decision environment such as a design application. It 

is hypothesized that existing techniques and algorithms in the field of reinforcement 

learning can be utilized to automate the decision made in the engineering domain, and 

replicate human-level performance as observed in other domains. 

Hypothesis 1 

The framework of reinforcement learning provides the necessary computational tools 

that enable the replication of human-like behavior by artificial agents in the field of 

engineering design. This is enabled through the application of the mathematical tools 

offered by the Markov decision processes which form the mathematical foundations 

for reinforcement learning. 

4.2 Research Area 2: Knowledge Extraction and Representation 

As indicated in the previous chapter, the second research area deals with the 

identification of entities that need to be defined in order to enable the process of data-
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driven knowledge utilization. While the current section does not introduce a concrete 

methodology for the knowledge extraction it does identify and define the necessary 

entities that have to be represented in order to enable learning. The second research area 

and the associated hypothesis build on the findings of the first hypothesis, i.e., there is an 

assumption made that the underlying framework that drives the automated learning is 

developed using concepts offered by the framework of reinforcement learning. 

The parameters of the reinforcement learning problem that are associated with the 

knowledge stored in the system are that of the state of the system, the action taken by an 

engineer and finally the reward observed by the engineer that drives the next set of 

decisions. In the context of design applications, the state of the system or the environment 

can be represented by either the state of the design application or the state of the active 

design that is contained in the application. The extraction of the knowledge contained 

within the application can be accomplished through the utilization of a pair of infinite 

tails, one that tails the state of the application and another that tails any external resources 

created by the application. These proposed tails are infinite threads that are embedded 

within the design application and communicate with an external framework passing 

information from within the application in an encoded manner. This ensures that any 

interactive decisions taken by an engineer can readily be captured by the framework.  

4.2.1 State representation 

The hypothesis is associated with the extraction of knowledge associated with the 

state of the design from the design application is as follows. There exists an n-

dimensional vector embedding space to which all the designs that can be represented by 

the design application can be projected. In the case of the UAV, the characteristics of the 
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UAV readily permit the mapping every design in from the application to such a space. In 

the case of a Siemens NX, one would need to develop a framework which accomplishes 

the task of projection of designs onto the manifold. In this n-dimensional embedding 

space, also termed as the manifold, each point would correspond to one state of a design. 

The design could either be realizable or not. For example, the combinations of 

components on the UAV that results in an incomplete representation of the system would 

be representative of an unrealizable state of the system. The above observations can be 

formalized into to the following theorem, 

Given any universe, Ç, that represents the possible representations of 

the designs within a design application, the state vector associated with 

any design within the application can be represented as a subset of the 

union of the states of all the alternatives of the universe. This universe 

of possible design representations occupy an infinite dimensional 

vector which can then be projected onto a finite dimensional 

embedding representing the state of the system at any instant of time. 

Mathematically, this can be stated as follows: 

Let ÉÑ, 	É>, 	ÉP, 	 … , 	É?be the possible representations of the design alternatives in any 

universe, Ç such that, É"	h	ℝ_, then for any new alternative that belongs to the 

architecture ÉÜ, we can write,  

ÉÜ ⊂ Ç, and ÉÜ	h	ℝ_ 

as, Ç = ÉÑ	U	É>U	…U	É? 
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Further, as the hypothesis argues that there exists a lower dimensional embedding for 

each design in represented in the infinite dimensional space, we can generate formulate a 

mathematical problem that deals with the projection of this infinite dimensional vector 

onto a known â-dimensional embedding space where the state of the system is 

represented by Éä. This process of projection can mathematically be represented as, 

ÉÜ	h	ℝ
_ 	→ 	DÜ

ä 	h	ℝ? 

4.2.2 Action representation 

The hypothesis associated with the extraction and representation of the action 

from the design space is very much dependent on the representation scheme chosen for 

the state of the system. In the context of a design application, the function of an action is 

to change the representation of the design application or the design contained within the 

application. Thus, from the perspective of the designs that exist in the proverbial infinite 

dimensional space, any action performed in the design application transforms an existing 

design in this infinite dimensional space to another through a sequence of infinite 

dimensional point traversals. In the context of the UAV, this can be represented by the 

change in any of the attributes associated with the UAV or in the context of the CAD 

model, this can be represented by the change in either the parameters associated with the 

model or a change in the topology of the CAD model. Thus, in summary, the action that 

occurs as a result of human decisions can be represented as the difference between the 

states of the design application or the product in the infinite dimensional space. This can 

be formalized as follows, 
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Given two states of a system, ãå and ãç, in the universe,é, the effect of 

any action, è, transforming the state of the system from å → ç can be 

represented as the difference in the states of the states at å and ç.This 

representation of the difference of the states generates an infinite 

dimensional vector that can then be projected onto a lower dimensional 

embedding space. 

which can be expressed mathematically as follows,  

Let É3, 	Éê be two possible system states in an universe, Ç, such that, É3,	ê	h	ℝ_, then, we 

define an action, ë, as, 

ë:É3 → Éê 

and in general, we can define a policy as the set of all actions that results in the state 

transformation ! → í. 

N = {ë}: É3 → Éê 

This implies given any two states, É" and  É&, it is possible to construct a policy,  

N(A, B) = {ë",&ï, 	ë",&ïï , 	 … , 	ë"ïï,&, 	ë"ï,&} 

where each element of the set N(A, B) represents a change in one single state variable, 

ÉÜ[ñ]. Further, as with the projection of the state vector to the lower dimensional 

embedding, it is hypothesized that it is possible to generation an embedded representation 

of the action in the lower dimensional space. This can once more be mathematically 

represented as, 
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ëä: É3
ä → Éê

ä 	h	ℝ? and Nä(A, B) = {ë",&ï
ä ,ë",&ïï

ä , … ,ë"ïï,&	
ä , ë"ï,&

ä }  

such that, ëó,Ü	h	ℝ
? 

4.2.3 Reward representation 

The final consideration that is to be made is the scheme utilized to represent the 

rewards associated with the system. In an engineering setting, each design represented by 

the design application has some indication of value associated with it. Engineers utilize 

this value as a representation of the goodness of a design that dictates their bias toward 

altering the state of the design through an action, i.e., the value associated with the state 

indicates the likelihood that the engineer would transition away from the design through 

by exercising an action. Thus, this implies that the reward associated with a transition can 

be expressed as the difference in the values associated with the states of the systems. In 

the context of the UAV, this can be represented as the difference between the key 

performance indicators associated with the UAV design such as the endurance, the range 

and the cost of the vehicle and in the context of the CAD model, the reward associated 

with a transition can be represented as the ability to get closer to a design that meets the 

design requirements imposed on the system. Thus, this can be formalized into a theorem 

stated as follows, 

Given two states of a system, ãå	and ãç, in the universe,é, and an 

action, è, transforming the state of the system from å → ç, the 

reward, ò(ãå, 	è), associated with the transformation can be 

formulated as perceived benefit of the transformation. 
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The perceived benefit of a transformation always resides in a finite dimensional space as 

the key performance indicators associated with the design are finite in number. In order 

to utilize this formulation in a traditional reinforcement learning setup, the multi-criteria 

reward formulation has to be transformed to a single source of reward and this can be 

achieved through the projection of the reward indicator onto the real-line. This hypothesis 

can be mathematically formulated as follows, 

In a multi-criteria analysis, where the value associated with the state of a system, É", is 

represented as, 

ô(É")	h	ℝ
Ü 

the reward associated with a transformation, N = {ë}: É3 → Éê, can be formulated as the 

difference in the value of each successive pair of states along the policy. 

özÉ", 	ë&{ = ôzÉ&{ − ô(É")	h	ℝ
Ü 

This reward can then be transformed to a single real-valued metric by projecting the õ-

dimensional reward metric to the real-line. This is given through the transformation, 

özÉ",ë&{	h	ℝ
Ü → MäzÉ",ë&{h	ℝ ≈ öäzÉ"

ä,ë&
ä{	h	ℝ 

4.2.4 Knowledge Representation: Knowledge Graphs 

Having identified the sources of knowledge that have to be extracted and the 

mathematical meaning of the knowledge extracted from the design application, it is 

necessary to identify a means for the representation of the knowledge. The most natural 

representation of the knowledge is through the utilization of a knowledge graph, i.e., a 
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graphical model [149]. As the graphical model stores a tuple of node, edge and the 

consequent node as its underlying representation, this translates directly to the domain of 

reinforcement learning where the necessary entities to enable learning are the state, 

action, next state and the associated reward. This translates directly to the node and edge 

notation with the state of the system being represented as a node in the graph and the 

action being represented as the edge between two states of the system. As every state-

action pair is associated with a deterministic reward, in terms of the knowledge graph, the 

reward observed within the system can be represented as an attribute of the edge of the 

system. 

4.2.5 Hypothesis 2 

The preceding passages highlight the proposed approaches for the extraction and 

interpretation of the various entities that are associated with the representation of the 

design application for the purpose of reinforcement learning, culminating with a proposal 

for the use of graphical models for the storage of data gathered from the data extraction 

routines. The observations made in the previous sections can be formally restated in 

terms of the following hypothesis. 

Hypothesis 2 

The reinforcement learning framework necessitates the extraction of three quantities in 

order to enable learning, these are the state of the system, the actions associated with 

the decisions made and the rewards indicated by the state-action transitions. In the 

engineering context, it is hypothesized that a mathematical formulation represented by 
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a â-dimensional embedding of the various entities can be generated in a manner that 

can either be application specific or application agnostic. Having generated these 

representations, the utilization of a graphical model forms the ideal means for 

representation of the entities associated with the reinforcement learning problem setup. 

4.3 Research Area 3: Data-driven Knowledge Utilization 

The third research area deals with addressing the question of the utilization of the 

knowledge without the involvement of hand-crafted heuristic. Existing research in the 

field of reinforcement learning draw parallels to the means in which humans learn from 

their decisions through the use of hippocampal replay as studied in the field of 

neuroscience [150]–[152]. The use of experience replay [153] is a well-established 

paradigm in the field of reinforcement learning that attempt to mimic this behavior of 

hippocampal replay of mammals. Recent studies in deep reinforcement learning have 

introduced the concept of prioritized experience replay [154] to overcome some of the 

issues associated with the biases introduced by the traditional experience replay learning 

framework. But none of the existing methods permits the consideration of experience 

replay in the presence of multiple sources of data. The established approaches to this 

problem combine the different sources of data into a single database from which the 

learning algorithm samples in order to update the agent’s policies. This process is evident 

in the established demonstration based deep reinforcement learning algorithms such as 

the Deep Q-Learning from Demonstrations (DQfD) [155] or Deep Deterministic Policy 

Gradients from Demonstrations [156]. Thus in order to account for multiple different 

sources of data, the research work hypothesizes the utilization of a new sampling 

technique that extends the capabilities of prioritized experience replay by accounting for 
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data generated from different sources so as to bias the learning algorithm towards one of 

the source. This is achieved through the introduction of a separated buffer to store the 

data generated by the human demonstrator and that generated by the agent through 

experience. The resultant probability of the sampling is weighted based on the weighting 

associated with the source of the sample. The mathematical formulation for this sampling 

probability is given as follows: 
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where, £ represents the temporal difference error given as,  

£" = özÉ3, 	ë3,	ê{ + ô(Éê) − ô(É3) 

Æ" ∝
õ

£"
 

with the terms ö representing the reward observed as a result of the transition from state 

É3 to Éê and the value of the state É" is represented by the term ô(É"). The terms ∞ and Æ 

represent the annealed weighting applied to the different probabilities associated with the 

sampling routine. Finally, the term ℎ" represents the sampling weight associated with the 

source A. This formulation ensures that when the network is biased toward the source with 

the highest weight so as to ensure demonstrations from the best source are considered 

more frequently in the learning process. Additionally, the method would also ensure there 

isn’t significant variance in the prediction of the state value as when the error associated 
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with the prediction increases the samples with greater error are preferred regardless of the 

source of the sample.  

These observations can be formalized into the third and final hypothesis which can be 

stated as follows, 

Hypothesis 3 

With the extension of the framework of prioritized experience replay by modifying the 

computation of the priorities associated with the probability of sampling, it is possible 

to account for demonstration data from multiple different sources. Further, by altering 

the storage framework by separating out the experience and demonstration buffers, it is 

hypothesized that the agent would be able to leverage demonstrated data in learning the 

optimal policy. 
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CHAPTER 5. KNOWLEDGE-BASED LEARNING FRAMEWORK 

The previous two chapters introduced the research questions, the associated 

hypothesis, the research methodology and the applications that are considered as proof-

of-concept problems but before the methodology is applied to a particular problem, a 

generic framework for doing so is introduced in the current chapter. The framework that 

enables the application of the research methodology towards the automation of 

engineering decisions for design systems is identified and the architecture of the 

framework and the data-models associated with it are introduced in the current chapter. 

The chapter is structured as follows, first, a set of requirements for the framework are 

identified and classified that dictate the functionalities that are to be included in the 

application. This is followed by the identification of off-the-shelf software components 

that enable the realization of the requirements. These are finally combined together for 

the realization of the architecture of the framework. 

5.1 Guiding Requirements of the Framework 

The development of the knowledge-based learning framework is driven by the 

identification of a set of engineering and user requirements that dictate the necessary 

components or features that have to be included in the final product. In the course of 

definition of the requirements, it is assumed that the resultant framework would meet all 

the prerequisites set by the research goal, i.e., the framework would be independent of the 

design application, the framework would be capable of extracting knowledge from the 

application in an automated manner as a user interacts with the it and that the framework 

would utilize the concepts of reinforcement learning to enable knowledge-based decision 
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making. Thus, through the established research questions and their corresponding 

hypotheses, a set of four key requirements groups are identified, illustrated in Figure 5.1. 

These are, 

• System engineering requirements 

• Reinforcement learning requirements 

• User experience requirements 

• Requirements on the computational capabilities 

 

Figure 5.1: Desired requirements imposed on the framework in order to guide the 
development process 

 

 

Systems Engineering Requirements Reinforcement Learning Requirements

User Experience Requirements Computation Requirements

Enable  role-based engineering

Enable collaborative engineering

Enable concurrent engineering

Use model-based systems engineering
Object-oriented programming

Database management and model locks

Server based architecture

User management

Life-long Learning

Auto-exploration

Adapt to decision maker’s choices

Handle role-based training data
Modification to prioritized experience replay

Threaded training of deep neural networks

Batch execution of M&S

Model “upgrade” capability

Handle training data from multiple platforms

Enable visualization of progress of training process

Enable the configuration of training models

Enable M&S on local workstations

Interactively provide design recommendations

Client-Server Interface

Prediction API

Web-interface for configuration

Web-interface for visualization

“Internet of things + Cloud computing”
Train models on compute cluster

Enable M&S on compute cluster

Enable multi-agent learning

Remote computing

Remote computing

Parallelization of M&S



 134 

5.1.1 System Engineering Requirements 

The systems engineering requirements function as the bridge between the 

reinforcement learning framework and the design applications. They guarantee that the 

application to which the framework is applied meets the requirements of parameter, 

design and value definitions identified by the second research question. Further the 

implementation of a systems engineering capable framework would enable a process of 

automated verification and validation, i.e., design evaluation, which in turn acts as an 

indicator of a goodness of a design and hence the associated design decisions. In the 

current dissertation this is accomplished by the development of a model-based systems 

engineering (MBSE) framework. A MBSE framework with its inherent object-oriented 

representation of the structure of the designed product is aligned with the frame-based 

data representation scheme hypothesised in CHAPTER 4. The details of the model-based 

system engineering framework are addressed in CHAPTER 6 in the context of the 

problem of design of unmanned aerial vehicles. Additional requirements that arise from 

the consideration of the manner in which the design applications generate data are that of 

the source of the data and the frequency of production of data. As in a typical engineering 

setting, data can be generated by multiple engineers there may arise a necessity to 

distinguish between the value of each data point. For example, if a certain problem data is 

generated by an engineer considered to be an expert in the field, such data points would 

contribute more significantly to the efficient learning of an algorithm in comparison to 

that generated by a novice engineer. This can, in turn, be phrased such that the framework 

being capable of handling user roles and thus making a distinction between the data 

generated by users of different roles. In the current dissertation, two roles of engineers are 

considered: the expert and the novice engineer. In an engineering setting, a typical 
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problem is addressed by a set of engineering teams who may be spread across different 

parts of the world. As the data generated by each team would can be viewed as training 

the same learning system, there is a necessity for the framework to handle data from 

multiple different sources, i.e., different instances of the design application. This can be 

viewed as enabling the process of collaborative engineering. Finally, the nature of 

engineering design is such that different teams work on different portions of the design 

problem in parallel. This leads to the parallel generation of engineering data that, while 

related, are often associated with different design decisions. In order to accommodate 

such a scenario, the framework has to able to handle the issue of concurrent generation of 

design knowledge. 

5.1.2 Reinforcement Learning Requirements 

The requirements placed by the reinforcement learning framework involve the 

manner in which an artificial agent would learn from the extracted knowledge. The 

primary requirement comes from the fact that the generation of data generated would 

occur from multiple sources, i.e., expert and novice engineers. In such a scenario, there is 

a necessity for the modification of established learning mechanism to account for the 

contributions of multiple sources of data. Another consideration to be made is that of the 

manner in which an agent would traditionally learn. In the traditional reinforcement 

learning setting, an agent is trained against a static prepopulated database for a certain 

duration or until the agent fails to improve. But in the current setting, given that the 

knowledge base is dynamic in nature, it is necessary to consider a dynamic training 

setting for the agent. To this end, it is proposed to leverage life-long learning [157] and 

transfer learning [158] where agents are constantly trained with changes to the knowledge 
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base. Thus, it is necessary for the framework to enable a means for the dynamic 

adaptation of the agent during its utilization process. Finally, in order to ensure the 

identification of the best possible set of decisions, often learning from purely the set of 

demonstrated data may be insufficient. This may be a result of the biases in humans that 

prevent them from making the best possible decision at every step or due to the nature of 

the problem where the human operators are unaware of the best possible decisions to 

make. In such a case, it is necessary for the artificial agent to be able to gather knowledge 

by auto-exploration. This of course restricts the design applications to which the 

framework can be applied as in order to enable auto-exploration, the design application 

has to provide a capability for the batch-execution of the modelling and simulation 

process. 

