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A B S T R A C T

Chemical control of insect pests remains vital to agricultural productivity, but limited mechanistic understanding
of the interactions between crop, pest and chemical control agent have restricted our capacity to respond to
challenges such as the emergence of resistance and demands for tighter environmental regulation. Formulating
effective control strategies that integrate chemical and non-chemical management for soil-dwelling pests is
particularly problematic owing to the complexity of the soil-root-pest system and the variability that occurs
between sites and between seasons. Here, we present a new concept, termed COMPASS, that integrates ecolo-
gical knowledge on pest development and behaviour together with crop physiology and mechanistic under-
standing of chemical distribution and toxic action within the rhizosphere. The concept is tested using a two-
dimensional systems model (COMPASS-Rootworm) that simulates root damage in maize from the corn rootworm
Diabrotica spp. We evaluate COMPASS-Rootworm using 119 field trials that investigated the efficacy of in-
secticidal products and placement strategies at four sites in the USA over a period of ten years. Simulated root
damage is consistent with measurements for 109 field trials. Moreover, we disentangle factors influencing root
damage and pest control, including pest pressure, weather, insecticide distribution, and temporality between the
emergence of crop roots and pests. The model can inform integrated pest management, optimize pest control
strategies to reduce environmental burdens from pesticides, and improve the efficiency of insecticide develop-
ment.

1. Introduction

Global crop production depends on efficient protection from insect
damage. Wheat, rice, maize, barley, potato, soybean, sugar beet, and
cotton yield losses attributed to animal pests (primarily insects) were
estimated to be 10% in 2002, ranging from 7% in barley to 24% in rice
and 37% in cotton; losses to animal pests constituted 58% of the the-
oretical loss in the absence of crop protection measures (Oerke, 2006).
Modern crop protection from insect pests is delivered through a com-
bination of breeding and varietal selection, rotation, soil and crop
husbandry, biological and microbial control, and chemical insecticides.

In particular, chemical insecticides have been a cornerstone of
agricultural intensification since the introduction of organochlorine
insecticides in the 1960s (Peshin et al., 2009). Gianessi (2009) esti-
mated that US growers spent $1.2 billion on insecticides in 2008 to
treat 17% of the 1.1 million km2 of land cultivated with the 50 main

crops, and that this resulted in a yield benefit of $22.9 billion. More
than 650 insecticides have been registered for use on the global market.
Compared with the earliest insecticides, modern active substances have
improved mammalian toxicological profiles and greater selectivity;
targeted placement into the crop, for example as a seed treatment or
banded application, can achieve use rates lower than 50 g of active
substance (a.s.)/ha (Lamberth et al., 2013).

Despite these advances, there are major challenges to the continued
availability of insecticides, owing to the combined effects of pest re-
sistance, changing pest distributions, regulatory pressure on existing
products, and inefficiencies in the development of new products.
Globally, nearly 600 species of insects have been reported to be re-
sistant to one or more of 325 insecticides and/or five genetically
modified insecticidal traits (Sparks and Nauen, 2015); this necessitates
the development, maintenance, and use of pesticides with a variety of
modes of action, and the adoption of integrated pest management to
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minimize chemical interventions (Wilson et al., 2018). Trade and
transport have been important factors in the spread of pest species, and
climate change will modify the range of agricultural pests. Substantial
positive latitudinal shifts in pest populations have been observed in the
Northern Hemisphere from 1960 onwards, with Acari, Coleoptera,
Hemiptera, Lepidoptera, and Fungi shifting polewards and Nematoda
shifting toward the Equator (Bebber et al., 2013).

Environmental concerns about the use of insecticides have resulted
in tighter regulatory control. Stehle and Schulz (2015) found that 52%
of 11,300 reported concentrations of insecticides in surface waters ex-
ceeded regulatory threshold levels where effects on macroinvertebrates
can be expected. Exposure to pollen and nectar contaminated with
neonicotinoid insecticides has been identified as one of several factors
implicated in the global decline in the number of pollinators (Sanchez-
Bayo and Goka, 2014). Furthermore, insecticide use on crops has been
linked to declines in terrestrial biodiversity in general (Geiger et al.,
2010) as well as to declines specifically in the number of farmland birds
(Mineau and Whiteside, 2013). Regulatory schemes have responded to
these findings with high-profile actions, such as the moratoriums im-
posed by many countries on neonicotinoid seed treatments, and
through restrictions and deregistration of active substances already on
the market (Balderacchi and Trevisan, 2010).

