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Doubly censored data are very common in epidemiology studies. Ignor-
ing censorship in the analysis may lead to biased parameter estimation. In this
paper, we highlight that the publicly available COVID19 data may involve
high percentage of double-censoring and point out the importance of dealing
with such missing information in order to achieve better forecasting results.
Existing statistical methods for doubly censored data may suffer from the
convergence problems of the EM algorithms or may not be good enough for
small sample sizes. This paper develops a new empirical likelihood method
to analyse the recovery rate of COVID19 based on a doubly censored dataset.
The efficient influence function of the parameter of interest is used to define
the empirical likelihood (EL) ratio. We prove that −2 log(EL-ratio) asymp-
totically follows a standard χ2 distribution. This new method does not require
any scale parameter adjustment for the log-likelihood ratio and thus does not
suffer from the convergence problems involved in traditional EM-type al-
gorithms. Finite sample simulation results show that this method provides
much less biased estimate than existing methods, when censoring percentage
is large. The method application to the COVID19 data will help researchers
in other field to achieve better estimates and forecasting results.

1. Introduction. Doubly censored data, with both right and left censoring, occur when
time-to-event data are censored either from above or below. Doubly-censored data are very
common in studies of infectious disease with incubation period. The left censoring happens
when the originating date of the incubation period is not fully observed due to practical
sampling factors beyond experimental control. The date of the failure event is often right-
censored. A particular doubly censored data on AIDS study can be found in De Gruttola
and Lagakos (1989). Another example is time from symptom onset to recovery for people
who get COVID19. For COVID19 studies (Verity et al., 2020), the incubation rate and re-
covery rate are the key factors for us to understand the epidemiology. In particular, in the
current COVID19 outbreak, better understanding of the recovery rate will help governments
to take the right intervention strategy at the right time. However, many existing research
for COVID19 are based on published information from government or ministry of health
websites and media reports (Verity et al., 2020). Such data have high percentage of missing
information, such as high percentage of left or right censoring. This may distort the estima-
tion of recovery rate, which could further distort the epidemiology model forecasting, as we
can see from (Ferguson et al., 2020) that different model parameters will give very different
forecasting results.

The dataset used in Verity et al. (2020) is from
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which has a large number of missing information on the symptom onset and on the date
of recovery. Our main research interests here are to study the recovery time, e.g. the time
from symptom onset to recovery X , and to study the sensitivity of recovery rate on the
epidemiology forecasting. The recovery times are clearly observed under right censoring
because when the data were reported, recovery may not have happened to many patients.
Therefore the right censoring timeR is the time from the symptom onset date to the reporting
date. On the other hand the left censoring time L is from the date of exposure to the date of
recovery. As we know that the symptom can only occur after exposure to the virus, when
symptom onset date is missing but the date of exposure to virus is available, we can retrieve
information of X that X ≤ L.

In summary, under doubly censoring, the event time X of a subject cannot be observed
unless it falls in an "observation interval" [L,R]. We observe L in the case of left censoring
with X < L, or observe R in the case of right censoring with X >R. Let (Xi, Li, Ri), i=
1, · · · , n, be n independent copies of (X, L, R), then observations under doubly censorship
can be summarized as n independent pairs (Wi, δi), i= 1, · · · , n, where

Wi = max(min(Xi, Ri), Li), and δi =


1, if Li ≤Xi ≤Ri,

2, if Xi >Ri,

3, if Xi <Li.

Usually, we assumed that the failure time X is independent of censoring vector (L, R).
Denote F as the cumulative distribution function of X . Suppose that we are interested

in a parameter θ, defined by a functional θ = θ(F ). Many important parameters can be rep-
resented as this form or, sometimes, we obtain θ via the corresponding estimating equation
g(X,θ). For example, if we are interested in the expectation of a known function m(X),
then θ =

∫
m(x) dF (x), and the corresponding estimating equation is g(X, θ) =m(X)− θ.

Other examples include:
[1.] θ is the cumulative hazard function at given time t0, i.e. θ =− ln(1−F (t0)), then the

estimating equation is g(X, θ) = I{X>t0} − e−θ;
[2.] θ is the mean residual life time at given time t0, i.e.

θ =E(X − t0|X > t0) = F̄−1(t0)

∫ ∞
t0

(s− t0) dF (s),

where F̄ = 1− F , then the estimating equation is g(X, θ) = (X − t0 − θ)I{X≥t0}.
To draw inference on the unknown parameter θ, a straightforward approach is to imple-

ment a distribution function estimation for F (Turnbull and Crowley, 1974; Tsai and Crow-
ley, 1985; Chang and Yang, 1987; Chang, 1990)). Using the distribution function estima-
tion, the asymptotic-normality based confidence interval for the parameter of interest θ can
be constructed via the asymptotic variance estimator of the parameter estimate. But there
are two main drawbacks associated with this method. First, the asymptotic variance usually
takes a complicated form. Secondly, these confidence intervals based on asymptotic normal
distribution do not always perform well for small samples. Other existing research about
doubly-censored data may depend on specific model assumptions, such as (quantile) regres-
sion analysis (Zhang and Li, 1996; Ren and Gu, 1997; Ji et al., 2012) and two-sample tests
(Shen et al., 2016). In this paper, we will solve these estimation problems via empirical like-
lihood method (Owen, 1988), which is a very useful tool for constructing confidence regions
for θ in nonparametric settings. In general, the empirical likelihood approach has a number
of advantages, such as the shape of the confidence region is determined automatically by the
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data. In many cases, the log empirical likelihood ratio statistics has asymptotic χ2 distribu-
tion, therefore the confidence interval for θ can be constructed without estimating asymptotic
variance.

Based on estimating equation g(X, θ), the original Empirical Likelihood (OEL) in Owen
(1988) is defined as

RO(θ) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi g(Xi, θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i= 1, 2, · · · , n

}
.

It can be proved that

LO(θ0) =−2 logRO(θ0)→ χ2(1), in dist.

Such empirical likelihood approach has many desirable statistical properties and some advan-
tages over other competitors such as the normal approximations and the bootstrap methods.
A very important work by Qin and Lawless (1994) generalized the EL method to make infer-
ence for parameter defined by a general estimating equation. Choosing different estimating
equation to define likelihood statistics RO(θ) will lead to different inference process.

However, applying OEL methods to incomplete data will lead to a scaled χ2 result. When
the data is right censored, Wang and Jing (2001) utilized the Buckley-James estimator to de-
fine the estimating equation, and proved that the asymptotic distribution of the corresponding
log-likelihood is a scaled χ2 distribution. This limiting distribution can be used to construct
the confidence interval for θ, if the scaled parameter is estimated. To avoid estimating the
scaled parameter, He et al. (2016) used the efficient influence function of the parameter un-
der right censorship to define the log-likelihood ratio statistics and proved its asymptotic
distribution is a χ2 distribution. The confidence interval for θ based on this method is much
more accurate. Under doubly censoring, Ren (2001) proposed Leveraged Bootstrap Empir-
ical Likelihood (LBEL) by combining the EL method with the bootstrap. Since the asymp-
totic distribution of the log-likelihood based on LBEL method is a scaled χ2 distribution, the
scaled parameter as an adjustment coefficient needs to be estimated in practice. Besides, the
LBEL method demands that the parameter of interest should be the linear functional of F .

