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Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations 
in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, 
pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated 
with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may even-
tually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections 
and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients 
with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit 
a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and 
macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. 
The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR 
dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in 
cells with CFTR mutations.
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Introduction: an overview of cystic fibrosis

Cystic fibrosis (CF) is one of the most common life-threat-
ening autosomal recessive genetic diseases in Caucasians, 
affecting approximately 48,000 individuals in Europe and 
30,000 in the USA [1, 2]. This condition is caused by muta-
tions in the cystic fibrosis transmembrane conductance regu-
lator (CFTR), which is a transmembrane ion channel highly 

expressed by cells of the respiratory, digestive and male uro-
genital tracts [3–8]. Epithelial and secretory cells are known 
to be profoundly affected by CFTR mutations, due to altered 
physiological function as a result of abnormal production, 
maturation and function of the CFTR protein and aberrations 
in ion transport, most importantly chloride ions  (Cl−) [9]. 
These changes result in a multisystem disease characterised 
by recurrent pulmonary infections, pancreatic insufficiency, 
gastrointestinal complications, CF-related diabetes, mal-
nutrition, arthropathies and male infertility [10–17]. Until 
recently, treatments for CF were based on managing disease 
symptoms and complications rather than treating the under-
lying disease. Approximately 1 in 25 people in the UK is an 
asymptomatic carrier of a mutated CFTR gene and likewise 
1 in 29 people in the USA.

Drugs used to treat CF frequently include pancreatic 
enzymes, mucolytics and, antibiotics, including low dose 
macrolides and other anti-inflammatory agents [18, 19]. 
The recent introduction of effective CFTR modulator ther-
apy is revolutionising the management of CF. These drugs 
have variable efficacy and target the underlying problem by 
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improving CFTR expression and function. Drug efficacy is 
variable with each drug or drug combination and they target 
specific CFTR class mutations; the drugs include Ivacaftor 
(VX-770), Lumacaftor (VX-809), Tezacaftor (VX-661) and 
Elexacaftor (VX-445). Ivacaftor is used to treat class III gat-
ing and residual function mutations (e.g. G551D, S549R and 
V250F), whereas the combination of Ivacaftor/Lumacaftor 
(Orkambi) and Ivacaftor/Tezacaftor (Symkevi) is effective 
for patients homozygous for ∆F508 and those with one copy 
of ∆F508 as well as another residual function mutation [20, 
21]. The recent approval of the triple-drug combination 
therapy, Ivacaftor/Tezacaftor/Elexacaftor (Trikafta) in the 
USA, heralds a paradigm shift in the treatment of CF, as 
this combination is highly efficacious for both patients who 
are homozygous and heterozygous for the ∆F508 mutation 
[20, 21]. The different types of class mutations, including 
the most common examples and the current individual treat-
ments, for each type of class mutation, are summarised in 
Table 1.

Although initially, just a few studies highlighted the 
importance of the CFTR in the regulation of immune cell 
function, there is now more evidence to show the relevance 
of the CFTR expression in different cells of the immune 
system [22–30]. Several studies have revealed that specific 
cellular signalling pathways, of different immune cells with 
various CFTR mutations, are affected in CF [22–30]. Moreo-
ver, CF has been described as an autoinflammatory condi-
tion [28, 31], based on the abnormal inflammatory activity 
of innate immune cells, which is exacerbated by the atypical 
local tissue environment [27, 28]. Autoinflammatory condi-
tions are primarily driven by aberrant activation of the innate 
immune system [32, 33], which usually leads to abnormal 
production of pro-inflammatory cytokines such as TNF, 

IL-1β, IL-6, IL-17 and IL-18, whereby the local environ-
mental factors may predispose the cells to an inflammatory 
phenotype [34, 35]. Autoimmune responses, in contrast, 
are directed against self-antigens and are characterised by 
the presence of autoreactive T cells and B cell-mediated 
autoantibodies [34]. Only a limited number of studies have 
reported the involvement of adaptive immune cells, such as 
T and B cells, affected by CFTR mutations in CF pathology 
[36–39]. Therefore, this review will explore existing reports 
in the literature detailing several mechanistic signalling 
pathways dysregulated in innate immune cells harbouring 
CFTR mutations.

Cellular signalling pathways

The cellular machinery is actively regulated by multiple 
complex signalling pathways, working together to maintain 
cellular fitness. Most of these pathways are functionally 
redundant, as a compensatory mechanism for reduced or 
absent activity of other similar pathways. For instance, dif-
ferent types of cellular death have been described in mam-
malian cells, including apoptosis (programmed cell death 
with chromatin condensation), necrosis (premature cellular 
death that causes membrane rupture and organelle release), 
pyroptosis (pro-inflammatory programmed cell death caus-
ing cellular destruction) and autophagic cell death (degrada-
tion of cellular components in an autophagic manner, lead-
ing to cellular death) [40]. All these mechanisms may result 
in a similar outcome; namely, cellular death; nevertheless, 
each mechanism accomplishes its primary function via dif-
ferent signalling pathways.

