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ABSTRACT
Purpose The current trend for continuous drug product
manufacturing requires new, affordable process analytical
techniques (PAT) to ensure control of processing. This work
evaluates whether property models based on spectral data
from recent Fabry–Pérot Interferometer based NIR sensors
can generate a high-resolution moisture signal suitable for
process control.
Methods Spectral data and offline moisture content were
recorded for 14 fluid bed dryer batches of pharmaceutical
granules. A PLS moisture model was constructed resulting in
a high resolution moisture signal, used to demonstrate (i) end-
point determination and (ii) evaluation of mass transfer
performance.
Results The sensors appear robust with respect to vibration
and ambient temperature changes, and the accuracy of water
content predictions (±13% ) is similar to those reported for

high specification NIR sensors. Fusion of temperature and
moisture content signal allowedmonitoring of water transport
rates in the fluidised bed and highlighted the importance wa-
ter transport within the solid phase at lowmoisture levels. The
NIR data was also successfully used with PCA-based MSPC
models for endpoint detection.
Conclusions The spectral quality of the small form factor
NIR sensor and its robustness is clearly sufficient for the con-
struction and application of PLS models as well as PCA-based
MSPC moisture models. The resulting high resolution mois-
ture content signal was successfully used for endpoint detec-
tion and monitoring the mass transfer rate.

KEYWORDS fluidisedbeddrying .mass transferresistance .
MEMS Fabry-Pérot interferometer sensor . near infrared
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NOMENCLATURE
aw activity of water in the solid phase (−)
b, bo regression coefficients
Cg Water conc. in the gas phase (mol/m3)
C *
L

Gas phase conc. in equilibrium with the liquid in the gran-
ules (mol/m3)

C *
S Gas phase conc. in equilibrium with the water in the

solid phase (mol/m3)
E Matrix with residual errors of the PCA model (−)
ey Error betweenmeasured and predicted values of y (−)
erel Relative error (−)
fs Volume fraction solids in the fluidised bed (−)
fMTR Extent to which mass transfer is limiting (−)
fw Moisture fraction (wt% of total mass)
Fw Moisture fraction (wt% of dry solids)
mw, ms Granule’s mass of water and solids respectively (kg)
madsorb Mass of water absorbing components in the granule (kg)
MTRw Mass transfer rate(mol/s.m3)
Nw Number of moles of water (mol)
_N
∞
w Maximum drying rate (mol/s)

_N w Molar drying rate (mol/s)
P Loadings matrix (−)
P *
w Vapour pressure of water (Pa)

Qstat Q-statistic (−)
Sin Degree of saturation of the inlet gas (−)
T Scores matrix (−)
Tbed Bed temperature (K, or °C)
Vbed Volume of the fluidised bed (m3)
y Response vector (−)
X Matrix containing one spectrum on each row (−)
xnew Row vector containing 1spectrum (−)

GREEK LETTERS
φg Gas flowrate (m3/s)
ρs Fluid bed density (kg/m3)
Ω Mass transfer resistance (1/s)
Ωext, Ωmax Fitting parameters (1/s)
Ωtot Overall or total mass transfer resistance (1/s)

INTRODUCTION

Near infrared spectroscopy (NIR) has been established as a
key tool for process analysis technology (PAT) (1). For phar-
maceutical applications, it has proven to be an effective
technique for gathering relevant chemical data to build up
process understanding (2,3), contributing to new process de-
velopment (4), and for process monitoring and control dur-
ing the drug manufacturing processes (5). Recent advances
in instrumentation and chemometrics have been identified
as the main pillars advancing NIR spectroscopy towards
application in manufacturing, but cost and measurement

robustness remain barriers to widespread implementation
in the pharmaceutical industry.

The recently developed Micro-electro-mechanical system
Fabry–Pérot Interferometers (MEMS FPI) for near infrared
wavelengths are miniaturised tuneable optical filters formed
by two facing reflectors separated by an air gap. The distance
between the two reflectors is controlled by the voltage applied
(6). Light with a wavelength of the gap size will interfere and
pass the filter and be collected by a single-point detector po-
sitioned below. The range of distances the device can set will
thus determine the range of wavelenghts the device can mea-
sure (7). MEMS-FPI based devices with different reflector gap
widths target specific regions of the NIR spectral ranges (e.g
1.7μm, 2μm). For a specific process application, the appropri-
ate spectral range can be matched with the sensor range
(8–10).

The resolution of the MEMS FPI sensors is lower than in
Fourier Transform NIR spectrometers or traditional diffrac-
tion gratings spectrometers, but the compact form factor and
cost-effective pricing enable new applications that are not pos-
sible with aforementioned traditional spectral sensing technol-
ogies. To measure spectra, the voltage is changed gradually
and the detector signal is recorded. Spectral data can be
recorded up to speeds of 1000 spectral points per second,
providing the user a high rate of data at a few spectral posi-
tions, or a full spectrum over the range available at a lower
rate.

MEMS-FPI are made from a single wafer without assem-
bly steps, creating a single solid structure with no wearing
parts which makes the devices position and vibration insensi-
tive; staying very stable over time. Developed low-cost
MEMS-FPI and detectormodules have been successfullymin-
iaturised, with systems weighing as little as 60 g (11), making
them suitable for widespread application in process sensors in
the manufacturing industry. This would be a major step for-
ward to continuous, inline composition measurement.

For the pharmaceutical industry, accessing reliable spectral
information at a low cost could bring immediate benefits. For
instance, complementary compositional and physical infor-
mation could be obtained for several drug manufacturing
stages before attempting to replace conventional quality con-
trol or research analytical systems. A specific example is the
monitoring of moisture content, a control parameter used in
several stages of the solid-dose form production process (5),
normally required for milling and blending (12,13), granula-
tion (14,15), tablet coating (16), and dying, particularly flui-
dised bed granule drying, which has been extensively studied
(17–20).