Notice that the EL likelihood function
n∏
i=1

pi is not the real likelihood function for doubly

censored data, Murphy and van der Vaart (1997) defined the likelihood function based on
observations {(Wi, δi)}ni=1

(1) LDC(F ) =

n∏
i=1

∆F (Wi)
I{δi=1}(F̄ (Wi))

I{δi=2}F (Wi)
I{δi=3} ,

where DC is the abbreviation for Double Censoring, ∆F (t) = F (t)−F (t−) and F̄ = 1−F
is the survival function. Using (1), they showed that this log-likelihood ratio subject to non-
parametric moment constraints obeys the Wilks’ phenomenon under some assumptions. This
method avoids the scaled parameter, but is computationally difficult to find the nonparametric
maximum likelihood. To solve this problem, Shen et al. (2016) proposed an EM algorithm
to calculate this log-likelihood ratio statistics. However, EM algorithm may suffer from the
problem of convergence to a local maximum point. Different from Shen et al. (2016), we
investigate another approach in this paper. Inspired by He et al. (2016), we develop the likeli-
hood statistics defined by efficient score function for the parameter of interest θ. This method
is called Efficient-EL method in our paper. Under this new approach, we demonstrate that
the log empirical likelihood ratio converges to the standard χ2 distribution without using any
scale parameter adjustment, which means the confidence interval for different kinds of pa-
rameters θ can be obtained by a unified algorithm. In the mean time, it is computationally
much more efficient than existing EL methods under doubly censoring.
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The rest of the paper is organized as follows. The Efficient-EL inference for the differen-
tial functional parameter θ under doubly-censored data is given in Section 2, including the
large sample properties and the computing algorithm. Simulation studies of the Efficient-EL
and the EM-EL method proposed by Shen et al. (2016) are provided in Section 3. We find
that our approach performs much better for longer tail distributions, which usually lead to
higher censoring proportions. In the mean time, the new method still performs as good as
existing methods for lighter tail distributions which lead to lower censoring proportions. An
application on COVID-19 study based on our proposed methodology is presented in Section
4. The paper concludes with a discussion in Section 5.

2. Efficient Empirical Likelihood Inference. Denote GL(t) = P{L≤ t} and GR(t) =
P{R ≤ t} as the distribution of L and R respectively. Suppose we are interested in the esti-
mation problem for a parameter θ = θ(F ), and the corresponding estimating equation for θ
is g(X, θ), that means Eg(X, θ) = 0. Since X cannot be observed unless it falls in [L, R],
we define

gDC(W,δ;θ) = I{δ=1}
g(W,θ)

GR(W )−GL(W )
+ I{δ=2}

g(W,θ)

1−GR(W )
+ I{δ=3}

g(W,θ)

GL(W )
.

It is easy to see that, given the distribution F, GL, GR, we have EgDC(W, δ; θ) = 0 which
gives an estimating equation for θ. Then, the EL ratio can be defined by

RDC(θ) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi g
DC(Wi, δi;θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i= 1, · · · , n

}
.

Substituting the unknown GL, GR with its consistent estimators will lead to a scaled asymp-
totic χ2 distribution. Murphy and van der Vaart (1997) used the likelihood function (1) to
solve the problem. Different from their idea, we will try to reconsider the estimating equa-
tion to overcome the scaled χ2 asymptotic distribution problem.

2.1. The main theorems. Assume [α, β]⊂ [0,∞) be the support of F , and the following
assumptions hold.

(A1) GL(x)−GR(x−)> 0 on x ∈ [α, β],

(A2) F,GL and GR are continuous with GL(β) = 1,GR(α) = 0.

Define BV[α, β] = {h : [α, β] → R, h is bounded and of bounded variation} and HF =
{h ∈ BV[α, β] :

∫
hdF = 0}. The following Lemma provides the efficient influence function

for θ.

LEMMA 2.1. Let dFt(x) = (1+th(x)) dF (x) be a submodel of F (x), which approaches
F at direction h ∈HF . Assume (A1) and (A2) hold and the Hadamard derivative of θ(Ft)
exists, denoted by θ̇0. Then the efficient influence function for θ is

ψ(w, δ; θ) = `F (`∗`F )−1θ̇0,

where `F is the score operator

(`Fh)(w, δ) = I{δ=1}h(w) + I{δ=2}

∫
(w,∞) hdF

1− F (w)
+ I{δ=3}

∫
[0,w] hdF

F (w)
,

and `∗ is its corresponding adjoint operator

(`∗g)(s) = g(s, 1)
(
GL(s)−GR(s−)

)
+

∫
[0,s)

g(u, 2) dGR(u) +

∫
[s,∞)

g(u, 3) dGL(u).
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PROOF. See Appendix .

The assumptions (A1) and (A2) guarantee the operator `∗`F : BV[α, β]→ BV[α, β] is
invertible. The following are some examples of derivatives θ̇0 (in all of the examples we let
t0 be fixed).

[1.] For mean θ = EX , we have θ̇0 = x− θ.
[2.] For the kth moments θ = EXk, we have θ̇0 = xk − θ.
[3.] For cumulative distribution function θ = F (t0), we have θ̇0 = I{x≤t0} − θ.
[4.] For cumulative hazard function θ =− ln(1− F (t0)), we have

θ̇0 = 1− eθ I{x>t0}.

Since the operators `∗ and `F dependent on (F, GL, GR), we should write ψ =
ψ(w, δ; θ, F, GL, GR) more precisely. Let ξ = (F, GL, GR), the efficient influence func-
tion can be denote as ψ(W, δ; θ, ξ), hence

Eψ(W, δ; θ, ξ) = 0.

Notice that the nuisance parameter ξ is unknown, we need to estimate it firstly.
For j = 1, 2, 3, define

Ĥk(t) =
1

n

n∑
i=1

I{Wi≤t, δi=k} and Ĥ(t) =

3∑
k=1

Ĥk(t).

Chang and Yang (1987) gave the self-consistent estimators F̂ , ĜL, ĜR of F , GL, GR by
solving the following equations:

(2) Ĥ(t) = (1− F̂ (t))ĜR(t) + F̂ (t)ĜL(t),

(3) ĜR(t) =

∫ t

0

dĤ2(u)

1− F̂ (u)
,

(4) ĜL(t) = 1−
∫ ∞
t

dĤ3(u)

F̂ (u)
.

Based on equation (2), a naive and simple iterative algorithm can be used to get F̂ , and
then ĜL, ĜR can be calculated by equations(3) and (4). In order to guarantee the asymptotic
consistency and normality of F̂ , ĜL and ĜR, we assume F , GL and GR satisfy conditions
(A1)–(A6) in Chang (1990) throughout this paper.

