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Abstract

Floating offshore wind turbine (FOWT) systems are a fast-evolving technology, however, still have to gain eco-
nomic competitiveness to allow commercial market uptake. Design optimization, focusing on cost reduction
while ensuring optimum system performance, plays a key role in achieving these goals. Hence, in this work,
an approach for optimizing a floating concept, utilizing global limit states, is developed. The optimization is car-
ried out in Python, linked with Modelica and Dymola for modeling and simulation. For the FOWT design, the
over-dimensioned OC3 spar-buoy is utilized. This is modified during the optimization regarding its geometrical
dimensions and ballasting. The optimization criteria stability, mean and dynamic displacements, and tower top
acceleration are used for formulating the objective functions. The optimization is carried out for one design load
case, which is most critical for the considered criteria. Based on an initial study, NSGAII is chosen as optimizer.
The convergence of the optimization is examined and the optimum design solution selected. In post-processing
analyses, the overall performance of the optimized FOWT system is approved. The presented approach shows
one example for the design optimization of a FOWT system and should deal as basis for more advanced design
optimization tasks, including local characteristics and reliability aspects.

Keywords: Design optimization, Floating platforms, Global limit states, Floating offshore wind turbines,
Spar-buoy

1. Introduction and Outline

Floating support structures for offshore wind turbines are a convenient solution for deep water sites. However,
higher costs, especially for the substructure, additional equipment (such as moorings and anchors), and instal-
lation challenge the market uptake of floating offshore wind technology [1]. First floating prototypes, for instance
the Hywind spar floater, are highly over-dimensioned for safety reasons and due to the still low technology readi-
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ness level of and experience with FOWTs (floating offshore wind turbines). This, however, inhibits fast gain of
economic competitiveness. Hence, design optimization of FOWTs with respect to their costs and performance is
of high relevance to make them economically viable and to accelerate their market uptake.

Other studies show also the relevance of applying optimization approaches for the hydrodynamic response
of [2-8] and loads on [5-7,9] floating systems, as well as for cost reduction of floating offshore wind turbines
[2-7,9]. While a variety of optimization approaches is available in the literature for bottom-fixed offshore wind
turbine systems, focusing on the optimization of either the bottom-fixed support structure [8,10—13], or the blades
[14] and tower [11,14,15], or even an entire wind farm [16—21], the number of optimization approaches, dealing
with the highly complex floating offshore wind turbine system, is very limited. While for bottom-fixed offshore
wind turbine systems both optimization methodologies of analytical nature based on gradients [12,13] and evolu-
tionary optimization approaches [15—18] can be found, for floating offshore wind turbine systems more typically
genetic algorithm optimization approaches are applied [2—4,9]. However, especially because of the complexity
of floating offshore wind turbine systems, which come with coupled motions, aero-hydro-servo-elastic dynamics,
non-linear behavior, and additional components such as mooring lines, the optimization approaches presented
in the literature are tailored to a specific optimization task. The implementation of the floating offshore wind
turbine system is often simplified by using reduced-order models [5,6,9,22] and even the fully-coupled dynamics,
as mentioned above, are sometimes only partially modeled [7,8]. Thus, in [23,24], a modular framework for au-
tomated simulation and optimization is developed and presented. This framework utilizes the MoWiT (Modelica
for Wind Turbines) library', developed and continuously enhanced at Fraunhofer IWES (Institute for Wind Energy
Systems) [25-28], for modeling the entire wind turbine system including the environmental conditions and rep-
resenting the fully-coupled aero-hydro-servo-elastic dynamics. The modeling happens component-based, which
brings high flexibility in modeling of any state-of-the-art onshore or offshore bottom-fixed or even floating wind
turbine system. Coupling the MoWIT library to the Python-based programming environment allows automated
execution of fully-coupled simulations, as well as solution of optimization problems of any kind, such as design
optimization of the floating support structure, as covered in this work, or even the realization of a direct optimiza-
tion approach, as presented in [29], or other optimization tasks as described in [24]. This high versatility of the
modular Python-Modelica framework is even supplemented by the option of parallelized processing of simulation
and/or optimization tasks. [24]

The study by [30], which was based on survey results, showed that - apart from the levelized cost of energy -
ease of maintenance and manufacturing, as well as system performance are most important criteria for FOWTs.
Furthermore, an advanced spar-buoy floater design turned out to have the highest potential for a fast and suc-
cessful market uptake. Hence, in this work, the floating offshore spar-buoy wind turbine system from phase IV of
the OC3 (Offshore Code Comparison Collaboration) project [31] is used to apply a design optimization approach,
utilizing the above mentioned Python-Modelica framework developed at Fraunhofer IWES [23,24]. The objectives
of this design optimization are to reduce the degree of over-dimensioning of the spar-buoy floater, which benefits
the overall system costs, as well as the manufacturability and handleability of the structure, but at the same
time to maintain reasonable and safe global system performance even in critical environmental conditions. The
presented design optimization approach is kept deliberately simple at the first stage, not including load analyses
of the structure, so that it can be used afterwards as basis for well-founded development of more sophisticated
optimization strategies and concepts which consider more detailed criteria, such as local limit states, structural
integrity, as well as reliability aspects.

In this paper, first, the reference system to be analyzed and used for applying the developed optimization
approach is presented in Chapter 2, covering the floating wind turbine system, the selected design variables,
as well as the defined global limit states. Based on this, the formal declaration of the optimization problem,
comprising the design variables, objective functions, and (in-)equalities constraints, is given in Chapter 3. The
optimization approach is then presented in Chapter 4, ranging from the design load cases used for simulations
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and analyses, to the developed Python-Modelica framework for automated simulation and optimization, and in
the end to the specific optimization settings. Afterwards in Chapter 5, the results of the optimization are analyzed
and the selection procedure for determining the optimum spar-buoy design is outlined. Further evaluation of the
optimization approach and results are covered in Chapter 6. Finally (Chapter 7), the paper closes with some
conclusion.

2. Description of the System Analyzed

To deploy the design optimization approach, first, a reference framework has to be set up. This comprises the
floating wind turbine system (Section 2.1), including the spar-buoy floater design which is about to be optimized,
and the system variables which can be modified during the optimization process (Section 2.2). Furthermore,
the global limit state criteria have to be selected (Section 2.3), on which basis the objective functions are then
defined.

2.1. Floating Wind Turbine System

For the floating offshore wind turbine system, the Hywind-inspired spar-buoy concept from OC3 phase IV [31],
visualized in Figure 1, is chosen, as a spar-buoy floating wind turbine system is expected to have the highest
potential for fast commercialization [30] and, furthermore, the OC3 spar-buoy design is highly over-dimensioned.
The spar-buoy floater consists of two cylindrical elements with one tapered part between them and is partially
filled with ballast. The floating platform carries the upwind, three-bladed NREL (National Renewable Energy
Laboratory) 5 MW wind turbine [32] with an offshore adapted tower and modified control system. The entire
floating system is moored to the seabed (at a water depth of 320 m) by means of three evenly spaced catenary
lines. Some main properties of this offshore wind turbine system are presented in Table 1. Elevations are given
as distance above the still water level (SWL), while depths are specified as distance below SWL.

Table 1: Properties of the spar-buoy floating wind turbine system from OC3 phase IV [31,32].

