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Abstract

Background 

Low-and-middle-income countries (LMICs) have higher mortality-to-incidence ratio for breast cancer 

compared to high-income countries (HICs) because of late-stage diagnosis. Mammography screening is 

recommended for early diagnosis, however, the infrastructure capacity in LMICs are far below that needed 

for adopting current screening guidelines. Current mammography screening guidelines are extrapolations 

from HICs as limited data had restricted model development specific to LMICs, and thus, economic analysis 

of screening schedules specific to infrastructure capacities are unavailable.  

Methods

We applied a new Markov-process method for developing cancer progression models and a Markov 

decision process model to identify optimal screening schedules under varying number of lifetime screenings 

per person, a proxy for infrastructure capacity. We modeled Peru, a middle-income country as case study, 

and the United States (US), a HIC for validation.

Results 

Implementing 2, 3, 5, 10, and 15 lifetime screens would require about 55, 85, 135, 280, and 405 

mammography machines, respectively, and save 31, 44, 62, 95, and 112 life-years per 1000 women, 

respectively. Current guidelines recommend 15 lifetime screens but Peru only has 55 mammography 

machines nationally. With current capacity, the best strategy is 2 lifetime screenings at age 50 and 56.  As 

infrastructure is scaled-up to accommodate 3, 5, and 10 lifetime screens, screening between age 46 and 57, 

44 and 61, and 41 and 64, respectively, would have the best impact. Our results for the US are consistent 

with other models and current guidelines.

Limitations
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The scope of our model is limited to analysis of national-level guidelines, we did not model heterogeneity 

across the country.

Conclusions

Country-specific optimal screening schedules under varying infrastructure capacities can systematically 

guide development of cancer control programs and planning of health investments. 
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Introduction

Breast cancer is the most common and frequent cancer among women globally. According to the World 

Health Organization (WHO), (1) it is estimated that 627,000 women died from breast cancer in 2018, which 

accounts for approximately 15% of all cancer deaths among women. Approximately 70% of deaths from 

cancers occur in low- and middle- income countries (LMICs) which can partly be associated with late stage 

diagnosis when survival is low, about 70-90% of breast cancer cases in LMICs get diagnosed in late stages 

compared to 40% in the United States (US). (2), (3), (4) It is estimated that 1.7 million new cases of breast 

cancer will present in the developing world in 2020, and the huge discrepancy in survival chances will 

continue with most of the breast cancer deaths (70%) occurring in the developing world. (5) More generally, 

cancer is the second leading cause of premature deaths globally, accounting for about 17% of deaths, and 

60% of all premature deaths are from non-communicable diseases (NCDs). In addition to the disease 

burden, the economic burden of NCDs such as breast cancer is also considerably high. It is estimated that 

the economic losses in LMICs from NCDs are equivalent to approximately 4% of current annual national 

economic outputs. (6)

To address this growing disease and economic burden, the 70th World Health Assembly adopted 

the updated Appendix 3 of the Global NCD Action Plan for 2013-2020, which is a list of the ‘Best Buys’ 

interventions proposed by the World Health Organization (WHO) to reduce premature mortality from 

NCDs by 25% by 2025. (7), (8)

Individual countries are further conducting NCD ‘investment cases’, which includes quantitative 

economic analysis of current and potentially implementable health interventions. (9) The objective of a 

national investment case is to identify prioritized and coherent investments that are tailored to the country’s 

needs and resource availabilities through evaluations of both potential returns on investment and cost of 

inaction. (9), (10), (11)
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In this paper, we present a modeling approach to identify optimal mammography screening 

schedules for early detection of breast cancer. Early detection will enable early treatment, which is key for 

reducing premature mortalities. Peru was used as a case study. Current model-based analysis informing 

mammography guidelines in LMICs are based on extrapolations of impacts from high-income countries 

(HICs). (12) This is because of data limitations in LMICs that create barriers to parameterizing a natural 

disease progression model specific to the population. (13), (14) In this work, we first parameterized a natural 

disease progression model using a two-step Markov process methodology (15) developed specific to the 

data-settings in LMICs. Further, to base the analysis not only on disease burden but also on the resource 

availabilities in Peru, instead of comparative analysis of a few preselected scenarios as commonly done, we 

used Markov decision processes to identify best screening schedules under varying resource constraints.

Methodology

Natural onset and progression of breast cancer 

We assumed that breast cancer initiates as carcinoma in-situ (CIS), i.e., women can transition from healthy 

to CIS.  In the absence of diagnosis, the disease naturally progresses through preclinical invasive carcinoma 

local, regional, and distant stages (Figure 1). From any of these preclinical stages, women can transition to 

clinical stages through diagnosis based on symptoms or through screening. Upon clinical diagnosis, women 

remain in the stage at diagnosis and face a certain rate of death based on stage-specific survival rates. 

Two-step Markov process methodology for parametrization of cancer model specific to LMICs

Parameterization of a cancer natural history model consists of estimation of three sets of parameters that 

vary by age: a) onset rates- the rates of transitioning from healthy to CIS; b) progression rates- the rates of 

transitioning between preclinical disease stages in the absence of diagnosis, and c) diagnostic rates- the 

current rates of diagnosis in the absence of intervention. Though there are multiple mathematical models 

presented in the literature for parameterization of natural history models, most are applied to HICs and are 
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based on the use of longitudinal data from cancer registries (16), (17), (18), (19) or population-based 

screening studies. (20), (21) The pre- and post- screening data provide references for the estimation process. 

Data that are usually available for most LMICs are only the nationally representative annual rates of cancer 

incidence and mortality, i.e., the numbers of newly diagnosed cases of cancers and deaths per 1000 women, 

estimated through the Global Cancer Observatory. (2), (22) There are usually no data on how people are 

diagnosed, which could vary according to population-specific parameters, such as population’s awareness 

and knowledge in recognizing symptoms and access to health care, in addition to disease-specific 

parameters such as occurrence of symptoms. Therefore, in this study, we used a new two-step Markov 

process methodology developed specifically for parameterization of cancer progression models in LMICs 

where longitudinal cancer registry databases are not available. (15) This method, under the assumption that 

progression rates are disease-specific and do not vary by population, uses pre-estimated progression rates 

from the literature (Appendix A), and estimates population-specific onset rates and diagnostic rates by 

fitting Markov process models to data on invasive cancer incidence and stage at diagnosis from Peru (Table 

S3 in Appendix A). The mathematical structure of the model generates onset rates to be representative of 

CIS cases that may or may not progress to invasive carcinoma within the lifetime of the individual, although 

it does not incorporate cases of CIS that may regress. The model generates diagnostic rates to be 

representative of the overall rates of diagnosis in the population, inclusive of the inverse of stage-dependent 

time for development of symptoms and time-delays in seeking care, and thus inclusive of population’s 

awareness to symptoms and access to care. Based on estimates in the literature (23), we assumed that 

progression rates are a logistic function of age, with progression being more aggressive at younger ages.

Technical details of the theory and proofs of the parameterization methodology are presented in 

(15) and its application for the analysis of the ‘Best Buy’ interventions, for breast cancer, cervical cancer, 

and colorectal cancer for updating the Appendix 3 of the NCD Global Action Plan (8), (7) are presented in 

(24). 

Markov decision process (MDP) model for identifying optimal mammography screening schedules 
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Typically, in the public health literature, optimal screening schedules are identified through comparative 

evaluations between a few pre-selected scenarios on certain metrics such as life-years saved or mortality 

reduction. In the case of mammography screening for informing population-level guidelines, specific 

screening schedules are evaluated, e.g., biennial screening for age group 40 to 69 years or annual screening 

for age group 50 to 69 years. (25) In this paper, we instead identify optimal screening schedules from among 

all possible combinations of age groups and screening intervals, by formulating the problem as a Markov 

decision process (MDP) and solving it using dynamic programming (DP). 

The MDP is a sequential decision-making model. Specifically, for any given screening schedule, it 

can evaluate the weighted average lifetime costs and benefits, weighted according to the probabilities of 

cancer onset by age and its progression under the influence of the screening schedule. It uses the Markov 

process model discussed in the previous section to determine the probabilities. DP is an optimization 

method used with MDP. Instead of exhaustively evaluating all possible choices for screening schedule, 

which can be a very large number, DP uses mathematical concepts to identify the optimal screening 

schedules through evaluation of only a few sampled choices. (26)

We define an optimal screening schedule as one that gives the best trade-offs between costs and 

benefits. Costs include screening costs, follow-up diagnosis costs for true-positives and false positives, and 

treatment costs. Benefits include quality-adjusted life-years (QALYs) saved compared to no screening. To 

convert benefits into the same metrics as costs, they are multiplied with a monetary value-per-QALY lived. 

Value-per-QALY is a measure for the economic value added from health investments. (27) For any specific 

assumption for the value-per-QALY, an MDP model can identify the screening schedule, including the 

optimal number of lifetime screens, that give the best trade-offs in costs and benefits. We can expect that 

as the value-per-QALY lived increases, the optimal schedule will have higher number of lifetime screens. 

Researchers have suggested multiple assumptions for the value-per-QALY lived, several related to the GDP 

per capita of the country, and thus, could change over time and vary by country. (27) Therefore, instead of 
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assuming a constant value, we evaluate different assumptions for value-per-QALY lived to generate 

different optimal number of lifetime screens. 

MDP models are extensively used in engineering applications, and some studies have applied it to 

mammography screening decisions, most for individual-level clinical decision-making, specifically, 

whether to screen or not based on a woman’s medical condition and care history and some studies have 

applied it to population-level screening. (28), (29), (30) In this work, we use MDP for population-level 

analysis of screening strategies to inform national screening guidelines. We present the mathematical 

formulation in Appendix B. 

Scenarios and Impact measures

Identification of optimal scenarios using MDP model: For any given value-per-QALY, the MDP model 

outputs all ages at which women should be screened, and thus, the number of lifetime screenings, age for 

screening initiation, age for screening termination, and the time intervals between screenings can be 

estimated. 

Estimation of impact metrics by Markov process simulation: For each optimal strategy, by simulating the 

Markov process model over a 100 year period, we calculated the number of life-years (LY) saved per 1000 

women, the number of false positives (FP) per 1000 women, costs per 1000 women, and cost per LY saved 

as per the equations summarized in Table 1. We did not discount benefits or costs. 

Estimation of resource (mammography machines) needs: For each optimal scenario, we calculated the 

number of mammography machines needed per year as the number of screens per year divided by capacity 

of each mammography machine. We calculated the number of screens per year by adding the number of 

people in Peru in 2017 in the ages corresponding to the screening schedules. We assume an annual capacity 

of 5800 tests per mammography machine based on current utilization in some HICs. (31), (32)
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Generation of efficient frontier: By plotting life-years saved versus number of lifetime screens and life-

years saved versus costs, we generate “efficient frontier” curves to identify non-dominated scenarios. A 

scenario is non-dominated if it has the highest life-years saved among all scenarios with similar costs, and 

thus will lie on the efficient frontier. 

Comparison of optimal screening schedules with current recommendations: Recommendations for 

mammography screening vary by issuing entities. For the Americas, the WHO strongly recommends 

biennial screening for age-group 50 to 69 years (10 lifetime screens), and conditionally recommends 

screening at other age groups. (33) National guidelines in Peru recommend biennial screening for age-group 

40 to 69 (15 lifetime screens), (34) but the WHO recommends against screening persons below age 49 in 

low-resource settings even with strong health systems. As current recommendations are equivalent of 10 or 

15 lifetime screens in our method, we highlight these scenarios for comparing model results with current 

recommendations. 

Base case and sensitivity analyses input assumptions

For Peru, as basecase, we assumed the use of film mammography for breast cancer screening, as the more 

advanced digital mammography used in high-income countries (HICs) are typically unavailable in LMICs. 

(33) For basecase analyses, we used the latest estimates for sensitivity and specificity of film 

mammography. We also used average values for stage progression rates from the literature. To understand 

the sensitivity of these inputs on results for optimal screening schedules, we conducted the following 

sensitivity analyses: 

a) Sensitivity to limited availability of latest film mammography technology and expertise – Estimates from 

the breast cancer surveillance consortium (BCSC) suggests that mammography sensitivity and specificity 

have been increasing over time, representing the advancements in diagnostic tools. Therefore, we used 

mammography specificity and sensitivity from the 1995-1999 era to test the impact of the unavailability of 

the most recent technology and human expertise. Data assumptions are presented in Appendix D1.
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b) Sensitivity to dwell times (inverse of progression rates) by stage - We tested a range of values, using 

estimates from different models in the literature to set the lower and upper bounds. This sensitivity analysis 

represents the uncertainty in natural rates of stage progression. Data assumptions are represented in 

Appendix D2.

c) Uncertainty analysis on CIS pathways (5 CIS cases): Recent studies, under the context of over-diagnosis 

of cancers, have highlighted the uncertainty around pathways of CIS stage and mammography sensitivity 

for diagnosis at this stage, and their corresponding impact on the progression rate estimates for CIS. 

