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Abstract 

When searching our visual environment, we often have multiple strategies available. For 

example, when looking for apples on a supermarket shelf, you can look for red things, round 

things, or you can just search serially through all items. How do we choose a strategy? Recent 

research on this question has revealed substantial variation across individuals in attentional 

control strategies when approaching visual search tasks, and the strategies have been found to be 

reliable within subjects. However, strategies on one visual search task have failed to generalize 

across different paradigms that assess various components of strategy use (Clarke et al., 2018). 

Thus, evidence for whether strategies generalize beyond a single paradigm remains scarce. While 

previous tests of generalizability used paradigms that vary in many ways, we focused on a single 

strategy component that could be preserved across tasks, with several other changes. In two 

experiments, we assessed the correlation between individuals’ strategies in the Standard 

Adaptive Choice Visual Search (Standard ACVS; Irons & Leber, 2018) and a modified novel 

visual search task, Spatial ACVS. In the Standard ACVS, participants seeking to perform 

optimally have to enumerate subsets of different colored squares and identify the smaller subset 

to choose a target from. Similarly, in the Spatial ACVS, participants seeking optimal 

performance have to enumerate spatially separate subsets of squares (one on the left and one on 

the right side of the display), choosing the target in the smaller subset. Participants finished both 

tasks in the same order in one experimental session. Results showed a positive correlation in 

optimal target choices between the two tasks (r = .38), indicating similar strategy usage. Future 

studies can focus on what strategy components tend more to be generalized across tasks and 

whether an individual’s strategy can generalize to tasks with a combination of several strategy 



components. The ultimate goal is to fully understand how people choose their attentional control 

strategies in unconstrained, real-life environments. 
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Introduction 

Imagine when you walk into a grocery store trying to find some fresh apples. On the 

shelves crowded with different kinds of fruits, it is not always an easy task to find them. If you 

search from one corner of your visual field to another, the search will be rather inefficient. 

Alternatively, if you try to use some attentional control to help your search, for example by 

selectively attending to the red things or round things, the search will be much faster.  While 

there are multiple strategies to control attention in visual search, different strategies sometimes 

yield significantly different performances. Suppose if apples are surrounded by a majority of red 

items, or they are located on red shelves, then a strategy of searching for the red color will not be 

as efficient as searching for shapes, sizes, or other features. 

How do people choose their attentional control strategies to help visual search?  Studies 

have found that people’s strategy selection is overall suboptimal and results in ineffective control 

(e.g., Bacon & Egeth, 1994; Leber & Egeth, 2006a, 2006b).  Research using eye-tracking has 

also found that participants do not always make fixations that will optimize the information gain 

and their visual search behaviors could be better explained by a stochastic model (Boot, Becic, & 

Kramer, 2009; Clarke, Green, Chantler, & Hunt, 2016). 

Researchers have offered several speculations regarding why people choose suboptimal 

strategies in visual search. Bacon and Egeth (1994), for example, proposed that participants 



adopted less optimal attentional control settings to avoid effort.  Kool, McGuire, Rosen, and 

Botvinick (2010) extended findings supporting the law of less work, which had pertained mostly 

to demands for physical work, to cognitive demands.  Pauszek and Gibson (2016, 2018) also 

proposed a least cost hypothesis of voluntary attentional control by showing that participants 

often abandoned valid symbolic cues in their Posner-like cueing paradigms to avoid effort in 

processing. 

 

The Adaptive Choice Visual Search (ACVS) Task 

While research has found overall suboptimal attentional control strategies, a number of 

existing studies showed large variation within their samples (e.g., Hogeboom & van Leeuwen, 

1997; Kristjánsson, Jóhannesson & Thornton, 2014; Lleras & von Mühlenen, 2004; Muhl-

Richardson et al., 2018; Nowakowska, Clarke & Hunt, 2017).  More recently, studies using the 

Adaptive Choice Visual Search (ACVS; Irons & Leber, 2016, 2018) demonstrated the broad 

individual differences were test-retest reliable. The ACVS task was based on a subset search 

(Green & Anderson, 1956; Egeth, Virzi, & Garbart, 1984).  The task display had two targets, 

each belonging to a subset of red or blue squares. Participants were free to search for whichever 

subset they like to find the target. Crucially, one of the targets, refered to as the optimal target, 

belonged to a subset that is less numerous than the other subset (see Fig. 1). Throughout the 

course of the experiment, if participants selected more optimal targets, their responses tended to 

be faster. The extent to which participants were optimal was assessed by Proportion Optimal, the 

proportion of trials in which they selected the optimal target. 

