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Abstract
We study the asymmetric binary matrix partition problem that was recently introduced by Alon

et al. (WINE 2013). Instances of the problem consist of an n×m binary matrixA and a probability

distribution over its columns. A partition scheme B = (B1, ..., Bn) consists of a partition Bi

for each row i of A. �e partition Bi acts as a smoothing operator on row i that distributes the

expected value of each partition subset proportionally to all its entries. Given a scheme B that

induces a smooth matrix AB
, the partition value is the expected maximum column entry of AB

.

�e objective is to �nd a partition scheme such that the resulting partition value is maximized. We

present a 9/10-approximation algorithm for the case where the probability distribution is uniform

and a (1 − 1/e)-approximation algorithm for non-uniform distributions, signi�cantly improving

results of Alon et al. Although our �rst algorithm is combinatorial (and very simple), the analysis

is based on linear programming and duality arguments. In our second result we exploit a nice

relation of the problem to submodular welfare maximization.

1 Introduction

We study the asymmetric matrix partition problem, recently proposed by Alon et al. [2]. Consider

an n × m matrix A with non-negative entries and a probability distribution p over its columns; pj
denotes the probability associated with column j. We distinguish between two cases for the probability

distribution over the columns of the given matrix, depending on whether it is uniform or non-uniform.

A partition scheme B = (B1, ..., Bn) for matrix A consists of a partition Bi of [m] for each row i of

A. More speci�cally, Bi is a collection of ki pairwise disjoint subsets Bik ⊆ [m] (with 1 ≤ k ≤ ki)
such that

⋃ki
k=1Bik = [m]. We can think of each partition Bi as a smoothing operator, which acts on

the entries of row i and changes their value to the expected value of the partition subset they belong

to. Formally, the smooth value of an entry (i, j) such that j ∈ Bik is de�ned as

ABij =

∑
`∈Bik

p` ·Ai`∑
`∈Bik

p`
. (1)

Notice that all entries (i, j) such that j ∈ Bik have the same smooth value. Given a partition scheme

B that induces the smooth matrix AB , the resulting partition value is the expected maximum column

entry of AB , namely,

vB(A, p) =
∑
j∈[m]

pj ·max
i
ABij . (2)
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�e objective of the asymmetric matrix partition problem is to �nd a partition scheme B such that the

resulting partition value vB(A, p) is maximized.

�e problem was introduced by Alon et al. [2]. �ey distinguish between two di�erent cases de-

pending on whether the matrix entries are binary (zero or one) or non-binary, and two di�erent cases

depending on whether the probability distribution over the matrix columns is uniform or not. For the

simplest case of binary values and a uniform distribution, they prove that the problem is APX-hard

and provide a 0.563-approximation algorithm. �e partition scheme that achieves this approximation

guarantee is selected as the one with the highest partition value among the partition schemes pro-

duced by three di�erent algorithms. �ese algorithms use several interesting phases; we exploit two

of them, namely, a “covering” and a “greedy completion” phase, which we put together in an intuitive

greedy algorithm that we analyze. Alon et al. [2] also present a 1/13-approximation bound for binary

matrices and non-uniform probability distributions. Again, this bound follows by three di�erent algo-

rithms. For matrices with non-binary entries, they present a 1/2- and an Ω(1/ logm)-approximation

algorithm for uniform and non-uniform distributions, respectively. A common idea underlying these

results is that they try to identify a set of high-value entries that can be bundled together with other

entries in order to increase the total contribution.

�is interesting combinatorial optimization problem is strongly related to revenue maximization in

take-it-or-leave-it sales. For example, consider the following se�ing. �ere arem items and n potential

buyers. Each buyer has a value for each item; in general, she is not aware of the values of other buyers,

or even of their existence. Nature selects at random (according to some probability distribution) an

item for sale and, then, the seller approaches the highest value buyer and o�ers the item to her at a

price equal to her valuation. A speci�c instantiation of this se�ing could be the following: the items

correspond to keywords and the potential buyers correspond to advertisers. Every advertiser has a

value for each keyword which represents the maximum amount of money she is willing to pay in

order to occupy the advertising space that is allocated when the particular keyword is queried. �e

role of nature is played by users who submit queries and the role of the seller is played by the search

engine, which allocates the advertising space according to the keyword queried each time, and in such

a way that its revenue is maximized.

Can the seller exploit the fact that she has much more accurate information about the items for sale

compared to the potential buyers? In particular, information asymmetry arises since the seller knows

the realization of the randomly selected item whereas the buyers do not. �e approach that is discussed

in [2] is to let the seller de�ne a buyer-speci�c signalling scheme. �at is, for each buyer, the seller

can partition the set of items into disjoint subsets (bundles) and report this partition to the buyer. For

example, the search engine could bundle together keywords that are closely related to each other. A�er

nature’s random choice, the seller can reveal to each buyer the bundle that contains the realization, thus

enabling her to re-evaluate her beliefs for the particular bundle (i.e., compute her expected value for

the whole bundle and each item therein). �e relation of this problem to asymmetric matrix partition

should now be clear: the columns of the input matrix correspond to items, the rows correspond to

potential buyers, and the value of the entry (i, j) corresponds to the value that buyer i has for item

j. A�er the bundling of the items for a speci�c buyer, the smooth value of a bundle corresponds to

the expected value the buyer has for each item included in the bundle. Finally, the partition value

corresponds to the expected revenue of the seller. Interestingly, we will see that the seller can achieve

revenue from items for which no buyer has any value.

�is scenario falls within the line of research that studies the impact of information asymmetry

to the quality of markets. Akerlof [1] was the �rst to introduce a formal analysis of “markets for

lemons”, where the seller has more information than the buyers regarding the quality of the products.

Crawford and Sobel [7] study how, in such markets, the seller can exploit her advantage in order to

maximize revenue. In [21], Milgrom and Weber provide the “linkage principle” which states that the

expected revenue is enhanced when bidders are provided with more information. �is principle seems
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to suggest full transparency but, in [18] and [20] the authors suggest that careful bundling of the items

is the best way to exploit information asymmetry. Many di�erent frameworks that reveal information

to the bidders have been proposed in the literature.

More recently, Ghosh et al. [13] consider full information and propose a clustering scheme ac-

cording to which, the items are partitioned into bundles and, then, for each such bundle, a separate

second-price auction is performed. In this way, the potential buyers cannot bid only for the items that

they actually want; they also have to compete for items that they do not have any value for. Hence, the

demand for each item is increased and the revenue of the seller is higher. Emek et al. [10] present com-

plexity results in similar se�ings and Miltersen and She�et [23] consider fractional bundling schemes

for signaling.

In this work, we focus on the simplest binary case of asymmetric matrix partition. Of course, this

case is very limited compared to the general one motivated above but poses interesting challenges in

algorithm design and analysis; asymmetric binary matrix partition has been proved to be APX-hard

and, still, the approximation ratios of the known algorithms are rather low. So, we design near-optimal

approximation algorithms. In particular, we present a 9/10-approximation algorithm for the uniform

case and a (1−1/e)-approximation algorithm for non-uniform distributions. Both results signi�cantly

improve the previous bounds of Alon et al. [2]. �e analysis of our �rst algorithm is quite interesting

because, despite its purely combinatorial nature, it exploits linear programming techniques. Simi-

lar techniques have been used for the analysis of purely combinatorial algorithms in many di�erent

se�ings such as facility location [15], variants of set cover [3, 4, 6], online matching [19], maximum

directed cut [11], and wavelength routing [5]; however, the application of the technique in the cur-

rent context requires a quite involved reasoning about the structure of the solutions computed by the

algorithm.

