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Abstract—Specials medications are personalized formulations 
manufactured on demand for patients with unique prescription 
requirements and constitute an essential component of patient 
treatment. Specials are becoming increasingly in demand due to 
the need for personalized and precision medicine. The timely 
provision of optimal personalized medicine, however, is 
challenging, subject to strict regulatory processes, and is expert 
intensive.  In this paper, we propose a new medical formulation 
engine (MFE) that performs semantic search across multiple 
disparate formulations archives to enable data driven formulation 
intelligence. We develop a new platform for medical formulations 
recognition (MFR) that curates a new dataset comprising 
formulations and non-formulations (clinical) text and uses a novel 
pipeline encompassing deep feature extraction and one-class 
support vector machine learning. The proposed MFR framework 
demonstrates promising performance and can be used as a 
benchmark for future research in formulations recognition. 

Keywords—Text Recognition, NLP, Deep Learning, One-Class 
Learning, Support Vector Machine 

 

I. INTRODUCTION  
The majority of medicines prescribed to adults are licensed 
products with clearly defined usage and will have undergone 
rigorous regulatory procedures to evidence drug efficacy, 
safety, administration, indications and shelf-life.  However, the 
use of unlicensed, off-label, and personalized medication is also 
common, especially within certain patient demographics such 
as neonates and the elderly [1]. It has been stated that 93% of 
neonates in intensive care will receive at least one unlicensed 
or off-label medicine [2]. Specials medications are formulations 
which are bespoke manufactured for patients with unique 
prescription requirements, specifically for individuals who 

clinically require something that is different from the standard 
licensed format [1]. This may be because: they are a baby/small 
child or elderly and require a different strength or format, they 
are allergic to ingredients, have swallowing difficulties [3], or 
other complexities; the drug is new and / or there is not enough 
demand; or because there are supply issues with a licensed 
product [4].  According to the Association of Pharmaceutical 
Specials Manufacturers, unlicensed and off-label medication 
represents 1% of total prescriptions and constitutes more than 
75 000 formulations per annum. In 2017 the NHS drug spend 
was £9.17 billion, and £77.5 million constituted specials [1]. 
 
The individualized nature of specials production, coupled with 
requirements for strict quality control, constitutes a substantial 
burden for healthcare professionals. Such practice is a 
necessary part of product development and should be informed 
using the best available evidence. Furthermore, it is necessary 
to provide efficient and timely drug provision in order to avoid 
practical problems such as delays in treatment [4]. Access to 
existing bodies of clinical knowledge is an important factor and 
is reflected in the sheer volume of formulation studies which 
have been published since the 1960s [5,6]  Such studies are 
typically long-term, analyze drug content and drug degradation, 
and consider a variety of environmental factors (such as 
temperature, light and pH). 
 
Despite the availability of vast digital archives of clinical 
publications including formulation studies, archive search is 
non-trivial. Formulation development and validation is an 
inherently manual process which involves expert input.  There  
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Fig. 1. Medical Formulation Engine Architecture 

 
 
exists a high similarity between formulations text and other 
medical studies, such as clinical trials, and information is 
typically stored across multiple, disparate archives of data (both 
proprietary and non-proprietary). These factors result in time 
inefficiencies and are costly for the industry.  
 
There exists a clear opportunity to exploit current trends in 
natural language processing and machine learning, such as deep 
learning, to assist with specials production. In this paper we 
propose the development of a Medical Formulation Engine 
(MFE), which enables user-defined search of multiple data 
archives and utilizes state-of-the-art machine learning methods 
including natural language processing (deep feature extraction 
coupled with one-class learning) for automatic recognition, 
retrieval, and creation of pharmaceutical formulations (Fig. 1.). 
Our overriding objective is to enhance existing operating 
procedures and facilitate data – driven knowledge creation 
within the specials manufacturing market, to enhance 
personalized medicine, enable intelligent formulation search 
and facilitate further work on predictive analytics. Specifically, 
this work addresses the following challenges: 
 
• There is no single public dataset available which represents 

medicine formulation studies.   
• Public sources of formulations data are typically 

heterogeneous and disparate. 

• Practitioners will access multiple sources manually when 
building specials formulations and will utilize both internal 
and external data. 

• There exists a high semantic similarity between 
formulations data and other clinical sources- both expert 
search and automated recognition are non-trivial. 

 
The remainder of this document is structured as follows. Our 
methodology for medical formulations recognition is presented 
in Section 2.  An experimental overview is offered in Section 
3. Results and discussion are offered in Section 4, and Section 
5 describes conclusions and future work. 
 