In examples reported, real-time moisture determination
using NIR spectroscopy relies on correlating online NIR spec-
tra to offline analytical moisture measurements (typically Karl
Fisher titrations or loss on drying (LOD) (14,21)). Partial Least
Squares regression (PLS) is the algorithm of choice to model
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the measured moisture content (vector y, n data points) as a
linear combination of nmeasured spectra (matrixX, one spec-
tra on each row1):

y ¼ X bþ bo þ ey ð1Þ

where b the vector with relative contributions of each spectral point, bo is a
constant (22) and ey is the vector of errors. With b and b0 obtained from a
calibration data (y,X), a real-timemoisture content signal can be inferred
from a new NIR spectrum by application of Eq. 1 (23).
The second common application of NIR data is for drying endpoint

detection. Here, Multivariate Statistical Process Control (MSPC) models
based on Principal Component Analysis (PCA) are built from sets of
spectra of different Normal Operating Condition (NOC) batches that rep-
resent the process end-point well. In-line spectra from new batches are
tested in real time to determine whether they behave, or not, as the NOC
spectra used to build the model (24,25).
To build MSPC models for process end-point detection, a data set

formed by NIR spectra of on-specification batches where the end-point
has been reached are used in a matrix X containing of n end-point spectra.
A PCA model is built in order to set the statistical boundaries of the
experimental domain (space) of end-point NIR spectra (2,3):

X ¼ T Pþ E ð2Þ

where P is the loadings matrix (nr of principal components, nr
of wavelengths which are the link between scores and original
NIR spectra) andT is the scoresmatrix of all end-point spectra
(nr of spectra, nr of principle components). T spans the valid
experimental domain for on-specification measurements in
the space of principal components. The matrix E describes
the residual errors of the PCA model. For any new (pre-
processed) spectrum xnew acquired in the current on-line mon-
itored batch, the difference between the spectrum xnew and its
description by the PCA model xnewP

TP is:

enew ¼ xnew I−PTP
� � ð3Þ

enew is a row vector containing the residual error for each
wavelength. Qstat control charts are developed on this basis of
the sum of squares of this error:

Q stat ¼ enew eTnew ð4Þ

When Qstat falls below a minimum error, the chart control
limit, the new spectra resembles the typical endpoint spectrum
shape as defined by the NOC batches.

Acquiring online spectra from multiphase processing
equipment (air-solid) (26) such as fluidised bed dryers, wet
granulators and excipient blenders, presents several challenges
such as noise and probe window fouling. For instance, within a
fluidised bed, drying granules will flow past the NIR probe
window, and particles will interact with the probe’s NIR light

at a wide range of distances and orientations. The significant
changes in material density and air gaps with variable distance
between the solids and the field of view of the probe results in
an intermittent signal (27). These interactions lead to signifi-
cant levels of noise that distort the coefficients in Eqs. 1 and 2–
4 resulting in large residual errors.

Under these conditions, it is essential to reduce the noise
introduced during spectral measurement by suitable pre-
processing of the NIR spectra (4,28), for instance by averaging
a number of them.

This study aims to evaluate the accuracy, robustness and
reliability of the spectral response obtained from the MEMS-
FPI NIR sensor by monitoring the moisture content during
the drying of pharmaceutical granules in a pilot-scale fluidised
bed dryer. PLS models resulting from a validation data set
transform online spectral measurements to predictions of the
moisture content and MSPC tools use spectra for detecting
the process end-point. In the final part, we convert the NIR
derived moisture content signal to the water mass transfer rate
and demonstrate how this can be applied so as to provide an
insight in to the underlying processing phenomena.

MATERIALS AND METHODS

Granulation and Drying

Pharmaceutical granules were produced using a stan-
dard recipe supplied by GlaxoSmithKline (GSK,
United Kingdom) employing Mannitol (64 wt%, solid
wt% are with respect to the dry granule weight),
Microcrystalline Cellulose Avicel PH-101 (29 wt%),
Hypromellose 2910 (5 wt%, binder), AC-DI-SOL
(1.5 wt% disintegrant) and colloidal SiO2 (0.5 wt%). A
top driven high shear mixer wet-granulator model
MiPro from ProCepT (Belgium) was used to prepare
fourteen 1 kg batches of granules in a 2 l vessel with
a three-bladed impeller rotating at 800 RPM. During
granulation, Water (0.5 L/kgsolid) was added at a con-
stant feeding rate of 5 mL/min. Due to intense mixing
the temperature rises from room temperature to ap-
proximately 45°C. On completion of the granulation,
granules are transferred into a container and sealed up
before cooling down and storing in a fridge at 5°C to
minimise changes in moisture content before drying.
Batch-to-batch repeatability in terms of moisture con-
tent and particle size was achieved by using the granu-
lator torque profile as an online indicator, in parallel to
a correlation between the water addition with the par-
ticle size (using an image analysis method) obtained
from a control batch. This methodology mirrors a gran-
ulation procedure previously reported (29) and further

1 Note we adhere to the standard notation for chemometics, using row vectors
r= (1, 2, 3) for data over a series of wavelengths. For row vectors the order of
multiplication is reversed. So for r= vT ifv2 ¼ A v then vT

2 ¼ r2 ¼ r AT .
Bold small letters refer to vectors, bold capitals to matrices.
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information related to the granulation steps is provided
in the Supplementary Material.

Drying was performed in a 0.129 m ID, 4 l fluidised bed
model 4 M8-Trix Formatrix from ProCepT (Belgium). A pic-
ture of the equipment used is shown in Fig. 1, and a summary
with the experimental drying conditions of each batch is pre-
sented in Table I. For each batch, 0.5 kg of wet granules (1 l
equivalent) were manually transferred into the fluidised bed,
and continuously dried by passing a constant flow of air at 25
± 3°C to fluidise the granule bed. The air flow was set to
850 L/min for batches 1 to 10 and to 600 L/min for batches
11 to 14. Visual observation indicates that at both the air
flowrates the fluidised bed operates in the bubbling regime,
though the NIR signal readings were smoother at the lower
gas flowrate.

Every 6–7 min a sample of approximately 5 g was
retrieved from the fluidised bed using a vacuum suction
for offline moisture analysis. Sampling required the NIR
probe to be disconnected from the vessel for approxi-
mately 10 s (to make sampling port available). For
batches 10 and 14 the fluidisation air was off for 15 s
after each manual sampling, allowing collection of NIR
spectra with reduced fluctuations in particle density and
orientation.

Analytical Characterisation

Reference moisture content (loss on drying, LOD) was mea-
sured using a thermogravimetric moisture analyser model
MB120 from Ohaus (Germany), operating at a constant tem-
perature of 105°C. Granule samples obtained from the flui-
dised bed were directly deposited in the MB120 sample

chamber and dried in a 5 to 10 min period (depending on
the moisture content).

The LOD moisture fraction (fw) reported is defined by the
weight of water (mw) and dry weight of the solid (mS) as follows:

f w ¼ mw

mw þ ms

ð5Þ

In and outlet temperatures were recorded simultaneously
to the NIR spectral measurements using K type immersion
thermocouples from Omega (United Kingdom) connected to
a TC-08 AD converter from Pico technologies (USA). The gas
flowrate is measured by the ProCepT control system.

