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FORCe: Fully Online and Automated Artifact
Removal for Brain-Computer Interfacing

Ian Daly, Reinhold Scherer, Martin Billinger, and Gernot Miiller-Putz

Abstract—A fully automated and online artifact removal method
for the electroencephalogram (EEG) is developed for use in brain-
computer interfacing (BCI). The method (FORCe) is based upon
a novel combination of wavelet decomposition, independent com-
ponent analysis, and thresholding. FORCe is able to operate on
a small channel set during online EEG acquisition and does not
require additional signals (e.g., electrooculogram signals). Evalua-
tion of FORCe is performed offline on EEG recorded from 13 BCI
particpants with cerebral palsy (CP) and online with three healthy
participants. The method outperforms the state-of the-art auto-
mated artifact removal methods Lagged Auto-Mutual Informa-
tion Clustering (LAMIC) and Fully Automated Statistical Thresh-
olding for EEG artifact Rejection (FASTER), and is able to re-
move a wide range of artifact types including blink, electromyo-
gram (EMG), and electrooculogram (EOG) artifacts.

Index Terms—Automated online artifact removal, brain-com-
puter interface (BCI), electroencephalogram (EEG), independent
component analysis, wavelets.

I. INTRODUCTION

RAIN-COMPUTER interfaces (BCIs) allow control of a

computer, or other device, via the modulation of neuro-
logical activity in the participants' brain and without requiring
any activation of the efferent nervous system [1]. Therefore,
BCIs have been proposed as potential assistive devices for par-
ticipants who experience difficulties exerting control via their
efferent nervous system. Proposed user groups include partici-
pants with spinal cord injury (SCI) [2], amyotrophic lateral scle-
rosis (ALS) [3], minimally conscious state participants [4], and
participants with cerebral palsy (CP) [5].

Arguably, the most widely used mechanism for acquiring
BCI control signals from the brain is the electroencephalogram
(EEG) [2]. The EEG records summed electrophysiological
activity generated from cortical neuronal activity and projected
through the skull and scalp [6]. It has the advantage of pro-
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viding a very high temporal resolution while being relatively
cheap and portable, allowing for bedside and home use [7].

However, these advantages come at a cost. The EEG has a
very poor spatial resolution due to the effects of volume con-
duction over the cortical surface [8]. More importantly, the am-
plitude of the EEG is often contaminated with other electrical
activity, which may be observed in the signal but is not related
to brain activity. Such additional signals are referred to as ar-
tifacts and may arise from external sources of noise, such as
power lines and electrical equipment, or internally from the par-
ticipant using the BCI. Artifacts arising from the participant may
be generated by a number of sources including blinks, muscle
movement, and head movement [9].

There is a need to remove each of these artifact types prior
to analysis of the EEG and its use in BCI control, to ensure that
any control achieved may be genuinely attributed to the partici-
pants brain activity. However, this is a nontrivial task. Artifacts,
particularly participant generated artifacts, occupy overlapping
spectral bands with the neurological activity of interest, may
occur on many or all channels, and often have a larger ampli-
tude than the EEG signal components of interest. Thus, simple
frequency band or spatial filtering will not adequately remove
them [9].

This problem is particularly important for online BCI opera-
tion. During offline EEG analysis it is possible to visually iden-
tify and remove epochs containing artifacts post-measurement.
However, during online BCI operation this is not possible and
instead some automated method for identifying, and ideally for
removing, artifacts from the EEG is needed.

Many different automated artifact removal methods have
been proposed for EEG denoising. Common methods for auto-
mated artifact removal include wavelet based denoising such
as [10] and blind source separation methods such as [11].

However, many of these methods are not suitable for use in
online BCI applications due to long runtimes or low accuracy.
Some online methods have been proposed. For example, in [12]
a method is proposed for artifact removal based upon ICA and
support vector machines (SVMs) to classify artifactual compo-
nents. However, the method is only designed to work with elec-
trooculogram (EOQG) and electromyogram (EMGQG) artifact types
and is not highly accurate.

We propose a fully automated online artifact removal method
for brain-computer interfacing (FORCe) based upon a combi-
nation of ICA, wavelet decomposition, and both hard and soft
thresholding a set of key statistical, spectral, temporal, and spa-
tial properties of the EEG. The method is primarily intended for
use on the removal of participant generated artifacts. It is de-
signed to be able to remove a wide range of such artifact types
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from the EEG accurately, while minimizing perturbations to ar-
tifact contaminated EEG epochs. Additionally, the method is
able to operate without needing additional simultaneous EOG
or EMG recordings.

Wavelet decomposition is first applied to EEG recorded on
each channel within a 1 s time window. ICA is then used to
translate the resulting approximation coefficients into indepen-
dent components which are thresholded to remove artifact con-
taminated ICs. Soft thresholding is then applied to both the de-
tail and approximation coefficients to reduce/remove the arti-
fact contamination arising from spiking activity (e.g., EMG).
Finally, the cleaned EEG signals are reconstructed.

We compare FORCe to the online automated state-of-the-art
artifact removal method Lagged Auto-Mutual Information
Clustering (LAMIC). LAMIC is a blind source separation
(BSS) and clustering-based method which has been shown to
outperform other state-of-the-art wavelet and spectrum analysis
based artifact removal methods [13].

We also compare FORCe to the state-of-the-art offline artifact
removal method Fully Automated Statistical Thresholding for
EEG artifact Rejection (FASTER). FASTER is also based upon
BSS methods and has been shown to be effective at removing/
reducing a wide range of EEG artifacts [11].

FORCe is trained and tested in a simulated online BCI envi-
ronment with EEG recorded from participants with CP [14]. It
is also run online with healthy participants to demonstrate the
methods efficacy during online BCI operation.

II. METHODS

The proposed method (FORCe: Fully Online and auto-
mated artifact Removal for brain-Computer interfacing) is first
described. Then the artifact removal methods LAMIC and
FASTER, against which it is to be compared, are described.
Finally, the tests applied to compare the methods are detailed.