Therefore, as uncertainty analysis, we evaluated 5 CIS cases, each using different combinations of CIS 

progression rate, proportion of invasive cancers initiating directly in local stage, and mammography 

sensitivity in CIS stage. Data assumptions under each of the 5 CIS cases are presented in Appendix D3.

Model Validation

For validating our model, we applied it to the United States (US) population for comparison with results 

from the CISNET (The Breast Cancer Working Group of the Cancer Intervention and Surveillance 

Modeling Network (25)) study, a study that used 6 independent models to inform current screening 

guidelines globally. (12) Data for model parameterization were extracted from the CISNET studies and are 

presented in the Appendix (Tables S3 and S7).  We conducted the following two sets of validation.

a. Validation of impact estimates: Unlike the MDP method that identifies optimal schedules, the method 

used in the CISNET study is comparative analysis of a few pre-selected screening schedules. (25) We 

evaluated these pre-selected schedules using our model and extracted impact measures. To keep consistent 

with results presented in the CISNET study, we did not discount these impact measures.  

Results: Our estimation of benefits and harms, life-years (LY) saved per 1000 women and false 

positives per 1000 women, respectively, under different screening schedules compare well with CISNET 

model results (Figure S5 in Appendix C). (25) Cost estimations from the 6 CISNET models range from 
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USD 2∙9 to 5∙62 million per 1000 women for the no-screening scenario, and our model estimates a cost of 

USD 3∙7 per 1000 women for the same. Cost estimations from the 6 CISNET models ranged from 5∙02 to 

6∙15 million per 1000 women for screening schedule of biennial 50 to 74 (B50-74) and for this scenario our 

model estimates a cost of 6∙2 million per 1000 women. (35) Further, the scenarios identified as non-

dominated in our MDP model are also classified as efficient or borderline in the CISNET study (25) (Figure 

S6 in Appendix C). The CISNET study classified a scenario as ‘efficient’ if it was non-dominated in at least 

5 models and as ‘borderline’ if it was dominated in 2 to 4 models. 

b. Validation of the MDP method of selecting optimal schedules: To demonstrate the advantage of 

using the MDP model to identify an ‘optimal’ screening schedule, instead of using pre-selected schedules 

as commonly done, we applied the MDP model to the US population. We identified optimal screening 

schedules for up to 20 lifetime screens. We combined the optimal schedules identified by the MDP model 

and the CISNET pre-selected schedules to generate an efficient frontier by plotting life-years saved per 

1000 women against number of lifetime screens, and life-years saved per 1000 women against costs per 

1000 women (Figure S7 in Appendix C). 

Results: There are two notable results from this comparison. First, all the screening schedules 

identified as optimal by the MDP model are either on or close to the efficient frontier curve, demonstrating 

that the MDP model can identify the most efficient strategies (Figure S7 in Appendix C). Second, the MDP 

model helps identify the minimum number of lifetime screens, for the US it suggests a minimum of 10. We 

verify the validity of this result by using our model to specifically evaluate and compare cost per life-year 

saved under 10 lifetime screens with that of lower number of lifetime screens. The schedule with 10 lifetime 

screens had a lower cost per life-year saved than schedules with 5 (B60-69) and 8 (B55-69) lifetime screens, 

the latter two are preselected schedules evaluated in the CISNET study (Table S9 in Appendix C).

Results 
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The model predictions for the optimal screening schedule under alternative choices in lifetime number of 

screens, and corresponding benefits, harms, and costs, are presented in Table 2. All values are undiscounted. 

The table also presents the number of mammography machines needed nationally, to implement the strategy 

in Peru. While the model suggests a minimum of 10 lifetime screens for the US (Validation section), for 

Peru, the model suggests a minimum of 1 screen. This implies that, for the US, the costs of screening are 

offset by the costs saved from early stage diagnosis of cancers, late stage diagnosis have much higher 

treatment costs (Table S7 in Appendix B). As unit costs for screening and treatment are higher for the US 

than Peru, to test the sensitivity of these cost differences, we reevaluated Peru using US costs. Under this, 

the minimum number of lifetime screens for Peru increased to 5, suggesting that the differences in minimum 

lifetime screens are due to the differences in both costs and disease burden, disease burden being higher in 

the US. 

Figure 2 plots optimal age intervals to screen under different choices of lifetime screens.  For Peru, 

under 15 lifetime screens, the model estimated that the optimal age-interval to screen is 40 to 67 years, and 

estimated that this scenario would result in 112 life-years saved per 1000 women and 1302 false positives 

per 1000 women. Under 10 lifetime screens, the model estimated that the optimal age-interval to screen is 

41 to 64 years, and estimated that this scenario would result in about 95 life-years saved and 939 false 

positives per 1000 women (Figure 3). Current screening guidelines recommend biennial screening between 

ages 40 to 69 (B40-69) (15 lifetime screens) and biennial screening between ages 50 to 69 (B50-69) (10 

lifetime screens). Specifically evaluating these current guidelines using our model generated about 109 life-

years saved and 1267 false positives per 1000 women under B40-69, and about 66 life-years saved and 814 

false positives per 1000 women under B50-69 (data not plotted). Therefore, while our model results agree 

with the current recommendations under 15 lifetime screens, under 10 lifetime screens the model suggests 

screening should start at a younger age. 

For comparison, we also used the MDP model to estimate the optimal age-intervals to screen for 

the US (Figure 2). Under 15 lifetime screens, the model estimated that the optimal age-interval to screen is 
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41 to 69 years, and under 10 lifetime screens the optimal age-interval to screen is 47 to 68 years. These 

results are close to the current WHO recommendations of biennial 40 to 69 years or biennial 50 to 69 years, 

respectively. The model estimates for the corresponding number of life-years saved per 1000 women were 

169 and 132, respectively, and corresponding number of false positives per 1000 women were 1264 and 

841, respectively (Figure 3).

The model estimates for false positives per 1000 women were equivalent for the US and Peru, 

which is as expected because of similar assumptions for screening specificity. The number of life years 

saved per 1000 women were much higher in the US compared to Peru, (Figure 3) which is as expected 

because of higher incidence rates for breast cancer in the US (Table S3 in Appendix A). The model 

estimated that, while the number of life-years saved would have diminishing returns with increase in the 

number of lifetime screens, the number of false positives per 1000 women would increase linearly with 

increase in the number of lifetime screens.    

For Peru, the model estimated optimal age-group for screening was around 50 to 55 years for up to 

2 lifetime screens, 45 to 62 years for up to 6 lifetime screens, 40 to 65 years up to 11 lifetime screens, and 

40 to 68 years for higher lifetime screens. The lowest age, even going up to 18 lifetime screens was 40. As 

the number of lifetime screens increased, the upper bound of screening interval increased. The screening 

frequency under a given scenario of lifetime screens was not uniform (Figure 4).

For Peru, the model estimated general trend was more frequent screening between ages 44 and 54 

years, e.g., under 10 lifetime screens, the optimal schedule was biennial screening for age group 44 to 54, 

triennial for age groups 41 to 44 and 54 to 60, and the last screen was at age 64 after a 4-year gap (Figure 

4).

For implementing these schedules in Peru, the number of mammography machines needed would 

range from 29 under 1 lifetime screen to 488 under 18 lifetime screens (Table 2). Currently, there is a total 

of about 55 mammography machines available nationally in public hospitals in Peru. (31), (32)
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For Peru, the model estimated lifetime costs for breast cancer was USD 53,000 per 1000 women 

for no screening and ranged from USD 136,000 per 1000 women for 1 lifetime screen to about USD 1∙1 

million per 1000 women for 18 lifetime screens (Table 2). Cost per life-year saved ranged from USD 4,300 

for scenario with 1 lifetime screen to USD 8,400 for scenario with 18 lifetime screens (Table 2). These 

results are generally in the range of results from other models for Peru. (36) All benefits and costs are 

undiscounted. 

The efficient frontier generated by plotting undiscounted life-years saved v. undiscounted costs per 

1000 women is presented in Figure 5 for Peru. The graph plots both optimal schedules from our MDP 

model, under alternative choices of lifetime screens, and pre-selected schedules from CISNET. Results 

indicate that most of the scenarios in the CISNET study that are efficient for the US are not efficient for 

Peru, the exception being biennial 40-69 years which corresponds to 15 lifetime screens.

Results for sensitivity analyses are presented in Appendix D. Lowering the sensitivity and 

specificity of film mammography, compared to the basecase, had minimal impact on the age-interval for 

screening. However, under any given number of lifetime screens, it reduced life-years saved and increased 

false-positives, and thus, increased the cost per life-year saved from USD 4,400 to 6,500 under 1 lifetime 

screen and USD 7,500 to 13,800 under 15 lifetime screens. Varying stage-specific dwell times shifted the 

age-intervals for screening by a few years, shifting towards the older or younger ages when the dwell times 

decreased or increased, respectively. The corresponding outcomes on false positives and total costs saw 

minimal changes, but the life-years saved increased or decreased when dwell times decreased or increased, 

respectively. Thus, the costs per life-year saved under 1 lifetime screen were between $4,100 and $5,200 

for the lower and upper values of dwell times, respectively, as compared to $4,400 in basecase. The costs 

per life-year saved under 5 lifetime screens were between $4,300 and $5,900 for the lower and upper values 

of dwell times, respectively, as compared to $5,000 in the basecase. All benefits and costs are undiscounted.
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Uncertainty around assumptions related to the CIS stage had the most impact on screening 

schedules. Under CIS case 1, where the CIS dwell time was kept the same but its sensitivity to 

mammography screening was set at about half of that in basecase, the starting age to screen shifted towards 

older ages, while the end age stayed the same resulting in more uniform time-intervals between screens. Up 

until 4 lifetime screens the starting age to screen was age 50, while in the basecase, this varied between 50 

under 1 lifetime screen to 45 under 4 lifetime screens. Up until 9 lifetime screens the starting age to screen 

was 45, while in the basecase, this varied between 45 under 4 lifetime screens to 40 under 9 lifetime screens. 

Results under CIS cases 2, 3, and 4 were alike and, like in Case 1, suggest to initiate screening at an older 

age than that in basecase, but unlike Case 1, suggest to also stop screening at an older age than that in 

basecase. Cases 2 and 3 assumed a very low average dwell time (3 and 5 months) compared to the basecase 

(5.22 years). Case 4 assumed an average dwell time of 2 years and, additionally, assumed 18.9% of cancer 

cases initiated directly at local stage as opposed to 0% in basecase, and a mammography sensitivity for CIS 

stage at about half of that in basecase. Under CIS cases 2, 3, and 4, the youngest age for screening initiation 

was about 50 years up until 6 lifetime screens, and 45 years up until 10 lifetime screens. CIS uncertainty 

analysis Case 5 assumed an average dwell time of 15 years for CIS, the proportion of cancers initiating 

directly at local stage as 18.9%, and a mammography sensitivity for CIS stage at about half of that in 

basecase. Under CIS case 5, the starting age to screen is similar to the basecase but the end age to screen 

shifted towards a younger age. Screening was contained between ages 40 to 60 years, suggesting that 

cancers developing after age 60 are less likely to progress to invasive cancers within the lifetime of 

individuals because of the lengthy average dwell time. Similar shifts in screening intervals were also 

observed for the US under CIS Cases 1 to 5. This uncertainty in CIS pathways under Cases 1 to 5, while 

had minimal impact on false positives and total costs, had a relatively significant impact on life-years saved 

and thus, costs per life-year saved. While the cost per life-year saved for the basecase varied between USD 

4,400 and USD 7,500 for lifetime screens between 1 and 15, respectively, it varied between USD 6,800 and 

10,800 in CIS Case 1, between USD 11,300 and 14,400 in CIS Case 2, between USD 10,900 and 14,000 in 
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CIS Case 3, between USD 9,300 and 12,800 in CIS Case 4, and between USD 6,900 and 11,500 in CIS 

Case 5. All benefits and costs are undiscounted.

Discussion and Conclusions 

This paper presents a new methodology for parameterization of cancer natural onset and progression for 

data-limited settings such as Peru, and application of a MDP model for estimating optimal screening 

schedules under different assumptions for value-per-QALY lived to impose constraints on the number of 

lifetime screens. Though current literatures present multiple Markov processes-based parameterization 

methodologies and MDP models for identifying screening options, most are applied to or derived from 

application to populations in HICs. As noted by other researchers in systematic reviews of economic 

evidence for informing breast cancer strategies for LMICs, the quality of studies specific to LMICs are poor 

due to lack of data availability. (13), (37), (38) Countries thus resort to extrapolating strategies or impacts 

of strategies from HICs, which is challenging as multiple factors, including health systems and 

infrastructure availability, vary by country. The parameterization methodology used in this paper was 

specific to data availabilities in LMIC settings. 