Define ξ̂ = (F̂ , ĜL, ĜR), then the efficient influence function ψ(Wi, δi; θ, ξ) for θ can
be estimated by ψ(Wi, δi; θ, ξ̂). For simplicity of notations, denote ψi(θ) = ψ(Wi, δi; θ, ξ)

and ψ̂i(θ) = ψ(Wi, δi; θ, ξ̂), then the corresponding Efficient EL ratio is defined as
(5)

R̂eDC(θ)
.
= R̂eDC(θ, ξ̂) = sup

{
n∏
i=1

npi
∣∣ n∑
i=1

pi ψ̂i(θ) = 0,

n∑
i=1

pi = 1, pi ≥ 0, i= 1, 2, · · · , n

}
.

Using Lagrangian multipliers, pi = 1/n(1 + λ ψ̂i(θ)), we further have

R̂eDC(θ) =

n∏
i=1

1

1 + λ ψ̂i(θ)
,
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where λ is the solution of the following equation

1

n

n∑
i=1

ψ̂i(θ)

1 + λ ψ̂i(θ)
= 0

and the following asymptotic results.

THEOREM 2.1. Suppose the assumptions in Lemma 2.1 hold, θ0 is the true value of the
parameter of interest, and Eψ2(W, δ; θ0) exists, then we have

L̂eDC(θ0)≡−2 log R̂eDC(θ0)→ χ2(1), in dist.

PROOF. Under the Lemma B.1 and Lemma B.2 in Appendix, this proof is similar to the
proof of Original EL and therefore it is omitted.

Theorem 2.1 shows that the estimated log empirical likelihood ratio converges to the stan-
dard χ2 distribution without adjustment, which means the confidence interval for different
kinds of parameters θ can be obtained by an unified algorithm. Hence, a confidence region
for the parameter θ with asymptotic coverage probability 1− α can be define as

(6) CI =

{
θ : 2

n∑
i=1

log
(

1 + λ ψ̂i(θ)
)
≤ χ2

α(1)

}
.

By recalling the definition of the efficient influence function for θ

ψ(w, δ; θ) = `F (`∗`F )−1θ̇0,

in the following subsection we present an algorithm for the calculation of the numerical
solution of ψ̂i and the confidence region CI .

2.2. Algorithm for Efficient-EL Method. Before presenting the algorithm, we need to
introduce the following notations,

K̂1(t) =

{
n−1

∑n
i=1

(
1− F̂ (Wi)

)−2
I{δi=2,Wi<t}, if t < Bn,

K̂1(Bn−), if t≥Bn,

K̂2(t) =

{
n−1

∑n
i=1 F̂

−2(Wi)I{δi=3,Wi≥t}, if t≥An,
K̂2(An), if t < An,

where An = min
{
Wi : F̂ (Wi)> 0

}
, Bn = max

{
Wi : F̂ (Wi−)< 1

}
, and

Kij =
1

n

K̂1(Wi ∧Wj) + K̂2(Wi ∨Wj)

ĜL(Wj)− ĜR(Wj−)
I{δj=1}.

For a given θ, define the least favorable direction hθ(x) = (`∗`F )−1θ̇0(x; θ), then the
efficient influence function is ψ(w, δ; θ, ξ) = `Fhθ(x). Notice that only the values of
ψ(w, δ; θ, ξ) at the sample points (Wi, δi) are needed, therefore we can just calculate
hθ(W1), hθ(W2), · · · , hθ(Wn). The following Corollary 2.1 shows a key equation for
ĥθ(Wi) which will be used in the Efficient-EL algorithm.
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COROLLARY 2.1. The estimator ĥθ(Wi) satisfies the equation

(7)

 θ̇0(W1; θ)
...

θ̇0(Wn; θ)

=


∆G1 +K11 K12 · · · K1n

K21 ∆G2 +K22 · · · K2n

· · ·
Kn1 Kn2 · · · ∆Gn +Knn


 ĥθ(W1)

...
ĥθ(Wn)

 ,

where ∆Gi := ĜL(Wi)− ĜR(Wi−).

The Efficient-EL ratio R̂eDC(θ) can then be calculated by the following algorithm. Hence,
the confidence interval for θ, CI in (6), can be constructed using the output ψ̂i(θ) by this
algorithm.

Algorithm 1 Efficient-EL Algorithm
1: Solving (2)-(4) to get the self-consistent estimators F̂ , ĜL and ĜR of F , GL and GR.
2: for i= 1 to n, do
3: Calculate θ̇0(Wi; θ) and ∆Gi = ĜL(Wi) − ĜR(Wi−),
4: for j = 1 to n, do
5: Calculate Kij .
6: end for
7: end for
8: Solve the equation (7) and get ĥθ(W1), ĥθ(W2), · · · , ĥθ(Wn).
9: for i= 1 to n, do

10: Calculate ψ̂i(θ) = ψ(Wi, δi; θ, ξ̂),
11: if An ≤Wi <Bn then
12:

ψ̂i(θ) = I{δi=1}ĥθ(Wi) +
I{δi=2}

n(1 − F̂ (Wi))

n∑
k=1

I{δk=1,Wk>Wi}ĥθ(Wk)

∆Gk

+
I{δi=3}

nF̂ (Wi)

n∑
k=1

I{δk=1,Wk≤Wi}ĥθ(Wk)

∆Gk
,

13: else if Wi <An then
14: ψ̂i(θ) = ψ(An, δi; θ, ξ̂),
15: else
16: ψ̂i(θ) = ψ(Bn−, δi; θ, ξ̂).
17: end if
18: end for
19: Output ψ̂i(θ).

3. Simulation Studies. In this section, we will illustrate the performance of our method
via simulation studies. Here we compare our Efficient-EL method with EM-EL method in
Shen et al. (2016).

In our simulations, we denote Exp(λ) as the exponential distribution with mean λ,
Normal(µ,σ2) as the normal distribution with mean µ and variance σ2, Weibull(a, b) as
the Weibull distribution with scale parameter a and shape parameter b, and Uniform(a, b) as
the uniform distribution on [a, b]. For a given sample size n, we generate doubly-censored
observations (Wi, δi). Based on the simulated data, we use all complete data Xi to construct
the benchmark confidence interval, and compare it with the Efficient-EL confidence interval
proposed in the previous section and EM-EL confidence interval (Shen et al., 2016).
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TABLE 1
Coverage probabilities for Mean under Uniform(0, 3) distribution

Nominal Level = 0.90 Nominal Level = 0.95

10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%
Complete 0.898 0.894 0.896 0.944 0.943 0.945

n=50 Efficient 0.897 0.888 0.877 0.944 0.935 0.932
EM 0.896 0.878 0.873 0.944 0.932 0.930

Complete 0.906 0.899 0.897 0.955 0.949 0.948
n=80 Efficient 0.903 0.892 0.887 0.950 0.942 0.940

EM 0.904 0.891 0.882 0.951 0.943 0.940
Complete 0.909 0.896 0.903 0.953 0.948 0.954

n=100 Efficient 0.906 0.898 0.899 0.951 0.946 0.944
EM 0.905 0.888 0.891 0.952 0.944 0.942

Two percentages in each column stand for left censoring proportion and right censoring proportion.

