
Do Cyanobacteria Blooms Enhance Parasite Loads in Lake Erie Yellow Perch? 

Research Thesis  

Presented in partial fulfillment of the requirements for graduation 
with research distinction in the undergraduate colleges of The Ohio State University  

by Brady Rude 

The Ohio State University  

May 2020  

Project Advisor: Dr. Stuart Ludsin, Department of Evolution, Ecology and Organismal Biology 

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/323062014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT 

 Harmful Algal Blooms composed of cyanobacteria (HABs) are a major concern globally, 

especially in ecosystems that support commercial and recreational fisheries. Although HABs 

have been shown to negatively affect the services provided by ecosystems (e.g., safe water for 

drinking and recreation), their influence on fish populations, and fish health in particular, 

remains largely unknown. Given that Lake Erie has been experiencing large HABs during the 

past 15 years and supports important commercial and recreational fisheries, I sought to help Lake 

Erie agencies understand if HABs are posing a health risk to their valued fish populations. To 

this end, I explored the relationship between parasite loads in yellow perch (Perca flavescens), 

which supports Lake Erie’s largest commercial fishery and second largest recreational fishery, 

and cyanobacteria concentration. Specifically, I tested the hypothesis that parasite loads in the 

liver of young-of-year yellow perch would increase with increasing cyanobacteria concentration, 

as cyanotoxins associated with HABs (e.g., microcystin) have been shown to cause liver damage 

and physiological stress in other fish species. To answer this question, I measured parasite loads 

in 519 individuals captured from 54 sites across the western basin of Lake Erie during 

2011-2019. My results were opposite of my expectations with mean liver parasite loads being 

negatively correlated with HAB severity. This finding, which was supported by other non-fish 

studies, suggests that HABs may actually benefit yellow perch by reducing parasite infections. 

Ultimately, my research points to the need for more research, if fisheries management agencies 

are truly to understand the net effect of HABs on their valued fishery resources. 
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INTRODUCTION 

Harmful algal blooms dominated by cyanobacteria (HABs) have become an increasingly 

important management concern during the past 15 years, owing primarily to human activities in 

the watershed (Berardo et al. 2017; Stumpf et al. 2012). The increase in HABs worldwide is 

mainly driven by water pollution, especially nutrient runoff from nonpoint agricultural sources in 

ecosystems with fertile watersheds such as Lake Erie, USA-Canada (Michalak et al. 2013). The 

extent to which HABs affect aquatic ecosystems remains an open question, but it is well 

understood that HABs hold the potential to cause massive ecological and economical damage 

(Anderson et al. 2000). This notion is especially true in large ecosystems like Lake Erie, which 

provide numerous ecological services to society (e.g., potable water, food, recreational 

opportunities).  

For the past 15 years, HABs have dominated both nearshore and offshore waters of Lake 

Erie during the summer growing season (Stumpf et al. 2012). HABs negatively affect tourism 

(Anderson, et al. 2000), cause the accumulation of cyanotoxins (e.g., microcystin) in fishes 

(Briland et al. 2020), and promote bottom hypoxia that negatively affects fish habitat use and 

food web interactions (Scavia et al. 2014). Additionally, HABs hold the potential to negatively 

affect fish health by altering individual growth, physiology, and survival (Landsberg 1995). This 

potential for negative effects on fish health is especially evident in Lake Erie’s shallow, quick-

warming western basin, which provides important nursery areas for many fishes of ecological 

and economic importance. Among these fishes are yellow perch (Perca flavescens) and walleye 

(Sander vitreus), the two most valuable commercially and recreationally fished species in Lake 

Erie (Belore et al. 2014; Hudson & Zeigler 2014; Coldwater Task Group 2019). Most of the 
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work that has explored linkages between fish and HABs (including their toxins), however, has 

been conducted in the laboratory, or with fish species not found in the Great Lakes region (see 

review by Malbrouck & Kestemont 2006). Thus, our understanding of how HABs influence the 

health of fish species in the Great Lakes remains uncertain. 

Harmful algal blooms are thought to negatively affect fish health in several ways. First, 

HABs may directly impair fish health by producing toxins that can accumulate in tissues 

(Briland et al. 2020). In most freshwater ecosystems, including Lake Erie, microcystin (MC) 

tends to be the dominant toxin produced (Dyble et al. 2008). Well-established as a hepatotoxin, 

microcystin causes liver damage in fish (Råbergh et al. 1991), and can promote cancer in 

mammals (Nishiwaki-Matsushima et al. 1992). Furthermore, microcystin negatively affects the 

behavior, physiology, development, growth, and survival of fish, especially during early life 

stages (e.g., eggs, larvae; Malbrouck & Kestemont 2006; Ortiz-Rodríguez et al. 2012; also see 

review by Hu et al. 2016). Wei et al. (2009) also showed that MC-LR, the most common strain of 

MC, can suppress expression of several immune genes.  

