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Abstract: Length-biased data are often encountered in cross-sectional surveys and
prevalent-cohort studies on disease durations. Under length-biased sampling subjects with
longer disease durations have greater chance to be observed. As a result, covariate values
linked to the longer survivors are favoured by the sampling mechanism. When the sam-
pled durations are also subject to right censoring, the censoring is informative. Modelling
dependence structure without adjusting for these issues leads to biased results. In this
paper, we consider copulas for modelling dependence when the collected data are length-
biased and account for both informative censoring and covariate bias that are naturally
linked to length-biased sampling. We address nonparametric estimation of the bivariate
distribution, copula function and its density, and Kendall and Spearman measures for right-
censored length-biased data. The proposed estimator for the bivariate cdf is a Hadamard-
differentiable functional of two MLEs (Kaplan-Meier and empirical cdf) and inherits their
efficiency. Based on this estimator, we devise two estimators for copula function and a
local-polynomial estimator for copula density that accounts for boundary bias. The limit-
ing processes of the estimators are established by deriving their i.i.d. representations. As a
by-product, we establish the oscillation behavior of the bivariate cdf estimator. In addition,
we introduce estimators for Kendall and Spearman measures and study their weak con-
vergence. The proposed method is applied to analyze a set of right-censored length-biased
data on survival with dementia, collected as part of a nationwide study in Canada.

Keywords: Hadamard-Differentiable functional, Copulas, length-biased sampling, covari-

ate(s) bias, local-linear kernel estimation, i.i.d. representation of copula, measures of de-
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1 Introduction

Modeling the dependence structure between two or more random variables is crucial in

statistical analysis. Many measures of association have been proposed in the literature

to capture and quantify such dependence. Copula function and its density, for instance,

are well known to provide local and global overview of the dependence structure between

multiple variables. Copulas embody the dependence structure that couples a multivariate

cdf with its marginal distributions. So far, most of the studies on copulas and measures of

association were focused on either complete data or right-censored data, and in both, data

are randomly sampled from the population. In length-biased sampling, however, data are

not randomly selected from the population of interest, but with probability proportional

to the length of the selection-variable (e.g. lifetime), i.e.

flb(y, x1, . . . , xm) =
y

E[Y ∗]
f(y, x1, . . . , xm), (1)

where flb and f are the multivariate densities from the sampled and targeted populations,

respectively, and Y ∗ is the selection-variable. The truncation mechanism in such setting

tends to over-select large values and under-select small values of some variables (e.g. life-

time). Equation (1) leads to the relationship

Clb(v, u1, . . . , um) =
F−1

Y ∗ (v)

E[Y ∗]
C(v, u1, . . . , um), (2)

with Clb and C the copula densities from the sampled and targeted populations, respectively,

and F−1

Y ∗ the inverse cdf of Y ∗. In this particular situation, one needs to account for the

selection bias in the sample to model dependence between the population variables. If

not, one may risk to underestimate (resp. overestimate) the degree of dependence between

variables for small values (resp. large values) of the selection-variable (e.g. Y ∗), and

eventually, this will lead to biased results.
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Length-biased sampling is often encountered in cross-sectional surveys and prevalent-

cohort studies. The literature on selection bias can be traced as far back as Wicksell (1925)

(the corpuscle problem), with seminal contributions by Fisher (1934), Neyman (1955) and

Cox (1969). The phenomenon of length-biased sampling appears in different areas of re-

search, see for instance Lynden-Bell (1971) in astronomy, Nowell et al. (1988) in land eco-

nomics, Zelen (1993) in screening and early detection of disease, Nowell & Stanley (1991)

in marketing, Terwilliger et al. (1997) in genetics and linkage mapping, Feuerverger & Hall

(2000) in applied physics, Wolfson et al. (2001) in epidemiology and geriatric medicine, de

Uña-Álvarez (2004) in labor economy, Kvam (2008) in nano physics and Leiva et al. (2008)

in water quality.

Most of the nonparametric studies on copulas were focused on representative samples

of complete data or right-censored data. For instance, see Deheuvels (1979), Stute (1984),

Fermanian et al. (2004), Sancetta & Satchell (2004), Chen & Huang (2007), Omelka et

al. (2009) and Segers (2012) in complete data, and Rabhi & Bouezmarni (2016) in right-

censored data. To the best of our knowledge, however, no methodology has been proposed in

the literature for nonparametric estimation of copulas and measures of dependence under

length-biased sampling and right-censoring. Right-censoring is known to be informative

under such sampling. This creates additional challenges in building an estimation method

for copulas and measures of association.

In this manuscript, we address nonparametric estimation of the bivariate distribution,

copula function and its density, and Kendall and Spearman measures when both variables

are left-truncated and one of them is subject to informative censoring. Here, we consider

the case m = 1 in equation (2), however, we can extend it to the multivariate case m ≥ 2.

The proposed estimator for the bivariate cdf is a Hadamard-differentiable functional of two

MLEs; Kaplan-Meier and empirical distributions. This estimator inherits the efficiency of
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the two MLEs [see van der Vaart (1991)]. Based on the bivariate cdf estimator, we devise

two estimators for copula function and a local-polynomial estimator for copula density,

that accounts for boundary bias. In addition, we introduce estimators for Kendall and

Spearman measures. The limiting processes of the estimators are established by deriving

i.i.d. representations for these ones. As by-product, we establish the oscillation behavior

of the bivariate distribution estimator.

The rest of this manuscript is organized as follows. In §2, we present estimators for

the bivariate distribution and copula function, and provide their asymptotic i.i.d. rep-

resentations and limiting processes. The local-polynomial estimator of copula density is

introduced in §3, and its triangular representation and weak convergence are established.

In §4, we propose estimators for Kendall and Spearman measures of association and present

their asymptotic distributions. In §5, we illustrate our methods on a prevalent-cohort data

on survival with dementia, collected as part of a nationwide study in Canada. The proofs

of the main results are given in the appendix.

2 Copula and bivariate distributions

2.1 Data setting and notations

We begin by defining the variables that represent the general population and the data

obtained from the cross-sectional (c-s) sampling with follow-up. Let (Y ∗, X∗) and T ∗ be

two independent random vectors representing, respectively, the bivariate of interest and

the truncation-time from the population (T ∗ is a univariate vector). At the c-s sampling

time, one only observes the data (Y ∗, X∗, T ∗) given that Y ∗ ≥ T ∗. The resulting sample

is biased, as such, we denote by (Y,X, T ) the random vector associated with the observed
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subjects, which arise from the conditional distribution of (Y ∗, X∗, T ∗) given that Y ∗ ≥ T ∗.