Agrochemical discovery is almost exclusively based on a “chem-
istry-first” paradigm that has focused on the identification of leads
through high-throughput, in vivo testing of chemical libraries
(Lamberth et al., 2013). Mean times to discovery have remained in the
range of 3–4 years for the past half-century, with a 70-fold increase in
the number of compounds screened per product discovered (currently
ca. 160,000) counteracted by the adoption of virtual screening and the
use of techniques from pharmaceutical discovery, such as structure-
based design, fragment-based design, and genome sequencing
(Lamberth et al., 2013). Post-discovery, the cost (up to $286 million)
and time (8–12 years) required to take a new pesticide through the
development and registration process have increased significantly
(Sparks and Lorsbach, 2016). These increases have led to a reluctance
to invest in pest control for minor use crops (Sparks and Nauen, 2015).

Product development accounts for ca. 50% of the total cost to in-
troduce a new agrochemical (Sparks and Lorsbach, 2016), and com-
prises a linear sequence of steps, from high-throughput identification of
an efficacious lead using standard bioassays, to laboratory studies on
target pests, glasshouse experiments, and finally field studies using a
range of crops and environmental conditions (Kalamarakis and
Markellou, 2007). The development sequence is largely empirical, with
little feedback of mechanistic information into upstream development
processes.

This study argues for a new approach to developing pest control
strategies that is termed COMPASS (Comprehensive Model for Pesticide
Activity in Soils). The concept integrates mechanistic understanding of
pest ecology, insecticide fate, and insecticide effects on the pest into a
systems-based, spatially-explicit model of root damage by pests. The
models that result from taking such an approach deliver an in silico
testbed of the soil-root-pest-chemical interfaces acting within the soil
profile that aims to capture variability in influencing factors across
different sites and agricultural seasons.

We illustrate the COMPASS concept with the COMPASS-Rootworm
model using a test system comprising corn (Zea mays L.) root damage
and yield losses caused by the corn rootworm (Diabrotica spp.). Corn
rootworm is a commercially significant pest that is widespread in North
America, Central America, and Europe, with annual yield and control
losses in the USA alone that were estimated to be greater than $1 billion
between 2005 and 2007 (Dun et al., 2010). We demonstrate the validity
of the COMPASS approach using a decade of field data (119 field trials)
for the chemical control of corn root damage by rootworm larvae
(University of Illinois Extension, 2005–2014). We quantify the benefits
in terms of agricultural yields, environmental protection, and in-
tegrated pest management, and discuss step changes to our

understanding of crop protection that can be delivered through the
application of this knowledge-based approach to the design of pest
control strategies.

2. Materials and methods

2.1. Field dataset

A dataset of 122 field efficacy trials was compiled and split into
subsets comprising three trials used for model parameterization and
119 independent trials used for model evaluation. The trials collectively
applied 11 plant protection products containing the active substances
clothianidin (a neonicotinoid, CAS 210880–92-5), chlorpyrifos (an or-
ganophosphate, CAS 2921–88-2), or tefluthrin (a pyrethroid, CAS
79538–32-2) as seed, furrow, or band applications over a period of ten
years (2005–2014) at four trial sites in Illinois, USA: Urbana (40.07,
−88.21), Perry (39.79, −90.82), DeKalb (41.84, −88.86), and
Monmouth (40.93, −90.72) (University of Illinois Extension,
2005–2014). Supplementary Data (SD) Table S1 provides an overview
of the field trials, whilst SD Table S2 gives details of the design for each
trial. Planting time across the 122 trials ranged from Julian day 107 to
143 (April 16th to June 12th).

Each trial comprised four replicate plots for a given treatment and
the control. Damage assessment was undertaken 62 to 111 days after
planting by extracting and washing five root systems per replicate plot
and then using the Node Injury Scale (NIS; Oleson et al., 2005) to
quantify damage, with values ranging from 0.00 (no damage) to 3.00
(three full nodes or the equivalent across all nodes are lost; the max-
imum possible value).

2.2. COMPASS-Rootworm model

COMPASS-Rootworm is a two-dimensional systems model that de-
scribes the development and spatial distribution of corn roots and corn
rootworm pest, as well as the fate, distribution, and toxic action of
chemical insecticide; in combination, this allows simulation of root
damage (and hence yield loss) by the pest under different environ-
mental conditions, as well as the effectiveness of different chemical and
non-chemical control strategies. The primary processes, inputs and
outputs for the model are illustrated in Fig. 1.

COMPASS-Rootworm is coded in the freely available NetLogo 5.3
(Wilensky, 1999). The spatial discretization describes a vertical soil
profile of 76 × 100 cm (x- and y-axes) and 1 cm depth (z-axis) that was
selected to simulate a cross-section through the root system of a single
corn plant in a field with row spacing of 76 cm. Each patch/grid re-
presents 1 cm3. Most processes are updated once per hour, and all the
processes are updated at least once a day. The model runs from the
beginning of the calendar year to the day of the NIS assessment using
Julian days as the temporal measure. The model runs start at the be-
ginning of a year, as both the pest model and the pesticide fate model
require site-specific weather data preceding the actual corn and corn
rootworm season to simulate the temporal and two-dimensional oc-
currence and distribution of the root, pest, and pesticide owing to their
dependency on temperature and water content in the soil profile.