TABLE 2
Coverage probabilities for MRL(t0) under Uniform(0, 3) distribution

Nominal Level = 0.90 Nominal Level = 0.95

t0 = 0.1 quantile of F 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%
Complete 0.907 0.898 0.906 0.954 0.943 0.953

n=50 Efficient 0.904 0.874 0.854 0.949 0.929 0.910
EM 0.898 0.851 0.831 0.947 0.914 0.894

Complete 0.895 0.894 0.892 0.949 0.948 0.945
n=80 Efficient 0.892 0.880 0.866 0.941 0.931 0.921

EM 0.886 0.859 0.835 0.936 0.921 0.907
Complete 0.896 0.889 0.897 0.949 0.948 0.947

n=100 Efficient 0.896 0.884 0.868 0.949 0.936 0.923
EM 0.898 0.859 0.838 0.946 0.925 0.907

t0 = 0.5 quantile of F 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%
Complete 0.897 0.891 0.896 0.945 0.943 0.950

n=50 Efficient 0.871 0.838 0.819 0.928 0.896 0.877
EM 0.888 0.833 0.831 0.938 0.897 0.895

Complete 0.895 0.901 0.891 0.949 0.950 0.841
n=80 Efficient 0.885 0.856 0.844 0.935 0.912 0.909

EM 0.889 0.848 0.846 0.941 0.909 0.915
Complete 0.893 0.901 0.897 0.949 0.948 0.947

n=100 Efficient 0.892 0.873 0.871 0.942 0.928 0.923
EM 0.894 0.857 0.864 0.945 0.921 0.929

Two percentages in each column stand for left censoring proportion and right censoring proportion.

3.1. Simulation Results for Mean and Mean Residual Lifetime. In this simulation, there
are two parameters we are interested. One is the mean of X , denoted by θ1, therefore the
estimating equation for θ1 is g1(X, θ1) = X − θ1. The other is the Mean Residual Life-
time (MRL) of X given t0, denoted by θ2(t0), the corresponding estimating equation is
g2(X, θ2) = (X − t0 − θ2)I{X≥t0}.

Uniform(0,3) and Normal(0,1) distributions are considered as the underlying lifetime
distribution F . When X follows the uniform distribution, the left censoring time L and cen-
soring interval length R− L are uniformly distributed on interval [c1, c2] and [c3, c4]. When
X is drawn from the normal distribution, the left censoring time L and censoring interval
length R − L are distributed as Normal(µ1, 1) and Normal (µ2, 1). We set ci and µi to be
different values to achieve 10%, 20%, 30% left censoring proportions and 10%, 20%, 30%
right censoring proportions respectively. Based on 5000 simulated data sets, we construct
Efficient-EL confidence intervals, EM-EL confidence intervals and Complete EL confidence
intervals. The coverage probabilities are summarized in Table 1 - Table 3.

From the results in these Tables, we noticed that as the sample size n increases, all cover-
age probabilities converge to the nominal levels. When n is fixed, coverage probabilities of
Efficient-EL confidence intervals and EM-EL confidence intervals decrease as the censoring
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TABLE 3
Coverage probabilities for Mean and MRL(t0) under Normal(0, 1) distribution

Nominal Level = 0.90 Nominal Level = 0.95

10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%
Complete 0.897 0.887 0.898 0.945 0.938 0.943

n=50 Efficient 0.880 0.854 0.850 0.932 0.918 0.913
EM 0.887 0.873 0.885 0.939 0.935 0.938

Complete 0.899 0.898 0.900 0.950 0.948 0.948
n=80 Efficient 0.884 0.870 0.867 0.939 0.929 0.928

EM 0.894 0.881 0.896 0.942 0.937 0.948
Complete 0.911 0.905 0.899 0.957 0.951 0.948

n=100 Efficient 0.895 0.877 0.870 0.949 0.931 0.928
EM 0.903 0.882 0.893 0.955 0.937 0.946

t0 = 0.1 quantile of F 10%+10% 20%+20% 30%+30% 10%+10% 20%+20% 30%+30%
Complete 0.899 0.890 0.890 0.948 0.942 0.943

n=50 Efficient 0.871 0.850 0.836 0.929 0.914 0.905
EMEL 0.885 0.871 0.846 0.941 0.928 0.909

Complete 0.899 0.895 0.893 0.949 0.946 0.946
n=80 Efficient 0.888 0.871 0.863 0.942 0.931 0.925

EMEL 0.896 0.882 0.866 0.946 0.929 0.923
Complete 0.896 0.902 0.905 0.951 0.954 0.954

n=100 Efficient 0.888 0.875 0.867 0.938 0.934 0.927
EMEL 0.895 0.889 0.862 0.945 0.941 0.924

Two percentages in each column stand for left censoring proportion and right censoring proportion.

proportion increases. The coverage probabilities of the confidence intervals for parameter
MRL(t0) decrease when t0 increases. In all cases, the performance of Efficient-EL and EM-
EL methods are close to that of Complete EL method when censoring proportion is not large.

Under uniform distribution, Efficient-EL and EM-EL methods perform similarly in the
coverage probability estimation for the parameter mean (see Table 1). The difference among
these two methods and Complete EL method is small, especially for small censoring pro-
portion or large sample size. However, the performance of these methods for the parame-
ter MRL is different (see Table 2). The coverage probabilities of Efficient-EL confidence
intervals performs better than that of EM-EL almost for all scenarios when t0 = 0.1. Mean-
while, Efficient-EL method performs as good as EM-EL when t0 = 0.5 for most cases. Under
the scenario with normal distribution (see Table 3), both EM-EL method and Efficient-EL
method provide very good coverage probabilities.

3.2. The impact of different censoring proportions – exponential distribution. In this sec-
tion, we investigate the impact of different censoring proportions. Here we still consider the
parameter mean θ1 and θ2(t0) =MRL(t0), where t0 is the 30% quantile of the distribution
F , Exp(1). We set the left censoring time L as Exp(c1) and censoring interval length R−L
as Exp(c2). We choose ci to be different values to achieve left 20% right 40%, left 30% right
30% and left 40% right 20% censoring proportions respectively. Based on 5000 simulated
data sets, the coverage probabilities are summarized in Table 4.

When right censoring proportion is large (40%), from Table 4, we can see that the coverage
probabilities of Efficient-EL are much better than that of EM-EL, although both methods have
larger bias. Besides, the coverage probabilities of Efficient-EL confidence intervals converge
faster to the nominal level than that of EM-EL. Take the parameter MRL as an example, as
the sample size increase from 50 to 500, the coverage probabilities of Efficient-EL increase
from 0.637 to 0.753, while EM-EL only increase from 0.666 to 0.710.