When the n selected subjects to the study are further followed-up, their residual lifetime

R = Y − T is subject to random right-censoring Rc. The observed data, obtained from

such sampling, are of the form

(Ti, Xi, Zi, δi), i = 1, . . . , n,

where Z = T + γ, γ = min(R,Rc) and δ = I(R ≤ Rc) is the censoring indicator. In this

work, we only consider the case of uncensored covariate X (e.g. age at disease onset).

However, as noted above, X suffers from a bias induced by the c-s sampling design. In

the sequel, we assume that Rc is independent of (Y,X, T ). This assumption is common

in right-censored left-truncated data setting, and is reasonable in most practical situations

[see Bergeron et al. (2008) and Ning et al. (2014)]. Let FX∗,Y ∗ , FT∗ (with density fT∗) and

G be the distributions of (X∗, Y ∗), T ∗ and Rc, respectively, and denote FX,Z,δ(x, y, 1) =

P [X ≤ x, Z ≤ y, δ = 1].

2.2 Estimators

We describe the methodology for estimating the bivariate distribution FX∗,Y ∗ and the copula

function C. Our estimation approach is essentially based on the relationship between the

population distribution FX∗,Y ∗ and the cross-sectional distributions FX,Z,δ and G, through

a functional Φ. The relationship is given by

FX∗,Y ∗(x, y) = Φ
(
G,FX,Z,δ

)
(x, y) =

∫∫
u≤x,v≤y

1

w(v)
dFX,Z,δ(u, v, 1)

∫∫
u,v>0

1

w(v)
dFX,Z,δ(u, v, 1)

, (3)

where w is the weight function

w(y) =

∫ y

0

[
1−G(t)

]
dt.
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Equation (3) is obtained by establishing, first, the equation

FX,Z,δ(x, y, 1) =

∫∫

u≤x,v≤y

v −
∫
r≤v

(v − r) dG(r)∫
t≥0

t dFY ∗(t)
dFX∗,Y ∗(u, v), (4)

and noticing by partial integration that v −
∫ v

0
(v − r) dG(r) = w(r). Deriving the left and

right sides of (4), one obtains

dFX∗,Y ∗(u, v) =
1

w(v)
dFX,Z,δ(u, v, 1)×

∫

t≥0

t dFY ∗(t), (5)

and by integrating the two sides of (5) on R2
+, one finds

∫

t≥0

t dFY ∗(t) = 1
/∫

u,v≥0

w−1(v) dFX,Z,δ(u, v, 1). (6)

The relationship in (3) is the combined result of (5) and (6). An estimator for FX∗,Y ∗ can

be defined by replacing in (3) the arguments of Φ, FX,Z,δ and G, by the empirical estimator

F̂X,Z,δ(x, y, 1) =
∑n

i=1 δi I(Xi ≤ x, Zi ≤ y)
/
n and the Kaplan-Meier estimator Ĝ. The

estimator of F = FX∗,Y ∗ is given by

F̂ (x, y) = Φ
(
Ĝ, F̂X,Z,δ

)
=

n∑

i=1

δi/ŵ(Zi)∑n
j=1 δj/ŵ(Zj)

I(Xi ≤ x, Zi ≤ y), (7)

where ŵ(y) =
∫ y

0

[
1 − Ĝ(t)

]
dt. The weights

[
δi/ŵ(Zi)

]
/
∑n

j=1

[
δj/ŵ(Zj)

]
in (7) account

for both the truncation and censoring mechanisms.

One key step is to explore the efficiency of F̂ , by studying the theoretical aspect of the

functional Φ. Let D[a, b] be the Banach space of all cadlag functions defined on an interval

[a, b] ⊂ R+, equipped with the uniform norm, and BV ([a, b] × [c, d]) the set of all cadlag

functions of total bounded variation defined on [a, b]× [c, d] ⊂ R
2

+. Given A ∈ D[a, b] and

B ∈ BV ([a, b]× [c, d]), consider the maps ω(A)(y) =
∫
[0,y]

(1− A) dt,

ϕ(A,B)(x, y) =

∫

[0,x]×[0,y]

1

A
dB, ψ(A,B) =

∫

R2
+

1

A
dB
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and

Φ : (A,B) 7→ (A∗ = ω(A), B) 7→ ϕ(A∗, B)(x, y)

ψ(A∗, B)
.

The functional Φ is Hadamard-differentiable on the domain C1 = {(A,B) :
∫
|dB| ≤

M,ω(A) ≥ ǫ}, forM, ǫ > 0, at every point (A,B) such that 1/ω(A) is of bounded variation

[see lemma 1 and van der Vaart & Wellner (1997)]. The estimator F̂ is a Hadamard-

differentiable functional of two MLEs, Ĝ and F̂X,Z,δ, and inherits their efficiency [see theorem

4.1 in van der Vaart (1991)].

We may estimate the copula function C(u, v) = F
(
F−1
1 (u), F−1

2 (v)
)
, u, v ∈ [0, 1], from

right-censored length-biased data, by

Ĉ1(u, v) = F̂
(
F̂−1
1 (u), F̂−1

2 (v)
)
=

n∑

i=1

δi/ŵ(Zi)∑n
j=1 δj/ŵ(Zj)

I
(
Xi ≤ F̂−1

1 (u), Zi ≤ F̂−1
2 (v)

)
, (8)

where F̂1(x) = F̂ (x,∞) and F̂2(y) = F̂ (∞, y) are the empirical counterparts of the marginal

distributions F1 and F2 of F . Note that F−1
1 , F−1

2 , F̂−1
1 and F̂−1

2 represent the respective

inverse functions of F1, F2, F̂1 and F̂2. Another estimator for C is

Ĉ2(u, v) =
n∑

i=1

δi/ŵ(Zi)∑n
j=1 δj/ŵ(Zj)

I
(
F̂1(Xi) ≤ u, F̂2(Zi) ≤ v

)
, (9)

which is asymptotically equivalent to Ĉ1. Notice that Ĉ2(u, v) = F̂
(
F̂−1
1

(
u+
)−

, F̂−1
2

(
v+
)−)

,

where F̂ (x−, y−) = lim(u,v)→(x,y)
u<x,v<y

F̂ (u, v) and F̂−1
k

(
u+
)
= limt→u

t>u
F̂−1
k (t) (k = 1, 2).