2.3. Pest ecology

Pest ecology is described with an individual-based population
model for the western corn rootworm Diabrotica virgifera virgifera (dis-
cretized at a 1-cm resolution) (Agatz et al., 2017). A spatially-explicit
root growth submodel describes the stochastic appearance and devel-
opment of new roots within a defined nodal structure. The pest model
simulates the development of eggs, the three larval instars, and the
pupa of the corn rootworm, with the transition between life stages
controlled by temperature-dependent developmental-rate functions.
Speed of larval movement toward food (and, thus, larval foraging
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success and the survival of both larvae and roots) is dependent on soil
type (Strnad and Dunn, 1990). The larval instars feed at different rates
and consume roots of different ages (Clark et al., 2006; Agatz et al.,
2017). Root consumption is linked to root damage (NIS) and yield loss
through the direct loss of biomass and pruning of roots. Site-specific
weather data (air temperature and precipitation) are used to generate
two-dimensional profiles of soil temperature and water content, which
in turn drive the dynamics between pest and root systems. A previous
evaluation using long-term data for Central Illinois showed that the
corn rootworm model predicted the date of the first appearance of both
larvae and adults to within one week of the first recorded sightings and
accurately simulated the site- and season-specific root damage recorded
in the field in the absence of pest control (Agatz et al., 2017).

Initial pest pressure (i.e., the density of eggs in the soil from the
preceding season) is an important input to the model, but is not nor-
mally measured in field studies of corn rootworm. The previous eva-
luation of the pest model demonstrated that measured damage is si-
mulated accurately for control plots when pest pressure is measured
and used directly as a model input (Agatz et al., 2017), so we conclude
that pest pressure can be parameterized. Thus, we used measured da-
mage in the control plots of the field trials to parameterize pest pressure
(a single value for all trials undertaken at each unique site-year com-
bination; SD Table S2) and then held this value constant in model runs
to simulate the impact of the various pesticide treatments on root da-
mage. As all sites were ploughed, egg positioning was set to the tillage
option (Agatz et al., 2017) with homogeneous distribution in the hor-
izontal plane, and vertical distribution as given by Vidal et al. (2005)
(21% of eggs within the upper 10 cm, 45% of eggs at 10–20 cm, and
34% of eggs at 20–30 cm).

2.4. Pesticide fate

The model of pesticide fate in soil simulates temporally and spa-
tially explicit water and pesticide transport in the soil profile by run-
ning simulations from Julian day 1 (January 1st) until harvest under

the influence of the explicit and stochastic development of root seg-
ments on a daily basis (Agatz and Brown, 2017). This procedure allows
the model to describe the microscale movement of pesticides in relation
to root segments, which represents an important addition relative to
existing models of pesticide fate in soil. In addition to the root growth
model described above, the crop processes within the model include
shoot development, spatially explicit uptake of water in response to
transpiration demand, interception of rainfall and irrigation by the
canopy, and evaporation from the canopy. The model captures spatial
variation in inputs of precipitation (due to canopy interception and
stem flow) and irrigation to the soil surface. Movement of water within
the soil profile is modeled using the soil capacity approach and occurs
sequentially in the horizontal and vertical planes; the rate of water
movement is defined using a maximum hydraulic gradient that is user-
defined in each plane. Currently the model is set up for flat sites, but it
could be modified to incorporate the effect of a sloping site on water
transport. Uptake of water by roots occurs locally in soil according to
the spatial distribution of root segments. Upward movement of water
can occur in response to evaporation from the soil surface and root
uptake, but water that flows from the base of the soil profile is con-
sidered lost from the system.

Pesticides can be applied to the soil as a seed treatment or as an in-
furrow, banded, or broadcast application, and they are subsequently
subject to first-order degradation and linear, instantaneous sorption,
with both processes modified according to the water content and
temperature of the respective 1-cm3 grid. Dissolved pesticides are
available for transport through soil with moving water and uptake by
roots adjusted for the relative ease of uptake of different pesticides
(Agatz and Brown, 2017).