II. METHOD 

A. System Overview 
This study seeks to evaluate the accuracy with which 
pharmaceutical formulations text may be recognized from other 
similar clinical manuscripts. Our framework for Medical 
Formulation Recognition (MFR) is presented in Fig. 2. After 
acquisition, data is transformed into deep feature vectors using 
Universal Sentence Encoding (USE) [7] and resultant feature-
space representations are reduced via Principal Component 
Analysis (PCA) [8]. Due to problems associated with learning 
imbalanced data (e.g. the existence of a skewed class 
distribution, and the potential for over-training in favor of the 
majority class), we regard pharmaceutical formulation 
recognition as a one-class problem, where non-formulations  
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Fig. 2. MFR Methodology. 

 
(clinical) text is defined as an outlier.  To achieve this, n 
principal components of USE features are used as inputs for 
one-class support vector machine (SVM)  learning.  One-class 
SVM learning [9] is an approach that has been successfully 
applied to overcome data imbalance across a variety of 
application areas, including fraud detection [10], pronunciation 
verification [11], and cancer diagnosis [12]. 
 
A. Data Acquisition 
Journal abstracts were digitally collected from the following 
sources:  

• PubMed (life sciences & biomedical) repository using 
the BioPython Web API [13] 

• Trissel’s online archive of compounded formulations 
[14], via (keyword-based) web crawl and abstract 
extraction.  

 
For PubMed inputs, in order to retrieve articles corresponding 
to unlicensed medicines formulations, we made API calls using 
queries which were co-produced with a team of experts offering 
domain insight. After search query execution using the 
BioPython Web API, returned abstracts were inspected and 
manually labelled by experts, with each abstract classified as 
corresponding to a formulation or non-formulation study.  
Example queries are illustrated in Fig. 3. For SVM learning, 
only formulation abstracts were retained.  
 
Our complete data set comprises 968 abstracts, of which 882 
and 86 constitute formulations and non-formulations, 
respectively. All abstracts are clinical in nature. Abstract 
lengths range between 2 – 20 sentences, with a mean length of 
9.23 and standard deviation of 3.18. Data was stored as 
unstructured raw text and used directly as inputs for feature 
extraction. 308 formulations abstracts were sourced from 
Trissels [8], and the remainder of abstracts were the result of 
PubMed search. 

 

 
 
Fig. 3. Example WebAPI Queries 

 
B. Deep Feature Extraction  

In this research, feature extraction is regarded as a transfer 
learning task and implemented using Universal Sentence 
Encoding (USE).  USE has been trained and optimized for 
greater-than-word-length NLP activities, and can take as input 
sentences, phrases or short paragraphs. The model is trained 
with a Deep Averaging Network (DAN) encoder [15] and does 
not require text pre-processing [7]. It encodes text into a fixed-
dimensional (512 features) embedding string representations 
[7] and has been successfully applied across a variety of NLP 
tasks including text mining, document classification, clustering, 
and semantic similarity.  USE achieves good performance with 
minimal amounts of training data [7], which makes it 
appropriate in scenarios where large training sets are not 
available.  

queryList =                         [‘Stability aqueous solution’,
‘compounded formulation‘,

‘compounded formulation oral suspension’,
‘extemporaneous stability’,
‘oral solution stability’,

‘stability ointment  90 days’,
‘Stability ora plus’]

for q in queryList
    results = search(q)

def search(query):
    handle = Entrez.esearch(db='pubmed', 
                            sort='relevance', 
                            retmax='10000',
                            retmode='xml', 
                            term='query')
    results = Entrez.read(handle)
    return results
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C. Dataset Dimensionality Reduction  
We perform data dimensionality reduction using Principal 
Components Analysis (PCA).  PCA, alternatively known as the 
Hotelling Transform, is an unsupervised linear transform 
performed by calculating the eigenvectors of a dataset’s 
covariance matrix and projecting resultant data onto a new 
coordinate system where the data is mapped in decreasing order 
of variance [8]. By retaining only those components with higher 
variance, we reduce UCE vectors into a smaller set of variables, 
aim to decrease model complexity and associated training 
times, and avoid overfitting.  
 
D. One Class Support Vector Machine (OCSVM) 
OCSVM is an unsupervised learning technique for outlier 
detection which was first introduced by Schölkopf et al [9]. 
OCSVM modelling is distinct from multi-class supervised 
SVM learning, given that inputs belong to a single class of data 
and can therefore technically be regarded as unlabeled [16].  
Within the literature, [17] utilize OCSVM for gathering rich 
data from medical subject headings (MeSH). [18] utilize one 
class SVM for document classification, and similar approaches 
have also been applied on image processing applications such 
as detecting chinese calligraphy style differences [19].  
However, the application of OCSVM learning for formulations 
recognition has been previously unexplored. 
 
