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Abstract 

The role of oil price shocks in US economic activity and inflation is controversial but a key input 

to current economic policy. To clarify these relations, we employ a more refined measure of oil 

shocks based on decomposing highly accurate realized volatility estimated using intraday oil 

futures data. In reconciling prior results, we find that shocks driven by price increases (decreases) 

are associated with rising (falling) inflation while only a symmetric volatility channel affects 

economic activity.  
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1. Introduction 

We examine the impact and the predictive information content of oil price shocks on US economic 

activity and inflation. The results of the extant literature are inconclusive; some work finding an 

asymmetric condition whereby oil price increases have a more recessionary impact on the 

economy than the positive impact of oil price decreases (e.g., Hamilton, 2011; Kilian and 

Vigfusson, 2013), while others (e.g., Hooker, 1996) promulgate the breaking of the oil-

macroeconomy relation. Moreover, another strand of the literature indicates that oil prices are 

among the key drivers of inflation (Choi et al., 2018). 

 

What might help explain the apparent inconsistencies in prior results? Previous studies often 

identify oil price shocks differently: as the log-difference of the nominal price of oil (Hamilton, 

1983), as the net oil price increase (a monthly dummy variable which takes the value of one for 

positive price changes and zero otherwise – see Hamilton, 2003), or as the monthly realized 

volatility of daily oil price returns (Elder and Serletis, 2010). Each of these identification strategies 

has its own advantages, with the price-based measures able to capture any asymmetry in the oil-

macroeconomy relation. Nevertheless, while isolated price shocks likely have a transient impact 

on the distribution of returns, shocks or jumps in volatility typically have a more persistent effect 

and can explain large market movements (Eraker et al., 2003; Eraker, 2004). This latter 

observation is reinforced by the finding that jumps in price and volatility tend to happen together 

(Jacod and Todorov, 2010).  

 

To look more closely at the role of oil, in this paper we combine the identification strategies in the 

literature by identifying the shock as an asymmetric change in price volatility based on high-
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frequency (5-minute) oil futures data. Specifically, we decompose monthly realized volatility to 

the part attributable to positive and negative price changes (positive and negative semi-variance, 

respectively), as well as a signed jump component; hence a jump in volatility is driven by either 

positive or negative price changes. These asymmetric components of volatility can be directly 

linked to either increases or decreases in prices and therefore provide a more refined measure of 

oil price shocks, conflating the advantages of extant measures. 

 

Our new results reconcile prior findings. While the oil-macroeconomy relation is shown still to 

operate, it does so primarily through a symmetric volatility channel to economic activity rather 

than via asymmetric changes. Conversely, shocks are significant predictors of inflation, with 

positive shocks predicting rising inflation and negative shocks predicting falling inflation.  

 

2. Data and Methodology 

2.1 Prices and volatility 

For a more robust identification of oil price shocks, we use high-frequency (5-minute) prices for 

crude oil futures and the S&P 500 index.1 Importantly, we have a long time series of data from 

January 1987 till December 2017. The 5-minute frequency ensures minimal microstructure noise 

without diminishing the accuracy of the estimator. We estimate realized variance (RV) by 

summing squared intraday logarithmic returns (filtered through an MA(1) process) following 

Andersen et al. (2001): 

 

                                                      𝑅𝑉𝑡 = ∑ 𝑟𝑖
2𝑛

𝑖=1                                                                          (1) 

 
1 Intraday data are obtained from Pi Trading for the S&P index and from Tick Data for crude oil futures. 
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where 𝑟𝑖 = log(𝑝𝑖 − 𝑝𝑖−1), with 𝑝 denoting the filtered price series and 𝑖 the number of intraday 

observations in each period. We decompose RV into its continuous and jump components by first 

estimating realized bi-power variation2 (BV), which captures the continuous component of RV, 

following Barndorff-Nielsen and Shephard (2006): 

 

                                              𝐵𝑉𝑡 = 𝜇1
−2∑ |𝑟𝑖||𝑟𝑖−1|

𝑛
𝑖=2                                                                  (2) 