3.3. The impact of different censoring proportions – lognormal distribution. We still
consider the same parameters of interests, mean θ1 and MRL θ2(t0), t0 = 30% quantile of
distribution F , which is LogNorm(0, 0.64) in this subsection. The left censoring time L
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TABLE 4
Coverage probabilities for Mean and MRL under Exp(1) distribution

Nominal Level = 0.90 Nominal Level = 0.95

Mean 20%+40% 30%+30% 40%+20% 20%+40% 30%+30% 40%+20%
Complete 0.881 0.884 0.879 0.932 0.938 0.932

n=50 Efficient 0.692 0.762 0.819 0.762 0.835 0.883
EM 0.688 0.813 0.880 0.768 0.879 0.939

Complete 0.892 0.893 0.898 0.949 0.939 0.946
n=100 Efficient 0.736 0.800 0.846 0.807 0.865 0.910

EM 0.712 0.823 0.898 0.795 0.888 0.946
Complete 0.892 0.889 0.894 0.944 0.945 0.943

n=150 Efficient 0.748 0.799 0.836 0.818 0.865 0.906
EM 0.728 0.827 0.886 0.809 0.893 0.941

Complete 0.896 0.897 0.899 0.944 0.946 0.948
n=500 Efficient 0.786 0.835 0.862 0.852 0.899 0.924

EM 0.731 0.840 0.884 0.808 0.908 0.936
MRL 20%+40% 30%+30% 40%+20% 20%+40% 30%+30% 40%+20%

Complete 0.869 0.873 0.876 0.922 0.928 0.929
n=50 Efficient 0.637 0.724 0.798 0.710 0.799 0.869

EM 0.666 0.787 0.862 0.739 0.858 0.921
Complete 0.885 0.879 0.895 0.938 0.939 0.947

n=100 Efficient 0.692 0.770 0.826 0.763 0.846 0.887
EM 0.688 0.812 0.870 0.764 0.879 0.929

Complete 0.894 0.895 0.901 0.948 0.939 0.949
n=150 Efficient 0.720 0.781 0.827 0.797 0.855 0.899

EM 0.707 0.817 0.879 0.784 0.879 0.935
Complete 0.899 0.897 0.903 0.948 0.947 0.947

n=500 Efficient 0.753 0.827 0.859 0.830 0.894 0.920
EM 0.710 0.827 0.884 0.792 0.893 0.938

Two percentages in each column stand for left censoring proportion and right censoring proportion.

follows Exp(c1), and censoring interval length R−L follows LogNorm(c2, 0.25). Let ci to
be different values to achieve 20% left censoring and 40% right censoring, 30% left censoring
and 30% right censoring, and 40% left censoring and 20% right censoring, respectively.
Based on 5000 simulated data sets, the coverage probabilities are summarized in Table 5.

Based on Table 5, similar to the results for exponential distribution example, we can see
that higher right censoring proportion leads to lower coverage probabilities. The coverage
probabilities of confidence intervals constructed by the proposed Efficient-EL approach is
much better than EM-EL methods for large sample sizes. Although coverage probabilities
for both methods have a bias because of the large censoring percentages, we can still see
that the coverage probabilities of Efficient-EL based confidence intervals steadily increase,
while the coverage probabilities of EM-EL seem not to have a clear increasing pattern (cov-
erage probabilities of EM-EL may not converge to the nominal level as sample size becomes
larger). This means that the new Efficient-EL approach is more reliable for heavy-tailed dis-
tributions and for highly-censored data.

4. Analysis of COVID19 Data. There has already been a vast literature on COVID19
research. A widely-used mathematical model is the Susceptible-Exposed-Infectious-Resistant
(SEIR) epidemiology model, based on which the UK government’s lock-down strategy were
made Ferguson et al. (2020). It models the flows of people between the four states: suscepti-
ble (S), exposed (E), infected (I), and resistant (R) via

dS
d t

=− β
N
SI,

dE
d t

=
β

N
SI − σE,

d I
d t

= σE − γI, dR
d t

= γI,
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TABLE 5
Coverage probabilities for Mean and MRL under LogNorm(0, 0.64) distribution

Nominal Level = 0.90 Nominal Level = 0.95

Mean 20%+40% 30%+30% 40%+20% 20%+40% 30%+30% 40%+20%
Complete 0.853 0.872 0.873 0.915 0.923 0.925

n=50 Efficient 0.585 0.737 0.802 0.662 0.808 0.865
EM 0.624 0.821 0.855 0.706 0.894 0.917

Complete 0.881 0.875 0.878 0.938 0.929 0.932
n=100 Efficient 0.599 0.742 0.823 0.680 0.824 0.883

EM 0.628 0.826 0.842 0.711 0.893 0.901
Complete 0.877 0.893 0.876 0.936 0.944 0.932

n=150 Efficient 0.611 0.768 0.835 0.699 0.838 0.886
EM 0.623 0.824 0.830 0.712 0.892 0.890

Complete 0.895 0.896 0.890 0.948 0.948 0.943
n=500 Efficient 0.605 0.779 0.841 0.693 0.854 0.905

EM 0.552 0.788 0.793 0.638 0.861 0.871
MRL 20%+40% 30%+30% 40%+20% 20%+40% 30%+30% 40%+20%

Complete 0.843 0.849 0.841 0.907 0.910 0.907
n=50 Efficient 0.525 0.688 0.784 0.595 0.770 0.849

EM 0.566 0.789 0.845 0.655 0.862 0.904
Complete 0.873 0.876 0.877 0.925 0.930 0.929

n=100 Efficient 0.542 0.731 0.818 0.624 0.804 0.880
EM 0.563 0.808 0.834 0.647 0.878 0.900

Complete 0.877 0.879 0.878 0.933 0.934 0.933
n=150 Efficient 0.555 0.740 0.805 0.628 0.813 0.870

EM 0.574 0.802 0.820 0.634 0.873 0.888
Complete 0.895 0.899 0.892 0.941 0.947 0.945

n=500 Efficient 0.574 0.769 0.822 0.657 0.836 0.891
EM 0.529 0.773 0.779 0.614 0.850 0.853

Two percentages in each column stand for left censoring proportion and right censoring proportion.

In this SEIR model, the infectious rate β controls the rate of spread which represents the
probability of transmitting disease between a susceptible and an infectious individual. The
incubation rate σ is the rate of latent individuals becoming infectious (average duration of
incubation is 1/σ). Recovery rate γ is determined by the average duration of infection.
N = S +E + I +R is the total population. As in Ferguson et al. (2020) we assume people
recovered from the disease is immune to it. The basic reproductive number, R0 = β/γ, does
not change in this model.