Table 1  CF class mutations and current therapies

A summary of the seven different classes of CF mutations described above [214, 215]; alongside the most common examples and current treat-
ments
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Cysteinyl aspartate-specific proteases, better known as 
caspases, are the most critical active enzymes involved 
in the execution of cellular apoptosis and pyroptosis [41, 
42]. In terms of apoptotic cellular death, caspases can be 
divided into two leading families, initiator caspases (− 2, 
− 8, − 9, − 10) and executioner caspases (− 3, − 6, − 7) 
[42]. Apoptosis can be induced by extrinsic cellular signals, 
e.g. TNF, or by intrinsic cytosolic insults, e.g. DNA damage, 
which eventually lead to cellular death [41, 42]. In contrast, 
pyroptotic cellular death frequently involves the formation of 
different inflammasomes, a critical mechanism in the induc-
tion of inflammation by innate immune cells [41, 43, 44]. 
Inflammasomes are cytosolic multiprotein complexes usu-
ally consisting of three main domains, the central sensory 
NOD-like receptor (NLR) domain, the adaptor protein apop-
totic speck protein containing a caspase recruitment domain 
(ASC) domain and pro-caspase-1 domain [44, 45]. Several 
different inflammasomes have been described in mamma-
lian cells, including AIM2, NLRC4, NLRP3 and NLRP1 
[44, 45]. When activated, all these inflammasomes direct the 
cleavage of pro-IL-1β and pro-IL-18 to their mature forms, 
IL-1β and IL-18. Similarly, to cellular death, the inflammas-
omes are also capable of reaching the same outcome; that 
is, the production of IL-1β and IL-18, via different signal-
ling pathways. Some studies have reported overactivation of 
the NLRP3 inflammasomes in patients with CF, leading to 
excessive production of IL-1β and IL-18 [28, 46–48]; how-
ever, these various mechanisms are not the only redundant 
cellular pathways in mammalian cells. Many other mecha-
nisms serve to induce alternative compensatory signalling 
pathways involving inflammation, metabolism, endoplasmic 
reticulum (ER) stress, ion transport and phagocytosis. For 
example, in CF, the lack of complete CFTR functionality 
leads to reduced transport of  Cl− into the extracellular space 
[9, 49]. This ionic imbalance will lead to upregulation and 
overactivity of the epithelial sodium channel (ENaC), result-
ing in sodium  (Na+) influx into the cells, followed by water; 
thereby, causing dehydration of the airway surface liquid 
(ASL) layer in the lumen of the lungs [9, 28, 50, 51]. The 
mechanisms described above are not the only ones affected 
in CF; therefore, the mechanistic signalling pathways altered 
in innate immune cells with CFTR mutations will be ana-
lysed in the following sections.

Innate immune cells with CFTR mutations

Airway epithelial cells

Airway epithelial cells (AECs) are the initial checkpoints in 
the defence against pathogens and other inhaled particulates, 
and these cells are crucial to the regulation of both innate 
and adaptive immune responses to these challenges [52, 53]. 

AECs are tailored with innate immune cell machinery such 
that they are able to detect pathogen-associated molecular 
pattern molecules (PAMPs) via a broad range of pattern rec-
ognition receptors (PRRs) [53–55]. The activation of PRRs 
(TLRs, NLRs, CLRs and RLRs) triggers intracellular signal-
ling cascades that initiate pro-inflammatory, cytokine and 
chemokine release and antimicrobial responses [54–57]. In 
CFTR-deficient AECs, innate immune responses are intrinsi-
cally defective, resulting in altered pathogen interactions and 
immune cell communication. Several studies have described 
intrinsic upregulation of signalling pathways associated with 
pro-inflammatory cytokine transcription in CF epithelial 
cells [58–60]. Additionally, when CFTR-deficient AECs 
are exposed to Pseudomonas aeruginosa, there is activa-
tion of nuclear factor-κB (NF-κB), which drives the expres-
sion of IL-8, a potent neutrophil chemoattractant [61, 62]. 
Moreover, a recent report showed that elevated intracellular 
 Cl−, resulting from defective CFTR ion transport, triggers 
pro-inflammatory cytokine secretion in CF epithelial cells 
through phosphorylation of the  Cl− sensitive serum- and 
glucocorticoid-inducible protein kinase 1 (SGK1), with 
subsequent activation of the NF-κB pathway [63]. P. aer-
uginosa lipopolysaccharide (LPS) stimulation also increased 
intracellular  Cl− levels, and triggered NF-κB activity in an 
SGK1-dependent manner, suggesting that alterations in 
intracellular  Cl− may be a cause of both infection-depend-
ent and -independent inflammatory responses [63]. Another 
study suggested that  Cl− concentrations above 75 mM, in the 
IB3-1 CF epithelial cell line, can modulate IL-1β matura-
tion, suggesting that  Cl− itself can enhance inflammatory 
signalling in these cells [64]. Although, these studies dem-
onstrate that the CFTR may be intrinsically proinflamma-
tory, other reports have shown a high variability in AEC 
inflammatory responses [39, 65], with conflicting evidence 
found in vitro and in vivo studies [66–68]. It is important to 
mention that conflicting evidence may be due to differences 
in cell lines or the culturing conditions, and that all studies 
need to be analysed carefully.

While the central role of the CFTR channel is to bal-
ance the flux of  Cl− and bicarbonate ions [69] to maintain a 
healthy ASL, several groups have proposed that the CFTR 
also influences the activity of various other ion channels, 
transporters and receptors [70], which may all contribute 
to the altered innate immune response seen in CF epithelial 
cells. Most notably, the CFTR has been shown to exert an 
inhibitory effect on ENaC [71, 72]. Human studies have indi-
cated that variants in genes encoding ENaC chains can cause 
functional abnormalities, which result in CF-like symp-
toms, and that rare mutations causing reduced ENaC activ-
ity can slow disease progression in patients homozygous 
for CFTR ΔF508 mutation [73, 74]. Furthermore, ENaC 
β-chain expression was found to be upregulated in human 
bronchial epithelial cells (HBECs) with CF-associated 
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mutations (IB3-1 and CuFi-1) and CF monocytes (with 
ΔF508/ΔF508 mutations), leading to increased  Na+ influx 
and  K+ efflux. This ionic imbalance acts as a driving force 
for activation of the NLRP3-inflammasome [75–78]. In this 
study, an exaggerated pro-inflammatory response is seen in 