In our second result, we exploit a nice relation of the problem to submodular welfare maximization

and use well-known algorithms from the literature. First, we discuss the application of a simple greedy

1/2-approximation algorithm that has been studied by Lehmann et al. [17] and then apply Vondrák’s

smooth greedy algorithm [24] to achieve a (1− 1/e)-approximation for our problem. Vondrák’s algo-

rithm is optimal in the value query model as Khot et al. [16] have proved. In a more powerful model

where it is assumed that demand queries can be answered e�ciently, Feige and Vondrák [12] have

proved that (1− 1/e+ ε)-approximation algorithms — where ε is a small positive constant — are pos-

sible. We brie�y discuss the possibility/di�culty of applying such algorithms to asymmetric binary

matrix partition and observe that the corresponding demand query problems are, in general, NP-hard.

�e rest of the paper is structured as follows. We begin with preliminary de�nitions and examples

in Section 2. �en, we present our 9/10-approximation algorithm for the uniform case in Section 3

and our (1− 1/e)-approximation algorithm for the non-uniform case in Section 4. We conclude with

a short discussion on our model and results and present open problems in Section 5.

2 Preliminaries

Let A+ = {j ∈ [m] : there exists a row i such that Aij = 1} denote the set of columns of A that

contain at least one 1-value entry, andA0 = [m]\A+
denote the set of columns ofA that contain only 0-

value entries. In the next sections, we usually refer to the setsA+
andA0

as the sets of one-columns and

zero-columns, respectively. Furthermore, letA+
i = {j ∈ [m] : Aij = 1} andA0

i = {j ∈ [m] : Aij = 0}
denote the sets of columns that intersect with row i at a 1- and 0-value entry, respectively. All columns

in A+
i are one-columns and, furthermore, A+ = ∪ni=1A

+
i . �e columns of A0

i can be either one- or

zero-columns and, thus, A0 ⊆ ∪ni=1A
0
i . Also, denote by r =

∑
j∈A+ pj the total probability of the
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one-columns. As an example, consider the 3× 6 matrix

A =

 0 1 1 0 1 0
0 1 1 0 1 0
0 1 1 0 0 0


and a uniform probability distribution over its columns. We have A+ = {2, 3, 5} and A0 = {1, 4, 6}.
In the �rst two rows, the setsA+

i andA0
i are identical toA+

andA0
, respectively. In the third row, the

sets A+
3 and A0

3 are {2, 3} and {1, 4, 5, 6}. Finally, the total probability of the one-columns r is 1/2.

A partition scheme B can be thought of as consisting of n partitions B1, B2, …, Bn of the set

of columns [m]. We use the term bundle to refer to the elements of a partition Bi; a bundle is just a

non-empty set of columns. For a bundle b of partition Bi corresponding to row i, we say that b is an

all-zero bundle if b ⊆ A0
i and an all-one bundle if b ⊆ A+

i . A singleton all-one bundle of partition Bi is

called column-covering bundle in row i. A bundle that is neither all-zero nor all-one is called mixed. A

mixed bundle corresponds to a set of columns that intersects with row i at both 1- and 0-value entries.

Let us examine the following partition scheme B for matrix A that de�nes the smooth matrix AB

according to equation (1).

B1 {1, 2, 3, 4}, {5, 6}
B2 {1, 2}, {3}, {4, 6}, {5}
B3 {1, 4, 6}, {2, 3, 5}

AB
1/2 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1 0 1 0
0 2/3 2/3 0 2/3 0

maxiA
B
ij 1/2 2/3 1 1/2 1 1/2

Here, the bundle {1, 2, 3, 4} of (the partition B1 of) the �rst row is a mixed one. �e bundle {3} of B2

is all-one and, in particular, column-covering in row 2. �e bundle {1, 4, 6} of B3 is all-zero.

By equation (2), the partition value is 25/36 and it can be further improved. First, observe that the

le�most zero-column is included in two mixed bundles (in the �rst two rows). Also, the mixed bundle

in the third row contains a one-column that has been covered through a column-covering bundle in

the second row and intersects with the third row at a 0-value entry. Let us modify these two bundles.

B′1 {1}, {2, 3, 4}, {5, 6}
B′2 {1, 2}, {3}, {4, 6}, {5}
B′3 {1, 4, 5, 6}, {2, 3}

AB
′

0 2/3 2/3 2/3 1/2 1/2
1/2 1/2 1 0 1 0
0 1 1 0 0 0

maxiA
B′
ij 1/2 1 1 2/3 1 1/2

�e partition value becomes 7/9 > 25/36. Now, by merging the two mixed bundles {2, 3, 4} and

{5, 6} in the �rst row, we obtain the smooth matrix below with partition value 47/60 > 7/9. Observe

that the contribution of column 4 to the partition value decreases but, overall, we have an increase in

the partition value due to the increase in the contribution of column 6. Actually, such merges never

decrease the partition value (see Lemma 2.1 below).

B′′1 {1}, {2, 3, 4, 5, 6}
B′′2 {1, 2}, {3}, {4, 6}, {5}
B′′3 {1, 4, 5, 6}, {2, 3}

AB
′′

0 3/5 3/5 3/5 3/5 3/5
1/2 1/2 1 0 1 0
0 1 1 0 0 0

maxiA
B′′
ij 1/2 1 1 3/5 1 3/5

Finally, by merging the bundles {1, 2} and {3} in the second row and decomposing the bundle {2, 3}
in the last row into two singletons, the partition value becomes 73/90 > 47/60 which can be veri�ed

to be optimal.
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B′′′1 {1}, {2, 3, 4, 5, 6}
B′′′2 {1, 2, 3}, {4, 6}, {5}
B′′′3 {1, 4, 5, 6}, {2}, {3}

AB
′′′

0 3/5 3/5 3/5 3/5 3/5
2/3 2/3 2/3 0 1 0
0 1 1 0 0 0

maxiA
B′′′
ij 2/3 1 1 3/5 1 3/5

We will now give some more de�nitions that will be useful in the following. We say that a one-

column j is covered by a partition scheme B if there is at least one row i in which {j} is column-

covering. For example, in B′′′, the singleton {5} is a column-covering bundle in the second row and

the singletons {2} and {3} are column-covering in the third row. We say that a partition scheme fully
covers the set A+

of one-columns if all of them are covered. In this case, we use the term full cover to

refer to the pairs of indices (i, j) of the 1-value entries Aij such that {j} is a column-covering bundle

in row i. For example, the partition scheme B′′′ has the full cover (2, 5), (3, 2), (3, 3).

It turns out that optimal partition schemes always have a special structure like the one ofB′′′. Alon

et al. [2] have formalized observations like the above into the following statement.

Lemma 2.1 (Alon et al. [2]). Given a uniform instance of the asymmetric binarymatrix partition problem
with a matrix A, there is an optimal partition scheme B with the following properties:

P1. B fully covers the set A+ of one-columns.