2.5. Toxicity to rootworms

Toxic action of insecticide on rootworms is described using the
toxicokinetic-toxicodynamic approach of the General Unified Threshold
Model of Survival (GUTS; Jager et al., 2011). Rootworm larvae

Fig. 1. Integration of spatially and temporally explicit models within the COMPASS-Rootworm modeling framework showing the primary processes (outer circle
and text in inner circle) and model connections (arrows in inner circle). Key model inputs and outputs are provided to the left.
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experience variable pesticide concentrations in the soil within the
model owing to their own movement and the fate of the compound in
the soil profile. GUTS translates the time-variable pesticide concentra-
tion in soil experienced by each individual larva into a predicted
probability of survival. GUTS-RED-SD (i.e. the reduced version of GUTS
following the stochastic death assumption for survival; Jager and
Ashauer, 2018) was parameterized using ModelMaker (v.4.0, AP
Benson, Wallingford, UK) and acute toxicity experiments reported by
Agatz et al. (2018). Larvae of the rootworm were exposed to different
concentrations of one of the three chemicals homogeneously mixed into
silt loam soil, and the number of surviving larvae was recorded after 24,
72, and 120 h (SD Table S3). Calibrated parameter values are shown in
Table 1.

Previous rhizotron experiments carried out with field-relevant ap-
plication rates and placement strategies demonstrated that clothianidin,
chlorpyrifos, and tefluthrin can induce reduced feeding in rootworms,
either by direct feeding inhibition or by impairing their ability to sense
or move toward food (Agatz et al., 2018). In those experiments, clo-
thianidin had a repellent effect on larvae, whereas chlorpyrifos pro-
voked premature pupation and reduced the growth of larvae in com-
parison to nonexposed organisms. Tefluthrin caused a loss of control
over movement. At present, we lack the toxicokinetic-toxicodynamic
models for the sublethal effects of chemical toxicants in soil pest species
that would have allowed the simulation of the impacts on larval feeding
(Ashauer and Jager, 2018). Instead, we incorporated a compound-
specific parameter (prun-red) into our modeling framework that ac-
counts for the sublethal impacts of a compound in terms of a reduction
of root-pruning damage relative to that in the absence of the compound.
For each compound, this parameter was fitted to NIS data from one
field trial carried out in Urbana in 2007 (i.e. the training set comprised
three of the 122 field trials; Table 1). The calibrated value of prun-red
for each compound was then held constant in all simulations of the
remaining 119 independent field trials used for model evaluation.

2.6. Model evaluation

Field trials in the evaluation set were modeled according to the
information obtained for the field trial site (application time, applica-
tion rate, application type, duration for the trial, i.e. sowing time to day
of harvest; SD Table S2) using weather data (obtained from the Illinois
Climate Network 2016) recorded by weather stations in Bondville,
DeKalb, Monmouth, and Perry that are located close to the University of
Illinois field stations where the trials were undertaken. The USDA
(2017) Web Soil Survey tool was used to generate site-specific soil in-
formation for the simulations (SD Table S4). The physicochemical
properties of the active substances used were derived from the

literature (University of Hertfordshire, 2013) and are summarized in SD
Table S5. We considered that a predicted NIS damage value was in
agreement with the observed NIS damage value if the 95% confidence
interval of the predicted NIS damage value fell within±0.83 NIS da-
mage units of the observed NIS damage value, as explained in the re-
sults section.

2.7. Limiting factors for pesticide efficacy

To analyze the interplay between the NIS and the application rate,
we used the weather profile recorded for Urbana (IL, USA) in 2014 and
ran the model framework by applying increasing application rates of
clothianidin at planting on Julian day 131 (May 10th) as a furrow ap-
plication on Drummer soil (SD Table S4), with efficacy assessment
72 days after planting. The initial pest pressure was 108 eggs/L soil.

To analyze the interplay between placement strategy and applica-
tion rate, we simulated the efficacy of clothianidin in one region and
one season by altering the compound application type and rate using
the weather profile recorded for Urbana (IL, USA) in 2006, while
keeping the planting day as Julian day 131, with efficacy assessment
72 days after planting, pest pressure of 45 eggs/L soil, and the Drummer
soil type constant. Model predictions were analyzed in SigmaPlot
(version 12.5, Systat Software, San Jose, CA, USA) using a global ex-
ponential rise to maximum (3 parameters) fit to the average of all the
model predictions (N = 40).

The effects of the physicochemical properties of a hypothetical
chemical compound on pest control were investigated by simulating the
scenario-specific efficacy of a compound (GUTS parameters: dominant
rate constant, kd = 1000 1/d, killing rate constant, bw = 0.378 L/mg/
d, threshold, zw = 0.112 mg/L; parameter to account for sublethal
impacts, prun-red= 0) for three seasons (2005, 2011, and 2014) at one
location while varying Koc and DT50 from starting values of 56 mL/g
and 121 days, respectively. Scenario specifications were Drummer soil
with a seed application rate of 0.6 mg a.s./seed; weather profiles for
Urbana (IL, USA) from 2005, 2011, and 2014; pest pressures for 2005,
2011, and 2014 of 161, 91, and 108 eggs/L soil, respectively; planting
on Julian day 122 (May 1st), 130 (May 10th), and 131 (May 11th),
respectively; and efficacy assessment 71, 61, and 72 days after planting,
respectively (see SD Table S2 for details).