MEMS-FPI NIR Sensor and Data Acquisition

A sensor from Spectral Engines (Finland) model N-Series 2.2,
operating from 1750 nm to 2150 nm wavelength range was
used for the acquisition of NIR spectra (ca. 4650–5714 cm−1).
It has a tuneable MEMS Fabry–Pérot Interferometer acting
as the spectral element and a single element extended InGaAs
detector (Fig. 2; additional information about the scanning
principle of the device can be found in the Supplementary
Material). The sensor has an integrated light source model
LS-PRO that utilises a miniature tungsten vacuum lamp as
the illumination source. The energy output of the lampwas set
to 50% of the maximum level. For all drying batches, the
integration time of the sensor was set to 0.1 ms and the wave-
length step to 1 nm (10 ms to set a step). This results in 401
wavelength points which including data transfer time results in
an acquisition time of approximately 1 full NIR spectrum per
second (single scan, no averaging). Control and communica-
tion of the NIR sensor, data logging of the NIR spectra and
recording of temperature readings, were performed using a

Fig. 1 (a) The fluidised bed dryer
with NIR immersion probe
attached (Top) SEM pictures of
granules after the drying process,
(b) the spectral sensor and light
source connected to light guides. (c)
Schematic view of the system
including the position of the MEMS-
FPI sensor used, NIR probe loca-
tion, and temperature (TC) mea-
suring points (right).
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bespoke application developed in LabVIEW 2015 by the
University of Leeds (ChemiView version 3.4 (30)).

NIR Reflectance Probe and Calibration

A 6 mm diameter immersion NIR diffuse reflectance
probe model OFS-6S-100HO/080704/1 from Solvias
(Switzerland) was inserted horizontally with the probe’s
tip located 45 mm above the bottom and in the centre
of the bed (Fig. 1). The probe has a stainless steel body
with a sapphire window and contains two fibre optic
cables, one connecting to the light source, the other to
the NIR sensor using standard SMA adaptors. A bright
reference spectrum was obtained before starting each
batch. A calibration block was used to position the tip
of the NIR probe in a 90-degree angle relative to a

diffuse reflectance standard (model Spectralon USRS-
99-010 from Labsphere, USA).

Chemometric Modelling

Chemometric modelling and validation were carried out with
in-house routines programmed in Matlab R2017a
(Mathworks, USA) and with PLS_Toolbox 8.5.1
(Eigenvector Research, USA) running under Matlab.

Spectral Preprocessing

Intensive preprocessing was required to remove the spectral
artefacts generated as result of inhomogeneity in the fluidised
bed system. First, 10 intensity raw spectra were averaged into
a single raw spectrum. The resulting signal was transformed

Fig. 2 The tuneable MEMS Fabry–
Pérot Interferometer: (a) schematic
of the internals showing the MEMS
FPI chip mounted on top of the
InGaAs NIR detector and
(b) and a photo of the miniaturised
NIR sensor with the light source.
The footprint of the assembled
sensor chassis is approximately
58 mm length by 57 mm width by
27mm high, with a weight of 125 g.

Table I Summary of Experimental
Conditions for Fluidised Bed Drying
of Granules Spectra where
Recorded at 1 Scan per Second

Sample
name

PLS Model Moisture drying range
(from/to)

Flow rate

L/min

Recording time
(min)

time to reach 5%
(min)**

Batch 1 Calibration 35.03% to 1.99% 850 137.3 58

Batch 2 Calibration 34.11% to 1.77% 850 117.1 46

Batch 3 Calibration 34.45% to 1.86% 850 123.3 54

Batch 4 Calibration 34.24% to 1.85% 850 108.8 42

Batch 5 Calibration 37.60% to 1.86% 850 112.5 43

Batch 6 Calibration 33.94% to 1.51% 850 114.5 39

Batch 7 Validation 33.55% to 1.32% 850 78.0 38

Batch 8 Validation 33.89% to 1.46% 850 85.1 39

Batch 9 Validation 33.83% to 1.62% 850 86.8 41

Batch 10* Validation 33.92% to 1.63% 850 79.5 40

Batch 11 Validation 34.09% to 1.88% 600 88.0 49

Batch 12 Validation 34.30% to 2.55% 600 117.7 78

Batch 13 Validation 33.88% to 2.18% 600 100.1 64

Batch 14* Validation 33.42% to 1.86% 600 116.3 66

*After each manual sampling fluidisation was switched off for 10 s

**Estimated time since the fluidisation started up to reaching 5% of moisture content
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into absorbance using the bright and dark reference spectra.
As artefacts are still present in the data, a moving average filter
was applied using the current and 74 prior spectra. Finally,
spectra were mean-centred before being submitted to the PLS
algorithm. The Standard Normal Variate method was evalu-
ated, but in this case did not improve over the pre-processing
method described.

PLS Regression for Moisture Prediction

The PLS regression model was built relating the NIR pre-
processed spectra (X) to the mean-centred logarithm of
LOD moisture content of samples collected during the
drying of the 6 initial batches (y ¼ log10 f w−log10 f w;
Batches 1 to 6, see Table I). The log10 transformation
was used to minimise the relative error; the error is large
at high values of fw due to sticking etc. and reduces as the
system dries. This improved the predictions over the wide
range of moisture content (1.51% to 37.60%). The PLS
regression model was calculated using the NIPALS algo-
rithm (31). Finally, PLS outputs were back-transformed to
provide moisture values in the original units. Note that
when applying Eq. (1) to calculate the log moisture con-
tent y for a new spectrum, the error in Eq. (1) represents a
relative error in the fw domain; i.e. the expected moisture

content f w Xð Þ ¼ eyþlog10 f w � e�ey≈ f w Xð Þjest � 1� ey
� �

.