Let uL denote the upper bound of the support of L(y) = P [Z ≤ y]. To avoid identifia-

bility problem in [uL,∞) due to right censoring, we note that F̂ , F̂2 and Ĉ are respectively

defined on the sets A = [0,+∞) × [0, uL), [0, uL) and B = [0, 1] × F2

(
[0, uL)

)
. Let D(A)

and D(B) denote the respective Banach spaces of all cadlag functions defined on A and B.
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2.3 Asymptotic properties

We begin by introducing an i.i.d. representation of F̂ in Theorem 1. This result leads to

the derivation of the representations of F̂−1
1 and F̂−1

2 in Lemma 3, and that of the copula

estimator Ĉ1 in Theorem 2. Let µ =
∫
u,v≥0

w−1(v) dFX,Z,δ(u, v, 1), L
G

0 (t) = P [γ ≤ t, δ = 0],

LG(t) = P [γ ≤ t], and denote

χ′′
i (x, y) =

δi
µw(Zi)

[
I(Xi ≤ x, Zi ≤ y)− F (x, y)

]
,

χ′
i(x, y) =

∫

(u,v)∈A

∫

t≤v

[
I(u ≤ x, v ≤ y)− F (x, y)

]
ηi(t) dt

dF (u, v)

w(v)
,

with

ηi(t) = G(t)

[
I(γi ≤ t, δi = 0)

LG(γi)
−
∫ t∧γi

0

dLG

0 (s)

LG
2
(s)

]
.

The latter is the i.i.d. random term of the representation of the Kaplan-Meier estimator Ĝ

[see Lo et al. (1989)]. The assumptions used in the next results are given in the appendix.

Theorem 1 Denote χF

i = χ′
i + χ′′

i . Under Assumption B1, the bivariate cdf estimator F̂

admits for (x, y) ∈ A the representation

F̂ (x, y)− F (x, y) =
1

n

n∑

i=1

χF

i (x, y) + rFn (x, y), (10)

where supR+×[0,τ ]

∣∣rFn (x, y)
∣∣ = O (n−1 logn) a.s. for every τ < uL. Thus, n1/2

[
F̂ − F

]

converges weakly to a Gaussian process F in D(A).

The proof of Theorem 1 is given in the appendix. The covariance process of F is given by

ΣF (x, y, x0, y0) = Σ1(x, y, x0, y0) + Σ2(x, y, x0, y0) + Σ2(x0, y0, x, y) + Σ3(x, y, x0, y0),
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where,

Σ1(x, y, x0, y0) =

∫

(u,v)∈A

[
I(u ≤ x, v ≤ y)− F (x, y)

][
I(u ≤ x0, v ≤ y0)− F (x0, y0)

]

µw(v)
dF (u, v),

Σ2(x, y, x0, y0) =

∫
(u,v)∈A
(u0,v0)∈A

[
I(u ≤ x, v ≤ y)− F (x, y)

][
I(u0 ≤ x0, v0 ≤ y0)− F (x0, y0)

]

µw(v)w(v0)

×
{∫

t≤v

∫

s≤t∧r
G(t)

dLG
0 (s)

LG
2
(s)

dt

}
dFX,Z,γ,δ(u0, v0, r, 1) dF (u, v)

and

Σ3(x, y, x0, y0) =

∫

(u,v)∈A
(u0,v0)∈A

[
I(u ≤ x, v ≤ y)− F (x, y)

][
I(u0 ≤ x0, v0 ≤ y0)− F (x0, y0)

]

× σ∗
G
(v, v0)

w(v)w(v0)
dF (u0, v0) dF (u, v),

with σ∗
G
(v, v0) =

∫ v

0

∫ v0
0
σG(t, s) ds dt and σG(t, s) the covariance function of the limiting pro-

cess of the Kaplan-Meier estimator Ĝ. The next result establishes the oscillation behavior

of F̂ . This result is required to derive the i.i.d. representations of Ĉ1 and Ĉ2.

Proposition 1 (Oscillation behavior of F̂ )

Let {an} be a sequence of positive values such that an = O
(
n−1/2(log n)α1

)
, with α1 ≥ 1/2,

and denote Aτ = R
+ × [0, τ ], where τ < uL. Suppose Assumption B1 holds, then,

sup
(x,y)∈Aτ

(x0,y0)∈Aτ

sup
|x−x0|≤an
|y−y0|≤an

∣∣∣
[
F̂ (x, y)− F (x, y)

]
−
[
F̂ (x0, y0)− F (x0, y0)

]∣∣∣ = Oa.s.

(
n−3/4(log n)α2

)

for every τ < uL, where α2 ≥ 1.

The proof is detailed in the appendix. Next, we introduce the i.i.d. representation for

Ĉ1, which leads to a representation for the related copula estimator Ĉ2. This will helps to
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study the limit distribution of our nonparametric estimator of the copula density. Let ∂1C

and ∂2C be the partial derivatives of C with respect to the first and second arguments of

C, respectively, and denote ξF1
i (u) = χF

i

(
F−1
1 (u),∞

)
and ξF2

i (v) = χF
i

(
∞, F−1

2 (v)
)
.

Theorem 2 Let (u∗, v∗) =
(
F−1

1 (u), F−1
2 (v)

)
and Bτ = [0, 1] × F2

(
[0, τ ]

)
, where τ < uL.

Under Assumptions B1 and B2(i,ii,iii), the copula estimator Ĉ1 admits for (u, v) ∈ B the

representation

Ĉ1(u, v)−C(u, v) =
1

n

n∑

i=1

{
χF
i (u∗, v∗)+ξ

F1
i (u) ∂1C(u, v)+ξ

F2
i (v) ∂2C(u, v)

}
+rC

n(u, v) (11)

where supBτ

∣∣rC

n(u, v)
∣∣ = O

(
n−3/4(logn)α∗

)
a.s. for every τ < uL, with α∗ ≥ 1. Therefore,

n1/2
[
Ĉ1−C

]
converges weakly to a Gaussian process CL in D(B), with asymptotic variance

ΣCL
(u, v) = E

[(
χF
1 (u∗, v∗) + ξF1

1 (u) ∂1C(u, v) + ξF2
1 (v) ∂2C(u, v)

)2]

The proof of Theorems 2 is detailed in the appendix. Note that the i.i.d. representation of

Ĉ1 comes from three sources, the i.i.d. representations of the bivariate estimator F̂ and the

empirical quantile estimators F̂−1
1 and F̂−1

2 (see Lemma 3). Having established Theorem 2,

one may analogously derive a representation for Ĉ2(u, v) = F̂
(
F̂−1
1

(
u+
)−

, F̂−1
2

(
v+
)−)

, given

by,

Ĉ2(u, v)−C(u, v) =
1

n

n∑

i=1

{
χF
i (u

−
∗ , v

−
∗ )+ ξF1

i (u+) ∂1C(u, v)+ ξF2
i (v+) ∂2C(u, v)

}
+ r∗n(u, v), (12)

where χF
i (u

−
∗ , v

−
∗ ) = lim(x,y)→(u∗,v∗)

x<u∗,y<v∗

χF
i (u∗, v∗) and supBτ

|r∗n(u, v)| = O
(
n−3/4(logn)α

∗
)
a.s.