Of all the health impacts MCs are capable of producing in fish, I was particularly 

interested in its ability to suppress the immune system. First, I theorized that the combined 

negative effects of MC on an individual could compromise its immune system and increase 

susceptibility to parasites in individuals. Second, I expected that reduced feeding opportunities 

and foraging efficiency associated with Lake Erie becoming more eutrophic would compound 

this effect. Because juvenile and adult yellow perch depend heavily on benthic 

macroinvertebrates as prey, which are known to be sensitive to eutrophication (Knight et al. 

1984; Tyson & Knight 2001), it is conceivable that the recent re-eutrophication  of Lake Erie 
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(Scavia et al. 2014) might exacerbate the effects of cyanotoxin (microcystin) exposure on 

parasite susceptibility by reducing yellow perch foraging opportunities. Third, I expected that 

reduced water clarity associated with algal and cyanobacteria turbidity, which has been shown to 

negatively affect consumption by juvenile yellow perch in the laboratory (Wellington et al. 

2010), could potentially magnify reductions in foraging, unless zooplankton levels remained 

high enough to offset reduced foraging efficiency. For these reasons, I expected fish condition, 

health, and the ability to defend against pathogens or parasites to be lower inside of HABs than 

outside of them.    

Although previous research has not explored the consequences of a compromised immune 

system from HABs on fish health and performance in the wild, one might postulate that HAB-

induced stress and immunosuppression would increase the susceptibility of fish to parasite 

infections. This notion is based on studies with other organisms, both aquatic and terrestrial, 

which demonstrated increases in disease, parasite infection, and general physiological 

dysfunction following exposure to HABs and other contaminants (e.g., cylindrospermopsin, 

gymnodimine, brevetoxins, saxitoxins, DSP toxins, heavy metals, etc.) that are known to induce 

stress and (or) compromise the immune systems (Poulin 1992; see review by Landsberg 2002; 

Fire & Van Dolah 2012; Dragun et al. 2013).  

Although counterintuitive, it is also important to acknowledge that Microcystis spp. 

exposure could actually reduce disease and parasite infections, given the possibility that 

cyanobacteria and (or) its toxins might more negatively affect the pathogens or parasites than the 

host itself. For example, a recent study showed that exposure to a non-toxin producing strain of 

Microcystis reduced parasite loads and bacterial infection in zooplankton (Daphnia; Coopman et 

 5



al. 2014), suggesting that HABs could have health-promoting properties. Similar results were 

observed in Manila clams (Ruditapes philippinarum) exposed to a harmful dinoflagellate, 

Karenia selliformis (Da Silva et al. 2008). Given the likelihood that MC suppresses the immune 

system, which counters findings from studies that have shown reduced parasite burdens as a 

result of cyanobacteria exposure, the question of whether HAB exposure would impair or benefit 

fish health and affect parasite loads remains open.  

To explore how HAB exposure might impair fish health, and contribute to parasite loads in 

particular, I quantified infections of the parasitic worm, Neoechinorhynchus, in the livers of 

young-of-year yellow perch collected inside and outside of HABs in western Lake Erie during 

2011–2019. I focused on yellow perch because this species is both recreationally and 

commercially important in Lake Erie (Yellow Perch Task Group 2019) and is an abundant 

secondary consumer (Tyson & Knight 2001), meaning the species is ecologically important as 

well. Additionally, western Lake Erie’s yellow perch population has demonstrated variable 

recruitment during recent years (Yellow Perch Task Group 2019), which may relate to the 

variability in HAB severity. To explore the HAB-health relationship in yellow perch, I tested the 

hypothesis that young-of-year yellow perch residing in waters with a low cyanobacteria 

concentration would have lower parasite loads than those living in water with higher 

cyanobacteria concentrations, owing to anticipated reduced exposure to MCs and reduced 

foraging opportunities associated with HABs.    
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METHODS 

Fish Collections 

Young-of-year (YOY) yellow perch were collected in the western basin of Lake Erie during 

August of 2011, 2015, 2017, and 2019. All collections were made as part of annual bottom-trawl 

assessment surveys conducted by the Ohio Department of Natural Resources – Division of 

Wildlife and Ontario Ministry of Natural Resources and Forestry (Yellow Perch Task Group 

2019). These surveys sampled ~80 sites per year. Sites were stratified (by depth) randomly 

across the entire west basin. Following capture by Lake Erie agencies, fish were held at -20ºC 

until processing.  