A striking finding with the ACVS paradigm is the broad and stable individual differences 

in search strategy. While a substantial proportion of participants selected the optimal target at 



chance level, many others adopted the optimal strategy, and a few participants even deliberately 

chose the suboptimal target more often. These variations showed good test-retest reliability over 

two session separated 1-10 d apart (M = 3.1), as reported in Irons and Leber (2018). 

 

Figure 1. The ACVS paradigm (Irons & Leber, 2019). A) In a sample trial as shown, participants are 

asked to search freely for either a red or a blue target with digits between 2 and 5. Since there are fewer 

blue squares than red ones in the display, the blue target is considered the “optimal” choice. Whether the 

red or the blue square is the optimal target changes periodically (randomized every 1-6 trials), requiring 

monitoring the display and switching search goals. If an individual frequently makes optimal choices 



throughout the experiment, the search speed will be significantly faster than those who make fewer 

optimal choices. 

 

Do Individuals Generalize Visual Search Strategies? 

 Having found broad and stable individual differences in attentional control strategies that 

contributed to different search speeds, it would be interesting to ask if each individual’s strategy 

generalizes to different visual search tasks. In other words, if an individual reliably uses the 

optimal strategy in one task, will they do so in other visual search tasks? For non-optimal 

observers, will the extent to which they are optimal in one task correlate with that in another 

task? 

 Clarke and colleagues (2018) made the only attempt so far to try to investigate this 

question. In their study, they had participants complete three different visual search tasks that 

varied their ways to assess strategies.  One of them was the split-half line segment task 

previously used by Nowakowska, Clarke, and Hunt (2017), where participants had to identify a 

target line segment among various distractor line segments. The display contained a 

homogeneous side in which most line segments tilted towards a similar direction, and a 

heterogeneous side where most line segments tilted towards different directions. If the target 

appeared on the homogeneous side, it would pop out of the display and take a very short time to 

identify. Therefore, the optimal strategy to complete the task is to examine the homogeneous side 

covertly, without making eye movements that would slow the search speed. In another visual 

foraging task developed by Kristjánsson, Jóhannesson, and Thornton (2014; see also 

Jóhannesson, Thornton, Smith, Chetverikov, & Kristjánsson, 2016), participants had to search 

for a sequence of targets of certain features in every display. When a target was defined by a 

conjunction of two features, the optimal strategy was to exhaustively find one type of target and 



then move on to another type of target (e.g., searching for all green squares followed by all red 

circles).  Together with ACVS, these three paradigms were completed by participants in two 

sessions and their optimalities were measured. The results did not show correlations in optimality 

between any of the two tasks. 

 Not being able to find a correlation in strategies across tasks does not necessarily mean a 

failure in finding the generalizability of visual search strategies. The three tasks in Clarke et al. 

likely involve different sub-tasks, some are important for an individual to adopt a certain 

strategy. Just like a world-class runner or swimmer may not choose to actively engage in 

triathlon races, an individual who does not excel at all sub-components of a particular visual 

search task could fail to perform optimally overall.  In real-world visual search scenarios, even 

more complex components can contribute to more confounds in characterizing an individual’s 

strategy. If this is indeed what caused the null result in the previous study while trying to find a 

correlation in strategy between tasks, then it is meaningful to investigate the sub-components 

which could make a difference in individuals’ strategy choices.  For the same reason, a full 

understanding of individual search strategy cannot be achieved without tackling these individual 

components. 

Thus, given the scarcity of research that tries to correlate strategies between tasks, we 

cannot yet conclude whether an individual’s visual search strategy is truly generalizable. 

Nevertheless, a reasonable speculation would be that strategies generalize to some extent, 

depending on the sub-components of a particular task.  In tasks that contain the same sub-

components, individuals likely generalize their strategies. Changing some sub-components might 

result in a change in strategies, but we still do not know which of these sub-components are 

critical for the generalizability of visual search strategies. 



 

Overview of the Present Study 

The present study aims to test the sub-component account of strategy generalization and 

to find if an individual’s strategy in the ACVS generalizes to visual search tasks that have some 

and all sub-components with the ACVS paradigm. 