Currently, for high resource settings, WHO strongly recommends biennial screening between ages 

50 to 69, and conditional biennial screening between ages 40 to 49 and 70 to 75 years. For low resource 

settings, it recommends conditional biennial screening between ages 50 to 69 and recommends against 

screening between ages 40 to 49 and 70 to 75. (33) The latter because of higher number of false positives 

(positive testing of a woman with no cancer) and over diagnosis (treatment of cancers that may not progress) 

observed for these ages, requiring resources for careful monitoring and evaluation that maybe unavailable 

in low-resource settings. (33) 

 The results from the model for the US are generally in agreement with above guidelines. In 

contrast, under the same number of lifetime screens, the optimal age intervals to screen in Peru are shifted 

towards younger ages. Possible reasons are differences in disease risk and other cause mortality. For 
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instance, compared to the US, in Peru, incidence rates are lower, pre-screening incidence risk by age 

increases at a slower rate, and average life-expectancy is 5 years shorter (Table S3 in Appendix A). 

 Results for optimal screening schedules under alternative constraints on the number of lifetime 

screens, presented here, are especially of interest if resource availabilities and/or population’s compliance 

to screening limits the implementation of the recommended 10 or 15 lifetime screens.  For instance, Peru 

currently has about 55 mammography machines nationally in public hospitals. (31), (32) Our results 

indicate that, assuming 100% compliance, this would be sufficient for implementing 2 lifetime screens and, 

under this constraint, screening at ages 50 and 56 would provide best outcomes. Results under alternative 

number of lifetime screens are helpful for systematically planning health investments. For instance, our 

results indicate that implementing 5 lifetime screens will require about 136 machines nationally, i.e., 

addition of infrastructure and human resources for another 81 machines. Further, during investment 

planning, decision-makers should additionally consider geographical accessibility to testing centers and 

population density in allocation of mammography testing centers. Among the 55 machines currently 

available in Peru, 4 (~7.3%) are in urban areas of the northern region, (31), (32) about 9.35 % of women 

older than 50 years live in this region. (31) 

For the US, the model suggests a minimum of 10 lifetime screens as optimal, the average 

undiscounted cost per life-year saved for 10 lifetime screens were lower than scenarios with lower number 

of lifetime screens. For Peru, the model suggests that even 1 lifetime screen has benefits that outweigh 

costs. However, the paper presents optimal screening schedules under 1 to 18 number of lifetime screens 

and the selection of the choice in number of lifetime screens should be based on careful consideration of 

associated benefits, harms, and costs. As the number of lifetime screens increased, the number of life-years 

saved increased, however, at a slower rate than the number of false positives. These higher rates of false 

positives have critical implications for health system resource allocation. False positive findings result in 

billions of dollars of added expenditure in the US. (39), (40), (41) In this work, our assumption for follow-up 

costs for a false positive were about 13% of a true positive, however, we did not model and consider the 
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costs of over diagnosis. Increased number of total tests resulting from over diagnosis can over burden the 

system which is especially a problem in countries like Peru where current capacities are already insufficient. 

(31) 

Sensitivity analysis on the effectiveness of mammography screening suggests that even if the 

availability of advanced technology and expertise are limited, the screening intervals do not change.    

Uncertainty analysis on CIS pathways, Cases 1 to 5, had the most impact on the age intervals to screen and 

on the costs per life-years saved estimates. Interpretation of these results should be done alongside the 

mathematical interpretation of the inputs in our model. First, our model estimates onset rates to specifically 

fit to incidence rates by age and stage, and for Peru, this represents invasive cancer incidence because about 

97% of incident cases were diagnosed in stages local, regional, or distant, and only 3% in CIS. Second, we 

do not model CIS cases that regress and only model progressive CIS cases, however, progressive cases may 

or may not progress to invasive cancer within the lifetime of the individual, the proportion progressing 

dependent on the assumptions for the average CIS dwell time. Third, as the model assigns a QALY of 1 for 

all preclinical stages, less than 1 for all clinical stages, and 0 for deaths (Table S7 in Appendix B), screening 

of cases that do not progress to invasive cancer within the lifetime of an individual will contribute negative 

benefits while also adding to costs. Finally, in identifying an optimal screening scenario, the MDP model 

considers the trade-offs between total costs (screening and treatment) and benefits (QALYs saved) and thus 

incorporates the dis-benefits of treating cases that might have never progressed within the lifetime. 

Under this mathematical structure, the basecase and CIS Case 1 will both have similar progressions 

to invasive cancer. The differences in screening intervals between the two suggests to delay screening if 

the technological ability to detect CIS is low. In CIS cases 2 and 3, because of the short dwell times, the 

chance of getting diagnosed in CIS were very low resulting in much lower life-years saved as mortality 

rates are higher once they progress to invasive cancer. Case 4 creates a similar setting as Cases 2 and 3 

because of a combination of short dwell time, low mammography sensitivity, and a fraction of cases starting 

directly as invasive cancer. In Case 5, screening after age 60 had little impact because of the lengthy CIS 
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average dwell time, suggesting that most cases originating after age 60 would not progress to invasive 

cancer within the individual’s lifetime. These results, under the mathematical structure of our model, 

suggests that an understanding of the CIS pathways for progressive cancer cases (inclusive of those that do 

not progressive within individual’s lifetime) and screening effectiveness in detecting CIS cases are to be 

considered in determining the age interval to screen. Under all 5 CIS cases, the differences in screening 

intervals between the US and Peru persisted, suggesting that screening guidelines should be evaluated 

specific to each population. 

The model is subject to limitations. We only considered heterogeneity by age for incidence and did 

not consider any other causal factors such as diet, alcohol and tobacco consumption, or genetics. For women 

who were diagnosed, we did not explicitly model recurrence of disease, we only applied an average stage-

and-age-specific rate of survival. We assumed that all women diagnosed with the disease receive treatment 

and, upon disease onset, its natural progression in preclinical stages only vary by age and stage. We did not 

model heterogeneity in cancer subtypes between different populations, or the family history of cancer. We 

did not model over-diagnosis of cancers, we only modeled false positives incorporated as costs in the MDP 

model. We did not model CIS cases that can regress and are screen detectable due to the unavailability of 

data for estimating rates specific to the country, thus our model did not consider the costs and disability 

associated with unnecessary treatment of these cases. Uncertainty analysis suggests that CIS pathways and 

mammography sensitivity are key factors in informing guidelines and these factors should be studied more 

specifically to the country, assessing the availability of human expertise and technological infrastructure 

for accurate diagnosis of progressive cancers. This work is suitable for informing national-level 

mammography screening guidelines specific to a country and for planning infrastructure scale-ups, 

implementation of cancer control programs should be studied separately to consider the broader context of 

cancer control interventions. In construction of the model for the US for validation with CISNET results, 

we did not consider the full set of data used in the CISNET models such as incidence and mortality that 

varied as a function of time, but only used the point estimates publicly available through their publications. 
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Despite these limitations, we believe the paper makes several significant contributions. Our 

analysis suggests that though current infrastructure is insufficient for implementing current mammography 

guidelines, efficient use of current infrastructure can significantly reduce mortalities. The methodologies 

presented here can help develop efficient mammography intervention programs that are more tailored to 

the country, including its disease risk, resource availabilities, and preferences. It can help inform an 

‘investment case’, a national plan for systematically scaling-up infrastructure and strengthening health 

systems. Finally, the methodology presented here is a promising option for evaluating interventions in 

combination for multiple types of cancers, for analysis related to mortality reduction goals pledged by 

countries under the Sustainable Development Goals. (8) As the number of interventions increases, it is 

tedious and infeasible to exhaustively evaluate pre-select interventions. This paper demonstrates that the 

MDP method of using mathematical concepts to identify an optimal scenario is an effective alternative.
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Table 1: Summary of impact metrics estimations and cost assumptions 
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Table 2: Summary of benefits, harms, and costs under alternative screening schedules for Peru. 
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Figure 1: Flow diagram of breast cancer onset and stage progression 
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Figure 2: Comparing optimal age-intervals to screen under different choices of lifetime screens 

Page 29 of 65

http://mc.manuscriptcentral.com/mdm

Medical Decision Making

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 3: Comparison of life years saved and false positives (FP) under different choices of lifetime screens. 
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Figure 4: Optimal screening schedule for Peru under different choices of lifetime screens. 
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Figure 5: Efficient frontier generated by plotting both pre-selected scenarios in CISNET study and optimal 
schedules generated by the MDP model for Peru. Legend for data labels: Age interval to screen; Number of 

lifetime screens. Benefits and costs are undiscounted. 
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Appendix:

Analysis of mammography screening schedules under varying resource constraints for planning 

breast cancer control programs in low- and middle- income countries: a mathematical study

Shifali Bansal1, BS, Vijeta Deshpande1, MS, Xinmeng Zhao1, BS, Jeremy A. Lauer2, PhD, Filip 

Meheus3, PhD, André Ilbawi2, MD, Chaitra Gopalappa1, PhD
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A. Two-step Markov process (TSMP) methodology for parametrization of the natural onset and progression 
of cancer 

Parameterization of a cancer natural history model consists of estimation of three sets of parameters that vary by 
age: a) onset rates- the rates of transitioning from healthy to carcinoma in-situ (CIS); b) progression rates- the rates of 
transitioning between preclinical disease stages in the absence of diagnosis, and c) diagnostic rates- the current rates 
of diagnosis in the absence of intervention. Though there are multiple mathematical models presented in the literature 
for parameterization of natural history models, most are applied to HICs and are based on the use of longitudinal data 
from cancer registries (1), (2), (3), (4) or population-based screening studies. (5), (6) The pre- and post- screening data 
provide references for the estimation process. Data that are usually available for most LMICs are only the nationally 
representative annual rates of cancer incidence and mortality, i.e., the numbers of newly diagnosed cases of cancers 
and deaths per 1000 women, estimated through the Global Cancer Observatory. (7), (8) There are usually no data on 
how people are diagnosed, which could vary according to population-specific parameters, such as population’s 
awareness and knowledge in recognizing symptoms and access to health care, in addition to disease-specific 
parameters such as occurrence of symptoms. Therefore, in this study, we used a new two-step Markov process 
methodology developed specifically for parameterization of cancer progression models in LMICs where longitudinal 
cancer registry databases are not available. (9) 

The TSMP method uses as inputs, country-specific incidence estimates by age, which are publicly available 
through Global Cancer Observatory, and country-specific stage at diagnosis distributions, which were obtained from 
studies in the literature. Among the three sets of parameters needed for the model (discussed above), we assumed that 
the second sets of rates, progression rates, are disease-specific and do not vary by country, and used estimates from 
models applied to high-income countries that were presented in the literature (see Table S3). We then estimated onset 
rates and diagnostic rates specific to Peru using the TSMP method.  Technical details of the theory and proofs of the 
TSMP are presented in (9) and its application for the cost-effectiveness analysis of the ‘Best Buy’ interventions, for 
breast cancer, cervical cancer, and colorectal cancer for updating the Appendix 3 of the NCD Global Action Plan (10) 
(11) are presented in (12). In these previous work, the model in (9) was applied to sub-Saharan Africa and Southeast 
Asia regions using data from 2008 to 2012, when there was not much screening in these regions. However, in the case 
of Peru, certain populations underwent screening prior to 2012. Therefore, we modified the model in (9) to consider 
this difference, which we discuss here. For completeness, we first present the earlier version of the model formulation 
before discussing the modifications specific to Peru.

A.1. Overview of the two-step Markov process method for parametrization of natural history model 
specific to LMICs

The TSMP divides the estimation of population-specific onset rates of disease and diagnostic rates into two 
steps, each defined by a Markov process model but with different state spaces. In the first step, we define the disease 
onset and progression as a discrete-time Markov process  with a collapsed state space𝑿 = {𝑋𝑡;𝑡 ≥ 0,Ω,ℙ}  Ω = {[𝐻𝑎

 representing age  and health states  =healthy, = undiagnosed, and = diagnosed, without ],[𝑈𝑎],[𝐷𝑎]} 𝑎 𝐻𝑎 𝑈𝑎 𝐷𝑎
differentiating between disease stages; and  is the transition probability matrix. We assume that  is heterogeneous ℙ ℙ
by age, i.e., the probabilities for disease onset, diagnosis, and stage progression were modeled as a function of age. 
Therefore, the size of the state space is 300, 3 health states time 100 ages. We estimate age-specific onset rates using 
an iterative analytical model derived using the Markov chain. 

In the second step, we estimated diagnostic rates in each stage of cancer, i.e., transition rates from preclinical to 
clinical states ( ), by using a simulation-based optimization of the Markov process , with state 𝑑𝑖,𝑎 𝒀 = {𝑌𝑡;𝑡 ≥ 0,𝑍,ℚ}
space  which is an expansion of the state space in equation (1) to include stage 𝑍 = {[𝐻𝑎],[𝑈𝑖,𝑎],[𝐷𝑖,𝑎]}, 𝑖 ∈

and age ; and rate matrix , which corresponds to the  flow {0 = 𝐶𝐼𝑆,1 = 𝐿𝑜𝑐𝑎𝑙, 2 = 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙, 𝑎𝑛𝑑 3 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑡} 𝑎 ℚ
diagram in Figure S1. 