P2. For each row i, Bi has at most one bundle containing all columns of A+
i that are not included in

column-covering bundles in row i (if any). �is bundle can be either all-one (if it does not contain
zero-columns) or the unique mixed bundle of row i.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle
of Bi (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row i, the zero-columns that are not contained in the mixed bundle of Bi form an all-zero
bundle.

Properties P1 and P3 imply that we can think of the partition value as the sum of the contributions

of the column-covering bundles and the contributions of the zero-columns in mixed bundles. Property

P2 comes from the following more general statement that has been proved in [2]; we give an alternative

more direct proof here using Milne inequality [14, page 61]. Lemma 2.2 will be very useful several times

in our analysis in both the uniform and the non-uniform case.

Lemma 2.2 (Alon et al. [2]). Consider t ≥ 2 mixed bundles. For i = 1, ..., t, bundle i contains 1-value
entries of total probability xi and zero-columns of probability yi. �e total contribution of the zero-columns
in these mixed bundles to the partition value is upper bounded by the contribution of zero-columns of
probability

∑t
i=1 yi that form a single mixed bundle together with 1-value entries of probability

∑t
i=1 xi.

Proof. By the de�nitions, the smooth value of the i-th bundle is
xi

xi+yi
and the contribution of its zero-

columns to the the partition value is
xiyi
xi+yi

. �e proof follows by Milne inequality which states that

t∑
i=1

xiyi
xi + yi

≤
∑t

i=1 xi ·
∑t

i=1 yi∑t
i=1 xi +

∑t
i=1 yi

,

where the right-hand side expression is the contribution of the zero-columns in the partition value of

the single mixed bundle.
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Now, property P2 should be apparent; the columns ofA+
i that do not form column-covering bundles

in row i are bundled together with zero-columns (if possible) in order to increase the contribution of

the la�er to the partition value. Property P4 makesB consistent to the de�nition of a partition scheme

where the disjoint union of all the partition subsets in a row should be [m]. Clearly, the contribution

of the all-zero bundles to the partition value is 0. Also, the non-column-covering all-one bundles do

not contribute to the partition value either.

Unfortunately, as we will see later in Section 4, Lemma 2.1 does not hold for non-uniform instances.

�is is due only to property P1 which requires a uniform probability distribution over columns. Luckily,

it turns out that non-uniform instances also exhibit some structure (recall that the crucial Lemma 2.2

applies to the non-uniform case as well), which allows us to consider the problem of computing an

optimal partition scheme as a welfare maximization problem. In welfare maximization, there are m
items and n agents; agent i has a valuation function vi : 2[m] → R+

that speci�es her value for

each subset of the items. I.e., for a set S of items, vi(S) represents the value of agent i for S. Given

a disjoint partition (or allocation) S = (S1, S2, ..., Sn) of the items to the agents, where Si denotes

the set of items allocated to agent i, the social welfare is the sum of values of the agents for the sets

of items allocated to them, i.e., SW(S) =
∑

i vi(Si). �e term welfare maximization refers to the

problem of computing an allocation of maximum social welfare. We will discuss only the variant of

the problem where the valuations are monotone and submodular; following the literature, we use the

term submodular welfare maximization to refer to it.

De�nition 2.1. A valuation function v is monotone if v(S) ≤ v(T ) for any pair of sets S, T such that
S ⊆ T . A valuation function v is submodular if v(S ∪ {x})− v(S) ≥ v(T ∪ {x})− v(T ) for any pair
of sets S, T such that S ⊆ T and for any item x.

An important issue in (submodular) welfare maximization arises with the representation of val-

uation functions. A valuation function can be described in detail by listing explicitly the values for

each of the possible subsets of items. Unfortunately, this is clearly ine�cient due to the necessity for

exponential input size. A solution that has been proposed in the literature is to assume access to these

functions by queries of a particular form. �e simplest such form of queries reads as “what is the value

of agent i for the set of items S?” �ese are known as value queries. Another type of queries, known as

demand queries, are phrased as follows: “Given a non-negative price for each item, compute a set S of

items for which the di�erence of the valuation of agent i minus the sum of prices for the items in S is

maximized.” Approximation algorithms that use a polynomial number of valuation or demand queries

and obtain solutions to submodular welfare maximization with a constant approximation ratio are

well-known in the literature [12, 17, 24]. Our improved approximation algorithm for the non-uniform

case of asymmetric binary matrix partition exploits such algorithms.

3 �e uniform case

In this section, we present the analysis of a greedy approximation algorithm when the probability dis-

tribution p over the columns of the given matrix is uniform. Our algorithm uses a greedy completion
procedure that was also considered by Alon et al. [2]. �is procedure starts from a full cover of the ma-

trix, i.e., from column-covering bundles in some rows so that all one-columns are covered (by exactly

one column-covering bundle). Once this initial full cover is given, the set of columns from A+
i that

are not included in column-covering bundles in row i can form a mixed bundle together with some

zero-columns in order to increase the contribution of the la�er to the partition value. Greedy comple-

tion proceeds as follows. It goes over the zero-columns, one by one, and adds a zero-column to the

mixed bundle of the row that maximizes the marginal contribution of the zero-column. �e marginal

contribution of a zero-column to the partition value when it is added to a mixed bundle that consists
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of x zero-columns and y one-columns is proportional (due to the uniform distribution over columns)

to the quantity

∆(x, y) = (x+ 1)
y

x+ y + 1
− x y

x+ y
=

y2

(x+ y)(x+ y + 1)
.

�e right-hand side of the �rst equality is simply the di�erence between the contribution of x+ 1 and

x zero-columns to the partition value when they form a mixed bundle with y one-columns. Note that

∆(0, y) indicates the marginal contribution of a zero-column when put together with y one-columns

to form a (new) mixed bundle. Alon et al. [2] made the following important observation for the uniform

case. We extensively use it below, as well as the fact that ∆(x, y) is non-decreasing with respect to y.

Lemma 3.1 (Alon et al. [2]). Among all partition schemes that include a given full cover, the greedy
completion procedure yields the maximum contribution from the zero-columns to the partition value.

So, our algorithm consists of two phases. In the �rst phase, called the cover phase, the algorithm

computes an arbitrary full cover for set A+
. In the second phase, called the greedy phase, it simply

runs the greedy completion procedure mentioned above. Note that, intentionally, we have not used

much detail in the description of the algorithm and there are three issues that might seem to cause

ambiguity at �rst glance. First, we have not described any particular way the full cover is constructed.

Second, we have not de�ned some particular order in which the zero-columns are examined during

the greedy phase. And, third, we have not discussed how ties are broken when there are multiple rows

that maximize the marginal contribution of a zero-column. So, our description essentially de�nes a

family of greedy algorithms; a di�erent greedy algorithm is de�ned, depending on how the above

three issues are implemented. In the rest of this section, we will show that any greedy algorithm

has an approximation ratio of at least 9/10; actually, the three issues do not a�ect the analysis at all.

We will also show that our analysis is tight by presenting a simple instance for which some greedy

algorithm is at most 9/10-approximate. Even though greedy algorithms are purely combinatorial, our

analysis exploits linear programming duality. In the following, unless otherwise speci�ed, the term

greedy algorithm refers to any member of the family of greedy algorithms.