What are the sub-components of the ACVS?  To make an optimal choice in the ACVS, 

participants should first appraise the display and extract relevant statistical summary information. 

Participants complete this step by either discriminating the numerosity difference between red 

and blue subset or estimating which color takes up more space in the display. Then, they need to 

deploy feature-based attention to a subset of squares of a certain color, searching through the 

subset until one of the squares have a digit that belongs to the target digit set held in working 

memory. They will also need to periodically update the attentional sets across trials in order to 

always choose the optimal target. At least one of these stages has been shown to be crucial in 

making optimal choices: by disrupting the appraisal phase with an irrelevant task, participants 

showed reduced optimality (Hansen, Irons, & Leber, 2019). 

In the present study, we modified the previously adopted ACVS paradigm (Standard 

ACVS) and made it a space-based one (Spatial ACVS). The new paradigm differed from the 

Standard ACVS only by one factor—whether subsets are feature-based or space-based. 

Specifically, instead of having red and blue subsets of squares, the new task had two sets of gray 

squares located on the left and right sides of the display. Each side contained one target square, 

and by changing the numerosity of the two subsets, there was always an optimal target which 

belonged to a subset with fewer squares. 



We then planned to have participants complete the Spatial ACVS followed by the 

Standard ACVS and assess strategy generalizability by calculating the correlation between 

individuals’ optimality on two tasks. If an individual’s strategy generalizes between the two 

tasks, we should see a positive correlation in the proportion of optimal choices. 

 

Experiment 1 

We started by creating a novel visual search task that could also reveal a wide range of 

individual differences in strategies. Importantly, this task should provide participants with some 

degree of freedom in choosing different strategies to approach the task and also allow us to 

objectively measure their strategies. 

To this end, we modified the ACVS paradigm to create a new task. We kept the task as a 

subset search, so that participants could complete every trial by searching for only a subset of the 

display. Different from the original task where subsets were defined by color features, subsets in 

the new task were located in spatially different regions in the display. Specifically, there were 

two sets of squares, located on the left and the right side of the display, and one side always had 

fewer squares than the other side. Thus, choosing the target on the side with fewer squares was 

the optimal strategy.  We called this modified task the “Spatial ACVS.” 

Since we planned to test the strategy correlation between Spatial ACVS and the original 

ACVS task, we wanted to find out a ratio that would give us an average optimality similar to that 

of the original task, and still preserve sufficient individual variations. As a result, we tried three 

different ratios in Experiment 1. 

Since it is increasingly difficult to identify the numerosity contrast between two sets of 

stimuli, when that contrast gets smaller (Feigenson, Dehaene, & Spelke, 2004), we predicted that 



the proportion of optimal choices would increase as the numerosity contrast increases.  There 

still should be individuals who reliably adopt the optimal strategy even for the Small contrast 

condition because it is larger than the just noticeable difference (Dehaene, Izard, Spelke, & Pica, 

2008).  Previous studies also found that human adults can reliably discriminate different 

numerosities of at least a 7:8 ratio (Barth, Kanwisher, & Spelke, 2003; Dehaene, Izard, Spelke, 

& Pica, 2008; Halberda & Feigenson, 2008; van Oeffelen & Vos, 1982). Thus, participants in 

our experiment would be able to find the less numerous side under such ratio if they were 

sufficiently motivated. 

 

Method 

Participants. Twenty-four individuals (10 male, 14 female) aged 18 to 26 (M = 18.63) from 

The Ohio State University’s Research Experience Program (REP) participated in this study. All 

participants had self-reported normal or corrected-to-normal visual acuity and normal color 

vision. 

Apparatus. Participants completed the experiment in a dimly lit, sound-attenuated room. The 

experiment was programmed with Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 

implemented in MATLAB (Mathworks, Natick, MA, USA). Stimuli were presented using a Mac 

Mini computer and a 24-inch LCD monitor. Participants were seated at a viewing distance of 

approximately 60 cm from the screen. 

Stimuli. The stimuli were based on previous versions of the ACVS (Irons & Leber, 2016, 

2018; Hansen, Irons, & Leber, 2019), with some spatial modifications. Different number of gray 

squares (sized 1° x 1°, RGB: 97, 97, 97) were placed at different sides (i.e., the left side and the 



right side) of each display on three concentric rings with 6.3°, 9.4°, and 12.4° eccentricity from 

the innermost to the outermost. 

