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Deep Joint Source-Channel Coding for
Wireless Image Transmission

Eirina Bourtsoulatze, David Burth Kurka and Deniz Gündüz

Abstract—We propose a joint source and channel
coding (JSCC) technique for wireless image transmis-
sion that does not rely on explicit codes for either
compression or error correction; instead, it directly
maps the image pixel values to the complex-valued
channel input symbols. We parameterize the encoder
and decoder functions by two convolutional neural
networks (CNNs), which are trained jointly, and can
be considered as an autoencoder with a non-trainable
layer in the middle that represents the noisy commu-
nication channel. Our results show that the proposed
deep JSCC scheme outperforms digital transmission
concatenating JPEG or JPEG2000 compression with
a capacity achieving channel code at low signal-to-
noise ratio (SNR) and channel bandwidth values in the
presence of additive white Gaussian noise (AWGN).
More strikingly, deep JSCC does not suffer from the
“cliff effect”, and it provides a graceful performance
degradation as the channel SNR varies with respect to
the SNR value assumed during training. In the case
of a slow Rayleigh fading channel, deep JSCC learns
noise resilient coded representations and significantly
outperforms separation-based digital communication
at all SNR and channel bandwidth values.

Index Terms—Joint source-channel coding, deep
neural networks, image communications.

I. Introduction
Modern communication systems employ a two step

encoding process for the transmission of image/video data
(see Fig. 1a for an illustration): (i) the image/video data
is first compressed with a source coding algorithm in
order to get rid of the inherent redundancy, and to reduce
the amount of transferred information; and (ii) the com-
pressed bitstream is first encoded with an error correcting
code, which enables resilient transmission against errors,
and then modulated. Shannon’s separation theorem proves
that this two-step source and channel coding approach is
optimal theoretically in the asymptotic limit of infinitely
long source and channel blocks [1]. While in practical
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applications joint source and channel coding (JSCC) is
known to outperform the separate approach [2], sepa-
rate architecture is attractive for practical communica-
tion systems thanks to the modularity it provides. More-
over, highly efficient compression algorithms (e.g. JPEG,
JPEG2000, WebP [3]) and near-optimal channel codes
(e.g. LDPC, Turbo codes) are employed in practice to
approach the theoretical limits. However, many emerging
applications from the Internet-of-things to autonomous
driving and to tactile Internet require transmission of im-
age/video data under extreme latency, bandwidth and/or
energy constraints, which preclude computationally de-
manding long-blocklength source and channel coding tech-
niques.

We propose a JSCC technique for wireless image trans-
mission that directly maps the image pixel values to
the complex-valued channel input symbols. Inspired by
the success of unsupervised deep learning (DL) methods,
in particular, the autoencoder architectures [4], [5], we
design an end-to-end communication system, where the
encoding and decoding functions are parameterized by two
convolutional neural networks (CNNs) and the communi-
cation channel is incorporated in the neural network (NN)
architecture as a non-trainable layer; hence, the name deep
JSCC. Two channel models, the additive white Gaussian
noise (AWGN) channel and the slow Rayleigh fading chan-
nel, are considered in this work due to their widespread
adoption in representing realistic channel conditions. The
proposed solution is readily extendable to other channel
models, as long as they can be represented as a non-
trainable NN layer with a differentiable transfer function.

DL-based methods, and, particularly, autoencoders,
have recently shown remarkable results in image com-
pression, achieving or even surpassing the performance of
state-of-the-art lossy compression algorithms. Ballé et al.
[6] propose an end-to-end optimized image compression
method, consisting of a nonlinear analysis transformation,
a uniform quantizer, and a nonlinear synthesis trans-
formation. Their method exhibits better rate-distortion
performance than JPEG and JPEG2000 in most images,
while the visual quality, as captured by the MS-SSIM
metric, improves for all test images and over all bitrate
values. A compressive autoencoder is used in [7], where
the authors propose to use a proxy of the quantization
step only in the backward propagation, while keeping the
rounding in the forward step. The authors of [8] com-
plement the autoencoder based compression architecture
with adversarial loss to achieve realistic reconstructions
and improve the visual quality. Cheng et al. [9] present
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a convolutional autoencoder based lossy image compres-
sion architecture, which achieves on average a 13.5% rate
saving versus JPEG2000 on the Kodak image dataset.
The advantage of DL-based methods for lossy compres-
sion versus conventional compression algorithms lies in
their ability to extract complex features from the train-
ing data thanks to their deep architecture, and the fact
that their model parameters can be trained efficiently on
large datasets through backpropagation. While common
compression algorithms, such as JPEG, apply the same
processing pipeline to all types of images (e.g., DCT trans-
form, quantization and entropy coding in JPEG), the DL-
based image compression algorithms learn the statistical
characteristics from a large training dataset, and optimize
the compression algorithm accordingly, without explicitly
specifying a transform or a code.

At the same time, the potential of DL has also been
capitalized by researchers to design novel and efficient
coding and modulation techniques in communications.
In particular, the similarities between the autoencoder
architecture and the digital communication systems have
motivated significant research efforts in the direction of
modelling end-to-end communication systems using the
autoencoder architecture [10], [11]. Some examples of such
designs include decoder design for existing channel codes
[12], [13], blind channel equalization [14], learning physical
layer signal representation for SISO [11] and MIMO [15]
systems, OFDM systems [16], [17], JSCC of text messages
[18] and JSCC for MNIST images for analog storage [19].