 

where 𝜇1 = √2 𝜋⁄ . The difference between RV and BV provides an estimate of the variation due 

to jumps: 

 

                                               𝐽𝑈𝑀𝑃𝑂𝐼𝐿𝑡 = 𝑅𝑉𝑡 − 𝐵𝑉𝑡                                                               (3) 

 

To examine the asymmetric effects of jumps, we use positive and negative semi-variance (i.e., the 

part of variance due to positive and negative price moves) to construct signed jump variation 

following Barndorff-Nielsen et al. (2010): 

 

                                                      Δ𝐽2 = 𝑅𝑆+ − 𝑅𝑆−                                                                 (4) 

with 

                                                 𝑅𝑆+ = ∑ 𝑟𝑖
2𝑛

𝑖=1 𝐼{𝑟𝑖 > 0}                                                            (5) 

                                                 𝑅𝑆− = ∑ 𝑟𝑖
2𝑛

𝑖=1 𝐼{𝑟𝑖 < 0}                                                            (6) 

 

 
2 Using the average of skip-0 through skip-4 bi-power variation as our estimate following Patton and Shephard (2015). 
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denoting positive and negative semi-variance, respectively, where I denotes the indicator function. 

We label OILRV, the monthly realized variance of crude oil from (1), OILTOTJUMP is the oil 

price variation due to jumps from (3), OILSIGNJUMP is the monthly oil price signed jump 

variation from (4), and OILPOSVAR and OILNEGVAR are the monthly positive and negative 

realized semi-variance from (5) and (6). We estimate the same set of measures for the stock-market 

i.e., SP500RV (S&P500 realized variance), SP500TOTJUMP (the jump component of SP500RV), 

SP500POSVAR and SP500NEGVAR (S&P500 positive and negative semi-variance) and 

SP500SIGNJUMP (S&P500 signed jump variation). We obtain monthly data for US Industrial 

Production (IPI), Fed funds rate (FFR) and US Consumer Price Index (INFL) from the FRED 

database.  

 

2.2 Forecasting regression models 

The multivariate models including macroeconomic fundamentals, oil and stock-market volatility 

are given in (7) to (11): 

 

ln(𝐼𝑃𝐼𝑡/𝐼𝑃𝐼𝑡−1) = 𝑎 + 𝑏1𝐼𝑁𝐹𝐿𝑡−1 + 𝑏2𝐹𝐹𝑅𝑡−1 + 𝑏3ln(𝐼𝑃𝐼𝑡−1/𝐼𝑃𝐼𝑡−2) + 𝑒𝑡   (7) 

 

ln(𝐼𝑃𝐼𝑡/𝐼𝑃𝐼𝑡−1) = 𝑎 + 𝑏1𝐼𝑁𝐹𝐿𝑡−1 + 𝑏2𝐹𝐹𝑅𝑡−1 + 𝑏3ln(𝐼𝑃𝐼𝑡−1/𝐼𝑃𝐼𝑡−2) + 𝑏4𝑂𝐼𝐿𝑃𝑂𝑆𝑉𝐴𝑅𝑡−1 +

𝑏5𝑂𝐼𝐿𝑁𝐸𝐺𝑉𝐴𝑅𝑡−1 + 𝑏6𝑆𝑃500𝑃𝑂𝑆𝑉𝐴𝑅𝑡−1 + 𝑏7𝑆𝑃500𝑁𝐸𝐺𝑉𝐴𝑅𝑡−1 + 𝑒𝑡                                                               (8) 

 

ln(𝐼𝑃𝐼𝑡/𝐼𝑃𝐼𝑡−1) = 𝑎 + 𝑏1𝐼𝑁𝐹𝐿𝑡−1 + 𝑏2𝐹𝐹𝑅𝑡−1 + 𝑏3ln(𝐼𝑃𝐼𝑡−1/𝐼𝑃𝐼𝑡−2) + 𝑏4𝑂𝐼𝐿𝑇𝑂𝑇𝐽𝑈𝑀𝑃𝑡−1 +