Overall, the partition value obtained by the algorithm can be thought of as the sum of contributions

from column-covering bundles (this is exactly r) plus the contribution from the mixed bundles created

during the greedy phase (i.e., the contribution from the zero-columns). Denote by ρ the ratio between

the total number of appearances of one-columns in the mixed bundles of the optimal partition scheme

(so, the number of times each one-column is counted equals the number of mixed bundles that contain

it) and the number of zero-columns. For example, in the partition scheme B′′′ in the example of the

previous section, the two mixed bundles are {2, 3, 4, 5, 6} in the �rst row and {1, 2, 3} in the second

row. So, the one-columns 2 and 3 appear twice while the one-column 5 appears once in these mixed

bundles. Since we have three zero-columns, the value of ρ is 5/3. We can use the quantity ρ to upper-

bound the optimal partition value as follows.

Lemma 3.2. �e optimal partition value is at most r + (1− r) ρ
ρ+1 .

Proof. �e �rst term in the above expression represents the contribution of the one-columns in the

full cover of the optimal partition scheme. To reason about the second term, recall that our de�nitions

imply that the total probability of one-columns in the mixed bundles of an optimal partition scheme

is ρ(1 − r), while the total probability of zero-columns in these mixed bundles is 1 − r. By Lemma

2.2, the second term upper-bounds the total contribution of the zero-columns to the optimal partition

value.

In our analysis, we distinguish between two main cases depending on the value of ρ. �e �rst

case is when ρ < 1; in this case, we show that the additional partition value which is obtained during
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the greedy phase of the algorithm (i.e., the contribution of the zero-columns; recall that the greedy

algorithm maximizes this quantity) is lower-bounded by the additional partition value we would have

by creating bundles containing exactly one one-column and an almost equal number of zero-columns

each.

Lemma 3.3. If ρ < 1, then the partition value obtained by the algorithm is at least 0.97 times the optimal
one.

Proof. Using the de�nition of ρ, we can lower-bound the number of 1-value entries in the input matrix

A by the sum of the mr column-covering bundles that form the full cover of the optimal partition

scheme and the at least ρm(1− r) appearances of one-columns in the mixed bundles.

Now, consider a selection of the full cover during the cover phase of the greedy algorithm (this can,

of course be di�erent than the full cover of the optimal partition scheme) and letX be a set of (exactly)

ρm(1− r) 1-value entries in the matrix A among those that are not included in the cover.

Using Lemma 3.1, we will lower-bound the partition value returned by the algorithm by considering

the following formation of mixed bundles as an alternative to the greedy completion procedure used

in the greedy phase. If 1/ρ is an integer, for each 1-value entry of X , we create a mixed bundle that

contains the corresponding one-column together with 1/ρ distinct zero-columns. Hence, the smooth

value of each zero-column is
1

1+1/ρ and the total partition value of this scheme is r + (1 − r) ρ
ρ+1 ; by

Lemma 3.2, this is optimal.

If instead 1/ρ is not an integer, let k = b1/ρc. For each 1-value entry of X , we create a mixed

bundle that contains the corresponding one-column together with k or k+ 1 distinct zero-columns. In

particular, m(1− r)(1− ρk) of these mixed bundles contain one one-column and k+ 1 zero-columns

and the remainingm(1−r)(ρ(k+1)−1) mixed bundles contain one one-column and k zero-columns.

Observe that the smooth value of a zero-column is
1

k+2 in the �rst case and
1

k+1 in the second case.

Hence, we can bound the partition value obtained by the algorithm as follows:

ALG ≥ r + (1− r)(1− ρk)
k + 1

k + 2
+ (1− r)(ρ(k + 1)− 1)

k

k + 1

= r + (1− r) 1 + ρk(k + 1)

(k + 1)(k + 2)
.

Using Lemma 3.2, we have

ALG

OPT

≥
r + (1− r) 1+ρk(k+1)

(k+1)(k+2)

r + (1− r) ρ
ρ+1

≥
1+ρk(k+1)
(k+1)(k+2)

ρ
ρ+1

=
(1 + 1/ρ)(1 + ρk(k + 1))

(k + 1)(k + 2)
.

�is last expression is minimized (with respect to ρ) for 1/ρ =
√
k(k + 1). Hence,

ALG

OPT

≥

(
1 +

√
k(k + 1)

)2
(k + 1)(k + 2)

,

which is minimized for k = 1 to approximately 0.97.

For the case ρ ≥ 1, we use completely di�erent arguments. Of course, we assume that r < 1, i.e., the

input matrix contains some zero-columns since, otherwise, any full cover computed during the cover

phase of the greedy algorithm would give an optimal partition value. We will reason about the partition

value of the solution produced by the algorithm by considering a particular decomposition of the set

of mixed bundles computed in the greedy phase. �en, using Lemmas 2.2 and 3.1, the contribution of

the zero-columns to the partition value in the solution computed by the algorithm is lower-bounded

by their contribution to the partition value when they are part of the mixed bundles obtained a�er the

decomposition. To justify the correctness of the decomposition, we will use the following observation.
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Lemma 3.4. If ρ ≥ 1, no mixed bundle computed by the greedy algorithm has more zero-columns than
one-columns.

Proof. First observe that the total number of appearances of one-columns in mixed and column-

covering bundles in the optimal partition scheme is at least rm + (1 − r)ρm, which includes rm
appearances of one-columns in column-covering bundles and (1− r)ρm appearances of one-columns

in mixed bundles (there may be additional 1-value entries included in all-one bundles). So, a�er the

end of the cover phase, there are at least (1 − r)ρm ≥ (1 − r)m 1-value entries that can be included

in mixed bundles together with the (1− r)m zero-columns.

Assume, for the sake of contradiction, that some zero-column Z is included as the (x+ 1)-th zero-

column in a mixed bundle b together with x 1-value entries for x ≥ 1 at some step of the greedy

phase. Prior to that step, there is either some 1-value entry not included in any mixed bundle which

could be used to form a mixed bundle together with Z for a marginal contribution of ∆(0, 1) = 1/2
or some mixed bundle with y ≥ 1 zero-columns and y + α 1-value entries (with α ≥ 1) in which case

the marginal contribution would be ∆(y, y + α) > 1/4. �is contradicts the de�nition of the greedy

algorithm since the marginal contribution of Z was ∆(x, x) < 1/4 when included in b.

Now, the decomposition is de�ned as follows. For every mixed bundle with y zero-columns and x
one-columns (by Lemma 3.4, x ≥ y) and decomposes it into y bundles as follows. If x/y is an integer,

each bundle has one zero-column and x/y one-columns. Otherwise, x − ybx/yc bundles have one

zero-column and dx/ye one-columns and ydx/ye − x bundles have one zero-column and bx/yc one-

columns. Clearly, this process does not alter bundles with a single zero-column. �e solution obtained

a�er the decomposition of the solution returned by the algorithm has a very special structure as our

next lemma suggests.

Lemma 3.5. �ere exists an integer s ≥ 1 such that each bundle in the decomposition has at least s and
at most 3s one-columns.

Proof. Consider the application of the decomposition step to the mixed bundles that are computed

by the algorithm and let s be the minimum number of one-columns among the decomposed mixed

bundles. �is implies that one of the mixed bundles, say b1, computed by the algorithm has µ zero-

columns and at most (s + 1)µ − 1 one-columns. Denoting by ν the number of one-columns in this

bundle, we have that the marginal partition value when the last zero-column Z is included in b1 is

exactly

∆(µ, ν) =
ν2

(ν + µ)(ν + µ− 1)
≤ ((s+ 1)µ− 1)2

((s+ 2)µ− 1)((s+ 2)µ− 2)

since ∆(µ, ν) is increasing in ν and ν ≤ (s+ 1)µ− 1. �e rightmost expression is decreasing in µ and

µ ≥ 1; hence, the marginal partition value of Z is at most
s
s+1 .