CF cells when challenged with NLRP3-inflammasome acti-
vators LPS and ATP, leading to increased IL-18 secretion in 
CF HBECs, and IL-1β and IL-18 in CF monocytes (Fig. 1) 
[28]. This exaggerated inflammatory response was reduced 
when cells were pre-treated with small molecule inhibitors 

Fig. 1  CF airway and altered AECs mechanisms. a In this panel, a 
cross-section of the CF airways is represented, which showing the air-
way lumen on top and different epithelial cells on the bottom. In CF, 
the lack of CFTR function leads to increased  Na+ influx by ENaC, 
followed by water absorption leading to dehydration of the periciliary 
layer (PCL), with accumulation of a thick, dense mucus in the apical 
surface and persistent colonisation by opportunistic pathogens. The 
chronic inflammatory microenvironment in the lung facilitates neu-
trophilic infiltration, with subsequent release of excessive amounts of 
neutrophil extracellular traps (NETs) upon activation. b In CF AECs 
the CFTR malfunction decompensates the intracellular ionic balance, 
leading to overactivity of ENaC and increased  Na+ influx and  K+ 

efflux, as a consequence. This exaggerated  K+ efflux, combined with 
increased ER stress and reactive oxygen species (ROS) production, 
activates the NLRP3 inflammasome and further increases IL-1β and 
IL-18 secretion. The ionic imbalance is also associated with increased 
ER stress, ROS and metabolic turnover. The misfolded CFTR, com-
bined with the ionic imbalance, causes IRE1α activation with the 
generation of the spliced form of XBP1 (XBP1s), which, in turn, 
activates a number of UPR-related genes inducing inflammation. The 
overstimulation of both surface and intracellular receptors, through 
DMAPs and PAMPs, combined with all the other dysfunctional sig-
nalling pathways, causes an exacerbated inflammatory response with 
increased production of TNF, IL-6 and IL-8
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of NLRP3 and ENaC; thereby, uncovering a molecular link 
between enhanced ENaC-dependent  Na+ influx,  K+ efflux 
and NLRP3-inflammatory cytokine production [28].

Under normal conditions, the transport of  Cl− ions 
is coupled to an increase in  K+ conductance, in order to 
maintain the driving force for anion movement across the 
membrane [79]. The KCa3.1 calcium-activated potas-
sium channel, encoded by the Kcnn4 gene, is essential in 
calcium-activated intestinal anion secretion [80, 81], and 
physically interacts with CFTR in the apical membrane of 
airway epithelial cells [82]. KCa3.1 and CFTR co-localise 
at the plasma membrane with aggregation of KCa3.1 chan-
nels, leading to an enhanced interaction with CFTR chan-
nels, following an increase in intracellular calcium  (Ca2+) 
concentration [79]. The Kcnn4 gene has been suggested as 
a putative modifier of CF severity in humans [83], and it 
was thought that increased activity of KCa3.1 might aid in 
counterbalancing the failure of anion and fluid secretion in 
intestinal epithelial cells. In a recent study, a double mutant 
mouse  (CftrΔF508/ΔF508 and  Kcnn4−/−) showed improved sur-
vival without alteration in the intestinal secretory function, 
when compared with the  CftrΔF508/ΔF508 mouse [83]. Inter-
estingly, it was found that inhibiting the KCa3.1 channel, 
in the  CftrΔF508/ΔF508 mice, reduced lethality and decreased 
the level of circulating TNF [83]. It would be interesting to 
explore whether NLRP3-inflammasome activation, IL-1β 
and IL-18 are also reduced with KCa3.1 channel inhibition. 
Expanding on this, Phillip et al. explored Th2 responses and 
found that silencing the STAT6 regulator of the Th2-driven 
immune response significantly reduced lethality in the CF 
animals [84]. This supports evidence from studies in mac-
rophages, whereby an imbalance in polarisation towards the 
M1 pro-inflammatory phenotype suggests a defect in the 
STAT6 pathways, and interestingly, inhibition of the KCa3.1 
channels reduces M1 polarisation [85]; however, the mac-
rophage imbalance is likely to be a combination of several 
factors as it will be discussed in the macrophage section [86]

Another channel that is altered in CF is the  Ca2+ release-
activated  Ca2+ channel, ORAI1. Balghi and colleagues 
found a twofold elevation in the expression of ORAI1 in 
the cell membrane of Cftr-deficient ACEs [87]. They also 
reported a twofold increase in total intracellular  Ca2+ and 
iCRAC current and a corresponding twofold increase in IL-8 
secretion. This increase in  Ca2+ is likely to trigger the con-
ductance of the KCa3.1 channel and enhance inflammatory 
signalling, as described above. It has been suggested that the 
KCa3.1 channel is controlled by  Ca2+ microdomains, and 
that KCa3.1 and Orai1 form part of a macromolecular com-
plex organised by PDZ-containing scaffolding proteins [88].

TMEM16A (anoctamin 1) is a non-CFTR  Cl− channel 
which is also activated by  Ca2+. A recent study by Bene-
detto et al. found that TMEM16A is not only essential for 
 Ca2+ activated chloride currents in both mouse intestine and 