A cost-benefit analysis was undertaken for several simulations.
Details are provided in the SD.

2.8. Integrated pest management

Globally, there is demand to adopt agronomic practices with re-
duced pesticide inputs. For example, the EU Sustainable Use Directive
defines integrated pest management as a system that integrates mea-
sures to discourage the development of populations of harmful organ-
isms, considers all available plant protection methods, and only uses
control methods to levels that are economically and ecologically justi-
fied (Lefebvre et al., 2015). Hatching of pest larvae is determined by
soil temperature (degree days above a threshold; Davis et al., 1996) and
extent of root damage in the absence of control measures is strongly
influenced by the relative timing of emergence of roots and pest larvae.
The model framework captures this effect of inter-year variability in
weather conditions, so it could be used to deliver reduced pesticide
usage by identifying those conditions where insecticide use is not
economically and ecologically justified, and/or by optimizing sowing
date in a given year to reduce the need for pest control. This was in-
vestigated for all data summarized in SD Table S2 by normalizing the
observed NIS damage values in the control plots and the simulated NIS
damage values from all treatment plots to a single, common pest
pressure of 45 eggs/L soil and normalizing the temporal variation in the
data by correlating the normalized NIS damage values to the number of
days between the simulated root emergence and the day the first egg
developed into a larvae.

Table 1
Compound-specific parameter values for the COMPASS-Rootworm model.
Three parameters of the GUTS-RED-SD special case model (Jager et al., 2011;
Jager and Ashauer, 2018) are used to characterize lethal effects, and the
parameter Prun-red is used to account for sublethal effects.

Parameter Description (unit) Compound (life
stage)

Value

kd Dominant rate constant (d−1) Clothianidin (L2)
Chlorpyrifos (L2)
Tefluthrin (L2)

100
100
4.374

bw Killing rate constant
(L/ mg d−1)

Clothianidin (L2)
Chlorpyrifos (L2)
Tefluthrin (L2)

3.693
0.887
1.497

zw Threshold
(mg/ L)

Clothianidin (L2)
Chlorpyrifos (L2)
Tefluthrin (L2)

0.032
0.035
0

Prun-red Relative pruning reduction accounting
for sublethal impacts on reduced
feeding damage (−)

Clothianidin (L2)
Chlorpyrifos (L2)
Tefluthrin (L2)

0.62
0.954
1.00
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3. Results and discussion

3.1. COMPASS-Rootworm performance

The efficacy to control root damage by corn rootworm (indicated by
a reduction in NIS) of products tested in the 119 field trials used for
model evaluation ranged from 0 to 99% (median 76%); the value for
each trial was calculated from averages given in reports, and assuming
0% efficacy for trials where the damage to plants in treated plots was
equal to or greater than that in the untreated controls. The amount of
rootworm damage in the control plots varied among trial sites and
years, with the greatest overall damage sustained in Urbana and the
least overall damage sustained in Perry. SD Fig. S1 illustrates the
variability in the efficacy of products tested in each field trial by plot-
ting the NIS damage values recorded in the treatment plots against
those observed in the control plots. In 6.6% of the trials used for eva-
luation, the average NIS damage value in the control plot was lower
than in the treatment plot, with a maximum discrepancy of 0.83 NIS
damage units. Owing to the absence of a direct measure of uncertainty
associated with the NIS assessments (because raw data for the field
trials were not accessible), we used this difference of± 0.83 NIS da-
mage units as an indication of the overall uncertainty of the results from
the field trials. SD Fig. S1 shows that in 38 of the 119 trials, the dif-
ference in the NIS damage value between the treatment and control was
less than 0.83, indicating that in 32% of all trials, the efficacy of the
pesticide to reduce pest pressure was not confirmed. Oleson et al.
(2005) note that precision in node injury assessment is a function of
both extent of root damage and sample size.