for any τ < uL (α∗ ≥ 1). Note that the covariance process of CL can be deduced from the

covariance function ΣF of the limit process F .
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3 Local-polynomial estimator for copula density

Next, we define a nonparametric estimator of the copula density based on local-linear kernel

smoothing. Let K be a symmetric density function supported on (−1, 1) and h = hn a

bandwidth sequence tending to 0. Denote A1 = [0, h], A2 = [h, 1− h], A3 = [1− h, 1] and

Kx,h(u) = K(u)
a2(x, h)− a1(x, h)u

a0(x, h)a2(x, h)− a21(x, h)
I(x ∈ Ai), (i = 1, 2, 3), (13)

where

aℓ(x, h) =

∫ x/h

(x−1)/h

tℓK(t) dt

for ℓ = 0, 1, 2. Notice thatKx,h = K when x ∈ A2,
∫ 1

−1
Kx,h(u) du = 1 and

∫ 1

−1
uKx,h(u) du =

0. The kernel function Kx,h, which represents a local linear version of K, was introduced

by Lejeune & Sarda (1992) and Jones (1993) in the context of univariate density estima-

tion. Their purpose of using Kx,h is to boost the rate of the estimator bias from O(h)

to O(h2) near the compact support boundaries. Here, we use Kx,h for the estimation of

the copula density C(x, y) in order to remove the boundary biases near 0 and 1, i.e. when

x, y ∈ [0, h] ∪ [1− h, 1]. In the sequel, we require the following conditions on Kx,h

K1: (i)
∫ u

h
u−1
h

K2
u,h(t) dt <∞, (u = x, y).

(ii)
∫ u

h
u−1
h

t2 |Ku,h(t)| dt <∞, (u = x, y).

To estimate the copula density C, we consider the copula estimator Ĉ2. An estimator for

C is given by

Ĉ(x, y) =
1

h2

n∑

i=1

δi/ŵ(Zi)∑n
j=1 δj/ŵ(Zj)

Kx,h

(
x− F̂1(Xi)

h

)
Ky,h

(
y − F̂2(Zi)

h

)
. (14)

We note that C is defined on the set B∗ = B\{(0, 0), (1, 0)}. The copula estimator Ĉ2 allows

for explicit expressions for the estimators of Ĉ, and Kendall and Spearman measures of
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association defined below. In the next result, we establish a triangular i.i.d. representation

for Ĉ(x, y), leading to a bivariate-normal limit distribution for this estimator.

Theorem 3

Suppose Assumptions B1, B2 and K1 hold, and denote (u∗, v∗) =
(
F−1

1 (u), F−1
2 (v)

)
and

χC

i (u, v) = χF
i (u

−
∗ , v

−
∗ ) + ξF1

i (u+) ∂1C(u, v) + ξF2
i (v+) ∂2C(u, v)

The copula density estimator Ĉ(x, y) admits for (x, y) ∈ B∗ the representation

Ĉ(x, y)− C(x, y) =
1

nh2

n∑

i=1

∫

[−1,1]2

{
χC

i (x− uh, y − vh)− χC

i (x− uh, 1)I(y − vh ≤ 1)

− χC

i (1, y − vh)I(x− uh ≤ 1)
}
dKx,h(u) dKy,h(v) + rCn(u, v), (15)

with supB∗
|rCn(u, v)| = Oa.s.

(
n−3/4h−2(logn)α

∗

+ h2
)
.

The proof is given in the appendix. The representation (15) follows from the i.i.d. repre-

sentation of Ĉ2 in (12).

Corollary 1

Suppose Assumptions B1,B2 and K1 hold and nh6, (log n)4α
∗

/nh4 → 0 as n → ∞ and

h → 0. Then, for (x, y) ∈ B∗, n
1/2h

[
Ĉ(x, y)− C(x, y)

]
converges in distribution to a

zero-mean bivariate normal distribution.

The proof follows from the triangular representation (15) by using the Lindeberg-Feller

CLT theorem.

Remark 1

One practical issue of interest in real-data applications is the choice of the bandwidth h.
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To select this parameter, we may minimize with respect to h the integrated squared error

ISE(h) =
∫
B∗

[
Ĉ(x, y; h)− C(x, y)

]2
dx dy. This is equivalent to choose h that minimizes

ISE∗(h) =

∫

B∗

Ĉ(x, y; h)2 dx dy − 2

∫

B

Ĉ(x, y; h) dC(x, y).

The unknown copula function C, in the second term on the R.H.S. of the latter equality,

can be replaced by the estimator Ĉ2. The data driven bandwidth is then

ĥopt = argmin
h

{∫

B∗

Ĉ−i(x, y;h)
2dxdy − 2

n∑

i=1

δi/ŵ(Zi)∑n
j=1 δj/ŵ(Zj)

Ĉ−i

(
F̂1(Xi), F̂2(Zi);h

)
}
, (16)

where Ĉ−i is a leave-one-out estimate of C given by

Ĉ−i(x, y; h) =
1

h2

n∑

ℓ=1
ℓ 6=i

δℓ/ŵ(Zℓ)∑n
j=1 δj/ŵ(Zj)

Kx,h

(
x− F̂1(Xℓ)

h

)
Ky,h

(
y − F̂2(Zℓ)

h

)
.

4 Kendall and Spearman measures of association

In this section, we discuss two measures of dependence, or concordance, known as the

Kendall’s tau and Spearman’s rho. For such quantities, we introduce two estimators that

are adapted for right-censored length-biased data. Kendall’s tau measures the difference

between the probability of concordance and discordance between two random variables X∗

and Y ∗, and is defined by

τX∗,Y ∗ = P
[
(X∗ −X∗

0 )(Y
∗ − Y ∗

0 ) > 0
]
− P

[
(X∗ −X∗

0 )(Y
∗ − Y ∗

0 ) < 0
]
,

where (X∗
0
, Y ∗

0
) is an independent copy of (X∗, Y ∗). Since the tail region information on

the survival function of Y ∗ may not be identifiable in [uL,∞) due to right censoring (as

indicated in §2.2), we estimate here a truncated version of Kendall’s tau, given by

τX∗,Y ∗ = 4

∫

B

C(u, v) dC(u, v)− 1.

13



An estimator of τX∗,Y ∗ under right-censored length-biased data is

τ̂X∗,Y ∗ = 4
n∑

i=1

n∑

j=1

δi δj/
[
ŵ(Zi) ŵ(Zj)

]
[∑n

l=1 δl/ŵ(Zl)
]2 I

(
Xj ≤ Xi, Zj ≤ Zi

)
− 1, (17)

The weight
[
δiδj/

(
ŵ(Zi) ŵ(Zj)

)]
/
[∑n

l=1 δl/ŵ(Zl)
]2

accounts for the truncation and the

censoring mechanisms, and replace the uniform weight 1/n in the empirical version of τ̂X∗,Y ∗

for complete data. Wang & Wells (2000) discussed the limitations of estimating Kendall’s

tau under right-censoring. In the next result, we establish the asymptotic distribution of

the Kendall’s tau estimator. The proof is detailed in the appendix.

