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Short communication

A novel algorithm to define infection tendencies in H1N1 cases in Mainland China

Fan Ding a,1, Dante S. Zarlenga b, Chengfeng Qin c, Xiaofeng Ren a,*
a Microbiology Lab, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Xiangfang District,

150030 Harbin, China
b Animal Parasitic Diseases Laboratory and Bovine Functional Genomics Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
c State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China

1. Introduction

Since the World Health Organization (WHO) first identified
H1N1 influenza outbreaks in the United States and Mexico in April
2009, the worldwide incidence of this disease has risen dramati-
cally. This infection has had substantial impact on the politics,
economies and public health in now endemic regions of the world,
so much so that in June 2009, the WHO raised the pandemic alert
level to phase 6 (maximum) (http://www.who.int/mediacentre/
news/statements/2009/h1n1_pandemic_phase6_20090611/en/
index.html). This action prompted many countries to adopt
counter-measures such as strengthening prevention and control,
perfecting surveillance, and accelerating vaccine development. In
Mainland, China, the government and related agencies took rapid
and effective measures to curtail the infection. As such, the number

of confirmed H1N1 cases in Mainland China increased only
moderately. Nevertheless, a better model is needed to predict
infection trends of H1N1 and other potential viral infections of
humans in order to advance effective prevention and control
practices. Precedence exists for such modeling. Several years ago,
mathematical models were used to simulate the incidence of
Severe Acute Respiratory Syndrome, SARS (Riley et al., 2003;
Lipsitch et al., 2003; Dye and Gay, 2003).

Currently there exists established mathematical methods
describing the prevalence of diseases over time such as the Time
Series Analysis (TSA) which relies on ARMA (Autoregressive
Moving Average) and ARIMA (Autoregressive Integrated Moving
Average) models extensively (Harris and Sollis, 2003; Yu, 2005;
Bell et al., 2004; Campbell et al., 2009). The disadvantage of the
TSA algorithm is that the sequence data for TSA must be complete
and some unrelated factors need to be excluded. This in turn can
result in the lack of qualified data for testing. For this reason, i.e.
incomplete data, TSA was considered not be suitable for predicting
future trends in H1N1 infections. The grey prediction model
overcomes this shortcoming to some extent, because it does not
require complete data sequences in order to be effective (Wang et
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A B S T R A C T

Incidences of H1N1 viral infections in Mainland China are collected by the Ministry of Health, the

People’s Republic of China. The number of confirmed cases and the timing of these outbreaks from May

13 to July 22, 2009 were obtained and subjected to a novel mathematical model to simulate the infection

profile (time vs number). The model was predicated upon the grey prediction theory which allows

assignment of future trends using limited numbers of data points. During the period of our analysis, the

number of confirmed H1N1 cases in Mainland China increased from 1 to 1772. The efficiency of our

model to simulate these data points was evaluated using Sum of squares of error (SSE), Relative standard

error (RSE), Mean absolute deviation (MAD) and Average relative error (ARE). Results from these analyses

were compared to similar calculations based upon the grey prediction algorithm. Using our equation,

defined herein as equation D–R, results showed that SSE = 6742.00, RSE = 10.69, MAD = 7.07, ARE = 2.47%

were all consistent with the D–R algorithm performing well in the estimation of future trends of H1N1

cases in Mainland China. Calculations using the grey theory had no predictive value [ARE for

GM(1,1) = �104.63%]. To validate this algorithm, we performed a second analysis using new data

obtained from cases reported to the WHO and CDC in the US between April 26 and June 8, 2009. In like

manner, the model was equally predictive. The success of the D–R mathematical model suggests that it

may have broader application to other viral infections among the human population in China and may be