All squares had a small white digit between 2 and 9 superimposed on the center. Each 

search array contained two targets, one on each side of the display. All target squares had digits 

between 2 and 5, and all distractor squares had digits between 6 and 9 superimposed on them. 

Target digits were chosen pseudorandomly such that each digit appeared equally often on both 

targets, and the two targets on each trial always contained different digits to enable us to 

determine which target was chosen by the participant. 

Procedure. The experiment used a blocked design with Small, Medium, and Large contrast 

conditions, corresponding to a 1.2:1, 1.5:1, and 2.0:1 non-optimal to optimal side ratio, 

respectively. This gives three types of display, with the non-optimal side always having 20 

squares, and the optimal side having 17, 13, and 10 squares, with respect to each contrast. All 

targets were generated in a pseudorandom manner that held the total target eccentricity constant 

for all participants. All distractors were generated randomly. Two blocks of the same ratio were 

grouped, making up a total of six blocks of 72 trials (432 total trials). The order of the ratios 

presented was counterbalanced across participants, with four participants completing each 

possible order. The number of times that the optimal target appeared on each side was balanced 

for each participant, and no more than three times did the optimal target appear on the same side 

of the display. 



 

Figure 2. Sample displays with three different numerosity contrasts. The Small, Medium, and Large 

contrast displays have ratios 1.2:1, 1.5:1, and 2.0:1, respectively. In every display, there is a left target and 

a right target. The side on which there are more squares is counterbalanced across trials. 

 

Results 

Data from one participant whose accuracy was more than three standard deviations below 

the group mean was removed from analyses. Incorrect trials and trials in which participants 

responded in less than 300 ms or more than 3 SD above the participant’s mean were removed 

from analyses. Overall, the accuracy of the task was close to ceiling (M = 97.93%). 



Proportion Optimal increases with numerosity contrasts, with Small contrast the lowest 

(range 42.34% - 65.69%, M = 52.04, SD = 5.273), followed by Medium (range 51.77% - 

86.23%, M = 60.12, SD = 8.192), and Large (range 51.82% - 96.40%, M = 70.44, SD = 12.75). 

In the Small contrast condition, proportion optimal was still above chance (t(23) = 1.899, 

p = .035, one-tailed). In the Large contrast condition, proportion optimal was still below 100% 

(t(23) = 11.355, p < .001). 

 

 

Figure 3. The frequency distributions of proportion optimal under three different contrast ratios. 

 

A linear regression was calculated to predict proportion optimal based on ratio (Fig. 4). A 

significant regression equation was found (F(1, 70) = 47.7, p < .001), with an R2 of .405. The 

proportion optimal (P) changed with optimal-nonoptimal side ratio (r) with the following 

function. 

 

 

 



 

Figure 4. Individual proportion optimal data under each contrast ratio. 

 

Discussion 

As predicted, with increased numerosity contrasts, participants made more optimal 

choices. The results showed that proportion optimal in Large contrast condition (i.e., the 2.0:1 

ratio) was closest to that in the Standard ACVS experiments previously conducted in our lab. 

One limitation is that a linear model might not have sufficiently captured the relationship 

between proportion optimal and numerosity contrast. While error rates when making numerosity 

comparisons do seem to change linearly with the contrast between two numerosities (Feigenson, 

Dehaene, & Spelke, 2004), we could not ascertain a linear relationship between the difficulty in 

numerosity discrimination and proportion of optimal choices. 

Nevertheless, for the purpose of this experiment, we were able to conclude that for ratios 

within the range we chose, a 2.0:1 ratio yielded optimality most comparable to Standard ACVS. 

 



Experiment 2 

In Standard ACVS, the feature of the optimal target was determined by intermixed “runs” 

of 1-6 (i.e., one to six successive optimal targets of the same color). This required participants to 

switch on 28.57% of the trials when they consistently selected the optimal target.  However, in 

Spatial ACVS task the run numbers were set to be 1-3, which increased the switch rate when 

adopting the optimal strategy. 

In Experiment 2, we further modified the Spatial ACVS to make it more comparable to 

Standard ACVS by making the optimal side switching periodically in runs of 1-6. 

 

Method 

Fifteen individuals (5 male, 9 female, 1 non-binary) aged 18 to 22 (M = 19.00, SD = 

1.31) from The Ohio State University participated in the experiment. All participants had self-

reported normal or corrected-to-normal visual acuity and normal color vision. 