5.1.3 User Experience Requirements 

The user experience considerations for the development of the framework arise 

from two sources, the first form the manner in which the users would interact with the 

framework to develop an agent’s model and the other for the manner in which the data 

for the training of the agent is generated. In the first case, the configuration of the agent’s 

models is to occur at a design project level. Given that multiple teams across different 

locations work on the design problem, it is proposed to centralize the location for the 

network definition and configuration. This also enables the framework to work with data 

from different sources of knowledge, i.e., knowledge being created from not just personal 

computers but also other devices. This, of course, necessitates the of standardization of 

the interface between the framework and the design application. Finally, it is desired that 

the framework interface with the design application to provide recommendations to the 
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user in an interactive manner as and when requested by the engineer. This implies that the 

framework has to be capable of calling upon the trained agents to make predictions 

regarding the actions that have to be taken by the engineer using the design application. 

The means of representation of the recommended decision is assumed to be handled by 

the application.  

5.1.4 Computational Requirements 

The requirements of the computational capabilities arise from the training 

durations that may be required to adequately train the agent. Due to large amounts of 

computation required, there is a necessity to trigger the learning process on compute 

clusters capable of providing the necessary computation capabilities. Further, in the 

process of auto-exploration, there would be a necessity to execute the design application 

on these compute clusters so as to enable the generation of exploration data. Finally, there 

may be the necessity to train multiple agents as in the case where decisions associated 

with different disciplines requiring an agent to represent each discipline of the design 

process. In the absence of any interactions between the decisions and the underlying 

disciplines, it is possible to train the agents associated with the decision in parallel. Thus, 

the framework needs to provide a capability for both the parallelization of the training 

process and the parallel training of multiple agents. 

5.2 Framework Architecture 

Based on the requirements posed, a server-based framework architecture is 

developed. The framework would necessitate the inclusion of a knowledge base, a 

retrieval mechanism for the knowledge and a standardized interface between the server 

and the design application. In order to streamline the flow of information, two separate 
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servers are setup by the framework; one to host the database and another that serves as 

the computation and training server. Owing to the growing popularity of the Python 

programming [159] language [160], its open-source availability, its interpreted nature and 

the ability for quick prototyping that is intrinsic in the language, the backend of the 

framework is developed in Python. Further, open source packages developed by the 

Python community and free software alternatives are leveraged in assembling the 

components of the framework in order to ensure reproducibility of the framework 

demonstrated in the dissertation. In the development of the knowledge-based 

reinforcement learning framework, there are two levels of abstraction that are created. 

The first of the two handles the project, user, and item management tasks while the 

second addresses the problem of learning. These layers are stacked on top of each other 

creating the final framework enabling knowledge-based learning. The following passages 

address the components of the framework and highlight the interactions that occur 

between them and the design applications, and the following section highlights the data 

models and their interactions that constitute the framework. 

5.2.1 Framework Components 

The architecture of the framework is highlighted in Figure 5.2. The figure clearly 

identifies the two constituents blocks of the framework, the database server and the 

computation server. The architecture for the database server builds off of the object-

oriented MBSE framework proposed by Balestrini-Robinson et. al. [161] in which a 

database server is configured with NoSQL and graph databases to store application data 

supplied by the backend of the sever-based application forming the core element of the 

framework. 
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Figure 5.2: Architecture of the framework that enables knowledge-based learning 
and automation 

On the other end a computational server comprised of a set of graphical 

processing units and central processing units are assembled to represent the computation 

element of the framework. These, too, interact with the backend of the framework where 

learning data queried from the database and signals indicating the learning status are 

passed to the learning algorithms to control the nature of training. 

5.2.1.1 Databases 

NoSQL database stores all the data that is utilized in the framework to aid the 

process of learning. The data generated could correspond to the instance of the design 

application from which knowledge is created, the actual knowledge generated by user 
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actions, and also the models that are generated as a result of the learning process. The 

choice of a NoSQL database stems from the ability of such databases to store ASCII 

encoded data in a text-blob means. This enables the storage of complex relations between 

the data models while preventing the necessity for the definition of explicit relations 

between that characterize standard tabular or relational databases. The NoSQL database 

is realized through the use of free NoSQL database provider MongoDB [162]. In order to 

ease the communication between the framework which lives in the Python session 

creating data models and learning models as objects and the database that stores these 

models as documents, an object-document mapping package, mongoengine [163], 

developed in Python is utilized. An inherent drawback of utilizing NoSQL databases is its 

inability to handle complex retrieval queries, such as perform complex logical operations 

between elements of the stored dataset. In order to address such an issue, in parallel to the 

NoSQL database, a graph database is utilized where information associated with the 

objects created in the NoSQL database are stored in the form of relational triplets with 

the edge identifying the relation and the nodes characterized by the unique identifiers 

associated with the model objects. As highlighted by researchers [164] RDF databases in 

contrast to NoSQL databases are capable of efficiently handling highly complex queries. 

This is leveraged and an RDF store database in the form of a graph database is utilized. 

This is represented by the “neo4j” node in the architecture of the system. Neo4j is chosen 

as it not only provides a community version of the graph database free of charge, but also 

due to the availability of bindings to the graph framework in the Python programming 

language, such as neomodel, Neo4jRestClient etc. Thus, in the current dissertation the 

open source Python package neomodel [165] is utilized as the interface between the 

backend of the framework and the graph database, neo4j [166]. 
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5.2.1.2 Computational Setup 

The other part of the framework is represented by the computational server that 

comprises of a set of computational nodes that are configured to train the learning 

models. The learning models are trained using the open-source dataflow programming 

library, tensorflow [167]. In order to enable memory intensive computation, there are two 

compute nodes utilized. Each node is comprised of two nVidia Tesla 8GB K10 GPUs and 

a set of 16 Intel Core i7 processors. Two separate tensorflow configurations, one for the 

GPUs and another for the CPUs, are utilized to obtain optimized performance across each 

training task, although the training of an agent is restricted to one single GPU per node, 

while no such restrictions are placed on the CPU. As a result of the differences in 

performance of the GPU and CPU, where there was an marked (x30) improvement in the 

training speed as a result of the utilization of the GPU, the framework was configured in 

a manner such that all the model training occurred on the GPUs while the evaluation and 

prediction of the models was carried out on the CPUs. The compute server was built on 

top of an Apache HTTP web server [168], which provides an open-source cross platform 

web server that enables the communication between the framework and the design 

application.  

5.2.1.3 Integration and Configuration Unit 

The integration and communication between the computation and database server 

is carried out on a third, and final, host server. The choice of having a separate server is 

made in order to avoid unnecessary loads on either the computation and the database 

server. The integration is carried out through the utilization of the REST framework 

which provides a language neutral means of communication across machines. The REST 
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API is built off of a Python backend for the web server developed in the open source 

Python package Django [169], with the API being developed through the use of Django-

Rest-Framework [170], a Python package that enables the development of streamlined 

web APIs. While a user interface may provide an easier experience in terms of the 

configuration of the models being trained, the current research work achieves this 

through the use of web APIs, with the development of a web-based interface put off for 

future work. Finally, the computation server hosts the visualization framework, 

tensorboard [171], that enables the visualization of the progress of the training process 

across all the agents that are trained by the framework. The integration unit and the host 

server also function as the interface between the design application and the framework 

through which data is imported into the databases and predictions are exported from the 

trained models. 

5.2.2 Data Models 

The current section addresses the data models that are used in the framework and 

the interactions between them that enables the development of an application agnostic 

knowledge-based learning framework. The primary abstraction of the data models occur 

at two levels, the first of which generates abstract representations for the design 

application, the design problem and the active design instance, while the second deals 

with the representation of the artificial agent, the mechanism for training and the 

knowledge extracted from the design application. Each design application is identified by 

an active application instance. The instance is registered on the framework when the 

design application is launched and is terminated when the application is shut down. In 

addition, it is assumed that each design application can work on one single project 
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instance at any instant of time. The project is used as a representation for a design process 

or design activity. The result of the project is the creation of a set of items that are the 

abstract representation of the result of a completed design process. Finally, each project is 

associated with a set of users that manages the access for the users in the project and this 

is further refined by access criterion placed on the items. The UML diagrams for each of 

these models is shown in Figure 5.3 where the contents of each of the data model is 

highlighted.  

 

Figure 5.3: Application level data models contained in the framework 

The key feature to note among these data models is that the project in the 

framework can exist in three states, in preparation, completed and obsolete. Projects in 

preparation are only visible to engineers who are members of the project, released 

projects are one that are visible to all engineers in a certain group and the released status 

is assigned when the project has been completely setup and the analyses are either ready 
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to be or have been executed. In order to enable collaboration between users, the 

framework implements a notification service that enables the transmission of messages 

and event notifications between users. In order to ensure concurrent engineering can be 

implemented, the database nature of the models used to represent the designs, ensures 

consistency in the data stored in the database thereby preventing conflicting edits to 

common aspects of the problem. This is achieved by the association of a state 

representing the edit state of an item at any instant of time. When the state of the item is 

altered by a user to represent the edit operation undertaken by that user, the attributes of 

an item upon commit are locked from being edited by others thus preventing conflicting 

edits to the same attributes. These changes are then notified across all other users who 

have the item active in their corresponding design applications. The concept of 

notifications is also utilized to enable communication within the framework where 

signals are passed from the knowledge database to the computation server to activate the 

agent’s learning process or update an agent that is used as the predictive model. The 

connectors that have a single symbol at its end indicates a composition, while the 

connector having a symbol on either end represents a many-to-many relationship. While 

the database used NoSQL, a semi-structured relationship definition is utilized in order to 

standardize the nature of interactions permitted with the framework and also enable a 

better documentation of the framework for future development efforts. 

On the other end of the framework are the data models that are associated with the 

learning models, the training model configurations, the associated algorithms and the 

knowledge that is stored within the database. These models are illustrated in Figure 5.4 

and revolve around the creation of a ControlItem.  
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Figure 5.4: Data models associated with the creation of the artificial agent 

These control items function as containers for the agent containing not only the 

data to be utilized in the training process, but also the configuration for the training 

algorithm and the agent’s model. The control item is configured through the specification 

of the design application that it is to be associated with, so as to enable any resultant 

agent automated control of the design application during the auto-exploration phase. In 

addition to the specification of the environment, a set of configuration parameters 

controlling the nature of the learning process are to be specified during the creation of the 

control item. The control item also supports the specification of the training mechanism 

or algorithm, which in turn can be configured based on the type of algorithm chosen. 

Each algorithm would support one or more agent model would need specification in 

order to completely configure the control item. Having specified all the configuration 

options, the training process would await the number of training samples specified in the 
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options to start the agent’s training process. Each training sample would be represented 

by a data point that would comprise of a data source, i.e., user creating the data point, 

state of the design application or the design model, the action taken by the user, the 

resultant state of the system and the observed reward as a result of the transition. While 

not implemented in any of the use cases, the framework supports the ability to model the 

state of the system as an image enabling a visual perception of the design application. 

The extension for the inclusion of visual perception is planned to be addressed as a future 

work of the current research. Figure 5.4 also illustrates the relationships that exist 

between the data models of the artificial agent. In addition to the relationships, the figure 

also indicates the aggregation and inheritance in the data models displaying how different 

models can be utilized to realize a knowledge-based learning framework. 

5.3 Event sequence in the framework 

There are two modes of events that the framework is comprised of, the first being 

the knowledge extraction event and the other the knowledge utilization event. In the 

knowledge extraction mode of operation, an engineer’s decisions are automatically 

identified in order to extract knowledge contained in those decisions and represent these 

in an appropriate means for the training of the artificial agent. The knowledge utilization 

mode relies on the presence of a trained agent that can supply recommendations as to the 

actions that are to be taken by an engineer when faced with a design problem in the 

operation of the design application.  The modes of operations are illustrated in the Figure 

5.5 and Figure 5.6. The details of the operation of in the different modes are addressed in 

CHAPTER 7. 
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Figure 5.5: A high-level representation of the sequence of interactions that occur 
between the elements of the framework in the extraction of knowledge from a design 

application 

 

Figure 5.6: A high-level representation of the sequence of interactions that occur 
between the elements of the framework in the generation of a recommendation of a 

decision  
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CHAPTER 6. USE CASE I: MBSE APPLICATION FOR UAV 

DESIGN 

The current chapter introduces one of the two use cases to which the framework is 

applied. The first use-case deals with the problem of design of an unmanned aerial 

vehicle using a Model-based Systems Engineering application. The purpose of the use 

case is to demonstrate the capability of the reinforcement learning framework to replicate 

human-level decision making in the presence of demonstrated data and to improve over 

the demonstrated performance through explorations. The use case also evaluates the 

feasibility for the transfer of knowledge from one scenario to another where there is a 

change in the problem formulation in terms of the requirements. In order to enable a 

system-engineering based formulation of the problem, the research work develops a 

Model-based Systems Engineering framework that enables the application of knowledge 

extraction and representation methods. The application is developed in PyQt [172] so as 

to simplify the knowledge extraction capabilities and to develop a prototype for the 

demonstration of the learning capabilities. In this use case, knowledge is extracted in an 

automatic means as opposed to being extracted to being demonstrated by humans. The 

consideration of incorporation of human-decisions in the training the artificial agent is 

made in the other use-case. The chapter addresses the following topics,  

• Development of a MBSE framework for the purpose of knowledge extraction and 

representation.5 

                                                
5 The work done on the development of the MBSE framework has been published as part of the paper “On-
Demand Small UAS Architecture Selection and Rapid Manufacturing Using a Model-based Systems 
Engineering Approach” at the ICAS 2018 conference [Justin2018]. The author of the dissertation is one of 
the two leading contributors to the published paper. 
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• Introduction of the mechanism for knowledge extraction and the associated 

encoding scheme for the implementation of the learning algorithm. 

• The formulation of the learning problem, in terms of the metrics associated with 

the use-case and the means for incorporation of requirements into the formulation 

of the problem. 

• Finally, a detailed analysis of the results observed from the execution of the 

learning algorithm in different scenarios, such as an exploratory algorithm 

without demonstrations, demonstrations from multiple sources, and finally, the 

ability to generalize across different combinations of components and 

requirements. 

6.1 Model-based Systems Engineering Application 

Model-based Systems Engineering (MBSE) [173] is a process in which models 

are used in the description of the product being design such that the resultant engineering 

process would enable the generation of a virtual engineering framework that accounts for 

all the different elements of the product design life cycle, ranging from requirements 

engineering to verification and validation of the designed product. Due to this capability 

of enabling a virtual representation of the design process and the feedback of results into 

the design through the virtual verification and validation process, the MBSE process can 

be utilized to generate an estimate of requirements satisfaction. This key concept is 

leveraged in the current work. Although several MBSE applications do exist in the 

market such as MagicDraw [174] or Enterprise Architect [175], most commercial 

applications do not meet the requirements posed by the research work. These system 

typically are restricted to being a modelling environment, without the capability for 
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simulations or completely black-box applications that do not provide access an API for 

the extraction of knowledge from the application. Thus, as an alternative to these 

applications, a simplified version of a MBSE application is developed in the current 

research work. 

Traditionally, the MBSE approach builds on the model-centric view established by 

Model-Based Engineering (MBE) [176] by extending it to the field of systems 

engineering. The well-established model-centric view of engineering relies on the use of 

models as an integral-part of the baseline. With the recent surge in the demand of 

unmanned aerial vehicles there have been considerable investigations into the use of 

MBSE-based approaches for the design of UAV [177]–[180] While these past 

investigations into the development of MBSE-based approaches for the design of the 

UAV have looked into means for improving the design processes and the design cycle 

time from the perspective of automation, they do not address the issue of capture of 

design knowledge from the MBSE application. As such, the methods and processes 

proposed in by the researchers thus far rely on expert engineers setting up an automated 

process using which the automation of tasks can be accomplished. The underlying issue 

with these methods is the inability for the system to learn from the experiences observed. 

This is addressed in the current research work with the development of a simplified 

version of the MBSE application in which artificial agents extract knowledge from the 

design system while the design system is in use and provide recommendations to the 

users, when requested. The application is built in a manner to provide the artificial agent 

the capability of exploration of actions that constitute the design process. 
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6.1.1 Background 

The framework of MBSE enables life-cycle management of a product through the 

representation of each of the element of the design as a model. This includes the 

generation of models for activities such as requirement analysis, performance analysis, 

design optimization, requirements verification and validation. Thus, the MBSE 

framework accounts for all the elements of the life cycle of the product, from the 

beginning of the conceptual design phase with the definition and handling of 

requirements, to detailed design and manufacturing, and to the later life-cycle phases of 

validation, operations support, and maintenance. Overall, an MBSE framework improves 

communications across development teams, reduces design cycle times, and reduces risks 

through the identifications of failures earlier in the design cycle [181]. It has to be noted 

that MBSE provides a framework through which systems-engineering based design can 

be carried out, but it does not provide a methodology or a language in which to carry out 

the design process. Based on the results of the comprehensive review of established 

MBSE methodologies [182] and languages [183], a choice to extend the methodologies 

and language capabilities offered by System Modeling Language (SysML) is made. The 

SysML provides a language that can be utilized to describe the contents of the product 

being designed through the extension of a subset of the Unified Modeling Language 

(UML) protocols. Figure 6.1 represents the key elements that form a part of every model 

defined using SysML and also illustrates the interactions that occur between these 

components. 