A. Proposed Method: FORCe

1) Overview: Our proposed method FORCe (Fully Online
and automated artifact Removal for brain-Computer inter-
facing) attempts to remove artifact components from 1 s
windows of the EEG via the following steps.

1) Decompose the EEG on each channel into a set of approxi-
mation and detail coefficients via a wavelet decomposition.
Denote c; € C the jth coefficient set from the set of all co-
efficients C, from channel 3.

2) Group all coefficients at the same decomposition
level from each channel into sets of coefficients,
A, = c; € CWVi € K, j = n, where K is the set of chan-
nels and n denotes the decomposition level.

3) For the set of approximation coefficients (A4;) estimate an
ICA demixing matrix to separate the coefficients into max-
imally statistically independent components (ICs).

4) Multiply the set of approximation coefficients by the
demixing matrix.

5) Identify ICs which contain artifacts and remove them.

6) Invert the ICA decomposition to obtain an estimate of the
cleaned approximation coefficient set A;.

7) Identify spike zones in both the approximation and detail
coefficient sets and apply soft thresholding to reduce their
magnitude.

8) Reconstruct the cleaned EEG from the wavelet approxima-
tion and detail coefficient sets.

Each step of the FORCe method is detailed below.

2) Wavelet Decomposition: Wavelets attempt to decompose
a signal by convolving it with a mother wavelet function at a
range of different time and frequency locations and measuring
the strength of the signal as a coefficient of the wavelet func-
tion [15]. For practical purposes the discrete wavelet transform
(DWT) is used; this scales to the signal at a discrete set of times
and frequencies.

The wavelet transform may be defined as

w(t, ) :[ (8) # o~ (1)dt 0
with
verl®) = (50 @)

where () is the original signal and * denotes the complex con-
jugation. w(t, f) shows how the signal z(t) is translated into a
set of wavelet basis functions ¥ - (¢) at scale and translation di-
mensions s and 7. ¢ is the mother wavelet function with which
the signal is convolved.

The Symlet 4 “Sym4” mother wavelet is used in this work
to decompose the signals into approximation and detail coeffi-
cients down to two decomposition levels. This is chosen based
upon work in [16]. Approximation and detail coefficients are
then used as the basis for the remaining steps in the artifact re-
moval process.

3) Independent Component Analysis: Independent compo-
nent analysis (ICA) attempts to separate multivariate signals
into subcomponents which are maximally statistically indepen-
dent from one another. The EEG is assumed to arise from the
summed electrical activity generated from multiple independent
sources. ICA attempts to estimate the mixing process which
gave rise to the EEG from these sources and then, by inverting
the mixing matrix, to attempt to reconstruct the sources [17].

Formally, this may be defined as

z=Ws 3)
where 2 denotes the EEG signals recorded from the scalp, s
the original dipole sources from which the EEG originates, and
W the linear mixing matrix. Reconstructing the sources from
the EEG may, therefore, be performed by inverting the mixing
matrix.

Multiple methods have been proposed to estimate the mixing
matrix W from the EEG, with the majority focussed on finding
an estimate of W that provides maximally statistically indepen-
dent sources [18]. In this work the second order blind identifica-
tion (SOBI) method for estimating the ICA mixing matrix W is
employed. This method is based upon the joint diagonalization
of intersignal correlation matrices over time. It is chosen based
upon its observed success in separating artifacts from the EEG
[19]. For further details on the method please refer to [20].



DALY et al.: FORCE: FULLY ONLINE AND AUTOMATED ARTIFACT REMOVAL FOR BRAIN-COMPUTER INTERFACING 727

4) Identification of Artifact Contaminated ICs: The ICs
which contain artifacts need to be accurately identified and
removed. A number of approaches are taken to do this. The
FORCe method aims to remove eye blinks, EOG activity re-
lated to other (non-blink) eye movements, EMG activity related
to muscle movements, and electrocardiogram (ECQ) artifacts.

ICs containing each of these artifacts may be identified in a
variety of ways. Artifacts are known to differ from clean EEG
in the following properties:

1) amount of temporal dependency within the signal [21];

2) amount of spiking activity observed within the signal [22];

3) kurtosis value of the signal measuring peakedness of the
signal amplitudes over time [23];

4) similarity of the power spectral density distribution of the
observed EEG to a 1/ F distribution (with F' denoting fre-
quency) [24];

5) power spectral density in the Gamma frequency band and
above (> 30 Hz) [25];

6) standard deviation and topographic distribution of the am-
plitude values of the EEG time series [26];

7) peak amplitudes of the EEG time series [6], [27].

ICs are identified as likely to contain an artifact when they
exceed thresholds for one or more of these criteria. However,
it is possible for a period of clean EEG to exceed a threshold
(a false positive identification). Therefore, to attempt to mini-
mize the influence of such false positive artifact detections the
number of thresholds exceeded by each IC is counted. ICs which
exceed more than three thresholds are removed.

All thresholds chosen for use in this method are set based
upon manual adjustment of threshold values and subsequent vi-
sual inspection of the resulting cleaned EEG time series. This
process is performed on two EEG datasets, EEG recorded from
a BCI participant with CP and EEG recorded from a healthy
participant. Subsequently, EEG from these two participants is
excluded from use in validation of the FORCe method. Each
threshold is now detailed.

The amount of temporal dependency within a signal can in-
dicate the presence of an artifact [21] and may be measured by
the auto-mutual information (AMI). AMI may be considered to
be a nonlinear analog of auto-correlation, i.e., a measure of de-
pendence between a time series and a shifted versions of itself
at some time lags 7

AML (X) = MI(z(t),2(t + 7)) )
where MI denotes the mutual information
N
MI(X) =Y H(X;) - H(X1,...,Xx) (5)

and where H(X;) = - Zf\;l p(z;) logp(z;) and
H(Xi,...,XN) = @1 N p(wl,...,mn),
log (p(x1,...,2,) ) denote the entropy and joint entropy
respectively of the random variable X, and p(z;) denotes the
probability of X, estimated at x;, ¢ = 1,...,T,,, where T},
denotes the number of samples in each realization of X .