In this newer version of the task, the optimal side alternated in random runs of one to six 

trials, giving an optimal switch rate of 28.57%.  Except for the number of runs, the methods were 

the same as Experiment 1. 

 

Results 

Proportion Optimal increases with Small contrast (range 43.48% - 61.15%, M = 51.67%, 

SD = 5.35%), Middle constrast (range 50.00% - 82.73%, M = 60.98%, SD = 10.07%), and Large 

constrast (range 50.71% - 93.66%, M = 68.02%, SD = 16.10%). 

A cross-experiment analysis with Experiment 1 found that proportion optimal collapsed 

across ratios did not differ in two experiments (t(34) = 0.23, p = .82). No main effect of ratios 



and interaction between tasks and ratios were found. Similarly, the overall switch rate of the two 

tasks did not differ (t(34) = 0.29, p = .77). 

 

Discussion 

The results demonstrated no significant change in participants’ proportion of optimal 

choices when the optimal side was made in runs of one to six, as in Standard ACVS. 

This indicated that an increase in required target switching might not influence optimality 

significantly.  Indeed, in a within-subject manipulation on Standard ACVS on required switching 

showed that it did not influence an individual’s tendency to choose the optimal target in ACVS, 

neither did task-switching ability predict the optimal strategy (Shaw, Hansen, McKinney, Irons, 

& Leber, 2020). 

Together with Experiment 1, these two experiments allowed us to find a stimuli ratio  

(i.e., 2.0:1) between two sides of the displays on Spatial ACVS that yielded an average and 

standard deviation of optimality comparable to Standard ACVS. 

 

Experiment 3 

Experiment 3 was preregistered (osf.io/rx2c5). Participants completed the Standard 

ACVS task (Irons & Leber, 2018; McKinney, Hansen, Irons, & Leber, 2019), followed by the 

Spatial ACVS task with the established 2:1 ratio. 

 

Method 

Participants. 57 individuals (29 female) aged 18 to 32 (M = 19.23) participated in this study. 

All participants had self-reported normal or corrected-to-normal visual acuity and normal color 



vision. Data from one participant was excluded because she completed the two tasks with a 

different order than predetermined. Seven participants whose overall accuracy was three standard 

deviations lower than average were excluded from analyses. The final sample included 50 

participants, as specified in the preregistration, which would give us a power of .98 of finding a 

medium effect size (r = .50). 

Equipment. Participants sat in a dimly lit, sound-attenuated room without restraint 

approximately 60 cm from the display. The stimuli were presented using Psychophysics Toolbox 

(Brainard, 1997; Pelli, 1997) implemented in MATLAB (Mathworks, Natick, MA, USA) and 

were displayed on a 24-inch LCD monitor with a 60 Hz refresh rate. 

Stimuli. The Standard ACVS used displays that were based on Irons & Leber (2018). Each 

search display contains 54 squares (13 red, 13 blue, 14 green, and 14 “variable”). On every trial, 

the targets are a red and a blue square containing a digit between 2-5 (all other red, blue, and 

variable squares contain digits 6-9). On half of the trials, the variable distractors were red, and on 

the other half the variable distractors were blue. Short runs of one to six trials with red variable 

distractors were interleaved with short runs of 1-6 trials with blue variable distractors (see Fig. 

1).  In Spatial ACVS, on every trial, 20 squares appeared on one side (i.e., left or right) of the 

display and 10 squares appeared on the other side, with every square positioning at one of the 54 

locations where the squares in Standard ACVS appear, except for the 6 locations closest to the 

vertical midline of the display. All squares are colored gray and contain a digit between 2-9. Two 

targets, one on each side, each have digits between 2-5. On half of the trials, more squares 

appeared on the left side and on the other half, more squares appeared on the right side. Short 

runs of one to six trials with more squares on the left side are interspersed with short runs of 1-6 

trials with more squares on the right side. 



