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Summary

In population-based cancer studies, net survival is a crucial measure for population comparison

purposes. However, alternative measures, namely the crude probability of death (CPr) and the

number of life years lost (LYL) due to death according to different causes, are useful as com-

plementary measures for reflecting different dimensions, in terms of prognosis, treatment choice,

or development of a control strategy. When the cause of death (COD) information is available,

both measures can be estimated in competing risks setting using either cause-specific or sub-

distribution hazard regression models or with the pseudo-observation approach through direct
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modelling. We extended the pseudo-observation approach in order to model the CPr and the LYL

due to different causes when information on COD is unavailable or unreliable (i.e., in relative

survival setting). In a simulation study, we assessed the performance of the proposed approach

in estimating regression parameters and examined models with different link functions that can

provide an easier interpretation of the parameters. We showed that the pseudo-observation ap-

proach performs well for both measures, and we illustrated their use on cervical cancer data from

the England population-based cancer registry. The implementation of the method in R software

is also provided.

Key words: competing risks, relative survival, pseudo-observations, crude probability of death, number

of life years lost

1. Introduction

When aiming to describe the survival experience of a group of individuals, estimating the overall

survival is usually of primary interest. However, when the goal is to describe the probabilities of

dying from different causes, a further step is required in order to account for competing risks.

Competing risks methods aim to identify covariates which not only affect the rate at which

specific events occur, but also the probability of occurrence of a specific event over time (Austin

and Fine, 2017).

To perform a competing risks analysis with two events, say cancer death and death from other

causes, we often rely on the cause of death (COD) information attributed to each individual,

assuming that this is available and reliable. Two types of hazards, namely cause-specific and

subdistribution hazard, may be used. Unlike cause-specific hazard, subdistribution hazard is

useful for estimating covariate effects on the event-specific probability since it “measures the

effect of the covariate that can be explained either because there is a direct effect of making the
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event more or less likely to occur, or due to the indirect effect of influencing the other events

to occur” (Dignam and Zhang, 2012). However, this leads to a complicated interpretation thus,

working with cause-specific hazard might be preferred even though it does not directly describe

the covariate effect on the probabilities (Andersen and Keiding, 2012).

Nevertheless, the use of routinely collected population-based registry data involves additional

methodological challenges due to the absence of reliable information on individual COD, calling

for methods defined within the relative survival setting (Pohar Perme and others, 2016). In

this setting, the observed mortality hazard is split into two mortality hazards: the expected or

population mortality hazard (assumed known and provided by population life tables) and the

excess mortality hazard, which is the main quantity of interest. The excess mortality hazard in the

relative survival setting is the equivalent of cause-specific (here cancer-specific) hazard in classical

competing risks setting. The most frequently used indicator derived from the excess mortality

hazard is net survival (Pohar Perme and others, 2012), which is the probability of surviving when

assuming that the cancer under study is the only possible COD. Net survival is of interest when

making comparisons between populations since it is independent of the competing risks of death,

which may differ between these populations (Allemani and others, 2018; De Angelis and others,

2014).

Despite the usefulness of net survival, communicating survival statistics is complicated and

must involve various indicators, as to reflect different dimensions in terms of prognosis, treatment

choice, or development of a control strategy. Towards this direction alternative indicators like (i)

the Crude Probability of Death (CPr) from a given cause (Cronin and Feuer, 2000; Mariotto and

others, 2014; Pfeiffer and Gail, 2017), also called cause-specific cumulative incidence function,

and (ii) the number of Life Years Lost (LYL) due to a given cause (Andersen, 2013), can be

used as complementary tools in order to provide a multi-perspective approach (Belot and others,

2019).
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Crude probabilities can be estimated nonparametrically, using Aalen-Johansen estimator (Sa-

tagopan and others, 2004; Geskus, 2015), or modelled in cause-specific setting with regression

models on the cause-specific hazards (Pfeiffer and Gail, 2017; Kipourou and others, 2019) or on

the subdistribution hazards (Fine and Gray, 1999; Geskus, 2015; Mozumder and others, 2018)

or modelled in relative survival setting using regression models on the excess hazard (Lambert

and others, 2010; Eloranta and others, 2013; Charvat and others, 2013, 2016). In cause-specific

setting, the pseudo-observation approach is another option (Andersen and others, 2003; Klein

and Andersen, 2005; Andersen and Pohar Perme, 2010) allowing for the direct modelling of prob-

abilities. In relative survival setting CPr can be estimated nonparametrically or indirectly via

regression modelling of the excess hazard but not through direct modelling. Similarly, although

estimation and modelling of LYL can be implemented in cause-specific setting (Andersen, 2013),

modelling them in relative survival setting has yet to be implemented.