𝑏5𝑆𝑃500𝑇𝑂𝑇𝐽𝑈𝑀𝑃𝑡−1 + 𝑒𝑡      (9) 
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ln(𝐼𝑃𝐼𝑡/𝐼𝑃𝐼𝑡−1) = 𝑎 + 𝑏1𝐼𝑁𝐹𝐿𝑡−1 + 𝑏2𝐹𝐹𝑅𝑡−1 + 𝑏3ln(𝐼𝑃𝐼𝑡−1/𝐼𝑃𝐼𝑡−2) + 𝑏4𝑂𝐼𝐿𝑆𝐼𝐺𝑁𝐽𝑈𝑀𝑃𝑡−1 +

𝑏5𝑆𝑃500𝑆𝐼𝐺𝑁𝐽𝑈𝑀𝑃𝑡−1 + 𝑒𝑡   (10) 

 

ln(𝐼𝑃𝐼𝑡/𝐼𝑃𝐼𝑡−1) = 𝑎 + 𝑏1𝐼𝑁𝐹𝐿𝑡−1 + 𝑏2𝐹𝐹𝑅𝑡−1 + 𝑏3ln(𝐼𝑃𝐼𝑡−1/𝐼𝑃𝐼𝑡−2) + 𝑏4𝑂𝐼𝐿𝑅𝑉𝑡−1 + 𝑏5𝑆𝑃500𝑅𝑉𝑡−1 + 𝑒𝑡 (11) 

 

We also run analogous least-squares models with INFL as the dependent.     

 

2.3 VAR model 

Following and extending Kilian and Lewis (2011) who examine the endogenous interactions 

between oil price shocks, monetary policy responses, inflation and real output, we also estimate a 

4-factor reduced-form VAR with the following ordering: 

 

                                            𝑌𝑡 = [𝐼𝑃𝐼𝑡𝐼𝑁𝐹𝐿𝑡𝐹𝐹𝑅𝑡𝑂𝐼𝐿𝑆𝐼𝐺𝑁𝐽𝑈𝑀𝑃𝑡]  (12) 

 

3. Econometric results  

Tables 1 and 2 present the regression results of the models shown in (7) to (11) for INFL and IPI, 

respectively.  

 

[Insert Tables 1 and 2] 

 

From Table 1 we see that oil volatility changes attributed to price increases (OILPOSVAR) are 

positively correlated with subsequent inflation. More generally, while rising positive semi-

variance is associated with rising inflation, rising negative semi-variance is associated with falling 
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inflation. Notably, while the coefficient on signed volatility jumps (OILSIGNJUMP) is 

significantly positive, total jumps (those irrespective of the sign) contain no predictive information 

content for inflation.   

 

Table 2 does not support an analogous asymmetric relation between oil and economic activity. 

Specifically, asymmetric oil price shocks (OILSIGNJUMP, OILPOSVAR, OILNEGVAR) are not 

significant predictors of IPI. Overall, our multivariate regression analysis indicates that shocks in 

the oil market, driven by increases in oil prices, are associated with increasing inflation and not 

with drops in economic activity. On the other hand, a rise in the general level of symmetric oil and 

stock-market volatility and jumps predict a fall in economic activity. These results are in line with 

literature showing rising stock-market volatility and oil price uncertainty has a dampening effect 

on economic activity (Elder and Serletis, 2010). 

 

Figure 1 below depicts the Orthogonalized Impulse Response Functions (OIRFs) of IPI and INFL 

to a positive one standard deviation shock to OILSIGNJUMP, estimated using the model in 

Equation (12).  

 

[Insert Figure 1] 

 

Figure 1 reveals that a positive asymmetric oil shock has a positive and significant effect on INFL 

(i.e., a one standard deviation innovation in OILSIGNJUMP increases inflation by almost 7 basis 

points one month after the initial shock, with the effect remaining positive and significant for 3 

months). Conversely, the effect of the same innovation has a sluggish and insignificant effect on 
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IPI growth. In particular, IPI growth initially decreases by about 2 basis points (after 1 month) and 

then increases 5 basis points after 3 months.   