The one-class SVM learning problem is framed as: Given a 
dataset with feature space probability distribution P, find a 
“simple” subset S of the feature space such that the probability 
that a test point from P lies outside S is bounded by some a-
priori specified value [9]. To generate the boundary and 
separate the dataset from the origin [9], we solve: 
 
 

min
$%&,(%ℝℓ,+%ℝ

			-
.
‖𝑤‖. +	 -

2ℓ
	∑ 𝜀5 − 𝜌5 				(1) 

 
 subject to     (𝑤.𝛷(𝑥5)) ≥ 𝜌 − 𝜀5, 	𝜀5 ≥ 0	∀𝑖   
 

Where 𝑥5  is the training data points, ℓ   the number of 
observations, 𝛷 is feature map, and 𝜐  represents the upper 
bound on the fraction of outliers and lower bound on the 
fraction of support vectors. Moreover,  𝜌 and  𝑤  are decision 
variables define the classifiers,  𝜀5  non-zero slack variables 
penalized in the object function [20][9]. 
 
Equation (2) will be used instead of (1) as its “common to solve 
the Lagrange dual”:  
 

	min
B
			-
.
∑ ∑ 𝛼5𝛼D𝑘(𝑥5, 𝑥D)D5 																		(2) 

 
    subject to    0	 ≤ 	𝛼5	 ≤

-
2ℓ
, ∑ 𝛼5 = 15   

 
where k represents the kernel function, where the kernel 
function is transforming the data input into specific form. In one 

class SVM there are many types of the kernel functions such as; 
linear classifier, polynomial, radial basis function (RBF) and 
sigmoid. In this work we will use only RBF kernel function, 
where k is:  
 
 																	𝑘	(𝑥, 𝑦) = exp M−	‖NOP‖

Q

.RQ
S				                (3) 

 
 
Where ‖𝑥 − 𝑦‖.  is the Euclidean distance between two data 
points, and 𝜎  is free parameter of the kernel function.  
 

III. EXPERIMENTAL OVERVIEW 
After data acquisition using the approach defined in Section II, 
we partition abstracts into training and test samples. It has been 
previously reported that OCSVM operates better when there are 
no or less anomalies in the training data [10, 21].  For this 
reason, we exclude non-formulation abstracts (negative 
samples) from model training and partition our formulations 
data into 90% training and 10% test sets.  The formulations test 
set (89 samples) is subsequently combined with non-
formulation data (86 samples) for final system evaluation. Our 
full data partitioning protocol is illustrated in Table 1.  
 
An example of formulations text is illustrated in Fig. 4. USE 
takes as input lowercase strings. Due to unique characteristics 
of our data, we do not perform any additional pre-processing, 
and encode data at the paragraph level.  Formulation abstracts 
are typically short and contain domain specific numerical data 
and special characters. We wish to maintain domain specific 
content and investigate the accuracy achievable using simple 
models which are trained at the paragraph level. After USE, we 
reduce each document’s 1*512 feature vector to a 1*n vector of 
principal components, with n = 30 selected after empirical 
investigation of component variance (Fig. 5.). Specifically, we 
retain only those components required to maintain 80% of total 
dataset variance. 
 

TABLE I.  TRAINING & TEST SET PARADIGM 

 
 
 

 
Fig. 4. Example Formulations Text 

formulation a stayed physicochemical and microbiologically stable at
refrigerated (4°c) conditions during at least 150 days and it only stayed stable
during 14 days at 25°c. formulation b was stayed physicochemical and
microbiologically stable at refrigerated (4°c) conditions at least 90 days, but it is 
not recommended to store at 25°c for more than 1 day.
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Our OCSVM is trained using an RBF kernel. Given that 
parameter optimization is a significant issue for OCSVM [22], 
we evaluate performance across a variety of outlier fractions (v) 
and gamma values using the following metrics:  
 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 \]^_	`ab5c5d_b
\]^_	`ab5c5d_be&fgb_	`ab5c5d_b

																			(4) 
 
 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	 \]^_	`ab5c5d_b
\]^_	`ab5c5d_be&fgb_	k_lfc5d_b

																		(5) 
 
 
 

𝐹1	 = 	2 ∗ 	`]_p5b5aq	∗	r_pfgg
`]_p5b5aqer_pfgg

																																(6) 
 
and 
 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	 \]^_	`ab5c5d_be\]^_	k_lfc5d_b
\acfg	ufvwg_b

	∗ 100														(7) 

 

 
Our system is implemented in python using Scikit-learn and 
TensorFlow packages [23, 24], and executed within a Windows 
environment (i7 processor, 16 GB RAM).  
 
 

IV. RESULTS & DISCUSSION 
 

Mean medical formulation recognition accuracy across the full 
range of v and gamma parameterizations was 0.752, with 
precision = 0.83, recall = 0.66, and f1 = 0.722. Those individual 
SVM setups achieving maximum performance for each metric 
are summarized in Table II. Across all experiments, maximum 
classification accuracy of 0.817 was attained (F1 score = 
0.832).    
 