The scope of this paper is to present a way of modelling directly the CPr and LYL due to the

disease of interest and other causes in relative survival setting (i.e., when COD is not available)

according to some covariates of interest. We chose to extend the most general method, i.e., the

pseudo-observation method (Andersen and others, 2003; Klein and Andersen, 2005; Andersen and

Pohar Perme, 2010; Andersen, 2013), which can be applied to both measures. The main idea is

based on the fact that when there is censoring we do not always observe the random variable (e.g.

time to event). By generating pseudo-observations at specific time points, we replace the whole set

of incompletely observed random variables with a complete set of their pseudo-observations. These

are later modelled with standard methods like generalised linear models (GLM) or generalised

estimating equations (GEE) in order to quantify covariate effects directly on the indicators of

interest.

The remainder of the paper is organised as follows: Section 2 provides a general description

of the pseudo-observation approach and details how this can be adapted in the relative survival
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setting in order to model directly the CPr and LYL. In Section 3, we assessed the performance

of the method in its ability to estimate the regression parameters of interest and examined

models with different link functions using simulations. In Section 4, we applied the new method

on population-based cancer registry data of women diagnosed with cervical cancer in England

between 2008 and 2010, and discussed the useful interpretation that can be gained from these

models. Lastly, Section 5 summarises the results and presents ideas for further research.

2. Methods

2.1 Pseudo-observations

The method based on pseudo-observations provides a general framework that enables the di-

rect modelling of a given statistical measure (e.g. survival probability) as a function of some

covariates of interest. Pseudo-observations (also called pseudo-values) were first described for

multistate models (Andersen and others, 2003), and since then many extensions were proposed

(e.g. for cause-specific cumulative probabilities within the classical competing risks setting, (Klein

and Andersen, 2005; Moreno-Betancur and Latouche, 2013) or for the restricted mean survival

time (Andersen and others, 2004)). This approach requires the existence of an (approximately)

unbiased estimator of the measure of interest (Andersen and Pohar Perme, 2010). While its

usefulness goes beyond modelling (as it can be extended to providing goodness-of-fit methods

(Andersen and Pohar Perme, 2010; Pavlič and others, 2018)), we focus on the modelling part

here, and summarize the main steps for their use when analysing time to event data.

For an individual i = 1, · · · , n, let Yi be independent and identically distributed random

variables (e.g. time since diagnosis up to death), and Xi a p-dimensional vector of (time-fixed)

covariates. As it is often the case with time to event data analysis, Yi is not always observed due

to censoring. Pseudo-observations are useful when information on Yi is not available, and our

interest lies on modelling the E [f(Yi)|Xi] for a given function f .
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The main idea of pseudo-observations relies on the fact that even with incomplete (censored)

data we can still derive the marginal expectation E [f(Y )]. Assuming that a consistent and

(approximately) unbiased estimator θ̂ exists for θ = E [f(Y )] (e.g. the Kaplan-Meier estimator

for the survival probability, or the Aalen-Johansen estimator for the cause-specific cumulative

incidence function (Geskus, 2015)), then the possibly unknown f(Yi) could be replaced by its

pseudo-observation (Andersen and Pohar Perme, 2010).

Pseudo-observations are computed for every individual regardless of the availability of the

f(Yi) at specific times. Thus, the pseudo-observation for f(Yi) is defined for individual i =

1, · · · , n at a given time t as

θ̃i = n · θ̂ − (n− 1) · θ̂−i (2.1)

where θ̂ is the estimator at time t based on the whole sample and θ̂−i is the estimator at time t

based on the sample of size (n− 1), obtained by eliminating individual i from the whole sample.

Intuitively, the pseudo-observation θ̃i can be seen as the “contribution” of the individual i to the

E [f(Yi)|Xi], estimated on the basis of the full sample at time t (Andersen and Pohar Perme,

2010).

Pseudo-observations may be calculated at several time points. In this case, the pseudo-

observation θ̃i is m-dimensional (i.e., (θ̃i)j = θ̃ij , j = 1, · · · ,m) and represents the vector

f(Y i) (Y i = (Yi1, · · · , Yim)) with entries f(Yij). These pseudo-observations may be used as the

outcome variables in a generalised linear regression model in order to derive the covariate effects

on the outcome of interest as

g{E[f(Yij)|Xi]} = αj + γ>Xi = β>X∗ij , i = 1, · · · , n j = 1, · · · ,m (2.2)

where g is a monotone differentiable link function and X∗ij is a (m + p dimensional) vector

including the indicators of the time points and the covariates Xi, X
∗
ij = (e>j ,X

>
i )> where ej is

the m-dimensional vector with 1 on the jth entry and 0 otherwise (Andersen and Pohar Perme,
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2010). Adding interaction terms (between covariates and time terms) would make X∗ij higher

dimensional.

Because the pseudo-observations for a given subject could not be considered as independent

random variables, estimating the (m + p) regression parameters β is based on the Generalised

Estimating Equations (GEE) method (Liang and Zeger, 1986). The estimating equations to be

solved are
n∑
i=1

(
∂

∂β
g−1(β>X∗i )

)>
V −1i

{
θ̃i − g−1(β>X∗i )

}
= 0 (2.3)

where g−1(β>X∗i ) is an m-dimensional vector (g−1(β>X∗i1), · · · , g−1(β>X∗im)) and Vi is a work-

ing covariance matrix with a pre-defined structure.