 

4. Conclusions 

Are oil price shocks inflationary or recessionary or both? Although the extant literature is 

inconclusive, understanding these relations is a key input to current US economic policy. In this 

context, we newly identify oil price shocks by decomposing highly accurate realized variance 

estimated from intraday data. In reconciling prior work, our analysis shows that, whilst economic 

activity (as measured by industrial production) is affected via a symmetric oil price volatility 

channel, inflation is driven by asymmetric measures captured by semi-variance and signed jump 

variation.  
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Table 1. Forecasting inflation using oil and stock-market jumps and volatility (1-month forecasting horizon).  

 

 

 

Notes: t-statistics (reported in parentheses) are corrected for autocorrelation and heteroscedasticity using the Newey-

West (1987) estimator. *, ** and *** denotes statistical significance at the 10%, 5% and 1% level respectively.  

  (7) (8) (9) (10) (11) 

Const     0.007***      0.001***   0.001***     0.001***      0.001*** 

  (2.865) (5.567) (5.461) (3.981) (5.320) 

INFLATION     0.373***      0.257***   0.370***     0.329***      0.269*** 

  (4.101) (5.249) (4.639) (5.566) (4.931) 

FFR     0.001***      0.015*** 0.014     0.016***      0.016*** 

  (4.467) (3.310) (3.097) (4.473) (3.699) 

IPI  0.002 -0.014* -0.002 0.005 -0.011 

  (0.541) (-0.534) (-0.103) (0.218) (-0.409) 

OILRV      -0.004 

      (-0.213) 

SP500RV          -0.234*** 

      (-3.203) 

OILPOSVAR        0.537***    

   (2.781)    

SP500POSVAR   0.001    

   (0.060)    

OILNEGVAR       -0.611***    

   (-3.717)    

SP500NEGVAR      -0.320**    

    (-2.034)    

OILTOTJUMP    -0.104   

    (-1.153)   

SP500TOTJUMP      -0.197*   

      (-1.664)   

OILSIGNJUMP          0.695***  

     (2.197)  

SP500SIGNJUMP     0.441  

     (1.390)  

       

       

% adj. R2  20.6 33.5 21.2 29.4 29.1 



12 
 

Table 2. Forecasting Industrial Production growth (1-month forecasting horizon). 

 
Notes: t-statistics (reported in parentheses) are corrected for autocorrelation and heteroscedasticity using the Newey-

West (1987) estimator. *, ** and *** denotes statistical significance at the 10%, 5% and 1% level respectively.  

 
 

  

  (7) (8) (9) (10) (11) 

Const  0.0003      0.003***    0.001* 0.003      0.003*** 

  (0.359) (3.675) (1.898) (0.404) (3.788) 

INFLATION  0.429 0.245 0.398 0.423 0.248 

  (1.546) (1.198) (1.500) (1.552) (1.238) 

FFR  0.004 -0.017 -0.014 -0.002 -0.017 

  (0.032) (-1.580) (1.335) (-0.021) (-1.564) 

IPI     0.215*** 0.132*    0.167**   0.218***   0.133* 

  (2.755) (1.876) (2.216) (2.795) (1.915) 

OIL RV          -0.311*** 

      (-4.149) 

SP500RV          -0.275*** 

      (-2.942) 

OILPOSVAR   -0.285    

   (-0.910)    

SP500POSVAR   -0.382    

   (-0.691)    

OILNEGVAR   -0.169    

   (-0.323)    

SP500NEGVAR   -0.341    

   (-1.007)    

OILTOTJUMP       -0.579***   

    (-4.282)   

SP500TOTJUMP    -0.103   

        (-0.338)   

OILSIGNJUMP     0.077  

     (0.201)  

SP500SIGNJUMP     0.681  

     (1.341)  

       

       

% adj. R2  7.6 14.6       10.8 7.4 15.0 
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Figure 1. Orthogonalized Impulse Response Function (OIRF) of Industrial production growth and inflation 

to an asymmetric oil price shock.   

 

 

 
 

 

 
 
 