airways, but it is also essential for the correct activation and 
membrane expression of CFTR, suggesting an overlap in 
CFTR- and  Ca2+- dependent chloride transport [89]. Com-
parable to KCa3.1 and Orai1, TMEM16A also interacts 
with CFTR via PDZ-domain proteins [89]. Considering 
the increased levels of  Ca2+ in CF AECs and subsequent 
increased expression of ORAI1, ensuing upregulation of 
TMEM16A could also be expected; nevertheless, a study 
on cultured HBECs reported no differences in the expression 
of TMEM16A between CF and non-CF cells [90]. When CF 
AECs are exposed to pyocyanin (a major virulence factor 
of P. aeruginosa), the expression of TMEM16A and mucin 
5AC is increased, causing mucus hypersecretion [90]. While 
under normal conditions, TMEM16A supports  Cl− conduct-
ance and fluid secretion in ciliated AECs, during inflam-
mation TMEM16A expression is upregulated, primarily in 
mucus-producing goblet cells, leading to excessive mucus 
secretion, with little expression induced in the ciliated epi-
thelial cells that express CFTR [89]. Kunzelmann et al. 
suggest that, in the absence of bacterial infections, intrinsic 
inflammation could be caused by delocalisation/dysfunction 
of CFTR, followed by upregulation of TMEM16A (possibly 
as a result of increased intracellular  Ca2+), particularly in 
mucus-secreting cells thereby contributing to CF pathogen-
esis [91]. Another study reported that the overexpression and 
induction of TMEM16A attenuate the production of pro-
inflammatory cytokines, IL-6, IL-8, CXCL1-3 and CCL2 in 
CF HBECs in air–liquid culture; however, the mechanism of 
action remains elusive [92]. It seems that augmenting mucus 
secretion through activation of TMEM16A would over-ride 
this phenomenon resulting in increased pro-inflammatory 
cytokine production, as a consequence of increased mucus 
build-up and bacterial colonisation. Potentially, a more 
direct approach to TMEM16A activation could be to specifi-
cally target ciliated AECs and activate TMEM16A allosteri-
cally without triggering  Ca2+ signalling, which would induce 
pro-inflammatory cytokine secretion [93]. Alongside CFTR-
mediated ion channel disturbance in CF, a number of stud-
ies have reported dysregulated or excessive apoptosis in CF 
epithelial cells following external stimuli [61, 94]; a recent 
report shows that, under basal conditions, Fas expression 
was increased in epithelial cell lines leading to increased 
activation of caspases-3 and -8 and subsequent apoptosis. 
Interestingly, treatment of primary non-CF bronchial epi-
thelial cells with a CFTR inhibitor resulted in increased Fas 
expression, suggesting a link between CFTR function and 
Fas expression [95].

The CFTR receptor itself also has a direct role in the 
clearance of pathogens which enter the lung. When exposed 
to infection, the CFTR protein acts as a receptor for P. aer-
uginosa in AECs, and it is thought to be involved in uptake 
and clearance of this pathogen [96, 97]. P. aeruginosa also 
induces gene expression via activation of TLRs. CF AECs 
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exposed to this pathogen release excessive amounts of pro-
inflammatory cytokines, mainly mediated by TLR4/LPS and 
by TLR5/flagellin interactions [98, 99]. Dysregulation of 
intracellular TLR4 trafficking has also been noted in human 
CF AECs as compared to non-CF controls [100–102]. Epi-
thelial cells lacking CFTR also have impaired uptake and 
breakdown of conidia, which is released from Aspergillus 
fumigatus spores [103]. The soluble pattern recognition 
receptor, pentraxin 3 (PTX3), is secreted by a variety of 
immune cells including AEC [104], in response to conidia 
and is involved in the recognition, uptake and killing of 
conidia [105]. Furthermore, neutrophil elastases and A. 
fumigatus proteases were found to be responsible for the 
degradation of the conidial recognition site at the N-termi-
nus of PTX3, contributing to inefficient fungal clearance 
in CF [106, 107]. Recent human studies, using the CFTR 
modulator Ivacaftor, found a decreased occurrence of A. 
fumigatus in sputum cultures in CF patients with a G551D 
mutation; however, the mechanism remains undetermined 
[108]. Collectively, these studies suggest that loss of func-
tional CFTR and the compound effects of ionic imbalance 
could prime the innate immune system in advance of infec-
tion, leading to heightened inflammatory responses and pro-
apoptotic priming when an infection is present (Fig. 1).

Neutrophils

Neutrophils are commonly considered to be the first line 
of defence against infection and whilst they are the most 
abundant circulating leukocyte in human blood, constituting 
about 60% of white blood cells, the number of neutrophils 
present in the pulmonary capillaries is increased in CF [109, 
110]. Upon interaction with a broad range of pathogens, 
pro-inflammatory cytokines or other inflammatory signals, 
neutrophils become activated and move towards the site of 
inflammation, where they mobilise to clear the invading 
organism through phagocytosis [111–113], with the release 
of neutrophil extracellular traps (NETs) [114, 115], as well 
as cytokines and chemokines [116, 117]. Neutrophils are key 
inflammatory cells in the immune system’s arsenal, and the 
dysregulation of approximately 90 of their genes related to 
the production of cytokines, chemokines, interleukin recep-
tors, colony-stimulating factors and intracellular signalling 
molecules dramatically contributes to the inflammatory phe-
notype found in CF [118]. This dysregulation may also lead 
to an increased risk of infection taking place in the lungs by 
P. aeruginosa [119, 120], Staphylococcus aureus [121] and 
Burkholderia cepacia complex [122].

The CFTR has been shown to be expressed on the cel-
lular surface of neutrophils, indicating that their dysregu-
lation is primarily caused by the absence of a functioning 
CFTR protein, as opposed to just being a secondary effect of 

mutated CFTR in epithelial cells [123]. Typically, the CFTR 
is recruited to phagosomes in neutrophils, assisting in the 
killing of phagocytosed pathogens by moving  Cl− ions into 
the phagolysosome to produce hypochlorous acid (HOCl) 
[124, 125]; however, in neutrophils with CF mutations, the 
dysfunctional CFTR compromises the ability of neutrophils 
to kill pathogens due to defective HOCl production in these 
compartments [124, 126, 127]. Although another study was 
unable to find impaired phagocytosis of P. aeruginosa in 
neutrophils with CF mutations, they did find that phagocy-
tosis is impaired in monocytes from patients with CF [128]. 
The treatment of CF patients, carrying at least one copy 
of the G551D mutation, with Ivacaftor leads to reduced 
migration and activation of neutrophils [129], as well as 
improved bacterial clearance in this cohort of patients [127]. 
Another potential therapeutic target for CF was proposed 
to be histone deacetylase 6 (HDAC6), as its depletion, in a 
mouse model, reduced the recruitment of neutrophils to the 
lungs, followed by an improved response to infection and 
an increased rate of bacterial clearance and reduced weight 
loss [130].