In order for the pseudo-observation approach to work, it has been shown that the censor-

ing should not depend on covariates (Graw and others, 2009), alternatively modified pseudo-

observations should be applied (Binder and others, 2014). For the variance of the estimated

regression parameters β̂, a sandwich estimator could be used (Andersen and others, 2003). Even

if it has been shown that this might lead to inconsistent and upward biased results (especially

in the case of large samples) this has an insignificant impact in practical applications (Jacobsen

and Martinussen, 2016; Overgaard and others, 2017, 2018).

The user has various choices with respect to the link function g and the structure of the

working covariance matrix V . A clever choice of the latter may increase efficiency (Andersen,

2013), but we do not explore this further in this study.

2.2 The relative survival setting and the excess mortality hazard approach

The relative survival setting is a specific competing risks setting where, although the COD infor-

mation is either missing or is unreliable, inference about the event/disease of interest can still be

drawn under specific assumptions and conditions (detailed below). In this paper, the disease of

interest is a specific cancer and the time scale used for measuring the time to event is the time
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since cancer diagnosis.

In relative survival setting, we consider two sets of data: i) data on time to death (but without

COD information) from a cohort of patients with the specific cancer of interest and, ii) life tables

of the general population in which all-cause hazard functions (stratified by some sociodemographic

variables z) are available (Pohar Perme and others, 2012). The main assumption we make here

is that for an individual i, the observed hazard λO(t;Xi) described by the covariates Xi can be

decomposed as the sum of the cancer-specific mortality hazard λC(t;Xi) and the hazard related

to other causes λP (t; zi) (with zi ⊂Xi):

λO(t;Xi) = λC(t;Xi) + λP (t; zi) (2.4)

We further assume that λP is equal to all-cause hazard of the general population within levels

of z. For this assumption to hold, the following conditions must be met:

• the specific cancer of interest is considered a negligible cause of death in the general popu-

lation (Ederer, 1961). This is especially true when prevalence is low (i.e., rare cancers and

younger age groups), but it might be unreasonable when focusing for example on older

people with common cancers (e.g. prostate cancer) or when all cancer sites are combined

(Hinchliffe and others, 2012; Talbäck and Dickman, 2011).

• the other-cause hazard of the general population is equal to the other-cause hazard of the

study population within levels of z. Moreover, within levels of z, the other-cause hazard

does not further depend on X nor on any (unmeasured) covariates. This latter condition

may not be realistic for some cancers, and an adaptation of the method might be needed

(Rubio and others, 2019).

In most situations, the minimum set of sociodemographic covariates z stratifying life tables

(and therefore λP ) is sex, age (in 1-year age-group), calendar year and geographical level. In some

countries, additional stratifying variables may be available, such as deprivation level or ethnicity.
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A discussion of the assumptions and related conditions that should be met for the relative

survival setting to be valid can be found in (Pavlič and Pohar Perme, 2018).

2.3 Measures of interest in the relative survival setting

2.3.1 Crude probability of death from a specific cause In the classical competing risks setting

where the COD is available, the (cause k)-specific probability of death Fk(t) (also called cumula-

tive incidence function) represents the probability of dying from cause-k before or at time t, and

can be expressed as Fk(t) =
∫ t
0
S(u−)dΛk(u), where S is the all-cause survival function and Λk

is the cumulative (cause k)-specific hazard.

In the relative survival framework, the crude probability of death from cancer (FC(t)) is

expressed as FC(t) =
∫ t
0
S(u−)dΛC(u) (Cronin and Feuer, 2000; Lambert and others, 2010;

Charvat and others, 2013). It may be estimated using the marginal cancer-specific hazard λC(t),

this latter being defined as the combination of the individual cancer-specific hazards, λC(t,X)

(see equations 5 and 6 in (Pohar Perme and others, 2012), while more details can be found in

(Belot and others, 2019; Pohar Perme and Pavlic, 2018)). Thus, it holds that

F̂C(t) =

∫ t

0

Ŝ(u−)dΛ̂C(u) (2.5)

where Ŝ(u−) is the Kaplan-Meier estimator of the overall survival and the estimator of the

cancer-specific cumulative hazard is calculated as

dΛ̂C(t) =

dN(t)−
n∑
i=1

Yi(t)dΛP(t, zi)

Y (t)

Similarly, the crude probability of death from other causes can be estimated as

F̂P(t) =

∫ t

0

Ŝ(u−)dΛ̂P(u) (2.6)
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where

dΛ̂P(t) =

n∑
i=1

Yi(t)dΛP(t, zi)

Y (t)

In both formulae, dΛP is obtained through λP, which is the population mortality hazard that an

individual i with covariates zi, i = 1, · · · , n, is exposed to at time t. N(t) and Y (t) are counting

processes, where N(t) is the number of individuals who have experienced an event of any type in

[0, t], and Y (t) is the number of individuals who are still at risk at time t, obtained as the sum of

indicators whether a person is still at risk, Y (t) =
∑
Yi(t) (Klein and Andersen, 2005; Andersen

and Pohar Perme, 2010; Pohar Perme and Pavlic, 2018).