August trawl samples were used because this is typically the peak of cyanobacteria blooms 

in Lake Erie and is, therefore, a likely time for MC exposure. Additionally, this month offers the 

most intense sampling of YOY fishes by Lake Erie agencies in the western basin, thus ensuring 

access to fish samples collected both inside and outside a bloom. The years 2011, 2015, 2017, 

and 2019 were selected for analysis because HABs were especially severe (Figure 1) and 

sufficient samples of YOY yellow perch were available.   

  

HAB Severity 

 To examine the influence of HAB exposure on the parasite loads of YOY yellow perch, a 

minimum of three and a maximum of 20 individuals per site were processed from 54 sites (n = 

4-18 sites/year; Figure 2) during 2011, 2015, 2017, 2019 (Table 1). These sites were chosen to 

reflect a range of cyanobacteria densities, which were estimated using remote-sensing surface 

reflectance data gathered by the National Oceanic and Atmospheric Administration (NOAA, 

 7



https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/habTracker.html). Surface reflectance data 

were converted to a cyanobacteria index following Wynne et al. (2008) and then to cell density 

following Wynne et al. (2010).  

Fish Preparation and Measurement 

Yellow perch were thawed prior to examination for the prevalence and severity of parasite 

loads. For each individual, the total length (TL, nearest 1 mm), and wet mass (nearest 0.1 g) were 

recorded. Body condition (a proxy of energetic health) was calculated for each individual as the 

deviation of each individual from a least-squares regression line fit to all of the TL and wet mass 

data. In this way, individuals with a deviation above this line were considered in better health 

than those below the line (Scavia et al. 2014). The liver, which is the organ most targeted by 

MCs (Dabholkar & Carmichael 1987), was then excised through an incision in the peritoneal 

cavity and examined under 40x magnification using a dissecting microscope to identify 

individual parasites. 

Parasite Loads 

Infections by Neoechinorhynchus, a genus of parasitic worms that parasitizes other Lake 

Erie fishes, including northern pike (Esox lucius), quillback carpsucker (Carpiodes cyprinus), 

and walleye (Dechtiar 1968; Amin & Muzzall 2009; Melo et al. 2015), results in characteristic 

nodules seen on the surface of infected tissues (Verweyen et al. 2011; de Matos et al. 2017; 

Figure 3). Parasite loads were quantified by counting the characteristic nodules embedded in the 
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tissue surface, with each nodule counting as one parasite (Jithendran and Kannappan 2010; 

Verweyen et al. 2011; Melo et al. 2015).  

Statistical Analysis 

To quantify the relationship between cyanobacteria cell counts and mean parasite loads, I 

used a generalized linear model. In the model, the response variable was mean parasite load (i.e., 

mean number of parasites in the liver of fish captured at each station). I included cyanobacteria 

concentration (cells⋅mL-1), bottom temperature (nearest 0.1ºC), dissolved oxygen (nearest 0.1mg 

⋅L-1), Secchi depth (nearest 0.1m; to represent turbidity), and catch per unit effort (number of 

individuals • ha-1; as a representation of the abundance of target species) as predictors. I included 

fish condition as a continuous covariate to account for a possible interaction with parasite loads. 

A Gamma distribution was assumed, given the right-skewed distribution of response. Because 

the Gamma distribution does not allow zero to be a dependent variable value, I added 0.001 to 

zero values in order to use the distribution. Any predictor effects were considered significant at 

the α-level of 0.05. All analyses were conducted using R version 1.2.5033 (R Core Team 2019). 

RESULTS & DISCUSSION 

Harmful algal blooms (HABs) can influence fish health either directly (e.g., through toxin 

exposure) or indirectly (e.g., by altering food web interactions) (Briland et al. 2020). Both direct 

and indirect effects can induce stress and compromise the immune system (Wei et al. 2009), 

potentially leading to greater susceptibility of individuals to disease and parasitic infection 

(Schwaiger et al. 1997). Because HABs are a common occurrence in western Lake Erie during 
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the summer growing season, when juvenile fishes such as yellow perch are using these waters as 

nursery habitat, I predicted that parasite loads in individuals residing in waters with high 

cyanobacteria concentrations would be greater than individuals captured in areas with lower 

concentrations of cyanobacteria. I tested this hypothesis by quantifying the prevalence of 

infections of parasitic worms of the genus Neoechinorhynchus in the livers of YOY yellow 

perch. 