Part Parameter Value

Rotor-nacelle assembly  Rotor diameter 126.0 m
Hub height 90.0 m
Mass 350,000 kg
Cut-in, rated, cut-out wind speed 3.0m/s, 11.4 m/s, 25.0 m/s

Tower Base, top elevation 10.0 m, 87.6 m
Top elevation, diameter, thickness 87.6m,3.87m,0.019m
Base elevation, diameter, thickness 10.0 m, 6.5 m, 0.027 m
Mass 249,718 kg

Floater Top elevation, diameter 10.0m, 6.5 m
Depth range of taper 40mto12.0m
Base depth, diameter 120.0 m, 9.4 m
Mass (including ballast) 7,466,330 kg

Mooring system Fairleads depth, radius from centerline 70.0m,5.2m
Anchors depth, radius from centerline 320.0 m, 853.87 m

Mooring line length (unstretched), diameter 902.2 m, 0.09 m
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Figure 1: The OCS3 spar-buoy FOWT system modeled in Figure 2: Fixed/original (grey, right/bracketed) and
MoWiIT and visualized in Dymola. modifiable (red, left, dependent dashed) variables.

2.2. Design Variables

The purpose of this work is the design optimization of the floating wind turbine support structure, because
this has a significantly larger contribution to the system costs compared to bottom fixed designs. Hence, the
focus lies on the floating platform, meaning that wind turbine (tower and rotor-nacelle assembly), as well as the
station-keeping system properties remain unchanged, while some of the floater system variables are free to be
altered. In the following, these design variables, which are modifiable during the optimization, are defined.

2.2.1. Geometric Design Variables

Geometric system variables of the floater are diameters, thicknesses, and lengths of the floating structure.
The top diameter and elevation should retain their original values to ensure that the floater top fits the tower base
and the hub height remains the same. Furthermore, it is decided to keep the total length of the top cylindrical
part, as well as the length of the taper fixed to avoid significantly changed effects due to the wave impact on the
upper part of the structure. Thus, the top end of the bottom cylindrical part remains unchanged at 12 m below
SWL. However, length and diameter of the bottom cylindrical part are chosen to be the two modifiable geometric
design variables, as it is also intended to decrease the outer dimensions - and hence the material costs - while
still fulfilling global limit state criteria without losing performance.

To apply the basic working principle of a common spar floater, as the OC3 spar-buoy concept is, and to allow
utilization of the same supply chain and manufacturing process as used for the original design, other (more ex-
traordinary) concepts of spar floaters, such as designs with a deep ballast tank connected with tendons to the
floating structure, are not considered. Thus, the base diameter of the spar-buoy should not fall below the diame-
ter of the upper cylindrical element of 6.5 m, which thus defines the lower bound for the diameter of the bottom
cylindrical part. The original diameter value is given in Table 1 with 9.4 m. This is directly taken as the maximum
tolerated value for the base diameter, as the overall goal is the reduction of the outer dimensions. To allow a
reduction in the total length of the spar-buoy, the original height of the bottom cylindrical part (108.0 m) is again



used as upper bound, while the minimum allowable value is set to 8.0 m. This corresponds to a minimum draft of
the floating system of 20.0 m, which on the one hand allows higher survival sea states compared to the recom-
mended initial estimate for the minimum draft (15.0 m) [33] and on the other hand does not fall below the draft
of another floater type equivalent, the semi-submersible from OC4 (Offshore Code Comparison Collaboration
Continuation) phase Il [34]. Figure 2 sketches the fixed parameters and modifiable (specified and dependent)
design variables of the spar-buoy, stating also their original values and defined allowable value ranges.

Finally, as (local) structural integrity checks are not yet performed at this stage, the wall thickness of the floater
remains unchanged at its original value of 0.0314 m, which was determined within a floater model verification
process, done in a separate study [28]. Furthermore, the same stiffness provided by the mooring system is
used throughout the optimization, as the mooring system design would require a separate in depth optimization
approach, which is not yet included in this study. To overcome the problem of re-designing the mooring system
properties for maintaining the resulting stiffness for each different draft of the floater and corresponding change
in the fairlead position, in the modeling the original positions of fairleads and anchors, as well as the original
mooring system properties are used and the maintained mooring stiffness is passed to the floating structure.

2.2.2. Ballast Design Variables

With changing the geometric variables stated in Subsection 2.2.1, the structural mass, as well as the dis-
placed water volume and resulting buoyancy change as well. In order to maintain the hub height and thus the
10 m elevation of the floater top, but also to allow for a variable center of mass which influences the system
performance and hence the global limit state criteria, which will be defined later on in Section 2.3, ballast amount
and density are set to be modifiable, too.

The required ballast mass can be determined from the chosen geometric design variables and predefined
system dimensions. For the ballast density range it is decided to make use of common and cheap materials,
such as sand with a density range from around 1,281 kg/m? to 2,082 kg/m? depending on the water content [35],
concrete with a density between 1,750 kg/m? and 2,400 kg/m? [36], or other rocks like sandstone with a density
of 2,600 kg/m? [37]. Thus, the range for the modifiable ballast density is chosen to be between 1,281 kg/m3
and 2,600 kg/m?, assuming that every density value can be achieved through mixture of the above mentioned
common and cheap ballast types with each other and/or with water. With the selected ballast density, the required
ballast height can be calculated from the determined ballast mass needed, however, it also has to be ensured
that the computed ballast height lies within 0 m and the length of the bottom cylindrical part. If this is not the
case, the selected variable values have to be adjusted according to the following case distinction, which is directly
incorporated when modeling the floater (Section 4.2):

o [f the required ballast filling height exceeds the chosen length of the bottom cylindrical part, the entire
bottom cylindrical part is filled, however, the ballast density is increased proportionately, as shown in Equa-

tion 1.
required ballast height

bottom cylinder length

final ballast density = - selected ballast density (1)

¢ If mass needs to be removed from the system to make it floatable, meaning if the resulting ballast height is
negative, the ballast filling height is set equal to zero and the floater structure material density is reduced
respectively, as given in Equation 2.

(structural weight based on selected dimensions) — (excessive weight)

(@)

modified material density = . .
y structure volume based on selected dimensions

2.3. Global Limit States

The objectives for the optimization focus on the global system performance. Thus, the system rotational
stability, translational displacements, and nacelle acceleration make up the global limit state criteria used for
setting up the objective functions. Their descriptions and envisaged values are given hereinafter and summarized



in Table 2. Due to the overall goal of reducing the degree of over-dimensioning of the floating support structure,
common operational limits for the global system performance of a FOWT are directly used as the target values.

Table 2: Global limit state criteria for the design optimization.

Criterion Objective Constraint

Total inclination angle 10.0° <10.0°

Dynamic translational motion minimized >0.0m
Horizontal nacelle acceleration 0.2 g ~1.962 m/s® < 1.962 m/s?

Mean translational motion - < 64.0 m (= 20% of 320.0 m)

2.3.1. System Rotational Stability

The stability criterion of a FOWT system is represented by the maximum combined rotation angle, meaning the
effective inclination angle (combined roll and pitch motion). Based on conventional values [38—40], the targeted
total inclination is set equal to 10.0°, which must not be exceeded.

2.3.2. Translational Motions

Floating wind turbines will drift away from their initial position during operation due to wind and wave loading,
however, some motion restrictions apply to FOWT systems. For example for wind turbines supported by tension
leg platforms, the translational motion restrictions are quite stringent because of the tendons used for station-
keeping [41]. This is not applicable to the floating spar-buoy wind turbine as this is moored with catenary lines
and there are no publically available specific limits for allowable translational displacements of a floating spar-
type wind turbine; however, for all FOWTs the allowable motion of the power cable is the key factor for restricting
the translational displacement of the operating system.

There are two components of the total translational displacement (combined surge, sway, and heave motion)
that need to be distinguished in the analyses: the static, meaning average, displacement, which is mainly due to
the thrust on the wind turbine, and the dynamic displacement, representing the oscillatory motion due to turbulent
wind loading and alternating wave loads. As there will always be a mean translational displacement, due to the
thrust force, which is coupled to the power production mode of the wind turbine, it is not advisable to target a
certain static displacement. Thus, the mean translational motion is not selected as optimization objective, but a
constraint for the maximum static displacement is specified, following a rule of thumb, as 20% of the water depth
(320.0 m), leading to 64.0 m. The dynamic translational motion, however, is selected as optimization objective
and aimed for being minimized to keep the oscillatory motion of the power cable as low as possible.