Neutrophils have the ability to expel both their nuclear 
and mitochondrial DNA coated with antimicrobial granu-
lar proteins, such as neutrophil elastase (NE) and myelop-
eroxidase (MPO), into the extracellular space in net-like 
structures called NETs, which are used to enmesh patho-
genic microorganisms, thereby aiding in their clearance 
[131]. Before the discovery of NETosis (controlled neu-
trophil cell death with the release of NETs), necrosis was 
generally considered to be the primary source of neutro-
phil DNA in the lungs of patients with CF; however, this 
was subsequently revealed not to be the case, as NETosis 
was shown to be responsible for the release of myeloper-
oxidase (MPO), heparin-binding protein (HBP), DNA and 
NE in CF sputum and bronchoalveolar lavage fluid (BALF) 
[132–135]. As the high concentration of inflammatory 
markers and these proteins, both in the CF sputum and 
BALF, correlates with decreasing lung function, NETosis 
plays an essential role in the pathogenesis of CF [132, 134, 
136–146]. The raised levels of NE and cathepsin G have 
been suggested to be responsible for increased levels of 
peptides and amino acids in sputum samples, whilst the 
raised concentrations of these peptides and amino acids 
correlate with increased frequency of P. aeruginosa infec-
tion in the lungs of patients with CF [147]. The dysregula-
tion of NETosis plays a prominent role in CF as well as 
other autoinflammatory diseases, as the DNA from these 
NETs exacerbates the dehydration of mucus, resulting in 
further airway clogging, thereby producing, as a conse-
quence, an environment which is prone to bacterial infec-
tions [131, 148]. Unrestricted NE activity, in 3-month-old 
infants with CF, has been associated with the development 
of bronchiectasis, adding to the evidence that respiratory 
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infections in CF lead to neutrophilic infiltration, inflam-
mation and ultimately to a declining respiratory function 
[149, 150]; nevertheless, a recent study found no asso-
ciation between inflammation, abnormal physiology and 
structural changes in one-year-old infants, contradicting 
previous reports [151].

The recent observation of autoantibodies against com-
ponents of NETs, in patients with CF, has been corre-
lated with declining lung function and provides an insight 
into the development of autoimmunity in CF [152, 153]. 
Impaired degranulation, due to decreased Rab27a activity 
and delayed neutrophil apoptosis, leads to an excessive 
NET formation in the lungs of patients with CF, and these 
defects are reversed by Ivacaftor therapy in patients with 
G551D mutations [154, 155]. Some of the current thera-
pies, such as the use of DNase, to help clear the viscous 
mucus in the lungs of patients with CF, may exacerbate 
NE activity, while the use of protease inhibitors has been 
shown not to affect CF sputum [156]. Recently the exhaled 
breath condensate (EBC) test was investigated to establish 
whether there was a link between inflammatory markers 
in the EBC and clinical outcome. NE was the only inflam-
matory marker found to be raised in EBC; conversely, this 
did not correlate with clinical outcome in these patients 
[157]. As, it has been reported that NE directly targets the 
CFTR interfering with its functionality [158], studies have 
aimed to inhibit NE and establish why previous NE inhi-
bition studies have had mixed results [159, 160]. In CF, 
micro RNA (miRNA) miR-636 was found be upregulated 
in neutrophils, and has been suggested to play an essential 
role in the chronic inflammation seen in CF by decreas-
ing the expression of IL1R1 and IKKβ proteins, as well 
as increasing the expression of RANK [161]. Increased 
expression of the chemokine receptor, CXCR4, was found 
on neutrophils with CF mutations [162]; moreover, these 
raised levels in CXCR4 were associated with chronic fun-
gal infection by Aspergillus fumigatus in patients with 
CF [163]. The cleavage of another chemokine receptor, 
CXCR1, has also been linked to impaired bacterial clear-
ance in CF [164]. Other pro-inflammatory signals, such 
as ROS [165] and colony-stimulating factors [166], are 
significantly raised in CF; likewise, levels of the bioac-
tive fragment of collagen called proline-glycine-proline 
(PGP) which is generated by the activity of both prolylen-
dopeptidase and matrix metalloproteinase-9 (MMP9), are 
also raised [167]. As PGP acts as a stimulant of neutro-
phil migration into tissues, as well as inducing epithelial 
remodelling, it has been suggested that the raised levels 
of PGP found in the lungs of children with CF may exac-
erbate the inflammatory phenotype found in these patients 
[167]. The implications of the CFTR in neutrophil activity 
are more than clear and perhaps these new insights can 

help to achieve better understanding of these myeloid cells 
in the pathogenesis of CF.

