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ABSTRACT 

 The growing demand for H2 and syngas requires the development of new, more efficient processes 

and materials for their production, especially from CH4 that is a widely available resource. One 

process that has recently received increased attention is chemical looping CH4 partial oxidation, 

which however, poses stringent requirements on material design, including fast oxygen exchange 

and high storage capacity, high reactivity towards CH4 activation and resistance to carbon 

deposition, often only met by composite materials. Here we design a catalytically active material 

for this process, based on exsolution from a porous titanate. The exsolved Ni particles act as both 
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oxygen storage centres and as active sites for CH4 conversion under redox conditions. We control 

the extent of exsolution, particle size and population of Ni particles in order to tune the oxygen 

capacity, reactivity and stability of the system and, at the same time, obtain insights in parameters 

affecting and controlling exsolution. 

  Introduction  

  H2 is an attractive, environmentally friendly energy carrier, while syngas is an important 

precursor for many industrial processes (Fischer-Tropsch). Consequently, new, more efficient 

routes for their production would be hugely beneficial1,2. Large scale production is dominated by 

catalytic CH4 reforming; however, alternative processes like CH4 conversion to syngas/H2 through 

chemical looping (CL) are the subject of current research. In CL, a reaction is divided into multiple 

partial reactions, which are carried out separately, but are typically linked by a solid oxygen carrier 

material (OCM)3. This OCM is cycled between a reduction step, where CH4 is oxidised by the 

lattice oxygen of a metal oxide (MO) and a subsequent oxidation step, where an O2-containing 

stream replenishes the oxygen in the reduced oxygen carrier to revert it to the initial state as 

displayed below in  Eq. 1 and 2. Separation of the two steps (and therefore reactants) in space or 

time eliminates side reactions and the need for product separation, which are required for catalytic 

CH4 reforming4. 

CH4 + MO → CO + 2 H2+ M    (Eq. 1) 

M + ½ O2 → MO     (Eq. 2) 

A suitable oxygen carrier material for this process has to fulfil several requirements, including 

high oxygen capacity and exchange rate, thermal and redox stability, as well as catalytic reactivity 

and resistance to carbon deposition5–7. So far, the state of the art catalyst for CH4 reforming is 

Ni/Al2O3, which benefits from the strong catalytic properties of Ni towards CH4 activation8. 
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However, the material usually suffers from rapid deactivation through carbon deposition and metal 

sintering9. Previously reported ways to improve the catalytic activity of the materials include the 

tuning of the inert support10–12, the incorporation of promoters such as alkali metal13,14 or additional 

preparation steps15,16. So far, an ideal material for CL partial oxidation of CH4 has not been 

identified. The most attractive oxygen carriers used are Mn and Fe oxides, although they all require 

far greater temperatures of around 900 °C to activate CH4
7.   

Exsolution could be a way to overcome the above material limitations. In this, confined, partly 

embedded nanoparticles are highly dispersed on the surface of supports through incorporation of 

the active, exsolvable metal species on the B-site of a perovskite and consequent segregation of 

the metal on the surface, which endows them with emergent functionality17–20. Particles prepared 

by redox exsolution have displayed enhanced activity, coking resistance and stability under 

hydrocarbon environments21 and can additionally be tailored, which gives control over the 

properties of the resulting particles22–24. These characteristics combined with the fact that 

exsolution requires fewer preparation steps and less complex precursors would mitigate some of 

the risks associated with Ni based catalysts’ toxicity. 

In this study, we design and prepare a new perovskite system with exsolved Ni particles that 

fulfil the double role of oxygen storage reservoirs and catalytic centres and employ it towards 

redox conversion of CH4 to H2 via CL25. We show that by controlling the exsolution conditions, 

the amount, size and population of the exsolved nanoparticles can be tailored and directly linked 

to their oxygen capacity, reactivity and coke resistance. Additionally, this study provides new 

insight into the factors that control exsolution. Comparison with Ni-impregnated samples shows 

that our systems have superior resistance to coking, are more likely to fulfil the double role 

mentioned above and provide higher selectivity over syngas production.  