MSPC Charts for Process End-Point Detection

PCA-based MSPCmodel charts were built using NIR spectra
corresponding to an offline determined moisture content be-
low 2% chosen as the process end-point criterion. The MSPC
model was built using NIR spectra from batches 2, 3, 4, 6, 7, 9
and 10, that each reached the desired process end-point i.e.
moisture content below 2%, using the same pre-processing as
for the PLS model. All the spectra were gathered in matrix X
(nr. of spectra, each with 400 wavelengths). After this step, a
standard normal variate (SNV) normalisation was applied to
remove any unwanted baseline spectral variation followed by
mean-centring of theXmatrix before building the PCA-based
MSPCmodel. The number of components in the PCAmodel
was estimated by cross-validation. Finally, a Q-statistic control
chart (Q stat) was built from the resulting MSPC model and
control limits at 95 and 99% confidence interval were estimat-
ed according to Jackson and Mudholkar equation (32). For
external validation, Q stat control charts were obtained for
batches 1, 5, 8, 11, 12, 13 and 14 (not used in the PCA model
building step). When the shape of a new spectrum is similar to
the end-point spectra used to build the PCA model, the resid-
uals are small and the related Q stat value appears below the
chart control limit. Conversely, when a spectrum is far from
the end-point, the spectral shape is clearly different and the

resultingQ stat value appears well above the chart control limit.
The point in time where the Q stat value goes below the control
chart limit at a 95% confidence interval for 10 consecutive
observations was used as criterion to indicate the process
end-point. Batches that do not reach the end-point should
consistently show Q stat values above the chart control limit.
It is important to remind that the end-point detection by
MSPC uses the sole information provided by the NIR spectra
and does not require any reference moisture content.

RESULTS AND DISCUSSION

The first aim of the work is to assess the robustness of the
new reduced cost and small form factor MEMS FPI NIR
sensor over a 9 month period during which 14 batches of
placebo granules were manufactured and dried in a flui-
dised bed (Table I). The objective was to repeat essentially
identical batches in order to evaluate the robustness and
consistency of the sensor, and the predictions based on
models derived from the NIR spectra. The system was
however subject to changes uncontrolled variables: such
as batch to batch variations in granulate (e.g. size, mois-
ture content, storage time) and the ambient and air inlet
temperature and humidity (experiments started with bx1
in August to bx 14 in mid December). To probe the sen-
sitivity of the PLS moisture predictions to a change in
flowrate we reduced the air flowrate from 850 to
600 L/min in the last 4 batches.

Overall, the MEMS-FPI sensor performance showed a
very satisfactory stability and reproducibility. The spectral sig-
nal remained stable and repeatable under all ambient condi-
tions. The bright reference intensity levels and spectra shape
measured at the beginning of each experiment remained sim-
ilar. The device proved to be free of interferences generated
by mechanical vibrations; e.g. spectral readings did not alter
when the device was installed directly next to the fluidised bed
vessel. Ambient temperature variation did lead to minor var-
iations. However, using a second spectrometer it was demon-
strated that this was in fact due to effects of temperature on the
transmission through the fibre optic cables, rather than on the
light source or the MEMS-FPI sensor.

In the fluidised bed process granules are dried using ambi-
ent air of uncontrolled humidity. As a result the drying rate
varies from batch to batch, with the final drying end-point
determined by relative humidity conditions found on the
day when a batch is dried. Table I summarises the observa-
tions for all batches. A typical data set for a drying experiment
is shown in Fig. 3: Granules are charged cold and fluidised by
a gas stream of 600 L/min at ~25 ° C. As water evaporates,
heat is removed from the gas stream resulting in a ~10 ° C
temperature difference between the bed and the fluidising gas.
The moisture content measurement is based on a PLS model
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(Eq. 1) based on 6 reference batches and validated using the
NIR spectra from a further 8 validation batches. Moisture
content is monitored continuously by NIR using the PLS
model, and measured once every ~10 min by sampling and
performing offline analysis by LOD. When the granule water
content is reduced by ~85% the evaporation rate drops and
the bed temperature rises. Equilibrium between the inlet gas
(ambient RH) and the granules (fw≈1.5–2 wt%) is reached
after ~90 min at 600 L/min.

To test the robustness of the NIR measurement and
the associated PLS model, drying was performed using
two different flow rates (600 and 850 L/min) at constant
air inlet temperature (25 ± 3°C). As expected, the flowrate
strongly affects the drying rate: thus, the drying time
reduces to ~60 min when the flowrate is set at 850 L/
min. Even though the PLS model is based on data from
runs 1 to 6, all operated at 850 L/min, it still correctly
predicts the moisture content of runs at 600 L/min with-
out further chemometric analysis, since only the drying
rate, but not the sample composition, is changed. Thus,
the fitted parameters for Eq. (1) successfully correlate fw to
the NIR spectra for the reference batches, and the same
parameters allow prediction of moisture content for all
validation batches irrespective of the flowrate. This dem-
onstrates (i) the robustness of the data strategy applied
(e.g. data treatment, data treatment prior to PLS analysis)
and (ii) the excellent stability and robustness of the
MEMS-FPI NIR sensor.

When drying from ~33 to 10 wt%moisture contents it was
observed that the granules shrank due to the loss of 26% of
their original mass. At this stage no significant fines were ob-
served. At lower moisture levels (5–1%), granules appear
dried at the surface. Granule size continue to reduce, but
now by attrition which generated a significant quantity of fines
that were observed to build up on the fluidised bed filters,

resulting in increasing pressure drop across the outlet filters.
The size reduction, coupled to the reduction in moisture con-
tent did appear to increase the intensity of the reflected signal
as the drying process progressed, but this did not seem to have
a significant impact on the moisture content predictions.

A data analysis strategy was designed (Fig. 4) to demon-
strate that the low cost NIR sensors delivers high quality data
robustly during fluid bed drying on placebo pharmaceutical
granules; a typical processing scenario with a very low signal to
noise ratio. We tested three applications: Moisture monitor-
ing, end-point detection and process analysis (mass transfer
monitoring) that will be discussed in more detail below

NIR Signal Acquisition during Fluidised Bed Drying

The presence of large fluctuations in individual NIR scans
when sensing in situ from a fluidised bed dryer has been
previously reported and necessitates intensive data pre-
processing steps and/or modification of the way a spec-
trum is measured (e.g. scoop devices to hold the sample in
place while measuring) (28). The contact between the flui-
dised material and the tip of the NIR probe is variable
and characterised by air gaps appearing in front of the
sensing area at random intervals. This produces abrupt
changes in the spectra collected from scan to scan.
Figure 5a, b, c shows 10 consecutive single spectral read-
ings and their corresponding average (darkened line) for
three different time periods of the drying process (a, t =
0 min; b, t = 41.2 min; and c, t = 81.2 min). In this work
10 single spectral scans were averaged to give a single
NIR spectrum every 10 s. This procedure is exemplified
in Fig. 5, where the average of the 10 single scans was
converted to the absorbance spectra. The resulting absor-
bance signal still shows a relatively high level of noise,
which is further reduced with a moving averaging filter
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Fig. 3 A typical data set for a drying
experiment (Bx 14). Granules are
charged cold and fluidised by a gas
stream of 600 L/min at ~25 ° C. As
water evaporates, heat is removed
from the gas stream resulting in a
~10 ° C temperature difference
between the bed and the fluidising
gas. Moisture content is monitored
by NIR using the PLS model (Eq. 1),
and measured offline by LOD.
When the granule water content is
reduced by 85% the evaporation
rate drops and the bed temperature
rises. Equilibrium between the inlet
gas (ambient RH) and the granules
(~1.5 wt% water) is reached after
~90 min.
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that averages the data of the currently aquired spectrum
with the previous 74. The large filter window (750 s) pro-
vides a smoother variation of the spectral observations
over time and only slightly reduces the response time of
the moisture content predictions.