The four elements identified by the figure are termed as the pillars of the SysML model 

and are described as follows, 
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• The requirements package describes the desired characteristics of the product 

being designed in terms of the product behavior, design and operation. These 

establish bounds and checks on the actual product behavior and the goal of 

each engineering process is the satisfaction of the defined set of requirements 

to a certain degree. By identifying the appropriate set of requirements in a 

design problem, it is possible to establish the set of objectives for the design 

problem along with its constraints. 

 

Figure 6.1: Elements of a model in SysML and the interactions that occur between 
these elements [181] 

• The behavior package generates models for the functional and physical 

behavior of the system being modeled. The package describes the interactions 

that occur between the components of the system from a functional 
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perspective while providing an indication of changes that occur to the 

component when certain parameters are altered on the system.  

• The structure package models the contents of the system being represented by 

the model. The structure package describes the constitution of the system in 

terms of the subsystems and the components and also describes the physical 

connections that exist between these subsystems. The usage of SysML further 

enables the specification of possible connections that can exist between the 

elements of the system. 

• And finally the parametrics package which describes the relationships and 

bindings between different attributes defined in the elements of the structures 

package. The parametrics are typically used to represent the physics-based or 

statistical relationships that govern the manner in which the parameters 

associated with the elements in the system can vary. 

As SysML is only the language that governs the specification of the model of the system, 

it is not inherently executable. This in turn results in the reliance on external applications 

to simulate the behavior of the system after having modelled the system being designed 

[177], [183]. Further, as designers may not be familiar with the fundamentals of systems 

engineering making the adaptation of the systems engineering paradigm of design 

challenging. The developed framework adapts the traditional view of SysML with two 

modifications. These are, 

• In order to mimic the nature of complex engineering design, the framework 

merges the behavioral and parametrics package into one single “processes” 

package. Each process within this package is formulated as a design structure 
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matrix (DSM) [184] a representation that is an accepted standard for the 

representation of complex engineering processes in the engineering domain [185].  

• Secondly, the data structure associated with the representation of the elements of 

each of the package is standardized. Every package represents the data comprised 

within it in the form of a tree-data structure, with interactions between elements 

within the trees being defined by a new type of standard attribute called the 

“interface”.  

The adaptation of the standardized representation and the introduction of an executable 

capability for the SysML framework eliminate the need for intermediate model 

converters in the execution of the design process, thereby bypassing the learning curves 

associated with the traditional SysML practices. 

6.1.2 Modelling the UAV 

The modeling of UAV per the specifications of MBSE requires the development 

of computational representation of the requirements, the system structure, the component 

interfaces, and the processes associated with the design and manufacturing activities. The 

following section details the development of the models necessary to analyze the 

capabilities of different UAV architectures, thereby evaluating their capability to satisfy 

the requirements posed in terms of the mission performance. 

6.1.2.1 Requirements Modeling 

The process of engineering design begins with the definition of a set of 

requirements that drives the consideration of the design process. The traditional Forsberg 

and Mooz Systems Engineering “Vee” model [186] relies on the presence of a decoupled 
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process of requirements definition and that of the requirements validation, even though, 

the process of requirements verification and validation forms an integral part of the 

process of automation of engineering decisions. Thus, having an executable MBSE 

framework in which requirements are automatically mapped to the metrics of interest 

alleviates the issues faced by the decoupled approach of requirements definition and 

decomposition and that of the requirements validation and the recomposition. The 

presence of such an environment would imply that as and when parameters are altered on 

the system, the evaluation of process models that reference these parameters can be 

automatically triggered and the outputs of these processes can be mapped back to the 

requirements to provide an indication of if the design meets set of requirements with an 

indication of the source of dissatisfaction, if any. From the development of the 

application, two prerequisites are imposed on the requirements package. First, it is 

assumed that each requirement defined by an engineer is stated in natural language. This 

implies that there would be a necessity for the application to process natural language and 

to convert this representation into that of engineering using appropriate metrics. 

Secondly, owning to the difficulty in translation of requirements to constraints and the 

mapping of requirements to physical entities in the designed structure, an automated 

framework is necessary to handle the association of requirement models with that of the 

define structural elements. This would again necessitate the ability for processing of 

natural language and engineering language.  

To achieve these targets, the field of natural language processing (NLP) [187] and 

text parsing are used. The process of engineering design begins with the elicitation of 

requirements which typically results in the curating of requirements stated in natural 

language. In the case of a UAV, this can be viewed as being a specification of the 
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vehicle’s desired functionality from which an engineer would derive the performance 

metrics to guide the design process. In the aircraft design community, one of the main 

sources of the requirements that triggers the design process of the aircraft is the mission 

profile from which the engineering metrics can be extracted. In order to explain the 

process involved in the extraction and identification let us consider an example of a 

mission requirement, 

“The UAV shall fly a distance of 1,800 m within 2 min.” 

The methodology implemented that translates the description of the requirement into a 

verifiable model is four-fold and builds on the methodology demonstrated in the past 

[188][189]. The process is illustrated in the Figure 6.2. 

 

Figure 6.2: Algorithm for the processing of requirement described in natural 
language using NLP 

• First, a dependency tree [190] is built so as to identify the elements of the 

sentence thereby breaking complex requirements into a set of simpler 

requirements. In the above scenario, given that there are two objects of 

prepositions, the input requirement can be decomposed into two, one that deals 
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with the range associated with the attribute “distance” and value “1,800 m” and 

another that deals with the duration associated with an implicit attribute “time” 

and the value “2 min”.  

• Second, once the requirement is decomposed into its constituents, a vector 

embedding [191] is generated for each individual requirement. This vector 

represents the projection of the natural language requirement into an n-

dimensional real space where similar requirements occupy a common region of 

the space. This is exploited next to identify the nature of the requirement, i.e., 

classify the requirement based on a pretrained classifier. This classification 

algorithm provides a description of the nature of the requirement which is then 

passed downstream to subsequent steps. 

• Third, a parameter and value identification algorithm is called upon. The value 

identification follows from the dependency tree identification as valued 

parameters are identified with the “nummod” [192] modifier. For the given 

example, 1800 and 2 are identified as the values of interest. For each value 

identified, the association of a parameter is attempted. Both the parameters 

“distance” and “time” are identified via a mapping of the objects of prepositions 

associated with the numerical value to a predetermined set of parameters. The 

algorithm relies on the use of a set of prespecified mappings to identify standard 

parameters for unspecified requirement parameters. The nature of the requirement 

serves as an input to this algorithm to handle special cases where the parameters 

of the requirement are not cardinal numbers, such as in the case of take-off 

surface or the type of vehicle launch mechanism. 
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• Finally, the relationships that exist in the given description are used to identify the 

source node. This process of identification of the source node can enables the 

extraction of the validation relationship for the requirement. In the above 

example, the relationship extraction algorithm identifies that for requirements, 

distance and time, the nominal subject is the noun “UAV”. One assumption is that 

there is an entity in the structures block whose name or description matches the 

target identified by the relationship identification algorithm. It also assumes that 

the identified parameters (distance, time) exist on that node in either the identified 

form or in one of their mappings, i.e., distance being mapped to the parameter 

range. 

 

Figure 6.3: A SysML-like representation of the generated cruise requirement 

With this information, the requirements tree is ready to be populated with the new 

subtree constructed from the specified description. The leaf nodes of this subtree are 

assigned a unique semantic ID and have the attributes of description, parameter, value, 

relationship and source. This information is then encoded into the requirements model 
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that is illustrated in Figure 6.3. To verify the satisfaction of the requirements, a two-stage 

approach is taken. First if a requirement has an associated source, parameter, relationship, 

and value, the evaluated value of the parameter of the source node is checked to see if the 

requirement is satisfied. If the requirement is satisfied, the satisfaction of all its children 

is evaluated. If all the child requirements are satisfied, then the evaluation would proceed 

to a sibling requirement node. This recursive approach is employed to identify how 

requirements flow from the leaves to the root of the tree, therefore providing users with a 

clear picture of the source of infeasibility, if any, as illustrated in Figure 6.4. 

 

Figure 6.4: Process flow for the validation of requirements through recursive 
traversals of the requirements tree 

An example of the set of requirements associated with the design is illustrated in Figure 

6.5. The figure demonstrates the result of the decomposition of requirements from that of 

the definition of the mission requirements to the sub-requirements using the process 

described above. 
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Figure 6.5: An example of the requirements decomposition that guides the design 
process of the UAV 

6.1.2.2 Structures Modeling 

The function of the structures package in the SysML paradigm is to describe the 

constituent elements of the system being modeled and also the relationships that exist 

between the elements of the system. The nature of UAV design is such that the elements 

of the system are typically obtained through off-the-shelf components with the 

components being chosen based on the design performance and the requirements defined. 

A design variant is defined as a combination of a set of compatible elements forming the 

system and a set of values for the scalable design parameters. The purpose of 

decomposing the vehicle is not only to enable the transition from one design variant to 

another by replacement of one modular component with another, but also to establish the 

interface specifications for these components. Thus, the structures package is formed by a 

Requirement 1: Mission Requirement
• The UAV shall complete successfully 

the mission as per the mission 
description.

Requirement 2: Manufacturing Requirement
• The UAV shall be manufactured within 

48 hours.

Requirement 1.1: Take-off requirement
• The UAV shall be  hand-launched and 

shall clear the 10 m high forest canopy 
within 50 m.

Requirement 1.1.1: Take-off requirement (A)
• The UAV shall be hand-launched.

Requirement 1.1.2: Take-off requirement (B)
• The UAV shall clear an obstacle of 10 m.

Requirement 1.1.3: Take-off requirement (C)
• The UAV shall satisfy the climb requirement within 50 m.

Requirement 1.2: Climb requirement
• The UAV shall climb to a height of 100 m 

above ground level at a rate of 1.5 m/s 
within 600 m.

Requirement 1.2.1: Climb requirement (A)
• The UAV shall climb to a height of 100 m above ground level.

Requirement 1.2.2: Climb requirement (B)
• The UAV shall climb at a rate of at least 1.5 m/s.

Requirement 1.2.3: Climb requirement (C)
• The UAV shall satisfy the climb requirement within 600 m.

Requirement 1.3: Cruise requirement
• The UAV shall fly a distance of 1,800 m 

within 2 min.

Requirement 1.3.1: Cruise requirement (A)
• The UAV shall fly a distance of 1,800 m.

Requirement 1.3.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 2 min.

Requirement 1.4: Loiter requirement
• The UAV shall loiter over the point of 

interest for at least 5 min.

Requirement 1.5: Cruise requirement
• The UAV shall fly a distance of 2,700 m to 

a retrieval point within 3 min. 

Requirement 1.5.1: Cruise requirement (A)
• The UAV shall fly a distance of 2,700 m.

Requirement 1.6: Landing requirement
• The UAV shall land within 15 m on a turf 

field and without damage.

Requirement 1.6.1: Landing requirement (A)
• The UAV shall land within a distance of 15 m on a turf field.

Requirement 1.6.2: Landing requirement (B)
• The UAV shall not be damaged during landing.

Requirement 1.7: Payload requirement
• The UAV shall carry a payload of 0.15 kg.

Requirement 1.8: Weight requirement
• The gross weight of the UAV shall not 

exceed 5kg.

Requirement 2.1: Manufacturing requirement
• The manufacturing time for the UAV shall 

not exceed 48 hours.

Requirement 1.5.2: Cruise requirement (B)
• The UAV shall satisfy the cruise requirement within 3 min.
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physical and functional decomposition of the UAV which results in a set of branches 

along which the decisions can be made. The first branch is that of the architecture of the 

UAV. The current research work limits the consideration of the architectures to the fixed 

wing and multicopter UAVs. Each one of these architectures are further decomposed into 

a set of subdivisions namely the agility- or endurance-focused vehicle in fixed wing 

group and the hexa- and quad-rotor vehicle in the multicopter group. The other branch of 

the “structure tree” is that of the components that are placed on the UAV. These 

components choices list the set of possible off-the-shelf alternatives that have to be 

loaded onto the vehicle in order to provide the necessary functionality, such as 

propulsion, electronics etc. A functional decomposition of the subsystems of the vehicle 

is carried out. The functional decomposition identifies the subsystems of the vehicles as 

being the propulsion subsystem, the flight-control subsystem, and the payload subsystem. 

These subsystems are then physically decomposed to identify the constituent 

components. The propulsion system is decomposed into motor, battery, electronic speed 

controller, and propeller. The flight-control subsystem is decomposed into servo motor, 

electronic speed controller, battery, and control surfaces. When multiple subsystems 

share components, interface relations are established to enforce the shared relation 

between these components. Similar exercises are undertaken for the payload subtree in 

order to generate the structure tree. The final decomposition of the system is carried out 

with the identification of the manufacturing alternatives for the vehicles. In the current 

analysis, it is assumed that the vehicles are additively manufactured through commercial 

3D printing devices for which a set of three printers are selected.  The complete 

decomposition of the system without the various instances of the components is 

illustrated in Figure 6.6. 
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Figure 6.6: The decomposition of the UAV indicating the subsystems and the 
components that have to be modeled in SysML 

The decomposition of the vehicle provides an indication of the architectural and 

design space of the vehicle, but these spaces are constrained by the compatibilities that 

exist between the components. For example, the multicopter UAVs do not require any 

servo motors on board in order to operate. This can be represented as a compatibility 

constraint between the two subsystems. This represents a physical incompatibility 

between two components. On the other hand, a physics-based compatibility relationship 

can also be established. For example, a certain motor may require a specific nominal 

voltage. An interface constraint restricting the selection of batteries unable to provide this 

voltage can be established for this motor, thereby reducing the set of possible variants. 

Having decomposed the entire system, key attributes of components are gathered and 

classified into two groups. The first contains commercially-off-the-shelf alternatives 

while the second contains specifically designed parts. Databases containing specifications 

are established for the commercial off-the-shelf alternatives such as batteries, motors, 

propellers, electronic speed controllers and payloads. These configurable databases are 

then used to populate the leaf nodes for the appropriate component node. The final step in 

the decomposition is the identification of the design parameters for the components 
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classified as being specifically designed. These, in addition to the design parameters at 

the architectural level, dictate the set of scalable parameters that are to be considered 

during the design process. Figure 6.7 illustrates an example of the SysML-like 

representation that is generated for the one of the components that constitutes the vehicle 

and its decomposition into a subset of its alternatives. Table 6.1 on the other hand 

illustrates the decomposition of each of the decomposed components that forms the basis 

for the extracted knowledge and that of the representation scheme that is employed by the 

learning algorithm. 

 

Figure 6.7: SysML-like representation of a decomposed component (motor) of the 
UAV with two of its instance alternatives 

Table 6.1: Specification of the attributes for each component of the structure tree of 
the UAV system 

Battery Motor Propeller ESC Servo Payload 

Brand Brand Brand Brand Brand Weight 

Capacity KV Rating Weight 
Max. 

Current 
Weight Power Draw 
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# Cells # Cells Diameter Cost Speed  

Discharge 

Rate 

Max. 

Current 
Pitch # Cells Torque 

 

Mass Max. Power # Blades Mass Cost  

Cost Cost Cost    

Voltage Weight     

 Resistance     

Table 6.1 (Continued) 

6.1.2.3 Processes Modeling 

The new processes package takes over the function of the behavior and the 

parametrics packages of the traditional SysML. This new package serves the function of 

representing the relations that define the behavior guiding the parameters associated with 

the components and elements defined in the decomposed system. In order to simplify the 

computational representation of the design workflow, a tree data structure is retained. 

This is a result of the multi-layered abstraction of the design process. This multi-layered 

abstraction or hierarchy is divided into three levels: 

• Workflows, which define the evaluation sequence of nested entities and the data 

flow between them 

• Disciplines, which indicate the disciplinary analysis that can be performed 

• Analyses, which represent the set of alternatives within any disciplinary analysis  

In order to represent the processes involved during engineering design, an attempt is 

made to mimic an established standard for their representation using design structure 
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matrices. Design structure matrices provide a representation of the flow of information 

between disciplines and are visually appealing for complex workflows where numerous 

parameters passed around.  

The workflow element of the framework can be viewed as a container which is 

associated with an algorithm. A library of algorithms is provided such that a variety of 

numerical computations can be performed, such as design of experiments, numerical 

optimization, and uncertainty quantification. This library feature is exploited to perform 

both the capability exploration and the uncertainty quantification. Prior to defining the 

characteristics of the workflow, it is nevertheless necessary to define the actual process 

that the algorithm will operate on. The workflow can host a set of interconnected 

disciplines, a set of nested workflows, or a combination of both. The discipline functions 

as a container for a set of analysis owing to its multi-fidelity nature. For a discipline to be 

evaluated, there has to be exactly one analysis that is active at any instant of time. If a 

discipline does not need to be evaluated, logic can be included to deselect any constituent 

analysis at which point the execution of the discipline is skipped until a selection is 

turned back on again. The final layer of the hierarchy is the analysis node. The analysis 

represents the actual computation that is performed in the workflow. These, in addition to 

the workflows, represent the executable components of the framework.  