2.3.3. Nacelle Acceleration

For the wind turbines being placed on top of a floating platform the motions are most critical, especially the
accelerations at the tower top. Due to the fact that the nacelle contains sensitive components - such as gearbox,
generator, and bearings - its motion has to be restricted, as otherwise, when exceeding certain acceleration limits,
the turbine has to stop operation. The common operational limit for the maximum allowable nacelle acceleration
is 20% - 30% of the gravitational acceleration (g) [38,42,43], which corresponds to an acceleration of around
1.962 m/s? to 2.943 m/s?. The final tolerated acceleration highly depends on the specific turbine. Thus, the more
conservative value of 1.962 m/s? is used in this study as upper bound for the nacelle acceleration.

3. Optimization Problem

The optimization problem, meaning the optimization task, has to be defined. This comprises the declaration of
design variables (x;), which are to be modified during the optimization process, (Section 3.1); objective functions



(f;), which describe the targets of the optimization and are (depending on the optimization routine) mostly formu-
lated in that way that the functions are to be minimized, (Section 3.2); and (in-)equalities constraints (g; < 0 and
h; = 0, respectively) for optimization criteria and parameters, if they are only allowed to take on specific values
or for instance the target value should be approached from only one side on the numerical scale, (Section 3.3).
The general formulation of such an optimization problem with multiple objective functions can be written as

find X ={x1,...., x¢}

minimize  f;}(X) ,i=1,..,1
subjectto  h;(X) =0 ,i=1,...m
subjectto  g;(X) <0 ,i=1,..,n

The corresponding declarations are given in the following, based on the information and descriptions outlined
in Chapter 2. Furthermore, a new external function system is introduced, as it is not possible to formulate objective
functions and constraints directly as function of the design variables due to the complexity of the considered
FOWT system. Thus, system(X) means that the fully-coupled FOWT system with the specified design variables
is evaluated externally (the tool is introduced in Section 4.2), to finally derive the parameters for the objective
functions and constraints.

3.1. Declaration of the Design Variables

The three selected design variables of the OC3 spar-buoy floater are the base diameter, the height of the
bottom cylindrical part, as well as the density of the ballast, as derived and described in detail in Section 2.2.
Thus, the design variables vector X = {x;, x», x3} contains the following three elements: x, the base diameter;
X2, the height of the bottom cylindrical part; and x3, the ballast density.

3.2. Declaration of the Objective Functions

Three global limit states, as specified in Section 2.3, are used for setting up the objective functions. The
optimization problem itself is multi-objective. Thus, the objective functions are formulated separately and not just
in one single objective function. The three objective functions are: f; for the total inclination angle criterion; f, for
the dynamic translational motion criterion; and f; for the horizontal nacelle acceleration criterion. The objective
functions for inclination and acceleration criteria are both normalized with respect to their target values, while
for the objective function for the dynamic translational motion no normalization is carried out. Thus, the formal
description of the three objective functions is expressed in Equations 3 to 5.

|t0tal inclination angle — 10.0°

Ji(system(X)) =

10.0°
S (system(X)) = dynamic translational motion (4)
|h0rizonta1 nacelle acceleration — 1.962 m/ 52|
S3(system(X)) = (5)

1.962 m/s?
3.3. Declaration of the (In-)Equalities Constraints

Both the design variables and the global limit state criteria are constrained, as stated in Sections 2.2 and 2.3,
respectively. For each design variable a lower and upper bound is set, which limits the design space investigated.
Furthermore, each criterion, used for defining the objective functions, is constrained from one side as well, and
one more additional parameter, namely the mean translational motion, is bounded from one side. As all these
constraints follow inequalities, there are in total ten inequalities constraints and no equality constraint. The
assignment of the inequalities constraints is the following: g, and g, for x|; g3 and g4 for x;; g5 and g¢ for x3; g7
for the total inclination angle; gg for the dynamic translational motion; gy for the horizontal nacelle acceleration;



and g;o for the mean translational motion. The specific formulations of these inequalities constraints are given in
Equations 6 to 15.

g1(xy) =6.5m - x (6)
82(x1) =x1-94m (7)
g3(x2) =80m-x; (8)
g4(x2) = xy — 108.0 m (9)
gs(x3) = 1,281 kg/m® — x3 (10)
26(x3) = x3 — 2,600 kg/m? (11)
g7(system(X)) = total inclination angle — 10.0° (12)
gs(system(X)) = —dynamic translational motion (13)
go(system(X)) = horizontal nacelle acceleration — 1.962 m/s> (14)
g10(system(X)) = mean translational motion — 64.0 m (15)

4. Optimization Approach

The design optimization approach requires a FOWT system model, which is simulated and evaluated for a
certain environmental condition. Thus, first (Section 4.1), design load cases (DLCs) which are proposed by
standards are analyzed and a most critical DLC is worked out, which represents the environmental condition
considered within the optimization simulations. The automated execution of the DLCs, as well as the iterative
optimization procedure are both comprised by the Python-Modelica framework, developed at Fraunhofer IWES.
This framework is in detail described in [23,24] and briefly introduced in Section 4.2. Afterwards (Section 4.3),
the specific settings, used for the optimization of the OC3 spar-buoy floating wind turbine system, are defined.

4.1. Design Load Cases

In order to analyze the wind turbine system performance and to evaluate the critical parameters, selected in
Section 2.3 as global limit states for setting up the objective functions, as specified in Section 3.2, at least the
DLCs defined in the IEC (International Electrotechnical Commission) standard 61400-3 [44] have to be consid-
ered in general. However, as not every DLC is relevant for the particular global limit state criteria, commonly,
specific critical load cases and environmental conditions are selected and used for the subsequent analyses
[38,41,43,45-47]. Furthermore, in light of the computational effort and time that it would take when simulating
several DLCs in each loop of the optimization process, in this study, it is decided to use only one critical DLC
within the optimization. The choice of this most critical DLC is based on the following approach:

1. All DLCs given in IEC 61400-3 [44, p. 36-38] are evaluated and an initial selection of the most relevant
DLCs with respect to the specified optimization objectives is made.

2. These pre-screened DLCs are simulated with the reference floating wind turbine system presented in
Section 2.1. The simulations are performed in Dymola, based on the system model in Fraunhofer's MoWiT
library and utilizing the Python-Modelica framework for automated simulation, which will be introduced in
more detail in Section 4.2.

3. All simulated DLCs are evaluated regarding the selected objective functions. Based on this, the DLC(s)
yielding the most critical results, meaning the highest values for the specified optimization objectives, are
determined.

4. If all optimization criteria are most critical in one and the same DLC, this load case can directly be taken for
the optimization. However, if different DLCs yield the most critical global limit state criteria, an appropriate
DLC, combining all these worst load case conditions, is defined and used for the optimization.



5. This means that only one DLC is used in the optimization process; however, to validate the suitability and
representative nature of the chosen critical DLC, all DLCs, based on the initial selection done in 1., are
simulated again for the final optimized floating wind turbine system design. This way it can be checked if the
load case conditions, yielding the most critical optimization criteria for the original design, have switched
to another DLC for the optimized system. If this was the case, the DLC selected for the use during the
optimization procedure would have to be modified according to the new findings and the optimization and
subsequent validation would have to be performed once again.