Thus, AMI carries information that characterizes the tem-

poral dynamics of the random variable X . Therefore, it can be

used as a feature for distinguishing between signals that evolve
differently in time.

In this work the lag offset (the number of samples between
consecutive lags) is set to 60 (for example, with a sampling rate
of 512 Hz, decomposed to two levels via wavelet decomposi-
tion, this would results in two lags). This choice is based upon
observed temporal dynamics of artifacts reported in [13]. AMI
is calculated on the scalp projections of each individual IC and
a maximum and minimum threshold are set to 3.0 and 2.0 re-
spectively.

Spiking activity in the signal may indicate the presence of
EMG artifacts in an IC [22]. ICs with spiking activity are iden-
tified in two ways, by amplitude values much higher than other
samples in the signal, and by spike zone coefficients.

High amplitude samples are identified as samples with am-
plitudes greater than p(A4) + (3 x o(A)), where p1(A) denotes
the mean amplitude over the signal and o(A) the standard de-
viation of amplitude values. ICs which contain amplitudes ex-
ceeding this threshold are marked for removal.

Spike zone coefficients are identified as samples for which

i1 <Xy > Tipl (6)
where z; denotes the amplitude of the signal at sample ¢. Spikes
are then counted by identifying all spike zone coefficients for
which

Co > (0.1 x (u(c) + o())) ™
where (', denotes the coefficient of variation of each spike zone,
p(c) denotes the mean coefficient of variation over all spike
zones, and o (¢) the standard deviation. C, is defined as

o, - w1t xiv1) @®)
o(xio1: ®ig1)

where p(. . .} denotes the mean function and o (. . .) the standard
deviation. ICs for which the number of identified spikes divided
by the number of spike zone coefficients is greater than 0.25 are
marked for removal.

Kurtosis is calculated on the scalp projections of each IC, ICs
for which & > (u(k) + (0.5 x a(k))) are removed, where k
denotes the kurtosis of the scalp projection of a single IC, (k)
the mean of the kurtosis values over the scalp projections of all
ICs, and (k) the standard deviation.

The power spectra of the clean EEG is known to approxi-
mately follow a 1/F distribution [24]. However, this is only
an approximate rule as particular cognitive tasks are known to
produce deviations from this distribution in specific frequency
bands (for example, in the alpha and beta frequency bands
during motor imagery tasks [28]). Thus, a very wide threshold
is applied to attempt to detect power spectra which differ by
very large amounts from this 1/F distribution. Therefore, ICs
for which the Euclidean distance between their PSD and an
idealized 1/F distribution differs by more than 3.5 are marked
for removal.

High power spectral density (PSD) in the gamma frequency
band and above (> 30 Hz) could indicate the presence of EMG
artifact contamination in the EEG [25]. The mean PSD of the
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scalp projection of each IC in frequencies above 30 Hz is, there-
fore, thresholded above 1.7.

High standard deviations in the EEG have also been reported
to indicate the presence of EMG and other artifacts [26]. Stan-
dard deviation of the projection of the ICs is, therefore, thresh-
olded via 8, > pu(d,) + (2 x o(8,)), where 4, denotes the
standard deviation of the scalp projection of a single IC, 1(8,)
denotes the mean of all 4, values, and ¢ (8,) the standard devi-
ation of all 8, values.

Additionally, the topographic distribution of standard devia-
tions on each channel may indicate the presence of an artifact.
Specifically, larger standard deviations of amplitude on frontal
channels may indicate the presence of EOG activity [29]. Thus,
the average standard deviation projected onto frontal channels
by each IC is divided by the average standard deviation pro-
jected onto the remaining channels. ICs are removed when R
> (u(R) + o(R)), where R denotes the ratio of standard devi-
ations between frontal channels and other channels on a single
IC, p(R) denotes the mean of ratios over all ICs, and o(R) de-
notes the standard deviation of ratios over all ICs.

Finally, the peak amplitude values in the projection of each IC
are thresholded to attempt to remove ICs with large amplitudes,
which could indicate the presence of artifacts [6]. This is done
in two ways. First, the projections of each IC are thresholded
to 2100 uV, with any ICs which exceed this threshold marked
for removal. Second, the peak-to-peak differences between the
maximum and minimum amplitudes in the IC projections are
thresholded to 60 uV, with any ICs exceeding this threshold also
marked for removal.

5) Spike Zone Thresholding: Within both the approximation
and detail coefficients derived from the wavelet decomposition,
a soft thresholding approach is applied to attempt to reduce the
influence of EMG artifact contamination in the EEG. This is de-
rived from a successful approach described in [16]. First, spike
zones are identified. These are then soft thresholded to reduce
their amplitude.

Spike zones are identified via (6). For each identified spike
the coefficient of variation (C,) is calculated via (7).

The following soft threshold is then applied to all coefficients
of variation

where (c) denotes the mean over all coefficients of variation,
o(c) the standard deviation of all coefficients of variation, A
denotes the weight applied to the threshold level, and G the gain
applied to adjust the spike amplitude by when its corresponding
coefficient of variation exceeds the threshold.

For the approximation coefficients the weight and gain are set
to A = 0.7 and G = 0.8, respectively. For the detail coefficients
they are set to A = 0.2 and G = 0.07, respectively.

iflc(n) > (G % (p(e) + a(c)))

©)

B. Threshold Sensitivity

To evaluate the sensitivity of the FORCe method to the spe-
cific values chosen, a one-at-a-time sensitivity analysis is ap-
plied. Noise is added to each threshold individually and the per-
formance of the method during simulated online operation is
evaluated via measuring the event related (de)synchronization

TABLE I
THRESHOLDS USED IN THE PROPOSED FORCE ARTIFACT REMOVAL METHOD
AND THE RANGE OF VALUES THEY CAN TAKE

Threshold Min. Step Max.
Lag offset 1 1 120
Max AMI 1.0 0.1 6.0
Min AMI 1.0 0.1 6.0
IC amplitude 1.0 0.1 6.0
Number of spikes 0.1 0.01 0.5
Kurtosis 0.1 0.01 2.0
PSD energy distribution 1.0 0.1 7.0
30Hz PSD 1.0 0.1 7.0
Std. scalp projections 1.0 0.01 4.0
Frontal / all channel ratio 0.5 0.01 2.0
Max amplitude 50 1 150
Peak to peak amplitude 30 1 90
Soft threshold: A (approx)  0.01 0.01 1.5
Soft threshold: G (approx)  0.01 0.01 1.5
Soft threshold: A (detail) 0.01 0.01 1.5
Soft threshold: G (detail) 0.01 0.01 1.5

(ERDY/S) strength after application of the method (a measure of
decrease/increase in band-power from baseline during the motor
imagery tasks [28]). The thresholds, step sizes, and the range of
values used are listed in Table I.