We discuss each of these steps below. 
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A.1.1. Estimation of disease onset rates

We use a two-step Markov process for estimation of disease onset rates and diagnostic rates. In this first step, 
for estimation of the onset rates, we define disease onset and progression as a discrete-time Markov process, 

𝑿 = {𝑋𝑡;𝑡 ≥ 0,Ω,ℙ} (1)

with a collapsed state space  representing age  and health states  =healthy, =  Ω = {[𝐻𝑎],[𝑈𝑎],[𝐷𝑎]} 𝑎 𝐻𝑎 𝑈𝑎
Undiagnosed, and = diagnosed, (see Figure S1 for a flow diagram, and Table S1 for a list of notations), without 𝐷𝑎
differentiating between disease stages; and  is the transition probability matrix. Then, using steady state Markov ℙ
properties we can write

                    𝜋𝑘 = ∑
𝑗𝜖Ω, 

𝜋𝑗𝑃𝑗𝑘  ;0 ≤ 𝜋𝑘 ≤ 1; ∑
𝑘𝜖Ω

𝜋𝑘 = 1                                                                                                (2)

where,  are the probabilities of transitioning from state  to state , i.e., elements of the matrix , and  are the 𝑃𝑗𝑘 𝑗 𝑘 ℙ 𝜋𝑘
elements of the steady-state distribution vector . Our prime element of interest in this Markov process is , the 𝝅 𝑃𝐻𝑎𝑈𝑎

risk or probability of developing the disease in age , i.e., an element of  representing the probability of transitioning 𝑎 ℙ
from  to .  Using the standard definition of risk to rate conversion that assumes that the underlying distributions 𝐻𝑎 𝑈𝑎
governing transition probabilities are exponential, the rate of disease onset in age group  can be written as 𝑎 𝜃𝑎

. Based on the above structure of the Markov process we derived an analytical expression for =  ― ln (1 ― 𝑃𝐻𝑎𝑈𝑎)
estimation of  as 𝑃𝐻𝑎𝑈𝑎

                                               (3)𝑃𝐻𝑎𝑈𝑎 =
𝐼𝐷𝑎𝑐𝑎 ― ∑𝑎 ― 1

𝑘 = 0(𝜋𝐻𝑘𝑃𝐻𝑘𝑈𝑘[∑
𝑖𝑠𝑖(1 ― 𝑒

― (𝑎 ― 𝑘)𝜆𝑖) ― ∑
𝑖𝑠𝑖(1 ― 𝑒

― (𝑎 ― 1 ― 𝑘)𝜆𝑖)](∏
𝑗 = 𝑘:𝑎 + 1𝑒

― 𝜇𝑗))
𝐴𝑎[∑

𝑖𝑠𝑖(1 ― 𝑒
― 𝜆𝑖)](𝑒

― 𝜇𝑎) ― 𝐼𝐷𝑎𝑐𝑎

and developed an iterative process for estimation of  starting with the lowest age. We present the notations and 𝑃𝐻𝑎𝑈𝑎

the iterative process for estimating of and eventually in Tables S1 and S2, respectively. The details of the 𝑃𝐻𝑎𝑈𝑎 𝜃𝑎 
derivation are presented elsewhere. (9)

Figure S1: Flow diagram for the collapsed state space in the Markov process used for parameterization of 
disease progression
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Table S1: Summary of notations for estimation of onset rate using algorithm in Table S2

Notation Description

Model 1: 𝑿 =
{𝑋𝑡;𝑡 ≥ 0,  Ω,ℙ, 𝝅}

 is a Markov process with state space  its underlying discrete time Markov 𝑿 Ω,
chain given by the one-step transition probability matrix  and steady-state  ℙ
distribution vector .  𝝅

[𝐻𝑎],[𝑈𝑎],[𝐷𝑎]
Age-vectors representing states of healthy, pre-clinical disease (i.e., undiagnosed 
cancer state), and clinical disease (i.e., diagnosed cancer state), respectively, for  
age 𝑎

𝜋𝑗
Element of vector  representing steady-state probability for state  𝝅 𝑗

𝑃𝑗𝑘
Element of the matrix ℙ representing one-step probability of transitioning from 
state  to  𝑗 𝑘

𝑃𝐻𝑎𝑈𝑎 = 1 ― 𝑒 ― 𝜃𝑎

 is the risk of developing disease at age , and is defined as the one-step 𝑃𝐻𝑎𝑈𝑎 𝑎
probability of transitioning from healthy to preclinical disease ( ); is 𝐻𝑎 𝑡𝑜 𝑈𝑎 𝜃𝑎 
the rate of disease onset per person-year among persons in age  (used in Model  𝑎
2)

𝑇

 is a random variable denoting the time taken to transition to clinical disease 𝑇
state from the time of disease onset (sojourn time);  𝑇~ℎ𝑦𝑝𝑒𝑟𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙

,  is the probability that  will take the form of the exponential (𝜆1, 𝑠1,…,𝜆4, 𝑠4 ) 𝑠𝑖 𝑇
distribution with rate  𝜆𝑖 

𝑆
 is a random variable denoting time of natural survival past the age at disease 𝑆

onset (i.e., the person does not die from any other disease during this time)
; 𝑆~𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜇𝑘)

𝐼𝐷𝑎
Cancer incidence, defined as the number of new cases of cancer diagnoses in 
age  each year divided by the number of people in age  𝑎 𝑎

𝑐𝑎 The proportion of the total population in age  𝑎

𝐴𝑎
Among persons in age group , the proportion in healthy state or pre-clinical 𝑎
disease states 

𝑝𝑖,𝑎 Rate of progression from disease stage  to  (also used in Model 2)𝑖 𝑖 + 1

𝜇𝑎 Disease-free mortality rate at age 𝑎

Model 2: 𝒀 =
{𝑌𝑡;𝑡 ≥ 0,Ζ,ℚ, 𝝆}

 is a continuous time Markov process with state space , generator matrix , 𝒀 Ζ ℚ
and steady state distribution vector .  𝝆

[𝐻𝑎],[𝑈𝑖,𝑎],[𝐷𝑖,𝑎]
Age-vector representing states of healthy, pre-clinical disease (i.e., undiagnosed 
cancer state), and clinical disease (i.e., diagnosed cancer state), respectively, at  
age  and cancer stage  𝑎 𝑖

𝜃𝑎 =  ― ln(1 ― 𝑃𝐻𝑎𝑈𝑎) Rate of disease onset in age ; (see Model 1 for ) 𝑎 𝑃𝐻𝑎𝑈𝑎

𝑑𝑖,𝑎
Diagnostic rates, defined as the rates of transitioning from pre-clinical stage  to 𝑖
clinical-stage  per person-year for persons in age 𝑖  𝑎

𝑝𝑖,𝑎 Rate of progression from disease stage  to  (also used in Model 1)𝑖 𝑖 + 1
𝜇𝑎 Disease-free mortality rate at age 𝑎
𝜇𝑖,𝑎 Mortality rates when not on treatment and at disease stage  and age 𝑖 𝑎
𝜇𝑖,𝑎 Mortality rates on treatment and at disease stage � and age �
𝐼𝑎 Cancer incidence by age  𝑎
𝑠𝑖 Proportion diagnosed in stage  in screening-naïve population  𝑖
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Table S2: Overview of the algorithm for computing age-specific onset rate of cancer

Initialize ; and ; Set , the youngest age-group of cancer onset (we assumed age  𝜋𝐻0 = 𝐴0; 𝜋𝑈0 = 0 𝑃𝐻0𝑈0 = 0 𝑎 = 1
15 for breast cancer). 

Step 1: Calculate in-situ onset rate

𝑃𝐻𝑎𝑈𝑎 =
𝐼𝐷𝑎𝑐𝑎 ― ∑𝑎 ― 1

𝑘 = 0(𝜋𝐻𝑘𝑃𝐻𝑘𝑈𝑘[∑
𝑖𝑠𝑖(1 ― 𝑒 ― (𝑎 ― 𝑘)𝜆𝑖) ― ∑

𝑖𝑠𝑖(1 ― 𝑒 ― (𝑎 ― 1 ― 𝑘)𝜆𝑖)](∏
𝑗 = 𝑘:𝑎 + 1𝑒 ― 𝜇𝑗))

𝐴𝑎[∑
𝑖𝑠𝑖(1 ― 𝑒 ― 𝜆𝑖)](𝑒 ― 𝜇𝑎) ― 𝐼𝐷𝑎𝑐𝑎

Where.
if are a function of age at disease onset then 

1
𝜆𝑖

= ∑𝑖
𝑗 = 0

1
𝑝𝑗

; 𝑝𝑗 
1

𝜆𝑖,𝑎
= ∑𝑖

𝑗 = 0
1

𝑝𝑗,𝑎

Then, disease onset rate at age  is estimated as𝑎
𝜃𝑎 = ―ln (1 ― 𝑃𝐻𝑎𝑈𝑎)

Step 2: Calculate prevalence of healthy state:

;𝜋𝐻𝑎 =
𝐴𝑎 ― ∑𝑎 ― 1

𝑘 = 0(𝜋𝐻𝑘𝑃𝐻𝑘𝑈𝑘𝑃(𝑇 ≥ 𝑎 ― 𝑘)𝑃(𝑆 ≥ 𝑎 ― 𝑘)) 

1 + 𝑃𝐻𝑎𝑈𝑎

𝑃(𝑇 ≥ 𝑎 ― 𝑘)𝑃(𝑆 ≥ 𝑎 ― 𝑘) =  ∑
𝑖

𝑠𝑖(1 ― 𝑒 ― (𝑎 ― 1 ― 𝑘)𝜆𝑖) ∏
𝑗 = 𝑘:𝑎

𝑒 ― 𝜇𝑗

Where,
if are a function of age at disease onset then 

1
𝜆𝑖

= ∑𝑖
𝑗 = 0

1
𝑝𝑗

; 𝑝𝑗 
1

𝜆𝑖,𝑎
= ∑𝑖

𝑗 = 0
1

𝑝𝑗,𝑎

Step 3: Increment  by 1; if  is less than the maximum age goes to step 1, else stop.𝑎 𝑎

A.1.2. Estimation of diagnostic rates 

In the second step of the two-step Markov process, for estimation of diagnostic rates, we reformulate the 
discrete-time Markov process , in previous section that defined disease onset and progression, into a continuous-𝑿
time discrete-state Markov process , with more granular discretization of the state space as 𝒀 = {𝑌𝑡;𝑡 ≥ 0,𝑍,ℚ} 𝑍 =

 for stage and age , and rate matrix . {[𝐻𝑎],[𝑈𝑖,𝑎],[𝐷𝑖,𝑎]}, 𝑖 ∈ {0 = 𝐶𝐼𝑆,1 = 𝐿𝑜𝑐𝑎𝑙, 2 = 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙, 𝑎𝑛𝑑 3 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑡} 𝑎 ℚ
We estimated diagnostic rates in each stage of cancer, i.e., transition rates from preclinical to clinical states ( ), by 𝑑𝑖,𝑎
using a simulation-based optimization of the Markov process . 𝒀

The objective of the simulation-based optimization model is to minimize the sum of square errors between 
the simulated cancer incidence ( and the GLOBOCAN predicted incidence (  (13) The details of the model are 𝐼𝑎) 𝐼𝑎).
presented in (9), which were applied to sub-Saharan Africa and Southeast Asia regions using data from 2008 to 2012, 
when there was not much screening in these regions. However, in the case of Peru, certain populations underwent 
screening prior to 2012. Therefore, we modified the model in (9) to consider this difference, which we disucss here. 
For completeness, we first present the earlier version of the model formulation before discussing the modifications 
specific to Peru. The objective function was formulated as

, ,          (4)𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑𝑖,𝑎
∑

𝑎(𝐼𝑎 ―  𝐼𝑎)2
𝑑𝑖,𝑎 ≥ 0 ∀𝑖,𝑎
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As the analytical form of  are unknown, we used a numerical optimization solution method where the 𝐼𝑎
objective function value can be evaluated numerically through simulation at any specific values of the decision 
parameters , . Here, for any specific  values, we simulated the Markov Process  over time  using 𝑑𝑖,𝑎 ≥ 0 ∀𝑖,𝑎 𝑑𝑖,𝑎 𝒀 𝑡 𝝆𝑡 + 1

 until it reached state steady, i.e.,=  𝝆𝑡 + 𝝆𝑡ℚ∆𝑡

                      (5)𝝆 =  𝝆 + 𝝆ℚ∆𝑡

where  is a vector of state distribution at steady state and  is the rate matrix. We estimated  using , 𝝆 ℚ 𝐼𝑎 𝐼𝑎 = ∑
𝑖𝜌𝑈𝑖,𝑎 𝑑𝑖,𝑎

where is the steady state value for state  (denoting the prevalence in pre-clinical cancer stage  at age ), 𝜌𝑈𝑖,𝑎 𝑈𝑖,𝑎 𝑖 𝑎
which can be estimated by expansion of equation (5) as