This method of estimation is already provided in the R-package relsurv (Pohar Perme, 2018).

2.3.2 Number of life years lost due to a specific cause The expected LYL due to a specific cause

(for a given time window) is a useful complementary indicator (Andersen, 2013), allowing for an

easier interpretation of the results, which is expressed with time units. In clinical settings, this

indicator provides an interesting insight on prognosis, treatment choice, or the development of a

control strategy.

Without distinguishing death from different causes, the LYL before time τ (compared to an

immortal cohort (Andersen, 2013), ie where nobody dies before time τ), may be expressed as

L(0, τ) = τ −
∫ τ

0

S(u)du

The total LYL can be further decomposed according to COD in the classical competing risks

setting as Lk(0, τ) =
∫ τ
0
Fk(u)du where Fk(t) is the cause k-specific cumulative probability of

death (Andersen, 2013). Therefore, following the same analogy as before, this decomposition can

be extended to the relative survival setting for the LYL due to cancer LC and due to other-cause

LP (Belot and others, 2019):

LC(0, τ) =

∫ τ

0

FC(u)du, LP(0, τ) =

∫ τ

0

FP(u)du (2.7)
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Finally, by plugging in the estimators (2.5) and (2.6) in the equation (2.7) we can estimate

the L̂C(0, τ) and L̂P(0, τ), respectively.

2.4 Pseudo-observations in the relative survival setting for estimating covariates effects on the

CPr and the LYL due to different causes

The pseudo-observation for the CPr due to cancer for an individual i at time t, F̃C,it is calculated

(based on the equations (2.1) and (2.5)) as

F̃C,it = n · F̂C(t)− (n− 1) · F̂−iC (t) (2.8)

This pseudo-observation is defined at a particular timepoint, and for regression modelling it

was advised to calculate the pseudo-observations at m between 5 and 10 different timepoints,

which can be either equally spread or chosen based on quantiles of the overall survival time

distribution (Klein and Andersen, 2005). The pseudo-observations for the CPr of death due to

other causes are defined in the same way.

For the LYL due to cancer LC,i(0, τ) (resp. other cause, LP,i(0, τ) ), we compute only m=1

pseudo-observation at time τ for each individual (based on the equations (2.1), (2.7)) as

L̃C,i(0, τ) = n · L̂C(0, τ)− (n− 1) · L̂C(0, τ)−i (2.9)

For both indicators, after calculating these pseudo-observations we generate a new dataset

in which every individual is assigned with m pseudo-observations (corresponding to the m time-

points), which later will be used as the main outcome in a regression model (Andersen and others,

2003). A GEE model of the form g(E[Y |Xi]) = β>X∗ij is typically used, where g is a link function,

β is the corresponding vector of m+ p regression parameters, and X∗ij is a vector including the

covariates for the individual i (Xi) as well as the intercept and the indicator functions of the

(m− 1) remaining timepoints.
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2.4.1 User choices: link function and working covariance matrix Interpretation of regression

coefficients varies according to the link function used. For the CPr, most common g link functions

are the cloglog, log, and identity.

A cloglog link function on FC(t), defined as log(− log(1 − FC)) leads to similar regression

coefficient estimates to those obtained with Fine & Gray model (Fine and Gray, 1999). In this

case, the exp(β) is a hazard ratio which is related to the subdistribution hazard, i.e., the in-

stantaneous rate of failure per time unit from cause j among those who are either alive or have

had a competing event at time t. Due to the complicated nature of this type of hazard ratios,

the regression coefficients are interpreted in a qualitative (higher or lower than 1) rather than

quantitative way (Andersen and others, 2012). Nonetheless, a test of statistical significance of a

subdistribution hazard ratio provides a test of the covariate effect on the CPr (Austin and Fine,

2017).

A log link function gives regression coefficients with less complicated interpretation. The

exp(β) obtained from a model with log link function gives an estimate of the relative risks

(Overgaard and others, 2015) allowing for quantitative interpretations. However, constraining

probabilities between [0,1] might be problematic in situations with high absolute risks or when

extrapolating outside the data range (Lambert and others, 2017).

Additionally, an identity link function can be applied to CPr leading to regression coefficients

that are interpreted as risk differences (Klein, 2006; Hansen and others, 2014). The identity

link function is usually the link function of choice for models on LYL as well. In this case, the

interpretation shows the additional life years that are lost due to a given cause. In both cases

though, results might go beyond the admissible range which is set for each indicator and thus,

one must be careful of predictions outside the observed limits.

The logit link function (not explored here) would be another option giving also convenient

interpretations i.e., odds ratios. This choice also suffers from certain drawbacks like for example
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numerical instabilities for small values of time t (Gerds and others, 2012).

We account for the correlation in the pseudo-observation data through the use of a specific

structure of the working covariance matrix (Pekár and Brabec, 2018). The choice of a covariance

matrix structure might vary between independence, exchangeable, autoregressive and unstruc-

tured, although it is suggested that even the independence working covariance matrix is adequate

(Klein and Andersen, 2005).