Based on the optimization objectives, defined in Section 2.3, the pre-screening of the large number of DLCs,
recommended in the international standard IEC 61400-3 [44], is done. At first and even though wind turbine
foundation designs are often governed by fatigue, all DLCs defined for fatigue analyses are directly excluded,
as the optimization objectives focus on global extreme system behavior without considering structural loads
and integrity. From the remaining DLCs for ultimate loads, three operational design conditions are selected as
design-relevant load cases with regards to the specified optimization objectives [29]:

e DLC 1.1 at three different wind speeds (10.0 m/s, 11.4 m/s, and 13.0 m/s) slightly below, at, and slightly
above rated wind speed of the NREL 5 MW wind turbine.

— The DLC 1.1 uses normal environmental conditions, hence, normal turbulent wind model, as well as
normal irregular sea state and normal current model. The wind turbine is in normal power production.

— Around rated wind speeds, the highest thrust force is experienced by a wind turbine in operation. This
loading is correlated to the platform inclination as response to the resulting overturning moment, as
well as to a mean translational displacement of the floating system.

— Hence, DLC 1.1 at the mentioned three wind speeds is expected to yield critical total inclination angles
of the floating system, as well as critical values for the mean translational motion, which, however, is
not a direct optimization objective, but is constrained.

e DLC 1.3 at three different wind speeds (8.0 m/s, 11.4 m/s, and 25.0 m/s) below and at rated wind speed,
as well as at the maximum operating wind speed (cut-out) of the NREL 5 MW wind turbine.

— The DLC 1.3 uses an extreme turbulent wind model, while the irregular sea state and current model
are considered to be normal. The wind turbine is in normal power production.

— This DLC represents critical conditions for a wind turbine at a wind-dominated location. The extreme
turbulences in the wind speed time series contain high fluctuations, which excite the floating wind
turbine system in oscillatory motions.

— Hence, if the wind turbine is wind-sensitive, DLC 1.3 is expected to yield critical values for the nacelle
acceleration, as well as for the dynamic translational motion.

e DLC 1.6a at three different wind speeds (8.0 m/s, 11.4 m/s, and 25.0 m/s) below and at rated wind speed,
as well as at the maximum operating wind speed (cut-out) of the NREL 5 MW wind turbine.

— The DLC 1.6a considers, opposite to DLC 1.3, a severe irregular sea state, while normal current and
turbulent wind models are used. The wind turbine is in normal power production.

— This DLC represents critical conditions for a wind turbine at a wave-dominated location. The severe
irregular sea state comes with high fluctuations in the wave elevation time series, which excite the
floating wind turbine system in oscillatory motions.

— Hence, if the wind turbine is wave-sensitive, DLC 1.6a is expected to yield critical values for the
nacelle acceleration, as well as for the dynamic translational motion.



4.2. Python-Modelica Framework

Fraunhofer IWES has developed the MoWIT library for fully-coupled aero-hydro-servo-elastic simulation of any
wind turbine system. The modeling language utilized is Modelica?, which is object-oriented and equation-based.
By means of the hierarchical structure within Modelica, the highly complex wind turbine system is modeled by
means of six interconnected main components - the rotor, nacelle, operating control, support structure, wind,
and waves -, which are again subdivided into further subcomponents. The full capabilities of the MoWIT library
are described in [25-27], however, this library is constantly further enhanced and extended. The OC3 spar-buoy
FOWT system, used in this work for the design optimization, has been implemented in MoWiT and verified in a
separate study [28]. The simulation engine for executing simulations with this FOWT system model is Dymola®.
A visualization of the modeled OC3 spar-buoy wind turbine is presented in Figure 1.

The programming framework for performing automated simulations and optimization tasks is based on the
programming language Python*. One essential task of the Python programming framework is to establish the
interface between the modeling environment (MoWiT) and the simulation engine (Dymola). This linkage is shown
in Figure 3, which also points out the main parts within the Python-Modelica framework:

1. The specific wind turbine system model (modeled in MoWIT and to be simulated in Dymola) is processed
by redefining variable values and setting simulation parameters.

2. Several processed models can be collated. Their corresponding simulations is managed by specifying
either parallel or successive simulation execution and setting the number of useable processors (in case
of batch calculations).

3. The defined simulations are performed with the provided models. The simulation results can further be
post-processed based on additional code (e.g. as done for the optimization) and results files can be
written.

4. These results files and of course the simulated models are the output of the Python-Modelica framework
execution.

Modeling
Environment:
MoWiT

* Model of wind
turbine system

* Specified
parameters

Programming Framework: Python

Processing the Managing the
Model Simulation

Executing the
Task

Output

o List of
processed
models

* Number of

processors

 Simulation
® Post-processing
* Write results file

 Set up interface

between tools

 Redefined
parameters

o Simulation

settings

® Physical
equations and
relations

Simulation Tool:
Dymola

e Simulation
settings

e Execution of
simulation with
wind turbine

system model

Figure 3: Python-Modelica framework for automated simulation, adapted from [24].

2 https://www.modelica.org/ (Accessed: 20 March 2019)
3 https:/www.dymola.com/ (Accessed: 20 March 2019)
4 https:/www.python.org/ (Accessed: 20 March 2019)



The collation of processed models, as well as the execution of several simulations in parallel, as mentioned
in step 2, are of high relevance for the application for optimization tasks and DLC simulations. For automated
execution of the large number of DLC simulations, additional scripts are written in Python for defining the different
DLCs. On this basis the individual settings for all simulations within one DLC, such as the wind speed, wave
height and period, and flow angles, are derived automatically. For more detailed information on the realization of
DLC simulations by means of the above presented Python-Modelica framework, the reader is referred to [24].

4.3. Optimization Settings

In step 3 of the Python-Modelica framework, additional code is incorporated for extending the simulation
framework for optimization tasks. Hence, first, the optimization problem and optimizer are defined and then the
optimization algorithm, implying the simulation of the specified wind turbine system model with redefined design
variables, is executed. For more details on the extension of the Python-Modelica framework for automated
optimization, the reader is referred to [23,24].

4.3.1. Optimizer and Optimization Problem
For the application of optimization tasks in a Python environment, there are a large number of optimizers
available (open-source), such as

e OpenMDAO® for multi-disciplinary design, analysis, and optimization (MDAO);
e PyGMOS® the Python parallel global multi-objective optimizer;
e Platypus’ providing multi-objective evolutionary algorithms (MOEAs).

An overview of various optimizers and their classification and functionalities is given in [24]. From these, a
few optimizers - namely ALPSO (Augmented Lagrangian Particle Swarm Optimization), COBYLA (Constrained
Optimization BY Linear Approximation), NSGAIl (Non-dominated Sorting Genetic Algorithm Il), NSGAIIl (Non-
dominated Sorting Genetic Algorithm Ill), and SPEA2 (Strength Pareto Evolutionary Algorithm 2) -, which are all
gradient-free, are implemented in the Python-Modelica framework and tested. Due to the complexity of a wind
turbine system, gradient-based optimizers cannot be utilized.

Furthermore, the optimization problem, as described in Chapter 3, comes with three design variables and
corresponding lower and upper bounds (corresponding to six inequalities constraints), three objective functions,
as well as four inequalities constraints. Thus, for the specific optimization task and application covered in this
study, the optimizer should be capable of processing multi-objective problems. Hence, the three multi-objective
optimizers NSGAII, NSGAIll, and SPEA2 from Platypus, which were already utilized in [18], are tested within this
study in more detail on the specific optimization problem and it turned out that SPEA2 is converging very slow,
while both SPEA2 and NSGAIIl have a lower compliance rate of the defined constraints compared to NSGAII.
Thus, NSGAII is selected to be used as optimizer within the design optimization of the OC3 spar-buoy FOWT
system. Table 3 summarizes the pros and cons of the considered and compared optimizers.