Monocytes

Monocytes are central circulating white blood cells origi-
nating from the bone marrow with the potential to be dif-
ferentiated into macrophages and dendritic cells, which are 
professional antigen-presenting cells (APC) involved in the 
interaction with the adaptive immune system. The CFTR 
plays a vital role in myeloid cells, and it has been shown 
that in conditional KO mice models, where only myeloid-
derived cells lack CFTR expression, the absence of the 
CFTR was directly involved in cell function [168]. Under 
normal conditions, these myeloid CFTR KO mice did not 
show any visible phenotypical alterations as compared to 
their WT counterparts; interestingly, when the lungs of 
these mice were exposed to bacterial pathogens, the rodents 
displayed significantly higher amounts of inflammatory 
cytokines and a decreased survival rate as compared to WT 
mice [168]. Although this study did not directly associate 
monocytes with the atypical response to bacteria in these 
mice, other studies have shown the importance of the CFTR 
in the regulation of monocyte function [24, 25, 27, 169]. 
The expression of the surface markers CD14 and HLA-DR 
was shown to be downregulated in monocytes from chil-
dren with CF, alongside with deficient phagocytosis [170]. 
Later reports showed no differences in the monocyte clas-
sical  (CD14++  CD16−), intermediate  (CD14+  CD16+), or 
non-classical  (CD14+  CD16++) subpopulations [25, 171]; 
however, expression of M-CSF, TLR4, IL-4Rα, IL-13Rα1, 
TIMP-1 and Cox-2, were shown to be upregulated in mono-
cytes from CF patients, demonstrating that CFTR muta-
tions intrinsically affect these myeloid cells [25]. TLR4, in 
particular, has been consistently reported to be upregulated 
in both monocytes and macrophages from patients with 
CF and these increased levels of TLR4 were not related to 
pulmonary infections [24, 25, 102]. This persistent TLR4 
upregulation might be linked to the exaggerated inflam-
matory response seen in patients with CF. Freshly isolated 
monocytes from patients with CF did not show any differ-
ences in the surface marker expression of CD68 and CD80, 
but significantly higher expression of CD163 and CD206 
was observed when compared with HC monocytes [172]; 
however, the monocytes of two different patient cohorts, on 
Ivacaftor and Ivacaftor/Lumacaftor, showed normalisation 
of the increased levels of CD163 and CD206, which were 
comparable to the levels of HC monocytes [172]. The sur-
face markers CD68 and CD80 are associated with a pro-
inflammatory phenotype, while the CD163 and CD206 
are linked to an anti-inflammatory phenotype, suggesting 
that there is a persistent and non-resolving inflammatory 
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response in CF [172]. These studies provide more evidence 
that monocytes with CF mutations show phenotypic alter-
nations that can be improved with the administration of 
CFTR modulators. In a different study, IL-8 was shown to 
be abnormally increased in CF monocytes after LPS chal-
lenge; however, these higher levels of IL-8 were not associ-
ated with TLR4 overexpression but, instead, with an increase 
in the MAPK signalling pathway [169]. In another study, it 
was shown that the monocytes from patients with CF, with 
at least one copy of the G551D mutation, treated for seven 
days with Ivacaftor displayed a reduction in IFNγ induced 
related inflammatory proteins [173]. Similarly, Velard et al. 
found that the percentage of double positive monocytes, 
 RANK+ and M-CSFR+, was strongly increased (~ 91%) in 
CF patients bearing at least one G551D copy when com-
pared with HC [174]; interestingly, this increased percent-
age in  RANK+ and M-CSFR+ monocytes, was significantly 
decreased after 9 and 12 months of treatment with Ivacaftor 
[174]. It is of great interest to investigate how this increased 
expression in M-CSFR is involved in the differentiation pro-
cess of monocytes towards macrophages and dendritic cells 
in patients with CF.

Monocytes with CFTR mutations show an exagger-
ated inflammatory phenotype when stimulated with LPS 
and ATP, and this activation state was NLRP3 dependent 
[28]. Monocytes from patients with CF showed increased 
production of IL-1β and IL-18, which was associated with 
higher activity of caspase-1 and raised extracellular ASCs 
[28]; interestingly, inhibition of ENaC decreased the exac-
erbated secretion IL-1β and IL-18 only in monocytes with 
CF mutations, while this inhibitory effect was not seen in 
monocytes from patients with other inflammatory condi-
tions [28]. Furthermore, the increased levels of IL-1β and 
IL-18 were also detected in the sera of patients with CF 
[28], indicating an essential role of these two cytokines in 
the pathogenesis of this disease, further supporting the auto-
inflammatory phenotype seen in patients with CF [31, 175, 
176]. Moreover, the CFTR modulators Ivacaftor/Lumacaftor 
and Ivacaftor/Tezacaftor showed a powerful anti-inflamma-
tory effect in patients with CF, reducing the levels of IL-18, 
and both IL-1β and IL-18, correspondingly, in monocytes 
and serum of patients with CF [177]. An altered X-linked 
miRNA profile has been shown in  CD14+ monocytes from 
patients with CF [178]. In this study, the authors found that 
several X-linked miRNAs were significantly upregulated in 
CF monocytes, with miR-224-5p being the most prominent; 
furthermore, SMAD family member 4 (SMAD4), a vali-
dated target of miR-224-5p was found to be downregulated 
in the CF monocytes [178]. The full implications of miR-
NAs in monocytes with CF mutations are still unknown, 
but these inhibitory miRNAs are indeed implicated in the 
pathogenesis of CF [179]. In a different study, transcriptomic 
RNA sequencing (RNAseq) was carried out in whole blood 

from patients with CF, and 491 genes were found to be dif-
ferentially expressed as compared to non-CF controls, with 
further validation of the most overexpressed genes, MMP9 
and SOCS3 by qPCR [180]. It has been shown that mono-
cytes from patients with CF have increased expression of 
MMP9, associated with increased intracellular  Ca2+ when 
compared with non-CF monocytes [180, 181]; remarkably, 
monocytes with from CF patients treated with Ivacaftor/
Lumacaftor showed reduced intracellular  Ca2+ levels [180]. 
Finally, a recent study showed that overexpression of PD-L1 
in monocytes with CF mutations, was associated with P. 
aeruginosa infections in patients with CF [182]; further-
more, not only PD-L1 was increased in the CF monocytes, 
but also the levels of sPD-L1 were increased in the plasma 
of these patients, as well as PD-1 in both  CD4+ and  CD8+ 
T cells [182]. Clearly, several distinct mechanistic pathways 
are dysregulated in monocytes with CF mutations, and a bet-
ter understanding of all these mechanisms is needed.