In this work, we leverage the recent success of DL
methods in image compression and communication system
design to propose a novel JSCC algorithm for image trans-
mission over wireless communication channels. We con-
sider both time-invariant and fading AWGN channels, and
compare the performance of our algorithm to the state-
of-the-art compression algorithms (JPEG and JPEG2000,
in particular) combined with capacity-achieving channel
codes. We show through experiments that our solution
achieves superior performance in low signal-to-noise ratio
(SNR) regimes and for limited channel bandwidth, over a
time-invariant AWGN channel, even though the separation
scheme is assumed to be operating at the channel capacity
despite the short blocklengths. While we have mainly
focused on the peak signal-to-noise ratio (PSNR) as the
performance measure, we show that the deep JSCC can
provide even better results when measured in terms of the
structural similarity index (SSIM), which better captures
the perceived visual quality of the reconstructed images.
More interestingly, we demonstrate that our approach is
resilient to variations in channel conditions, and does not
suffer from abrupt quality degradations, known as the
“cliff effect” in digital communication systems: deep JSCC
algorithm exhibits graceful performance degradation when
the channel conditions deteriorate. This latter property is
particularly attractive when broadcasting the same image
to multiple receivers with different channel qualities, or
when transmitting to a single receiver over an unknown
fading channel. Indeed, we show that the proposed deep

JSCC scheme achieves a remarkable performance over a
slow Rayleigh fading channel by learning coded represen-
tations robust to channel quality fluctuations and outper-
forms a separation-based digital transmission scheme even
at high SNR and large channel bandwidth scenarios.

This is the first time an end-to-end joint source-channel
coding architecture is trained for wireless transmission of
high-resolution images over AWGN and fading channels.
This architecture allows training for other performance
measures or other source signals (e.g., video) as well.
Moreover, while the training of the deep JSCC algo-
rithm can be fairly time consuming, once the network
is trained, the encoding and decoding tasks become ex-
tremely fast, compared to applying advanced image com-
pression/decompression algorithms followed by capacity-
approaching channel coding and decoding. We believe this
may be key to enabling many low-latency applications
that require the transmission of high data rate content
at the wireless edge, such as image/video sensor data
from autonomous cars or drones, or emerging AR/VR
applications. We also emphasize that the employed neural
network architecture is quite efficient consisting of fully
convolutional layers. With the rapid advances in hardware
accelerators specially optimized for CNNs [20], [21], we
believe the deep JSCC can very soon be deployed directly
on mobile wireless devices.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the system model, provide some
background on the conventional wireless image trans-
mission systems and their limitations, and motivate our
novel approach. We introduce the proposed deep JSCC
architecture in Section III. Section IV is dedicated to
the evaluation of the performance of the proposed deep
JSCC scheme, and its comparison with the conventional
separate JSCC schemes over both static and fading AWGN
channels. Finally, the paper is concluded in Section V.

II. Background and Problem Formulation

We consider image transmission over a point-to-point
wireless communication channel. The transmitter maps
the input image x ∈ Rn to a vector of complex-valued
channel input symbols z ∈ Ck. Following the JSCC
literature, we will call the image dimension n as the source
bandwidth, and the channel dimension k as the channel
bandwidth. We typically have k < n, which is called band-
width compression. We will refer to the ratio k/n as band-
width compression ratio. Due to practical considerations
in real-world communication systems, e.g., limited energy,
interference, etc., the output of the transmitter may be
required to satisfy a certain power constraint, such as
peak and/or average power constraints. The output signal
z is then transmitted over the channel, which degrades
the signal quality due to noise, fading, interference or
other channel impairments. The corrupted output of the
communication channel ẑ ∈ Ck is fed to the receiver,
which produces an approximate reconstruction x̂ ∈ Rn
of the original input image.
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Fig. 1. Block diagram of the point-to-point image transmission
system: (a) components of the conventional processing pipeline and
(b) components of the proposed deep JSCC algorithm.

In conventional image transmission systems, depicted
in Fig. 1a, the transmitter performs three consecutive
independent steps in order to generate the signal z trans-
mitted over the channel. First, the source redundancies
are removed with a source encoder fs, which is typically
one of the commonly used compression methods (e.g.,
JPEG/JPEG2000, WebP). A channel code fc (e.g., LDPC,
Turbo code) is then applied to the compressed bitstream in
order to protect it against the impairments introduced by
the communication channel. Finally, the coded bitstream
is modulated with a modulation scheme fm (e.g., BPSK,
16-QAM) which maps the bits to complex-valued samples.
The modulated symbols are then carried by the I and
Q digital signal components over the communication link
(the latter two components are often combined into a
single coded-modulation step [22]).

The decoder inverts these operations in the reverse
order. It first demodulates and maps the complex-valued
channel output samples to a sequence of bits (or, log
likelihood ratios) with a demodulation scheme gm that
matches the modulator fm. It then decodes the channel
code with a channel decoding algorithm gc, and finally
provides an approximate reconstruction of the transmitted
image from the (possibly corrupted) compressed bitstream
by applying the appropriate decompression algorithm, gs.