Now assume for the sake of contradiction that one of the mixed bundles obtained a�er the decom-

position has at least 3s+ 1 one-columns. Clearly, this must have been obtained by the decomposition

of a mixed bundle b2 (returned by the algorithm) with λ zero-columns and at least (3s + 1)λ one-

columns. Denote by ν ′ the number of one-columns in this bundle and let us compute the marginal

partition value if the zero-column Z would be included in b2. �is would be

∆(λ+ 1, ν ′) =
ν ′2

(ν ′ + λ+ 1)(ν ′ + λ)
≥ (3s+ 1)2λ

((3s+ 2)λ+ 1)(3s+ 2)
≥ (3s+ 1)2

(3s+ 3)(3s+ 2)
.

�e �rst inequality follows since the marginal partition value function is increasing in ν ′ and ν ′ ≥
(3s+ 1)λ, and the second one follows since λ ≥ 1. Now, the last quantity can be easily veri�ed to be

strictly higher that
s
s+1 and the algorithm should have included Z in b2 instead. We have reached the

desired contradiction that proves the lemma.
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Now, our analysis proceeds as follows. For every triplet r ∈ [0, 1], ρ ≥ 1 and integer s ≥ 1, we will

prove that any solution consisting of an arbitrary cover of the rm one-columns and the decomposed

set of bundles containing at least s and at most 3s one-columns yields a 9/10-approximation of the

optimal partition value. By the discussion above (in particular, by Lemmas 2.2 and 3.1), this will also be

the case for the solution returned by the algorithm. In order to account for the worst-case contribution

of zero-columns to the partition value for a given triplet of parameters, we will use the following linear

program, which we denote by LP(r, ρ, s):

minimize

3s∑
k=s

k

k + 1
θk

subject to:

3s∑
k=s

θk = 1− r

3s∑
k=s

kθk ≥ ρ(1− r)− r

θk ≥ 0, k = s, ..., 3s

�e variable θk denotes the total probability of the zero-columns that participate in decomposed

mixed bundles with k one-columns. �e objective is to minimize the contribution of the zero-columns

to the partition value. �e equality constraint means that all zero-columns have to participate in bun-

dles. �e inequality constraint requires that the total number of appearances of one-columns in bundles

used by the algorithm is at least the total number of appearances of one-columns in mixed bundles of

the optimal partition scheme minus one appearance for each one-column, since for every selection of

the cover, the algorithm will have the same number of (appearances of) one-columns available to form

mixed bundles. Informally, the linear program answers (rather pessimistically) the question of how

ine�cient the algorithm can be. In particular, given an instance with parameters r and ρ, the quantity

minint s≥1 LP(r, ρ, s) yields a lower bound on the contribution of the zero-columns to the partition

value and r+ minint s≥1 LP(r, ρ, s) is a lower bound on the partition value. �e next lemma completes

the analysis of the greedy algorithm for the case ρ ≥ 1.

Lemma 3.6. For every r ∈ [0, 1] and ρ ≥ 1,

r + min
int s≥1

LP(r, ρ, s) ≥ 9

10
OPT.

Proof. We will prove the lemma using LP-duality. �e dual of LP(r, ρ, s) is:

maximize (1− r)α+ ((1− r)ρ− r))β

subject to: kβ + α ≤ k

k + 1
, k = s, ..., 3s

β ≥ 0

Using Lemma 3.2, we bound the optimal partition value as

OPT ≤ r + (1− r) ρ

ρ+ 1
=
ρ+ r

ρ+ 1
.

Hence, it su�ces to show that, for every triplet of parameters (r, ρ, s), there is a feasible dual solution

of objective value D(r, ρ, s) that satis�es

r +D(r, ρ, s)− 9

10

ρ+ r

ρ+ 1
≥ 0. (3)
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�e feasible region of the dual is de�ned by the lines β = 0, α = s
s+1 − sβ and α = 3s

3s+1 − 3sβ; the

remaining constraints can be easily seen to be redundant. �e two important intersections of those

lines are the points

(α, β) =

(
s

s+ 1
, 0

)
and (α, β) =

(
3s2

(s+ 1)(3s+ 1)
,

1

(s+ 1)(3s+ 1)

)
with objective values

D1(r, ρ, s) =
s

s+ 1
(1− r) and D2(r, ρ, s) =

3s2

(s+ 1)(3s+ 1)
(1− r) +

ρ(1− r)− r
(s+ 1)(3s+ 1)

,

respectively. We will show that one of these two points can always be used as a feasible dual solution

in order to prove inequality (3). We distinguish between two cases.

Case I: r ≥ ρ−1
ρ . We will show that the point with dual objective valueD1(r, ρ, s) satis�es inequality

(3), i.e.,

r +
s

s+ 1
(1− r)− 9

10

ρ+ r

ρ+ 1
≥ 0. (4)

Since s ≥ 1, we have that the le� hand side of inequality (4) is at least

1 + r

2
− 9

10

ρ+ r

ρ+ 1
=

1

2
− 9ρ

10(ρ+ 1)
+ r

(
1

2
− 9

10(ρ+ 1)

)
.

Since ρ ≥ 1, we have that
1
2 −

9
10(ρ+1) ≥ 0, and we can lower-bound the above quantity using the

assumption r ≥ ρ−1
ρ , as follows:

1 + r

2
− 9

10

ρ+ r

ρ+ 1
≥ 1

2
− 9ρ

10(ρ+ 1)
+
ρ− 1

ρ

(
1

2
− 9

10(ρ+ 1)

)
=

(ρ− 2)2

10ρ(ρ+ 1)
≥ 0,

and inequality (4) follows.

Case II: r < ρ−1
ρ . We will now show that the point with dual objective value D2(r, ρ, s) satis�es

inequality (3), i.e.,

r +
3s2

(s+ 1)(3s+ 1)
(1− r) +

ρ(1− r)− r
(s+ 1)(3s+ 1)

− 9

10

ρ+ r

ρ+ 1
≥ 0. (5)

Let us denote by F the le� hand side of inequality (5). With simple calculations, we obtain

F =
10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s+ 1)(s+ 1)(ρ+ 1)
− r · 10ρ2 − (40s− 10)ρ+ 27s2 − 4s+ 9

10(3s+ 1)(s+ 1)(ρ+ 1)
. (6)

Observe that the numerator of the le� fraction in (6) is a quadratic function with respect to ρ with

positive coe�cient in the leading term. Its discriminant is−1191s4−216s3 +1296s2−72s+7 which

is clearly negative for every integer s ≥ 1. Hence, the numerator of the le� fraction is always positive.

Now, if the numerator of the rightmost fraction is negative, then inequality (5) is obviously satis�ed.

Otherwise, using the assumption r < ρ−1
ρ , we have

F ≥ 10ρ2 − (−3s2 + 36s− 1)ρ+ 30s2

10(3s+ 1)(s+ 1)(ρ+ 1)
− ρ− 1

ρ
· 10ρ2 − (40s− 10)ρ+ 27s2 − 4s+ 9

10(3s+ 1)(s+ 1)(ρ+ 1)
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=
(3s2 + 4s+ 1)ρ2 + (3s2 − 36s+ 1)ρ+ 27s2 − 4s+ 9

10ρ(3s+ 1)(s+ 1)(ρ+ 1)
.