          (6)𝜌𝑈𝑖,𝑎 = 𝜌𝑈𝑖,𝑎 + 𝜌𝑈𝑖 ― 1,𝑎 ― 1𝜆𝑖 ― 1,𝑎 ― 𝜌𝑈𝑖,𝑎 ― 1 (𝜆𝑖,𝑎 + 𝑑𝑖,𝑎 + 𝜇𝑖,𝑎)

In the previously presented model in (9), because of the assumption that diagnosis occurs only based on 
symptoms and that the probability of showing symptoms are higher in advanced disease stages, i.e., , the 𝑑𝑖,𝑎 > 𝑑𝑖 ― 1,𝑎
distribution of the stage at diagnosis was a good approximation for the ratio of stage-specific diagnostic rates. That is, 

, where  is the proportion diagnosed in stage , and  is the diagnostic rate at state  and age . 
𝑑𝑖,𝑎

𝑑3,𝑎
=  ∑𝑖

𝑗 = 0𝑠𝑗 𝑠𝑗 𝑗 𝑑𝑖,𝑎 𝑖 𝑎
Therefore, for the terms in the objective function in equation (4) we could write

                      (7)(𝐼𝑎 ―  𝐼𝑎)2 = (∑
𝑖𝜌𝑈𝑖,𝑎 𝑑𝑖,𝑎 ― 𝐼𝑎)2 = (∑

𝑖𝜌𝑈𝑖,𝑎 (𝑑3,𝑎∑𝑖
𝑗 = 0𝑠𝑗) ― 𝐼𝑎)2

≈  𝑓(𝑑3,𝑎)

That is, the only unknown values in the objective function in equation (4) were the diagnostic rates in the last 
stage of cancer ( , as the steady state values in the pre-clinical states, , are estimated numerically from the 𝑑3,𝑎) 𝜌𝑈𝑖,𝑎
simulation of the Markov model in equation (5) as discussed above. The resulting objective function was 

                                                                                                     (8)𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑3,𝑎
∑

𝑎(∑
𝑖𝜌𝑈𝑖,𝑎 (𝑑3,𝑎∑𝑖

𝑗 = 0𝑠𝑗) ― 𝐼𝑎)2

and the decision variables  were solved iteratively for each . However, in the case of Peru, certain populations 𝑑3,𝑎∀𝑎 𝑎
have undergone screening based on recommendations prior to 2012 (the latest incidence data available at the time of 
this work was for year 2012), and thus, the assumption  does not hold. Therefore, we modified the  𝑑𝑖,𝑎 > 𝑑𝑖 ― 1,𝑎
objective function in equation (7) to 

,                                                                                          (9)𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑖,𝑎,∀𝑖,𝑎∑
𝑖,𝑎(𝜌𝑈𝑖,𝑎 (𝑑𝑖,𝑎) ― 𝐼𝑎)2 𝑑𝑖,𝑎 ≥ 0 ∀𝑖,𝑎

that is, the number of decision variables (the unknown values) now increase to include diagnostic rates for each 𝑑𝑖,𝑎 
stage  and age , as the actual rates of screening currently occurring in the population are unknown. This creates 𝑖 𝑎
many decision variables. As the number of decision variables increases, ascertaining the convergence of a solution 
algorithm to the global optima becomes more challenging. We address this by showing below that the optimization 
problem in equation (9) is separable both on  and thus equation (9) can be converted to  number of sub-𝑖 and 𝑎 𝑖𝑎
problems. Each sub-problem can then be solved separately but iteratively for , iterating over each  (see 𝑑𝑖,𝑎 𝑖 and 𝑎
below). We further test for the convexity of each sub-problem (see Appendix C). 

Remark 1: We can rewrite equation (9) as, 

,                                                                                                              (10)𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑑𝑖,𝑎(𝜌𝑈𝑖,𝑎 (𝑑𝑖,𝑎) ― 𝐼𝑎)2 𝑑𝑖,𝑎 ≥ 0

for each combination of   pair thus generating  number of sub-problems. Each function can then be solved 𝑖,𝑎 𝑖𝑎
separately for  but iteratively over age  starting from the youngest age and, within each age, iteratively over cancer 𝑑𝑖,𝑎 𝑎
state  starting with the earliest disease state.  𝑖
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Proof: 

Using the expression for , from the expansion of the Markov process in equation (6) discussed above, 𝜌𝑈𝑖,𝑎 
and multiplying by  we can write𝑑𝑖,𝑎

        (11)𝜌𝑈𝑖,𝑎 𝑑𝑖,𝑎 = [𝜌𝑈𝑖,𝑎 + 𝜌𝑈𝑖 ― 1,𝑎 ― 1𝜆𝑖 ― 1,𝑎 ― 𝜌𝑈𝑖,𝑎 ― 1 (𝜆𝑖,𝑎 + 𝑑𝑖,𝑎 + 𝜇𝑖,𝑎)]𝑑𝑖,𝑎

In equation (8), for  (the in-situ stage)  the cancer onset rate, and for all other values 𝑖 = 0 𝜆𝑖 ― 1,𝑎 ― 1 = 𝜃𝑎 ― 1
of  (i.e., local, regional, and distant stages)  are the progression rates (see Figure S1); and  are the 𝑖 𝜆𝑖 ― 1,𝑎 ― 1 𝜇𝑖,𝑎 ― 1
mortality rates. Values for  and  are known. When  (the in-situ stage) denoting 𝜆𝑖 ― 1,𝑎 ― 1 𝜇𝑖,𝑎 ― 1 𝑖 = 0 𝜌𝑈𝑖 ― 1,𝑎 ― 1 = 𝜌𝐻𝑎 ― 1

the steady state value in healthy (i.e., prevalence of healthy stage), and under all other values of ,   are the 𝑖 𝜌𝑈𝑖 ― 1,𝑎 ― 1

steady state values in the pre-clinical states (i.e., prevalence of pre-clinical cancer stages). For any given  pair, from  𝑖,𝑎
Remark 2 and its proof below, the steady state values for  and , and solution to are known.  𝜌𝑈𝑖,𝑎 ― 1 𝜌𝑈𝑖 ― 1,𝑎 ― 1 𝑑𝑖,𝑎 ― 1 
Therefore, for any value of , the steady state value for  can be calculated through simulation of the Markov 𝑑𝑖,𝑎 𝜌𝑈𝑖,𝑎

process in equation (5). As such, the only unknown value in equation (11) will then be .𝑑𝑖,𝑎

This completes the proof.

Remark 2:  If we iteratively solve for  using equation (11) by iterating over  and, within each , iterate over , 𝑑𝑖,𝑎 𝑎 𝑎 𝑖
then, for any given  pair, the steady state values for  and , and the solution to are known. Thus,  𝑖,𝑎 𝜌𝑈𝑖,𝑎 ― 1 𝜌𝑈𝑖 ― 1,𝑎 ― 1 𝑑𝑖,𝑎 ― 1 
the only unknown term in equation (11) is 𝑑𝑖,𝑎

Proof:

We prove this by applying mathematical induction on equation (11)

For  = 0,  = 1,𝑖 𝑎

                                                             (12)𝜌𝑈0,1 𝑑0,1 = [𝜌𝑈0,1 +  𝜌𝐻0𝜃1 ― 𝜌𝑈0,0 (𝜆0,𝑎 + 𝑑0,𝑎 + 𝜇𝐻,𝑎)]𝑑0,1

Then, the only unknown value is  because  and  is the actual prevalence of healthy persons 𝑑0,1 𝜌𝑈0,0 = 0 𝜌𝐻0

in age 0 (obtained from population demographics) as the first age for disease risk is 1, and all other parameters are 
known as discussed in proof of Remark 1.

Assuming the proof holds for , ,𝑖 = 𝑚 𝑎 = 1

for  ,  =  𝑚 + 1 𝑎 = 1

                                 𝜌𝑈𝑚 + 1,1 𝑑𝑚 + 1,1 = [𝜌𝑈𝑚 + 1,1 +  𝜌𝑈𝑚,0𝜆𝑚,1 ― 𝜌𝑈𝑚 + 1,0 (𝜆𝑚 + 1,1 + 𝑑𝑚 + 1,1 + 𝜇𝑚 + 1,1)]𝑑𝑚 + 1,1
(13)

Then, the only unknown parameter is  as  and  as the first age of disease risk 𝑑𝑚 + 1,1 𝜌𝑈𝑚,0 = 0 𝜌𝑈𝑚 + 1,0 = 0
is 1. 

For  ,  = 0 𝑎 = 2

                                                                                  (14)𝜌𝑈0,2 𝑑0,2 = [𝜌𝑈0,2 + 𝜌𝐻1𝜃2 ― 𝜌𝑈0,1 (𝜆𝑖,2 + 𝑑𝑖,2 + 𝜇𝑖,2)]𝑑0,2

Then, the only unknown parameter is  because  can be estimated through 𝑑0,2 𝜌𝐻1 = 𝜌𝐻1 ― 𝜌𝐻0(𝜃1 + 𝜇𝐻,1)
steady state simulation of equation (5) and  was estimated previously under  , .𝜌𝑈0,1  = 0 𝑎 = 1

Assuming the proof holds for , ,𝑖 = 𝑚 + 1 𝑎 = 2
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                                 𝜌𝑈𝑚 + 1,2 𝑑𝑚 + 1,2 = [𝜌𝑈𝑚 + 1,2 +  𝜌𝑈𝑚,1𝜆𝑚,2 ― 𝜌𝑈𝑚 + 1,1 (𝜆𝑚 + 1,2 + 𝑑𝑚 + 1,2 + 𝜇𝑚 + 1,2)]𝑑𝑚 + 1,2
(15)

Then, the only unknown parameter is  as  and  were estimated above under  , 𝑑𝑚 + 1,2 𝜌𝑈𝑚,1 𝜌𝑈𝑚 + 1,1 = 𝑚
 and  , , respectively𝑎 = 1 𝑖 = 𝑚 + 1 𝑎 = 1

Finally, assuming the proof holds for any   and ,𝑖 𝑎 = 𝑘

for any  , and 𝑖 𝑎 = 𝑘 + 1

                                         𝜌𝑈𝑖,𝑘 + 1 𝑑𝑖,𝑘 + 1 = [𝜌𝑈𝑖,𝑘 + 1 +  𝜌𝑈𝑖 ― 1,𝑘𝜆𝑖 ― 1,𝑘 + 1 ― 𝜌𝑈𝑖,𝑘 (𝜆𝑖,𝑘 + 1 + 𝑑𝑖,𝑘 + 1 + 𝜇𝑖,𝑘 + 1)]𝑑𝑖,𝑘 + 1
(16)

Then, the only unknown parameter is  as  and  were estimated above under any and 𝑑𝑖,𝑘 + 1 𝜌𝑈𝑖 ― 1,𝑘 𝜌𝑈𝑖,𝑘 𝑖 
. This completes the proof.𝑎 = 𝑘

A.2. Test for convexity of the optimization model for estimation of diagnostic rates

To check for the convergence of the solution to global optima we test for the convexity of the objective functions.

Specifically, we test for the commonly used convexity test, a function  that is twice differentiable on  is 𝑓(𝑥) 𝑥
convex if it is positive semi-definite, i.e., the second derivative  at all points of . However, we do not know 𝑓′′(𝑥) ≥ 0 𝑥
the analytical form of  to calculate the second derivative of the objective function . Therefore, for each 𝐼𝑖,𝑎 (𝐼𝑖,𝑎 ― 𝐼𝑖,𝑎)2

combination of cancer stage  and age  pair, we empirically generated the function for  by estimation at (𝑖)  (𝑎) 𝐼𝑖,𝑎
multiple points of . See Figure S1 and Figure S2 for results on In-situ and Local stages of cancer and at multiple 𝑑𝑖,𝑎
age groups.