modified for application to other regions of the world.
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al., 2007; Xiong and Xu, 2005). As such, we used the grey
predication model [GM(1,1)] as a basis for constructing the
algorithm defined herein. In the case of H1N1, many researchers
have analyzed the organism’s genetics (McDonald et al., 2007),
pathology (Tang and Chong, 2009), evolution and phylogeny
(Dunham et al., 2009), mechanism of infection and transmission
(Lange et al., 2009), and resistance to drugs (Deyde et al., 2007) to
help prevent a pandemic. Here we establish the mathematic model
D–R using limited data points, and fit the H1N1 epidemic in
Mainland China as a test, then compare this model to the predictive
capability of GM(1,1) to show the enhanced predictive value of the
new equation. As an additional proof of principle, the validity of the
developed model was secondarily demonstrated using data
obtained from the US. We trust that such a model will assist in
designing effective surveillance strategies for this and other viral
diseases in order to determine a trend line for future infections and
also determine when and to what extent the infection rate deviates
from the norm.

The number of confirmed H1N1 cases in Mainland China is
accessible from the official website of the Ministry of Health, the
People’s Republic of China (http://www.moh.gov.cn/publicfiles//
business/htmlfiles/wsb/index.htm). It should be noted that these
numbers reflect only confirmed and reported cases. The number of
actual cases may be substantially higher. In addition, the number
of actual cases and reported cases may differ more in the
exponentially increasing period of the epidemic as compared to
the start of the epidemic. However, given that these anomalies are
partitioned into nearly all public databases of this type and
represent an unknown, this factor was not incorporated into the
model. The number of the H1N1 cases between May 13 and July 22
was collected and used in this study. During this period, the data on
July 8, 10, 12, 14, 16, 18, 19 and 21 were not publicly available. Our
model was substantially based upon the grey prediction model
then modified using components of the temporal series’ Sliding
Average Method (SAM), Weighted Average Method (WAM), ARMA
and ARIMA (Harris and Sollis, 2003; Yu, 2005), and statistical
regression analysis. The mathematical expression representing
increasing tendency of H1N1 cases is given below:

At�1 + a[K(At�1 � At�2) + K(1� K) (At�2 � At�3) + K(1� K)2(At�3

� At�4) +. . .+K(1�K)(n�1) (At�n � At�(n+1))] = Ft�b(At�1 � At�(n+1))/
(n� 1) where At = the actual value at time t, K = 2/(M + 1) is a fixed
value and M = the period of flatness. The following values are also
defined: U = g � Ft and L = d � Ft, where Ft = predicted value at time t,
U = upper limit of the prediction interval, L = lower limit of the
prediction interval, and a + b = 1. The values a, b, g, d are unfixed
values derived from self-adaptation of the model.

The above defined equation for the incidence of H1N1 over
time was comprised of two parts; one defines the effect of
long-term trends on the data and the other defines the effect
of short-term trends on the data. The long-term trend is defined
by: (At�1 � At�2) + (At�2 � At�3) +. . .+ (At�n � At�(n+1))/(n � 1). It
describes the average value of the first order difference, and
reflects the mean change of the whole series. The short-term trend
is K(At�1 � At�2) + K(1 � K) (At�2 � At�3) + K(1 � K)2(At�3 �
At�4) +. . .+ K(1 � K)(n�1) (At�n � At�(n�1)) and describes any impact
of recent first order differences on the data. The weights given to
short-term and long-term trends are designed as a and b,
respectively and are derived from self-adaptation of the model.
The foundations for the self-adapting model are as follows: (1) if
the degree of first order difference and basic data is less than the
predefined limit, the values for a and b should decrease and
increase, respectively; (2) if the degree of first order difference
increases significantly, and the basic data remains less than the
predefined limit, the values of a and b will be similar; (3) if the
degree of first order difference and basic data increase significant-
ly, the values for a and b will increase and decrease, respectively.

Table 1
Comparison of actual H1N1 infection values to the values predicted by D–R and

GM(1,1).