The executable nature is achieved by the registration of an evaluation source for 

every evaluation node which is represented by the created workflows and analyses. In the 

case of the workflow, the evaluation source would be an algorithm, while in the case of 

the analysis the evaluation source would represent some numerical computation. These 

evaluation nodes are then linked to the evaluation ports, which are abstract methods 



 166 

definitions on the structure. This linkage definition ensures that attributes of the structural 

node are visible to the evaluation source. Optional interface specifications, in the form of 

value bindings, can be specified for the evaluation sources. The bindings efficiently map 

parameters from the evaluation to and from the registered structure node as an evaluation 

is undertaken. These values bindings can also map the nodes themselves in cases where 

multiple parameters have to be accessed, thus reducing the amount of coding necessary. 

Interfaces across disciplines can be defined at the workflow level such that mapping 

between parameter values are efficiently handled upon completion of the execution of a 

discipline. These parameter mappings can be defined through equations that dictate the 

‘interface’ between scalable parameters in the case of the UAS application. 

This means of representation for the evaluable workflow enable the virtual 

verification of requirements with the introduction of the ability to link parameters of the 

analyses to those defined in the structure of the system. 

6.1.2.4 Vehicle Sizing and Synthesis Workflows 

The performance analysis of the system is carried out through the created workflows. In 

particular two separate workflows are defined, one that represents the design process 

involved in the design and manufacturing of a fixed-wing vehicle and the other that 

represents the processes involved in the design and manufacturing of the multicopter 

vehicle. The objective of the sizing and synthesis is the identification of the appropriate 

choice of the wing loading and the optimal wing and the empennage on the fixed wing 

vehicle and the identification of the minimum arm length necessary on the multicopter 

vehicle. The wing loading determines the wing area and hence in turn determines the 

system weight that is utilized as an indicator of the goodness of a design. In order to 
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estimate the wing loading associated with the vehicle, a version of the Mattingly 

constraint analysis [193] adapted to low-Reylond’s number flight is performed. Equations 

are developed for the relationships between the manufacturing time, components weights 

and wing loading in order to generate a constraint diagram from which a suitable design 

can be selected. Similarly, for the case of multicopter sizing, a power-based and energy-

based formulation is utilized. The process involved in the sizing and synthesis of the 

vehicle is explained in detail in the published work [180].  

6.1.2.5 Relationship between the Sizing and Synthesis and the Artificial Agent 

In both cases of the fixed-wing and multicopter design, the sizing and synthesis functions 

as the black-box environment that the artificial agent interacts with selecting both the 

components that have to be loaded onto the vehicle and the parameters associated with 

the size of the vehicle. From the perspective of the artificial agent, the sizing and 

synthesis routine serves the purpose of indicating the goodness of a selected set of 

decisions. In the current analysis, this goodness is measured as a function of the total 

weight of the resultant system, the ability to meet the defined requirements and the 

resultant manufacturing time of the vehicle. Thus, the artificial agent views the entire 

MBSE application as a black to which a set of actions are suggested and an estimate of 

the changes resulting from the action is generated and the reward associated with the 

actions undertaken are estimated as a function of the physics-based relationships 

represented by the sizing and synthesis module. 

6.2 Extraction and Encoding of Knowledge from the MBSE application 

In the case of the UAV design the purpose of the models developed in the MBSE 

application is the representation of the instantaneous design characteristics of the UAV. 
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As the process of UAV design involves the selection of a compatible set of off-the-shelf 

components and the selection of the scalable parameters associated with the selected 

architecture the knowledge extracted from the MBSE application would represent the 

instantaneous state of the design in terms of these variables. As the application developed 

utilizes Qt as its backend, the computational implementation of the knowledge extraction 

is greatly simplified. Qt provides the capability to listen to changes in object states 

through the use of signals and slots. This capability is utilized in the current research 

work as the model based representation of the components translates to an object-oriented 

implementation in the framework. Thus, as and when the state of the object is altered, for 

example, in the case of the system: a change in its composition, a signal can be emitted 

that is processed by a slot which can trigger the extraction of information from the MBSE 

application.  

6.2.1 Extraction of knowledge 

The extraction process is illustrated in Figure 6.8 which highlights the sequence 

of interactions that occur between the MBSE application and the external framework. In 

order to simplify the interactions that need to occur between the elements of the 

framework, the MBSE application is launched as a separate dialog of a container 

application. The container application is configured to interact with the database that 

stores the data that is to be utilized for the learning. As both applications are developed 

on a common platform, the exchange of data between them is simplified.  
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Figure 6.8: Sequence diagram indicating the interactions that occur between the 
elements of the knowledge extraction routine in the MBSE application 

As illustrated by the figure, the slots are established on the container application 

to tail the system model. When any change occurs on the system model, a serialization 

process on the container is triggered where the contents of the system model are 

vectorized in order to generate a node in the database. In contrast to the current use-case, 

there is significantly more detail that is captured in the Siemens NX use-case in the 

serialization process. As the application is assumed (and designed) to be a grey-box, it is 

possible to access certain portions of the application through an API. This enables the 

extraction of information related to the models that have been specified on the system 

being designed. The attributes listed in Table 6.1 represent the data that is extracted by 
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the knowledge extraction process, with an example of the graphical representation of the 

extracted information shown in the Figure 6.9. 

 

Figure 6.9: An illustrative example of the graphical representation generated of the 
extracted information 

As observed in figure, the nodes of the graphical model represent the states of the design 

at different instants of time. In this case, as the states of the design represent a sequence 

of choices associated with the components and the scalable parameters, the nodes encode 

the information related to the following, 

• The type of UAV architecture utilized 

• The attributes associated with the components on-board the UAV architecture 

• The scalable parameters for the UAV architecture 

Although not shown in the graphical model, each node in the graph is associated with a 

list of encoded requirements, which have been encoded using the previously introduced 

embedding mechanism. The edges between the different states represent the action that 

the “engineer” implements. In the current use-case these are represented by either the 

discrete choice of an architecture of the UAV or component that is to be loaded onto the 
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architecture or the choice of a scalable parameter. As the design is virtual in nature, there 

is no restriction on the order in which the components have to be chosen, although the 

framework is engineering in a way such that the choice of the scalable parameter is 

triggered as the final decision of the artificial agent. 

6.2.2 Knowledge Encoding 

The encoding process utilized converts each node and edge on the generated 

graphical model into a vector of real numbers. As the combination of a pair of nodes and 

an edge represent the transition from one state to another, i.e., the decision made by an 

engineer, this sequence of node-edge combination forms the ideal data set to trigger the 

learning process. Thus a vectorized representation of the system is generated by stacking 

the attributes of the components on board with the indicator of the architecture and that of 

the scalable parameter. The action, on the other hand, in case of the selection of an 

attribute is represented as a discrete integer indicating the index of the component in a 

database of predefined set of components and in the case of the scalable parameters 

represents the actual value of the scalable parameter normalized between predefined 

bounds. Figure 6.10 represents the encoded state of an example node that is generated 

through the encoding mechanism utilized. The framework is implemented in a manner 

such that the encoding mechanism introduced is triggered by the container application 

and the encoded information is stored with the node on the graph database. 
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Figure 6.10: Information encoded in each node of the graph that represents the 
instantaneous state of the UAV design 

Figure 6.11 represents a generated knowledge graph containing multiple different design 

variants for a single set of requirements. It is important to note that the length of each 

branch on knowledge graph is dependent on choice of the components as an analysis of 

the feasibility of the component combination is carried out as and when there is a change 

to the system composition. Thus, if the engineer selects two components that are 

infeasible as the first two decisions, then the resultant branch would only contain two 

nodes. Each pink node in the image represents one combination of the design, either 

complete or incomplete, compatible or incompatible and the edge between the nodes 

represents a human action in which some change has occurred to the state of the design. 

A sequence of node and edges when put together represents one exercise of the design 

process in which a certain combination has been evaluated. 
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Figure 6.11: A representation of the knowledge graph representing the several 
different design variants that are generated through different combinations of 

architectures, components and scalable parameters. 

6.3 Formulation of the Learning Problem 

It is important to note that each design variant that is created in Figure 6.11would 

be associated with a set of performance metrics. The performance metrics not only 

indicate the capability of the design variant to meet the specified set of requirements but 

also the other key performance indicators that are associated with the design variant such 

as the total weight of the UAV and manufacturing time associated with the design. Thus, 

methods such a Monte-Carlo tree search [194] can be applied to identify the best 

combination of architecture and components, following which an optimization process 

can be triggered to optimize the choice of the scalable parameters. While such methods 

do produce optimized results, they fail to adapt to the knowledge that is gained through 

the process of exploration. Thus, the framework of reinforcement learning is utilized 

where knowledge gained in the process of exploration is used to bootstrap the estimates 

of performances to guide future explorations to better regions of the space. In order to 
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formulate the exploration problem in terms of the mathematics required for reinforcement 

learning it is necessary to define the contents of the state, action and the rewards 

associated with the exploration problem. The following passages indicate the formulation 

chosen for the problem of UAV design, following which the architecture of the agent 

utilized to perform the exploration is introduced.  

6.3.1 Representation of the System State 

As discussed in CHAPTER 3, the purpose of a design application is to provide a 

representation of the product being designed at any instant of time. In the case of the 

MBSE application introduced in this chapter, the system being designed is represented in 

a graphical format on a central database where each node in this knowledge graph 

represents one unique state of the system being designed. Thus, the vectorized 

representation of the nodes can be utilized as the representation of the state of the 

environment. In the current analysis, though, in addition to the specification of the 

design, each design is generated in response to a particular set of requirements. Thus, the 

requirements too, need to be encoded in the state of the system, in order to generate a 

complete representation of the design problem. Figure 6.12 illustrates the modified 

encoding of the state of the node to account for the requirements that are defined in the 

system. In the implementation of the framework, the state of the system is ordered in 

manner given by the specification indicated in Table 6.2 which results in a (2037, 1) 

dimensional vector to generate the representation of the state of the system.  
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Figure 6.12: Representation of the state of the system comprised of the attributes 
associated with the components on board the system, the index associated with the 
active architecture, the scalable parameter associated with the architecture and the 

requirements defined for the design problem 

Table 6.2: Composition of the ordered state vector 

Vector Source Interpretation Data Type Dimension 

Motor 
Attributes of the motor that is on board the 

UAV 
Real (7, 1) 

Battery 
Attributes of the battery that is on board 

the UAV 
Real (7, 1) 

Propeller 
Attributes of the propeller driven by the 

motor 
Real (6, 1) 

ESC 
Attributes associated with the electronic 

speed controller 
Real (5, 1) 
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Servo 
Attributes of the servo motor onboard the 

UAV 
Real (4, 1) 

Payload 
Vector representing the presence of a 

certain type of payload 

Integer 

h	[0, 1] 
(5, 1) 

Architecture Index of the active architecture 
Integer 

h	[−1, 3] 
(1, 1) 

Machine Id 
Index of the 3D printer used for 

manufacturing 

Integer 

h	[−1, 2] 
(1, 1) 

Scalable 

Parameter 

Represents the value of the scalable 

parameter associated with the architecture 
Real (1, 1) 

Requirements Embedding of the requirements set Real (20, 100) 

Table 6.2 (Continued) 

The formulation of the requirements utilizes a 20 dimensional embedding of the 

requirements description an allocation of 100 requirements for the design problem. In the 

scenario that are fewer than 100 requirements for the complete design problem, the 

elements of the requirements matrix that is not populated with the requirement 

embedding are assigned a value of -1. The requirement matrix is then vectorized to 

generate a 2000 dimensional array that is stacked onto the state vector to generate the 

modified state vector illustrated in Figure 6.12. 
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6.3.2 Representation of the Actions 

The actions are encoded in two ways, one for the discrete choices that are contained in 

the environment (such as the choice of components and architecture) and the other for the 

choice of the continuous parameters, such as the scalable parameters. The encoding of the 

actions of the discrete parameters is represented as a one-hot vector in which each vector 

entity represents on choice of a component or architecture. In the analysis performed, 

there are two different scenarios considered. The first scenario involve 44 different 

alternative and the second, which is an analysis of the scalability of the approach, 

involves 152 alternatives, divided amongst the components as indicated in Table 6.3. 

Thus, the action space for the two scenarios is represented by (44, 1) and (152, 1) 

dimensional vectors respectively.  

Table 6.3: Subdivision of the discrete alternatives in the two scenarios analyzed 

Scenario 

Id 
Battery Motor Propeller ESC Servo Payload Architecture Machines 

1 10 11 6 5 5 5 4 3 

2 50 25 15 25 25 5 4 3 

 On the other hand for the continuous scalable parameter, a single real number is utilized 

to represent the value of the parameter within predefined bounds. The bounds are as 

indicated in Table 6.4. 
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Table 6.4: Parameter bounds for the scalable parameters 

Scalable Parameter Type Parameter Bounds 

Fixed Wing Vehicle: Wing Area 0.05 − 0.70	0P 

Multicopter Vehicle: Arm Length 5	 − 	12	Aâ,ℎßL 

6.3.3 Reward Formulation 

The primary indicator of a goodness of a decision in the reinforcement learning 

field is the reward metric. In the current analysis, a complex formulation of the reward is 

chosen such that the goal of the trained artificial agent would be to choose a design that 

meets all the requirements posed by the engineer and to minimize the total weight and 

manufacturing times associated with the design. The availability of the virtual 

verification in the implemented MBSE application provides an indication of the former 

and the ability of the MBSE framework to associate metrics from the evaluation 

processes to the structural elements provides the necessary key performance indicators 

such as the system weight and 3D printing times. For intermediate actions that do not 

result in a complete evaluable design, an evaluation of the compatibility of the system is 

undertaken which indicates if the choices of the components on board the system are 

compatible and in the scenario that they are not compatible, the episode is terminated 

with a large penalty. Each compatible selection that results in an incomplete design is 

associated with a reward of -1.0. As the goal of the agent is to maximize the total 

observed reward, this ensures that the agent does not repeatedly select the same 

component. The overall formulation of the reward metrics is as given below. 
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6.3.4 Learning Algorithm and the Agent Architecture 

With the above formulation of the reinforcement learning problem, there are two 

possible alternatives for the implementation of the learning algorithm. The first is the 

utilization of a hierarchical reinforcement learning framework [195], [196] that 

distinguishes between the discrete and continuous parameters with the continuous choices 

being made on a higher hierarchy than the discrete choice or the utilization of a 

sequential decision model, i.e., an agent which is composed of two distinct agents each 

optimized for their own tasks, i.e., the first agent is optimized for the task of architectural 

design while the second is optimized for the task of scaling an architecture. This 

formulation is similar to the options framework [197] introduced in the hierarchical 

reinforcement learning where a semi-Markov decision process is constructed from an 

existing Markov decision process. The second approach is favoured over the first for two 

primary reasons, 

• The agents are independent of each other implying that the training of each agent 

can occur independently. This is in contrast to the hierarchical framework where 

internal agents view a subset of examples than the external agent making the 

training of internal agents quite difficult. 
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• From an implementation perspective, this forms a simple workflow as illustrated 

in Figure 6.13: Process flow involved within an agent in the creation of a design 

variant, where the continuous agent is only triggered when the discrete agent has 

made a complete selection of the alternatives. As the goal of the research work is 

the application of existing reinforcement learning techniques for the purpose of 

design automation, the simpler implantation offered by the sequential model is 

chosen over the hierarchical reinforcement learning framework. 

 

Figure 6.13: Process flow involved within an agent in the creation of a design 
variant 

With this formulation, the rewards observed by the two agents are modified as follows, 
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6.3.4.1 Agent architecture and the learning algorithm 

The other consideration that is to be made, in addition to the architecture of the 

learning process, is the architecture of the agent. In this case, the agent is comprised of 

two independent models, the first that recommends the discrete choices and the second 

that recommends continuous scalable parameters. In both cases, the input state vector of 

the neural network is represented by a (2036, 1) vector which is a subset of the (2037, 1) 

element state vector introduced in the previous section. The element corresponding to the 

scalable parameter is dropped from consideration as it is now a part of the action space of 

the second network. 

In order to train the discrete action network, the double deep Q-learning (DQN) 

[198] algorithm without duelling is utilized. The action space for this network is the 

discrete action space represented by the (44, 1) choices in the first scenario or the 

(152, 1) choices of the second scenario. Thus the network condenses an input space of 

(2036, 1) to generate an output of (âpæc"ª?`, 1). To enable sufficient learning, a 5 layer 

deep network is considered and the architecture of the network is illustrated in Figure 

6.14. The intermediate layers are activated by the rectified linear units [199] with the first 

two layers containing 1000 neurons with the third layer contains 500 neurons and the 

final two layers contain 250 and 125 neurons respectively. The final layer is activated 
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using linear units in order to account for the rewards being both negative and positive and 

also greater than 1. As required by the formulation of the Double DQN algorithm both 

the target and the prediction networks share the same network architecture. The number 

of parameters associated with this networks is that are trained during the learning process 

is 3,700,699 in the first scenario and 3,714,277 in the second. The model is trained using 

the Adam algorithm [200] with a learning rate of 0.001 annealed to 0.0001 at the end of 

the learning process, i.e., 1,000,000 or 10,000,000 steps as per the scenario. 

 

Figure 6.14: Neural network architecture of the Double DQN agent used to predict 
or recommend discrete architectural parameters 

On the other hand, for the network handling the prediction of the continuous 

parameters the deep deterministic policy gradients [201] algorithm is used to train the 

model. Both the actor and the critic network required by the algorithm share the same 

architecture, where the input state vector still retains the (2036, 1) dimension. The 

networks utilize three hidden layers that are activated once more with rectified linear 

units having 1000, 500, and 100 neurons respectively. These layers are connected using a 

dense connection in between them and with a dense connection to the action unit that is 
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represented by a single neuron. The output neuron utilizes a linear activation. The 

architecture of the agent with both the actor and critic networks is illustrated in Figure 

6.15. The continuous network too is trained using the Adam algorithm with a similar 

setting of the optimization hyperparameters with the optimizer operating on a 3,695,251 

weight parameters. In the case of the continuous parameter, the input state vector would 

represent a complete design which has all the necessary components defined, architecture 

selected and the requirements appended to the encoded vector. 