NSGAIl is a genetic algorithm, which obeys the principle of Darwin’s theory of evolution. Hence, for such an
optimizer, further parameters need to be specified: the population size and number of generations. The role of
these two parameters is explained in the next Paragraph 4.3.2, covering the optimization algorithm. Within this
study, the following values are chosen:

e For the population size, 36 individuals are used within each generation. This number is based on the
available number of cores, so that all simulations within one generation can be executed in parallel at the
same time.

5 http://openmdao.org/ (Accessed: 20 March 2019)
6 https://esa.github.io/pygmo/index.html (Accessed: 20 March 2019)
7 https:/platypus.readthedocs.io/en/latest/ (Accessed: 20 March 2019)



Table 3: Considered optimizers in comparison®.

Optimizer Gradient-free Multi-objective = Compliance with constraints Convergence rate

ALPSO v X

COBYLA v X

NSGAII v v + ++
NSGAIII v v 0 +
SPEA2 v v 0 -

* Optimizer has (v) or has not (X) the feature; optimizer performs very good (++), good (+), neutral (0), or bad (-).

e Based on the definition of the NSGAII optimizer from Platypus, the total number of simulations is required
as input instead of the number of generations. The number of generations used within the optimization
algorithm needs to be high enough to allow for convergence of the optimization. One option to determine
the appropriate number of generations is by means of a sensitivity study. In this work, however, a more
direct approach is utilized, as information on the performance and convergence rate of NSGAIl is already
available from the initial optimizer tests on the specific optimization problem. Based on this, the total
number of simulations is increased significantly above the expected point of convergence and selected to
be 2,000, which would correspond to more than 55 full generations simulated. The convergence is finally
approved in the analysis of the simulation results, covered in Subsection 5.3.1.

4.3.2. Optimization Algorithm

With the specified optimization problem and the selected optimizer and corresponding parameter settings, the
optimization algorithm is executed. This is an iterative process, which runs until the stop criterion is reached. The
stop criterion can be defined by means of a specified threshold for the difference between the objective functions
at two consecutive generations and/or by limiting the number of iterations within the optimization. Based on the
functionalities of the NSGAII optimizer from Platypus, in this application, the total number of simulations makes
up the stop criterion. The following steps are then iterated:

0. Choosing from the prescribed value ranges, the design variables are redefined for each individual in the
start generation (n=0).

1. The individual wind turbine system designs are simulated (in parallel), using the selected critical DLC as
simulation case.

2. Based on the simulation results, the objective functions are evaluated by selecting the largest value for
the global limit state criteria obtained within the time series (excluding a pre-simulation time of 200 s for
avoiding transients) and the prescribed constraints are checked.

3. Based on the performance of each individual with respect to the optimization objectives and constraints,
the design variables for the individuals of the next generation (n+1) are specified, complying with the
boundaries for the design variables values.

4. Steps 1 1o 4 are repeated until the total number of simulations is reached.

In step 2, some error handling is incorporated in case of an unsuccessful simulation. Before evaluating the
objective functions, first, the last entry within the time series is analyzed. If this time value is the specified
simulation length, the simulation was successful and the results evaluation is done as described in step 2.
However, if the time value is below the specified simulation length, the simulation failed. Thus, the corresponding
design is imperfect and should be excluded from the further consideration. Hence, the objective functions are
not evaluated, but undesirable values are set for the optimization criteria - meaning values which are beyond the
valid value ranges.



5. Results

Based on the descriptions of the reference system (Chapter 2), the optimization problem (Chapter 3), and the
optimization approach (Chapter 4), first, the critical DLC is to be determined, covered in Section 5.1, which is
later on used for the optimization. All simulations are performed on an Intel® Xeon® CPU E7-8850 @2.00 GHz
with 64-bit system and 80 virtual processors. The results of the iterative optimization approach are presented in
Section 5.2 and analyzed with respect to the optimized spar-buoy design in Section 5.3.

5.1. Selection of the Critical DLC

According to the approach, outlined in Section 4.1, and the performed pre-screening of the DLCs, 54 simula-
tions (18 each selected DLC) are executed in Dymola with the original OC3 spar-buoy FOWT system, modeled
in MoWiT. The specific settings and descriptions of these DLC simulation cases are summarized in Table 4. The
naming convention DLCx_wW_sS_yY is used, with x indicating the number of the DLC (11 for 1.1, 13 for 1.3
and 16a for 1.6a), W being replaced by the considered mean wind speed, S referring to the seed number for the
random generation of the turbulent wind conditions, and Y specifying the yaw misalignment angle between wind
direction and the perpendicular to the rotor plane. As for the irregular waves, the seed number for the random
phase angle is derived directly from the seed number for the turbulent wind, namely according to S + 6, this value
does not appear in the naming convention.

Table 4: Environmental conditions and simulation settings for the pre-selected DLCs.

DLC Wind conditions Sea conditions
W [m/s] Long.TIl S Y] H, T, Wave seed Current speed

10.0 18.34% 1. 6 -808 174m 6.03s 7..12 0.074 m/s
1.1 11.4 17.38% 7..12 -8,0,8 1.99m 6.44s 13... 18 0.084 m/s
13.0 16.53% 13..18 -8,0,8 230m 6.92s 19..24 0.096 m/s
8.0 35.00% 1. 6 -80,8 144m 548s 7..12 0.059 m/s
1.3 11.4 26.97% 7..12 -8,0,8 1.99m 6.44s 13... 18 0.084 m/s
25.0 16.68% 13..18 -8,0,8 494m 10.14s 19..24 0.184 m/s
8.0 20.30% 1.. 6 -8,0,8 1037m 14.70s 7..12 0.059 m/s
1.6a 11.4 17.38% 7..12 -8,0,8 10.37m 14.70s 13...18 0.084 m/s
25.0 13.64% 13..18 -8,0,8 10.37m 14.70s 19...24 0.184 m/s

For the wind conditions, the Kaimal spectrum for turbulent wind, according to IEC standard 61400-1 [48], is
used. With regard to the turbulence intensity (Tl), the lateral and transverse Tls are 0.8 and 0.5, respectively, of
the specified longitudinal TI. For each wind speed, three different yaw misalignment angles are considered, as
well as six seeds. These are combined in such a way, that the first two seeds go with the first yaw angle, the
third and fourth seed go with the second yaw angle, and the last two seeds go with the third yaw angle, leading
to the following six ending terms of the simulation cases for DLC11_w10_: s1_y-8, s2_y-8, s3_y0, s4_y0, s5_y8,
and s6_y8.

For the sea conditions, the JONSWAP (Joint North Sea Wave Project) wave spectrum is utilized. The signifi-
cant wave height (H) is determined depending on the wind speed (W), according to Equation 16 [49]. For DLC
1.6a, which considers a severe irregular sea state, however, the 10 minutes average wind speed with recurrence
period of 50 years from the turbulent extreme wind speed model is used for W in Equation 16, based on the
recommendation given in [44] to use the 50-year extreme significant wave height to be on the conservative side.
According to [48], the value for the 10 minutes average turbulent extreme wind speed with recurrence period
of 50 years equals the reference wind speed average over ten minutes for the IEC wind turbine class I, which
amounts to 50 m/s.
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The common relation between the significant wave height and the peak period (T}) is given in Equation 17,

based on [44].
H, H
11.14|= < T, <143 = (17)
8 8

The peak-shape parameter (y) of the JONSWAP wave spectrum depends on the relation of peak period and
significant wave height, as expressed in Equation 18 [44].