Procedure. Participants completed three blocks of Standard ACVS task followed by three 

blocks of Spatial ACVS task. This order was preserved across all participants to minimize 

intersubject variability driven by the design, for the purposes of individual differences analysis 

(cf. Irons & Leber, 2018). Participants were informed that a blue and a red target will be 

presented on every trial and that they were always free to search for either one. The targets 

contained a digit between 2 and 5, and participants responded using the keys V, B, N, and M 

corresponding to each of the possible target digits. The four response keys were covered by four 

stickers with handwritten corresponding digits.  Participants completed ten practice trials 

followed by three blocks of 84 trials, with short breaks in between.  At the end of these blocks, 

participants were told to notify the experimenter, and they were given the chance to take a short 

break. Then, the experimenter explained instructions of Spatial ACVS. Participants were 

informed that all the squares would be of the same color, that they could always find one target 

on each side of the screen, and that they were always free to search for either one. The targets 

contained a digit between 2 and 5, and participants responded using the same keyboard as used 

in the first task with the keys V, B, N, and M corresponding to each of the possible target digits. 

The four response keys were covered by four stickers with handwritten corresponding 

digits.  Participants completed ten practice trials followed by three blocks of 72 trials. 



 

Figure 5. A) Example search display from the Spatial ACVS task. Each display contains a left and a right 

target, with a digit (2, 3, 4, or 5) on them. There is always an “optimal” target which is located on the side 

with fewer squares. B) Example sequence of trials. All sequences in the task contained runs of 1-6 trials 

with fewer squares on the left and fewer squares on the right. 

 

Results 

The search accuracy was close to ceiling for both tasks (Standard ACVS M = 98.42%, 

Spatial ACVS M = 98.56%). In the following analyses, we excluded error trials and trials with 

search response times (RTs) less than 300 ms more than three standard deviations above the 

mean (3.03% of Standard ACVS trials, 2.69% of Spatial ACVS trials). 



Standard ACVS. The result of Standard ACVS replicated the main findings of the classical 

ACVS paradigm (Irons & Leber, 2018).  There was a broad range of individual differences in the 

proportion of optimal choices, from 10.79% to 96.77% (M = 65.37, SD = 19.47). Overall, 

participants made more optimal choices than chance (one-sample t-test against 50%; t(49) = 

5.58, p < .001) but also made a large proportion of suboptimal choices (one-sample t-test against 

100%; t(49) = 12.58, p < .001).  The proportion of optimal choices were negatively correlated 

with search response times (r = -.57, p < .001) (Fig. 7). 

Spatial ACVS.  The proportion optimal on Spatial ACVS ranged from 50.95% to 98.10% 

(M = 82.24, SD = 13.85). Proportion optimal was negatively correlated with search response 

times (r = -.36, p = .011). 

 

 

Figure 6. Frequency distributions for individuals’ proportion optimal in both tasks. 



 

Figure 7. Response times negatively correlated with proportion optimal in both tasks. 

 

Figure 8. A positive correlation between proportion optimal in Standard ACVS and Spatial ACVS. 

 

Correlation Between Tasks.  There was a positive correlation between individuals’ 

proportion optimal in two tasks (r = .38, p = .007). 

 



Discussion 

 We found a positive correlation between participants’ proportion of optimal choices in 

two tasks. This means that the extent to which an individual is optimal in Standard ACVS 

correlates with the extent to which an individual is optimal in Spatial ACVS. In other words, 

participants transferred their visual search strategies from one task to another.  This finding 

marks that visual search strategies are generalizable at least between tasks that have similar 

strategy subcomponents. 

We also note that the correlation in an individual’s optimality between two tasks was 

weaker than that of the test-retest reliability of the Standard ACVS, as reported in Irons & Leber 

(2018).  There are some speculations regarding what resulted in this weaker correlation. In 

Experiment 3, participants completed the two tasks in the same order in one sitting. While 

keeping the task order allowed us to better assess the correlation between tasks, it is not clear 

whether the first task influenced the performance in the second task, and whether different 

individuals were influenced by this task order in different ways. We found that a cluster of 

individuals who performed optimally in Spatial ACVS were at chance optimal in Standard 

ACVS (Fig. 8). One explanation is that some participants were not aware of the optimal strategy 

until the second task. However, one piece of evidence that is inconsistent with this possibility is 

that optimality did not differ—i.e., increase—across blocks in both Standard ACVS (F(2, 147) = 

1.365, p = .259) and Spatial ACVS (F(2, 147) = 0.043, p = .958). A two-way repeated-measures 

ANOVA showed no main effect of blocks (F(2, 294) = 0.963, p = .383) nor interactions between 

blocks and tasks (F(2, 294) = 0.874, p = .418).  An alternative explanation would be that Spatial 

ACVS has weaker test-retest reliability and the noise added to the correlation was due to 

momentary states of the participants. It is difficult to rule out this possibility with existing data. 