Theorem 4 Suppose Assumptions B1 and B2(i,ii,iii) hold. We have
√
n
[
τ̂X,Y − τX,Y

]

converges weakly to the normal variable Zτ , given by

Zτ = 4

{∫

B

C(u, v) dCL(u, v) +

∫

B

CL(u, v) dC(u, v)

}
,

where CL is the limiting process of
√
n
[
Ĉ1(u, v)− C(u, v)

]
.

Spearman’s rho dependence measure for the random vector (X, Y ) is defined as

ρX,Y = 3
{
P
[
(X −X0)(Y − Y1) > 0

]
− P

[
(X −X0)(Y − Y1) < 0

]}
,

where (X0, Y0), (X1, Y1) and (X, Y ) are independent and identically distributed random

vectors. As indicated above, to avoid identifiability problem in [uL,∞) caused by right

censoring, we estimate a truncated version of Spearman’s rho;

ρX,Y = 12

∫

B

uv dC(u, v)− 3.

An estimator of ρX∗,Y ∗ , for right-censored length-biased data, is given by

ρ̂X∗,Y ∗ = 12

n∑

i=1

δi/ŵ(Zi)∑n
l=1 δl/ŵ(Zl)

F̂1(Xi) F̂2(Zi)− 3. (18)

14



The limit distribution of ρ̂X,Y is derived in the following theorem. The proof is given in the

appendix.

Theorem 5 Under Assumptions B1 and B2(i,ii,iii),
√
n
[
ρ̂X,Y − ρX,Y

]
converges weakly to

the Gaussian variable

Zρ = 12

∫

B

u v dCL(u, v).

where CL is the limiting process of
√
n
[
Ĉ1(u, v)− C(u, v)

]
.

5 Survival with dementia

We apply the method described in §2, §3 and §4 to a set of right-censored length-biased data

collected on elderly Canadians with dementia. In 1991/1992 a nationwide cross-sectional

survey was conducted in five regions of Canada among 9008 community-residing persons

and 1255 institutionalized persons aged 65 and older. The CSHA-1 (Canadian Study of

Health and Aging 1) identified 1132 persons with dementia who were followed for a period

of 5 years until 1996/1997. The primary purpose of the CSHA-1 was the study of the risk

factors for dementia and to determine its prevalence in the Canadian population. Wolfson

et al. (2001) and Asgharian et al. (2002) reported that those patients with missing date

of onset or with survival ≥ 20 years, who unlikely had dementia, need to be excluded. We

then considered a sample of n = 807 patients in our statistical analysis, among whom 627

died and 180 were censored during the follow-up. The variable Y ∗ (lifetime) is defined

as the time elapsed from the onset of dementia to death, the covariate X∗ is the age at

onset-of-dementia (AAO) and the left-truncation variable T ∗ is the time from disease onset

to study recruitment.

The purpose of the present example is to study the dependence structure between

lifetime Y ∗ and age at onset-of-dementia X∗. First, we used the nonparametric method

15



Table 1: Kendall’s tau and Spearman’s rho estimates for lifetime vs age at onset-of-dementia

Groups all patients AAO ≤ 75 75 < AAO ≤ 85 85 < AAO

τ̂X∗,Y ∗ -0.256 -0.183 -0.022 -0.125

ρ̂X∗,Y ∗ -0.366 -0.249 -0.015 -0.170

of Wang (1991) to estimate the truncation distribution. Figure 1 displays this estimator

and indicates that a uniform truncation distribution is a reasonable assumption. Addona

& Wolfson (2006, p. 277) developed goodness-of-fit tests and found that the uniform

assumption is valid for this data. In Table 1, the estimated values of Kendall and Spearman

measures show a moderate dependence between Y ∗ and X∗ for n = 807 patients with

dementia. However, when we divided those individuals into three groups of age at onset-

of-dementia (AAO), the dependence becomes weaker for the groups 75 < AAO ≤ 85 and

AAO > 85. The plots in Figure 3 concur with this remark. The curves of the copula

densities estimators for the two groups 75 < AAO ≤ 85 and AAO > 85 are relatively

flat to the level of the plane z = 1 (grey). Notice a sharp peak in the neighborhood of

(x, y) = (0, 1) in the plots of the total group of patients and the group AAO ≤ 75. This can

be interpreted as those patients who experienced dementia in an early age (small values of

X∗) are more likely to live longer (large values of Y ∗). We note that we used the kernel

function K(x) = 0.75(1 − x2) I[−1,1](x) and the bandwidth hn is selected via formula (16)

in Remark 1.
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A Appendix

A.1 Notations

We introduce here some notations used in the proofs below. For a general distribution

E, lE and uE represent the respective lower and upper bounds of the support of E, with

E = 1− E. Denote F̂ = F̂ − F , Ĝ = Ĝ−G and Ĥ = Ĥ0 −H0, where H0 = FX,Z,δ and Ĥ0

its empirical counterpart. Let lL be the lower bound of the support of L(y) = P [Z ≤ y]

and A∗ = [0,+∞)× [lL,+∞). Denote

F0(x, y) =

∫ y

lL

1

w(v)
dH0(x, v),

F̂0(x, y) =

∫ y

lL

1

ŵ(v)
dĤ0(x, v),

µ̂ =

∫

(u,v)∈A∗

1

ŵ(v)
dĤ0(u, v)

and notice that µ =
∫
(u,v)∈A∗

dH0(u, v)/w(v).

A.2 Assumptions

The following regularity conditions are needed to establish the asymptotic results in this

paper. Let Q be the cdf of the residual lifetime R. Recall that L is the distribution of Z.

B1: (i) lG ∧ lQ > 0 and lFT∗ > 0.

(ii) uG ≤ uQ with G(uG) < 1.

(iii) 0 < lL < uL <∞.

The first part of assumption (i) essentially means that there is no immediate failure or

censoring at the beginning of the study, while the second part of the assumption means
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that all subjects recruited to the study are prevalent cases. This condition reflects the

setting of the CSHA data and in general is reasonable in most prevalent cohort studies [see

Asgharian et al. (2002)]. Assumption (ii) means that the lifetimes of some individuals,

who are still alive at the end of the study, will be censored. This is common in the follow-

up studies and is due to the limited time of the follow-up. The condition lL > 0 is a

direct consequence of (i), while uL < ∞ means that the observed lifetime of individual is

finite. The regularity assumption B2 below is required for the asymptotic properties of the

estimators of copulas and measures of association.