3. Simulation study

In this study, we conjecture that the pseudo-observation approach for the relative survival setting

will work in a similar way as in the classical competing risks setting and GEE would be a

reasonable approach to yield both regression parameter and variance estimates. With a simulation

study we examine the validity of the method in practice. Simulations were performed in order to

evaluate the frequentist properties of the proposed method based on pseudo-observations, in its

ability to estimate regression parameters of covariates associated to CPr and LYL due to death

from cancer and from other causes.

3.1 Data generation and simulation design

We simulated nsim = 500 datasets with sample size of N = {300, 1000}. Each individual was

assigned with a vector of three covariates which includes information about sex, year of diagnosis,

and age at diagnosis. Sex was simulated as binary drawn from a Bernoulli distribution with

probability 0.5. Year of diagnosis was simulated as a continuous variable and sampled from a

uniform distribution, ranging from 2000 to 2003. Age at diagnosis was simulated as a continuous

variable by first selecting an age class according to predefined probabilities (0.25 for age class

[30,65), 0.35 for age class [65,75) and 0.4 for age class [75,80)) and then sampling from a class-

specific uniform distribution (Belot and others, 2010).
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This scenario tried to mimic what could be observed in real situations for colon cancer patients.

We used a Generalised Weibull distribution with parameters (κ, ρ, α) to model the subdistribution

hazard (SDH). For individual i, the SDH related to cancer γC was defined as

γC(t,Agei,Sexi,Yeari) = γ0(t) exp {βAgeAgei + βSexSexi + βYearYeari}

where

γ0(t) =
κρκtκ−1

1 + (ρt)κ

α

The parameters used here, namely {κ, ρ, α}, for the baseline hazard were set to {2, 1.6, 0.05}.

The values used for the covariate regression parameters were βAge = 0.2 (for 1 year increase),

βSex = 0.3, and βYear = 0, accounting for different strength in effect sizes; a very strong effect

(age), a weak effect (sex), and a null effect (year). In this way, simulations include the most

common covariates used in relative survival analyses.

We obtained the expected mortality λP from UK life tables based on some demographic

characteristics, namely year, age and sex (Danieli and others, 2012). The λP changed annually for

a given age and sex and remains constant during a year hence, following a piecewise exponential

distribution.

Using γC and λP, we obtained the cancer specific hazard λC by adapting the approach de-

scribed in (Haller and Ulm, 2014). The individual survival time (from any cause) was obtained

using the inverse probability transform method (Bender and others, 2005; Belot and others,

2010). More information on the simulation algorithm are provided in Section 1 of Supplementary

Material A.

We set the administrative censoring time (C) at 10 years and allowed for a separate distri-

bution to account for drop-outs, which followed an exponential distribution (λd = 0.035). This

results in approximately 8% loss to follow-up, while the total amount of censoring in each dataset

was on average around 42%. A vital status indicator δ was created, δ = 0 for individual censored

at T and δ = 1 for those being dead at time T (irrespective of COD).
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3.2 Analysis of simulated data

For CPr from cancer and other causes, we tested three GEE models for the pseudo-observations:

(a) a model with log link function, (b) a model with cloglog link function, and (c) a model with

identity link function. All models were assuming independence working correlation and included

the explanatory variables age at diagnosis, sex, and year of diagnosis.

To model LYL within 10 years from death caused by cancer or other causes, we fitted a

GEE model with identity link function, explanatory variables: age at diagnosis, sex, and year of

diagnosis, and independence covariance structure.

We calculated the following performance measures:

1. bias, defined as the difference between the average of the nsim = 500 estimated values and

the true value β∗0 : 1
nsim

∑nsim

i=1 β̂i − β∗0 ,

2. empirical standard error
√

1
nsim−1

∑nsim

i=1 (β̂i − β̄)2 where β̄ = 1
nsim

∑nsim

i=1 β̂i,

3. model standard error
√

1
nsim

∑nsim

i=1 [V̂ar(β̂i)],

4. root mean squared error
√

1
nsim

∑nsim

i=1 (β̂i − β∗0)2, and

5. the coverage which is the proportion of samples in which the 95% confidence interval in-

cluded β∗0 .

Having simulated using the subdistribution hazard, our generated data followed the specified

model with the cloglog link function. For the other two link functions and the other causes with

cloglog (where real population hazards were taken), the performance was assessed indirectly with

the least false parameters (LFP) (Hjort, 1992; Beyersmann and others, 2009). The LFP were

obtained after applying the same models described previously to a dataset of 100,000 individuals,

which was generated using the same simulation algorithm but without considering any drop outs

(for more details please see Section 2 of Supplementary Material A). Both true and LFP were
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available for the cloglog, so this case allowed us to evaluate the sensibility of the LFP as proxies

of the true values. The LFP for model (b) for the cancer case were (0.199, 0.299, 0.005) whereas

the true (simulated) were (0.2, 0.3, 0), validating this way of comparison.

Our computations were performed in R 3.2.0. We used the nonparametric method for the

CPr provided by the R-package relsurv (version 2.1.1, function cmp.rel (Pohar Perme, 2018)),

while GEE models were fitted with the R-package geepack (version 3.2.5, function geese).