HS=H0{1+2.6 ] cHy=1m, Vy=13m/s (16)

T,
5 for \/;T <36
y= exp(5.75—1.15%) for3.6 < & <5 (18)
1 for J—;’T >5

Due to the fact that a Pierson-Moskowitz spectrum, having a peak-shape parameter of y = 1 would be most
realistic for deep water conditions, the lowest possible value for the peak-shape parameter is tried to be obtained.
Hence, the peak period is derived based on Equation 19, leading to a peak-shape parameter of y = 1.65 for all
simulation cases. This way, also the highest possible value for the peak period is obtained, which is thus most
critical for spar-buoy floating systems with respect to their system eigenfrequencies.

[H,
T, = 143 ,|—= (19)
g

Finally, for the currents, as all pre-selected DLCs use the normal current model, no sub-surface currents have
to be considered [44]. Furthermore, no breaking wave surf induced currents are considered due to the large
distance of the floater to any coastal breaking wave zone. Hence, only wind-generated near-surface currents are
employed. This current speed (Uw) can be determined depending on the depth (z < 0 m) below the SWL by
means of Equation 20 [44].

Un(2) = {Uw(O)(l + sz) for-20m<z<0m 20

forz < -20m
The wind-generated current velocity at the sea surface (Uw(0)) is obtained from Equation 21, based on [44]
and utilizing the power law for a normal wind profile [44] to derive the wind speed at 10 m above SWL from the
wind speed at hub height of 90 m.

0.14
10 m) (21)

Uw(0) = 0.01W (90 -
With these settings and definitions, all 54 DLC simulation cases are run for 600 s, using the solver Rkfix4
(Runge-Kutta fixed-step and 4th order method) with a fixed integrator step-size of 0.01 s, which is a suitable
value to obtain conservative values for the global dynamic response of the floating wind turbine system. Each
18 simulations per defined DLC category are run in parallel, which took approximately three hours, leading to
around nine hours in total for all 54 DLC simulations. The resulting time series of these simulations are evaluated
just from 200 s on to exclude any transients at the beginning of the simulations. Thus, the maximum inclination
(combined roll and pitch angle), the maximum horizontal acceleration at the tower top, the maximum amplitude
of the dynamic translational motion (combined surge, sway, and heave displacement), as well as the maximum
mean translational motion (even if this is not an optimization criterion) are selected for each DLC simulation case.
The five highest values each with the corresponding DLC simulation cases are presented in Table 5.



Table 5: The five most critical DLCs for each optimization criterion and the constrained mean translational motion.

Total inclination angle Horizontal nacelle acceleration
DLC16a_wi11_s11_y8 4.9° DLC16a_w25 s16_y0 2.351 m/s®
DLC11_w13_s17_y8 47° DLC16a_w11_s11_y8 2.338 m/s?

DLC11_w13_s14_y-8 46° DLC16a w8 s6 y8  2.317 m/s?
DLC16a_ w11 s12 y8  4.6° DLC16a_w8 si _y-8  2.306 m/s

DLC11_w13_s18_y8 4.6° DLC16a_w8_s3_y0 2.301 m/s?
Dynamic translational motion Mean translational motion

DLC16a_w8_s5_y8 11.4m DLC11_w11_s10_y0 20.9m
DLC11_w10_s3_y0 10.2m DLC13 _w11_s10_y0 20.9m
DLC11_w13_s15 y0 10.1m DLC11_w11_s9 y0 20.6m
DLC16a_w8_s3_y0 10.1m DLC13 _w11_s9_y0 20.6 m
DLC11_w13_s16_y0 99m DLC16a_w11_s10_y0 204 m

It strikes that for both the total inclination angle and the horizontal nacelle acceleration, which are the two
most important optimization criteria for the FOWT system, one and the same DLC simulation case, namely
DLC16a_w11_s11_y8, appears among the five most critical DLCs. For the total inclination angle this DLC yields
directly the maximum value, while for the horizontal nacelle acceleration it results in the second highest value,
close to the maximum obtained with DLC 1.6a at cut-out wind speed. For the translational motions, however,
DLC 1.6a at a lower wind speed yields the highest dynamic response, while DLC 1.1 yields the highest values for
both the mean displacement and the total translational motion (maximum 28.0 m in DLC11_w11_s7_y-8). For
DLC16a_w11_s11_y8 the maximum dynamic translational motion is 6.0 m (position 36 of all 54 DLC simulation
cases) and the maximum mean translational motion is 20.2 m (position 9 of all 54 DLC simulation cases), while
the total translational motion is the eighth largest with 25.9 m. As for the translational motion the overall goal is
to reduce the dynamic part without having a specific constraint on it and the highest mean translational motion
is far below the specified constraint of 64.0 m, but also as the greatest attention lies on the optimization criteria
inclination and acceleration, DLC16a_w11_s11_y8 is directly selected as the critical DLC simulation settings to
be used within the optimization iterations.

5.2. Developments Throughout the Optimization

Thus, the optimization is performed with the OC3 spar-buoy FOWT system model for DLC16a_w11_s11_y8,
using the optimization settings as described in Section 4.3 and referring to the definitions in Chapter 2. A total of
2,011 simulations is executed, using 36 processors in parallel and taking in total eight days and five hours. Due
to the internal approach of the optimizer (NSGAII) to manage the simulations of individuals within generations in
parallel, all 36 individuals were created for a total of 52 generations - corresponding to the start generation 0 up
to and including generation number 51. Further individuals were generated up to generation number 57.

Figure 4 shows for all simulated individuals the development of their design variables (Figure 4(a)), as well as
the resulting objective functions (Figure 4(b)) throughout the generations. In addition, the values of the original
OC3 spar-buoy FOWT system design are added (red lines) for comparison purposes. From Figure 4(a) it can be
seen that the optimizer first selects individuals from the entire value ranges of the design variables. The corre-
sponding spread in the objective functions (Figure 4(b)) is obviously large for these first generations. However,
throughout the optimization, having evaluated the objective functions and checked the constraints, more and
more optimum design variables are selected by the optimizer and the objective functions improve.
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Figure 4: Development of the 2,011 individuals throughout generation 0 up to generation 57, red lines representing the

original values of the OC3 FOWT system, arrows indicating the selected generation of convergence.



Regarding the number of individuals (each represented by a marker) plotted in Figure 4 it has to be noted, that
the incompleteness of generations above generation number 51 is clearly visible. Furthermore, in Figure 4(b), the
objective functions of not all 36 individuals of generation 0 and generation 1 are plotted, as only the successful
designs are evaluated with respect to the optimization objectives. However, due to the high flexibility of the
selected optimizer NSGAII, already from the third generation (generation number 2) on all selected individuals
complete the simulations without any failures.

5.3. The Resulting Optimum Design

Apart from the 29 individuals from the first two generations, which directly demonstrate imperfectness as their
simulations fail, the remaining 1,982 individuals perform the simulations with success. From these it is now to
select the one optimum individual.

5.3.1. Selection Procedure of the Optimum Solution

Before the optimum individual can be selected, first, the convergence of the optimization has to be checked,
as already mentioned in Section 4.3. This is done mathematically by determining the spread of the design pa-
rameters - and for comparison reasons also the spread of the objective functions - within each generation. The
calculations show that the optimizer converges to an optimum already within the first 10 generations, but then,
as the stop criterion (the total number of simulations) is not yet reached, diverges again to try to find an even
better optimum by increasing the spread within the design parameters again. However, as the optimizer had
already found the optimum it converges back to this. This makes up the wavy pattern in the spread of the design
variables and the objective functions, which can also directly be seen in Figure 4.

Based on these analyses, the overall minimum spread within the design variables is obtained in generation
number 38 (with some other local minima in already earlier generations from generation 5 on), proving again
that the selected total number of simulations was sufficiently high for obtaining convergence within the optimiza-
tion. Furthermore, Figure 5 shows 3D and 2D plots for both the development of the design variables, as well as
the objective functions from generation 0 up to the selected generation 38. Here (Figure 5(a)), it can clearly be
seen that the individuals of generation O fill out the entire space of the allowable values for the design variables,
while the individuals of generation 38 troop together around the optimum. With respect to the objective functions,
the 3D plot and even more clearly the 2D plots in Figure 5(b) show rather how the developing individuals form
a Pareto front, on which most of the individuals of generation 38 are in the corner of optimum performance,
indicated by low values for the objective functions.