B2: (i) Fk (k = 1, 2) is twice differentiable in [F−1
k (a∗) − ǫ, F−1

k (b∗) + ǫ] for numbers

a∗, b∗ ∈ (0, 1) and ǫ > 0.

(ii) F
(1)
k = fk is bounded away from zero and F

(2)
k is bounded in absolute value

(k = 1, 2).

(iii) The second partial derivatives of F are bounded.

(iv) The first and second partial derivatives of C are bounded.

A.3 Lemmas and Proofs

Lemma 1

Under assumption B1, n1/2
[
F̂ − F

]
converges weakly to a tight process F in D(A).

Proof.

First, notice that the estimator F̂ depends on the pair (ŵ, Ĥ0) through the composition of

the two maps ϕ(A,B)(x, y) =
∫
[0,x]×[0,y]

1
A
dB and ψ(A,B) =

∫
R
2
+

1
A
dB given by

φ : (A,B) 7→ ϕ(A,B)(x, y)

ψ(A,B)
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Following similar arguments to that of Veraverbeke et al. (2011) (lemma 1) and van der

Vaart & Wellner (1997) (lemma 3.9.17), the maps ϕ and psi are Hadamard differentiable

on the domain C1 = {(A,B) :
∫
|dB| ≤M,A ≥ ǫ}, for M, ǫ > 0, at every point (A,B) such

that 1/A is of bounded variation. Hence, the map φ is hadamard differentiable at (w,H0)

tangentially to the set C2 = {(A,B) ∈ C1 : ψ(A,B) ≥ ǫ > 0} ⊂ R
+ × R

+2
.

Now, by lemma 3.9.17 in van der Vaart & Wellner (1997) the map G 7→ w is hadamard

differentiable at G tangentially to the set of continuous functions on R
+
, hence by delta

method,
√
n
[
ŵ − w

]
converges weakly to the tight process W =

∫ y

0
G(t) dt, where G is the

limiting gaussian process of
√
n
[
G− Ĝ

]
. Thus, using the empirical central limit theorem,

√
n
(
ŵ−w, Ĥ0−H0

)
converges to the tight zero-mean process

(
W,H

)
in D[0, uG)×D(B).

Therefore, by the functional delta method,
√
n
[
F̂ − F

]
converges to the tight process

φ′
w,H0

(W,H) =
ϕ′
w,H0

(W,H)(x, y)ψ(w,H0)− ϕ(w,H0)(x, y)ψ
′
w,H0

(W,H)

ψ(w,H0)2

in D(A), where

ψ′
w,H0

(W,H) =

∫

[0,∞)×[ℓL,τ)

1

w
dH−

∫

[0,∞)×[ℓL,τ)

W
w2

dH0

and

ϕ′
w,H0

(W,H)(x, y) =

∫

[0,x]×[ℓL,y]

1

w
dH−

∫

[0,x]×[ℓL,y]

W
w2

dH0.

Lemma 2

Under assumption B1, ‖F̂k − Fk‖ = Oa.s.

(√
log log(n)/n

)
, for k = 1, 2.

Proof.

The proof follows from the decomposition (20) of F̂ −F in the proof of Theorem 1 by using

the facts that ‖Ĝ−G‖ = Oa.s.

(√
log log(n)/n

)
and ‖Ĥ0 −H0‖ = Oa.s.

(√
log log(n)/n

)
.
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Lemma 3

Under Theorem 2’s assumptions, F̂−1

1 and F̂−1

2 admit the representations

F̂−1
1 (p)− F−1

1 (p) =
1

n

n∑

i=1

χF
i (F

−1
1 (p),∞)

f1(F
−1
1 (p))

+ r1(p),

and

F̂−1
2 (p)− F−1

2 (p) =
1

n

n∑

i=1

χF
i (∞, F−1

2 (p))

f2(F
−1
2 (p))

+ r2(p),

where r1(p) and r2(p) are uniformly of order Oa.s.(n
−3/4 log(n)β), with β > 1.

Proof.

Let [a, b] = [F−1
1 (p)− ǫ, F−1

1 (p)+ ǫ], for ǫ > 0. By lemma 3.9.23 in van der Vaart & Wellner

(1997) the inverse map φ0 : F 7→ F−1 is hadamard differentiable at F1 tangentially to the

set of continuous functions C[a, b], with derivative φ′
F
: A 7→ −(A/f)o F−1. The map φ′

F
is

linear, hence, is hadamard differentiable at F1 tangentially to C[a, b]. Thus, using second

order von Mises expansion of φ0(F̂1) (under Theorem 2’s assumptions),

φ0(F̂1)−φ0(F1) = φ′
F1

(
F̂1 − F1

)
+

1

2

∫
ϕ2(x, y) d

[
F̂1(x)−F1(x)

]
d
[
F̂1(y)−F1(y)

]
+Rem2, (19)

where

ϕ2(x, y) =
d2F−1(p)

dp2

[
p− I

(
x ≤ F−1(p)

)][
p− I

(
y ≤ F−1(p)

)]

+
dF−1(p)

dp

[
2p− I

(
x ≤ F−1(p)

)
− I
(
y ≤ F−1(p)

)]

is the 2nd order influence function and the remainder term Rem2 is uniformly of order

op(n
−1) [see Fernohlz (1983, 2001) and Reeds (1976)]. By using partial integration, Lemma

2 and the oscillation result in Proposition 1 for F̂1, the second term on the R.H.S. of (19)

can be shown that is uniformly of order Oa.s.

(
n−3/4 log(n)β

)
(β > 1), under Theorem 2’s
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assumptions. Hence, using the representation of F̂1 in Theorem 1,

F̂−1
1 (p)− F−1

1 (p) = φ0(F̂1)− φ0(F1) =
1

n

n∑

i=1

χF
i (F

−1
1 (p),∞)

f1(F
−1
1 (p))

+Rem∗
2,

where Rem∗
2 is uniformly of order Oa.s.

(
n−3/4 log(n)β

)
, with β > 1. The proof for the

representation of F̂−1
2 (p)− F−1

2 (p) is similar.

Lemma 4

Under Theorems 1-2’s assumptions, n1/2
[
Ĉ1 − C

]
converges weakly to a tight process CL.

Proof.

By lemma 3.9.28 in van der Vaart & Wellner (1997), the map φ1 defined by φ1(F )(u, v) =

C(u, v) is Hadamard differentiable at F tangentially to the set of continuous functions on

R
2
. Following similar arguments to Lemma 1’s proof,

√
n
[
Ĉ1 − C

]
converges weakly to a

tight process CL by Lemmas 1 and 3.