As a result, we also plan to carry out studies to explore the strategy test-retest reliability in 

different paradigms in the future.  Another, more interesting alternative is that some participants 

were more motivated to use the optimal strategy in Spatial ACVS. If this is true, then we need to 

find whether the only different strategy sub-component—adopting feature-based attention or 

directing spatial attention—could contribute to some individuals’ motivation to make optimal 

choices. 

 

General Discussion 

Over the past few decades, researchers have been trying to understand the factors that 

control attention (Egeth & Yantis, 1997). While previous research has focused on individuals’ 

ability to apply specific types of goal-direction attentional control, strategy is overlooked but it 

contributes to a meaningful variation in performance. This has inspired researchers to investigate 

strategies using various visual search paradigms, many of which yielded broad and stable 

individual differences. 

A complete understanding of individual differences in attentional control strategies and 

how they can contribute to people’s visual search performance in real-life settings, however, 

must take into account whether strategies are generalizable beyond a single visual search 

paradigm. Here we show evidence for strategy generalization by showing a positive correlation 

in individuals’ strategy measurements across two visual search tasks. We modified the standard 

Adaptive Choice Visual Search (ACVS) task and developed a space-based subset search task 

which still allowed participants to approach it with different strategies.  

In Experiment 1, we found that in the Spatial ACVS task where two targets could be 

found in two unequal-sized subsets of gray squares located on two sides of the display, the 



proportion of optimal choices increased with an increased numerosity contrast between the two 

subsets. With a ratio of 2:1, the proportion of optimal choices was well above chance but below 

100%, and exhibited large individual variation comparable to Standard ACVS. 

In Experiment 2, we attempted to make the Spatial ACVS paradigm more comparable to 

the Standard ACVS by requiring the optimal strategy to have the same number of switches 

between target types. This change, however, did not influence the proportion of optimal choices. 

Finally, in Experiment 3, we had participants complete Standard ACVS and Spatial 

ACVS in one session and measured their proportion of optimal choices in both tasks. The results 

showed a positive correlation between optimality on both tasks, indicating participants 

generalized their strategies from Standard ACVS to Spatial ACVS. 

We offer several suggestions for future research investigating the generalizability of 

visual search strategies. The results obtained from the present study, together with those included 

in Clarke et al. (2018), suggest that individuals generalize strategies in some, but not all, visual 

search tasks. Perhaps individuals adopt the optimal strategy in one task because they are willing 

to carry out all sub-components required by the optimal strategy. The absence of strategy 

generalization between visual search tasks can be contributed to different sub-components that 

constitute a task. 

Strategy generalization also has the potential to provide evidence for effective cognitive 

training.  Since over a century ago, researchers have been interested in whether improvement in 

one specific cognitive function would benefit other cognitive functions (Woodworth & 

Thorndike, 1901). The debate continues since studies keep showing contradictory results (e.g., 

Anguera et al., 2013; Boot, Blakely, & Simons, 2011; Jaeggi, Buschkuehl, Jonides, & Shah, 

2011; Melby-Lervåg, Redick, & Hulme, 2016; Morrison & Chein, 2011; Owen et al., 2010; 



Redick et al., 2013; Schmiedek, Lövdén, & Lindenberger, 2010; Sala & Gobet, 2017; Simons et 

al., 2016).  The existence of “far transfer”, or skill generalization between domains that are 

loosely connected, is of particular significance for topics like brain training. The scarcity of 

evidence supporting far transfer makes it difficult for brain training programs to conclude that 

training in a specific cognitive task might benefit consumers in general cognitive abilities. 

However, it seems that strategy is more amenable to training. By simply informing participants 

of the optimal strategy and giving them a chance to appraise the display, we could see a 

significant increase in proportion of optimal choices in the ACVS paradigm, which would boost 

the speed in finding the targets (Hansen, Irons, & Leber, 2019). 

In conclusion, the present study shows evidence for visual search strategy generalization 

and offers some directions for future research. Future work can be aimed at a more complete 

understanding of the strategy subcomponents and the mechanisms underlying their interactions.  

A full understanding of how individuals strategically configure their control settings in different 

types of unconstrained environments will eventually give us more insight into people’s goal-

directed attentional control behaviors. 
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