 

Figure 6.15: Agent architecture for the DDPG algorithm by both the actor and the 
critic networks for the prediction or recommendation of scalable parameters 

6.4 Results of the Application of Machine Learning 

The previous sections have introduced the problem formulation associated with the 

reinforcement learning setup, the network configuration associated with the learning 

setup and the configuration of the hyperparameters related to the learning process. With 

these configurations, a set of five analyses are carried out to evaluate the performance of 

the reinforcement learning algorithm for the task of automation of engineering decisions 

in the MBSE design setting. 
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6.4.1 Analysis 1: Utilization of reinforcement learning without demonstrations 

The first analysis compares the performance of a genetic algorithm (GA) [202] for 

the purpose of architecture selection to that of the reinforcement learning agent that self-

learns without any demonstrations on the first scenario of the UAV design. The 

formulation of the reward is modified such that the target of the learning process is to 

minimize the total weight of the resultant system that meets all the specified 

requirements. The choice of the scalable parameter is made using same heuristics, i.e., 

smallest possible wing area and smallest possible arm length, in both the algorithm so as 

to ensure appropriate comparisons. In the case of the GA, a population size of 300 is 

utilized and a chromosome size of 10 is utilized. In this case, the chromosome of 10 

represents the sequence of choices performed by the engineer, with the genetic algorithm 

being simulated for at least 1,000,000 steps. The objective function for the GA is coded 

to be the same as that of the Double DQN algorithm, i.e., maximization of the cumulative 

reward from each step. In terms of the evaluation of the cumulative reward for the GA, 

when the algorithm generates a chromosome which results in a feasible and complete 

design or an infeasible or an incompatible design prior to the 10 parameters, the analysis 

is terminated with an indication of the reward as per the formulation of the reinforcement 

learning problem. 

The results of the analysis are averaged over 25 samples and the results of the first 

1,000,000 steps are presented in Figure 6.16 and Table 6.5: Performance comparisons of 

the Double DQN algorithm and the GA. It is observed that without human 

demonstrations, the genetic algorithm finds feasible designs faster than the reinforcement 

learning agent, but in most cases, the reinforcement learning agent successfully find 
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either the same or better designs that the genetic algorithm. This can be attributed to the 

fact that the reinforcement learning agent utilizes an epsilon-greedy exploration strategy 

that theoretically guarantees improvement of results with increase in the number of 

samples.  

 

Figure 6.16: Averaged performance summary of the Double DQN algorithm in 
comparison to a GA 

Table 6.5: Performance comparisons of the Double DQN algorithm and the GA 

Algorithm 
Best 

Reward 

Mean 

Reward 

Worst 

Reward 

Standard 

Deviation 

# Steps to 

Best 

GA 19.9661 14.1382 11.1947 2.2543 5103 
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Double DQN 21.478 15.99 9.056 4.0252 5194 

Table 6.5 (Continued) 

6.4.2 Analysis 2: Replication of human level performance through expert 

demonstrations 

The second analysis deals with an attempt to replicate human-level performance 

through the use of pre-training on the Double DQN algorithm. With the introduction of 

the pre-training, the Double DQN algrorithm is replaced with the Deep Q-Learning from 

Demonstrations (DQfD) [155] algorithm, but the architecture of the network, the 

configuration of the optimizer and the formulation of the problem are retained. Due to its 

ability to generate large quantities of data, a GA is utilized to generate the data for the 

learning process and to simulate the presence of two distinct engineers. The generated 

data is sorted by the reward metric and the database is split into two halves. It is assumed 

that the first half of the data is generated by an expert engineer where the generated 

rewards are high, and that the second half of the data is generated by a novice engineer 

with low reward values and inefficient selections. As with the previous case, the 

objective of the GA is to maximize to cumulative reward observed by a certain member 

of the population. The DQfD algorithm inherently relies on the utilization of the concept 

of Prioritized Experience Replay [154], a concept that is modified to account for the 

incorporation of data from multiple different engineers or sources. The framework 

utilizes a weighting factor associated with each type of engineer to alter the probability of 

sampling a demonstration from that engineer such that samples demonstrated by the 

expert engineer is preferred over to that demonstrated by the novice engineer. The current 

analysis implements the modification of the prioritized experience replay sampling 
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routine to account for the presence of demonstrations from multiple sources, with one 

being preferred over the others. This implementation utilizes a value of 0.75 for the value 

of ℎ> (expert engineers) and a value of 0.25 for that of ℎP (novice engineers) so as to 

guide the sampling towards the data generated by the expert engineers. 

In order to extend the use case to the problem of self-exploration the database is 

divided into an exploratory database and a demonstration database, with the sampling 

during the pre-training phase occurring only from the demonstration database. In the 

exploratory learning phase the sampling gradually anneals from the demonstrated 

database to the exploratory database.  

The results of the analysis of replication of human-performance through pre-

training are demonstrated in Figure 6.17 where the impact of the number of pre-training 

steps and the amount of data are investigated on the level of performance. Each analysis 

is repeated 25 times in order to account for stochasticity in the generate data and the 

learning algorithm. It is observed as the amount of data increases, there is a necessity for 

additional training in order to replicate the demonstrated “human-level” performance. 

The results indicate the algorithm is able to replicate demonstrated performance in most 

of the simulated cases.  
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Figure 6.17: A comparison of the number of episodes and the amount of data to the 
impact of successful replication of human-behavior 

It is important to note that in the case of the 1000 episodes, the algorithm is 

unable to replicate human behaviour as the quality of data contained in the 

demonstrations are quite bad. Out of the 1000 demonstrated episodes, only 42 episodes 

on average were successful in finding a compatible and feasible design. The final set of 

samples account for the newly introduced biased training routine in which the samples 

generated by group 1are sampled more frequently than that of the group 2. 

6.4.3 Analysis 3: Improvements over human level performance 

The third set of analysis attempts to demonstrate that the reinforcement learning 

framework once pre-trained can generate design variants that are better than the once 

observed in the pre-training batch. This analysis builds on the results observed in the 

second analysis with the model being pre-trained with varying number of demonstrations 

for a given number of steps. Having pre-trained the model, the analysis launches a self-

learning period in which the model attempts to improve the observed designs by finding 
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better alternatives. The analysis first demonstrates the capability to find better designs 

than that demonstrated in the training phase as illustrated in Figure 6.18, where the results 

of 10 samples are averaged, with the best observed result shown in the figure to illustrate 

the capability for improvements over the demonstrated data. The impact of number of 

demonstrated pre-training steps is also shown in Figure 6.18, with the agent having larger 

number of pre-training steps demonstrating more rapid progression in the improvement 

over that of the one with fewer pre-training steps. The number of training steps beyond 

that of the pre-training is set to 20,000 and the modified DQfD algorithm with sampling 

from experienced and demonstrated buffers is implemented. 

 

Figure 6.18: Demonstration of the capability of the algorithm to identify designs 
that outperform the best demonstrated design with a comparison of the learning 

rates associated with the number of pre-training steps utilized. 
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As evident from Figure 6.18, the algorithm demonstrates the capability to find designs 

that are better than the demonstration rather quickly when the best demonstrated data is 

of low quality, but it takes considerable effort to explore better demonstrations when the 

quality of demonstrations are high. 

6.4.4 Analysis 4: Transfer of knowledge to modified requirements 

The final analysis addresses the capability of the agent to adapt to scenarios that it has not 

observed in the past. This is carried out in two means, first one in which the requirements 

are modified during the training phase and the second in which the structure of the 

system is modified. The analysis alters only a select few requirements in order to evaluate 

the capability of the framework to generalize across varying requirements. The process 

established to carry out the analysis first involves training the agent to a varying set of 

requirements so as to enable the neural network to develop a model across the 

requirements space. The new set of requirements is then exposed to the agent to evaluate 

its capability to predict a feasible design without any additional training. 

In order to simulate the changes in requirements, a set of 100 requirements are generated 

by altering the baseline set of requirements illustrated in Figure 6.5 by altering both the 

sets of cruise requirements in terms of the distance and the duration, the climb 

requirement in terms of the rate-of-climb and finally the manufacturing requirement in 

terms of the allowable time to manufacture. A Latin hypercube sampling [203] is utilized 

to generate the modified requirements associated with these parameters with the limits 

specified in Table 6.6. 
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Table 6.6: Limits associated with the requirements for Latin Hypercube sampling 

Parameter Bounds 

Cruise Requirement 1: Distance 1300-2000 m 

Cruise Requirement 1: Time 90-150 sec 

Cruise Requirement 2: Distance 2000 – 3400 m 

Cruise Requirement 2: Time 150 – 210 sec 

Climb Requirement: Rate-of-climb 1.2 – 1.8 m/s 

Manufacturing: Time Requirement 48 – 96 hrs 

Having generated the new requirements, the embeddings associated with the 

requirements are altered to reflect the new set of requirements and the process of 

exploration is triggered. The database is then updated with the new designs and the 

training is triggered. In order to evaluate the performance of the design, a set of 25 new 

requirements from within the requirements hypercube are generated and the performance 

of a pre-trained agent is evaluated. The goal of the algorithm is to automatically adapt to 

the new set of requirements without the necessity to retrain the agent. The performance of 

the agent is illustrated in Table 6.7. As evident from the table, the agent is able to adapt to 

40% of the new requirements cases. To further evaluate the capability of the agent, the 

agent is permitted to self-learn on the 25 new requirements for 20,000 steps. In this case, 

as demonstrated in the same figure, a majority (52%) of the 25 requirements yield a valid 
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design within the permitted number of steps, thereby demonstrating the capability of the 

algorithm to adapt to new requirements within a certain requirement space. 

Table 6.7: Results observed from the analysis of 25 samples generated from altered 
set of requirements 

Scenario Percentage of feasible designs identified 

Without additional training 40 

With 20,000 additional training steps 52 

6.5 Discussion 

6.5.1 Achievements of the current work 

• The developed framework demonstrates the capability to apply reinforcement 

learning to the problem of automation of engineering decisions in an engineering 

application. The problem of UAV design is chosen due the simplicity in the models 

involved and the agents developed demonstrate the capability to perform at a level 

similar to that of a well-established optimization algorithm. 

• The developed framework demonstrates the capability to adapt to demonstrated data, 

such that in the case of a real engineering problem where significant amount of data 

exists for a certain problem, the algorithms and the processes developed would be 

readily applicable. The represents the capability to replicate human-level decision 

making in a simplified environment. 

• The developed framework demonstrates the capability to exceed the performance of 

the demonstration through self-learning thereby established the sufficient condition 
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for the incorporation of artificial intelligence in the engineering decision making. An 

rigorous analysis of the sensitivity of the learning process is performed to evaluate the 

impact of the amount of pre-training steps and the amount of data available during the 

pre-training stage. 

• Finally, the framework evaluates the capability of the algorithm to adapt to cases that 

it has not been demonstrated through the requirements modification use-case. It is 

observed that the agent is able to transfer knowledge from the trained set of 

requirements to a previously unseen requirement. This demonstrates that the agent is 

robust to changing requirements where in there is little retraining necessary in order 

for the agent to adapt to the new scenario. 

6.5.2 Limitations of the developed framework 

• The use-case chosen is of the nature where the number of decisions that is to be 

made are quite small in nature. This may contribute significantly to the success of 

the algorithm, but it is argued that as the use-case is representative of a realistic 

design problem, the results observed here would be transferrable to other design 

problems as well. There would be necessity to evaluate the performance of the 

methodology and the agents on cases that involve several thousands of design 

parameters, such as the 3D design problems. 

• The use-case assumes an ability to extract, represent and encode the knowledge 

contained in a design system, a task that is not simple. The second use-case 

considers this problem in more detail where a more complex design application, 

such as a CAD system represented by Siemens NX is considered. 
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• The use-case fails to demonstrate the transferability of the results generated by the 

analysis. In particular, there is no evaluation performed on the capability to 

transfer knowledge gained by an agent in one problem to another. The current 

framework assumes that a new agent would have to be trained for the new 

problem, which may be quite expensive depending on the nature of the problem. 

• The use-case also fails to evaluate alternate neural network architectures or 

reinforcement learning algorithms that can be utilized to train the learning agent. 

Additionally, alternate reinforcement learning frameworks can be leveraged to 

improve the training performances demonstrated by the current use-case. 

• Finally, there is mathematical analysis of the results that are generated. This is an 

open question in the field of reinforcement learning and is not tackled by the 

current research work. The analysis of the performance of the framework and the 

agents developed are limited to being empirical in nature. 
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CHAPTER 7. USE-CASE II: SIEMENS NX 

The current chapter introduces the second use case in which the developed framework is 

applied for the automation of engineering decisions in a complex black-box system. The 

purpose of the use case is to demonstrate the capability of the framework to capture 

engineering decisions in complex environments and replay these decisions in a 

recommendation mode of operation to imitate the behavior of a design engineer. The use 

case establishes an approach for the extraction of knowledge from a complex computer-

aided design (CAD) system and an approach for the encoding of the captured knowledge 

in a manner in which it is usable by machine learning algorithms. In conclusion, the use-

case demonstrates the ability to imitate the behavior demonstrated by the engineer 

through the utilization of knowledge-graphs for the formulation of reward metrics to 

guide the reinforcement learning-based agent. In contrast to the previous chapter, the 

current chapter considers actions performed by a single user in training the 

recommendation agent, although the framework does provide the capability to handle 

multiple users. The chapter progresses in the following manner:  

• Introduction of the considered use-case. 

• A review of the application and knowledge extraction methodologies. 

• A review of the sources of knowledge in a typical CAD system. 

• The introduction of a methodology for the extraction of knowledge from a CAD 

system. 

• The introduction of a novel means for encoding the extracted knowledge. 

• The utilization of encoded knowledge in training the imitation agent. 
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• And finally, plugging the agent back into the application to recommend actions 

based on user’s history. 

7.1 Siemens NX Use-case 

In order to demonstrate the capability of the developed framework, a use-case of 

the automation of design decisions in a black box system is considered. The black box 

system under consideration is Siemens NX, a design tool developed by Siemens PLM 

[204] that enables the generation of a computational representation of a product through 

its entire design life-cycle. The application consists of several modules such as CAD for 

the multi-fidelity geometric modeling of the product, CAE for the representation of the 

physics experienced by the product during operation, CAM for the manufacturing 

simulations for NC programming, Technomatix for any discrete event simulations 

associated with the application, etc. As the current work is rather ambitious in its goal, 

the work is restricted to the consideration of automation of engineering decisions in the 

CAD portion of the tool. It is important to note that the framework developed on the 

other hand, is generic enough to be applicable to other applications as well.  

With increasing competition in the engineering tool development market, 

application service providers are looking to develop more complex systems that are 

extremely flexible to an extent where the number of decisions or choices that are 

available to the user at any instant range in the several hundreds, if not thousands. In such 

a scenario, there is an inherent difficulty for new design engineers in getting acquainted 

with the application and utilizing it for the purpose at hand. The use-case of Siemens NX 

is one such application where there is a considerable amount of flexibility in the 

utilization of the software that a steep learning curve has to be overcome in order to gain 
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expertise in the software. In addition, it would also require sufficient knowledge about 

the domain, for example, structural engineering would require different definition of the 

CAD part in comparison to that of fluid dynamics, in order to satisfy the requirements 

posed by the design problem. Each of these would take a considerable time to attain and 

would pose a significant challenge to new engineers who attempt to gain a mastery of the 

tool. The current established approach for learning the tool is through one of four means, 

with the last being the most predominant, 

1. Interactive paid training sessions in which engineers are educated on the use 

of the tool on traditional and general purpose problems. 

2. Static documentations that function as the user manual for the application. 

3. Learning from experts personnel in the organization who have had years of 

practice in utilization of the product. 

4. Learning through experience and mistakes in which better alternatives are 

identified for existing actions. 

An alternative to the above mentioned alternatives that is typically utilized in CAD 

systems is that of rule-based automation principles [205], [206], but these rule-based 

(previously known as Knowledge-based Engineering) are predominantly used for 

decision automation and not recommendations. Further, the document has highlighted the 

prevalent issues with established approaches relying on rule-based systems for the 

purpose of context-based usage and this becomes a primary issue when considering the 

use case of flexible applications such as Siemens NX. But since design is a process of 

decision making, there has been an investigation into the utilization of Markovian 

behavior of decisions for the purpose of recommendations [207]–[212]. The frequency-
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based probability computation approach would not be suitable for a CAD system in a 

community setting, as the frequency-based framework fails to account for requirements 

posed by the design problem in the process of design engineering, i.e., it fails to account 

for the context under consideration. Further, the frequency-based formulation also fails to 

account for negative results occurring from the mistakes made by an engineer. These 

drawbacks encourage the current research work to investigate the utilization of a reward-

based Markov chain decision making process in which the user decisions are represented 

as a Markov chain in which each decision is associated with a reward metric through the 

use of graph traversals.  

In order to test the developed algorithms for the knowledge extraction and 

representation, several problems are considered. A majority of the problems considered 

are restricted to single simulations of knowledge extraction from an isolated system, but 

one use-case of knowledge extraction from multiple different applications working on the 

same design problem under different requirements is also considered. Finally, an isolated 

system working once more on realistic use-case of the design of a turbofan engine is 

considered, where the problem involves the design of an assembly of parts. The use-cases 

considered as summarized as follows, 

• Extraction of knowledge from a drafted cantilever beam, illustrated in Figure 

7.1. The designer is tasked with the creation of a CAD model which replicates 

the model displayed in Figure 7.1 with a given set of parameters. The use-case 

establishes the ability to extract all the necessary operations performed by an 

engineer and also the associated parameters associated with these operations. 
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These are then represented in a knowledge graph to represent the resultant 

Markov chain. 