Date At D–R U L GM(1,1)

May 17 3.00 2.28 2.16 2.39 2.79

May 18 3.00 3.62 3.44 3.80 3.94

May 19 4.00 3.31 3.15 3.48 4.02

May 20 4.00 4.62 4.39 4.85 4.95

May 21 5.00 4.33 4.11 4.54 5.22

May 22 5.00 5.62 5.34 5.90 6.06

May 23 7.00 5.33 5.07 5.60 6.41

May 24 7.00 8.00 7.60 8.40 7.90

May 25 11.00 7.49 7.12 7.87 8.72

May 26 12.00 12.82 12.18 13.47 11.43

May 27 12.00 13.27 12.61 13.94 13.71

May 28 13.00 12.63 11.99 13.26 15.58

May 29 21.00 13.76 13.08 14.45 17.32

May 30 21.00 24.83 23.59 26.08 21.33

May 31 26.00 22.58 21.45 23.71 25.21

June 1 36.00 28.91 27.47 30.36 29.70

June 2 42.00 41.40 39.33 43.47 31.84

June 3 51.00 46.78 44.44 49.11 34.59

June 4 59.00 56.80 53.96 59.64 37.21

June 5 67.00 64.72 61.49 67.96 48.23

June 6 70.00 72.81 69.17 76.46 70.59

June 7 73.00 73.77 70.08 77.46 108.57

June 8 89.00 76.11 72.30 79.91 142.29

June 9 100.00 99.74 94.75 104.73 168.53

June 10 111.00 110.43 104.91 115.96 197.29

June 11 125.00 121.33 115.26 127.39 228.68

June 12 141.00 137.12 130.26 143.97 262.95

June 13 165.00 154.84 147.10 162.59 301.10

June 14 185.00 184.31 175.09 193.52 344.94

June 15 226.00 203.75 193.57 213.94 395.60

June 16 237.00 257.26 244.40 270.12 448.46

June 17 264.00 254.40 241.68 267.12 523.44

June 18 297.00 286.40 272.08 300.72 608.94

June 19 328.00 324.76 308.53 341.00 704.10

June 20 356.00 356.26 338.45 374.07 813.72

June 21 414.00 382.90 363.76 402.05 938.82

June 22 441.00 458.48 435.56 481.41 1068.45

June 23 490.00 472.72 449.08 496.35 1225.40

June 24 528.00 530.80 509.57 546.73 1395.29

June 25 570.00 565.32 542.70 582.28 1584.07

June 26 618.00 608.43 584.09 626.68 1784.71

June 27 678.00 660.72 634.29 680.54 1994.00

June 28 729.00 729.33 700.15 751.21 2215.10

June 29 766.00 777.97 746.86 801.31 2447.58

June 30 810.00 805.82 773.59 829.99 2679.28

July 1 866.00 851.00 816.96 876.53 2902.70

July 2 915.00 914.64 878.06 942.08 3122.86

July 3 960.00 962.13 923.65 991.00 3334.16

July 4 1002.00 1004.40 964.22 1034.53 3530.51

July 5 1040.00 1043.71 1022.84 1064.59 3706.87

July 6 1097.00 1078.38 1056.81 1099.95 3858.30

July 7 1151.00 1138.55 1115.78 1161.32 4005.98

July 8 – 1194.20 1170.31 1218.08 –

July 9 1223.00 1234.74 1210.05 1259.44 4266.10

July 10 – 1258.07 1232.91 1283.23 –

July 11 1302.00 1293.50 1267.63 1319.37 4442.10

July 12 – 1340.92 1314.10 1367.74 –

July 13 1354.00 1379.65 1338.26 1407.24 4563.47

July 14 – 1383.95 1342.43 1411.63 –

July 15 1444.00 1413.19 1370.79 1441.45 4609.30

July 16 – 1490.89 1446.16 1520.71 –

July 17 1537.00 1536.77 1490.67 1567.50 4664.02

July 18 – 1582.27 1534.80 1613.92 –

July 19 – 1626.99 1578.18 1659.53 –

July 20 1668.00 1671.06 1620.93 1704.48 4760.80

July 21 – 1709.99 1658.69 1744.18 –

July 22 1772.00 1751.85 1699.29 1786.89 4834.59

This table presents the actual values of H1N1 infections at time t (At) that were used

to calculate predicted values using equation D–R, the upper (U) and lower (L) limits,