C. LAMIC

The FORCe method is compared against the state-of-the-art
automated artifact removal method LAMIC. LAMIC is a clus-
tering algorithm developed for performing automatic artifact re-
moval from the EEG [21] and has been shown to outperform
other state-of-the-art methods [13].

EEG is first decomposed via the BSS algorithm temporal
decorrelation source separation (TDSEP) [30]. Components are
then clustered based upon the similarity of their AMI. The clus-
tering procedure follows the general steps of hierarchical clus-
tering methods, whereby at each step the pair of clusters that
is closest, based on some proximity measure, is merged into a
single cluster.

LAMIC performs the following steps to correct for artifacts.

1) After performing TDSEP, place the ICs for a single trial
into an empty data set C.

2) Add into C some additional components that have pre-
viously been manually identified as containing artifacts.
These additional components are referred to as templates.

3) Estimate the lagged AMI for each member of the set C with
appropriate lag values. Lags of ten samples are used in this
work based upon experimentation with a subset of the data.

4) Begin clustering nearest neighbor components in the set C
based on their lagged AMI.

5) Continue clustering until only one cluster remains.

6) Select an appropriate level from the cluster tree at which
the clusters are separated into artifact and nonartifact con-
taining segments. This is done using the fusion levels ap-
proach [31].

The data is partitioned into clusters, depending on their
distance from each other as estimated via the proximity matrix,
using a hierarchical clustering method. Data is iteratively
merged via the method described in [21] until a partition
containing all data members is obtained.
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Once the data is partitioned into groups and the final hier-
archical tree is obtained, the partition is assessed in terms of
how well it reflects the true data structure and the number of
valid clusters (“correct” groupings) is determined. This is done
via examination of the “fusion level” against each stage of
grouping [31].

Fusion levels are calculated as per [21] and a cut in the hi-
erarchical tree is made at the stage where the plot of the fusion
levels flattens, as this shows that little improvement in the de-
scription of the data structure is to be gained above this level. In
this work the fusion level parameter v (described in [21]) is set
to —0.25 based upon experimentation with a subset of the data
(one BCI participant with CP and one healthy participant).

When the clustering has completed the level in the cluster tree
denoted by the fusion levels will ideally contain separate clus-
ters containing the artifact components and templates and the
nonartifact components. Clusters that contain the artifact tem-
plates are removed and the remaining clusters are retained.

D. Faster

The FORCe method is also compared to a state-of-the-art of-
fline artifact removal method called FASTER [11].

This method is based upon the translation of the observed
EEG signals into component space via an ICA algorithms fol-
lowed by statistical threshold based rejection of artifact contam-
inated components. The implementation of the algorithm for the
EEGLAB toolbox was used in this study [32].

E. Comparison

The efficacy and efficiency of the FORCe method is com-
pared with LAMIC and FASTER on two datasets. The methods
are first evaluated in a pseudo-online test using prerecorded
EEG from 13 participants with CP. The FORCe method is then
tested during online BCI operation by three healthy participants
to verify that it works online without timing problems.

The methods are compared via the following criteria:

1) visual inspection of the EEG before and after application

of each method;

2) signal quality index (SQI) measure of suitability of the
signal for BCI control [33];

3) inspection of power spectral densities before and after ap-
plication of the methods;

4) inspection and comparison of the event-related de/syn-
chronization (ERD/S) spectra and strengths from an MI
task performed by participants with CP before and after
application of each method;

5) offline classification accuracies for attempted MI BCI con-
trol by participants with CP;

6) computational runtime of the methods, when run on a stan-
dard laptop computer, during online EEG measurement
from 2 healthy participants.

Note, although the artifact removal method is run both offline
and online, the criteria by which its efficacy is evaluated are all
calculated offline in subsequent analysis.

1) EEG Measurements: Offline: Fourteen participants with
CP were measured as part of a study into their ability to control
a BCI [14], [34], [35] (seven male, age range 20 to 58 with a

median age of 36, SD = 10.97). Institutional review board (IRB)
ethical approval was obtained for all measurements. Further par-
ticipant details are reported elsewhere in [14].

EEG was recorded, at 512 Hz, from 16 electrode channels via
the GAMMAGsys active electrode system (g.tec, Austria). The
following channels were used: AFz, FC3, FCz, FC4, C3, Cz,
C4, CP3, CPz, CP4, PO3, POz, PO4, O1, Oz, and O2.

EEG recorded from participant 1 was used for training and
adjusting of the thresholds used by both the FORCe method and
LAMIC. Therefore, EEG from the remaining 13 participants
was used to evaluate the efficacy of the methods.

The participants were provided with an MI BCI, as described
n [14]. This consisted of an initial calibration phase followed
by an online feedback phase.

During calibration the participant was cued to perform ki-
naesthetically imagined movement of either hand or feet, mental
arithmetic, or mental word-letter association. This was followed
by classifier training and feedback using the two best classes.

Individual trial timing was as follows:

Second 0: a fixation cross appeared in the centre of the
screen and remained there for the duration of the trial.
Second 1.5: A cue appeared on screen indicating the task
to perform. This cue remained until second 3.5.
Remaining time: the participant was instructed to perform
the cued task and halt when the cross disappeared.