COMPASS-Rootworm was able to simulate the outcome of the 119
field trials with all three active substances investigated and across the
large range of observed efficacy. Overall, the average of simulated root
damage (N= 40) was within± 0.83 NIS of the average value observed
in the field for 91% of trials (95% confidence interval 80–98%; Fig. 2,
SD Table S2). Thus, the model framework accounts for the combined
effects of environmental, chemical, and biological factors that de-
termine the efficacy of a plant protection product for a given site/

season combination within our dataset. This variation in environmental
conditions between sites and years has been identified previously as an
important source of unexplained variability across large databases of
field efficacy trials (Tinsley et al., 2016). Future work should expand
the evaluation to a wider set of conditions, particularly for locations
impacted by corn rootworm in Central America and Europe. Rasche and
Taylor (2019) also demonstrated successful simulation of field efficacy
trials by coupling a crop model with an above-ground insect population
dynamics model. There, the authors found that they had to calibrate
insecticide dose-mortality relationships to account for laboratory to
field extrapolation. In contrast, the current study simulates toxicity
mechanistically based on toxicokinetics/toxicodynamics allowing a
successful simulation of field effects using parameters derived from
laboratory toxicity tests.

The simulation performance tended to decrease with increased
strength of pesticide sorption to soil (Fig. 2); 100% of the simulations
were within the uncertainty of the field trials for the most weakly
sorbed compound, clothianidin, and this decreased to 89 and 85% of
the simulations for the more strongly sorbed compounds chlorpyrifos
and tefluthrin, respectively. The soil-water partition coefficient which
defines sorption is a sensitive parameter in all pesticide fate models
(Dubus et al., 2003) and stronger sorption will act to decrease the vo-
lume of the root zone where the pesticide is present at any given point
in time. When separating the field trials into those that demonstrated
the efficacy of a product (i.e., the difference between control and
treatment NIS damage values was greater than the uncertainty of the
field trials) and those that did not meet this criterion, then the model
was able to predict 86% of the 81 field observations proving efficacy
and 95% of the 38 field observations that did not show efficacy.
Variability in product performance across a limited number of field
trials (Toth et al., 2020) can be a major constraint on product devel-
opment. A field study may fail to demonstrate efficacy for an otherwise
efficacious product because of low pest pressure (Furlan et al., 2006), a
redistribution of the pesticide within the soil profile that occurs too
quickly or too slowly depending on rainfall (Sutter et al., 1989; Sutter
et al., 1991), the use of an application strategy that limits efficacy
(Tinsley et al., 2016), or because too much time elapses between pes-
ticide application and the appearance of the pest (Sutter et al., 1989). A
mechanistic model that can be used as a virtual field study to explain
apparent anomalies in product performance will thus strengthen pro-
duct development.

3.2. Limiting factors for pesticide efficacy

Field efficacy trials serve to optimize the application parameters for
the product (Kalamarakis and Markellou, 2007). We used COMPASS-
Rootworm to evaluate root damage for one environmental scenario as a
function of the application rate of clothianidin applied as a furrow
treatment at the time of sowing (Fig. 3). The model demonstrates that
the insecticide cannot deliver full control of root damage in this sce-
nario; thus NIS decreased as the amount of insecticide applied to the
system increased, but only up to a limit value of 0.95 NIS (dotted red
line in Fig. 3). The model simulations indicate that compound dis-
tribution within the soil profile was the limiting factor preventing fur-
ther control because the compound did not reach all parts of the soil
profile where the pest causes damage to the root system. COMPASS-
Rootworm allows calculation of the application rate that provides an
optimal economic return (68 g a.s./ha) based on the costs of pesticide
application versus yield lost to the pest (Fig. 3), and thus supports the
aim of sustainable intensive agriculture by delivering a secure supply of
food while minimizing the use of agrochemicals (Popp et al., 2013). The
model shows that for this scenario, the farmer could reduce the appli-
cation rate by 49% from the economic optimum to 35 g a.s./ha and still
deliver 92% of the maximum pest control and 98% of the maximum
financial return.

One response to the residual root damage that is demonstrated in

Fig. 2. Simulated vs. observed damage (given according to the node injury
scale (NIS)) for 119 field trials conducted in Illinois with plant protection
products containing chlorpyrifos, clothianidin, or tefluthrin. Simulated results
were obtained using the COMPASS-Rootworm modeling framework. The solid
line represents the situation where NIS is identical for simulations and ob-
servations in treated plots and the dashed lines show the overall uncertainty
around the solid line that is associated with the field trials (± 0.83 NIS). The
error bars indicate the 95% confidence interval of the simulations (N = 40).
Circled points indicate the trials in which the 95% confidence interval of the
simulations and the maximum error from field trials do not overlap (2 out of
119 field trials).
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Fig. 3 could be to use a modified formulation or product placement
strategy for clothianidin (Buntin and All, 2013). Fig. 4 presents a virtual
field trial where COMPASS-Rootworm was used to assess four different
product placement strategies for one season/soil combination: seed
treatment, and furrow, band, and broadcast application. Seed treatment
was the most effective strategy at low application rates, delivering 70%
of the maximum achievable efficacy at 10 g a.s./ha. At higher appli-
cation rates, the 40-cm band application was most efficacious, sur-
passing seed treatment at a rate of 35 g a.s./ha. This is in line with
Tinsley et al. (2016) who constructed efficacy functions using corn
rootworm control trials from Illinois and Nebraska, concluding that
seed treatments were unlikely to be as effective as soil insecticide