Macrophages

As already described, inflammation is a common compli-
cation in CF. Although epithelial cells, neutrophils and 
monocytes play an essential role in the pathogenies of CF, 
macrophages are largely responsible for the initiation and 
resolution of the inflammatory response [183–185]. During 
inflammation, monocytes are recruited to the affected site 
and these myeloid cells can then be differentiated and sub-
sequently polarised into classically activated macrophages 
or alternatively activated macrophages, better known as 
pro-inflammatory (M1) and anti-inflammatory (M2), respec-
tively [186]. Although distinct molecular signalling path-
ways in monocyte-derived macrophages (MDMs) are known 
to be affected by CFTR mutations [26, 27, 154, 172, 187], 
it is important to mention that other types of macrophages 
exist, known as tissue-resident macrophages, which are also 
affected by these types of mutations [30, 188, 189]. The pro-
portion of macrophages is typically elevated in the airways, 
both in patients with CF and mice with CFTR mutations 
[86, 190, 191]. Furthermore, M1 and M2 macrophages are 
reported to be increased in the lung and peritoneum of mice 
with CFTR mutations [86]. Deficient polarisation of M2 
MDMs has been reported in human macrophages, with sig-
nificantly lower production of IL-10 and absence of expres-
sion of IL-13Rα1, while no difference was observed in the 
proportion of M1 MDMs [26, 27]. While no proportional 
differences were found in M1 MDMs with CFTR muta-
tions, there is substantial evidence to show that these cells 
consistently secrete excessive amounts of pro-inflammatory 
cytokines, including TNF, IL-1β, IL-6, IL-8 and IL-12, 
under basal conditions, and also after stimulation (Fig. 2) 
[27, 154, 172, 189, 192]. Furthermore, the upregulation of 
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the transcription factor XBP1s has been reported in lung 
tissue-resident macrophages and M1 MDM from patients 
with CF, in association with excessive production of IL-6 

and TNF [27, 30, 189]. Moreover, a hypermetabolic state has 
been reported in M1 MDMs from patients with CF, show-
ing higher glycolytic and mitochondrial activity associated 

Fig. 2  Altered signalling pathways in CF macrophages. Macrophages 
with CFTR mutations show alterations in multiple cellular pathways. 
The mutated CFTR causes ionic imbalance, with accumulation of 
misfolded protein in the case of the ∆F508 mutations and primes 
these myeloid cells towards an altered immune response or chroni-
cally activating other signalling pathways. CFTR malfunction primes 
the overactivation of ENaC, leading to increased  Na+ influx, which 
is then compensated by  K+ efflux. The increased  K+ efflux, com-
bined with increased ROS and ATP production, activates the NLRP3 
inflammasome with further increased IL-1β and IL-18 secretion. CF 
macrophages have raised levels of TLR4 expression, and the result-
ant overactivation of NF-κB leads to increased TNF and IL-6 produc-
tion. Induction TNF and IL-8 may also occur through NETs by an 
unknown mechanism. Similarly, chronic TLR4 activation, possibly 
due to the persistent bacterial colonisation in the lungs, leads to the 
overactivation of IRE1α; thereby, triggering XBP1s. This production 
of XBP1s induces transcriptional activation of several UPR respon-
sive genes involving metabolism, inflammation and protein folding. 
XBP1s overexpression induces a low-grade chronic induction of IL-6 
and TNF, which exacerbates the inflammatory response when com-

bined with other signalling pathways. XBP1s also regulate metabolic 
pathways and, in CF macrophages, the increased metabolic state can 
be reduced by IRE1α inhibition. Macrophages with CFTR muta-
tions also show increased glycolytic flux and mitochondrial respira-
tion. It is known that in M1 macrophages the Krebs cycle favours 
the accumulation of succinate and citrate. Succinate accumulation 
leads to stabilisation of HIF-1α, which can induce IL-1β produc-
tion and activation of glycolytic genes. It may be possible that in CF 
macrophages, this axis is favouring a proinflammatory response and 
increased glycolytic function. Alternatively, citrate is converted into 
aconitate, facilitating the synthesis of itaconate, which is a potent 
anti-inflammatory metabolite; however, the role of itaconate in CF 
is unknown. CF macrophages also display deficient bacterial killing 
with intracellular accumulation of phagocytic vesicles. Altogether, 
these mechanisms influence the altered innate response elicited by 
macrophages. LDHA lactate dehydrogenase A, GLUT glucose trans-
porter, SDH succinate dehydrogenase, PDH pyruvate dehydroge-
nase, ER endoplasmic reticulum, HIF-1α hypoxia inducible factor 1 
subunit alpha, NRF2 nuclear factor erythroid-2-related factor 2, ATF3 
activating transcription factor 3, ROS reactive oxygen species
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with increased activity of the IRE1α-XBP1 signalling 
pathway [27]. Interestingly, it has been previously hypoth-
esised that the chronically raised levels of pro-inflammatory 
cytokines might result in metabolic disturbances during the 
pathogenesis of CF [193, 194]. Certainly, this is the case 
in other immune conditions, where the excessive levels of 
pro-inflammatory cytokines, as well as other intrinsic cel-
lular abnormalities, contribute to the induction of cellular 
stress, which is directly associated with disruption of cellular 
metabolism [195–198]. It would be interesting to investi-
gate the effects of the increased levels of pro-inflammatory 
cytokines, present in patients with CF, concerning glycolytic 
and mitochondrial metabolism.