After sufficient trials were recorded in the calibration phase
for accurate estimation of the class boundaries the BCI automat-
ically proceeded to the feedback phase in which the two most
discriminative classes were selected for use. Note, because dif-
ferent participants required different numbers of trials before
accurate classifier boundaries could be found each participant
has a different number of corresponding trials. Further details
on the feedback may be found in [14] and [36].

2) EEG Measurements: Online: It is important to verify that
the FORCe method is able to remove artifacts from the EEG
online. This means the method must be able to remove artifacts
from an epoch of EEG in less time than the length of the epoch.
An epoch of length 1 s is used; therefore, the method must clean
the data in considerably less than 1 s.

To verify this and that the method is able to operate on a pe-
riod of continuously recorded EEG without introducing timing
delays or other related problems, the method is applied during
online EEG recording, and cleaned online, in a paradigm de-
signed to evoke artifact generation by the participants.

Three healthy individuals participated in an online experi-
ment. All were male with ages of 30, 29, and 29. The first two
were right handed and the third left handed.

EEG was recorded, at 512 Hz, from the same electrode po-
sitions as for the participants with CP using the same electrode
system.

Participants were seated in a comfortable chair approximately
1 m in front of a monitor which cued them to blink, look around
the room without moving their head, move their head, clench
their jaw, move their arms, or sit still and relaxed.

Each cued trial lasted 4 s and was separated by an intertrial
interval of 2 s. Each type of trial was repeated four times per ses-
sion resulting in 24 trials of a total length of 144 s. In addition,
auditory tone cues were played at both the beginning and end
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of the trials. The auditory cue at the end was to ensure partici-
pants ceased movement at the correct time (for example, when
looking around the measurement room the participant may not
notice a visual cue to cease movement). Participants completed
4, 5, and 6 runs, respectively.

F. Signal Quality Index

The signal quality metric (SQI) [33] was employed to quan-
tify the EEG signal quality. SQI is measured from 0 to 1, with 0
denoting clean artifact free EEG and 1 denoting heavily artifact
contaminated EEG. Parameters were extracted from the EEG
from four distinct cortical regions—frontal, central, temporal,
and parietal/occipital located channels—and included max-
imum amplitude values, standard deviations, kurtosis values,
and skewness values. These were then thresholded. Further
details are provided in [33].

When applied to continuous EEG the SQI was applied in a
moving window of length 1 s, step size 0.25 s [37]. In each
window the percentage of thresholds exceeded was calculated
and the mean and distribution of SQI values over the signal
indicated how clean the EEG was.

G. ERD/S

ERD/S refers to a reduction in oscillatory activity in the o
(8-13 Hz) and £ (13-30 Hz) frequency bands during motor
activity or imagery and followed by an increase over baseline
values after movement cessation [28]. Detection of ERD/S may
be used to identify when a BCI participant is attempting motor
imagery (MI) and, therefore, forms the basis of MI-BCI con-
trol. Ideally, after application of an artifact removal method the
ERDY/S effect should either be more prominent (if artifacts were
present) or unaltered (if the EEG were clean).

ERD/S strengths were calculated as changes in bandpower
between 1.5-8 s against a baseline period of 0 to 1.5 s relative
to the start of the trial. The ERD/S spectra were also calculated
from trials of 0 to 8 s relative to the start of the trial, via the
method described in [38], during the MI tasks the participants
with CP were asked to perform.

Mean ERD/S strength was calculated as the sum of the rela-
tive bandpowers between 1.5-8 s relative to the start of the trial
from the « band (8—13 Hz).

H. Classification

To determine if there is an effect on BCI classification re-
sults, for the participants with CP, induced by application of
either of the investigated artifact removal methods, accuracies
are calculated offline for both the original EEG and the EEG
cleaned by each of the methods (the FORCe method, LAMIC,
and FASTER). This ensures that comparisons made are mean-
ingful, as with both datasets the accuracy reflects the best accu-
racy achievable via offline analysis. For a given trial of length
8 s (0-8 s relative to the cue presentation time), band power
features were extracted from the frequency bands 8—13 Hz and
13-30 Hz via a sliding window of length 1 s, step size 1 sample.
A linear discriminant analysis (LDA) classifier was then applied
in a sliding window of length 0.25 s. Training and validation was
performed within a leave-one-out train and validation scheme

TABLE 11
THRESHOLD SENSITIVITY RESULTS. ASTERISKS (*) INDICATE THRESHOLDS TO
WHICH THE FORCE METHOD IS SIGNIFICANTLY SENSITIVE (p < 0.01)

Threshold Senstivity

Lag offset -0.649  *
Max AMI 0.556 *
Min AMI -0.288  *
IC amplitude 0.000 *
Number of spikes 0.684 *
Kurtosis 0.899 -
PSD energy distribution 0955 -
30Hz PSD 0275 -
Std. scalp projections -0.965 *
Frontal / all channel ratio 0.654 *
Max amplitude 0.706 *
Peak to peak amplitude -0.419 -
Soft threshold: A (approx) -0.942  *
Soft threshold: G (approx) -0.191 *
Soft threshold: A (detail) 0.859 *
Soft threshold: G (detail) 0.999 *

for trials recorded during the training phase (four classes), inde-
pendently for each participant.

1 Visual Inspection

To verify the efficacy of the artifact removal methods visual
inspection of the signals, before and after artifact removal, was
performed by two blinded reviewers. The reviewers had two
(HH) and five (ID) years of experience at labelling EEG for
artifacts and the dataset was split evenly between them. Com-
parisons were then made between the methods and the original
EEG based upon the percentage contamination of the signals by
each type of artifact.

J. Statistics

Comparisons of the efficacy of each of the methods, as mea-
sured by each of the criteria described here, are made using non-
parametric Friedman tests. Multiple comparisons corrections
are performed via Tukeys honestly significant difference rou-
tine.

III. RESULTS

The sensitivity of the FORCe method to different thresholds
is first reported. The efficacy of each of the methods is then re-
ported from offline application to the EEG recorded during at-
tempted BCI control by participants with CP. Finally, the results
from the online measurements are reported.