 4 

   Results and discussion  

   Perovskite design for redox conversion of CH4  

In order to prepare an exsolved system that exhibits, at the same time, high catalytic activity 

towards CH4 activation and high oxygen capacity, it is necessary to control the extent of exsolution 

from the perovskite. The total amount of exsolved Ni, as well as particle size and population are 

of great importance because they are likely to dictate oxygen capacity, reactivity and stability 

against coking and agglomeration. Due to the known reactivity of Ni towards CH4 conversion, we 

designed a material containing Ni2+ as the exsolvable B-site ion. We used a moderate substitution 

level of Ni2+ on the B-site (0.2, equivalent to ~6 wt% Ni) to be able to compare the exsolved 

material with conventional systems based on Ni/Al2O3 having similar loading. We then maximized 

the degree of Ni exsolution on the surface, to maximize oxygen capacity and reaction sites for CH4 

activation. A titanate lattice was chosen since it displays negligible oxygen capacity under redox 

conditions and would therefore isolate the Ni particles in their double role. Additionally, it would 

enhance the stability of the perovskite and thus preserve the confinement of the exsolved particles 

thereby enhancing their stability. A-site deficiency was incorporated in order to promote 

exsolution22,26 and, at the same time, to create a stoichiometric residual perovskite after exsolution, 

which would prevent particle re-dissolution in the perovskite during oxidation23. For two key 

reasons it was also important to prepare the perovskite system in a porous microstructure, while 

still using a solid-state method which ensures control over stoichiometry. First, porosity would 

enable stability during cycling by better accommodating chemical expansion and contraction of 

the material under CL redox conditions. In addition, keeping in mind that exsolution of transition 

metals is generally limited to a region from under half a micron under the surface21, a small grain 

size would also promote the formation of exsolved Ni particles as a higher surface area would be 
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available to exsolve from. Taking this into consideration, Ca2+ was incorporated on the A-site of 

the perovskite, in order to lower the perovskite formation temperature27 and as a result, minimize 

the perovskite grain size and maximize the surface area. Also, the use of Ca2+ as an A-site ion 

promotes exsolution by facilitating oxygen anion and cation migration21. Furthermore, to promote 

oxygen anion transport, we adopt a perovskite stoichiometry that is slightly oxygen deficient, 

γ = 0.05. All the above considerations, together with the requirement of charge neutrality led to 

the design and preparation of La0.5Ca0.4Ni0.2Ti0.8O3-γ.  

According to the XRD analysis of the synthesized material, the phase corresponds to a single-

phase perovskite despite the low sintering temperature (1100 °C for 12 h). The Rietveld refinement 

of the XRD pattern, presented in Fig 1a, shows good agreement between experimental and 

calculated data (wR value28 of 5%) and reveals the crystal structure of the perovskite. 

Microstructural analysis of the prepared perovskite with SEM, Fig 1b, demonstrates that the 

perovskite is porous after sintering at 1100 °C with homogenous perovskite grain sizes of about 

500 nm in diameter. Normally perovskites prepared with solid-state methods consist of much 

larger grains in the order of tens of microns22. The decreased grain size obtained by the modified 

solid-state method allows a high extent of exsolution and consequently high activity.  

 

Controlling the extent of exsolution  

In order to control the extent of exsolution and the particle population and size, the perovskite 

samples were reduced in H2 at different temperatures between 700 °C and 1000 °C for 10 hours 

and, additionally, under CH4 by heating to 750 °C (no dwell time). In order to evaluate the extent 

of exsolution and its impact on the perovskite crystal structure, phase analysis with XRD and 

subsequent Rietveld refinement were performed for the samples after reduction. The XRD pattern 



 6 

of the samples reduced at different temperatures in H2 are shown in Fig 2a. The reflections of the 

Ni phase, shown in detail for one reflection in Fig 2b, clearly become more intense with an increase 

in reduction temperature, indicating that the exsolved Ni phase fraction increases. Quantitative 

values obtained by refinement for the extent of exsolution (ξ, moles of Ni per moles of perovskite) 

and the pseudocubic perovskite unit cell parameter (aP, Å) are plotted in Fig 2c. The fraction of Ni 

metal increases gradually with the reduction temperature, while the perovskite crystal structure is 

preserved. After in situ reduction with CH4, the fraction of exsolved Ni (not shown in the plot) is 

almost identical to the one being exsolved at 700 °C under H2, indicating that the reduction 

temperature and not the reducing gas or the reduction time is the important factor for controlling 

exsolution in this case.  