Proof of Theorem 1.

First, notice that F (x, y) = F̂ (x, y) = χF

i = 0 for y < ℓL. F̂ and F can then be written as

F̂ (x, y) =

∫ y

ℓL
dĤ0(x, v)/ŵ(v)

∫∫
(u,v)∈A∗

dĤ0(u, v)/ŵ(v)
and F (x, y) =

∫ y

ℓL
dH0(x, v)/w(v)∫∫

(u,v)∈A∗
dH0(u, v)/w(v)

,

where H0(u, v) = FX,Z,δ(u, v, 1), Ĥ0 its empirical counterpart, and A∗ = [0,+∞)× [lL, uL).

By using the uniform convergence results of Ĝ and the empirical process Ĥ0,

F̂ (x, y)− F (x, y) =
1

µ

∫ y

ℓL

[
w(v)− ŵ(v)

] dĤ0(x, v)

w2(v)
+

1

µ

∫ y

ℓL

d
[
Ĥ0(x, v)−H0(x, v)

]

w(v)

− F (x, y)

µ

∫∫

(u,v)∈A∗

[
w(v)− ŵ(v)

] dĤ0(u, v)

w2(v)

− F (x, y)

µ

∫∫

(u,v)∈A∗

d
[
Ĥ0(u, v)−H0(u, v)

]

w(v)
+ r

(1)
1,n(x, y), (20)
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hence,

F̂ (x, y)− F (x, y) =
1

µ

∫ y

ℓL

[
w(v)− ŵ(v)

] dĤ0(x, v)

w2(v)
+

1

µ

∫ y

ℓL

dĤ0(x, v)

w(v)

− F (x, y)

µ

∫∫

(u,v)∈A∗

[
w(v)− ŵ(v)

] dĤ0(u, v)

w2(v)

− F (x, y)

µ

∫∫

(u,v)∈A∗

dĤ0(u, v)

w(v)
+ r

(1)
1,n(x, y),

where supA |r(1)1,n(x, y)| = Oa.s. (n
−1 log log n). Notice that d

[
w(v) − ŵ(v)

]
=
[
Ĝ(v) −

G(v)
]
dv. By partial integration,

∫

v≤y

[
w(v)− ŵ(v)

] d
[
Ĥ0(x, v)−H0(x, v)

]

w2(v)
=

∫ y

ℓL

[
w(v)− ŵ(v)

] d
[
Ĥ0(x, v)−H0(x, v)

]

w2(v)

=
[
w(v)− ŵ(v)

] [Ĥ0(x, v)−H0(x, v)
]

w2(v)

∣∣∣∣∣

v=y

v=ℓL

−
∫ y

ℓL

[
Ĥ0(x, v)−H0(x, v)

]

w2(v)

[
Ĝ(v)−G(v)

]
dv

−
∫ y

ℓL

[
w(v)− ŵ(v)

] [
Ĥ0(x, v)−H0(x, v)

]
d

(
1

w2(v)

)
.

Thus, by the uniform convergence of Ĝ and Ĥ0,
∫ y

ℓL

[
w(v)− ŵ(v)

] dĤ0(x, v)

w2(v)
=

∫ y

ℓL

[
w(v)− ŵ(v)

] dH0(x, v)

w2(v)
+ r

(2)
1,n(x, y),

where supA |r(2)1,n(x, y)| = Oa.s. (n
−1 log log n), and analogously,

∫∫

(u,v)∈A∗

[
w(v)− ŵ(v)

] dĤ0(u, v)

w2(v)
=

∫∫

(u,v)∈A∗

[
w(v)− ŵ(v)

] dH0(u, v)

w2(v)
+ r

(3)
1,n,

with r
(3)
1,n = Oa.s. (n

−1 log log n). Therefore,

F̂ (x, y)− F (x, y) =
1

µ

∫ y

ℓL

[
w(v)− ŵ(v)

] dH0(x, v)

w2(v)
− F (x, y)

µ

∫∫

(u,v)∈A∗

[
w(v)− ŵ(v)

] dH0(u, v)

w2(v)

+
1

µ

∫ y

ℓL

dĤ0(x, v)

w(v)
− F (x, y)

µ

∫∫

(u,v)∈A∗

dĤ0(u, v)

w(v)
+ r

(4)
1,n(x, y),
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i.e.,

F̂ (x, y)− F (x, y) =

∫∫

(u,v)∈A∗

I(u ≤ x, v ≤ y)− F (x, y)

µ

[
w(v)− ŵ(v)

] dH0(u, v)

w2(v)

+

∫∫

(u,v)∈A∗

I(u ≤ x, v ≤ y)− F (x, y)

µ

dĤ0(u, v)

w(v)
+ r

(4)
1,n(x, y),

where supA |r(4)1,n(x, y)| = Oa.s. (n
−1 log log n). The result follows by using the representation

of Ĝ(v)−G(v) in Lo et al. (1989) and Lemma 1 above.

Proof of Proposition 1.

As indicated above, F (x, y) = F̂ (x, y) = 0 for y < ℓL, and if y0 is such that |y − y0| ≤ an

and n is sufficiently large, then F (x0, y0) = F̂ (x0, y0) = 0.

Recall that F̂ and F can be written as F (x, y) = F0(x, y)/µ and F̂ (x, y) = F̂0(x, y)/µ̂,

where F0, F̂0 and µ̂ are defined in the Notations section. Let F̂0 = F̂0 − F0, x0 and y0 two

positive values such that |x − x0|, |y − y0| ≤ an and denote x = (x, x0) and y = (y, y0).

By using the uniform convergence rate of Ĝ and Ĥ0 and by employing Taylor expansion of

first order for |x− x0|, |y− y0| ≤ an, under bounded first partial derivatives of H0, we have

F̂(x, y)− F̂(x0, y0) =
[
F̂0(x, y)− F̂0(x0, y0)

]
µ−1 + r(2)

2,n(x, y) + r(1)

2,n(x, y),

where sup|x−x0|,|y−y0|≤an
(x,y)∈A

∣∣r(2)

2,n(x, y)
∣∣ = Oa.s.