• The investigation of capture of mistakes and learning from mistakes in an undo, 

delete, edit scenario. The CAD model here is that of a Brushless Cooling Fan, 

illustrated in Figure 7.2 in which two versions of the parts are created; one in 

which the constituent parts are created containing mistakes and the other in 

which the parts are created using the ideal workflow. The purpose of this 

exercise is to demonstrate the capability of the framework to, first and 

foremost, capture back-traces in the design state where the delete or undo or 

edit operations performed on a part revert it to a previous state and secondly, to 

demonstrate that the imitation learning algorithm predicts the idealized 

sequence of operations, i.e., one that does not include the undo or delete 

operations. 

• The generalization of actions across multiple design problems. Here, similar to 

that of the UAV use-case, the requirements of each of the design problems are 

encoded with the generated graphical model and utilized in the training process. 

The CAD model under consideration for this is again the drafted cantilever 

beam that is illustrated in Figure 7.1, but with different settings for the 

parameters. As the current work restricts the consideration to recommendation 

of discrete actions, the purpose of the exercise is to demonstrate the capability 

to develop a graphical model in which knowledge from several different 

instances of the application are incorporated.  

• The final use case considered is that of an assembly where knowledge from 

multiple different parts are incorporated into the knowledge graph. For the 
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purpose of demonstration, the complex system of a turbofan engine is 

considered. The assembly model of the CAD parts is illustrated in Figure 7.3. 

The purpose of the exercise is to once more demonstrate the capability of the 

knowledge extraction framework to capture knowledge from a single instance 

of the application, but address the representation of different parts in their 

respective encoded states. 

 

Figure 7.1: A screenshot of the CAD model of a drafted cantilever beam designed 
with the parameters shown in the image. 

 

Figure 7.2: A screenshot of the CAD model of Brushless Cooling Fan [213] modeled 
to demonstrate the capability to capture reversions in system state. 

Base Dimension: 50x50 mm2

Extrude Length: 500 mm
Draft Angle: 5o

Hole Diameter: 25 mm
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Figure 7.3: The model of the assembly for the Turbofan Engine [214] and its cross-
sectional view showing the components that are CAD part of the assembly. 

7.2 Knowledge Extraction Methodologies in Siemens NX 

One of the primary requirements of the research work is the presence of an API 

from which the knowledge associated with an application can be extracted. Siemens NX 

meets the requirements through the framework of NXOpen [215], SNAP [216], 

Knowledge Fusion [205] and GRIP [217] each of which forms a programming paradigm 

of its own. NXOpen permits the engineer to customize the behavior of any of the NX 

applications through custom applications or plugins that leverage the open architecture 

offered by NX. Built on traditional programming paradigm, NXOpen permits the 

engineer to develop capabilities in several different programming languages such as C++, 

C#, Java, VB.NET and Python. The Graphical Interactive Programming (GRIP) language 

of the NX API provides an automation capability for most of the operations within NX 

through the use of a high-level programming language. While GRIP provides the 
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capability for automation, it is not suitable for the purpose of knowledge extraction due to 

its outdated nature [216] and will not be considered in the research work. On the other 

hand, the Simple NX Application Programming (SNAP) while being relatively simple to 

use in comparison to NXOpen, is designed for small scale applications, and requires an 

author license that prevents it from being considered for the reseach work. Finally, 

Knowledge Fusion (KF) is another interpreted object-oriented programming paradigm 

that relies on parametric rule-based approaches for the automation of the creation of 

designs. As this framework relies on the explicit specification of parametric rules, it 

would be infeasible for the current application as it would fail to automatically adapt to 

changes in the internal data structure of the application. Thus, NXOpen is chosen as the 

means for knowledge extraction. As such, there have been four approaches that are 

identified for the extraction of knowledge from the application. These are, 

• User Exits [218]: These are features within NX that permit the execution of a 

NXOpen application at certain predefined locations (exits) for certain predefined 

operations, through a pointer based reference to the NXOpen application. 

Traditionally, user exits have been utilized to replace existing functionality within 

a certain operation, but these are quite limited in nature as they are defined only 

for a handful of operations. Thus the utilization of user exits in the current 

research work is not considered any further, as it fails to provide a generic 

framework for the extraction of knowledge. 

• Menuscripts Handlers [219]: Menuscript is a feature of NXOpen that permits the 

execution of predefined handler – a NXOpen application – at a certain points of 

execution of an operation. Traditionally, menuscript handlers function as 

decorators on the operation executing the requested application either prior to 
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(PRE) or after the (POST) execution of the operation. While a custom menuscript 

can be triggered after each operation, NX fails to pass any data related to the 

operation that triggered the script. Further, there is a necessity to configure each 

operation of NX to operate with these menuscripts. Given the manual nature of 

the configuration and the lack of indication of the operation triggering the script 

handler, menuscripts are dropped from consideration. 

• Internal Infinite Tail: A tail is an infinite thread that looks for changes in a certain 

object typically informing other elements of a running framework of the observed 

changes. Such systems are typically employed when a continuous observation of 

an object is sought, as in this case. In the current context, the tail is internal to 

Siemens NX in order to observe any changes that occur to the CAD part, thus 

tailing the feature tree of the CAD model. Upon any change the tail would trigger 

a separate thread that would generate the instantaneous representation of the part 

file that can then be serialized on the knowledge graph. As there are very few 

restrictions on the nature of the tail, a modified version of the internal tail is 

utilized in the current implementation. It is essential to note that Siemens NX only 

provides the capability to host one or more internal tails, but does not provide an 

off-the-shelf implementation of it. Thus, in the current implementation, the 

internal tail is modified to listen to external requests for part state serialization. 

The external requests are triggered by the external tail as and when user events are 

identified. 

• External Infinite Tail: As with an internal tail, the external tail observes the 

changes to the state of the Siemens NX application as a black-box from outside 

the application. The tail attempts to identify user actions by processing one of the 
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sources of knowledge and by passing a signal to the internal tail (in the form of a 

lock file) requesting a part serialization. The serialization can then be processed in 

order to perform the necessary knowledge extraction and representation. As the 

tail lives completely outside of Siemens NX, these implementations typically 

require significant processing which may reduce the efficiency of the system. 

With the above summarization of the alternatives for knowledge extraction, the 

current research work develops a methodology in which a combination of the internal and 

external tail is utilized. The external tail signals to the internal one as and when a change 

user event occurs. At this point, the internal tail serializes the state of CAD model out to a 

file which is then processed by the external tail to identify the state of the system and the 

associated action. These identified state, action and next state tuple are then published to 

the knowledge graph to form two nodes and an edge between the nodes. The sequence of 

operations described above is illustrated in Figure 7.4. As the developed framework 

utilizes Python for the machine learning and data interface operations, a decision is made 

to utilize NXOpen Python for the external interface between Siemens NX application and 

the framework, and NXOpen Java as the internal interface that extracts the representation 

of the parts from Siemens NX. 
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Figure 7.4: A high-level overview of the system architecture in which a knowledge 
graph is utilized to guide the serialize system states and then train and 

recommendation of design decision to engineers 

7.3 Knowledge Sources in a CAD System  

The purpose of a CAD system is the computational representation of the volume of 

an object that is being modeled, with these representations typically being rendered 

graphically. While the underlying CAD framework may utilize techniques such as 

boundary representation [220] or constructive solid geometry [221] for the representation 

of these volumes, the external user utilizes the graphical display that results from these 

representations. To be precise, the underlying data structure of the generated model is not 

visible to the engineer using the black-box CAD system. Thus, even though the system 

stores a representation of the points, lines, surfaces and bodies and their relationships 

within the CAD part, such information is only visible to the user in forms of a set of 

algebraic and mathematical operations on the stored data and relationships. In fact, the 

CAD framework utilized by most commercial design systems, are a strict trade secret that 

is not divulged, to an extent that minor changes to the data structure and algorithms in the 

system can result in significant improvements in processing times and rendering 
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performances. On the other hand, in order to apply any machine learning technique, one 

requires the presence of numerical representations of the states of the system. In the 

Markov decision process context, in addition to the numerical representation of the state 

of the system, one would also require the generation of a numerical representation for the 

action. 

The current research work looks into alternate means of extraction of these state 

and actions from sources that are visible to even the engineers using the software. 

Granted, though most engineers utilize the 3D graphical display as the representation of 

the system, the current research work does not address the vision-based perception of the 

CAD system. Instead, the extraction of knowledge from three different sources within the 

CAD system is considered. CAD systems typically store a parametric representation of 

the object being designed. Depending on the system being considered these are termed as 

Expressions (Siemens NX and Autodesk), Parameters (CATIA) or Equations 

(Solidworks). These store the parametric relationships between the entities in the CAD 

model in a numeric fashion. While expressions would represent each design uniquely, the 

numeric values associated with these expressions without an encoding of the CAD model 

would be meaningless. On the other hand, a representation of the CAD model without the 

encoding of the expressions would result in a family of designs whose parameters have 

been abstracted. Thus in order to realize a realistic design, an intrinsic component to the 

knowledge extracted has to be the expressions stored within the design system. Thus the 

first source of knowledge forms the expression tables that tabulate the expressions 

contained in the CAD model. Figure 7.5 illustrates the expression tables across the 

different CAD applications. 
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Figure 7.5: Table containing the parameters that defines the instance of a CAD 
model. 

As CAD modeling utilizes a sequential representation of the user’s actions, the 

sequence of operations are typically stored within the system and represented in two 

forms. First the features that result from the operations performed by the engineer are 

represented as a Feature tree (Siemens NX), Browser Trees (Autodesk), FeatureManager 

Design Tree (Solidworks) or Modeling Tree (CATIA), with the contents of each of the 

tree being the same. The purpose of these trees is to provide the user a visual indication 

of the CAD entity/feature that was generated as a result of an operation. These trees 

provide the sequential representation for the different states that the CAD model has 

observed through the course of changes applied by the engineer. Thus, in order to capture 

the sequence of states that the CAD model undertakes, the instantaneous state of the 

feature trees can be utilized to uniquely represent the state of the CAD model. Thus, the 

feature trees form the second source of knowledge. Figure 7.6 illustrates the feature 

sequence indicator trees for the different applications. 
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Figure 7.6: Example of a feature tree that represents both the sequence and 
hierarchy in the CAD model. 

Although each entry on the tree uniquely maps to one or a group of operations 

undertaken to create the entry, in any well-established commercial CAD system there are 

far too many of operations and possible features to hand engineer the combinations. Thus 

although the first and second source of knowledge provides a representation for the state 

of the system, the actions that cause a transition between the states are not encoded within 

the CAD system. These are typically enforced when the engineer performs a certain 

action and the instance of the operation is then deleted from memory. In the light of 

demand for customer support most commercial products log the events that occur with 

the software application out to a file on disk. These logs would store detailed information 

about the user’s interactions with the application and in the case of Siemens NX it also 

stores information about the action performed by the user and the parameters associated 

with the action, including parameters that are hidden from the users in the expression 

table or the feature trees. Thus, the log files serve as the third and final source of 

knowledge from which the knowledge graph was developed. 
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7.3.1 Log Files 

The log files of Siemens NX are illustrated in Figure 7.7. The log file provides a 

detailed source in which each event that occurs in the application is represented in ASCII 

format. These log files further follow a MACRO based coding style, as illustrated in the 

figure. These MACROs indicate the occurrence of an event and the block in which the 

MACRO descriptions is enclosed details the system parameters that the engineer operates 

with, without exposing the internal activity or computations undertaken. Given that the 

expression and the feature sources of knowledge can be utilized to completely reconstruct 

the state of the system, in the current research work, the log files are utilized for two 

purposes, namely, 

• The extraction of the action and the parameters of the action that results from a 

user action. 

• The identification of a change in the state of the system 

 

Figure 7.7: An example of the Siemens NX log file with a MACRO section 
highlighted. 
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7.3.1.1 Extraction of the user action and the parameter of user action 

Given that the log files generated by Siemens NX utilize the MACRO notation for 

representing events within the application, it is quite straight forward to setup an 

algorithm that parses text to identify the blocks of the log file that represent the 

occurrence of an event. In particular, each interaction performed by the engineer is 

tagged with a particular name, i.e., the MACRO MENU and the termination of the event 

is again tagged with one of three possibilities, MACRO OK, MACRO APPLY or 

MACRO CANCEL, with the first two indicating that the engineer has applied the 

changes made by a certain operation onto the CAD model and the latter indicating that 

any new change since the most recent one have been disregarded. With these, the 

identification of blocks of interest is simplified and with each block of interest, is an 

associated user action. The user action in turn may result in the transition of the system 

from one state to another, if the operation results in the creation of or edit of existing 

features. The block of interest is then processed using the regular expressions to identify 

the parameters and mouse events associated with the user action using the following 

sequence illustrated in Figure 7.8. Figure 7.8 indicates that given a block of text that has 

been identified as containing a user action, a block processor executes a regular 

expression search looking for a set of items on each line of the block. When the entity 

being search for is identified, the corresponding attribute on the processing object is 

modified to reflect the item. 
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Figure 7.8: Sequence diagram for the processing of the block of text to identify the 
user action and the parameters associated with the action 

7.3.1.2 Identification of an event in the system 

The log files created by Siemens NX are typically quite large the processing of 

which is further hampered by the fact that these log files grow over time for one instance 

of the application. Further, as the log files store all the information that is generated by 

the application, it is necessary to process the file in an optimum manner. Finally, the log 

file rests on the file system and the framework would be decoupled from this file during 

the operation of the application. Thus, it is necessary to implement a tail on the log file 

that emits a signal when there are any changes to the file. The changes to the file are a 

result of the user action in the application and are piped out to the log file in real-time. 

Thus by having a tail emit a signal indicating the most recent changes that have occurred 

in the log file, only the pertinent portion of file can be processed severely minimizing the 

computational effort spent in identifying the user action. 
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7.3.2 Expression Tables 

The expression table of Siemens NX stores the relationship between a parameter 

that belongs to a certain feature and numerical or mathematical relationship that guides 

the value of the parameter. Although, expressions within Siemens NX are automatically 

assigned to features, there are certain features for which the expressions cannot be 

gathered, for example, the type of operation on an extrude feature, the centre point of 

operation for a circle, etc. As a result of expressions being automatically assigned, these 

expressions do not relate to a physical quantity, unless otherwise specified by the 

engineer. As Siemens NX does not enforce the creation of user defined expressions, it is 

necessary to process expressions in a more generic manner, in particular, as being 

associated with the feature and not associated with the CAD model. Siemens NX 

internally supports multiple different types of expressions, ranging from, strings, 

booleans, integers, real-valued expressions, 3d coordinates, 3d vectors or a generic list 

that functions as a container for any of the above. Siemens NX meets the requirements or 

the assumption for the requirement of a limited amount of API that permits the extraction 

of information from the application. This is achieved through the use of NXOpen [215]. 

NXOpen when inspecting the contents of a CAD model permits the identification of 

expressions associated with any feature within the part. Thus, it is possible to extract all 

the information from the part file on demand. The extracted information is formatted as 

illustrated in Figure 7.9, where each expression is associated with a parameter name, an 

equation, a description, the set of units, and the type of the expression. 
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Figure 7.9: The UML diagram associated with the recreated expressions extracted 
using NXOpen 

7.3.3 Feature Trees 

The feature tree within Siemens NX is the only manifestation of the sequence of 

operations performed by the user that is accessible to a user other than the graphical 

visualization offered by the application. The feature tree indicates a hierarchical 

relationship between the different features that are created by a certain operations. In this 

context, a feature could correspond to the datum coordinate system, or sketch that is 

drawn on a certain plane, or even a solid body operation such as extrude or revolve. The 

nature of CAD is such that strict parent-children relations between features are enforced 

internally by the application. These relations prevent the creation of a certain feature prior 

to the existence of its parent, thus, generating a representation for the changes observed 

by the system over time. It is to be noted that Siemens NX only displays features that are 

visible to the engineer in the feature tree, and there are entities associated with most of 

the feature tree entries that are not visible to the engineer. In fact, it is these entities in 

most cases that distinguish between two features of the same kind. For example, the 

feature of datum coordinate system consists of seven entities, 

• The origin of the coordinate system. 

• Three vectors representing the X, Y and Z axis. 
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• Three datum planes representing the XY, YZ, and XZ planes. 

Thus, the comparison of two coordinate systems entails the comparative analysis 

of their entities. At this point it is essential to note while a series of parameters can be 

associated with each feature, and automated extraction schemes can be developed for 

these, such an approach would be no different from the rule-based systems. In such a 

setting, if there is any change to the data structure of Siemens NX, then established 

knowledge extraction approach would very likely fail. Thus, in the current research work, 

no assumption is made regarding the contents of the entities and the only assumption that 

is made is regarding the contents of the part file, i.e., the part file are comprised of a 

sequence of features. The rest of the content of the part file are discovered in an 

automated fashion. The conceptual result of such a discovery is illustrated in Figure 7.10, 

where each part designed in the application is shown to be comprised of a state 

representing the application for the part (in order to enable generalization to applications 

other than CAD such as CAM and CAE), and a list of features. The features are then 

decomposed into the constituent expressions and a list of entities, with each entity further 

being decomposed into a hierarchical set of sub-entities.  