Exaggerated inflammatory and metabolic responses are 
not the only altered pathways in macrophages harbour-
ing CFTR mutations. It has been reported that such mac-
rophages display increased apoptosis and deficient bacte-
rial killing, associated with decreased phagocytic capacity 
(Fig. 2) [172, 199, 200]. MDMs with CFTR mutations 
showed a 40% reduction in phagocytosis, which could be 
recovered under the administration of Ivacaftor, but not Iva-
caftor/Lumacaftor; this recovery was associated with a sig-
nificant increase in the killing of the opportunistic pathogen 
P. aeruginosa, by CF MDMs treated with Ivacaftor [172]. 
The deficient phagocytic response towards P. aeruginosa by 
CF macrophages, might be due to the lower expression in 
TLR5, as this is the preferred receptor used by macrophages 
to detect this pathogen [201]. As discussed already, NETs 
are increased in the lungs of patients with CF and, interest-
ingly, the production of NETs in response to P. aeruginosa 
infections is influenced by macrophage migration-inhibitory 
factor (MIF), via induction of mitogen-activated protein 
kinase [135]. In a different study, Gray et al. reported that 
NETs could also induce the production of TNF and IL-8 in 
human MDMs, with significantly increased levels of these 
two cytokines in CF MDMs (Fig. 2) [154].

Macrophages are undoubtedly dysfunctional or overac-
tive in patients with CF, showing excessive amounts of pro-
inflammatory cytokine production, altered polarisation ratios 
with reduced numbers of M2 MDMs, increased metabolic 
rates, as well as deficient phagocytosis and killing proper-
ties. It would be interesting to elucidate whether these mac-
rophage dysfunctions are due to intrinsic or extrinsic influ-
ences, or indeed a combination of both. Recently, itaconate 
has been described as a potent anti-inflammatory metabolite 
implicated in metabolic reprogramming during macrophage 
activation [202–204]. When macrophages become activated, 
aconitate is converted to itaconate in the Krebs cycle, and 
it is known that itaconate acts as an anti-inflammatory mol-
ecule, similar to IL-10 [202–204]. Further investigation of 
whether itaconate and other metabolites are dysregulated 
in macrophages with CFTR mutations is in progress. As 
the triple-drug combination therapy, Trikafta, has been 

recently approved in the US, it will be of particular relevance 
to investigate the effects of this drug combination on mac-
rophages with CFTR mutations. Altogether, it is clear that 
the CFTR plays a significant role in the regulation of several 
mechanisms in macrophages, and a dysfunctional CFTR can 
lead to several cellular abnormities in these phagocytic cells.

Fibroblasts

Fibroblasts are essential stromal cells that are involved in the 
regulation of the tissue environment, wound healing, angio-
genesis and tissue fibrosis. Recently, several studies have 
demonstrated that these cells are essential in the regulation 
of the inflammatory response and that they play a crucial 
role in the pathogenesis of several immune-related disor-
ders [205, 206]. Although there is limited information about 
fibroblasts in CF, it is known that the CFTR is expressed in 
fibroblasts [193, 207, 208]. Early studies have shown that 
CF fibroblasts display an altered glycolytic metabolism, with 
increased activity of glycolytic enzymes [193]. Moreover, 
lung fibroblasts with CFTR mutations are overresponsive 
when stimulated with LPS, secreting excessive amounts of 
TNF, IL-1β and IL-6, when compared with WT fibroblasts 
[208]. All this is in line with the reports showing increased 
inflammatory markers in the lungs of patients with CF. It 
would be of great interest to further investigate whether the 
chronic activation of fibroblasts in CF, due to the long-last-
ing inflammation in the lungs, is associated with the decline 
in respiratory function over time. Moreover, it would be of 
great interest to explore the effect of the CFTR modula-
tors on these stromal cells. Further investigations should be 
encouraged to foster our understanding of the role of the 
CFTR in fibroblasts.

Final remarks

Collectively, the CFTR plays an important role in the regula-
tion of several cellular mechanisms not only in AECs, but 
also in innate immune cells. CFTR mutations in AECs, neu-
trophils, monocytes, macrophages and fibroblasts together 
lead to imbalance of numerous cellular signalling pathways, 
with negative consequences in several organs. For instance, 
the accumulation of thick mucus in the lung, leads to colo-
nisation by opportunistic pathogens, such as of P. aerugi-
nosa, mainly due to the  Cl− and water imbalance [12]. Epi-
thelial cells are then chronically activated, leading to the 
recruitment of monocytes, macrophages and neutrophils to 
control the infection (Fig. 1). When these innate immune 
cells reach the affected site, they take over the inflamma-
tory response leading to an exaggerated and unresolved pro-
inflammatory response. Macrophages fail to destroy most 
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of these pathogens, and if the infection is eradicated, these 
phagocytic cells show a reduced anti-inflammatory reaction, 
with consequent impaired production of IL-10 (Fig. 2) [27, 
172, 199, 209].

Although, a debate still exists as to whether the CFTR is 
intrinsically proinflammatory or whether it facilitates inflam-
mation indirectly, the fact that inflammation is increased in 
CF is unquestionable. HBECs obtained from children with 
CF less than 5 years old, show significantly higher amounts 
of IL-8 mRNA when compared with control infants, even in 
the absence of infections [210]. Several studies support the 
idea that the defective CFTR facilitates inflammation indi-
rectly, and the exaggerated inflammatory response observed 
in CF may be due to an exacerbated response to pathogens 
[65, 210–213]. In fact, the exaggerated inflammation seen 
during the pathogenies of CF must be certainly due to a 
combination of both, the CFTR exerting an intrinsic pro-
inflammatory effect and also due to the vigorous response 
to microbial infections. The different multi-organ compli-
cations in CF are indeed associated with excessive inflam-
mation, but it remains to be determined how inflammation 
affects other organs involved in this disease. The recent 
introduction of new CFTR modulators, such as Trikafta, 
has proven to be of great benefit to patients with CF; it is 
of considerable interest to further investigate the effects of 
these drugs, in different immune cells in the context of CF, 
and further explore the possibility of testing these drugs in 
other disorders in order to boost CFTR function.
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