and predicted values using GM(1,1) for the period May 17 to July22. No data was

available for the time periods defined by ‘‘–’’.
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Simply put, inasmuch as a is the weight given to the short-term
trend and b is the weight assigned to the long-term trend, if the
change in short-term data is significant, the long term trend will
become less significant requiring an increase in a. If the change in
the data support neither long or short term trends, the values of a
and b will be congruent. Generally, if the change in the short-term
series of numbers is not significant, the long-term trend will have a
greater impact on the outcome, thereby increasing the value of b.
The mathematical model requires simple procedures to input the
original data. The values generated will vary according to changes
in the original data and first order differences; however, the
process is self-adapting. The g and d values are set using the same
principles as above.

Information regarding confirmed H1N1 cases during May 17 to
July 22, in Mainland China is provided in Table 1. The fitted curve
was derived using this data even though data was collected
beginning May 13. This is because the period May 13–16 was used
as the minimum dataset upon which to begin building the
simulation model which was initiated on May 17. As such it was
not included in the table. In this same table, the fitted values of our
mathematical model (D–R) and its upper (U) and lower (L) limits
representing the trend of H1N1 cases are also summarized along
with those calculated using GM(1,1). The degree of accuracy
correlating the fitted model to the increasing tendency of H1N1
cases was evaluated from these data using the Sum of squares of

error (SSE = S(At � Ft)
2), Relative standard error (RSE = (SSE/

(n � 1))1/2), Mean absolute deviation (MAD = Sj(At � Ft)j/n) and
Average relative error (ARE = (S100% � (At � Ft)/At)/n). Calculation
of the fitted curve for equation D–R showed that SSE = 6742.00
relative to that using GM(1,1) where SSE = 1.27 � 108. In our

study, RSE is the average value of the quadratic sum of the
difference between the actual values and the fitted values.
Although the difference between the actual curve and fitted curve
shows a gradual increase, the RSE value is only 10.69, indicating
that the fitted model is very accurate and far more predictive than
that calculated using GM(1,1) where the RSE = 1482.04. The
average total absolute value between actual and fitted data is
described by MAD. Using equation D–R, we calculated MAD to be
7.07 vs. 901.72 for GM(1,1). In general, MAD and RSE reflect the
mean differences between actual and fitted curves. Using large
datasets, these differences become insignificant suggesting that
the predictive value of the D–R mathematical model is very high.
The percent difference between the actual and fitted curves in
actual value is defined by ARE. The 2.47% ARE using the D–R
equation suggests that the accuracy of the fitted model is
approximately 97%; the number (�104.63%) obtained for
GM(1,1) is uninformative.

As shown in Table 1 and pictorially demonstrated in Fig. 1, to
better display the trend lines and compared datasets, the
confirmed H1N1 cases during May 17 to July 22 and those
predicted by the model are very similar, with the actual curve
appearing higher than the upper limit of the fitted curve at some
points. After self-adapting, variation in the fitted curve realigns
with the limit values. Self-adaptation is one of the key features of
the D–R mathematical model where implementation of the upper
and lower limits occurs when the actual values approach or exceed
these limits. When the upper limit is exceeded, the infection trend
is greater than the norm implying the epidemic is gaining strength.
If the actual curve and fitted curve are similar, it suggests there are
no significant changes in the epidemic situation. If however, the

[()TD$FIG]

Fig. 1. H1N1 infection curves from actual data, and simulated by the D–R and GM(1,1) algorithms. The actual values of H1N1 infections at time t (At) (^), the predicted values

using equation D–R (&), the upper (U) (jj) and lower (L) (�) limits, and the values calculated using GM(1,1) (^) for the period May 17 to July22 were used to create the

simulated curves.