Recovery rate γ is a very important parameter in such SEIR model. When estimating this
parameter, publicly available data could have a large proportion of missing information. For
example, the dataset from

https://github.com/mrc-ide/COVID19 CFR submission

has a large number of missing information on the symptom onset and on the date of recov-
ery. It actually gave a double censoring dataset for the recovery time. The event time X of
interest is time length from symptom onset to recovery. The right censoring variable R is
from symptom onset to the reporting date. The left censoring variable L is from the date of
exposure to recovery. The total number of observations used in our analysis is n= 547 and
the data are collected from 20th January 2020 to 28th February 2020.

Firstly, we list the censoring proportions of this dataset under different groups in Table
6. Using the Efficient-EL method we proposed, the confidence intervals of recovery time for
different groups can be calculated. These results also list in Table 6. From Table 6, we can see
that the elder groups have longer average recovery period, but there is no significant different
between male and female.

We also carry out a simulation study similar to Ferguson et al. (2020) to compare the fore-
casting results based on different model parameter values, in order to address the importance
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TABLE 6
The analysis of COVID19 data for different groups

Group left observed right sample size CI Lower Mean CI Upper
Male 0.052 0.185 0.763 323 17.370 19.842 22.153

Female 0.063 0.184 0.753 218 18.171 20.243 21.567
Age under 30 0.140 0.215 0.645 85 9.527 17.759 22.411

Age 30-50 0.082 0.212 0.707 186 17.651 19.605 21.172
Age 50-60 0.066 0.168 0.766 115 18.947 21.731 23.813
Age 60-70 0.076 0.124 0.800 83 17.902 22.041 24.627

Age over 70 0.089 0.089 0.822 68 18.951 22.173 25.614
Overall 0.059 0.170 0.771 547 18.784 20.013 20.928

of parameter estimation for such forecasting analysis. In our simulation we set population
N = 106 and discrete time steps of size b= 0.1 of a simulated day. At each step, the number
of new exposed is drawn from a Poisson distribution with rate βSIb/N , the number of in-
dividuals becoming infectious or recovered are Poisson random variable with rates σEb and
γIb, respectively. According to Novel Coronavirus (2019-nCoV) Situation Report-7, the in-
cubation period is betwen 2 and 10 days. We therefore set σ = 1/5.1, the same as Ferguson et
al. (2020). Since SEIR model dose not include mortality, we classify death and recovered as
one group, re-estimate the recovery time and get the 95% confidence interval [18.784,20.928]
and mean 20.013. Hence, three different recovery periods: short duration 15 days (γ = 1/15,
corresponding to results without using double censoring analysis, no right censoring, over es-
timation of recovery rate), medium duration 20 days (γ = 1/20, corresponding to our result
based on double censoring) and long duration 25 days (γ = 1/25, corresponding to results
without using double censoring analysis, no left censoring, under estimation of recovery rate)
are considered in our simulation.

We also consider two different quarantine protocols: no government interventions R0 =
2.4 following Ferguson et al. (2020) and with mild government interventionsR0 = 1.5, which
lead to the parameter value β =R0γ in our simulation. All of our simulation are carried out
via the R package deSolve of SEIR model. The daily new cases are plotted in Figure 1, where
for the curves from left to right, the dashed line means 15-day recovery period, the solid line
means 20-day recovery period and the dotted line means 25-day recovery period. For both
R0 = 2.4 and R0 = 1.5 we can see that with a shorter recovery time, the COVID19 outbreak
will end much quicker. Also the mode of daily infected cases will be much smaller under the
scenario of shorter recovery time.

To achieve the herd immunity proposed by the UK government requires a proportion of
the UK population being immune to the virus to stop it from spreading. It is well-known that
such herd immunity can be stimulated by vaccination or recovery following infection. Based
our result using a sophisticated double censoring statistical model, we can see clearly that the
recovery period should be much shorter than the estimated figures proposed by other existing
works. With R0 = 1.5, the peak of the curve with recovery rate 1/20 is will occur on day 592
(95% confidence interval [527,761]), the peak with recovery rate 1/15 will occur on day 479
(95% confidence interval [422,609]) and the peak with recover rate 1/25 will occur on day
705 (95% confidence interval [621,883]). Therefore, with a slight over or under estimation
for the recovery rate, the forecasting peak date will be different at a scale of about 110 days.
This would imply that the outbreak could end about four months earlier than people expected.

5. Conclusions. Through our COVID19 forecasting analysis and Ferguson et al. (2020),
we can see that correct estimation of SEIR model parameters may change the final forecasting
results significantly, for example the peak date estimation may be different at the scale of
months. For such a rapid spread disease, it will be extremely challenging to carry out real-
time monitor the pandemic (Birrell et al., 2020). The data collected in real-time will certainly
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FIG 1. Increased infections curves before and after quarantine. Three different sets of curves represent different
recovery period from left to right.

involve different kind of censoring. This paper highlighted the importance of dealing with
the censored data and presented a efficient new statistical estimation approach. By utilizing
the efficient influence function of the parameter of interest as an estimating equation, a new
method of constructing EL confidence interval for doubly censored data is proposed in this
paper. This new Efficient-EL method is easy to calculate since it does not need to estimate
scale parameter. Simulation studies show that the new method performances better than the
EM-EL method in terms of coverage probabilities.

Comparing model predictions with our estimated recovery rate parameter and existing pa-
rameter values used in other research works, we found that the peak of the epidemic predicted
could be months different from each other. This could lead to wrong health policy decisions,
for example taking or removing lock-down decisions at the wrong time points, which may
lead to a second peak of outbreak or making the lock-down period too long to cause severe
economic damage and mental health problems for more people. Our analysis highlights the
importance of doing such sophisticated survival analysis will provide better estimation for
the parameters in the SEIR models.

To our knowledge, this is the first work which considered using censoring techniques
in survival analysis to carry out parameter estimation for COVID19 data. Most existing
COVID19 research such as Kucharski et al. (2020) and Ferguson et al. (2020) did not address
the issues of highly contaminated data due to censoring or simply use prespecified model pa-
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rameters. Although only a relatively small data set is used, the methodology can be used by
other researcher who have the access to larger COVID19 dataset with individual information.
It will help interdisciplinary collaboration between statisticians and epidemiologists and help
policy makers on public health policy making.

APPENDIX A: PROOF OF LEMMA 2.1

PROOF. For any h ∈ HF , define dFt = (1 + th) dF , then the likelihood of doubly cen-
sored random variable is

Lt(w, δ) = ∆Ft(w)I{δ=1}(F̄t(w))I{δ=2}Ft(w)I{δ=3} .

Let PF be the distribution of doubly censored random variable (W, δ), then the score operator
`F : HF → L2(PF ) is

(`Fh)(w, δ) =
∂

∂t

∣∣∣
t=0

lnLt(w, δ)

= I{δ=1}h(w) + I{δ=2}

∫
(w,∞) hdF

1− F (w)
+ I{δ=3}

∫
[0,w] hdF

F (w)
.

By the definition of the adjoint operator `∗ : L2(PF )→HF , for any h1, h2 ∈ HF ,

< `Fh1, `Fh2 >PF=< h1, `
∗`Fh2 >F .