After the pre-processing steps, the drying evolution can
be clearly observed in the spectra (Fig. 6): the absorbance of
the -OH absorption band (1940 nm), associated with the
presence of water in the material, strongly reduces as drying
progresses.

Fouling is another issue observed when acquiring in situ

NIR spectra in a fluidised bed system. This problem often
occurred at the beginning of the drying process, since granules
with a moisture content above 20 wt% are very wet, and have
a strong tendency to stick to the probe’s window. This causes
more reflection, and thus higher intensity NIR spectra, which
shifts the signal to greater values compared to normal opera-
tion with a clean window. Fortunately, continuous collision of
granules on the probe window causes a degree of self-cleaning.
Hence, if granules stick for periods significantly smaller then
750 s, the pre-processing steps will reduces the impact of foul-
ing on moisture content measurements.

Moisture Content Prediction with the NIR Sensor

A PLS model was developed by relating the pre-processed
NIR spectra from the initial six batches (Table I), to the
offline measured LOD moisture content. For the six cal-
ibration batches (Bx1 to 6), different, narrow spectral
regions including the spectral range corresponding to the
strong moisture band (1900–2000 nm) were tested sepa-
rately but the smallest overall moisture prediction error
was found using the full spectral range available from the
sensor (1750–2150 nm).

Figure 7 shows the results obtained for six selected batches
comparing the LOD analytical moisture content (circles) with
the predicted moisture profiles obtained from the online NIR
spectra and the PLS regression model (continuous line). The
figure shows (i) two calibration batches used for developing the
PLS model (batches 2 and 4, using 850 L/min), (ii) two vali-
dation batches with the same flow rate (batches 7 and 9, using
850 L/min), and (iii) two validation batches using a slower
flow rate (batches 13 and 14 using 600 L/min). Similar plots
showing the results obtained for all fourteen batches can be
found in the SupplementaryMaterial. Generally, themoisture

MEMS FPI 
NIR Sensor averaging

1 Spectra/s

Rolling 
averaging

74 prior + 
current

0.1 Spectra/s

PLS

6 calibra�on Bx
~ 85 LOD samples

Mean 
centring

by LOD
0.003 sample/s

Mean 
centring

convert to 
absorbance

SNV 
normalisa�on

7 calibra�on Bx
~ 100 LOD samples

MSPC control chart 
End point 
detec�on

Moisture content

Mass transfer
model

Mass, Isotherms, 
Vapour pressure

molar drying rate
74 prior + current
37 point �me delay (370 s)

MT resistance 

Fluid bed
temperature

0.003 samples/s

0.1 Spectra/s
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temperature
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data
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Data genera�on                  Pre-Processing                                            Algorithmic analysis      Output

0.1 value/s

Linear 
regression

Fig. 4 An overview of the sensor data analysis strategy used to demonstrate the versatility of the new MEMS FPI NIR sensor. Data generated by sensors is pre-
processed and delivered to algorithms to construct models from calibration data. With these models are in place, new NIR spectra recorded can be interpreted
immediately.
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content resulting from the NIR spectra provides a good esti-
mate of the data measured offline by LOD when the moisture
content fw< 20wt%.

A direct comparison of the moisture content measured us-
ing LODwith the predicted results from online NIR spectra is
given in Fig. 8. As the PLS model fitted log10fw, we expect the
relative error in the prediction to be constant for different
levels of water content.

The average residual for all N LOD measurements
(~200 LOD values) may be defined as:

erel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
i¼1 to N

f w:NIR− f w:LOD
f w:LOD

� �2

i

s
¼ 13% ð6Þ

From Fig. 8 it is clear that the error in the NIR based water
content is independent of the absolute extent of the moisture

Fig. 5 Construction of absorbance
signal from the average (red line) of
10 consecutive single scans (blue
thin background lines) for three time
periods of the drying process: (a)
t = 0; (b) t = 41.2 min; and (c) t =
81.2 min, (d) Absorbance spectra
obtained from the resulting average
intensity. Dark signal level of the
detector was approximately 500
intensity units.

Fig. 6 Change in water content
observed from variations in the
absorbance spectra (a): for
10 specific periods of the drying
process (obtained after applying the
pre-processing steps). (b): NIR
profile evolution observed for the
complete drying process.
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Fig. 7 Analytical moisture content
determined using LOD (discrete
circles) compared to the prediction
profiles obtained from the PLS
regression model using online NIR
spectra (semi continuous line),
including two calibration batches
(batches 2 and 4 using 850 L/min),
and four validation batches using
two flow rates (batches 7 and 9
using 850 L/min; batches 13 and 14
using 600 L/min).
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content. The error for the calibration batches is ± 10%.
However, all models over predict the LOD concentration be-
low 5 wt%: 1% higher for the calibration batch, 18% for the
850 L/min and 8% for the 600 L/min validation batches. The
high deviation at low water levels for the 850 L/min batches
may be due to an uncontrolled parameter such as the humidity.