Now, the numerator of the last fraction is again a quadratic function in terms of ρ with positive coef-

�cient in the leading term and discriminant equal to

−315s4 − 600s3 + 1150s2 − 200s− 35 = (−315s3 − 915s2 + 235s− 35)(s− 1) ≤ 0,

for every integer s ≥ 1. Hence, F ≥ 0 and the proof is complete.

�e next statement summarizes the discussion above.

�eorem 3.7. �e greedy algorithm always yields a 9/10-approximation of the optimal partition value
in the uniform case.

Our analysis is tight as our next counter-example suggests.

�eorem 3.8. �ere exists an instance of the uniform asymmetric binary matrix partition problem for
which a greedy algorithm computes a partition scheme with value (at most) 9/10 of the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem that consists of the

matrix

A =


1 0 0 0
0 1 0 0
1 1 0 0
1 1 0 0


with pi = 1/4 for i = 1, 2, 3, 4. �e optimal partition value is obtained by covering the one-columns

in the �rst two rows and then bundling each of the two zero-columns with a pair of one-columns

in the third and fourth row, respectively. �is yields a partition value of 5/6. A greedy algorithm

may select to cover the one-columns using the 1-value entries A31 and A42. �is is possible since the

greedy algorithm has no particular criterion for breaking ties when selecting the full cover. Given this

full cover, the greedy completion procedure will assign each of the two zero-columns with only one

one-column. �e partition value is then 3/4, i.e., 9/10 times the optimal partition value.

4 Asymmetric binary matrix partition as welfare maximization

We now consider the more general non-uniform case. Interestingly, property P1 of Lemma 2.1 does

not hold any more as the following statement shows.

Lemma 4.1. For every ε > 0, there exists an instance of the asymmetric binary matrix partition problem
in which any partition scheme containing a full cover of the columns in A+ yields a partition value that
is at most 8/9 + ε times the optimal one.

Proof. Consider the instance of the asymmetric binary matrix partition problem consisting of the ma-

trix

A =


1 0 0 0
0 1 0 0
0 1 0 0
1 0 1 0


with column probabilities pj = 1

β+3 for j = 1, 2, 3 and p4 = β
β+3 for β > 2. We will �rst prove

an upper bound on the partition value of any partition scheme containing a full cover. �en, we will
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present a partition scheme without a full cover, which has a strictly higher partition value. �e desired

ratio of 8/9 + ε will then follow by se�ing the parameter β appropriately.

Observe that there are four partition schemes containing a full cover (depending on the rows that

contain the column-covering bundle of the �rst two columns). In each of them, there are two 1-value

entries in di�erent rows that are not included in the full cover, and only one of them can be bundled

together with the zero-column. By making calculations, we obtain that the partition value in these

cases is
4β+3

(β+1)(β+3) . Here is one of these partition schemes:

B1 {1}, {2, 3, 4}
B2 {2}, {1, 3, 4}
B3 {1, 3}, {2, 4}
B4 {1}, {3}, {2, 4}

AB

1 0 0 0
0 1 0 0
0 1

β+1 0 1
β+1

1 0 1 0

pj ·maxiA
B
ij

1
β+3

1
β+3

1
β+3

β
(β+1)(β+3)

In contrast, consider the partition scheme B′ in which the 1-value entries A11 and A22 form

column-covering bundles in rows 1 and 2, the entries A32 and A33 are bundled together in row 3
and the entries A41, A43, and A44 are bundled together in row 4. As it can be seen from the tables

below (recall that β > 2), the partition value now becomes
4.5β+5

(β+2)(β+3) .

B′1 {1}, {2, 3, 4}
B′2 {2}, {1, 3, 4}
B′3 {1, 4}, {2, 3}
B′4 {2}, {1, 3, 4}

AB
′

1 0 0 0
0 1 0 0
0 1/2 1/2 0
2

β+2 0 2
β+2

2
β+2

pj ·maxiA
B′
ij

1
β+3

1
β+3

1
2(β+3)

2β
(β+2)(β+3)

Clearly, the ratio of the two partition values approaches 8/9 from above as β tends to in�nity.

Hence, the theorem follows by selecting β su�ciently large for any given ε > 0.

Still, as the next statement indicates, the optimal partition scheme has some structure which we

will exploit later.

Lemma 4.2. Consider an instance of the asymmetric binary matrix partition problem consisting of a
matrix A and a probability distribution p over its columns. �ere is an optimal partition scheme B that
satis�es properties P2, P3, P4 (from Lemma 2.1) as well as the new property P5:

P2. For each row i, Bi has at most one bundle containing all columns of A+
i that are not included in

column-covering bundles in row i (if any). �is bundle can be either all-one (if it does not contain
zero-columns) or the unique mixed bundle of row i.

P3. For each zero-column j, there exists at most one row i such that j is contained in the mixed bundle
of Bi (and j is contained in the all-zero bundles of the remaining rows).

P4. For each row i, the zero-columns that are not contained in the mixed bundle of Bi form an all-zero
bundle.

P5. Given any column j, denote by Hj = arg maxiA
B
ij the set of rows through which column j con-

tributes to the partition value vB(A, p). For every i ∈ Hj such thatAij = 1, the bundle of partition
Bi that contains column j is not mixed.

Proof. We �rst focus on property P5. Consider an optimal partition scheme B that does not satisfy

property P5, and let j∗ be a column such that Ai∗j∗ = 1 for some i∗ ∈ Hj∗ . Furthermore, assume that
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the mixed bundle b of partition Bi∗ that contains column j∗, also contains the columns of a (possibly

empty) set b1 ⊆ A+
i∗ \ {j∗} and the columns of a non-empty set b0 ⊆ A0

i∗ . Let p+ ≥ 0 and p0 > 0 be

the sum of probabilities of the columns in b1 and b0, respectively.

Let B′ be the partition scheme that is obtained from B when spli�ing bundle b into two bundles

{j∗} and b \ {j∗}; we will show that B′ must be optimal as well. Observe that ABi∗j =
pj∗+p

+

pj∗+p++p0
and

AB
′

i∗j = p+

p++p0
for every j ∈ b \ {j∗}; hence, ABi∗j > AB

′
i∗j . Since, this is the only di�erence between B

and B′, the di�erence maxiA
B
ij −maxiA

B′
ij is at most ABi∗j −AB

′
i∗j for every j ∈ b \ {j∗}, and for j∗,

maxiA
B
ij∗ −maxiA

B′
ij∗ = ABi∗j∗ −AB

′
i∗j∗ =

pj∗+p
+

pj∗+p++p0
− 1. Hence, we have

vB(A, p)− vB′(A, p) =
∑
j∈[m]

pj ·max
i
ABij −

∑
j∈[m]

pj ·max
i
AB

′
ij

=
∑
j∈b

pj

(
max
i
ABij −max

i
AB

′
ij

)
≤
∑
j∈b

pj

(
ABi∗j −AB

′
i∗j

)
= pj∗

(
pj∗ + p+

pj∗ + p+ + p0
− 1

)
+

∑
j∈b\{j∗}

pj

(
pj∗ + p+

pj∗ + p+ + p0
− p+

p+ + p0

)

=
pj∗ + p+

pj∗ + p+ + p0

pj∗ +
∑

j∈b\{j∗}

pj

− pj∗ − p+

p+ + p0

∑
j∈b\{j∗}

pj

= 0,

where the second last equality is just a rearrangement of terms and the last one follows from the fact

that

∑
j∈b\{j∗} pj = p++p0. Hence, the partition value does not decrease. By repeating this argument,

we will reach an optimal partition scheme that satis�es property P5. �en, using arguments similar to

the ones used in the proof of Alon et al. [2] for Lemma 2.1
1

is we can prove that the resulting partition

scheme can be transformed in such a way so that it satis�es properties P2, P3, and P4.