Using Fubini’s theorem,

< `Fh1, `Fh2 >PF=

∫
(`Fh1 `Fh2) dPF

=

∫
h1(x)h2(x)

(
GL(x)−GR(x−)

)
dF +

∫ ∫
(r,∞) h1dF

∫
(r,∞) h2dF

1− F (r)
dGR(r)

+

∫ ∫
[0, l] h1dF

∫
[0, l] h2dF

F (l)
dGL(r)

=

∫
h1(x)

(
h2(x)

(
GL(x)−GR(x−)

)
+

∫
[0,x)

∫
(r,∞) h2dF

1− F (r)
dGR(r) +

∫
[x,∞)

∫
[0, l] h2dF

F (l)
dGL(l)

)
we get

(`∗`Fh)(x) =
(
GL(x)−GR(x−)

)
h(x)+

∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
h(s) dF (s).

According to Lemma A.2 (i) in Murphy and van der Vaart (1997), under the assumptions, the
operator `∗`F is one to one, onto and continuously invertible. By the definition of θ̇0, for any
h ∈ HF ,

∂

∂t

∣∣∣
t=0

θ(Ft) =

∫
θ̇0 hdF =< θ̇0, h >F=< `∗`F (`∗`F )−1θ̇0, h >F=< `F (`∗`F )−1θ̇0, `Fh >PF .

According to the definition in Tsiatis (2007), ψ(w, δ; θ) = `F (`∗`F )−1θ̇0 is the efficient in-
fluence function.
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APPENDIX B: LEMMA FOR THEOREM 2.1

To prove the theorem 2.1, we need the following two Lemmas. Define

h0 = (`∗`F )−1θ̇0(x; θ0), ĥ0 = (`∗`F̂ )−1θ̇0(x; θ0).

LEMMA B.1. Under the assumptions of Theorem 2.1, we have∣∣∣∣∣∣ĥ0 − h0∣∣∣∣∣∣
∞
→ 0.

PROOF. From ∣∣∣∣∣∣ĥ0 − h0∣∣∣∣∣∣
∞
≤
∣∣∣∣(`∗`F̂ )−1((`∗`F )h0 − (`∗`F̂ )h0)

∣∣∣∣
∞

we just need to prove

(8)
∣∣∣∣`∗`F − `∗`F̂ ∣∣∣∣∞ = sup

h∈BV[α,β]

∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)
∣∣∣∣
∞→ 0,

and to prove the result
∣∣∣∣(`∗`F̂ )−1

∣∣∣∣
∞ is bounded.

[1.] Since

`Fh(w, δ) = I{δ=1}h(w) + I{δ=2}

∫
(w,∞) hdF

1− F (w)
+ I{δ=3}

∫
[0,w] hdF

F (w)
,

so

`Fh(w, 2) =

∫
(w,∞) hdF

1− F (w)
, `Fh(w, 3) =

∫
[0,w] hdF

F (w)
.

Hence

`∗`Fh(x) = h(x)
(
GL(x)−GR(x−)

)
+

∫
[0,x)

`Fh(r, 2) dGR(r) +

∫
[x,∞)

`Fh(l, 3) dGL(l),

and ∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)
∣∣∣∣
∞ = ∆1 + ∆2 + ∆3,

∆1 = sup
x∈[α,β]

∣∣∣((GL(x)−GR(x−))− (ĜL(x)− ĜR(x−))
)
h(x)

∣∣∣,
∆2 = sup

x∈[α,β]

∣∣∣ ∫
[0,x)

`Fh(r, 2) dGR(r)−
∫
[0,x)

`F̂h(r, 2) dĜR(r)
∣∣∣,

∆3 = sup
x∈[α,β]

∣∣∣ ∫
[x,∞)

`Fh(l, 3) dGL(l)−
∫
[x,∞)

`F̂h(l, 3) dĜL(l)
∣∣∣.

From Chang and Yang (1987), we have

∆1 ≤ sup
x∈[α,β]

∣∣∣(ĜL −GL) (x)h(x)
∣∣∣+ sup

x∈[α,β]

∣∣∣(ĜR −GR) (x−)h(x)
∣∣∣→ 0.

We also have

∆2 = sup
x∈[α,β]

∣∣∣ ∫
[0,x)

(`F̂h)(u,2) dĜR(u)−
∫
[0,x)

(`Fh)(u,2) dGR(u)
∣∣∣

≤ sup
x

∣∣∣ ∫
[0,x)

(`F̂h)(u,2) d
(
ĜR(u)−GR(u)

)∣∣∣+ sup
x

∫
[0,x)

∣∣(`F̂h)(u,2)− (`Fh)(u,2)
∣∣ dGR(u)

≤ sup
x

∣∣∣ ∫
[0,x)

(`F̂h)(u,2) d
(
ĜR(u)−GR(u)

)∣∣∣+ ∫ ∣∣(`F̂h)(u,2)− (`Fh)(u,2)
∣∣ dGR(u),
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Lemma 3.1 in Chang (1990) shows that the first part of above equation is o(1), and the proof
of Lemma A.2(ii) in Murphy and van der Vaart (1997) shows that the second part is also o(1).
Therefore ∆2→ 0. Similarly, we get ∆3→ 0. Hence, for any h ∈ BV[α,β],∣∣∣∣`∗`Fh(x)− `∗`F̂h(x)

∣∣∣∣
∞→ 0.

[2.] Now we will prove that
∣∣∣∣(`∗`F̂ )−1

∣∣∣∣
∞ is bounded. For the convenience of proof, we

denote S = `∗`F and Ŝ = `∗`F̂ . Next, we define

T̂ = S−1(S − Ŝ), Û =

∞∑
k=0

T̂ k.

It is easy to verify that

Ŝ−1 = Û S−1 and Û−1 = I − T̂ .
Since

∣∣∣∣T̂ ∣∣∣∣∞ =
∣∣∣∣S−1(S − Ŝ)

∣∣∣∣
∞ ≤

∣∣∣∣S−1∣∣∣∣∞ ∣∣∣∣S − Ŝ∣∣∣∣∞→ 0, we have∣∣∣∣ Û ∣∣∣∣∞ =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

T̂ k
∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑
k=0

∣∣∣∣T̂ ∣∣∣∣k∞ =
1

1−
∣∣∣∣T̂ ∣∣∣∣∞ → 1.

Therefore ∣∣∣∣Ŝ−1∣∣∣∣∞ =
∣∣∣∣ Û S−1∣∣∣∣∞ ≤ ∣∣∣∣ Û ∣∣∣∣∞∣∣∣∣S−1∣∣∣∣∞

is bounded.

LEMMA B.2. Define ψi0 = ψi(θ0), ψ̂i0 = ψ̂i(θ0) and σ2 = Eψ2(W, δ; θ0). Under the
assumptions of Theorem 2.1, we have

(1) max
1≤i≤n

∣∣∣ψ̂i0∣∣∣= op(n
1/2),

(2)
√
n

(
1

n

n∑
i=1

ψ̂i0

)
→N(0, σ2),

(3)
1

n

n∑
i=1

ψ̂2
i0 = σ2 + op(1).