Comparing results to previous studies is difficult as the wa-
ter concentration ranges used to build principal component
models vary significantly. The pre-processing strategy was
similar in all cited cases, averaging a large number of scans
(from 32 to 300 vs 750 in this study) to compensate for the
spectral noise. Peinado et al. (23) reported data for water
contents fw between 0.6 wt% to 2.8 wt% with a relative error
εrel ≈ 15% using an ABB Fourier Transform Process Analyser
Near Infrared spectrometer, with thermo electrically cooled
InGaAs detectors (ABB-FTPA2000260). Fonteyne et al. (19)
reported data for fw in the range of 3.5 to 7 wt%with a relative
error εrel= 5% using a Matrix™ –F Duplex, Bruker Optics
Ltd., FT-NIR spectrometer (32 single scans averaged; using
1000–2220 nm for analysis). The residuals obtained using a
commercial dispersive spectrometer varied ±4 wt% over 4-
20 wt% water content (32 single scans averaged; using 1100–
2500 nm for analysis) (28). The results obtained for the cali-
bration and the validation batches with the novel MEMS-FPI
sensor (εrel=13%) were similar to those reported with conven-
tional spectrometers. We did however observe significantly
larger relative errors below 5 wt% water in the validation
batches. The absolute errors remained low (~0.4 wt%).
Based on the operation over a significant period, we feel this
is more likely to be due to changes in uncontrolled parameters

Process End-Point Detection from MSPC Charts

A different application to evaluate the performance of the
MEMS-FPI is the detection of the process end-point from
the NIR signal. We use the MSPC model (Eq. 2) based on
the end-point spectra from the calibration batches. This mod-
el required two principal components, PC1 marks the
inverted water band and PC2, with a less interpretable shape,
is required for the description of batch-to-batch variability (the
PC loadings and related description are provided in the
supplementary information S4). Q stat control charts were cal-
culated from Eqs. 2–4 for validation batches by projecting
NIR spectral observations (using same pre-processing proce-
dure as before) onto the developed model. Figure 9 shows the
Q stat MSPC charts obtained for six validation batches.
Detected end-points are indicated with a yellow diamond
marker in the Q stat control charts. Batches 1, 5, 8 and 14
reached a final moisture content below 2% (on-specification),
batches 12 and 13 did not (off-specification). For comparison,
moisture content levels from the NIR spectra were compared
in the MSPC control charts for batches 5 and 13 (moisture
axis is at the right of the plot). These plots in Fig. 9 show that

based on moisture levels the endpoint would have been
delayed for batch 5; both Q stat and the moisture level agree
that batch 13 is off specification.

The results in Fig. 9 also confirm that a lower gas flow rate
(batches12–14, see Table I) significantly increases the end-
point process time (compared with on-specification batches,
1, 5 and 8). Similar results were observed for the other valida-
tion batches (see Supplementary Material). The spectral qual-
ity of the NIR sensor and its robustness is clearly sufficient for
the construction and application of PCA-based MSPC mod-
els. The device has clear potential in end-point detection
applications, promising a significant reduction in offline mois-
ture measurements.

Process Monitoring (Mass Transfer Resistance)

The promise of low cost NIR devices lies in the common
availability of online compositional analysis. Our statistical
analysis (PLS and MSPC) demonstrates the low cost
MEMS-FPI NIR sensor to be a device that is suitable for
composition measurement, with sufficient performance com-
pared to conventional sensors when applied to fluid bed sys-
tems. To date NIR data has not been used in conjunction with
mechanistic drying models to provide scale up data. As can be
seen in Fig. 4, such analysis is complex, and requires the fusion
of data from multiple sensor, as well as an understanding of
material properties such as water adsorption isotherms and
the vapour pressure of water. Methods to determine the bed
moisture content and drying rate from temperature and hu-
midity data show a significant deviation from samples ana-
lysed by LOD (33). To demonstrate the utility and value of
continuous composition data in process monitoring we devel-
oped a methodology to monitor the process by evaluating the
mass transfer resistance(s) from the available data. These resis-
tances underpin fluidised bed scale up calculations. An over-
view of the mass transfer model is given in Fig. 10.

Step 1: Obtain the Molar Drying Rate

To evaluate the mass transfer we first must convert the Drying
curve fw(t), to the drying rate in mols/s by differentiation of the

water content N w ¼ 1
0:018

ms f w tð Þ
1− f w tð Þ in the bed. The slope of the

dying curve results from linear regression of a line to 36 data
points either side of time t (a total of 72 points over 720 s). The
standard error in the slope obtained is between 3%–5%. An
example of fw, and its derivative dfw/dt are shown in Fig. 11
row 1. The first graph shows the conventional drying curve
consisting of the initial transient phase followed by the con-

stant drying rate period (20–60 min, d f w
dt
≈0:8 wt%=min ) and

the falling rate period and finally equilibrium (fw ≈ 1.6 wt% ).
Row 2 of the same figure shows the molar drying rate at
approximately 0.15 mol/s in the constant drying rate regime.
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Fig. 9 MSPC control charts for batches 1, 5, 8 and 14 (on-specification), 12 and 13 (off-specification). Inserted figures show in detail the final time range of the
drying process and the process end-point, identified when 10 consecutive observations of Q stat values were below the 95% control limit. Batches 5 and 13
include the moisture predictions from PLS model for reference (secondary axis).
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Step 2 Work out the Driving Force

Granules consist of solids bound together by a binder fluid
(Fig. 10a).Water is present in liquid bridges, but also adsorbed
to some of the solid materials. The process scheme (Fig. 10b)
shows the location of water in different environments (e.g.
different phases and segregated domains) with arrows repre-
senting mass transfer between the environments. The mass
transfer process is a diffusion process driven by the concentra-
tion gradient between water at the source in the granule and
the water in the fluidising gas (the sink). As the liquid and solid
phases in the granule are in intimate contact we assume equi-
librium hence the gas phase concentration over (in equilibri-
um with) the solid (C*

S ) and liquid (C*
L ) are the same. As at

some point the liquid phase will disappear, we focus our at-
tention on obtaining C*

S as function of temperature and water
content. Thermodynamically, the vapour pressure over a solid
or liquid phase is represented by the product of the activity of
water in that phase aw and the vapour pressure of water at the
bed temperature, P*

w T bedð Þ:

C*
S ¼

awP
*
w T bedð Þ
RT bed

mol

m3 ð7Þ

The equilibrium vapour pressure of pure water is given by
the Antoine equation (34), supplementary material), here
expressed relative to the vapour pressure at a reference tem-
perature of 20 ° C:

P*
w T °Cð Þð Þ ¼ 2339:1*e

−4078:8* 1
236:63þT °Cð Þ−

1
256:63

� �
� 1 Pa ð8Þ

The water activity (aw) follows from the water adsorption
isotherms of the materials present in the placebo.2 Such iso-
therms relate aw to the water content on a dry weight bases
(Fig. 12a). The GAB correlation, an extended BET equation
developed by Guggenheim, Andersen and de Boer (35,36),
expresses water content of solid i F wi

; dry basisð Þ as function
of the water activity (Table II, and supplementary material):

Fwi
awð Þ ¼ mwi

msi

¼ kwiawCGABi
moi

1−kwi
awð Þ 1þ CGABi

−1ð Þkwi
awð Þ ð9Þ

At the beginning of the drying the Hypromellose 2910
(5 wt% dry basis) and Ac-Di-Sol (1.5 wt%) contain up to
50% of the adsorbed water with the remainder adsorbed onto
the Avicel (29 wt%). As the granule dries, this reduces to
~10% and most of the remaining water is associated with
the Avicel. Assuming the materials do not interact, an aggre-
gate isotherm may be constructed by combining the water
content adsorbed by the various materials at the same water
activity (Fig. 12b). The aggregate isotherm correlates the gran-
ule’s water activity to Fw= mw/madsorb, where madsorb is the com-
bined mass of Avicel, Hypromellose and Ac-Di-Sol (Fig. 12c,
fitted GAB parameters in Table 22).