A. Threshold Sensitivity

The sensitivity of each threshold to random variations is re-
ported in Table II. Sensitivity is reported in terms of corre-
lation between final success of the method (as measured via
ERD/S strength) and randomly selected threshold values. Thus,
the greater the sensitivity value the higher the sensitivity of the
method to the threshold.

Note, in all cases the manually selected thresholds produce
higher mean ERD/S strengths than the mean ERD/S over all
randomly selected thresholds. The asterisks indicate thresholds
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Fig. 1. Example signals before and after artifact removal by each of the methods from a participant with CP (participant 9). Figures in the top row illustrate EEG
epochs prior to artifact removal containing a blink (left column) and EMG (right column). Second row figures illustrate the EEG signal after cleaning by LAMIC
and the third after cleaning via FASTER. Figures on the lowest row illustrate the EEG after cleaning by the proposed (FORCe) method.

for which the manually selected thresholds are observed to per-
form significantly better than randomly selected thresholds (p <
0.05) as assessed via a two sample Kolmogorov-Smirnov test.

B. Offline Data

Examples of EEG epochs cleaned by LAMIC, FASTER, and
the FORCe artifact removal method are shown in Fig. 1.

Note, all methods remove the blink artifact. However, when
applied to the EMG artifact the FORCe method produces a
clear reduction in the EMG contamination, while LAMIC and
FASTER, by contrast, produce only small changes in the signal.

Fig. 2 illustrates power spectra from portions of the EEG la-
belled as clean and as containing artifacts before and after ap-
plication of the FORCe method. Note that, in the case of artifact
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Fig. 2. Power spectra calculated via Welch's method with a Hamming window and a 512-point FFT; 32 point overlap. Power spectra are calculated from a typical
participant with CP (participant 9) from the original EEG and the EEG cleaned by the FORCe method. Power spectra are calculated over portions of the signal
visually identified as containing artifacts (plot A) and free of artifacts (plot B). Frequency bands of width 1 Hz that are significantly different between conditions
(as determined by paired ¢-tests, corrected for multiple comparisons via the false discovery rate method, p < 0.01) are indicated via asterisks (¥).

TABLE III
MEAN SQIS CALCULATED FROM ORIGINAL EEG SIGNALS, EEG CLEANED
BY FORCE METHOD, EEG CLEANED BY FASTER, AND EEG CLEANED
BY LAMIC. ASTERISKS (*) INDICATE HIGHLY SIGNIFICANT (p < 0.001)
DIFFERENCES IN SQI FROM ORIGINAL EEG, AS ASSESSED BY NONPARAMETRIC
PAIRWISE KRUSKAL-WALLIS ANOVAS BETWEEN GROUP PAIRS

Method Mean  Std.
Original EEG 0.133 0.032
LAMIC 0.099 0.039 *
FASTER 0.091 0.030 *
FORCe 0.063 0.024 *

contaminated EEG, the artifact removal significantly reduces
the power spectra at a broad range of frequencies (p < 0.01,
false discovery rate corrected). In the case of portions of the
EEG labelled as clean only very low frequencies (< 3 Hz)
are significantly reduced. This may be due to low frequency dc
offset effects being removed via the FORCe method. In the case
of LAMIC and FASTER similar observations are made. How-
ever, while the high frequency band activity (> 30 Hz) is sig-
nificantly reduced by our method, both LAMIC and FASTER
do not significantly reduce this.

Table III lists the SQIs before and after application of the
methods. Note, there are significant decreases in SQI induced
by each of the methods but that the FORCe method induces
greater reductions than LAMIC or FASTER. This is confirmed
by applying a nonparametric Friedman test with column factor
Group (original EEG, EEG cleaned via LAMIC, EEG cleaned
via FASTER, and EEG cleaned via the FORCe method) and
row factor participant number. A highly significant effect of the
column factor Group is observed x%(3, N = 51) = 33.46,
p < 0.001. After correction for multiple comparisons (Tukeys
honestly significant difference test) the original EEG and the
EEG cleaned by the FORCe method are both observed to be sig-
nificantly different from other groups, with the FORCe method
performing significantly better than both FASTER and LAMIC.

Fig. 3 presents an example of ERD/S spectra calculated from
EEG recorded from a participant with CP (participant 2) during
hand and feet MI. Note, when only a small amount of artifact is

present, both LAMIC, FASTER, and the FORCe method pro-
duce equivalent results. However, when there is a large amount
of artifact present in the signal the FORCe method is much more
successful at reducing the artifact contamination of the spectra.

Mean ERD/S values are compared between the methods.
The mean (+standard deviations) ERD/S strengths from each
dataset are listed in Table IV. Additionally, a nonparametric
Friedman test is used to compare the ERD/S strengths be-
tween column factor “Conditions” with row factor participant
number. Although no significant differences are found (x2(3, N
= 111) = 2.7, p > 0.05) there is a visibly apparent, small,
increase in ERD/S strength after application of the FORCe
method.

Peak classification accuracies are calculated from the motor
imagery period (3.5-8 s relative to the start of the trial) and
listed in Table V for each of the artifact removal methods. A
nonparametric Friedman test, performed over the peak classifi-
cation accuracies achieved with EEG cleaned by each method,
with column factor method and row factor participant number,
reveals a significant effect of the factor “Method” x*(3, N =
51) = 12.57, p = 0.005. Post-hoc Tukey's honestly signif-
icant criterion tests reveal significant differences between the
original EEG and the FORCe method (p = 0.019) and be-
tween the FORCe method and FASTER (p = 0.007). However,
no significant differences are found between the original EEG
and LAMIC (p = 0.769) or the original EEG and FASTER
(p = 0.988).