PROOF. [1.] Since

max
1≤i≤n

∣∣∣ψ̂i0∣∣∣≤ max
1≤i≤n

∣∣∣ψ̂i0 −ψi0∣∣∣+ max
1≤i≤n

|ψi0|=
(

max
1≤i≤n

∣∣∣ψ̂i0 −ψi0∣∣∣2 )1/2 + max
1≤i≤n

|ψi0|

≤ n1/2
(

1

n

n∑
i=1

∣∣∣ψ̂i0 −ψi0∣∣∣2)1/2

+ op(n
1/2),

we only need to prove n−1
∑n

i=1

∣∣∣ψ̂i0 −ψi0∣∣∣2 = op(1). Note that

1

n

n∑
i=1

∣∣∣ψ̂i0 −ψi0∣∣∣2 =

3∑
k=1

(
1

n

n∑
i=1

∣∣∣ψ(Wi, k; θ0, ξ̂)−ψ(Wi, k; θ0, ξ)
∣∣∣2I{δi=k}

)

=

3∑
k=1

∫ (
ψ(w, k; θ0, ξ̂)−ψ(w, k; θ0, ξ)

)2
dĤk(w) =

3∑
k=1

Γk,
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where

Γ1 =

∫ (
ψ(w, 1; θ0, ξ̂)−ψ(w, 1; θ0, ξ)

)2
dĤ1(w),

Γ2 =

∫ (
ψ(w, 2; θ0, ξ̂)−ψ(w, 2; θ0, ξ)

)2 (
1− F̂ (w)

)
dĜR(w),

Γ3 =

∫ (
ψ(w, 3; θ0, ξ̂)−ψ(w, 3; θ0, ξ)

)2
F̂ (w) dĜL(w).

Using Lemma B.1, we have

Γ1 =

∫ (
`F̂ ĥ0(w, 1)− `Fh0(w, 1)

)2
dĤ1(w) =

∫ (
ĥ0(w)− h0(w)

)2
dĤ1(w)

≤
∣∣∣∣∣∣ĥ0 − h0∣∣∣∣∣∣2

∞
→ 0.

For the second part,

Γ2 =

∫ (
`F̂ ĥ0(w, 2)− `Fh0(w, 2)

)2 (
1− F̂ (w)

)
d
(
ĜR(w)−GR(w)

)
+

∫ (
`F̂ ĥ0(w, 2)− `Fh0(w, 2)

)2 (
1− F̂ (w)

)
dGR(w).

From Lemma 3.1 in Chang (1990), we know that the first part of above equation is o(1).
Since `F̂ ĥ0(w, δ) − `Fh0(w, δ)→ 0, together with dominated convergence theorem, the
second part of above equation is o(1). Therefore Γ2 → 0, and Γ3 converges to 0 can be
proved similarly. Hence part (1) is proved.

[2.] Using the equations (2) - (4), we have

1

n

n∑
i=1

ψ̂i0 =

3∑
k=1

∫
ψ(w, k; θ0, ξ̂) dĤk(w)

=

∫
ĥ0

(
ĜR − ĜL

)
dF̂ +

∫ (
1− ĜR

)
ĥ0 dF̂ +

∫
ĜLĥ0 dF̂

=

∫
ĥ0(w) dF̂ (w) =

∫
θ̇0 dF̂ =

∫
θ̇0 d

(
F̂ − F

)
.

Due to the definition of efficient influence function and the proof of Lemma A.3 in Murphy
and van der Vaart (1997), we have∫

θ̇0 d(F̂ − F ) =
1

n

n∑
i=1

`Fh0(Wi, δi) + op(n
−1/2) =

1

n

n∑
i=1

ψi0 + op(n
−1/2).

Therefore

√
n

(
1

n

n∑
i=1

ψ̂i0

)
→N(0, σ2).

[3.] Since

1

n

n∑
i=1

ψ̂2
i0 =

1

n

n∑
i=1

(
ψ̂i0 −ψi0

)2
+

2

n

n∑
i=1

(
ψ̂i0 −ψi0

)
ψi0 +

1

n

n∑
i=1

ψ2
i0,
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and ∣∣∣∣∣ 1n
n∑
i=1

(
ψ̂i0 −ψi0

)
ψi0

∣∣∣∣∣≤
∣∣∣∣∣ 1n

n∑
i=1

(
ψ̂i0 −ψi0

)2∣∣∣∣∣
1/2 ∣∣∣∣∣ 1n

n∑
i=1

ψ2
i0

∣∣∣∣∣
1/2

= op(1),

we get

1

n

n∑
i=1

ψ̂2
i0 =

1

n

n∑
i=1

ψ2
i0 + op(1) = σ2 + op(1).

APPENDIX C: PROOF OF COROLLARY 2.1

PROOF. From the definition, the least favorable direction hθ = (`∗`F )−1θ̇0(x; θ) satisfies
the equation (`∗`F )hθ = θ̇0(x; θ), that is
(9)(
GL(x)−GR(x−)

)
hθ(x)+

∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
hθ(s) dF (s) = θ̇0(x; θ).

Since

dF (s) =
dH1(s)

GL(s)−GR(s−)
, dGR(s) =

dH2(s)

1− F (s)
, dGL(s) =

dH3(s)

F (s)
.

therefore∫ (∫
[x∨s,∞)

dGL
F

+

∫
[0, x∧s)

dGR
1− F

)
hθ(s) dF (s)

=

∫
1

GL(s)−GR(s−)

(∫
[0, x∧s)

dH2(u)

(1− F (u))2
+

∫
[x∨s,∞)

dH3(u)

F 2(u)

)
hθ(s) dH1(s)

=

∫
1

GL(s)−GR(s−)

(
K1(x∧ s) +K2(x∨ s)

)
hθ(s) dH1(s),

where

K1(t) =

∫
[0, t)

dH2(u)

(1− F (u))2
, K2(t) =

∫
[t,∞)

dH3(u)

F 2(u)
.

Hence, equation (9) can be rewritten as

(10)
(
GL(x)−GR(x−)

)
hθ(x) +

∫ (
K1(x∧ s) +K2(x∨ s)

)
GL(s)−GR(s−)

hθ(s) dH1(s) = θ̇0(x; θ).

Substitute F̂ , ĜR and ĜL into K1, K2 and (10), we get K̂1(t), K̂2(t) and

θ̇0(x; θ) =
(
ĜL(x)− ĜR(x−)

)
hθ(x)(11)

+
1

n

n∑
j=1

K̂1(x∧Wj) + K̂2(x∨Wj)

ĜL(Wj)− ĜR(Wj−)
hθ(Wj) I{δj=1}.

Set x=Wi (i= 1, 2, · · · , n) in equation (11), we get the equation (7).
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