The current research work implements a framework in which this decomposition 

of a CAD model is generated in an automated fashion and is applicable to any generic 

CAD part. 
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Figure 7.10: A generic hierarchy in the decomposition of a CAD part 

7.4 Knowledge Extraction and Representation Mechanism 

The current section highlights the details of the implementation behind the 

knowledge extraction and representation algorithm and highlights the results observed for 

the different cases considered. In the process of automated knowledge extraction, an 

object introspection framework is utilized to identify the contents of each part with an 

initial assumption of the parts being comprised of a set of features. Having generated a 

tree-based representation for the part file through the execution of the object 

introspection, an object-based representation scheme is utilized in order to generate a 

graphical model to capture engineering decisions in the creation of the computational 

representation of the designed product.  
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Figure 7.11: Sequence diagram illustrating the extraction of knowledge from 
Siemens NX 

The process of knowledge extraction is illustrated in Figure 7.11. The process of 

automated knowledge extraction begins with the execution of Siemens NX in an 

“extraction mode”. The process involves an application triggering both an external tail, 

i.e., a log processor, and the Siemens NX application configured to operate with the 

external tail. The Siemens NX application is further configured to load an internal tail on 

start-up which is unloaded only upon the termination of the application. As the log files 

associated with the instance of NX is created upon launch, the external tails launch of NX 

as an event gathering the clean state of NX. These states are gathered by creating a lock 

file that is consumed by the internal tail which then processes the state of the application 

to output a JSON serialization of the application state. The state JSON is consumed by 

the framework which regenerates the internal structure of the application in order to 
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compute differences between previously encoded states of the application. The 

previously encoded states of the application are retrieved from the knowledge graph 

(which is hosted on a central server), in order to enable the collaboration between several 

users. The difference between states are optimized and computed based on object 

differences, where a difference is computed by evaluating if the objects form isomorphic 

trees [222]. If a pair of isomorphic trees is identified, the resultant state is not added to 

the knowledge graph but still retained in memory as it would be utilized during the 

imitation learning process. In parallel, the external tail triggers the processing of the log 

file in order to gather information pertaining to the user action. All relevant information 

such as the parameters associated with the action and also the mouse events that are 

registered by the event are encoded by the action. Utilizing the comparison of the state, if 

the algorithm identifies the reconstructed states as being identical to ones in the 

knowledge graph, an object comparison of the action ensues. As the data structure 

associated with the action is simpler in nature, i.e., an object consisting of two array 

attributes, the application of tree isomorphic searches is often quicker and easier to 

conduct returning an indication of if the action between the states are the same. As the 

framework does not make an assumption about the nature of the Markov decision 

process, in order to maintain generality, it is assumed that multiple actions from one state 

can result is transitions to a final resultant state. The algorithm for the knowledge 

extraction and representation is given below in Algorithm 7.1. 
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7.5 Extracted Contents 

Algorithm 1 establishes a process for both the creation of a new knowledge graph 

from a clean state, and also for the utilization and update of an existing knowledge graph 

containing populated entities. When applied, the algorithm generates a human-readable 

representation for the state of the CAD model in terms of the features, entities and 

expressions. The structure of the representation is shown in Figure 7.12 where each node 

encodes the set of features in a feature container and the name for the state of the system. 

The name represents the application within Siemens NX that is currently being operated 

on. The feature container is populated by an array of features that represent the active 

state of the application (or the CAD part). In the clean state when no part is open, the set 

of features would be empty.  

Algorithm1: Knowledge Extraction and Representation Algorithm 
1 Initialize graph server 
2 Initialize graph, ! = "":#, 		$:#& or Retrieve graph, ! = (": {%};$: {&}) 

3 Initialize '(%	 = )*+*& ≡ “,-&+%” 
4 while “Application Is Running” 
5 If -./_01-& is modified 

6 Identify event in log file 
7 Process event container, i.e., identify action 
8 &2 = 3(.4&55_&6&%*(-./_01-&) 
9 Request serialized state of application 
10 %2 = Process serialized application state  
11 &715*5 = 	15_15.'.(3ℎ14(%8,%2) ∀1 
12 &8 = edge between node, %2, and most recent node ('(%). 
13 If edge, &2, exists 
14 &9/&_&715*5 = 15_15.'.(3ℎ14(&8, &2)	∀	1	
15 If ! &9/&_&715*5	 and ! &715*5, 
16 Add new edge, $ = &2 + 4%8,%25 
17 '(%: = %2 
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Figure 7.12: The tree-based representation scheme for the contents extracted from 
each node in the graph 

Each feature is decomposed into an array of entities, an array of expressions, the 

type of the feature, an identifier and the identifiers for the parents feature associated with 

the feature under consideration. The expressions are composed of an equation, a 

parameter, its units, its type and the description. The entities on the other hand consist of 

the attributes and the parameters that uniquely define the feature in addition to the 

expressions. The structure of the entities is dynamic in nature and would be dependent on 

the entity under consideration.  

7.5.1 Knowledge Extracted in Scenario 1 

Figure 7.13 represents the knowledge extracted in the first scenario where the 

knowledge graph represents the sequence of actions undertaken for the creation of a 

drafted cantilever beam. The figure demonstrates the progression of the CAD model in 
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parallel to the generation of the knowledge graph. It has to be observed that the first three 

nodes form a loop due to an internal transition that occurs with Siemens NX where prior 

to navigating to the modelling application, Siemens NX passes through a gateway where 

an initial template part is loaded. The parameters associated with the final part are also 

indicated in the figure as and when the appropriate nodes are created.  

 

Figure 7.13: Knowledge captured in the creation of the drafted cantilever beam 

7.5.2 Knowledge Extracted in Scenario 2 

Figure 7.14 represents the knowledge graph that is created in the second scenario. 

The scenario deals with the creation of a Brushless Cooling Fan model with the goal of 

generating an appropriate representation of undo, delete and edit operations so as to 

evaluate the framework’s capability to represent back tracking of a systems state as a 

result of the undo and deletes and a deviation in the system’s state as a result of the edit 

operation. As highlighted by the figure, the knowledge acquisition algorithm is able to 
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accurately capture the appropriate transitions in states for each of the three operations. 

The loops identified in the figure could be construed as a mistake on the engineer’s part 

that forces the engineer to trace back their actions. The presence of the loops in one half 

of the knowledge graph represents the difference between the two created instances of the 

Brushless Cooling Fan, with the first instance being created with errors and the second 

one in an ideal manner. This concept plays an important role in the learning process 

where these loops are identified to associated rewards with the learning process. 

 

Figure 7.14: Knowledge captured in the creation of a Brushless Cooling Fan with 
and without errors in the creation of the component 
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7.5.3 Knowledge Extraction in Scenario 3 

The third scenario, illustrated in Figure 7.15, addresses the extraction of 

knowledge from multiple different sources addressing a common problem with varying 

requirements. In this scenario, as the requirements drive the parameters associated with 

the features, the differences in the features are evident with the branching of the 

knowledge graph, although it is essential to note that each branch of the graph consists of 

the same set of actions and the same type of nodes. The requirements purely alter the 

parameter values associated with the nodes. This scenario ensures,  

• The ability to distinguish between designs that differ from one another as a result 

of varying requirements in the knowledge graph. 

• In an indirect sense, the ability to incorporate data from multiple instances or 

multiple different users into a common knowledge graph. 

 

Figure 7.15: Knowledge graph resulting from the modelling of drafted cantilever 
beams for varying requirements where the loops indicte different requirement. 
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7.5.4 Knowledge Extraction in Scenario 4 

The fourth and final scenario, illustrated in Figure 7.16, address the extraction of 

knowledge in a realistic scenario of the design of a turbofan engine. The turbofan setting 

consists of multiple parts as evident from the knowledge graph where the different 

branches each represent one unique part of the assembly. The scenario functions as a 

stress test to evaluate the responsivity of the knowledge extraction and representation 

scheme to the amount of data stored in the graph. 

 

Figure 7.16: Knowledge graph generated from the extraction of knowledge in the 
process of creating a CAD model of the turbofan engine assembly. 
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7.6 Knowledge Encoding Mechanism 

The current section details the encoding mechanism that is used to generate a 

vectorized representation for the nodes that have been encoded within Siemens NX. As 

machine learning algorithms rely on having a numerical representation of the input state 

of the system in order to enable learning, the current research work develops a generic 

methodology that can be utilized to vectorize any given CAD part. The approach 

leverages similarities between the representations of the model and that of a 

computational graph. An online vectorization scheme is implemented in which state 

differences are coupled with natural language representations to generate their associated 

vectorization. Figure 7.17 demonstrates the overall methodology utilized for the 

vectorization process beginning with the computation of a difference between a state in 

the knowledge graph and its corresponding abstract representation following which a 

natural language representation of the differences are generated so as to vectorize these 

representations using established means. 

 

Figure 7.17: Methodology for the generating a vectorized encoding of the knowledge 
extracted from the CAD model 
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7.6.1 State differences 

The first step of the encoding mechanism is the generation of the state differences. 

The encoding scheme introduces the new concept of an abstract representation of a graph. 

The abstraction encodes information about a generic state such it forms the minimum 

representation of the difference between two states. For example, when two states 

consisting of datum coordinate systems are considered, the differences between the two 

states would consist of differences between the origins, the differences between the 

vectors forming the coordinate axes and finally the differences between the planes 

forming the coordinate planes. These can in turn be represented as the difference between 

two 3D coordinates, the differences between three sets of 3D vectors and that between 

three sets of rotational matrices that represent the orientation of coordinate planes. Thus, 

the state of the system containing the datum coordinate system can be abstracted in terms 

of the difference between two instance pairs of the identical feature types that constitute 

the states. In terms of a mathematical representation, the computed difference would 

indicate the entities that have changed between two entries of the state such that given an 

abstract representation and the difference, the new state can be reconstructed through a 

set addition. The abstraction of the state is in fact represented by a collection of abstract 

features and abstract entities.  

7.6.2 Natural Language Representation 

The second step of the encoding mechanism is the generation of a natural 

language representation for the evaluated state differences. The approach chosen relies on 

the similarities of the representation of the knowledge extracted and that of the 

computational graphs. A computational graph (or expression tree) represents the 
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sequence of operations that are performed and the parameters that are operated on from 

the leaf of a tree to its root, with the root representing the complete evaluated entity. The 

framework of gene expression programming [223], [224] proposes an approach in which 

the expression tree can be converted into a chromosome representation to which a genetic 

algorithm can be applied to reverse engineer the algebraic equation associated with the 

expression tree (or computational graph). Given the similarities in the representation of 

the expression tree and the extracted knowledge, it is demonstrated that a similar 

approach can be applied to the extracted knowledge to generate a gene expression 

chromosome. The process is illustrated in Figure 7.18, where the steps involved in the 

representation of the expression tree (on the left) are utilized to generate an abstract 

chromosome representation mechanism for a CAD model.  

 

Figure 7.18: Chromosome representation mechanism for a generic CAD model 

An inherent issue with the generation of the chromosome representation for the 

CAD model is the vast amount of data stored within the model. This prevents the 

application of any online encoding scheme, and thus the proposed chromosome 

representation scheme is used in conjunction to the state difference computation 
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mechanism. The state difference scheme generates a hash table representation that cannot 

be utilized in any type of machine learning algorithm. The contents of the hash table, on 

the other hand, represent the entities that have been altered from the abstract instance of 

the state. This knowledge represents the minimum difference in the information about the 

state that is necessary to uniquely describe the state of the system from a given abstracted 

baseline. Thus, the differences are utilized to generate a chromosome representation of 

the state, a result of which is illustrated in Figure 7.19. A key observation that is to be 

noted is that if and when there is a change to the abstracted representation of the state, the 

chromosome representation associated with every instance of that state has to be updated 

to reflect these new changes in the encoding parameters. While this may be 

computationally expensive in the early phases of the knowledge graph generation, the 

burden would eventually reduce as the changes to most of the parameters would be 

captured in the early stages of the knowledge graph. The natural language representation 

of the parameters would involve the conversion of the hash table to a human-readable 

ASCII format with formatted syntax and structure to the sentences that is generated. 

 

Figure 7.19: An example of a state difference and its associated natural language 
chromosome representation 
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7.6.3 Vectorization 

The final step in the encoding mechanism is the vectorization of the generated 

natural language representation for the CAD model. The approach utilizes established 

techniques in Natural Language Processing [187] in particular, the Doc2Vec [225]. In 

contrast to the Word2Vec [191] algorithm, Doc2Vec accounts for the relative position of 

the words in the sentence thereby accounting for the sequences formed by the words in 

the sentence. The framework generates evaluates three different embedding of 10, 20 and 

100 dimensions for the natural language representation. While the higher dimension 

embedding captures the differences in the generated representation better, they suffer 

from a generation penalty. This poses a problem for the real-time knowledge graph 

generation as with every update to the document corpus resulting from a change in the 

knowledge graph the Doc2Vec model has to be retrained and the embedding generated 

from the updated model has to be stored in the knowledge graph in real-time.  

The primary idea behind the choice of Doc2Vec as the vectorization scheme is the 

concept that over time, the embeddings generated by the Doc2Vec model would stabilize 

due to the stabilization of the corpus associated with the Doc2Vec model and by fixing 

the seed associated with the model, any stochasticity in the vector generation can be 

eliminated. Figure 7.20 illustrates the sequence of operations and the interactions 

between the different modules that occur within the implemented framework that dictates 

the encoding of any given state of the system into a vectorized representation.  
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Figure 7.20: Sequence diagram associated with the creation of the vectorized 
representations for the CAD models 

7.6.4 Encoding Results 

In order to verify the validity of the knowledge encoding methodology, a visual 

investigation of the generated embeddings is undertaken. As the methodology 

hypothesizes that the embedding of the states sharing a common set of features would 

occupy a common region in space, a visual clustering of the embeddings for a set of 

seven states (i.e., combinations of features) is undertaken. This is carried out in two ways, 

first, the embeddings associated with a set of five states generated through a set of 98 

events are projected onto a lower dimensional space using the t-SNE [226] algorithm 

which is illustrated in Figure 7.21 (a) and impact of introduction of additional events and 

the creation of additional states is evaluated in Figure 7.21 (b). Although the two images 

use different t-SNE models for the generated embeddings, it is evident from the figures 

that the embeddings does capture the clusters in the states in an accurate manner. The 

transformation associated with the two images can be attributed to the change in the 

document corpus between the two datasets and the use of two different t-SNE models. 
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(a) (b) 

Figure 7.21: A visual evaluation of the validity of the embedding methodology 
through the identification of distinct clusters for different states of the CAD model 

7.7 Knowledge Utilization Mechanism 

The final step of the methodology involves the utilization of the gathered 

knowledge in order to train an artificial agent to replicate the decisions made by the 

human operator. Owing to the nature of the knowledge extraction, i.e., manual and 

interactive, the current use case of the research work only addresses the replication of 

human decisions in the design environment in an optimal manner. The use case does not 

deal with the transfer of knowledge to other use cases or the generalization of knowledge 

across requirements. In fact, the current use case limits its consideration to the 

recommendation of discrete actions, and not the parameters associated with these actions. 

In order to replicate the actions observed and captured by the knowledge graph, the 

framework formulates an imitation learning agent that relies on a demonstration-based 

learning algorithm in order to train the agent in replication of human decisions.  

7.7.1 Imitation Learning Algorithm and Agent 

The algorithm utilized for this purpose is the Deep Q-Learning from 

Demonstrations (DQfD) [155]. A “dynamic” deep neural network consisting of a fixed 
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number of input neurons, a fixed number of hidden layers and neurons but changing 

number of output neurons is considered. In the current analysis, there are three hidden 

layers each with a rectified linear activation unit on 64 neurons each is considered. The 

output layers of the network are linear activated in order to generate an appropriate 

representation of the value estimates associated with the states and action pair. The 

network architecture is illustrated in Figure 7.22. The number of neurons in the output 

layer is dependent upon the number of actions that have been utilized by the engineer and 

have been encoded in the knowledge graph. 

 

Figure 7.22: The architecture of the neural network utilized for “imitation” learning 

Most machine learning algorithms that are prevalent in literature rely on the 

presence of considerable amount of data in order to extract patterns in the data. While the 

algorithm of DQfD also relies on the presence of data, improving in performance with the 

amount of data available, the current workflow artificially simulates the presence of large 
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quantities of data. This is achieved by intentionally overtraining the neural network on 

the small quantity of the data in an iterative manner until the errors associated with the 

replication of the observed data is minimized. This approach ensures that the 

demonstrated data is replicated perfectly with generalizations across the different 

instances of the data but without a generalization across the states of the system. But as 

the target of the exercise is to mimic human decisions, the overfitting strategy proves to 

be useful in this scenario. In the framework developed, the utilization of the knowledge is 

triggered by an offline process which generates an artificial agent that can be utilized by 

the application in the recommendation mode of execution. 

7.7.2 Reward and State Formulation 

A primary aspect of reinforcement learning is the shaping of the reward function. 

There has been extensive research into the various different types of reward metrics [48], 

[227]–[229] and their composition in order to tune the learning algorithm for a particular 

use case. The current work formulates the rewards in a manner so as to guide the learning 

algorithm to ignore actions that results in state transitions that reverts the state of the 

system to a previous state, i.e., paths that lead to actions such as undo, delete, and edits. 

This is achieved by penalizing these actions with a lower reward than others. As the goal 

of the learning algorithm is to identify the sequence of actions that result in the largest 

cumulative reward, this process of penalization would prevent the algorithm from 

favouring paths with lower rewards. The framework implements a multi-hop graph 

traversal routine to identify paths that lead to cycles in the knowledge graph. Having 

identified these cycles, the edges associated with the cycles are attributed with a reward 

of -2.0, while the edges that do not result in closed cycles are associated with a reward of 
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-1.0. As the rewards associated with each edge is negative, it automatically transforms the 

problem formulation to minimizing the number of actions that have to be taken in order 

to replicate the sequence of operations. In this scenario, such a problem formulation can 

be viewed as being making the optimal sequence of decisions in the recreation of the 

CAD model. An example of the formulation of the reward is illustrated in Figure 7.23, 

while shown graphically the graph traversal algorithm within the framework 

automatically generates this representation. 