Moreover, an Arrhenius plot of the extent of exsolution as a function of reduction temperature 

(Fig 2d), reveals that Ni exsolution from the prepared perovskite is a thermally activated process 

with an activation energy of about 45±4 kJ mol-1. Interestingly, and contrary to expectations, this 

value is typical for oxygen ion diffusion in perovskites and much lower than the values generally 

reported for cation diffusion29,30. This seems to indicate that exsolution is actually controlled by 

oxygen ion diffusion within the perovskite structure rather than by cation transport. This is 

probably due to the fact that the designed perovskite is A-site deficient as A-site vacancies are 

known to facilitate B-site cation transport, but also probably due to the small perovskite grains 

prepared here which do not require Ni ion diffusion over long distances31. 

The evolution of the pseudocubic cell parameter (Fig2c) of the residual perovskite phase displays 

a nonlinear trend with respect to the reduction temperature and the extent of exsolution. Several 

factors are expected to influence the cell parameter during reduction, leading to the complex trend 

observed. Firstly, as oxygen leaves the perovskite structure during reduction, the perovskite is 
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doped with electrons and oxygen vacancies. Therefore, the oxidation state of the cations decreases, 

which leads to an expansion in unit cell volume32. Accordingly, the unit cell of the perovskite 

phase increased from the sintered to all reduced samples. At the same time, the exsolution process 

takes place and Ni2+ leaves the perovskite structure. As Ni2+ ions (0.69 Å) are bigger than Ti4+ ions 

(0.605 Å)33, Ni exsolution counteracts the expansion of the cell. Both effects might have cancelled 

each other out for the samples reduced in situ and up to 900 °C, as aP did not change significantly. 

Regarding the Ni phase fraction after reduction at 1000 °C, the value clearly exceeded 0.1, which 

is the A-site deficiency of the La0.5Ca0.4Ni0.2Ti0.8O2.95 composition. Consequently, an A-site excess 

perovskite was created under these conditions. This is reflected by the pseudocubic parameter 

which increased considerably for the sample reduced at 1000 °C34 as compared to the sample 

reduced at 900 °C. 

 

Controlling particle size and population  

Changing the reduction temperature did not only change the extent of exsolution but also 

allowed us to effectively control the size and population of the exsolved particles. SEM images of 

the perovskites after reduction under different conditions (Fig 3a) confirm, that all temperatures 

used in this study are suitable for Ni exsolution, thus, particle size and population were largely 

dependent on those temperatures.  

SEM image analysis was performed to determine the values for particle average diameter size 

(s, nm) and population (P, number of particles µm-2). It is obvious that the particle population 

decreases and the particle size increases monotonically with increasing reduction temperature, 

leading to an overall increase in the total number of Ni atoms exsolved (ηNi, atoms µm-2). This is 

consistent with the nucleation theory and previous reports on exsolution22,35,36, indicating that 
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particle nucleation occurs at lower temperatures, while the particles grow in size at higher 

temperature. Our results indicate that for temperatures equal to or higher than 700 °C the reduction 

time or gas do not seem to kinetically limit exsolution. This is demonstrated by the fact that when 

exsolution is carried out at 700 °C, under CH4 stream with no dwell time, or under H2 stream for 

10 or 30 h, very similar particle characteristics in terms of size and population were observed, 

confirming that for these samples it is mainly the temperature that mediates the exsolution process 

and not the time or the reducing gas (Fig 3b). 