Though the above encoding process is highly optimized
and widely adopted in image transmission systems [23],
its performance may suffer severely when the channel
conditions differ from those for which the system has been
optimized. Although the source and channel codes can be
designed separately, their rates are chosen jointly targeting
a specific channel quality, i.e., assuming that a capacity
achieving channel code can be employed, the compression
rate is chosen to produce exactly the amount of data that
can be reliably transmitted over the channel. However,
when the experienced channel condition is worse than the
one for which the code rates are chosen, the error prob-
ability increases rapidly, and the receiver cannot receive

the correct channel codeword with a high probability. This
leads to a failure in source decoder as well, resulting in a
significant reduction in the reconstruction quality.

Similarly, the separate design cannot benefit from im-
proved channel conditions either; that is, once the source
and channel coding rates are fixed, no matter how good the
channel is, the reconstruction quality remains the same as
long as the channel capacity is above the target rate. These
two characteristics are known as the “cliff effect”. Various
joint source-channel coding schemes have been proposed
in the literature to overcome the “cliff effect” [24], [25],
and to obtain graceful degradation of the signal quality
with channel SNR, which typically combine multi-layer
digital codes with multi-layer compression for unequal
error protection.

In this paper we take a radically different approach, and
leverage the properties of uncoded transmission [26]–[28]
by directly mapping the real pixel values to the complex-
valued samples transmitted over the communication chan-
nel. Our goal is to design a JSCC scheme that bypasses
the transformation of the pixel values to a sequence of bits,
which are then mapped again to complex-valued channel
inputs; and instead, directly maps the pixel values to
channel inputs as in [27], [28].

III. DL-based JSCC
Our design is inspired by the recent successful applica-

tion of deep NNs (DNNs), and autoencoders, in particular,
to the problem of source compression [6], [7], [9], [29],
as well as by the first promising results in the design
of end-to-end communication systems using autoencoder
architectures [10], [11].

The block diagram of the proposed JSCC scheme is
shown in Fig. 1b. The encoder maps the n-dimensional
input image x to a k-length vector of complex-valued
channel input samples z, which satisfies the average power
constraint 1

kE[z∗z] ≤ P , by means of a deterministic
encoding function fθ : Rn → Ck. The encoder function
fθ is parameterized using a CNN with parameters θ.
The encoder CNN comprises a series of convolutional
layers followed by parametric ReLU (PReLU) activation
functions [30] and a normalization layer. The convolutional
layers extract the image features, which are combined
to form the channel input samples, while the nonlinear
activation functions allow to learn a non-linear mapping
from the source signal space to the coded signal space.
The output z̃ ∈ Ck of the last convolutional layer of the
encoder is normalized according to:

z =
√
kP

z̃√
z̃∗z̃

(1)

where z̃∗ is the conjugate transpose of z̃, such that
the channel input z satisfies the average transmit power
constraint P .

Following the encoding operation, the joint source-
channel coded sequence z is sent over the communication
channel by directly transmitting the real and imaginary
parts of the channel input samples over the I and Q
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components of the digital signal. The channel introduces
random corruption to the transmitted symbols, denoted by
η : Ck → Ck. To be able to optimize the communication
system in Fig. 1b in an end-to-end manner, the communi-
cation channel must be incorporated into the overall NN
architecture. We model the communication channel as a
series of non-trainable layers, which are represented by
the transfer function ẑ = η(z). We consider two widely
used channel models: (i) the AWGN channel, and (ii) the
slow fading channel. The transfer function of the Gaussian
channel is ηn(z) = z+n, where the vector n ∈ Ck consists
of independent identically distributed (i.i.d.) samples from
a circularly symmetric complex Gaussian distribution, i.e.,
n ∼ CN (0, σ2Ik), where σ2 is the average noise power. In
the case of slow fading channel, we adopt the commonly
used Rayleigh slow fading model. The multiplicative effect
of the channel gain on the transmitted signal is captured
by the channel transfer function ηh(z) = hz, where
h ∼ CN (0, Hc) is a complex normal random variable.
The joint effect of channel fading and Gaussian noise can
be modelled by the composition of the transfer functions
ηh and ηn: η(z) = ηn(ηh(z)) = hz + n. Other channel
models can be incorporated into the end-to-end system
in a similar manner with the only requirement that the
channel transfer function is differentiable in order to allow
gradient computation and error back propagation.

The receiver comprises a joint source-channel decoder.
The decoder maps the corrupted complex-valued signal
ẑ = η(z) ∈ Ck to an estimation of the original input
x̂ ∈ Rn using a decoding function gφ : Ck → Rn.
Similarly to the encoding function, the decoding function
is parameterized by the decoder CNN with parameter
set φ. The NN decoder inverts the operations performed
by the encoder by passing the received (and possibly
corrupted) coded signal ẑ through a series of transpose
convolutional layers (with non linear activation functions)
in order to map the image features to an estimate x̂ of the
originally transmitted image.

The encoding and decoding functions are designed
jointly to minimize the average distortion between the
original input image x and its reconstruction x̂ produced
by the decoder:

(θ∗,φ∗) = arg min
θ,φ

Ep(x,x̂)[d(x, x̂)], (2)

where d(x, x̂) is a given distortion measure, and p(x, x̂)
is the joint probability distribution of the original and
reconstructed images. Since the true distribution of the
input data p(x) is often unknown, an analytical form of
the expected distortion in Eq. (2) is also unknown. We,
therefore, estimate the expected distortion by sampling
from an available dataset.