Thus, from this selected generation of convergence (pointed out by arrows in Figure 4) now the final optimum
design solution has to be chosen. To do so, first, the prescribed constrains are checked and not complying
individuals are rejected. Then, the optimum value for each objective function is determined from the complying
individuals within generation 38. These three values together are taken as the utopia point, which hence rep-
resents the ideal performance. Then, for each individual within generation 38, which fulfills the constraints, its
distance to the utopia point is identified by determining from the differences between the inclination, acceleration,
and normalized dynamic translational motion objective function values and the corresponding utopia values the
overall distance by means of the root of the sum of the differences squared. As the inclination and acceleration
objective functions have already been normalized with respect to their target values, the absolute difference is
computed for these two criteria. However, for the dynamic translational motion, the difference between achieved
value and utopia value is normalized with respect to the value of the utopia, to allow for equally weighted consid-
eration of the three optimization criteria. Following this approach, individual number 18 within generation 38 is
obtained as the optimum design with the minimum distance to the utopia point. The properties of this optimum
individual are presented in the following.

5.3.2. The Optimized Spar-Buoy Floater
The shape of the optimum spar-buoy floater is drawn schematically in Figure 6 and compared to the original
spar-buoy floater design, as well as a few exemplary designs of individuals in start generation 0, showing the
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exploited value ranges of the design variables. The specific numbers for the values of the design variables of the
determined optimum floating spar-buoy structure are presented in Table 6. As it can be seen, when comparing
the values to the original OC3 spar-buoy floater design, the outer dimensions could be reduced, what was aimed
for within the optimization and realized through the specified allowable value ranges for the design variables;
however, this was only possible as the original OC3 spar-buoy floater design was - as already indicated in
Chapter 1 and Section 2.1 - highly over-dimensioned for safety reasons, which can as well be seen in the very
limited system response, as presented in Table 7 and discussed in more detail in Subsection 5.3.3. Furthermore,
based on the additionally presented values for the structural mass of the spar-buoy, as well as for the ballast
mass, a significant reduction in the overall mass of the floating platform is observed. By means of the optimized
floater design, the ballast mass is more than halved and the required structural mass is reduced by almost 24%,
on which basis it can be expected to obtain also a drop in the system costs, which was as well an overall objective
within this study.

Table 6: Design variables of the optimum design in comparison
SWL with the specified value ranges and original values.
y .
Variable Value Allowable Original
value range value
_____________ Base column diameter [m] 7.0 6.5-9.4 9.4
Base column height [m] 106.8 8.0 - 108.0 108.0
Ballast density [kg/m?] 2,584 1,281 -2,600 1,907
Ballast height [m] 30.8 - 48.4
A | S -4 Structural mass [10° kg] 0.877 - 1.150
Ballast mass [10° kg] 3.007 - 6.316
Table 7: Optimization criteria of the optimum design in comparison
——————————— with the targets, constraints, and original values.
Objective Value Target COI:I- Original
(max) value straint value (max)
Total inclination 9.9 100 <10.0 4.9
angle [°]
—orginaldesign Dynamic transla- - o a0 5 g 6.0
= exemplary designs of individuals tional motion [m]
in sjtan gener.aﬂon 0 Horlzonta:I nacelk—z 1910 1962 <1962 2338
— optimum design acceleration [m/s?]
Figure 6: Design shapes in comparison, dashed Mean transla- 26.7 - < 64.0 20.2

lines indicating the ballast height. tional motion [m]

5.3.3. Performance Checks

As already indicated in Subsection 5.3.1, the constraints are checked again before selecting the optimum
individual. Table 6 shows that the chosen values for the design variables fall within the specified allowable value
ranges. In addition to the design variables, also the optimization criteria are approved. Table 7 presents the
achieved maximum values for the global limit states, as well as the additional constrained mean translational mo-
tion parameter. It can be seen that all parameters comply with the defined constraints. Furthermore, the targets
for inclination and acceleration are very closely approached. Comparing the results with the maximum values
obtained with the original OC3 spar-buoy FOWT system, it can be observed, at first, that not all constraints are



initially fulfilled: the maximum achieved horizontal nacelle acceleration of the original OCS3 floating spar-buoy
system exceeds with 2.338 m/s? the specified upper limit of 1.962 m/s?; however, the value still lies below 0.3 g,
which can as well be found in some literature as operational limit [38,42]. Furthermore, it becomes apparent that
both inclination angle and nacelle acceleration are significantly improved with respect to the specified objectives,
meaning that the horizontal nacelle acceleration is now within the specified limit, but very close to it, and the
maximum total system inclination angle is significantly enlarged - compared to the original maximum angle of
4.9° -, but as well still below the specified operational value of 10.0°. This is closely related to the reduced outer
dimensions, as already mentioned and presented in Table 6. The translational motions of the optimum design
are slightly larger than with the original design; however, the increase in the dynamic motion is minor and the
constraint for the mean displacement is still fulfilled with a large clearance to the limit value.

The final check goes to the critical DLC, as already examined and mentioned in Section 4.1 in step 5. Thus,
the 54 DLC simulation cases, as specified in Section 5.1, are run with the same simulation settings but now
with the optimized spar-buoy floater design found beforehand. The evaluation of the time series reveals that the
selected critical DLC16a_w11_s11_y8 yields the highest horizontal nacelle acceleration. However, for the other
optimization objectives DLC16a_w11_s11_y8 is not the most critical DLC simulation case. Table 8 summarizes
the results of the review of the critical DLC. For the dynamic translational motion, DLC16a_w11_s11_y8 was
already not the most critical DLC simulation case with the original OC3 spar-buoy FOWT system and just on po-
sition 36 in the ranking; whereas with the optimized spar-buoy design it moved up to position 32. A similar change
is seen for the constrained mean translational motion parameter. Furthermore, the value obtained with the most
critical DLC is only marginally larger than the maximum mean translational motion in DLC16a_w11_s11_y8 and
still significantly below the set constraint.

Table 8: Values for the optimization objectives and constrained parameters from DLC16a_w11_s11_y8 and the
most critical DLC, original and optimized spar-buoy design in comparison.

DLC16a_w11_s11_y8 Most critical DLC
Position Value Value DLC simulation case
Total inclination angle Original 1 4.9° 4.9° DLC16a_wi11_s11_y8
Optimized 9 9.9° 11.5° DLC11_w13 s16_y0
Horizontal nacelle acceleration  Original 2 2.338 m/s> 2.351 m/s> DLC16a w25 s16_y0
Optimized 1 1.910 m/s> 1.910 m/s> DLC16a_w11_s11_y8
Dynamic translational motion Original 36 6.0m 114 m DLC16a_w8 s5_y8
Optimized 32 7.7m 134 m DLC16a_w8_s5_y8
Mean translational Original 9 20.2m 209 m DLC11_w11_s10_y0
motion Optimized 6 26.7m 27.3m DLC16a_w11_s10_y0

Thus, the only relevant difference between the original and optimized design, with respect to the critical DLC
simulation case, is the maximum value for the total inclination angle. The selected critical DLC is for the optimized
design (with an achieved value of 9.9°) just on position 9 in the ranking and the most critical DLC yields an
inclination angle of 11.5°, which exceeds the prescribed operating limit of 10°. The analysis shows that six DLC
simulation cases yield maximum inclination angles higher than 10°. Within this study, however, this is accepted
and no new critical DLC is selected, as spar-buoy FOWT systems should even in a damaged condition persist
a maximum inclination angle of 17° [50]. This means, that with the optimized spar-buoy FOWT it might happen
that - in six out of 54 environmental conditions - the wind turbine has to stop operation at certain times, but the
system stability would never become critical. In the following Chapter 6 some further strategies are proposed.