Yellow Perch Attributes 

 The yellow perch analyzed for this study were generally the same size and body 

condition across the study years. Mean (± 1 SE) TL of fish ranged from 56.5 ± 0.7 mm (2015) to 

75.4 ± 0.9 mm (2017). Mean body condition (measured as a deviation from a best-fit regression 

line) varied from -0.02 ± 0.02 SD (2019) to 0.07 ± 0.05 SD (2011).  

Parasite Loads  

  To test whether parasite infections increased with increasing cyanobacteria density, I 

examined the parasite loads of yellow perch collected at 54 sites across western Lake Erie during 

August of 2011, 2015, 2017, and 2019. These sites spanned a wide gradient in HAB severity 

with cyanobacteria cell counts ranging from 184,354 cells⋅mL-1 to 1,353,648 cells⋅mL-1.  

Parasite counts varied both within and among years (Table 1). During all years, individuals 

with parasites were documented with maximum parasite loads among years ranging from 9 per 

individual (2017) to 2 per individual (2015). Similarly, the proportion of individuals with 

parasites in their liver varied among years, ranging from 0.09 (2015) to 0.70 (2019) (Table 1). As 
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expected, I found that parasite load was related to cyanobacteria cell counts across the sampling 

sites. However, the relationship was opposite of my expectations, with the mean liver parasite 

counts being negatively related to cyanobacteria cell densities (log-adjusted coefficient: 1.55e-6; t 

= 2.20; P = 0.03; Table 2; Figure 4).  

 While contrary to my prediction, the negative relationship between cyanobacteria 

concentration and parasite loads is supported by research conducted with other species 

(Coopman et al. 2014; Da Silva et al. 2008). Despite HABs and their toxins negatively affecting 

fish health (see review by Landsberg 2002; Wei et al. 2009; Schwaiger et al. 1997), my results 

suggest that stress caused by HABs reduces the health and survivability of parasites more so than 

that of the host fish. This explanation is partially supported by a recent study with Manila clams, 

where high-level doses of the dinoflagellate Karenia selliformis, which forms dense blooms, 

including red tides that can cause fish kills (Landsberg 1995), showed the potential to reduce 

parasite burdens while minimally altering clam health metrics (Da Silva et al. 2008). Coopman et 

al. (2014) also provided evidence to indicate that HABs have health-promoting effects on 

potential hosts such as Daphnia, suggesting that their HAB-derived secondary metabolites (i.e., 

toxins) have antibacterial properties. These studies, combined with the unexpected result, suggest 

that HABs confer advantages to organisms like yellow perch by reducing the prevalence of 

disease and parasite burdens. 

Interestingly, the relationship between parasite burdens and cyanobacteria cell counts 

appeared to depend on fish body condition in an unexpected manner. Specifically, I found that, in 

waters with relatively severe HABs (>500,000 cyanobacteria cells⋅mL-1), yellow perch in poor 

condition (condition factor < 0) had lower mean parasite values than fish in good condition 
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(condition factor > 0). My expectation was that fish in poorer body condition would have higher 

parasite loads.  

I am perplexed as to why this relationship emerged. One possibility is that fish in poorer 

condition are unable to support high numbers of parasites. Because body condition is based on 

expected mass according to length compared with actual mass, an individual with less than 

expected mass at a given length would be in poor condition. It makes sense, then, that fish with 

lower than expected mass (thus, poor condition) may not be able to support large numbers of 

parasites due to lack of biomass for the parasites to feed on and/or space for the parasites to 

grow. This occurrence would lead to the results that we observed, that individuals in poor 

condition had less parasites on average than individuals in good condition. 

Because of the finding that individuals in poor condition found in HABs have fewer 

parasites than those in good condition, I am drawn to the idea that HABs may not be particularly 

harmful to fish and may actually provide some benefits. Small fish in poor condition may receive 

more benefit than harm from a HAB bloom in the form of protection from predators, a source of 

abundant food, and potential anti-pathogenic properties of cyanobacteria. To this point, Briland 

et al. (2020) found that small-bodied prey fish, including YOY yellow perch, resided in HABs 

during the day—perhaps as a refuge from predators – and fed just as well within blooms as 

outside of them, despite these blooms being highly toxic (with MC). Indeed, the authors found an 

abundance of zooplankton prey available in western basin blooms, with YOY yellow perch also 

consuming benthic macroinvertebrate prey. Studies in other ecosystems also have demonstrated 

the likely use of HABs during the day by small-bodied fishes, with avoidance of them at night, 

suggesting HABs to be beneficial as a prey-rich environment with minimal predation risk 
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(Engström-Öst, et al. 2006; Godlewska et al. 2018). Collectively, the results of my study, 

combined with these other findings, suggest that the net effect of HABs on fish such as yellow 

perch could be positive. Clearly, more research is needed to determine the validity of this 

statement.  