 

Figure 7.23: An example of the formulated reward for the use case consisting of 
errors in the creation of the CAD model 

-1.0

-1.0

-1.0

-1.0 -1.0
-1.0-2.0

-1.0

-1.0-1.0

-1.0
-1.0

-1.0

+1.0



 234 

Another aspect of the problem formulation in the reinforcement learning domain 

is the representation of the state of the system. The nature of the CAD application is such 

that an engineer would arrive at a given state in many different ways. For example, by 

performing an extrude operation and deleting the resultant feature, the engineer would 

reach a previous state of the system. This sets of operations can be performed any number 

of times with varying parameters thus demonstrating that any state in the system can be 

reached in numerous different ways. In order to account for this issue, it is necessary to 

capture a history-based state representation. This can be achieved in two ways, one 

through the use of recurrent neural networks and the other through the use of windowed 

states. As the recurrent neural network would necessitate a change to the network 

architecture, a windowed state representation is chosen. The windowed state 

representation enforces the consideration of the past √ states of the system in the creation 

of the current system state. This is mathematically given as follows, 

 L"
ähℝ?,Ü = ƒ≈L&∆«	∀	B	h	{A, A − 1, A − 2	, … , A − õ}	∑ℎßMß	L&h	ℝ

?,>  [1] 

In the above equation, the term L"
ä represents the modified state of the system that is 

numerically given by the (â, õ) matrix ƒ≈L&∆« with â dimensional embedded vector and a 

window size of	õ. For the current work, while õ is used as a parameter of the analysis, in 

the implementation of the learning algorithm it is kept constant at a value of 5. This 

would imply that when considering the fourth state of the system in a linear sequence, the 

mathematical representation of the modified state is given by, 

L…
ä = ≈[L…, L , LP, L>, √!√]∆	∑ℎßâ	õ = 5 
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7.8 Recommendation system within Siemens NX 

Having trained an artificial agent, the final aspect of the framework is the 

implementation of the recommendation service within the Siemens NX application. The 

recommendation service operates in a contextual manner where upon request from the 

user, the service provides an indication of the action that is to be taken by the user based 

on the feedback from the artificial agent. The sequence of interactions that occur in the 

recommendation service is illustrated in Figure 7.24.  

 

Figure 7.24: The sequence of operations associated with the generation of a 
recommendation by the imitation learning agent within the Siemens NX application 

As with the knowledge extraction workflow, the process beings with an 

application launcher starting an external tail that manages the interactions with the 

Siemens NX application and the artificial agent, and also starts the Siemens NX 



 236 

application. The application once more triggers an internal tail which on demand 

serializes the state of the system based on which the recommendations can be generated. 

The engineer triggers a request for the recommendation at which point, the internal tail 

serializes the state of the system to a file using the previously described knowledge 

extraction mechanism. The external tail runs on an infinite thread that seeks and 

consumes the JSON serialization of the part file which when consumed generates the 

vectorized representation for the part using the previously described mechanism. The 

vectorized representation is then fed into the imitation learning agent that resides on the 

server and predicts the operation that is to be performed based on the current and past 

four states of the application. The generated recommendation is passed onto the external 

tail which creates a lock file associated with the recommendation that is consumed by the 

application. The internal tail then consumes the generated recommendation lock file and 

displays the recommendation within the application. Figure 7.25 demonstrates the 

integration of the recommendation displays within the Siemens NX application at 

different stages of the model development. 

 

Figure 7.25: Integration of the recommendation service within the Siemens NX 
application 
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7.9 Discussion 

7.9.1 Achievements of the current work 

• The developed process and framework while applied to the application of Siemens 

NX in truth establishes a process for the vectorization of any generic CAD model. 

This implies that the processes demonstrated on the Siemens NX application can be 

transferred to other applications as well. Further, as the methodologies introduced in 

the chapter are agnostic of the application considered, it can be applied to any design 

product or assembly.  

• The framework demonstrates the utilization of machine learning techniques for the 

capture of expert knowledge from a black-box system and also the incorporation of 

the trained models back within the system in order to provide recommendations to 

engineers on demand. The framework demonstrates the application of imitation 

learning on extracted data to accurately predict the operations that are to be 

performed by the engineer in order to retrace the sequence of operations. 

• The framework establishes a process for a knowledge graph-based representation of 

the extracted knowledge that enables the traceability of designs using the stored data. 

The established processes enable the capture of parameter that reflect different facets 

of the CAD model and also enables the representation of these on a common 

manifold for downstream processing. 

7.9.2 Limitations of the developed framework 

• While the framework addressed the problem of knowledge extraction from a generic 

application, the developed processes are only demonstrated on CAD. The approaches 
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developed would be more valuable in the CAE domain as potential benefits 

associated with utilization of design knowledge and learning from demonstrations are 

more significant in that field.  

• The developed framework relies on the presence of both an API and a log file in order 

to extract information. While this would be a realistic assumption for most 

commercial tools, there may be some corner cases where such a capability is not 

available. Thus the approach would have to be modified in order to account for 

scenarios that do not permit access to the API or the log files. 

• The developed methodologies have focused on the extraction of knowledge from the 

design process while the design process is being exercised, i.e., extraction of 

knowledge in an interactive setting. There would have to be modifications made in 

order to enable the extraction of knowledge from historical parts so as to capture 

knowledge that already exist in an organization. 

• The current approach of generating the embedding of the CAD model through the use 

of Doc2Vec, represents a one-way transformation of the model which transforms a 

non-numeric representation to a numeric representation. As the reverse 

transformation was not necessary for the research work, there were no investigations 

performed on developing such a capability. 
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CHAPTER 8. CONCLUSION AND FUTURE WORK 

The current research work implements a reinforcement learning framework that 

relies on the principles of life-long learning in order to assist the engineering design 

processes. Assistance provided in the form of recommendations of design decisions to the 

design engineer in the course of utilization of the design environment for a given problem 

is demonstrated on two separate applications, one involving the utilization of an MBSE 

application for the purpose of UAV design and the other that involves the creation of 

CAD models using a commercial black-box application namely Siemens NX. The 

framework implements aspects of machine learning such as imitation learning from 

human demonstrations in order to train intelligent agents. The life-long learning aspect of 

the framework enables adaptation of the trained agents to new and incoming data such 

that both newly explored portions of the design space and new demonstrations from 

design engineers are incorporated into the decision making model. The exploratory nature 

of reinforcement learning algorithm enables the possibility of identifying decision paths 

that are better that the ones demonstrated by design engineers hence enabling the system 

to self-learn with the goal of improving the resultant design. An adaptive knowledge 

graph, representing interactions and effects of human actions, is utilized to encode the 

sequence of states experienced by the design system with each state represents some 

unique configuration of a design and an automated approach to the creation of the 

knowledge graph is implemented through the automation of the knowledge extraction 

and representation processes. The knowledge is then utilized through the imitation 

learning process which generates recommendations of actions to design engineers. The 

approach developed while resulting in evolutionary improvements in the fields of 
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machine learning, software development and engineering design, leads to a novel 

approach for an in-product, real-time, contextual recommendation system for the purpose 

of automation of decisions in complex design systems.  

8.1 Summary of Research Questions and Hypotheses 

The research work aims develop capabilities that can accelerate the process of 

design with the aid of expert demonstrations. In order to do so, it is hypothesized that the 

primary function of each design application is the representation of a state of the design. 

These design states are driven by knowledge possessed by an engineer and the 

knowledge is exposed to the design application when the engineer exercises the design 

process. Thus, the design application can be configured in a manner such that the 

knowledge exposed to it can be automatically extracted from the system and compiled in 

a database so as to be utilized by a machine learning algorithm. Further, the machine 

learning algorithm in its inference mode would enable reproduction of the learning 

behavior, while generalizing to design scenarios that were not part of the training dataset. 

Finally, having access to such a machine learning algorithm can enable automated 

exploration of design spaces in order to find designs that may outperform the training 

dataset. 

The hypothesis leads to the identification of three research questions, each of 

which is associated with a supporting hypothesis, that are formulated as follows: 

8.1.1 Summary of the First Research Question and Hypothesis 

Prior to addressing the problem of knowledge extraction and representation of the 

extracted knowledge, it is essential to identify a means through which the problem of 
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engineering design can be mathematically represented. The purpose behind this 

formulation follows the hypothesis that the identification of a mathematical 

representation enables the generalization of any developed process across design 

problems. Thus, in order to address this issue of mathematical representation of the 

problem of engineering design, the characteristics of engineering design are examined 

reaching a conclusion that the each design problem presents itself as one of sequential 

decision making. Given that there exist techniques to address the task of sequential 

decision making in literature, the hypothesis associated with the first research question 

follows that with the identification of appropriate means of representation and encoding 

of the knowledge, techniques in solving Markov Decision Processes provides the 

mathematical formulation for decision making in engineering design problems and that 

the framework of Reinforcement Learning enables the computational representation of 

such a problem. 

8.1.2 Summary of the Second Research Question and Hypothesis 

The second aspect of the research work deals with the automation of knowledge 

extraction and its representation that makes it amenable to machine learning algorithms. 

The research question revolves around the identification of the means of identification of 

knowledge, i.e., what is the knowledge that is to be extracted from a design application, 

and a means by which to representation the extracted knowledge. The hypothesis 

associated with this research question builds off of the solutions identified in the research 

question, i.e., reinforcement learning. Further, the hypothesis leverages the observation 

that the primary function of design applications is the representation of the design and the 

change in the state of the design represents the impact of knowledge. Thus, it is 
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hypothesized that there exists a point in an unknown, possibly infinite, dimensional space 

that uniquely represents every state of the system, regardless of the feasibility of the 

design. Further, it is hypothesized that given a context, the unknown dimensional 

representation can be projected onto a known â-dimensional space, an encoding, that 

uniquely maps to each observed state of the system. This hypothesis is demonstrated to 

hold true for two different applications of different complexity over the course of the 

research work, with specifics of the encoding scheme differing between the two 

applications. 

8.1.3 Summary of the Third Research Question and Hypothesis 

The final aspect of the research work conducted is that of enabling the capability 

of a machine learning algorithm to learn from a mixture of demonstration and 

experienced data, with the demonstration data being produced from multiple sources. The 

research question addresses a practical issue where, in a typical engineering setting, data 

is generated by multiple different engineers each of whom have different levels of 

expertise in the engineering domain. Thus, the research question addresses the topic of 

accelerating learning performances in the presence of differing qualities of data. To 

address this issue, it is hypothesized that an altered version of the prioritized experience 

replay where in the probability of sampling associated with each sample is altered to 

account for a “human index”. The probability is computed as a function of the expertise 

associated with the person generating the sample and also that of the error associated with 

the reproduction of the demonstrated sample. It is demonstrated that the proposed 

sampling approach significantly improves the performance associated with the 
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reproduction of demonstrated behaviour in cases having a very large numbers of poor 

demonstrations. 

8.2 Feasibility of the approach 

The analysis of the implemented framework is carried out on three fronts. First, it 

is shown that an agent trained on the problem of UAS design is capable of replicating 

human-like decisions in the presence of demonstrations. Further, it is shown that if a 

better decision path is available, the exploratory nature of the algorithm enables the 

identifications of designs that are better than the best demonstrated one. Finally, an 

analysis of the robustness of the agent to changes in the set of requirements is performed 

in order to estimate the flexibility of the framework and its capability to generalize across 

different but similar problems. A rigorous analysis on the impact of training times, 

amount of data and the size of the problem is performed in conjunction to the first 

problem setup. Second, an approach to automate the extraction, representation and 

utilization of knowledge from multiple sources of information is demonstrated on the 

problem of automation of engineering systems. Finally, it is shown that the implemented 

framework outperforms existing state-of-the-art systems that rely on rule-based inference 

and case-based reasoning. It is shown that the agents trained by the implemented 

framework are more adaptive to the problem at hand and require fewer configurations in 

comparison to the state-of-the-art systems. 

8.3 Key Contributions of the Research Work 

A set of key contribution identified over existing approaches in the field of automation of 

engineering decisions are summarized as follows: 
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• The framework introduces a data-driven approach for the utilization of design 

knowledge in field of engineering. Existing approaches such as that of expert 

systems rely on hand-crafted knowledge databases that rely on tedious knowledge 

acquisition processes to generate specialized recommendations as dictated by the 

application context, making them application specific and difficult to engineer.  

• The framework demonstrates the capability of being applicable to multiple 

different domains and different applications thus, overcoming the shortcomings of 

the traditional expert system that are hand engineered to one single application 

domain. 

• The framework demonstrates the capability for automated knowledge extraction 

and representation and the consequent utilization of the knowledge for the 

purpose of design recommendations and engineering aids. The value of the 

developed methodology for the automated extraction of knowledge is 

demonstrated on the Siemens NX use-case where there is a considerable 

complexity in the design application. 

• The utilization of gene expression programming in the generation of a tree-based 

representation of a CAD model is unique in nature. The problem of vectorization 

of CAD models is one that is an open topic in literature; as methods that retrieve 

knowledge from a CAD component do not exist in literature, to the extent of the 

author’s knowledge; and it has been successfully addressed by the current 

research work through the utilization of natural language processing to convert 

this tree-based representation to a vectorized representation with an intermediate 

step of state difference computations. 
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• The implementation of imitation-learning and demonstration-based learning for 

the purpose of decision recommendation in the engineering field is once more 

novel in nature. To the knowledge of the author, there are currently no 

applications that implement such capabilities and the current work is the first of 

its kind to apply machine learning for the purpose of engineering design. 

8.4 Known Limitations of the Developed Approach 

• While the developed methodology for the vectorization of CAD models generates 

a unique representation of the model based on the contents of the model, it is a 

one-way transformation. The current approach does not permit the transformation 

of a point from the â-dimensional embedding space back to the CAD 

representation. While the current approach has shown to be successful in practice, 

there are no theoretical guarantees for uniqueness of the transformation routine 

utilized. 

• The framework relies on the presence of an engineer or an automation script that 

interactively exercises the design process in order to extract knowledge from the 

application. This implies that in the presence of knowledge that is stored within an 

organization, in the form of past data, the current framework would not extract 

any information from such cases. Although the necessary change to enable the 

extraction of the knowledge from such applications are the next logical extensions 

of the current research work and are perhaps the lowest hanging fruits from a 

research perspective, the work in its current form would not be applicable to 

historical data that has not been processed. 
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• One of the primary areas of focus in modern deep learning models is the field of 

transfer learning. While the research touches upon a related topic of 

generalization of agent’s models across multiple different scenarios, it fails to 

address the topic of transfer of knowledge gained in one use case to another. This 

would imply that if an agent would need to be applied to a new use-case, a 

retraining process would need to occur which may be expensive. 

• In contrast to the manner in which human perceive data in a design application, 

i.e., the sense of sight, the current work relies on the availability of a numeric 

encoding mechanism. This approach prevents the application of end-to-end 

learning in which a closed loop cycle can be developed to recommend actions 

based on the computationally enabled human-senses. 

• As the framework consists of multiple different modules that have to be deployed 

in order to trigger the learning on even the most simplest of applications, it can be 

concluded that the setup costs associated with the framework would be high. This 

can be attributed to the various different applications that have to be loaded on the 

server in order and the different tails that have to be developed on the client in 

order to generate the sever-client communication developed within the current 

dissertation. 

8.5 Directions for Future Work 

• Mathematical investigations of capabilities of deep reinforcement learning. 

One of the key topics ignored in the current work is the ability to guarantee 

performance of the artificial agent. The current research work provides empirical 

results demonstrating the capabilities of the artificial agent without any 
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mathematical guarantees to the developed approaches. The topic of mathematical 

analysis of deep reinforcement learning is an open question in literature. 

• Investigations of alternate neural network architectures and algorithms. The 

current research work assumes a constant architecture of the neural network and 

the algorithms considered in the learning process. Over time there have been new 

neural network architectures that may be better suited for the purpose investigated 

in the research work and a comparative analysis of such architectures should be 

performed. Similarly, new algorithm introduced in the field of deep reinforcement 

learning would also need to be compared to the ones utilized in the thesis work 

presented here to ensure the choice of the best possible alternative. 

• Demonstration of the capabilities developed in the thesis work on alternate 

applications. The problem of knowledge-based engineer design is one that is 

prevalent across applications of design to all products. Further, this is a problem 

that is applicable to all faces of design such as analysis, manufacturing, service 

etc. Thus, there are a variety of other applications that can benefit from the 

application of the methods developed in the current work. 

• Investigation of adversarial networks as an alternative to the demonstration 

based learning framework. The current research work attempts to view the 

learning agent and the humans are collaborators working towards the common 

goal. That is, in the initial stages of learning, the agent relies on demonstrations 

from the user to improve its performance and in the later stages the agent would 

be able to recommend designs that are better than that generated by the human. In 

contrast to this formulation, an adversarial setting can be evaluated, where 

multiple agents compete against each other or against the human. Literature has 
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demonstrated the capability of such adversarial networks to generated designs that 

are considerably different and perhaps better than the set that they were trained 

on. 

• Incorporation of sequence models to enable end-to-end learning. The ultimate 

target of the framework is to enable an end-to-end learning system that is capable 

of taking an image representation of the design application and recommending or 

performing an action associated with a problem context. This would require the 

incorporation of sequence models in order to account for the partial observability 

associated with the design applications and that of computer vision in order to 

enable vision-based perception capabilities that are not currently implemented in 

the framework. 
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