Figure S2: Incidence vs diagnostic rate for specific age-group and In-situ stage of cancer
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Figure S3: Incidence vs diagnostic rate for specific age-group and local stage of cancer

From the above empirical results, for any given cancer stage and age, the simulated incidence  is 𝐼𝑖,𝑎
approximately a linear or a logarithmic function of diagnostic rates , i.e.,𝑑𝑖,𝑎

 or  for some constants  and .𝐼𝑖,𝑎~𝑐 𝑙𝑛 (𝑑𝑖,𝑎) +𝑏 𝐼𝑖,𝑎~𝑐𝑑𝑖,𝑎 +𝑏 𝑐 𝑏

Writing ,𝑥 = 𝑑𝑖,𝑎

If  , the second derivative of the objective function on  is𝐼𝑖,𝑎~𝑐 𝑙𝑛 (𝑥) +𝑏 (𝐼𝑖,𝑎 ― 𝐼𝑖,𝑎)2 𝑥

 as                                                    (17)𝑓′′(𝑥) =
𝑑2

𝑑𝑥2 
(𝑐𝑙𝑛 (𝑥) + 𝑏 ― 𝐼𝑖,𝑎)2 =

2(𝐼𝑖,𝑎 ― 𝑏 ― 𝑐𝑙𝑛 (𝑥) + 𝑐)

𝑥2 > 0  𝐼𝑖,𝑎 > 𝑏

And if , the second derivative of the objective function on  is𝐼𝑖,𝑎~𝑐𝑥 + 𝑏 (𝐼𝑖,𝑎 ― 𝐼𝑖,𝑎)2 𝑥

                                                                                               (18)𝑓′′(𝑥) =
𝑑2

𝑑𝑥2 
(𝑐𝑥 + 𝑏 ― 𝐼𝑖,𝑎)2 = 2𝑐(𝑐) > 0

thus, indicating that the objective function  is convex.(𝐼𝑖,𝑎 ― 𝐼𝑖,𝑎)2

A.3. Data assumptions for parameterization of cancer onset and progression for Peru

Table S3 presents data specific to the US and Peru that were used for constructing cancer onset and progression 
models specific to these countries using the two-step Markov process methodology discussed above in A.1
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Table S3: Region specific input data for parameterization

Parameters Value Reference
GENERAL PROGRESSION PARAMETERS (14) (15) (16)

Progression rates (average over age)
In-situ to Local ( )𝑝0,. 0.19

Local to Regional ( )𝑝1,. 0.33
Regional to Distant ( )𝑝2,. 0.43

Distant to Death ( )𝑝3,. 0.50

Annual mortality rate (per woman year) without treatment by stage at diagnosis (average 
over age)

In-situ (𝜇0,.) 0.08
Local (𝜇1,.) 0.14

Regional (𝜇2,.) 0.23
Distant(𝜇3,.) 0.50

Annual mortality rate (per woman year) with treatment by stage at diagnosis (average 
over age)

In-situ (𝜇0,.) 0.01
Local (𝜇1,.) 0.02

Regional (𝜇2,.) 0.08
Distant (𝜇3,.) 0.27

Note: Here ‘.’ denotes the age 

REGION-SPECIFIC DATA

Pre-screening incidence per 1000 women per year (𝑰𝒂) (17) (18)
Age group Peru US

0-14 0.00
15-19 0.00
20-24 0.01

0.00

25-29 0.05 0.09
30-34 0.14 0.26
35-39 0.36 0.58
40-44 0.70 1.09
45-49 0.91 1.72
50-54 1.05 1.97
55-59 1.38 2.21
60-64 1.38 2.60
65-69 1.52 2.84
70-74 1.52 3.06
75-79 1.56 3.33
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80-84 2.16 3.43
85+ 2.14

Distribution of stage at diagnosis in base-case (18) (19) (20) 
(21)

Stage Peru US
In-Situ (𝑠0) 3% 4.70%
Local (𝑠1) 43% 48.30%

Regional (𝑠2) 45% 39.50%
Distant (𝑠3) 9% 7.50%
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B. Markov decision process (MDP) to identify optimal screening schedules for mammography
B.1. Formulation of the problem of identifying optimal screening schedule as a MDP model  

The parameterized cancer onset and progression model from section A was used in a Markov decision process model 
to identify an optimal screening schedule. Specifically, we formulated the problem as a finite-state, finite-horizon and 
discrete-time MDP defined by a 6-tuple ,  where  are the decision-making {𝑌𝑡,𝐷𝑡; 𝑍, 𝑆, ℙ𝑠, 𝑅𝑠} 𝑡 = {1,2, 3…. ,100}
stages; here, stages represent individual ages, i.e., , therefore, for convenience, we will use ‘age’ to refer to the 𝑡 = 𝑎
normally used terminology of ‘stage’ in MDP models, replacing  with ,𝑡 𝑎

 is the disease state at age , defined over the state space  where 𝑌𝑎𝜖 Z 𝑎 Z = {[𝐻𝑎],[𝑈𝑖,𝑎],[𝐷𝑖,𝑎],𝑀}, [𝐻𝑎],[𝑈𝑖,𝑎],
 are healthy, preclinical, and clinical states in disease stage [𝐷𝑖,𝑎] 𝑖 ∈

and age , as in the Markov process model in the previous {0 = 𝐶𝐼𝑆,1 = 𝐿𝑜𝑐𝑎𝑙, 2 = 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙, 𝑎𝑛𝑑 3 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑡} 𝑎
section, and  denotes a mortality state,𝑀

 is the action space which is a set of possible decision choices, here we have 2 possible choices, i.e., 𝑆
  𝑆 = {𝑆𝑐𝑟𝑒𝑒𝑛(1), 𝐷𝑜 𝑛𝑜𝑡 𝑆𝑐𝑟𝑒𝑒𝑛(0)}

 is the decision taken at age  (choosing from set ), 𝐷𝑎𝜖 𝑆  𝑎 𝑆

 is the transition probability matrix corresponding to action , specifically, each element  of the ℙ𝑠 𝑠 𝑝(𝑖′,𝑎,𝑠,𝑗)
matrix  represents the probability of transitioning from state  to state  if the person is at age  and action  is taken, ℙ𝑠 𝑖′ 𝑗 𝑎 𝑠
and

 is the immediate reward matrix corresponding to action , specifically, each element  of matrix 𝑅𝑠 𝑠 𝑟(𝑖′,𝑎,𝑠,𝑗)
 represents  the immediate reward of taking action  when the person is in state   at age  and as a result the person 𝑅𝑠 𝑠 𝑖′ 𝑎

transitions to state . 𝑗

The problem is then to solve for the optimal values of . Use of MDP in this context has been studied before, 𝐷𝑎
(22) so we do not discuss further details of the methodology here. We only show the formulation of the problem in 
the context of identifying optimal screening schedules for mammography considering costs of screening and monetary 
value per quality-adjusted life-year lived. 

The above MDP was solved using dynamic programming, which is formulated as follows.

Let  be the value of choosing action  when the system is in state  at age , 𝑉(𝑖′,𝑎,𝑠) 𝑠 𝑖′ 𝑎

𝑉(𝑖′,𝑎,𝑠) = ∑
𝑖′ ∈  𝑘

( 𝜌𝑖′

∑
𝑚 ∈  𝑘𝜌𝑚)[∑

𝑗 ∈ 𝑍
𝑝(𝑖′,𝑎,𝑠,𝑗)𝑟(𝑖′,𝑎, 𝑠,𝑗) + ∑

𝑗 ∈ 𝑍
𝑝(𝑖′,𝑎,𝑠,𝑗)𝐽 ∗ (𝑖′,𝑎 + 1)]

 ∀𝑠 ∈ 𝑆,∀ 𝑖′ ∈ 𝑘 = {[𝐻𝑎],[𝑈𝑖,𝑎]}

                                              
(19)      

where,

𝐽 ∗ (𝑖′,𝑎) =  𝑟(𝑖′,𝑎,𝑠 ∗ (𝑖′,𝑎)) +  ∑
𝑗 ∈ 𝑍

𝑝(𝑖′,𝑎,𝑠 ∗ (𝑖′,𝑎),𝑗)𝐽 ∗ (𝑖′,𝑎 + 1) (20)

Then, the optimal decision  at age  and disease state can be written as𝑠 ∗ (𝑖′,𝑎) 𝑎 𝑖′

𝑠 ∗ (𝑖′,𝑎) =  {𝑎𝑟𝑔 𝑚𝑎𝑥𝑠 ∈ 𝑆  𝑉(𝑖′,𝑎,𝑠) , 𝑖𝑓 𝑖′ = 𝑘 =  {[𝐻𝑎],[𝑈𝑖,𝑎]}, 
𝐷𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔,𝑖𝑓 𝑖′ 𝜖{[𝐷𝑖,𝑎],𝑀}

               
(21)
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Note that, with the above equations, all states in  , will have the same optimal action because, = {[𝐻𝑎],[𝑈𝑖,𝑎]}
in the absence of diagnosis, we cannot distinguish between persons in preclinical cancer states  from healthy [𝑈𝑖,𝑎]
state . For persons in states  and , i.e., for persons in clinical cancer states and deaths, respectively, the [𝐻𝑎] [𝐷𝑖,𝑎] 𝑀
action is to do nothing. 

Transition probabilities, , are estimated using the parameterized model from section A. The specific 𝑝(𝑖′,𝑎,𝑠,𝑗)
equations are presented in Tables S4, S5, and S6. Immediate rewards incorporate the costs and benefits of screening 
as follows.

, and                            (22)𝑟(𝑖′,𝑎,𝑠 = 𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔,𝑗) =  { 0, 𝑖𝑓 𝑗 𝑖𝑠 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 
𝑟𝐿𝑌.𝑞𝑗 + 𝑐𝑑 + 𝑐𝑖,𝑖𝑓𝑖′ ∈ [𝑈𝑖,𝑎] 𝑎𝑛𝑑 𝑗 ∈ [𝐷𝑖,𝑎]

𝑟𝐿𝑌.𝑞𝑗 + 𝑐𝑡,𝑖𝑓𝑖′ ∈ [𝐷𝑖,𝑎] 𝑎𝑛𝑑 𝑗 ∈  𝑀
𝑟𝐿𝑌.𝑞𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                             (23)                           𝑟(𝑖′,𝑎,𝑠 = 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔,𝑗) =  { 0 𝑖𝑓 𝑗 𝑖𝑠 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦
𝑟𝐿𝑌.𝑞𝑗 +  𝑐𝑑 +   𝑐𝑖, 𝑖𝑓 𝑖′ ∈ [𝑈𝑖,𝑎] 𝑎𝑛𝑑 𝑗 ∈ {[𝐷𝑖,𝑎]}

𝑟𝐿𝑌.𝑞𝑗 + 𝑐𝑡,𝑖𝑓𝑖′ ∈ [𝐷𝑖,𝑎] 𝑎𝑛𝑑 𝑗 ∈  𝑀
𝑟𝐿𝑌.𝑞𝑗 + 𝑐𝑠 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where,

, 𝑐𝑠 = ― (𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑎𝑐𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑚 + (1 ―  𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑎
)(𝑐𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑚 + 𝑐 ―𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠))

,𝑐𝑑 =  ―  (𝑐𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑚 + 𝑐 +𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠)

   value-per-QALY lived, 𝑟𝐿𝑌 =  

= QALY associated with state , ,                                                          (24)𝑞𝑗 𝑗 𝑞𝑗 = { 1 𝑖𝑓 𝑗 = 𝐻𝑎
 0 𝑖𝑓 𝑗 = 𝑀

0 < 𝑞𝑗 < 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 is the specificity of mammography at age ,𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦𝑎 𝑎

 is the unit cost of mammography per person, 𝑐𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑚

 is the cost of follow-up diagnostic tests for a false positive (per person)𝑐 ―𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠

 is the cost of follow-up diagnostic tests for a true positive (per person)𝑐 +𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠

 is the initial treatment cost per person, 𝑐𝑖

is terminal treatment cost per person, which was applied at the final year of life for women who die from 𝑐𝑡 
breast cancer. 

Table S4: Notation used in transition probability matrix

𝜃𝑖,𝑎 Onset rate of breast cancer
𝜆𝑖,𝑎 Dwell rate for cancer stage  and age 𝑖 𝑎
𝑑𝑖,𝑎 Diagnostic rate of cancer in stage  and age 𝑖 𝑎
𝜇𝑎 Natural mortality rate at age 𝑎
𝜇𝑖,𝑎 Diseased mortality in cancer stage  and age 𝑖 𝑎
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Table S5: Transition probability matrix for action = no screening
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Table S6: Transition probability matrix for action = screening
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Where,

𝑑𝑖,𝑎 = (1 ― 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦)𝑑𝑖,𝑎 + 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦 ― 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦(1 ― 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦)𝑑𝑖,𝑎

𝜆𝑖,𝑎 = (1 ― 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦)𝜆𝑖,𝑎

𝑠 = (1 ― 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦)

B.2. Data assumptions used for the MDP model 

Country-specific data related to the natural cancer progression, specifically the transition probability matrices in 
Tables S5 and S6, are the same data used in the two-step Markov process methodology and are listed in Table S3. 
Data related to mammography (film) screening are presented in Table S7. We assumed the use of film 
mammography in Peru as the availability of digital mammography is limited in developing countries (23). We used 
data f from the Breast Cancer Surveillance Consortium (BCSC) presented in (24). Further, as mammography 
sensitivity and specificity varied by breast density, we used weighted average values, weighted by the proportion of 
persons presenting with the different breast density as reported in the BCSC. 