3.3 Simulation results

3.3.1 CPr of death from colon cancer and other causes Results shown in Table 1 suggested

that regardless of the link function used, the regression parameter estimates of the covariate

effects were almost unbiased with most of the coverage probabilities lying within the acceptable

coverage range ([0.931, 0.969]) for all parameter estimates and for any cause (cancer or other

causes). Results were similar for both sample sizes although, for model (c) results seem to be

slightly better when N = 1000 due to a smaller bias in the larger sample size. In general, standard

error was found to be adequately estimated with the models based on how close the empirical

standard errors compared to model standard errors are. RMSEs were also reasonably low proving

also good model performance.

The only exception to that is the regression parameter estimates in model (c) in the case of

age (for cancer) and year (for both causes) when N = 300. In all cases, standard error seemed to

be well estimated thus, indicating that the bias in the estimator should be probably the reason for

the problematic coverage probability. A different choice of working correlation structure would

change both the regression parameter estimate and its variance, leading to a possibly better

coverage probability, while model misspecification might be an additional issue which may be

considered.
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3.3.2 Life years lost The regression parameters were well estimated when modelling the number

of LYL due to each cause, with a very small bias and a good coverage (see Table 2). Only exception

to that was the estimated regression parameter for the effect of sex and year in the case of other

causes when N = 1000. An overestimation of the standard error by the model might have inflated

the coverage probability in case of sex, while bias seems to be the source of problem in the case

of year. Another specification of the model including a change of the working covariance matrix

would be additional things to consider.

4. Illustrative example

We illustrated our approach using a dataset of 7351 women diagnosed in England with cervical

cancer between 2008 and 2010, obtained from the national population-based cancer registry. We

limited the sample to those aged between 15 and 89 years, the end of follow-up was set at the

31st of December of 2015 and all individuals had a minimum potential follow-up of 5 years. In

this dataset, 2255 (30.7%) deaths were observed (whatever the causes, as the exact COD was not

available) while 186 (2.5%) were lost to follow-up. We applied the nonparametric method and the

pseudo-observations approach defined in the relative survival setting, and we used the UK life

tables, stratified by sex, age, calendar year, government office region and deprivation quintiles.

The covariates of interest for studying their association with the crude probabilities of death or

with the number of LYL due to each cause were: age at diagnosis defined as a continuous variable,

and the deprivation quintiles. For the latter, patients were categorized in 5 socioeconomic groups

(from the least deprived group, level 1, to the most deprived group, level 5) using national

categories of the income domain of the Index of Multiple Deprivation score (IMD 2004) which is

a score defined at the lower super output area level in England.

In this illustration, our aim was to obtain and interpret the regression parameter estimates

which quantify the effect of covariates on CPr and LYL due to cancer and other causes. We show
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how the interpretation changes based on the choice of link function, while we demonstrate in

practice the advantages and limitations that were described in Section 2.4.1.

4.1 Crude probabilities of death from cancer and other causes

We started with the estimation of the pseudo-observations for CPr from cancer and other causes.

Pseudo-observations for each cause (cervical cancer and other causes) were computed at 5 time-

points, which were decided based on the quantiles of the survival time distribution.

We modelled the CPr from cancer and other causes using three different models. All models

were simple including time-dependent terms (i.e., indicator functions for the 4 last timepoints at

which pseudo-observations were calculated) and two main variables, namely age at diagnosis and

deprivation group. We used a linear term of age while deprivation was modelled as a categorical

variable with 5 groups. Models differed with respect to link functions (cloglog, log, identity)

allowing for different interpretations. The working covariance matrix was the same in all models

where independence structure was applied. The estimated regression parameter estimates for each

model can be seen in Table 3.

In the case of cloglog model, the reported β̂ estimates correspond to log subdistribution

hazard ratios associated with 1 unit change of a covariate X in the instantaneous rate of the

occurrence of an event among those who are event-free or have experienced a competing event

(i.e., the subdistribution hazard function). Following the reasoning in Section 2.4.1, we provided

only a qualitative description of the results. Age coefficient is positive (0.452), which can be

translated to an increase in subdistribution hazard and subsequently, in the probability of dying

from cancer with the increase of age. Similarly, the regression parameter for age in the case of

other causes was also positive (0.702), indicating an increase in the subdistribution hazard of

other causes. Moreover, regardless of the COD, the most deprived people were associated with

a bigger increase in CPr compared to the least deprived, with the only exception being those
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from deprivation group 2 in the cancer event. Lastly, we can say that for example people from

deprivation group 4 who had a larger regression coefficient than those from deprivation 3, had a

higher relative change in the incidence of cancer death (see Proof from Ref. (Austin and Fine,

2017)).