IV. Evaluation
To demonstrate the potential of our proposed deep

JSCC scheme, we use the NN architecture depicted in Fig.
2. At the encoder, the normalization layer is followed by
five convolutional layers. Since the statistics of the input

Fig. 2. Encoder and decoder NN architectures used in the imple-
mentation of the proposed deep JSCC scheme.

data are generally not known at the decoder, the input
images are normalized by the maximum pixel value 255,
producing pixel values in the [0, 1] range. The notation
F ×F ×K/S denotes a convolutional layer with K filters
of spatial extent (or size) F and stride S. The values of
the hyperparameters F,K and S used in our experiments
are given in Fig. 2. PReLU activation function is applied
to the output of all convolutional layers. The output of
the last convolutional layer, which consists of 2k units, is
followed by another normalization layer which enforces the
average power constraint specified in Eq. (1). The output
of the normalization layer is combined into k complex-
valued channel input samples and forms the encoded signal
representation, which is transmitted over the channel.

The decoder inverts the operations performed by the
encoder. The real and imaginary parts of the k complex-
valued noisy channel output samples are combined into
2k values which are fed into the transpose convolutional
layers. The latter progressively transform the corrupted
image features into an estimation of the original input
image, while upsampling it to the correct resolution.
The hyperparameters of the decoder layers mirror the
corresponding values of the encoder layers (Fig. 2). The
output of all transpose convolutional layers of the decoder
except for the last one are passed through a PReLU
activation function, while a sigmoid nonlinearity is applied
to the output of the last transpose convolutional layer
in order to produce values in the [0, 1] range. Finally, a
denormalization layer multiplies the output values by 255
in order to generate pixel values within the [0, 255] range.

The above architecture is implemented in Tensorflow
[31]. We use the Adam optimization framework [32], which
is a form of stochastic gradient descent. Our loss function
is the average mean squared error (MSE) between the
original input image x and the reconstruction x̂ at the
output of the decoder, defined as:

L = 1
N

N∑
i=1

d(xi, x̂i), (3)

where d(x, x̂) = 1
n ||x− x̂||

2 is the mean squared-error dis-
tortion and N is the number of samples. In order to achieve
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various bandwidth compression ratios k/n, we vary the
number of filters K in the last convolutional layer of
the encoder. Since our architecture is fully convolutional,
it can be trained and deployed on input images of any
resolution.

The performance of the deep JSCC algorithm, as well
as of all benchmark schemes is quantified in terms of
PSNR. The PSNR metric measures the ratio between the
maximum possible power of the signal and the power of
the noise that corrupts the signal. The PSNR is defined
as follows:

PSNR = 10 log10
MAX2

MSE (dB). (4)

where MSE = d(x, x̂) is the mean squared-error between
the reference image x and the reconstructed image x̂, and
MAX is the maximum possible value of the image pixels.
All our experiments are conducted on 24-bit depth RGB
images (8 bits per pixel per colour channel), thus MAX =
28 − 1 = 255.

The channel SNR is defined as:

SNR = 10 log10
P

σ2 (dB), (5)

and represents the ratio of the average power of the coded
signal (channel input signal) to the average noise power.
Recall that P is the average power of the channel input
signal after applying the power normalization layer at the
encoder of the proposed JSCC scheme. For benchmark
schemes that use explicit signal modulation, P is the
average power of the symbols in the constellation. Without
loss of generality, we set the average signal power to P = 1
for all experiments.

A. Evaluation on CIFAR-10 dataset
We start by evaluating our deep JSCC scheme on the

CIFAR-10 image dataset. The training data consists of
50000 32 × 32 training images [33] combined with ran-
dom realizations of the channel under consideration. The
performance of the proposed JSCC scheme is tested on
10000 test images from the CIFAR-10 dataset, which are
distinct from the images used for training. We initially set
the learning rate to 10−3 and reduce it after 500k iterations
to 10−4. We use a mini-batch size of 64 samples and train
our models until the performance on the test set does
not improve further. However, we would like to emphasize
that we do not use the test set images to optimize the
network hyperparameteres. During performance evalua-
tion we transmit each image 10 times in order to mitigate
the effect of randomness introduced by the communication
channel.

We first investigate the performance of our proposed
deep JSCC algorithm in the AWGN setting, i.e., the
channel transfer function is η = ηn. We vary the SNR by
varying the noise variance σ2 and compare the proposed
deep JSCC algorithm with an upper bound on any digital
transmission scheme, which employs JPEG or JPEG2000
for source compression. The computation of the upper

bound is based on the Shannon’s separation theorem,
which states that the necessary and sufficient condition for
reliable communication over a discrete memoryless channel
with channel capacity C is

nR ≤ kC. (6)

The above expression defines the maximum rate

Rmax = k

n
C (7)

for a channel with capacity C at which the source can be
compressed and transmitted with arbitrarily small proba-
bility of error. Thus, to compute the upper bound, we first
compute the maximum number of bits per source sample
Rmax using Eq. (7), where C = log2(1 + SNR) for a com-
plex AWGN channel. This is the maximum rate for source
compression that is guaranteed reliable transmission over
the channel. Since JPEG and JPEG2000 cannot compress
the image data at an arbitrarily low bitrate, we also
compute the minimum bitrate value Rmin beyond which
compression results in complete loss of information and the
original image cannot be reconstructed. If, for a given set
of values of n, k and C, the minimum rate Rmin exceeds the
maximum allowable rate Rmax, we assume that the image
cannot be reliably transmitted and each color channel is
reconstructed to the mean value of all the pixels for that
channel. When Rmin < Rmax, we compress the images at
the largest rate R that satisfies R ≤ Rmax (since, again, it
is not always possible to achieve an arbitrary target bitrate
Rmax with JPEG or JPEG2000 compression software),
and measure the distortion between the reference image
and the compressed one, assuming that the compressed
bitstream can be transmitted without errors.