What Lemma 4.2 says is that the contribution of column j ∈ A+
to the partition value comes from

a row i such that either j ∈ A+
i and {j} forms a column-covering bundle (and, hence, its smooth

value is 1) or j ∈ A0
i and j belongs to the mixed bundle of row i (and the smooth value of its entries

is strictly smaller than 1). A non-zero contribution of a column j ∈ A0
to the partition value always

comes from a row iwhere j belongs to the mixed bundle. A column j ∈ A0
can have a contribution of

zero to the optimal partition value when no mixed bundle exists
2
. Hence, the problem of computing the

partition scheme of optimal partition value is equivalent to deciding the row from which each column

contributes to the partition value, either as a one-column that is part of a (not necessarily full) cover

or as a zero-column that is part of a mixed bundle.

Let B be a partition scheme and S be a set of columns whose contribution to the partition value

of B comes from row i (i.e., i is a row that maximizes the smooth value ABij for each column j in

S). Denoting the sum of these contributions by Ri(S) =
∑

j∈S pj ·ABij , we can equivalently express

1

Invoking Lemma 2.2 in order to prove property P2 is crucial here; verifying properties P3 and P4 is much easier.

2

As an example of such an extreme case, consider an instance with a k× (k+1) matrix that consists of the identity k×k
matrix and an extra zero-column, and has a uniform probability distribution over the columns. �e optimal partition scheme

contains a full cover and all-zero bundles only, and the zero-column has no contribution to the partition value.
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Ri(S) as

Ri(S) =
∑

j∈S∩A+
i

pj +

∑
j∈S∩A0

i
pj
∑

j∈A+
i \S

pj∑
j∈S∩A0

i
pj +

∑
j∈A+

i \S
pj
.

�e �rst sum represents the contribution of columns of S∩A+
i to the partition value (through column-

covering bundles) while the second sum represents the contribution of the columns in S ∩ A0
i which

are bundled together with all 1-value entries in A+
i \ S in the mixed bundle of row i. �en, the

partition schemeB can be thought of as a collection of disjoint sets Si (with one set per row) such that

Si contains those columns whose entries achieve their maximum smooth value in row i. Hence, the

partition value of B is vB(A, p) =
∑

i∈[n]Ri(Si) and the problem is essentially equivalent to welfare

maximization where the rows act as the agents who will be allocated bundles of items (corresponding

to columns).

Lemma 4.3. For every row i, the function Ri is non-decreasing and submodular.

Proof. We will show that the function Ri is non-decreasing and has decreasing marginal utilities, i.e.,

• (monotonicity) for every set S and item x 6∈ S, it holds that Ri(S) ≤ Ri(S ∪ {x});

• (decreasing marginal utilities) for every pair of sets S, T such that S ⊆ T and every item x 6∈ T ,

it holds that Ri(S ∪ {x})−Ri(S) ≥ Ri(T ∪ {x})−Ri(T ).

In order to simplify notation, let us de�ne the functions α(S) =
∑

j∈S∩A+
i
pj , β(S) =

∑
j∈S∩A0

i
pj

and γ(S) =
∑

j∈A+
i \S

pj . We can rewrite the function Ri as

Ri(S) = α(S) +
β(S) · γ(S)

β(S) + γ(S)
.

Let S, T ⊆ [m] be two sets of columns such that S ⊆ T and let x be a column that does not belong

to set T . We distinguish between two cases depending on x. If x ∈ A+
i , observe that

• α(S ∪ {x}) = α(S) + px and α(T ∪ {x}) = α(T ) + px;

• β(S ∪ {x}) = β(S) and β(T ∪ {x}) = β(T );

• γ(S ∪ {x}) = γ(S)− px and γ(T ∪ {x}) = γ(T )− px.

Using the de�nition of function Ri, we have

Ri(S ∪ {x})−Ri(S) = px + β(S)

(
γ(S)− px

β(S) + γ(S)− px
− γ(S)

β(S) + γ(S)

)
= px −

pxβ(S)2

(β(S) + γ(S))(β(S) + γ(S)− px)

≥ px −
pxβ(S)2

(β(S) + γ(T ))(β(S) + γ(T )− px)

≥ px −
pxβ(T )2

(β(T ) + γ(T ))(β(T ) + γ(T )− px)

= Ri(T ∪ {x})−Ri(T ).

�e �rst inequality follows since γ is clearly non-increasing and S ⊆ T and the second inequality

follows by applying twice (with a = γ(T ) and a = γ(T )− px, respectively) the fact that the function

f(z) = z
z+a for a ≥ 0 is non-decreasing.

If instead x ∈ A0
i , observe that
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• α(S ∪ {x}) = α(S) and α(T ∪ {x}) = α(T );

• β(S ∪ {x}) = β(S) + px and β(T ∪ {x}) = β(T ) + px;

• γ(S ∪ {x}) = γ(S) and γ(T ∪ {x}) = γ(T ).

Hence, we have

Ri(S ∪ {x})−Ri(S) = γ(S)

(
β(S) + px

β(S) + γ(S) + px
− β(S)

β(S) + γ(S)

)
=

pxγ(S)2

(β(S) + γ(S))(β(S) + γ(S) + px)

≥ pxγ(S)2

(β(T ) + γ(S))(β(T ) + γ(S) + px)

≥ pxγ(T )2

(β(T ) + γ(T ))(β(T ) + γ(T ) + px)

= Ri(T ∪ {x})−Ri(T ).

Again, the �rst inequality follows since β is clearly non-decreasing and S ⊆ T and the second in-

equality follows by applying twice (with a = β(T ) and a = β(T ) + px, respectively) the fact that the

function f(z) = z
z+a with a ≥ 0 is non-decreasing.

We have completed the proof thatRi has decreasing marginal utilities. In order to establish mono-

tonicity, it su�ces to observe that the quantity at the right-hand side of the second equality in each of

the above two derivations starting with Ri(S ∪ {x})−Ri(S) is non-negative.

Lehmann et al. [17] studied the submodular welfare maximization problem and provided a simple

algorithm that uses value queries and yields a 1/2-approximation of the optimal welfare. �eir algo-

rithm considers the items one by one in arbitrary order and assigns item j to an agent that maximizes

the marginal valuation (the additional value from the allocation of item j). In our se�ing, this algorithm

can be implemented as follows. It considers the one-columns �rst and the zero-columns a�erwards.