[()TD$FIG]

Fig. 2. H1N1 infection curves from actual data collected from the US, and simulated by the D–R and GM(1,1) algorithms. The actual values of H1N1 infections at time t (At) (^),

the predicted values using equation D–R (&), the upper (U) (jj) and lower (L) (�) limits, and the values calculated using GM(1,1) (^) for the period April 30 to June 8 were used

to create the simulated curves.
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actual curve approaches the lower limit, it suggests the epidemic is
abating. Our results show that the fitted curve derived from the
model closely mirrors the actual number of H1N1 cases, indicating
the utility of the model. Upon comparing the D–R and GM(1,1)
algorithms the data generated using GM(1,1) are initially in line
with those using D–R; however, as the dataset increases,
substantial deviation occurs in the capabilities of GM(1,1) to
mimic the known progression of disease. This loss of predictive
value is mirrored in the calculated values for SSE, RSE, MAD and
ARE.

To further validate the fitting accuracy and utility of the D–R
model, the daily numbers of reported H1N1 cases in the US during
the period April 26 to June 8, 2009 were collected from WHO and
CDC. The fitted curve was generated using data obtained between
April 30 and June 8; the period April 26–29 was used as the
minimum dataset upon which to begin building the simulation
model and is therefore not presented in Fig. 2. The initial data
were small i.e. on April 26, there were only 20 reported cases;
however, by June 8, there were 13,217 reported cases. Beginning
June 8, data were provided weekly rather than daily and therefore
not used in our analysis. As with the data from Mainland China,
fitting was performed by means of the D–R and GM(1,1)
algorithms. Calculated values for SSE, RES, MAD and ARE from
both the D–R and GM(1,1) models are presented in Table 2 (note;
tabulated data points from the WHO and CDC and calculated
values for the period April 26 to June 8 used to construct Fig. 2 are
available upon request). Values calculated from the D–R model
were significantly lower than those from GM(1,1) model. For
example, the D–R model ARE value is 2.93% which means that the
fitting accuracy reached 97.07% (high precision). In contrast, the
accuracy of GM(1,1) was only 39.69%, indicating substantial
deviation in the predictive value. As with the data from Mainland
China, Fig. 2 demonstrates that the actual curve and D–R fitted
curve exhibited similar trends and even overlapped at some time
points. In contrast, GM(1,1) model was reasonably predictive
during the initial phase of the reporting period similar to that
observed with the data from Mainland China; however, begin-
ning May 12, the GM(1,1) curve deviated significantly from the
actual curve.

Others have modeled H1N1 virus transmission under
specialized circumstances and in subpopulations of individuals.
Fraser et al. (2009) were among the first to present a model of
H1N1 transmission based upon data obtained from the outbreak
in Mexico. They concluded that transmissibility is substantially
higher than that of the seasonal flu, but comparable to previous
influenza pandemics with respect to low Basic Reproduction
Numbers (R0). Gojovic et al. (2009) generated a simulation
model based upon combinatorial uncertainty analysis to project
the effects of several strategies to mitigate transmission among
Koreans and concluded that if available, massive vaccination
would be optimal. Tracht et al. (2010) developed a transmission
model predicated on a subpopulation (10%) of individuals that
would be willing to correctly use facemasks and concluded a
substantial reduction (20%) would ensue. Yet, among these and
other extensive studies modeling the effects of mitigation,
Coburn et al. (2009) concluded that trying to identify

intervention strategies for epidemics that involve recombination
of species-specific strains and cross-species transmission, i.e.
H1N1 is problematic. The work herein used a subset of data to
project future trends and then tested those trend lines against
existing data and demonstrated good congruence. This model
gives less consideration to micro-environmental factors by
establishing upper and lower limits of the prediction intervals
and providing self-adapting parameters to account for dominat-
ing long or short term effects. As with most models, assimilating
trends to regional variation, health care resources and the public
health measures to mitigate impact were not evaluated;
however, our model is capable of assessing the benefits of
intervention strategies.

Taken together, our novel algorithm aligns well with trends
observed in the report of H1N1 cases in Mainland China and in the
US. This model may not only be used to broadly predict trends in
H1N1 cases, but also may be applicable for predicting other
epidemics. Although the progression of epidemic diseases is often
based upon several hypotheses (Gordis, 2008), for the first time we
show that the infection rate of influenza H1N1 can be predicted by
a mathematical model that depicts a relationship between the
tendency of the data to change, and the fitted and limit values of
that data.
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