We would like to note that we do not use any explicit
practical channel coding and modulation scheme in the
computation of the bound. Compressing the source at rate
Rmax and assuming error-free transmission at this rate,
implicitly suggests that one would need to use a capacity-
achieving combination of channel code and modulation
scheme to achieve reliable transmission. Thus, the perfor-
mance of any digital transmission scheme that employs
an actual channel coding scheme and modulation along
with JPEG/JPEG2000 compression will be inferior to this
upper bound.

Fig. 3 illustrates the performance of the proposed
deep JSCC algorithm with respect to the bandwidth
compression ratio, k/n, in different SNR regimes. This
performance is compared against the upper bound on
the performance of any digital scheme that employs
JPEG/JPEG2000 for compression. We note that the
threshold behavior of the upper bound in the figure is not
due to the “cliff effect”. The initial flat part of these curves
is due to the fact that JPEG and JPEG2000 completely
break down in this region, i.e., the maximum transmission
rate Rmax is below the minimum number of bits per pixel,
Rmin, required to compress the images at the worst quality
and obtain a meaningful reconstruction at the decoder.
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Fig. 3. Performance of the deep JSCC algorithm on CIFAR-10 test
images over an AWGN channel with respect to the compression ratio,
k/n, for different SNR values. For each case, the same SNR value is
used in training and evaluation.

We observe that, in very bad channel conditions (e.g.,
for SNR=0dB), the digital schemes deploying JPEG or
JPEG2000 would break down, while with the proposed
deep JSCC scheme transmission is possible with reason-
ably good performance. At medium and high SNRs and
for limited channel bandwidth, i.e., for k/n ∈ [0.04, 0.2],
the performance of the proposed deep JSCC scheme is
considerably above the one that can be achieved by JPEG
and JPEG2000 even assuming that reliable transmission
at channel capacity is possible1. Even when the channel
bandwidth becomes less constrained, i.e., for k/n > 0.3,
the performance of the deep JSCC scheme remains com-
petitive with its JPEG/JPEG2000 counterparts. The sat-
uration of the proposed deep JSCC scheme in the large
channel bandwidth regime is possibly due to the limited
capability of the particular autoencoder architecture em-
ployed, which may be improved, for example, by employing
a different activation function than PReLU as in [6], or
through incremental training as in [7].

We next study the robustness of the proposed deep
JSCC scheme to variations in channel conditions. Figs. 4a
and 4b illustrate the average PSNR of the reconstructed
images versus the SNR of the AWGN channel for two
different values of bandwidth compression ratio, k/n. Each
curve in Figs. 4a and 4b is generated by training our
end-to-end system for a specific channel SNR value, de-
noted as SNRtrain, and then evaluating the performance
of the learned encoder/decoder parameters on the test
images for varying SNR values, denoted as SNRtest. In
other words, each curve represents the performance of the
proposed JSCC scheme optimized for channel SNR equal
to SNRtrain, and deployed in different channel conditions
with SNR equal to SNRtest. These results provide an in-
sight into the performance of the proposed algorithm when

1While near capacity-achieving channel codes exist for the AWGN
channel, these typically require very large blocklengths. It is known
that the achievable rates guaranteeing a low block error probability
for the blocklengths considered here are below the capacity [34] for
the entire range of compression ratio values. Therefore, the upper
bounds in Fig. 3 are typically not achievable.

the channel conditions are different from those for which
the end-to-end system is optimized and demonstrate the
robustness of the proposed JSCC to variations in channel
quality. We can observe that for SNRtest < SNRtrain,
i.e., when the channel conditions are worse than those
for which the encoder/decoder have been optimized, our
deep JSCC algorithm does not suffer from the “cliff effect”
observed in digital systems. Unlike digital systems, where
the quality of the decoded signal drops sharply when
SNRtest drops below a critical threshold value, the deep
JSCC scheme is more robust to channel quality fluctu-
ations and exhibits a gradual performance degradation
as the channel deteriorates. Such behavior is akin to the
performance of an analog scheme [24], [26], [28], and is
attributed to the capability of the autoencoder to map
similar images/features to nearby points in the channel
input signal space; thus, with decreasing SNRtest the
decoder can still obtain a reconstruction of the original
image.