Study Limitations 

 The present study has limitations that should be addressed with future research. For 

instance, while the locations at which yellow perch were caught are known, exactly where the 

fish resided during the hours, days, or weeks prior to capture is not. Thus, the possibility exists 

that the individuals analyzed for my study could have moved from sites with differing bloom 

conditions than those in which they were captured. This limitation could be addressed by tagging 

fish to track their locations, or perhaps conducting an experiment in which cyanobacteria 

conditions and fish movement are monitored in a laboratory setting. Additionally, future studies 

should try to determine the exact amount of MC to which fish are exposed. This could be done 

by taking water samples at the collection site to quantify MC content in the water (Foss & Aubel 

2015). Not only would this have allowed for a clearer connection between MC and parasite 

loads, but it would have made the connection clearer between HAB cell density and the amount 

of MC taken up by fish in a bloom.  

Summary & Conclusions 

In summary, I found that mean parasite loads decreased with increasing cyanobacteria cell 

density, and that YOY yellow perch in poor condition had lower mean parasite loads than those 

 13



in good condition. Both of these findings were opposite of my expectations. Even so, they were 

somewhat supported by the invertebrate literature, where for both zooplankton and a mollusk, 

disease and parasite burdens declined with exposure to toxic algae or cyanobacteria. Given the 

many ways in which HABs can directly and indirectly affect fish (Briland et al. 2020), and the 

many ways that remain poorly understood (e.g., this study), more research in this area is 

warranted. Only with a better understanding of the effect of HABs on fish health and growth can 

fishery management agencies truly understand the importance of HABs to fisheries management. 

In addition, given that HABs are expected to continue to increase with continued climate change 

(Wells et al. 2015), continued research in this area would offer agencies a means to predict how 

fish production and recruitment dynamics might change in the future.  
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Table 1. Details on collection sites and parasite loads from young-of-year yellow perch collected 

in western Lake Erie during August, 2011, 2015, 2017, and 2019. 

Year Number 

of fish

Number of 

collection 

sites

Mean ± 1 SE 

cyanobacteria 

concentration 

(cells⋅mL-1)

Proportion of 

fish with liver 

parasites

Mean ± 1 SE  

parasite counts 

(parasites⋅

liver-1)

2011 70 11 651,979 ± 34,235 0.15 0.24 ± 0.83

2015 70 4 649,962 ± 16,181 0.09 0.14 ± 0.47

2017 60 20 483,456 ± 45,127 0.60 1.23 ± 1.67

2019 316 18 372,205 ± 8,477 0.70 1.51 ± 1.41

 17



Table 2. Data from the model showing predicted parasite loads for each value of cyanobacteria   

 concentration with standard error and a 95% confidence interval. 

 

Cyanobacteria 

concentration  

( cells⋅mL-1)

Predicted 

parasite values

Standard Error 95% confidence 

interval

184,000 1.33 0.20 [2.67, 0.87]

330,000 1.03 0.15 [1.49, 0.78]

476,000 0.84 0.16 [1.14, 0.66]

622,000 0.70 0.23 [1.02, 0.54]

770,000 0.61 0.31 [0.97, 0.44]

916,000 0.54 0.40 [0.93, 0.33]

1,062,000 0.48 0.50 [0.90, 0.33]

1,354,000 0.39 0.70 [0.86, 0.26]
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Figure 1. Average annual cyanobacteria cell densities in western Lake Erie, 2000-2019. Cell 

density values were calculated from reflectance data using methods defined by Wynne et 

al. (2010).  The years during which I collected yellow perch are highlighted in black. 
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Figure 2. Maps of cyanobacteria cell densities in western Lake Erie during August 2011, 2015, 

2017, and 2019, which were sampled for this study. Red indicates high cyanobacteria cell 

densities, whereas dark blue indicates low cyanobacteria cell densities. Gray circles on 
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each panel indicate stations from which young-of-year yellow perch were collected for 

quantification of parasites.   

 

Figure 3. Larval Neoechinorhynchus parasites individually appear as embedded nodules within 

the tissue of fish livers. 
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Figure 4. Relationship between cyanobacteria (HAB) cell density and mean liver parasites 

(number per individual) in young-of-year yellow perch collected in western Lake Erie during 

2011, 2015, 2017, and 2019. The gray shading indicates the 95% confidence interval of the best 

fit line. 
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