 

 
Fig. 5. PC Variances 

TABLE II.  SUMMARY OF CLASSIFIER PERFORMANCE 

 
 
 
 

 
 
Fig. 6. Confusion Matrix, Gamma = 5.3, v = 0.01 

 
The confusion matrix for v = 0.01 and gamma = 5.3 is provided 
in Fig. 6. It can be seen from Fig 6. that 89% of formulations 
were correctly recognized, and 26% of non-formulations were 
misclassified.  Full inspection of accuracy as a function of 
OCSVM parameterization (Fig. 7) illustrates: accuracy > 0.74 
where v < 0.25; and accuracy > 0.78 with mid-range gamma 
values. Similarly, F1 scores are maximized when v < 0.2 (Fig. 
8). It apparent from Table II that there exists a trade-off between 
classification accuracy and system precision and recall.  Where 
accuracy = 0.817, precision is 0.197 less than the maximum 
achievable (max precision = 0.977).  
 
This observation demonstrates the importance of considering a 
range of performance metrics when working with imbalanced 
datasets, and of evaluating classifier sensitivity to 
parameterization. We may increase mean precision (Fig. 9), but 
this is at the expense of true positive prediction.  Analysis of 
mean medical formulation recognition (across all gamma 
values) as a function of v (outlier fraction), as illustrated in 
Figure 9, further highlights this. Specifically, there exists an 
inverse relationship between precision and our other 
performance metrics.  Increased precision is at the expense of 
recall.  Where recall = 1, 43% of non-formulation abstracts are 
incorrectly recognized (Figure 11). 
 

V. CONCLUSIONS 
Medical formulations recognition (MFR) raises a promising 
and challenging task and offers excellent opportunities for 
further research in this area. This paper presents a new MFR 
dataset and evaluates the performance of the application of deep 
feature extraction and one class support vector machine 
learning for formulation recognition. Initial results demonstrate 
the promising performance of our proposed approach. Mean 
recognition across all SVM parameterizations is 0.752 and 
through OCSVM parameterization we can achieve accuracy of 
0.82, with 0.78 precision and 0.88 recall. We propose that our 
dataset and methodology constitute a new benchmark 
facilitating further research in this area.  

v gamma Accuracy Precision Recall F1

0.0100 5.3000 0.817 0.782 0.888 0.832

0.4200 8.9000 0.731 0.977 0.483 0.647

0.0100 1.3000 0.789 0.706 1.000 0.828

Formulation

64 (74%) 22 (26%)

10 (11%) 79 (89%)

A
ct

ua
l

Predicted

Non-Formulation

Formulation

Non-Formulation
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Fig. 7. Classification Accuracy as a Function of Parameterization 

 

 

Fig. 8. F1 Score as a Function of Parameterization 

 
When applied to MFR, the OCSVM demonstrates a clear 
sensitivity to parameterization. Future work could therefore 
focus on enabling robust, generalizable learning.   This can be 
achieved through adoption of more sophisticated feature 
extraction and representation methods, comparison of multiple 
kernels for learning, and further fine-tuning. The USE approach 
utilized constituted full transfer learning, with no fine-tuning, 
implemented at paragraph level. A comparative investigation of 
sentence- versus paragraph- level feature extraction, with fine-
tuning, is therefore desirable. Furthermore, there exists the 
opportunity to integrate additional approaches for feature 
extraction and representation, and machine learning models (for 
example novel approaches to MFR incorporating deep 
convolutional neural networks).  
 
Our goal is to have an automatic medical formulation engine 
(MFE) that can efficiently retrieve formulations from published 

archives based on user requests and create the formulation for 
the special requests. The output of the MFR will be used inside 
the Medicine Formulation Engine (MFE) to enable rapid 
formulation and production of novel and bespoke medications. 
MFE will assist in finding new formulations, where finding 
these formulations currently takes significant manual time and 
effort. This research and the MFE search engine will offer time 
and cost efficiencies to pharmacists searching through 
published formulation and stability studies, with the aim of 
reducing overall product development times and enhancing 
patient outcomes through timely provision of personalized care. 
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Fig. 9. Confusion Matrix, Gamma = 8.9, v = 0.42 

 
 

Fig. 10. Mean Performance as a Function of Outlier Fraction (v) 

 

 
Fig. 11. Confusion Matrix, Gamma = 1.3, v = 0.01 

Non-Formulation Formulation
Predicted

A
ct

ua
l Non-Formulation 85 (99%) 1 (%)

Formulation 46 (51.6%) 43 (48.4%)

Non-Formulation Formulation
Predicted

A
ct

ua
l Non-Formulation 49 (56.9%) 37 (43.1%)

Formulation 0 (0%) 89 (100%)
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