On the other hand, when SNRtest increases above
SNRtrain, we observe initially a gradual improvement in
the quality of the reconstructed images before the per-
formance finally saturates as SNRtest increases beyond
a certain value. The performance in the saturation re-
gion is driven solely by the amount of compression im-
plicitly decided during the training phase for the tar-
get value SNRtrain. It is worth noting that performance
saturation does not occur at SNRtest = SNRtrain as
in digital image/video transmission systems [27], but at
SNRtest > SNRtrain. This behavior indicates that the
proposed JSCC scheme determines an implicit trade-off
between the amount of error protection and compression,
which does not necessarily target an error-free transmis-
sion when the system operates at SNRtest = SNRtrain. We
also note that when the encoder/decoder are optimized
for very high SNRtrain, and SNRtest > SNRtrain, the
system boils down to an ordinary autoencoder, and its
performance is solely limited by the degree-of-freedom
imposed by the bandwidth compression ratio k/n, i.e., the
dimension of the bottleneck layer of the autoencoder.

Next we study the performance of our deep JSCC
scheme under the assumption of a slow Rayleigh fading
channel with AWGN. In this case, the channel transfer
function is η(z) = hz + n, where h ∼ CN (0, Hc) and
n ∼ CN (0, σ2Ik). In this experiment, we do not assume
channel state information either at the receiver or the
transmitter, or consider the transmission of pilot signals.
As we assume slow fading, the channel gain h is ran-
domly sampled from the complex Gaussian distribution
CN (0, Hc) for each transmitted image and remains con-
stant during the transmission of the entire image, and
changes independently to another state for the next image.
We set Hc = 1 and vary the noise variance σ2 to emulate
varying average channel SNR.

In Fig. 5, we plot the performance of the proposed deep
JSCC algorithm over a slow Rayleigh fading channel as
a function of the bandwidth compression ratio, k/n, for
different average SNR values. Note that, due to the lack
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Fig. 4. Performance of the deep JSCC algorithm on CIFAR-10 test
images with respect to the channel SNR over an AWGN channel for
bandwidth compression ratios (a) k/n = 1/12 and (b) k/n = 1/6.
Each curve is obtained by training the encoder/decoder network for
a particular channel SNR value.

of channel state information, the capacity of this channel
in the Shannon sense is zero, since no positive rate can be
guaranteed reliable transmission at all channel conditions;
that is, for any positive transmission rate, the channel
capacity will be below the transmission rate with a non-
zero probability. Therefore, we calculate an upper bound
on any digital transmission scheme designed for the aver-
age SNR value. i.e., for SNR = 10 log10

E[h2]P
σ2 , which uses

JPEG/JPEG2000 for compression. Similarly to the case of
the AWGN channel, we assume that the source image is
compressed with JPEG/JPEG2000 at rate that is equal to
the capacity of the complex AWGN channel at the average
SNR value. That is, we calculate the maximum number
of bits that can be transmitted reliably using Eq. (7),
where the channel capacity is calculated for the average
SNR value. If the channel capacity is below this value due
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Fig. 5. Performance of the deep JSCC algorithm on CIFAR-10
test images over a slow Rayleigh fading channel with respect to the
bandwidth compression ratio, k/n, for different SNR values. For each
case, the same target SNR value is used in training and evaluation.

to fading, an outage occurs, and the mean pixel values
are used for reconstruction, i.e., maximum distortion is
reached. If the channel capacity is above the transmission
rate, the transmitted codeword can be decoded reliably.
We observe that deep JSCC beats the upper bound on the
digital transmission schemes at all SNR and bandwidth
compression values. This result emphasizes the benefits of
the proposed deep JSCC technique when communicating
over a time-varying channel, or multicasting to multiple
receivers with varying channel states.

We illustrate the robustness of the proposed deep JSCC
scheme to variations of the average channel SNR in a slow
Rayleigh fading channel in Figs. 6a and 6b. We observe
that, while the performance of the deep JSCC scheme
drops compared to the static AWGN channel, the quality
of the reconstructed images is still reasonable, despite the
lack of channel state information. This suggests that the
network learns to estimate the channel state, and adapts
the decoder accordingly; that is, the proposed deep JSCC
scheme combines not only source coding, channel coding,
and modulation, but also channel estimation, into one
single component, whose parameters are learned through
training.

B. Evaluation on the Kodak dataset
We also evaluate the proposed deep JSCC scheme on

higher resolution images. To this end, we train our NN
architecture on the Imagenet dataset [35] which consists
of 1.2 million images. The images are randomly cropped to
patches of size 128×128 and fed into the network in mini-
batches of 32 samples. We set the learning rate to 10−4

and train the models until convergence. The evaluation
is performed on the Kodak image dataset2 consisting of
24 768 × 512 images. During evaluation, each image is
transmitted 100 times, so that the performance can be
averaged over multiple realizations of the random channel.

We first investigate the performance of the proposed
deep JSCC algorithm over an AWGN channel by varying

2http://r0k.us/graphics/kodak/
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Fig. 6. Performance of the deep JSCC algorithm on CIFAR-10 test
images with respect to the average channel SNR over an AWGN
slow Rayleigh fading channel for bandwidth compression ratios (a)
k/n = 1/6 and (b) k/n = 1/3. Each curve is obtained by training
the encoder/decoder network for a particular channel SNR value.

the noise power σ2. The performance of the proposed deep
JSCC algorithm is compared against digital transmission
schemes that use JPEG/JPEG2000 for image compres-
sion followed by practical channel coding and modulation
schemes. We use all possible combinations of (4096, 8192),
(4096, 6144), and (2048, 6144) LDPC codes (which corre-
spond to 1/2, 2/3 and 1/3 rate codes) with BPSK, 4-QAM,
16-QAM and 64-QAM digital modulation schemes. For
the sake of legibility, we only present the best performing
digital transmission schemes and omit those that perform
similarly, or whose performance in terms of PSNR is below
15dB.