(
ann

−1/2
(
log logn

)1/2)
and supA

∣∣r(1)

2,n(x, y)
∣∣ =

Oa.s. (n
−1 log logn). Now, let’s focus on F̂0(x, y) − F̂0(x0, y0) on the R.H.S. of the latter

equality. We have

F̂0(x, y)− F̂0(x0, y0) =

∫ y0

ℓL

1

ŵ(v)
d
[
Ĥ(x, v)− Ĥ(x0, v)

]
+

∫ y

y0

1

ŵ(v)
dĤ(x, v)

+

∫ y0

ℓL

[
1

ŵ(v)
− 1

w(v)

]
d
[
H0(x, v)−H0(x0, v)

]
+

∫ y

y0

[
1

ŵ(v)
− 1

w(v)

]
dH0(x, v)
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=

∫ y0

ℓL

w(v)− ŵ(v)

w2(v)
d
[
H0(x, v)−H0(x0, v)

]
+

∫ y

y0

w(v)− ŵ(v)

w2(v)
dH0(x, v)

+

∫ y0

ℓL

1

ŵ(v)
d
[
Ĥ(x, v)− Ĥ(x0, v)

]
+

∫ y

y0

1

ŵ(v)
dĤ(x, v) + r(3)

2,n(x, y), (21)

where sup|x−x0|,|y−y0|≤an
(x,y)∈A

∣∣r(3)

2,n

∣∣ = Oa.s. (n
−1 log log n), by using the uniform convergence rate

of Ĝ. Let I1n(x, y), I
2
n(x, y) and I3n(x, y) be, respectively, the sum of the first two terms,

the third term and the fourth term in (21). We want to find the rates of the sup-norm of

Ikn(x, y), for k = 1, 2, 3. First, we have

|I1n(x, y)| ≤
∥∥∥∥
1

w2

∥∥∥∥ .‖ŵ − w‖.
(∫ y0

ℓL

∣∣∣∣
∂H0

∂v
(x, v)− ∂H0

∂v
(x0, v)

∣∣∣∣ dv + |H0(x, y)−H0(x, y0)|
)
,

and by using Taylor expansion of first order for |x− x0|, |y− y0| ≤ an, under bounded first

and second partial derivatives of H0, and the uniform convergence rate of Ĝ,

sup
|x−x0|≤an
|y−y0|≤an

|I1n(x, y)| = Oa.s.

(
ann

−1/2
(
log logn

)1/2)
.

For the rates of I2n(x, y) and I
3
n(x, y), notice that by using partial integration

|I2n(x, y)| ≤ 4

∥∥∥∥
1

ŵ

∥∥∥∥ . sup
|x−x0|≤an
ℓL≤v≤y0

∣∣∣Ĥ(x, v)− Ĥ(x0, v)
∣∣∣ ,

and I3n(x, y) can be written as

I3n(x, y) =
[
Ĥ(x, y)− Ĥ(x0, y0)

]
/ŵ(y) +

[
Ĥ(x0, y0)− Ĥ(x, y0)

]
/ŵ(y0)

+

∫ y

y0

[
Ĥ(x0, y0)− Ĥ(x, v)

]
d

(
1

ŵ(v)

)
.

Hence, by using theorem 2.3 in Stute (1984)

sup
|x−x0|≤an
|y−y0|≤an

|Ikn(x, y)| = Oa.s.

(
n−3/4

(
log n

)1/2(
log logn

)1/4)
,
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for k = 2, 3, and the result follows.

Proof of Theorem 2. Using the oscillation result in Proposition 1 and Taylor expansion,

the representation of Ĉ1(u, v) follows from the i.i.d. representations of F̂ (x, y) (Theorem 1)

and that of F̂−1
1 (x) and F̂−1

2 (x) (Lemma 3). The weak convergence of
√
n
[
Ĉ1 − C

]
follows

by using Lemma 4.

Proof of Theorem 3.

The proof is given for representation (15) when x, y ∈ A3 = [1− h, 1]. The proof is similar

for the other cases of x and y. Using partial integration, first, with respect to u and then

with respect to v, we have

Ĉ(x, y) =h−2

{∫ 1

y−h

∫ 1

x−h

K
(1)
x,h

(
x− u

h

)
K

(1)
y,h

(
y − v

h

)
du

h

dv

h

−
∫ 1

y−h

∫ 1

x−h

C̃(1, v)K
(1)
x,h

(
x− u

h

)
K

(1)
y,h

(
y − v

h

)
du

h

dv

h

−
∫ 1

y−h

∫ 1

x−h

C̃(u, 1)K
(1)
x,h

(
x− u

h

)
K

(1)
y,h

(
y − v

h

)
du

h

dv

h

+

∫ 1

y−h

∫ 1

x−h

C̃(u, v)K
(1)
x,h

(
x− u

h

)
K

(1)
y,h

(
y − v

h

)
du

h

dv

h

}
.

By using the substitutions u∗ = (x− u)/h and v∗ = (y − v)/h,

Ĉ(x, y) =h−2

∫∫

[−1,1]2

[
C̃(x− uh, y − vh)− C̃(x− uh, 1)I(y − vh ≤ 1)− C̃(1, y − vh)I(x− uh ≤ 1)

+ I(x− uh ≤ 1, y − vh ≤ 1)
]
dKx,h(u)dKy,h(v).

The difference Ĉ(x, y)− C(x, y) can be written as

Ĉ(x, y)− C(x, y) =h−2

∫∫

[−1,1]2

{[
C̃(x− uh, y − vh)− C(x− uh, y − vh)

]

−
[
C̃(x− uh, 1)− C(x− uh, 1)

]
I(y − vh ≤ 1)
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−
[
C̃(1, y − vh)− C(1, y − vh)

]
I(x− uh ≤ 1)

}
dKx,h(u)dKy,h(v)

+

∫∫

[−1,1]2

[
C(x− uh, y − vh)− C(x, y)

]
Kx,h(u)Ky,h(v) du dv.

By employing the i.i.d. representation of Ĉ2 in (12) and Taylor expansion of second order,

the result follows by using the fact that
∫ 1

−1
uKx,h(u) du =

∫ 1

−1
v Ky,h(v) dv = 0.

Proof of Theorem 4.

Note that by lemma 1 in Veraverbeke et al. (2011) the map φ2 : C → 4
∫
B
C dC − 1 is

Hadamard-differentiable at C tangentially to the set of continuous functions on B, with
derivative

φ′
2,C(ξ) = 4

{∫
C dξ +

∫
ξ dC

}
.

Thus, by the functional delta method

√
n
[
τ̂X,Y − τX,Y

]
= 4

√
n
[
φ2(Ĉ2)− φ2(C)

] d−→ φ′
2,C(CL).

Proof of Theorem 5.

Analogously to the proof of lemma 1 in Veraverbeke et al. (2011), the map φ3 : C →
12
∫
B
u v dC− 3 is Hadamard-differentiable at C tangentially to the set of continuous func-

tions on B, with derivative

φ′
3,C(ξ) = 12

∫
u v dξ.

Thus, by the functional delta method

√
n
[
ρ̂X,Y − ρX,Y

]
= 12

√
n
[
φ3(Ĉ2)− φ3(C)

] d−→ φ′
3,C(CL).
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