Step 3: Link the Molar Drying Rate and the Driving Force

Themass transfer process can be represented with a resistance
model ((41), Fig. 10c) that sees a “current” of water
(MTRw;

mol
s:m3

bed

) flowing from the high concentration at the

2 We ignore the reduction in water activity due to the presence of solutes,
predominantly Mannitol at ~ 1 mol/L, which reduce aw from 1 to 0.98 by
Raoult’s law.
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Fig. 10 (a) a granule consists of solid held together by liquid bridges formed by the binder fluid. Water is also absorbed by solids (~0.3 gwater/gsolid). (b) The
process scheme shows the location of water in different environments (“phases”) with arrows representing mass transfer between the environments. The gas
phase concentration over (in equilibrium with) the solid (C *

S ) and liquid (C *
L ) are assumed to be similar. (c) The mass transfer may be represented as a

resistance model with a “current” of water (MTRH2O;
mol
s:m3

bed

) flowing from high to low concentration. The transport through each environment requires a

fall in concentration that is proportional to the “current”: ΔC ¼ MTRH2O �Ω, whereΩ is the so called mass transfer resistance. The driving force (the
“voltage”, the sum of all ΔC) equals the concentration difference between the source of the water and the final sink, the fluidising gas: C *

S−Cg .
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Fig. 11 Determination of mass transfer resistances on experiment 14 (600 L/min).
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source (liquid bridges, solids) to low concentration in the gas
used to fluidised the bed. The transport through each envi-
ronment requires a fall in concentration that is proportional to
the “current”,ΔCi=MTRw×Ωi, where Ωi is the a called a
mass transfer resistance which has the units of seconds. The over-
all driving force (equivalent to “voltage”) is the sum of all these
ΔCi and equals the concentration difference between the
source of the water and its final sink, the fluidising gas:

C*
S−Cg ¼ ∑ΔCi ¼ MTRw � ∑Ωi ð10Þ

The above equation shows the total mass transfer re-
sistance Ωtot = ∑Ωi to be the sum of the individual resis-
tances, in similarity with Ohm’s law. As the residence time
of the gas is short (< 100 ms) it is common in most flui-
dised bed models to assume that the mass transfer resis-
tance Ωtot and the bed’s temperature and moisture con-
tent are constant on the time scale required for the gas to
flow from the bottom to the top of the bed. A mass bal-
ance over a horizontal slice of the bed with volume dVbed

requires the gain of water in the gas flow (φg dCg) to be
equal to the mass transferred from the granules to the air
(MTRw dVbed):

φg dCg ¼ MTRw dV bed ¼ MTRw

1
f sρs

dms ð11Þ

Here fsis the volume fraction solids in the fluidised bed
(estimated at 40%), and the ρs solids skeletal density (averaged
at 1500 kg/m3). Substitution of Eq. 7 in 11 and integration
yields (see supplementary material):

Cg:out−Cg:in ¼ f MTR 1−Sinð ÞC*
S with f MTR ¼ 1−e

− ms
Ωtot fsρsφg

� �
ð12Þ

Here Sin ¼ Cg:in=C
*
S is the degree of saturation of the inlet

gas which varies between 0 (no water) to 1 for an inlet gas in
equilibrium with the water in the granules. It is important to
realise that the saturation of the inlet gas (Sin) may change dur-
ing processing, as C*

S varies with both bed temperature and
water content. We estimated Cg. in such that the outlet air is
saturated at the beginning of the constant drying rate period.

The molar drying rate _N w in the fluid bed dryer now
follows from the air flowrate φg and the concentration change
calculated from Eq. 12:

Ṅw ¼ Cg:out−Cg:in

� �
φg ¼ f MTR Ṅ

∞
w with Ṅ

∞
w

¼ 1−Sinð Þ C*
S φg

ð13Þ

fMTR is the extent to which mass transfer is limiting: when
fMTR= 0 the mass transfer resistances are high and no signif-
icant transfer occurs. If on the other hand fMTR= 1 then mass
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Fig. 12 The construction of the aggregate isotherms: (a) Isotherms of individual components data is taken from the references listed table X, lines are the GAB
equation fitted to the data using the parameters in Table X. (b) Contribution of the individual materials to the total water content FW based on the mass of the
polymers (mannitol weight not included) (c) The GAB fit to the aggregate isotherm. The estimated relative humidity plotted versus the moisture content of the final
product measured by LOD corresponds well to the aggregate isotherm.

Table II Fitting Parameters for the GAB Equation of the Materials in the Placebo Formulation

Material mass
(gr)

moi CGABi

kwi, Reference

Mannitol 213 0.00068 1.73 0.87 Data (37)

Avicel PH-101 96 0.040 17.4 0.80 GAB param (38)

Hypromellose 2910 17 0.018 18.9 0.99 Data (39)

AC-Di-Sol 5 0.095 13.4 0.92 Data (40)

Aggregate 118 0.0441 14.30 0.846 Mass weighted average
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transfer is instantaneous, and the gas phase leaves saturated

resulting in the maximum drying rate _N
∞
w . The 2rd row in

Fig. 11 shows the molar and maximum drying rates. The
drying rate is about 80% of the maximum drying rate in the
constant rate period which ends at Fw ≈ 0.35, after which the
rate reduces in a manner that appears proportional with Fw.
Conversely, the maximum drying rate remains stable at Fw<
0.35, as Tbed and P*

W T bedð Þ increase balanced by a reduction
in the water activity aw as water is removed. The reduction of
aw becomes dominate when Fw< 0.1 the driving force and
drying rates reduce then sharply.