Figs. 7 and 8 show the performance of the proposed
deep JSCC scheme and the digital transmission schemes
in an AWGN channel as a function of the test SNR for
bandwidth compression ratios k/n = 1/12 and k/n = 1/6,
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Fig. 7. Performance comparison of deep JSCC with baseline digital
transmission schemes on the Kodak image dataset over AWGN
channel for bandwidth compression ratio k/n = 1/12. The digital
schemes employ (a) JPEG and (b) JPEG2000 for image compression
and various channel codes and modulation schemes.

respectively. The results illustrate that our deep JSCC
scheme significantly outperforms the baseline digital trans-
mission schemes that use JPEG (the most widely used
image compression algorithm) for low channel bandwidth
and low SNR regimes, while it performs on par with the
benchmark schemes for high bandwidth and high SNR
values. Most importantly, our deep JSCC scheme does
not suffer from the “cliff effect” observed in the digital
transmission schemes. The inefficacy of the latter stems
from the fact that, once the channel code and modulation
scheme have been selected for a target SNR value, the
number of bits available for compression is fixed and, thus,
the quality of the reconstructed images does not improve
with SNR. At the same time, when the channel quality
drops below the target SNR value, the channel code is not
able to deal with the increasing error rate, which leads to
significant degradation in the quality of the reconstructed
images. Contrarily to the digital transmission schemes,
our deep JSCC scheme exhibits a graceful degradation
of performance when the channel quality drops below the
target SNR value, while the performance does not saturate
immediately when the channel conditions improve beyond
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the target SNR.
When compared to schemes that use JPEG2000 for

source compression, our JSCC algorithm outperforms the
benchmark digital transmission schemes in AWGN chan-
nels only in very low SNR regimes and for low channel
bandwidth. However, we believe that by using a deeper
neural network architecture, and by employing more so-
phisticated activation and loss functions the performance
of the deep JSCC algorithm can be further improved.

We next evaluate the performance of our deep JSCC
algorithm on the Kodak image dataset over time-varying
channels. Fig. 9 depicts the performance of deep JSCC
and the benchmark digital transmission schemes in a slow
Rayleigh fading channel for bandwidth compression ratio
k/n = 1/6. We set the average channel gain to Hc = 1 and
vary the average SNR by varying the noise power σ2. In
these simulations, we assume that, in both the proposed
scheme and the baseline digital transmission schemes, the
phase shift introduced by the fading channel is known at
the receiver, making the model equivalent to a real fading
channel with double the bandwidth as only the channel
gain changes randomly for each image transmission pe-
riod. For the sake of readability, we only keep the best
performing digital transmission schemes among all possi-
ble combinations of 1/2, 2/3 and 1/3 rate LDCP codes
and BSPK, 4-QAM, 16-QAM and 64-QAM modulation
schemes. We can observe that due to the sensitivity of
digital transmission schemes to the varying channel error
rate as a result of varying channel SNR, the performance of
the digital schemes that use separate source compression
with JPEG/JPEG2000 followed by channel coding and
modulation, is inferior to the performance of the proposed
deep JSCC. While the digital transmission schemes per-
form well only in channel conditions for which they have
been optimized, our deep JSCC scheme is more robust
to channel quality fluctuations. Despite being trained for
a specific average channel quality, deep JSCC is able to
learn robust coded representations of the images that
are resilient to fluctuations in the channel quality. The
latter property is highly advantageous when transmitting
over time-varying channels or to multiple receivers with
different channel qualities.

Finally, a visual comparison of the reconstructed im-
ages for the source and channel coding schemes under
consideration in AWGN channels is presented in Figs.
10 and 11. For the digital transmission schemes deploy-
ing JPEG/JPEG2000, the images are transmitted using
the best-performing separate source and channel coding
scheme for the target SNR value. Each row corresponds to
a different channel SNR value starting from low SNR at
the top (1dB) and progressing to high SNR (19dB) at the
bottom. For each reconstruction, we report the PSNR and
the SSIM [36] values. Fig. 10 illustrates an example where
the deep JSCC outperforms the best performing digital
scheme that deploys JPEG for source compression in terms
of PSNR. More interestingly, although deep JSCC presents
worse performance in terms of PSNR when compared to
the separate scheme employing JPEG2000, its SSIM val-
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Fig. 8. Performance comparison of deep JSCC with baseline digital
transmission schemes on the Kodak image dataset over AWGN
channels with bandwidth compression ratio k/n = 1/6. The digital
schemes employ (a) JPEG and (b) JPEG2000 for image compression
and various channel codes and modulation schemes.

ues are consistently higher, indicating superior perceived
visual quality. Fig. 11 shows an example where for high
SNR values the digital transmission schemes outperform
deep JSCC in the PSNR metric, but deep JSCC can still
achieve comparable SSIM values when compared to the
scheme using JPEG. We can see that JPEG produces
visible blocking artefacts, especially in channels with low
SNR, which are not present in the images transmitted
with deep JSCC. The noise introduced by deep JSCC
appears to be smoother than the noise of JPEG thanks to
the direct mapping of source values to soft channel input
values. Note that the deep JSCC can also be trained with
SSIM as the loss function, which can further improve its
performance in terms of the SSIM metric.