Although this interpretation was informative, the model with log link function provided addi-

tionally a quantitative interpretation expressed as relative risk. The effect of age was quantified

as exp(0.33), meaning that a 10-year increase in age at diagnosis was associated with an increase

in probability of death from cancer by 39% (95% CI:[37, 42]), for a given deprivation group at

a given time-point. With respect to other causes, the regression parameter for the effect of a

10-year increase in age indicated an 1.95-fold (95% CI:[1.84, 2.08]) increase in the risk of dying

from other causes. Regarding deprivation, by exponentiating the results shown in Table 3, we

observed that the most deprived group (deprivation 5) had approximately 1.12 (95% CI:[1, 1.27])

times higher risk of dying from cancer compared to the least deprived group (deprivation 1) at

a given time-point after adjusting for age at diagnosis. The corresponding effect on the other

causes was 1.23 (95% CI:[0.97, 1.61]).

The identity link model has also the advantage of simple interpretation of the coefficient

parameters, providing estimates of risk differences. Therefore, we observed that a 10-year increase

in age at diagnosis was associated with an increase in the risk of cancer death (0.101, 95%

CI:[0.095, 0.107]), for a given deprivation group at a given time-point (the corresponding estimates

for other causes is 0.017 (95% CI:[0.015, 0.019])). Furthermore, we observed that for the most

deprived group (deprivation 5) the risk difference related to death from cancer was estimated as

0.043 (95% CI:[0.02, 0.07]) compared to the least deprived group (deprivation 1) at a given time-

point after adjusting for age. The analogous effect on the other causes was 0.008 (95% CI:[0.004,

0.012]). As we already mentioned in Section 2.4.1, one must be aware of inappropriate predictions

when using this model which is true even here e.g. when trying to predict the probabilities for
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cancer for someone with an age below 38 years at the 1st time-point.

4.2 Life years lost due to cancer and other causes

The pseudo-observations for LYL from cancer or other causes were estimated within the time

period 5 years. A GEE model with identity link function and independence working covari-

ance matrix was applied with age at diagnosis and deprivation group as explanatory variables.

According to the model estimates (see Table 4), a 10-year increase in age at diagnosis led to

approximately 0.44 (95% CI:[0.42, 0.47]) additional years being lost due to cancer and 0.055

(95% CI:[0.051, 0.059]) due to other causes in the first 5 years. Moreover, people who were more

deprived had an increased number of LYL compared to people who were less deprived in the first

5 years, with those in the most deprived group losing around 0.188 (95% CI:[0.08, 0.3]) additional

years due to cancer compared to the least deprived.

5. Discussion

Alternative survival indicators such as CPr and LYL attributed to different causes can prove

very useful when communicating survival statistics. That is especially true in the case where the

event of interest is cancer whose complexity requires a multi-perspective approach. CPr and LYL

are both defined in “real world” and quantify the impact of a covariate on a given event in the

presence of other competing events thus, useful to inform about a patient’s prognosis, a treatment

choice, or even the development of a control strategy (Charvat and others, 2013; Mariotto and

others, 2014; Pohar Perme and others, 2016). The LYL indicator has the additional advantage of

being expressed on a time scale, making it easier to communicate the results of analysis to a non-

scientific audience (Belot and others, 2019). Although these indicators have been well defined and

modelled in cause-specific setting, i.e., when the information on COD is available and reliable, a

direct modelling of those measures in the relative survival setting was yet unavailable.
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In this paper, we explored the use of pseudo-observations in modelling these alternative sur-

vival measures in relative survival setting with generalised linear models using the GEE method.

This approach enables the user to choose between different link functions and various structures

of working covariance matrix.

We evaluated the new approach using simulations and we showed that it performs well for

both measures. Regarding CPr, assessment of different models through regression parameters

showed good performance regardless of the choice of link function and whilst assuming a simple

independence working covariance structure (Klein and Andersen, 2005; Pekár and Brabec, 2018).

Regarding LYL, the simulation results displayed good performance for that indicator too, when

applying an identity link function and an independence covariance matrix.

The application of the new method to cervical cancer data showed how the covariate effects on

the indicators of interest can be derived and interpreted. The models used in the illustration were

simple and model misspecification cannot be excluded yet, this study stresses on the interpretation

rather than on model building strategies. One interesting further step would be to use goodness

of fit tests as recently proposed (Pavlič and others, 2018), in order to assess the choice of link

function and the functional form of continuous covariates.

In general, this approach offers a useful alternative, especially when considering how the inter-

pretation simplifies when using a model for CPr with a log and identity link function (compared

to one with a cloglog function). Although a cloglog link function would give similar interpreta-

tions to Fine & Gray model, we advocate the use of log link function with which exp(β) gives an

estimate of relative risk (Overgaard and others, 2015), and of identity link function which would

yield risk differences. This would avoid the pitfalls of interpreting subdistribution hazard ratios

(Andersen and others, 2012; Austin and Fine, 2017) with the additional advantage of quantita-

tive interpretation of covariate effects on the indicator of interest. However, one must be careful

when choosing these link functions as to avoid predictions that go beyond the acceptable range
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(i.e.,[0,1] for probabilities and (0,+∞) for time).