Step 4 Calculate the Overall Mass Transfer Resistance

The mass transfer resistance Ωtot follows from the ratio of the

molar drying rate _N w measured by NIR, and the maximum

drying rate _N
∞
w that follows from the bed temperature and the

gas flowrate:

f MTR ¼
_N w

_Nw

∞ ¼
_N w

1−Sinð ÞC*
Sφg

¼ 1−e
− ms

Ωtot f sρsφg ð14Þ

The measured temperature and water content data com-
bined with the aggregate isotherm and the vapour pressure of
water allows calculation of fMTR. The overall mass transfer
resistance then follows by rearranging

Ωtot ¼ −
ms

Ln 1− f MTRð Þ fsρsφg
ð15Þ

This is shown in row 4 of Fig. 11. After the steady state is
reached, Ωtot ≈ 0.03s, but once Fw drops below 0.4, the mass
transfer resistance starts to increase, eventually it is an order of
magnitude higher. This behaviour is observed in all batches
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Fig. 13 Mass transfer resistance curves for repeat batches; top) logarithmic Yaxis, bottom) linear Yaxis. The data demonstrates that at air flowrate of 850 L/min
(a) the initial and final mass transfer resistance are relatively constant, but the internal resistance starts to dominate at widely different moisture content Fw=mw/
madsorb. At 600 L/min (b) we observe more consistent mass transfer resistance trajectories.

Table III Average Mass Transfer Resistances for the Placebo Granules

Flowrate 600 L/min 850 L/min All

Data points 4 8 12

Ωext (s) 0.028± 15% 0.013± 27%

Ωmax (s) 0.58± 33% 0.68± 34% 0.64± 33%

FW crit
−ð Þ 0.10± 20% 0.10± 31% 0.10± 27%
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(Fig. 13). At 600 L/min, the curves of the different repeat batches
are consistent, even though the 20% relative error in moisture
content level does result in significant fluctuations around the
mean. The increase in the internal resistance by a factor 30 to
70 is clearly visible in all batches displayed bar Bx 11.

Step 5 Evaluation of the Observed Mass Transfer Resistance

To parametrise, the observed mass transfer resistances we
based on a constant resistance external to the granule, and
an internal granule resistance that falls exponentially with
moisture content:

Ωtot ¼ Ωext þΩmax e
− 1

FWcrit
F w−Fw:endð Þ ð16Þ

Here Fw. end is the final moisture content relative to madsorb.
Table III and Fig. 14 shows these parameters for the experi-
ments conducted. As expected, the external resistance varies
with airflow reducing from 0.028 s± 15% at 600 L/min, to
0.013 s±27% for 850 L/min. The maximum resistance (0.64
±33 % ) and the critical moisture content Fwcrit

(0.10 ±
27% ) appears to be independent of the flowrate. The exter-
nal resistance will dominate at moisture contents above Fw=
0.5 as only e−(0.5 − 0.1)/0.1 ≈ 2% of the internal resistance
remains (~0.014 s).

The obtained mass transfer parameters are difficult to
reconcile with literature, as generally only the drying rate
is reported (33,42). It is worth noting that the variation in
the estimated parameters related to mass transfer is dou-
ble the error in the NIR based moisture content (±13%).
Even so, the mass transfer analysis using low cost NIR
sensors is able to detect the change from externally con-
trolled mass transfer (the so called constant rate period) to
mass transfer limited by the internal resistance of the
granule. The rate of change of the internal resistance is
exponential, which is inconsistent with a shrinking core
model in which the volume of the granule that contains

water shrinks towards the core of the granule (43). Further
work with controlled humidity will be required to see if
the analysis is robust.

A detailed phenomenological interpretation of the pre-
sented results is beyond the scope of this paper, but it appears
that the desorption kinetics dominate mass transfer once the
binder liquid droplets have evaporated. It follows that the
ingredient selection and adsorption characteristics can have
a profound effect on the drying time required.

CONCLUSIONS

A new reduced cost and small form factor MEMS FPI NIR
sensor has been tested over a 9 month period during which 14
batches of placebo granules have been manufactured and dried
in a fluidised bed. Overall, the MEMS-FPI sensor performance
gave a very satisfactory stability and reproducibility and delivered
high quality, continuous data robustly during fluid bed drying off
placebo pharmaceutical granules; a typical processing scenario in
which acquiredNIR spectra have a very low signal to noise ratio.
We tested the sensors performance with three applications: mois-
ture monitoring, end-point detection and process analysis (mass
transfer monitoring).

In fluidised beds abrupt changes in the spectra collected from
scan to scan occur because of the randommotion of the placebo
granules. Using spectra averaged over 12min, a satisfactory and
robust PLS regression model was developed to predict the mois-
ture content from NIR. The accuracy of the moisture content
prediction over a significant number of batches and an experi-
mental period of 3 months remained constant at a relative error
of 13%. This is of a similar magnitude as reported for fluidised
beds dryers using high specification commercial NIR spectrom-
eters. The consistent performance demonstrates the NIR sensor
potential for use as process sensor.

In the second application, NIR spectra collected were used
to develop a MSPC model with a 2% endpoint moisture
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content target. This allowed successful endpoint detection,
and correct identification of off-specification batches using
only the NIR sensor’s data.

To demonstrate the utility and potential benefits of having
cheap online sensors available for process monitoring, we fused
temperature and NIR generated moisture data to determine the
mass transfer resistance. Our analysis indicates that for the pla-
cebo granules the overall mass transfer resistance is the sum of a
gasflow dependent external resistance (0.01–0.03 s) and a mois-
ture content dependent internal resistance that increases expo-
nentially as moisture content reduces (0.0 to 0.7 s). We demon-
strated that this low cost NIR sensor allows the detection of
changes in the drying mechanisms, which may give an early
warning if unspecified physico-chemical properties of input
materials (such as water adsorption isotherms) have changed.

In summary, the small form factor MEMS-FPI sensors has
been shown to be a robust alternative for process monitoring.
It is robust to vibration and temperature changes and straight-
forward to install. Its NIR spectra are of a sufficient quality to
deliver composition related predictions with the same accura-
cy as commercial spectrometers in a system with an extremely
low signal to noise ratio. The MEMS chip spectrometer can
be mass produced and has a small enough form factor to be
integrated in the next generation of plant sensors. Besides, it is
cheap enough to allow multi point composition sensing in the
way that is done to day for temperature, pressure and flow
rate measurement.
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