C. Computational complexity
In this section, we provide a brief discussion of the

computational complexity of the proposed JSCC algo-
rithm. Let us first consider the proposed encoder/decoder
network. The most computationally costly operations in
the encoder/decoder are the 2D convolutions/transpose
convolutions, as they involve multiplications and addi-
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Fig. 9. Performance comparison of deep JSCC with baseline digital
transmission schemes on the Kodak image dataset over slow Rayleigh
fading channels with bandwidth compression ratio k/n = 1/6. The
digital schemes employ (a) JPEG and (b) JPEG2000 for image
compression and various channel codes and modulation schemes.

tions. The computational cost of a single convolutional
layer is F ×F ×D×K×W ×H [37], where F is the filter
size, K is the number of filters, D is the number of input
channels and W × H is the size of the feature map. The
computational complexity of the encoder/decoder network
is, thus, O

(
IW IH

)
where IW and IH are the input image

width and height, respectively. This implies that the com-
putational complexity of the proposed encoder/decoder is
linear in the number of pixels of the input image, as only
the feature map width and height depend on the image
dimensions, while all other factors are constant and inde-
pendent of the image size. The JPEG encoding/decoding
complexity is also linear in the number of pixels [38], while
LDPC codes have linear encoding/decoding times [39].
Thus, the computational complexity of a separate joint
source and channel coding scheme, which employs JPEG

for compression and LDPC codes for channel coding, is
also linear in the size of the input image, i.e., O

(
IW IH

)
.

To complete our discussion of computational complex-
ity, we have measured the average run time of the pro-
posed algorithm on a Linux server with eight 2.10GHz
Intel Xeon E5-2620V4 CPUs and a Tesla K80 GPU.
The measurements were performed on the Kodak color
images with a resolution of 768× 512 pixels. The average
run time refers to the average time required to encode
and decode one image using the proposed deep JSCC
architecture. The average run time achieved by our GPU
implementation is 18ms per image, while the average run
time on CPU is 387ms. As a comparison, the average time
required for the JPEG encoding and decoding of the above
images, as reported in the literature, varies from 30ms
[8] to 390ms [9], while for the JPEG2000 algorithm the
average encoding and decoding time on these images is
even higher (e.g., 430-590ms [8], [9]). This time must be
further augmented by the time needed to encode/decode
the compressed bitstream with a channel code. The above
proves that our method is competitive with the baseline
separate source and channel coding approaches not only
in terms of quality, but also in terms of computational
complexity.

V. Conclusions and Future Work
We have proposed a novel deep JSCC architecture for

image transmission over wireless channels. In this archi-
tecture, the encoder maps the input image directly to
channel inputs. The encoder and the decoder functions
are modeled as complementary CNNs, and trained jointly
on the dataset to minimize the average MSE of the
reconstructed image. We have compared the performance
of this deep JSCC scheme with conventional separation-
based digital transmission schemes, which employ widely
used image compression algorithms followed by capacity-
achieving channel codes. We have shown through exten-
sive numerical simulations that deep JSCC outperforms
separation-based schemes, especially for limited channel
bandwidth and low SNR regimes. More significantly, deep
JSCC is shown to provide a graceful degradation of the
reconstruction quality with channel SNR. This observation
is then used to benefit from the proposed scheme when
communicating over a slow fading channel; deep JSCC
performs reasonably well at all average SNR values, and
outperforms the proposed separation-based transmission
scheme at any channel bandwidth value.

In the case of DL-based JSCC, the encoder and decoder
networks learn not only to communicate reliably over the
channel (as in [11], [13]), but also to compress the images
efficiently. For a perfect channel with no noise, if the
source bandwidth is greater than the channel bandwidth,
i.e., n > k, the encoder-decoder NN pair is equivalent
to an undercomplete autoencoder [5], which effectively
learns the most salient features of the training dataset.
However, in the case of a noisy channel, simply learning
a good low-dimensional representation of the input is not
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PSNR/SSIM 34.3dB/0.97 31.86dB/0.94 35.52dB/0.96

Fig. 10. Examples of reconstructed images produced by the deep JSCC algorithm and the baseline digital schemes that use JPEG/JPEG2000
for image compression for AWGN channel and bandwidth compression ratio k/n = 1/6. From top to bottom, the rows correspond to SNR
values of 1dB, 4dB, 7dB, 13dB and 19dB.

sufficient. The network should also learn to map the salient
features to nearby representations so that similar images
can be reconstructed despite the presence of noise. We
also note that, the resilience to channel noise acts as a
sort of a regularizer for the autoencoder. For example,
when there is no channel noise, if the channel bandwidth
is larger than the source bandwidth, i.e., n < k, we obtain
an overcomplete autoencoder, which can simply learn to
replicate the image. However, when there is channel noise,
even an overcomplete autoencoder learns a non-trivial
mapping that is resilient to channel noise, similarly to
denoising autoencoders.

The next step in improving the performance of the deep
JSCC scheme is to exploit more advanced NN architec-
tures in the autoencoder that have been shown to improve
the compression performance [6], [40]. We will also explore

the performance of the system for non-Gaussian channels
as well as for channels with memory, for which we do not
have capacity-approaching channel codes. We expect that
the benefits of the proposed NN-based JSCC scheme will
be more evident in these non-ideal settings.
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