6. Discussion

First of all, it has to be emphasized that the presented design optimization of the OC3 spar-buoy FOWT sys-
tem is kept deliberately simple and focuses mainly on the global system performance, as well as on the reduction
of the outer dimensions. However, with the selected design variables (spar-buoy diameter and length, as well as
the ballast density), one of the optimization objectives, namely the dynamic translational motion, as well as the
constrained mean translational motion, can only be marginally influenced, which is reflected by the increased
translational motions of the optimized design compared to the original design, as presented in Tables 7 and 8.
Even though the wave drift forces - contributing to the surge motion - depend on the frontal area of the spar-buoy
and, hence, its outer dimensions which are selected as design variables, the decisive influencing factor on the
surge motion of a spar-buoy floating wind turbine system is the station-keeping system. Thus, mooring system
parameters would have to be added as design variables to directly address the translational motion objective
within the optimization. Furthermore, the optimized floating spar-buoy wind turbine system - with reduced floater
outer dimensions and more critical, but still safe system inclination - will experience a larger bending moment at
the tower base, as well as increased loads in the yaw bearing and at the blade roots, suffer losses in the power
output, and impair the performance of the generator speed control. Hence, further local and more detailed crite-
ria - such as (local) structural integrity checks, load and fatigue analyses, or even reliability aspects - as well as
additional design variables (for the structure, but also for the mooring system or the turbine control) would have
to be incorporated in the presented optimization approach for a high-quality and fully adequate design analysis
and optimization.

With respect to the presented optimization approach and demonstrated application example, a sensitive issue
is the critical DLC, which is used for the simulations during the optimization. This methodology is on the one hand
very reasonable, as from a computational (and cost) point of view running the entire DLC set from the standard
with each individual within the optimization iterations would not be advisable; however, on the other hand, when
using only one DLC simulation case within the optimization procedure, this DLC has to be selected very carefully.
Hence, in Section 4.1 an approach for selecting and approving this one critical DLC is suggested. In the pre-
sented application example it turns out that easily the most critical DLC can shift during the optimization, which
emphasizes again the relevance of the check at the end and potential adjustments. In the design optimization of
the OC3 spar-buoy, no amendments to the initially selected critical DLC are made, as the target and limit values
for the two most important optimization objectives are set with allowance for some tolerance above:

e For the total inclination angle, the maximum operational value of 10° is selected, meaning that the FOWT
system remains still stable at higher values but the turbine might has to stop operation. This is accepted
for the six out of 54 DLC simulation cases, in which the operational limit is slightly exceeded.

e For the horizontal nacelle acceleration, the more conservative value of maximum 0.2 g is selected. This
leaves some safety margin for higher values in case that the ranking of criticality of the DLCs changes
during the optimization, as even up to 0.3 g is mentioned as common operational limit [38,42].

Apart from the proposed methodology in Section 4.1, implying re-evaluation and modification of the selected
critical DLC, another possible approach is to apply some safety factors to the overall limits for the optimization
objectives, as it is indirectly done in the presented application example in this study.

Another aspect of high importance is the optimizer and the convergence of the optimization. This is checked
and approved within this study; however, the most appropriate optimizer, as well as its rate of convergence de-
pend on the explicit application example (both the simulated system and the specified optimization problem).
Thus, for any other and further studies and optimization tasks, it is highly recommended to perform sensitivity
studies on the selection of the suitable optimizer and afterwards as well on approving its convergence within the
optimization procedure.

Finally, the obtained optimum floater design needs to be discussed. Due to the complexity of FOWT sys-
tems and the multi-objective optimization problem, it cannot directly be said how the optimum design will look



like, especially as the multi-objective optimization yields actually a set of optimal designs (the Pareto front), as
presented in Subsection 5.3.1. However, based on the prime principle laws of FOWT system responses, a first
estimate on the direction, in which the optimization will go, as well as on the expected values compared to the
initial system design can be given. Thus, using the static analysis of the global motion response of a floating
system, the highest inclination angle () is expected at rated wind speed, yielding the highest thrust force and
corresponding overturning moment (M), as already indicated in the pre-selection of critical DLCs (Section 4.1).
The static relation between 6 and M is given by means of the system stiffness C, as expressed in Equation 22.

M
f=— 22
- (22)
Due to the geometry of the spar-buoy floater, the system stiffness in the roll and pitch degrees of freedom are
the same and follow Equation 23, with the density of water p, the gravitational acceleration g, the diameter D of
the spar at the water-plane area, the total mass m of the entire FOWT system, as well as the vertical positions of
the center of buoyancy and center of mass (zg and zg, respectively), having z = 0 at and z < 0 below SWL.

s
C= pgaD4 + mg (zg — 2G) (23)

Comparing the original maximum total inclination angle (4.9°) with the target value (10.0°), it is obvious that
0 has to be increased within the optimization iterations. Due to the fact that the environmental conditions are
unchanged during the optimization, the loading on the turbine can be considered as constant, neglecting an
influence on the final overturning moment due to a changed point of rotation because of altered centers of
buoyancy and mass. Thus, to enlarge 6, the system stiffness C has to be reduced. However, as the spar
diameter at SWL (the upper base diameter) is not modifiable, a smaller stiffness can only be obtained by a
reduced distance between the centers of buoyancy and mass. This initial estimation of changes between the
obtained optimum and the original floater design is examined. The specific numbers for the centers of buoyancy
and mass, as well as their vertical distance to each other, determined for both the original and the obtained
optimum FOWT system (Table 9), substantiate the approximate estimations and the reasonability of the optimum
floater design solution obtained with the presented optimization approach.

Table 9: Comparison of the centers of buoyancy and mass of the original and optimum FOWT systems for
interpreting the results obtained with the optimization approach.

Parameter Original FOWT system Optimum FOWT system

zg [M] -62.1 -59.9
zg [M] -78.0 -70.7
78 — 2g [M] 15.9 10.8

7. Conclusion

In this paper, a design optimization approach is presented and applied to the OC3 spar-buoy FOWT system.
The study focuses on global limit states and aims for cost reduction by means of reducing the outer dimensions
of the floater, as well as using cheap and common ballast materials. This work covers the entire methodology for
a design optimization task: 1) starting with the reference system and its implementation in the MoWiT library for
being simulated in Dymola; 2) including the substantiated selection and specification of the design variables and
global limit states; 3) processing these for the formal description of the optimization problem; 4) continuing with
the definition of one critical simulation case, which is used within the optimization iterations; 5) proceeding to the
integration and utilization of the Python-Modelica framework for automated simulation and optimization; 6) fol-
lowed by the profound choice of the optimizer and corresponding settings, as well as its approval of convergence;
7) and finishing off with the final selection approach of the optimum and its evaluation. Keeping the scope of this



study in mind, the presented optimization approach and demonstrated application example show a successful
design optimization of a floating spar-buoy wind turbine system by means of global limit states definitions and
utilization of a Python-Modelcia framework. The outer dimensions (spar-buoy base column diameter and height)
can be reduced by more than 25% and 1%, respectively, which results in almost 24% reduction in structural
mass and related material cost. By using a more than 35% denser ballast, but still only requiring less than half
of the original ballast mass, a sufficient deep center of mass can be obtained to meet the stability and dynamic
performance requirements. These results and the presented methodologies serve as basis for further in depth
and more sophisticated application of the design optimization approach, including local criteria, integrity checks,
fatigue analyses, as well as reliability aspects.
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