treatments (at full dose, seed treatments resulted in an average 86%
greater damage), Here, narrower band applications and furrow appli-
cation were not optimal strategies for the scenario evaluated. In prac-
tice, broadcast application would have provided the highest level of
control of all, but this would have required application rates two- or
tenfold greater than those for banded and seed treatment applications,
respectively (data not shown). A detailed regional analysis of placement
strategies, application rates, and treatment costs with COMPASS could
produce farm decision trees to balance the competing demands of high
financial return and low risk to the environment. Rossi et al. (2019)
identify calibration and validation of decision tools as a critical factor
for successful uptake by end users.

The development of a class of insecticides generally begins with
discovery of a new structural class, followed by modifications of func-
tional groups around the central scaffold (Lamberth, 2018). COMPASS
can be used to inform this development by simulating changes to the
physicochemical properties of a pesticide that will modify its fate in soil
and, thus, modify interactions with the target pest. We defined a hy-
pothetical insecticide and used COMPASS-Rootworm to investigate how
pest control would change in response to changes in the mobility and
persistence of the compound, expressed as the organic carbon partition
coefficient (Koc) and degradation half-life (DT50), respectively. The
analysis considered three seasons with contrasting weather conditions
and pest pressures. We found that mobility had a much stronger in-
fluence on efficacy than persistence with a decrease in Koc of ca.
40 mL/g consistently doubling the efficacy of the hypothetical com-
pound, even though there was a large variation in the absolute efficacy
values across the three seasons (Fig. 5). The model results indicate that
the spatial co-occurrence of pest larvae and pesticides was a more im-
portant limitation to efficacy than the period over which the pesticide
was biologically active in soil. If mechanistic information relating to the
optimal physicochemical properties were to be fed back into the se-
lection of agrochemical leads (Rao et al., 2015) and product develop-
ment pipeline, this would reduce the cost and time currently required to
take a new pesticide through to registration.

3.3. Integrated pest management

Hatching of pest larvae is determined by soil temperature (degree
days above a threshold; Davis et al., 1996), and the relative timing of
emergence of roots and pest larvae determines the extent of root da-
mage in a particular year and in turn will strongly influence the efficacy
of insecticide use (Clark et al., 2006). However, this effect is masked in
the field dataset because pest pressure also varies between sites and
seasons (5–164 eggs/L soil in our dataset), and this has a strong in-
fluence on root damage and insecticide efficacy. To overcome this
problem, we used COMPASS-Rootworm to reanalyze the complete field
dataset for insecticide efficacy with the effect of pest pressure on root
damage eliminated by normalizing the field trials to a consistent pest
pressure of 45 eggs/L soil. Fig. 6a (black dots/line) shows that when
larvae emerged very soon (< 10 days) after first root emergence, pest
damage was minimal because the spatial extent of roots was limited,
meaning that few larvae intercepted roots before they died from star-
vation. Normalized root damage increased exponentially up to a peak in
NIS of 2.27 at an interval of 26 days between root emergence and egg
hatch. At longer intervals, root damage decreased, because the roots
were older at onset of pest pressure, and older roots are known to be
unpalatable to first instar larvae24. Although all pesticide treatments
with clothianidin, chlorpyrifos, and tefluthrin reduced root damage
relative to the control (Fig. 6a; colored dots/blue line) the reduction in
the normalized NIS compared to the control was only above the un-
certainty for NIS of 0.83 when egg hatch occurred 19–29 days after root
emergence. Fig. 6b shows that the relative efficacy of all three com-
pounds increased as the time interval between root emergence and egg
hatch increased, and was maximal when egg hatch occurred 20–30 days
after root emergence. At short intervals between root emergence and