Additionally, a measure of the central tendency of the accura-
cies may be used to compare the accuracies achieved with each
of the datasets. The median accuracy achieved with the orig-
inal EEG in the time period 3.5— 8 s relative to the start of the
trial is 0.219 + 0.019 (+ standard deviation), while the median
accuracy achieved using data cleaned via the LAMIC method
is 0.220 £ 0.032, the median accuracy achieved with FASTER
is 0.233 £ 0.020, and the median accuracy achieved with the
FORCe method is 0.255 £ 0.027.

Fig. 4 illustrates the mean and standard deviation of the peak
accuracies achieved with the original EEG and the EEG after ap-
plication the methods. Note, each method produces an increase
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Fig. 3. ERD/S spectra during left hand and feet MI as measured from the orig-
inal EEG, EEG after cleaning by LAMIC, EEG cleaned by FASTER, and EEG
after cleaning by the FORCe method. Channels illustrated in each subfigure are
(from top-left to bottom-right): FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4.
(a) Hand MI, Original EEG. (b) Hand MI, LAMIC. (c) Hand MI, FASTER. (d)
Hand MI, FORCe. (e) Feet MI, Original EEG. (f) Feet MI, LAMIC. (g) Feet
MI, FASTER. (h) Feet MI, FORCe.

TABLE IV
ERD/S STRENGTHS IN ORIGINAL EEG AND EEG AFTER APPLICATION OF
EACH OF THE ARTIFACT REMOVAL METHODS. MEAN AND STANDARD
DEVIATION (STD.) ARE LISTED OVER ALL PARTICIPANTS

Method Mean Std.

Original EEG 0.316 0.171
LAMIC 0.331 0.224
FASTER 0.322 0.179
FORCe 0.359 0.155

in classification accuracy. However, this increase is only signif-
icant after application of the FORCe method.

Mean blinded reviewer scores for the percentage of the sig-
nals identified as containing artifacts for each online method
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TABLE V

PEAK CLASSIFICATION ACCURACIES ACHIEVED ON TRAINING TRIALS (4
CLASS) BY EACH PARTICIPANT WITH ORIGINAL EEG AND EEG CLEANED BY
EACH METHOD. FOR EACH METHOD PEAK ACCURACY, AND SIGNIFICANCE
OF THE ACHIEVED ACCURACY AGAINST THE NULL HYPOTHESIS OF RANDOM
CLASSIFIER RESULTS, IS LISTED. SIGNIFICANCE LEVELS ARE ADJUSTED VIA

FALSE DISCOVERY RATE METHOD [39] AND ADJUSTED p-VALUES ARE

REPORTED. P. DENOTES PARTICIPANT NUMBER

P.  Original LAMIC FASTER  FORCe
EEG
Acc. Padj Acc. Padj Acc. Padj Acc. Padj
2 035 012 035 0.12 035 008 042 0.07
3 037 0.04 039 <0.01035 0.04 039 0.01
4 037 008 037 008 035 012 035 0.08
5 037 007 032 012 032 012 056 <0.01
6 028 038 040 0.07 036 012 040 0.07
7 037 012 042 0.07 042 007 040 0.07
8 048 <0.010.38 003 028 032 0.38 0.03
9 032 022 036 012 034 022 034 022
10 033 022 037 004 040 0.07 040 0.07
11 032 022 032 022 035 012 035 012
12 036 0.04 040 001 035 0.04 041 0.01
13 040 0.04 040 004 040 0.04 045 0.01
14 040 0.04 038 0.06 0.37 0.06 043 0.03
055 ' ' 1
05
045
>
g
3 04
o
<
0.35
03
0.25

LAMIC FASTER

Original

Proposed method

Fig. 4. Mean =+ standard deviation accuracies achieved with the EEG before
and after application of each artifact removal method. Asterisk (*) indicates
significant difference in classification results between the original EEG and the
EEG after application of the proposed (FORCe) method.

are listed in Table VI. Mean and standard deviation percentages
of artifact contamination for each artifact (blinks, EMG, move-
ment, failing electrodes, and slow EOG) are listed.

The percentage of artifact contamination between the original
EEG and the EEG after application of each of the methods is
compared via t-tests. The false discovery rate method is applied
to correct for multiple comparisons. Significant changes (p <
0.05, corrected) are indicated in Table VI. Asterisks (*) indicate
significant improvement over the original EEG and daggers ()
indicate significant differences between the FORCe method and
LAMIC.

C. Online Test

Use of the method during online artifact removal is also ob-
served to visibly reduce the presence of artifacts in the signal in
a similar manner to that during offline operation.

Examples of power spectra before and after application of
the online artifact removal method are shown in Fig. 5. Note
that the artifact removal method reduces power at frequencies
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Fig. 5. Online artifact removal: example of EEG power spectra before and after application of the FORCe online artifact removal method. Plot A illustrates the
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TABLE VI
PERCENTAGE ARTIFACT CONTAMINATION, BEFORE AND AFTER APPLICATION
OF EACH METHOD, AS RATED BY BLINDED REVIEWERS. MEAN AND
STANDARD DEVIATIONS ARE LISTED. STANDARD DEVIATION IS AGGREGATED
OVER PARTICIPANTS. FOR EACH ROW, SIGNIFICANT DIFFERENCES BETWEEN
NUMBERS OF OBSERVED INSTANCES OF EACH ARTIFACT TYPE, BETWEEN
EITHER LAMIC AND ORIGINAL EEG OR BETWEEN FORCE AND ORIGINAL
EEG ARE INDICATED VIA ASTERISKS (*), WHILE SIGNIFICANT DIFFERENCES
BETWEEN LAMIC AND FORCE ARE INDICATED VIA DAGGERS (}). MOVEMENT
ARTIFACTS REFER TO LOW FREQUENCY LARGE ARTIFACTS ASSOCIATED
WITH HEAD MOVEMENTS, AND OFTEN OCCUR CONJOINTLY WITH EMG. ALL
SIGNIFICANCES ARE CORRECTED FOR MULTIPLE COMPARISONS VIA FALSE
DISCOVERY RATE METHOD

Blink 422 2.53 3.86 1.07
(£3.15) (£4.23) (£3.47) (£1.70)*
EMG 2699 2615 1391 1035
(£16.14) (£ 13.36) (£ 13.15) (£ 6.29) *
Movement ~ 2.90 2.46 2.09 0.81
(£3.58) (£4.00) (£4.29) (£0.73)
Failing 0.01 0.01 0.01 0.01
electrode  (£0.04) (£0.04) (£0.05) (£0.03)
Slow EOG  0.93 0.83 0.52 0.36
(£2.20) (£1.86) (£1.69) (£0.73)
Clean EEG 6503  67.99  79.61  85.40

(£16.26) (£15.47) (£13.99) (£10.77) * |

below the alpha frequency band by a large amount and at higher
frequencies by a small amount.