Table S7: Parameters specific to screen-film mammography

Parameter name Assumption (25) (26) (24) (27)

 (Specificity of film mammogram) for 𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦
Peru and US (24), (27)

Age Initial Annual Biennial Triennial
<29 0.83000 0.83000 0.83000 0.83000

30-34 0.85800 0.85800 0.85800 0.85800
35-39 0.87500 0.87500 0.87500 0.87500
40–49 0.85356 0.91812 0.90472 0.89606
50-59 0.85576 0.91974 0.90498 0.90013
60-69 0.86576 0.92974 0.91459 0.91013
70-79 0.88384 0.93602 0.92127 0.91974

 (Sensitivity of film mammogram) for 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦
Peru and US (24), (27)

Age Initial Annual Biennial Triennial
<29 0.66700 0.66700 0.66700 0.66700

30-34 0.81500 0.81500 0.81500 0.81500
35-39 0.76100 0.76100 0.76100 0.76100
40–49 0.87158 0.75644 0.8173 0.83026
50-59 0.88126 0.77184 0.82155 0.83783
60-69 0.90754 0.80298 0.85269 0.86897
70-79 0.92611 0.84373 0.88126 0.8964

 (Specificity of film mammogram) for 𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦
US validation (28)

Age Specificity
<40 0.906

40-44 0.906
 45-49 0.904
 50-54 0.916
 55-59 0.922
 60-64 0.925
 65-69 0.93
 70-74 0.937
 75-89 0.942
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 (Sensitivity of film mammogram) for 𝜂𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦
US validation and Peru sensitivity analysis (28), (29)

Age Sensitivity
<40 0.55

40-44 0.645
 45-49 0.701
 50-54 0.744
 55-59 0.744
 60-64 0.744
 65-69 0.744
 70-74 0.798
 75-89 0.807

 (Specificity of film mammogram) for 𝜁𝑚𝑎𝑚𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦
Peru sensitivity analysis (28)

Age Specificity
<40 0.841

40-44 0.841
 45-49 0.823
 50-54 0.816
 55-59 0.84
 60-64 0.856
 65-69 0.86
 70-74 0.869
 75-89 0.88

 (Screening cost) for Peru (12)𝑐𝑠𝑐𝑟𝑒𝑒𝑛 2.45 USD
 (Screening cost) for US (24)𝑐𝑠𝑐𝑟𝑒𝑒𝑛 81.35 USD

True positive, $ False positive, $ (Cost of follow-up tests if diagnosed) for 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
Peru (12) 551.36 72.18

 (Cost of follow-up tests if diagnosed) for US 𝑐𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠
(24)

Age group True positive, $ False positive, $
40–49 2187.89 229.1612
50–64 2053.74 271.6121
65–74 2065.13 272.353
≥75 1741.3 280.5171

 (Cost of treatment by stage at diagnosis) for 𝑐𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
US (24)

Stage Initial, $ Terminal, $
In situ 13055 35335

localized 13055 35335
Regional 24682 41825
Distant 38119 58665

 (Cost of treatment by stage at diagnosis) for 𝑐𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡
Peru (12) for initial cost; proportion of terminal to 
initial cost for US used in calculation of terminal cost 
for Peru

Stage Initial, $  Terminal, $
In situ 218.01 590

localized 218.01 590
Regional 464.58 787
Distant 684.84 1053

= quality-adjusted life-years associated with state  𝑞𝑗 𝑗  𝑞 = [1 ,1, 1, 1 ,1, 0.992, 0.992, 0.971, 0.46, 0]
corresponding to stage [𝐻𝑎,𝑈𝑖𝑛 ― 𝑠𝑖𝑡𝑢,𝑈𝑙𝑜𝑐𝑎𝑙,𝑈𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙, 𝑈𝑑𝑖𝑠𝑡𝑎𝑛𝑡,

𝐷𝑖𝑛 ― 𝑠𝑖𝑡𝑢,
  𝐷𝑙𝑜𝑐𝑎𝑙, 𝐷𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙, 𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑡, 𝑀]
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C. Model verification on the US population 
C.1. Verifying parameterization of natural history model for the US

We verified that our model outputs match data or results observed in the CISNET study models, specifically the 
cumulative risk by age of cancer onset, and incidence of cancers by age and stage at diagnosis.

Table S8: Cumulative probability of onset of cancer by age

Age US Study (2)           Estimations from our model 
20 0.000 0.001
25 0.002 0.003
30 0.005 0.007
35 0.021 0.019
40 0.046 0.046
45 0.105 0.099
50 0.169 0.172
55 0.233 0.258
60 0.328 0.354
65 0.436 0.457
70 0.563 0.563
75 0.707 0.670
80 0.852 0.799
85 1.000 1.000
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Figure S4: Comparison of estimated versus actual incidence by age and stage at diagnosis for US
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C.2. Model validation on the US population 

Results and analysis from our model related to mammography screening were compared with results from the 
CISNET study. Details of the analysis related to Figures S5, S6, and S7, and Table S8 are discussed in the main paper, 
under Validation section. All metrics are undiscounted.   

Figure S5: Model validation on the US population: Comparing benefits (life years saved per 1000 women) and 
harms (false positives) between our model (UMass) and CISNET model estimations. The x-axis presents the 
different screening strategies, biennial (B) or annual (A), and ages to screen. CISNET model group 
abbreviations: D = Dana-Farber Cancer Institute; E = Erasmus Medical Center; G = Georgetown University; 
M = M.D. Anderson Cancer Center; S = Stanford University; W = University of Wisconsin/Harvard.
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Figure S6: Comparing efficiency frontiers from our model with 3 CISNET models for pre-selected scenarios 
evaluated in the CISNET study for the US population. All metrics are undiscounted.  

Figure legend: In the CISNET study, the screening schedules with red full circles were categorized as efficient (non-
dominated in at least 5 CISNET models), scenarios in green diamond were categorized as borderline (dominated in 
2-4 models), and the scenarios in blue “cross” were categorized as inefficient (dominated in all the models); Model 
Group Abbreviations: D (Dana Farber Cancer Center), E (Erasmus Medical Center), G (Georgetown U); B= biennial 
screening, A=annual screening
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Figure S7: Efficiency frontier plotted by combining pre-selected scenarios in CISNET study with optimal 
scheduled generated by the model for the US population. All metrics are undiscounted. 
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Table S9: Benefits, harms, and costs under alternative screening schedules for the US. 

Number 
of lifetime 
screenings

Age 
interval 

for 
screening

False 
positives 

per 
1000 

women

Life-
years 
saved 

per 1000 
women

QALYs 
saved 

per 1000 
women

Total cost per 
1000 women 

(undiscounted) 
(USD)

Cost per 
life-year 

saved 
(USD)

Cost per 
QALY 
saved 
(USD)

0 NA NA reference reference 3,730,421 reference reference

5 (B60-69) 60-69 388 49 69.23491 4,618,171 18,254 12,830

8 (B55-69) 55-69 636 85 114.9399 5,227,876 17,630 13,028

10 47-68 841 132 167.7138 5,710,988 15,099 11,806
11 45-68 931 142 180.5029 5,963,972 15,775 12,374
12 44-68 1022 152 190.8303 6,225,760 16,424 13,072
13 43-68 1097 158 197.9314 6,443,835 17,220 13,705
14 41-68 1190 165 205.5111 6,720,099 18,111 14,543
15 41-69 1264 168 209.3046 6,938,201 19,143 15,321
16 41-69 1349 173 215.6531 7,195,497 20,000 16,062
17 42-69 1437 177 220.4828 7,427,262 20,842 16,761
18 40-69 1513 181 224.1628 7,681,212 21,887 17,618
19 40-69 1600 185 229.3496 7,952,445 22,857 18,440
20 40-69 1693 189 233.9974 8,222,971 23,710 19,192

Note: Costs and benefits are undiscounted
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D. Sensitivity analysis
D.1. Impact of mammography sensitivity and specificity 

In the base case results presented in the main manuscript, we assumed the use of film mammography in Peru, as 
the availability of the more advanced digital mammography in developing countries is limited (23). Estimates from 
the breast cancer surveillance consortium (BCSC) suggests that mammography sensitivity and specificity have been 
increasing over time, representing the advancements in diagnostic tools. Therefore, we used mammography 
specificity and sensitivity from the 1995-1999 era (presented in Table S7) to test the impact of the unavailability of 
the most recent technology and human expertise. The results are presented in Table S10 below and discussed in the 
main manuscript.

Table S10: Sensitivity analysis using lower values of mammography test sensitivity and specificity- 
Comparison of model outputs between basecase and sensitivity analysis case for Peru 

 

Number of 
lifetime 

screenings

Age interval 
for 

screening 
(base case)

Age interval 
for 

screening 

False 
positives 
per 1000 
women 

(base case)

False 
positives 
per 1000 
women

Life-years 
saved per 

1000 
women 

(base case)

Life-years 
saved per 

1000 
women

QALYs saved 
per 1000 
women

Total cost per 
1000 women 
(undiscounte
d) (USD) (base 

case)

Total cost 
per 1000 
women 

(undiscount
ed) (USD)

Cost per life-
year saved 
(USD) (base 

case)

Cost per life-
year saved 

(USD)

Cost per 
QALY saved 

(USD)

0 NA NA NA NA reference reference reference 52,644 46,967 reference reference reference

1 51-51 51-51 129 168 19 16 19 135,788 153,307 4,376 6,535 5,670

2 50-56 50-57 220 310 31 28 32 192,122 243,310 4,499 7,116 6,081

3 46-57 47-58 315 469 44 38 44 252,467 344,421 4,541 7,925 6,825

4 45-60 46-60 395 619 54 47 54 303,885 439,667 4,653 8,416 7,275

5 44-61 44-61 489 743 62 55 63 363,927 518,721 5,021 8,628 7,530

7 41-62 42-62 676 1,069 78 69 78 484,359 725,455 5,535 9,887 8,698

8 42-63 42-63 766 1,212 84 75 85 542,360 816,670 5,830 10,312 9,094

9 42-64 42-63 842 1,362 88 80 90 591,269 912,208 6,121 10,865 9,593

10 41-64 41-64 939 1,507 95 84 95 654,089 1,004,946 6,331 11,350 10,060

11 42-65 42-65 978 1,644 99 89 100 680,196 1,091,992 6,339 11,791 10,447

12 41-66 42-65 1,055 1,765 101 91 103 730,554 1,169,479 6,712 12,311 10,885

13 40-66 40-66 1,132 1,914 105 96 108 780,415 1,264,450 6,931 12,640 11,251

14 41-67 41-66 1,213 2,091 107 99 111 832,693 1,376,901 7,290 13,446 11,948

15 40-67 40-66 1,302 2,240 112 103 115 890,442 1,472,028 7,480 13,856 12,361

16 40-67 40-67 1,389 2,360 114 105 118 946,532 1,549,028 7,841 14,323 12,762

17 40-67 40-67 1,477 2,528 117 108 121 1,003,876 1,655,689 8,130 14,944 13,330

Note: Costs and benefits are undiscounted

D.2. Impact of dwell-times (inverse of progression rates) 

As our model is deterministic, to test the impact of uncertainty in dwell times (inverse of progression rates 
between preclinical disease stages) on results for optimal screening schedules, we generated 100 runs of the model 
by sampling for different values of dwell times between the ranges presented in the Table S11. To ensure that 
progression in advanced stages of cancer are more aggressive than earlier stages, we sample using the following 
equation. Dwell time in stage 𝑖 =  𝐿𝑅𝑖 +  x ∗ (𝑈𝑅𝑖 ―  𝐿𝑅𝑖) where x =  1, 2, 3, 4, 5………100 

We present the results in Table S12 and S13 below and discuss the findings in Results and Discussion sections 
of the main manuscript.