Time-dependent and non-linear effects can also be easily introduced into the model (Klein

and Andersen, 2005). However, inclusion of a time-dependent covariate needs careful consider-

ation, mostly in terms of interpretation due to the fact that the CPr is not a functional of the

sole intensity when (nondeterministic) time-dependent covariates are considered (Andersen and

others, 2003). Knowing the future evolution of such covariates is therefore needed, yet this cannot

be practically done when the observed COD is a competing event. Studies that deal with that

include a landmarking approach using direct binomial modelling (Grand and others, 2018) or

a synthesis of separate cause-specific hazard analyses (Beyersmann and Schumacher, 2008) etc.,

but more research in that direction will be needed in the context of pseudo-observation approach.

There are also other issues in our work which were not explored here, but which could be of

possible interest. Firstly, until this point we presented a way to model the pseudo-observations

separately for one cause at a time. An alternative choice would be to model them jointly and use a

working covariance matrix that reflects the correlation between pseudo-observations of the same

cause that would enable the joint estimation of parameters (Andersen, 2013). Secondly, the goal of

this paper was to show the sensible behaviour of the method in practice. This was well confirmed

with our simulations yet, more work is needed to to derive theoretically the asymptotic properties

of the estimators. Thirdly, even though modelling pseudo-observations constitutes a simple and

general approach that can simplify survival analysis, it is usually less efficient compared to other

methods developed specifically for one indicator of interest. An additional consideration in this

approach before applying it to any data, is the assumptions behind relative survival setting

(Pavlič and Pohar Perme, 2018), violation of which might result in biased estimators of pseudo-

observations and subsequently, an invalid analysis. Lastly, in this study we did not investigate the

performance using different covariance matrix structures but we used the independence structure

throughout as has been suggested by (Klein and Andersen, 2005). Impact of other structures on
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the results would be an interesting further methodological development.

In summary, our approach based on pseudo-observations in relative survival setting demon-

strated nice frequentist properties on estimating the crude probabilities of death and the life years

lost from different causes in realistic situations. These two indicators along with other frequently

reported measures like net survival can improve the understanding of the nature and mechanism

of competing events. Their computation in relative survival setting is quite important as rou-

tinely collected population-based data often suffer from unreliable or unavailable information of

the COD. The advantage of the pseudo-observation approach to provide covariate effects directly

affecting the indicators of interest in the relative survival setting, makes the method appealing

to the user. However, one should be aware that this approach might be prone to a longer compu-

tational time (especially in the case of big datasets) compared to conventional methods. A guide

that provides the code for applying the method in R-software can be found in Supplementary

Material B.

6. Supplementary Material

The reader is referred to the Supplementary Materials A and B for technical appendices, R

programs, and example output. Supplementary Material A can be found in Biostatistics online.

Supplementary Material B, simulation code, and sample data are available at https://github.

com/pseudorel/supp_material.git.
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Table 3. Regression parameter estimates (standard errors) for the direct modelling of the crude proba-
bilities of death from cancer and other causes, as obtained with 3 models using pseudo-observations with
link functions: cloglog, identity and log, and assuming an independence working covariance structure.

cloglog log identity

cancer other causes cancer other causes cancer other causes

(Intercept) -2.313(0.072) -5.835(0.149) -2.178(0.055) -5.743(0.14) 0.099(0.01) 0.002(0.001)
t= 969 days 0.626(0.028) 0.721(0.018) 0.477(0.023) 0.702(0.017) 0.098(0.004) 0.008(0)
t= 1826 days 0.845(0.031) 1.207(0.032) 0.612(0.025) 1.163(0.029) 0.14(0.004) 0.017(0.001)
t= 2132 days 0.881(0.032) 1.339(0.036) 0.633(0.026) 1.286(0.033) 0.147(0.004) 0.021(0.001)
t= 2487 days 0.927(0.033) 1.474(0.04) 0.659(0.026) 1.41(0.036) 0.156(0.005) 0.025(0.001)
Age† 0.452(0.014) 0.702(0.034) 0.33(0.009) 0.67(0.032) 0.101(0.003) 0.017(0.001)
Deprivation 2 -0.025(0.091) 0.158(0.147) -0.016(0.067) 0.151(0.141) -0.001(0.014) 0.002(0.002)
Deprivation 3 0.134(0.087) 0.099(0.137) 0.085(0.063) 0.094(0.131) 0.031(0.014) 0.003(0.002)
Deprivation 4 0.2(0.083) 0.135(0.126) 0.125(0.06) 0.125(0.121) 0.047(0.014) 0.005(0.002)
Deprivation 5 0.186(0.082) 0.223(0.129) 0.12(0.06) 0.203(0.124) 0.043(0.013) 0.008(0.002)

† (Age at diagnosis-47 (mean age in the dataset))/10

Table 4. Regression parameter estimates (standard errors) for the direct modelling of the number of life
years lost due to cancer and due to other causes, as obtained with a model for pseudo-observations with
identity link function and assuming independence working covariance structure.

Cancer Other causes

(Intercept) 0.841 0.051
Age† 0.443 0.055

Deprivation 2 0.002 0.005
Deprivation 3 0.144 0.011
Deprivation 4 0.216 0.017
Deprivation 5 0.188 0.025

† (Age at diagnosis-47 (mean age in
the dataset))/10
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