During online operation a mean SQI of 0.066 is achieved over
the participants with a standard deviation of 0.027. This is sim-
ilar to that achieved by the FORCe method during offline oper-
ation and demonstrates that the method performs equivalently
during online artifact removal.

The runtime of the online methods are also recorded. Our
method has a mean runtime 0f 0.382 s (£0.076 s), while LAMIC
has a mean runtime of 0.226 s (0.023 s). Run times are mea-
sured over a total of 15 runs spread between three participants.
Each run contained 24 trials and had an approximate duration
144 s.

IV. DiscussioN

The FORCe method has been shown to effectively remove
a wide range of participant generated artifacts from the EEG

including blinks, EMG, and EOG. The method is able to run
during online EEG acquisition and is verified both offline and
online. Offline application of the method to EEG recorded from
13 participants with CP during attempted control of an MI-BCI
revealed a significant reduction in visually identifiable artifacts,
improvement in SQI, reduction in visible artifacts, increase in
ERD/S strength, and increase in classification accuracy.

The method is also demonstrated to operate online during
EEG acquisition. It may be used to clean the EEG signals and
make them available for subsequent processing steps after a
short delay. The method does not exhibit an increasing time
delay (time leak). We expect future computer technology ad-
vancements will reduce this delay even further. The FORCe
method is, therefore, suitable for use during online BCI oper-
ation when run on a “typical” laptop (2.8 GHz, 2 GB RAM).

It is important to consider the robustness of the method to
differing datasets and requirements. Currently the method has
been tested on datasets containing 16 EEG channels. It is ex-
pected that the method would scale approximately linearly with
an increasing number of channels. Thus, with 32 channels the
method could take approximately twice as long to run per epoch.
This would prevent its use online with the current hardware con-
figuration but does not present an insurmountable problem. In-
deed it may be argued that a trend in practical BCI research is to
reduce the number of channels used rather than increase them.
Thus, this constraint is not overly limiting.

The sample rate at which the data is acquired presents a re-
striction to the method. A doubling of the sample rate would
present the need to decompose the signal to additional levels
via the wavelet transformation. This would result in a greater
than linear increase in the amount of data to be thresholded and
more severely constrains the runtime of the method. However,
the sample rate at which the data was originally recorded (512
Hz) is already quite high when compared to a number of other
BCI studies. Thus, this restriction on the method is not likely to
prove overly onerous for the usability of the method.

It may be argued that, as thresholds were only trained on
two participants, the method may not be robust. However, it
was shown to successfully reduce the influence of artifacts in a
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large number of both healthy participants and participants with
a range of CP induced difficulties. Additionally, a sensitivity
analysis on the selected threshold values reveals the chosen
threshold values to, in every case, perform better than, and in
many cases, significantly better than, randomly drawn values
from appropriate ranges. Therefore, it may be concluded that
the method is robust over a relatively diverse population.

The FORCe method is compared to state-of-the-art methods,
LAMIC and FASTER, and is seen to produce significantly
better performance as measured by all the metrics employed.
As both LAMIC and FASTER have, in previous studies, been
compared to other artifact removal methods (Blind source
separation, Wavelet based methods etc.), and have been demon-
strated to exhibit superior performances, we may conclude that
the method proposed and described in this work is also able to
perform better than these alternative artifact removal methods.

The only metric at which LAMIC performs best is computa-
tional runtime. However, given the small difference, and that our
proposed FORCe method is still capable of running fast enough
for online operation, this is not considered a significant disad-
vantage.

The method is unable to completely remove the influence of
EMG in every case. This could be for a number of reasons. EMG
is broad band and may contaminate multiple channels. Nonethe-
less, the method does reduce its influence on the signal consid-
erably. Indeed, more electrodes could lead to better reduction of
the EMG artifact as the resulting greater number of ICs could
allow better separation of the EMG artifact component.

Indeed, existing artifact removal approaches which attempt to
remove EMG and/or EOG artifacts often rely on either a much
larger number of electrode channels [40] or other reference sig-
nals such as EMG or EOG [41]. By way of contrast our FORCe
method does not require any additional reference channels and
operates accurately on a relatively small set of EEG channels.

Alternatively, the method could be combined with an ap-
proach in [42] for the removal of head movement artifacts.
This approach uses an accelerometer to record head movement
and then attempts to separate ICs which correlate with the
accelerometer signal. This is based upon the assumption that
EMG induced by head movement would be statistically related,
and hence grouped, with ICs which also contain low frequency
signals correlating with the accelerometer signal.

The approach was able to remove head movements offline
when applied to a long signal epoch. However, some adaptation
of the method would be required to allow it to operate during
online BCI use, as our FORCe method is capable of.

Future work will seek to validate the FORCe method during
online BCI operation by both healthy participants and partici-
pants with specific disabilities for which a BCI could be benefi-
cial. Additionally, it is important to further validate the efficacy
of the method during other types of BCI operation, for example,
during event-related potential (ERP) based BCI control.

V. CONCLUSION

A novel fully automated online artifact removal method
(FORCe) is proposed and validated on an offline BCI dataset
and during online EEG acquisition. The method is able to

remove/reduce the influence of artifact types including blinks,
EMG, ECG, and EOG while preserving EEG components
derived from neurological activity. The method is able to op-
erate on only 16 EEG channels and does not require additional
signals. We, therefore, propose that the method could be highly
beneficial during online BCI operation for a large variety of
applications.
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