Fig. 3. Damage and revenue curve for clothianidin used as furrow treatment in
one region and one season as a function of the application rate. Circles:
Simulated damage (given according to the node injury scale (NIS)) as a function
of the application rate as average of 40 COMPASS-Rootworm simulations for
each different application rate (blue line: fit through data; R2 = 0.976). The
red line indicates the limit to product efficacy for this scenario. The green
curve (with the associated standard deviation (dashed curves)) illustrates the
scenario-specific pesticide-related revenue as a function of the application rate.
The vertical green line indicates the application rate where revenue in relation
to pesticide cost is at its maximum. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. COMPASS-Rootworm simulated scenario-specific efficacy of clothia-
nidin in one region and one season relative to the maximum efficacy that can be
delivered at an assumed maximum application rate of 65 g a.s./ha (i.e. band
application with 40 cm band width). Data are shown for seed, furrow, broadcast
and three band applications of different band width (10, 20, and 40 cm) as a
function of the application rate. Lines: global fit to the average of all the model
predictions (N= 40 per application rate) with a 3 parameter exponential rise to
maximum (R2 = 0.983).
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egg hatch, our model indicates that the spatial redistribution of a pes-
ticide within the soil profile limited the zone providing effective pro-
tection to the growing roots. After approximately 30 days, there was a
very sharp decrease in the relative pesticide efficacy and our model
suggests that this is because the root system outgrew the soil zone with
efficacious concentrations of pesticide (typically for corn root nodes 4
and above). Malard et al. (2020) also identified a strong influence of
timing on the success of pest control action when modeling the lepi-
dopteran Opisina arenosella as a pest of coconut farming in Sri Lanka;
use of their modeling approach to determine optimal timing of biolo-
gical control was found to outperform timing that was either on a fixed
date or determined by pest population thresholds.

Given that egg hatch is determined by soil temperature, and thus
independent of root emergence, our analysis identifies a strategy for
integrated pest management because sowing at or just before the time
of egg hatch carries a low risk of root damage. Specifically, when the
interval between root emergence and egg hatch is less than 10 days, the
NIS is generally less than 0.5 NIS; this value was calculated as the

threshold below which pesticide application is not economic assuming
treatment costs of $36/ha (Alford and Krupke, 2017). Medium-range
weather forecasting is increasingly reliable out to 10 days; this allows
prediction of site-specific timing of egg hatch (Agatz et al., 2017), and
supports decisions regarding the optimal time for sowing and either a
reduced pesticide application intensity such as in-furrow treatment, or
potentially the omission of pesticide treatment altogether. By reducing
both the frequency and intensity of insecticide use, this approach could
contribute to controlling the development of pest resistance to chemical
insecticides (Sparks and Nauen, 2015). Where plowing is planned, site-
specific prediction of egg hatch also offers the potential to bring for-
ward egg hatch by plowing; this would expose eggs (which are most
abundant at 11–20 cm depth; Vidal et al., 2005) to the warmer upper
soil layers thus encouraging earlier egg hatch, and the effect can be
simulated in the model as it accounts for redistribution of eggs due to
plowing. The alternative strategy of aiming to maximize the time be-
tween root emergence and egg hatch is not plausible because this would
require accurate long-range forecasting of at least 30 days.

Fig. 5. COMPASS-Rootworm simulated efficacy relative to the maximum achievable efficacy of a hypothetical active substance applied as seed treatment over three
growing seasons (labels at top) in response to varying physicochemical properties of the compound (Koc: organic carbon partition coefficient, DT50: half-life). The
black lines indicate the Koc (56 mL/g) and DT50 (121 d) of the pesticide simulated as the base-case.

Fig. 6. COMPASS-Rootworm simulated average damage and pesticide efficacy plotted against the interval between root emergence and the first egg hatch. a)
Rootworm damage shown as the node injury scale (NIS). b) Pesticide efficacy relative to the damage in the corresponding control. Data have been normalized to a
consistent pest pressure of 45 eggs/L soil: trials with NIS in the control plot< 0.20 and > 2.80 are excluded owing to uncertainty in assigning the level of root
damage at very small or large values for NIS. Lines: global fit to all model predictions (N = 40) with a 3 parameter exponential rise to maximum (R2 = 0.803).
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4. Conclusion

Insect pests are a global threat to agricultural productivity and this
threat is increasing due to changing pest distributions and spread of
resistance to chemical insecticides, at the same time as the public is
demanding more sustainable agricultural systems. Despite the high
level of threat, development of pest control strategies ultimately de-
pends on field studies that are largely empirical. The COMPASS-root-
worm model delivers a knowledge-based approach to the design of
control strategies for a globally-significant pest that integrates knowl-
edge across the disciplines of pest ecology, root physiology, soil hy-
drology, and insecticide fate and toxicity. Evaluation of the model
against an extensive dataset of field trials for root damage in maize
caused by the corn rootworm shows that the model is able to capture
much of the variability in damage to maize crops from corn rootworm
and effectiveness of pest control strategies that is seen across different
locations and agricultural seasons. The approach that is presented de-
livers virtual field trials, allowing the development of mechanistic un-
derstanding of the system. This allows, for example, the optimization of
insecticide selection and use to achieve maximum efficacy with
minimal risk to the environment or normalization of yield loss to dif-
ferent pest pressures, weather, or treatment timing to develop guidance
on integrated pest management strategies and resistance management.
Whilst the research presented here is framed by agricultural losses due
to corn rootworm, the new approach will have applications across a
much wider range of agricultural pests.
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