Table S11: Data assumptions for sensitivity analysis on dwell-times (inverse of progression rates)

Stage,  𝒊 Lower range (LR) 
(14)

Upper range (UR) 
(14)

DCIS 4.50 5.50
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Table S12: Sensitivity analysis on dwell-times- Comparing age interval, false positives per 1000 women, life-
years (LY) saved per 1000 women and QALYs saved per 1000 women between basecase and sensitivity 
analysis case

Dwell time 
range

Basecase Lower Upper Basecase Lower 
range

Upper 
range

Basecase Lower 
range

Upper 
range

Basecase Lower 
range

Upper 
range

No 
screening

_ _ _ reference reference reference reference reference reference reference reference reference

1 51-51 53-53 51-51 129 130 131 19 20 16 22 23 19
2 50-56 50-57 45-53 220 220 227 31 35 28 37 40 32
3 46-57 47-60 46-56 315 303 316 44 48 38 51 55 44
4 45-60 45-61 42-57 395 393 414 54 61 47 62 69 53
5 44-61 44-62 42-58 489 487 504 62 71 54 72 80 62
6 44-62 46-64 43-60 579 556 587 70 78 61 80 88 69
7 41-62 44-64 40-61 676 655 680 78 89 67 89 100 75
8 42-63 44-65 42-62 766 742 765 84 96 71 95 107 80
9 42-64 42-65 41-62 842 838 862 88 104 76 101 115 86
10 41-64 42-66 40-63 939 925 957 95 110 80 107 122 91
11 42-65 43-67 41-64 978 954 977 99 114 82 112 126 93
12 41-66 42-67 40-65 1,055 1,041 1,062 101 120 86 115 132 97
13 40-66 41-68 39-65 1,132 1,124 11,44 105 125 89 119 137 99
14 41-67 41-69 38-65 1,213 11,89 1,215 107 129 91 122 140 103
15 40-67 40-70 40-66 1,302 1,273 1,308 112 132 93 129 146 105

Age interval for screening False positives per 1000 women Life years saved per 1000 women QALYs saved per 1000 women

Note: Costs and benefits are undiscounted 

Local 2.50 3.76
Regional 1.54 3.10
Distant 1.50 2.50
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Table S13: Sensitivity analysis on dwell-times- Comparing cost per LY saved, cost per QALY saved and cost 
per 1000 women between basecase and sensitivity analysis case

Dwell time range Basecase Lower 
range

Upper range Basecase Lower 
range

Upper 
range

Basecase Lower 
range

Upper 
range

No screening reference reference reference reference reference reference reference reference reference
1 135,788 138,523 132,950 4,376 4,077 5,234 3,825 3,565 4,451
2 192,122 195,377 194,078 4,499 3,919 5,093 3,805 3,433 4,452
3 252,467 248,101 250,589 4,541 3,990 5,340 3,940 3,506 4,613
4 303,885 306,188 313,215 4,653 4,100 5,640 4,056 3,644 4,955
5 363,927 365,741 371,392 5,021 4,333 5,906 4,334 3,866 5,161
6 421,727 410,840 424,724 5,273 4,559 6,165 4,593 4,024 5,407
7 484,359 473,560 484,411 5,535 4,674 6,527 4,877 4,184 5,762
8 542,360 529,842 539,647 5,830 4,942 6,928 5,158 4,425 6,089
9 591,269 591,351 601,758 6,121 5,151 7,291 5,342 4,644 6,440
10 654,089 647,777 663,087 6,331 5,386 7,637 5,609 4,861 6,772
11 680,196 667,839 677,671 6,339 5,379 7,617 5,627 4,851 6,737
12 730,554 723,637 732,651 6,712 5,569 7,939 5,896 5,042 7,040
13 780,415 777,678 787,631 6,931 5,791 8,261 6,099 5,254 7,453
14 832,693 831,718 832,472 7,290 6,012 8,556 6,412 5,538 7,613
15 890,442 874,706 892,507 7,480 6,191 9,045 6,640 5,623 8,032

Cost per QALY saved per 
1000 women, USD

Total cost per 1000 women, USD Cost per life years saved per 1000 
women, USD

Note: Costs and benefits are undiscounted 

D.3. Impact of uncertainty in carcinoma in-situ (CIS) pathways

Recent studies, under the context of over-diagnosis of cancers, have highlighted the uncertainty around 
pathways of CIS stage and mammography sensitivity for diagnosis at this stage, and their corresponding impact on 
the CIS progression rate estimates. (30), (31), (32), (33), (34), (35), (36)Therefore, as uncertainty analysis, we 
evaluated 5 CIS Cases (Table S14), each using different combinations of values for CIS progression rate, proportion 
of invasive cancers initiating directly in local stage, and mammography sensitivity in CIS stage. We present results 
for Peru and the US below in Figures S8 and S9. We present the observations and discuss the findings in Results and 
Discussion sections of the main manuscript.

Page 58 of 65

http://mc.manuscriptcentral.com/mdm

Medical Decision Making

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

27

Table S14: Scenarios for uncertainty analysis of CIS pathway

Uncertainty 
analysis case

Dwell-time for 
progressive CIS

Proportion of 
cancers initiating 
directly as local 
invasive cancer

Mammography sensitivity for 
CIS

References

1 5.22 years 0% 40% for ages over 50 years. 
28% for ages less than 50

(14)

2 3 months 0% 88% (37)
3 5 months 0% 88% (37)
4 2 years 18.9% 40% (30)
5 15 years 18.9% 40% (30)

Table S15: Uncertainty analysis on CIS pathways- Comparing LY saved per 1000 women, and false positives 
per 1000 women for Peru between basecase and CIS uncertainty cases 1 to 5

Number of 
lifetime 
screens 

Life years 
(LY) saved 
per 1000 
women 

(base case)

Life years 
saved per 

1000 
women 
(case 1)

Life 
years 
saved 

per 1000 
women 
(case 2)

Life 
years 
saved 

per 1000 
women 
(case 3)

Life 
years 
saved 

per 1000 
women 
(case 4)

Life 
years 
saved 

per 1000 
women 
(case 5)

False 
positives 
per 1000 
women 
(base 
case)

False 
positives 
per 1000 
women 
(case 1)

False 
positives 
per 1000 
women 
(case 2)

False 
positives 
per 1000 
women 
(case 3)

False 
positives 
per 1000 
women 
(case 4)

False 
positives 
per 1000 
women 
(case 5)

1 19 12 6 6 8 12 129 131 114 115 208 136
2 31 20 12 12 14 22 220 221 206 207 295 234
3 44 28 16 17 20 30 315 310 296 295 385 325
4 54 33 21 22 25 36 395 387 368 372 461 420
5 62 38 25 26 30 42 489 480 455 455 546 513
6 70 44 28 29 34 47 579 568 514 518 640 576
7 78 49 32 33 38 52 676 656 589 610 718 661
8 84 53 35 36 42 56 766 741 686 685 790 749
9 88 57 39 40 45 60 842 792 778 778 875 839
10 95 62 42 43 49 63 939 881 860 868 963 925
11 99 66 45 47 52 66 978 970 945 945 1,060 1,011
12 101 69 48 49 56 67 1,055 1,054 1,018 1,018 1,078 1,095
13 105 73 50 51 58 71 1,132 1,129 1,046 1,060 1,166 1,176
14 107 75 52 54 61 72 1,213 1,210 1,133 1,135 1,248 1,259
15 112 78 54 56 63 75 1,302 1,295 1,215 1,216 1,334 1,331

Note: Costs and benefits are undiscounted
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Table S16: Uncertainty analysis on CIS pathways- Comparing cost per 1000 women, cost per LY saved saved 
for Peru between basecase and CIS uncertainty cases 1 to 5

Number 
of lifetime 

screens 

Cost per 
1000 

women 
(basecase)

Cost per 
LY saved 
(basecase)

Cost per 
1000 

women 
(case 1)

Cost per 
LY 

saved 
(case 1)

Cost per 
1000 

women 
(case 2)

Cost per 
LY 

saved 
(case 2)

Cost per 
1000 

women 
(case 3)

Cost per 
LY 

saved 
(case 3)

Cost per 
1000 

women 
(case 4)

Cost per 
LY saved 
(case 4)

Cost per 
1000 

women 
(case 5)

Cost per 
LY saved 
(case 5)

1 135,788 4,376 135,830 7,149 129,024 12,526 129,062 12,276 138,641 10,466 131,019 7,090
2 192,122 4,499 193,458 6,875 188,063 11,258 188,358 10,865 188,370 9,290 193,832 6,883
3 252,467 4,541 250,243 7,113 246,328 11,826 244,601 11,196 244,033 9,409 252,667 6,981
4 303,885 4,653 299,973 7,474 292,776 11,213 293,991 10,909 301,988 9,765 314,130 7,401
5 363,927 5,021 360,229 7,993 348,899 11,562 347,972 11,262 351,312 9,847 373,950 7,776
6 421,727 5,273 416,699 8,362 387,080 11,733 388,623 11,418 405,595 10,300 415,552 7,827
7 484,359 5,535 473,416 8,600 435,981 11,965 447,694 11,918 466,612 10,710 471,040 8,240
8 542,360 5,830 528,402 8,979 498,311 12,581 496,824 12,212 516,815 10,883 527,786 8,664
9 591,269 6,121 561,846 8,901 557,611 12,762 556,120 12,382 563,390 11,248 586,271 9,097

10 654,089 6,331 619,480 9,129 610,658 13,050 614,314 12,903 618,502 11,516 642,001 9,530
11 680,196 6,339 676,791 9,470 665,225 13,397 664,028 13,055 674,917 11,878 697,797 9,962
12 730,554 6,712 731,399 9,782 713,079 13,762 711,823 13,407 737,388 12,281 752,753 10,528
13 780,415 6,931 780,252 9,980 731,854 13,564 740,038 13,306 750,856 12,054 805,382 10,788
14 832,693 7,290 832,282 10,359 788,329 14,006 788,392 13,516 807,695 12,398 859,501 11,259
15 890,442 7,480 887,648 10,725 841,214 14,406 840,664 14,011 860,801 12,817 906,150 11,459

Note: Costs and benefits are undiscounted

Table S17: Uncertainty analysis on CIS pathways- Comparing QALYs saved per 1000 women and cost per 
QALY saved for Peru between basecase and CIS uncertainty cases 1 to 5

Number 
of 

lifetime 
screens 

QALY 
saved 

per 1000 
women 
(base 
case)

QALY 
saved 

per 1000 
women 
(case 1)

QALY 
saved 

per 1000 
women 
(case 2)

QALY 
saved 

per 1000 
women 
(case 3)

QALY 
saved 

per 1000 
women 
(case 4)

QALY 
saved 

per 1000 
women 
(case 5)

Cost per 
QALY 
saved 

(basecase)

Cost per 
QALY 

saved (case 
1)

Cost per 
QALY saved 

(case 2)

Cost per 
QALY saved 

(case 3)

Cost per 
QALY saved 

(case 4)

Cost per 
QALY saved 

(case 5)

1 22 13 7 7 9 14 3,825 6,184 10,125 10,044 10,466 6,301
2 37 24 14 14 17 24 3,805 5,928 9,558 9,342 9,290 6,206
3 51 32 19 20 24 33 3,940 6,105 10,176 9,582 9,409 6,256
4 62 39 25 26 29 40 4,056 6,352 9,431 9,264 9,765 6,638
5 72 45 30 31 35 47 4,334 6,857 9,757 9,505 9,847 7,010
6 80 51 34 35 40 52 4,593 7,173 9,694 9,519 10,300 7,080
7 89 57 38 39 45 57 4,877 7,398 9,899 10,018 10,710 7,448
8 95 61 42 43 49 61 5,158 7,752 10,562 10,258 10,883 7,851
9 101 66 46 48 53 65 5,342 7,697 10,836 10,521 11,248 8,283
10 107 71 50 51 57 68 5,609 7,954 11,051 10,993 11,516 8,675
11 112 75 54 55 61 71 5,627 8,292 11,384 11,110 11,878 9,069
12 115 79 56 58 64 73 5,896 8,582 11,686 11,407 12,281 9,561
13 119 83 59 60 67 77 6,099 8,758 11,479 11,349 12,054 9,833
14 122 86 61 63 70 79 6,412 9,076 11,946 11,551 12,398 10,245
15 129 89 64 66 73 82 6,640 9,405 12,286 11,986 12,817 10,470

Note: Costs and benefits are undiscounted
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Table S18: Uncertainty analysis on CIS pathways- Comparing number of lifetime screens under different 
scenarios for both Peru and the US

Peru US Peru US Peru US Peru US Peru US Peru US

1 51-51 _ 52-52 _ 61-61 _ 60-60 _ 53-53 _ 47-47 _
2 50-56 _ 50-55 _ 53-62 61-66 52-61 _ 52-60 _ 44-48 _
3 46-57 _ 50-57 _ 50-63 60-70 51-63 61-70 52-62 60-71 44-51 _
4 45-60 _ 50-60 _ 52-65 57-71 51-64 57-71 50-63 56-71 44-52 _
5 44-61 _ 46-61 _ 51-66 55-71 51-66 54-71 50-64 56-72 43-53 _
6 44-62 _ 46-62 _ 52-70 53-72 51-70 54-72 50-66 53-72 42-54 _
7 41-62 _ 46-63 50-68 51-71 53-72 48-70 52-72 47-66 52-73 42-55 _
8 40-63 _ 45-63 50-69 46-71 52-73 47-71 52-73 46-67 51-73 41-56 45-61
9 42-64 _ 45-64 46-69 45-71 51-73 46-71 51-73 46-70 51-73 40-56 43-61
10 41-64 47-68 44-64 45-70 47-72 51-74 45-72 48-74 45-70 50-73 40-57 41-61
11 40-64 45-68 43-64 46-70 45-72 49-74 45-72 47-74 44-70 48-74 40-58 42-62
12 41-66 44-68 41-65 43-70 44-73 50-75 44-73 47-74 42-71 48-74 41-59 42-62
13 40-66 43-68 42-65 44-70 44-73 46-75 44-73 47-75 44-71 47-75 40-60 41-62
14 41-67 41-68 42-66 43-70 42-74 45-75 43-73 46-75 42-72 46-75 41-61 41-62
15 40-67 41-69 42-66 44-71 42-74 45-76 42-74 45-76 41-72 38-61 40-62
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Figure S8: Uncertainty analysis on CIS pathways- Comparing screening age intervals for Peru between 
basecase and CIS uncertainty analysis cases 1 to 5
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Figure S9: Uncertainty analysis on CIS pathways- Comparing screening age intervals for the US between 
basecase and CIS uncertainty analysis cases 1 to 5
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