Whenever considering a one-column j, a column-covering bundle {j} is formed at an arbitrary row

i with j ∈ A+
i (such a decision de�nitely maximizes the increase in the partition value). Once all

one-columns have been processed, the remaining 1-value entries (that did not form column-covering

bundles) in each row are grouped into a bundle. All these bundles are available to host zero-columns

(that will be processed next) and evolve into mixed ones. A�erwards, whenever considering a zero-

column, the algorithm includes it to a mixed bundle that maximizes the increase in the partition value.

Using the terminology of Alon et al. [2] (or the terminology we used in Section 3), the algorithm es-

sentially starts with an arbitrary cover of the one-columns and then it runs the greedy completion

procedure. Again, we will use the term “greedy algorithm” to refer to the whole family of algorithms

that are de�ned by di�erent implementations of the several missing details in the above description,

such as the order in which the one-columns are processed, the particular way the column-covering

bundles are selected, the order in which the zero-columns are processed, and the way ties are broken

between di�erent mixed bundles to which a zero-column can be added. Our analysis below holds for

any member of this family.

�eorem 4.4. �e greedy algorithm for the asymmetric binary matrix partition problem has approxima-
tion ratio at least 1/2. �is bound is tight.

Proof. �e lower bound holds by the equivalence of the greedy algorithm with the algorithm studied

by Lehmann et al. [17]. Below, we prove the upper bound. In particular, we show that for every ε > 0,
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there exists an instance of the problem in which the greedy algorithm obtains a partition scheme whose

value is at most 1/2 + ε of the optimal one.

Let k > 0 be a positive integer and α signi�cantly higher than k. Consider the instance of the

asymmetric binary matrix partition that consists of the following (k + 1)× (k + 1) matrix

A =


1 0 · · · 0 0
0 1 · · · 0 0
.
.
.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 · · · 1 0
1 1 · · · 1 0


where pj = 1

k+α for j ∈ [k] and pk+1 = α
k+α . So, the �rst k columns and rows of A form an identity

matrix, the last column has only 0-value entries and the last row consists of k 1-value entries in the

�rst k columns. In order to lower-bound the optimal partition value, consider the partition scheme

consisting of a full cover that contains the 1-value entries (i, i) for i ≤ k, and a bundle containing

the whole (k + 1)-th row. �e optimal partition value is lower-bounded by the value of this partition

scheme. By simple calculations, we obtain

OPT ≥ k2 + 2αk

(k + α)2
.

On the other hand, the greedy algorithm may select �rst to cover the k one-columns using the 1-value

entries (k+ 1, j) for j ≤ k and, then, bundle the zero-column together with only one 1-value entry in

some of the �rst k rows. �e partition value of the greedy algorithm is then

GREEDY =
k + (k + 1)α

(k + α)(α+ 1)
.

Hence, the ratio between the two partition values is

GREEDY

OPT

≤ (k + α)(k + (k + 1)α)

(k2 + 2αk)(α+ 1)
.

Pick an arbitrarily small δ > 0; then, there exist a value for α (signi�cantly higher than k) so that the

above ratio satis�es
GREEDY

OPT
≤ k+1

2k + δ. �e theorem follows by picking k su�ciently large and δ
su�ciently small.

We can use the more sophisticated smooth greedy algorithm of Vondrák [24], which uses value

queries to obtain the following.

Corollary 4.5. �ere exists a (1 − 1/e)-approximation algorithm for the asymmetric binary matrix
partition problem.

One might hope that due to the particular form of functions Ri, be�er approximation guarantees

might be possible using the (1− 1/e+ ε)-approximation algorithm of Feige and Vondrák [12] which

requires that demand queries of the form

given agent i and a price qj for every item j ∈ [m], select the bundle S that maximizes the

di�erence Ri(S)−
∑

j∈S qj

can be answered in polynomial time. Unfortunately, in our se�ing, this is not the case in spite of the

very speci�c form of the function Ri.
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Lemma 4.6. Answering demand queries associated with the asymmetric binary matrix partition problem
are NP-hard.

Proof. We use reduction from Partition to show that the following (very restricted) decision version

DQ of a demand query is NP-hard.

DQ: Given a 1×m binary matrix A, probabilities pj and prices qj for column j ∈ [m], is

there a set S ⊆ [m] such that Ri(S)−
∑

j∈S qj ≥ 5/18?

We start from an instance of Partition consisting of a collection C of t items of integer size w1,

w2, …, wt and the question of whether there exists a subset Y ⊆ C of items such that∑
j∈Y

wj =
∑

j∈C\Y

wj =
1

2

∑
j∈C

wj .

De�neW =
∑

j∈C wj . Given this instance, we construct an instance of DQ withm = t+1 as follows.

�e binary matrixA consists of a single row that contains t 1-value entries with associated probabilities

w1
2W ,

w2
2W , …,

wt
2W and a 0-value entry with associated probability 1/2. Set the prices as qj =

5wj

18W for

j = 1, ..., t and qt+1 = 0.

By the de�nition of the function Ri, given a set S ⊆ [t+ 1], we have

Ri(S)−
∑
j∈S

qj =
1

2W

∑
j∈S\{t+1}

wj +

1
4W

∑
j∈[t]\S wj

1
2 + 1

2W

∑
j∈[t]\S wj

− 5

18W

∑
j∈S\{t+1}

wj

=
2

9
− 2

9W

∑
j∈[t]\S

wj +

∑
j∈[t]\S wj

2W + 2
∑

j∈[t]\S wj
.

Now, consider the function f(z) = 2
9 −

2z
9W + z

2W+2z ; the equality above implies that

Ri(S)−
∑
j∈S

qj = f

 ∑
j∈[t]\S

wj

 .

By nullifying the derivative of function f , we obtain that it has a unique maximum at z = W/2. Since

f(W/2) = 5/18, the instance of DQ is equivalent to asking whether there exists a set S such that∑
j∈[t]\S wj = W/2, which is equivalent to asking whether there exists a set of items of total sizeW/2

in the instance of Partition.

5 Discussion

In this work, we have focused on the binary version of the asymmetric matrix partition problem and

presented improved approximation algorithms for uniform and non-uniform probability distributions.

�e approximation guarantees are superior to those in the previous work by Alon et al. [2]. Designing

algorithms with even be�er approximation guarantees is a �rst obvious open problem.

Recall (see the example discussed in Section 1) that the motivation for the asymmetric matrix par-

tition problem is from revenue maximization in take-it-or-leave-it sales. Admi�edly, in the (uniform)

binary case, the fact that the greedy partition schemes contain column-covering bundles makes it pos-

sible for a buyer to distinguish between cases in which she is actually o�ered an item she values as

1 (a singleton bundle with smooth value of 1) or 0 (a mixed bundle). �is is clearly a drawback and

asymmetric binary matrix partition (as studied here and in [2]) should not be used to model simple

take-it-or-leave-it sales. One possible remedy could be to lower-bound the size of any bundle with
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non-zero value or require some symmetry among the bundles that contain any given zero column, so

that no information about the item selected by nature is revealed to the buyer by the seller.

Still, we believe that asymmetric binary matrix partition is important as an algorithmically chal-

lenging problem and can provide insights to e�cient solutions for revenue maximization. In this di-

rection, the above issue does not seem to be as severe in the general asymmetric matrix partition. �is

is justi�ed by the assumption that buyers do not know each other and information about the particular

item that is selected to be sold is not as easy to be inferred. Again, the non-binary asymmetric matrix

partition with additional constraints that guarantee no information revelation to the buyers deserves

investigation.
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