 

Probing the reactivity of exsolved systems for CH4 conversion 

In order to determine the impact of the extent of Ni exsolution and the particle properties of this 

system, we employed CH4 activation experiments, and monitored CH4 conversion and selectivity 

as a function of temperature (Fig 4a-i). These are used to probe the surface activity of the samples 

as well as their oxygen capacity37,38. For an as-prepared, i.e. not exsolved sample, conversion 

started at 520 °C and was low over the entire temperature range investigated, since the sample 

does not contain any exsolved Ni nanoparticles. The small amount of conversion observed is 

probably due to a limited oxygen capacity of the perovskite lattice. It should be noted that this 

experiment can be regarded as in situ reduction under CH4 stream. Indeed, as observed by 

following SEM analysis, particles were exsolved during this experiment (Fig 3a). After that 

process, the material was oxidized and tested again to check the reactivity of the in situ produced 

particles. In this case, the system was capable of activating CH4 starting at 500 °C, although the 

conversion and consequently the H2 production were still quite low. Under these conditions the 

catalyst produced clearly more CO than CO2, which is reflected in a gas phase selectivity to CO 

of about 85%. The MTPR activity after reduction in H2 at 700 °C was comparable, which is not 
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surprising considering the similarity in the extent of exsolution as well as in particle size and 

population. For the sample reduced at 800 °C, the catalytic profile seems quite similar to the 

previous mentioned samples. However, it is worth noting that there is a shoulder in the H2 signal, 

indicating the presence of an additional higher temperature activated process (Fig 4i). Also, 

reduction at higher temperatures causes the appearance of a third, additional peak of CH4 

conversion towards CO and H2 at about 670 °C. These two additional peaks become more 

pronounced after further increase in the reduction temperature (850 °C and 875 °C), while the 

MTPR profile remains quite similar. More increase in the reduction temperature (900 °C) causes 

important changes in CH4 conversion in what seems like a step change, which is probably caused 

by increasing the extent of exsolution up to the level of the A-site deficiency of the perovskite. 

The activation temperature decreased to 420 °C and two separate peaks corresponding to CO and 

CO2 production were present in the CH4 signal. They were followed by a third peak which 

corresponds to carbon deposition, as H2 was the only gaseous product during this time. The high 

temperature additional CH4 peak corresponding to CO and H2 production was still present, but 

shifted to lower temperatures, which was identified as a general trend when increasing the 

reduction temperature. This might be assigned to a higher Ni surface coverage, a higher mobility 

of ions in the perovskite lattice or even a change in the interaction of the particles with the support. 

Reduction at 1000 °C produced a similar MTPR pattern with increased conversion but also more 

carbon deposition. It is worth noting that exsolved particles have been demonstrated before to 

display limited coking and although carbon deposition is present in this study, it still remains very 

minor in comparison to a material prepared conventionally by impregnation (see last section). 

Furthermore, the gas phase selectivity to CO versus CO2 is 80% or higher for all exsolved 

perovskite samples, which would make them good candidates for syngas production. However, 
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overall it seems that the H2/CO ratio is more than 2 which means that the decomposition of CH4 

dominates over the oxidation and that would make them more applicable to H2 production 

processes.  

 

Correlating the characteristics of exsolved systems with their reactivity  

To correlate the discussed observations concerning the exsolution process, the reactivity for CH4 

activation and H2 production (Fig 5a), a n-dimensional plot format is proposed (Fig 5b). The extent 

of exsolution correlates to the oxygen capacity and the overall CH4 conversion, the latter being 

higher in absolute values because it sums up the ability of the samples in CH4 reforming, as well 

as in cracking the reactant. Therefore, the extent of Ni exsolution is the important factor that 

unlocks the ability of these materials to store oxygen, while, at the same time, the Ni particles also 

act as CH4 activation sites. Furthermore, the particle size seems to be the determining factor for 

carbon deposition, since larger nanoparticles, formed during reduction at higher temperature, are 

more prone to carbonaceous deposits than their smaller counterparts. This is not surprising, since 

it has been reported before that a decrease in Ni size makes materials less susceptible to coking39–

41. The reason for this is, that the step edges of the Ni particles, being the preferential growth 

centers for carbon deposition, become too small for carbon nucleation, which in turn suppresses 

coking. Supporting this, SEM images after testing (Fig 5c) indicate that the small nanoparticles, 

which were formed through reduction at 700 °C, show no signs of carbon deposition after testing. 

For the particles exsolved at 875 °C, the formation of carbon fibres is also negligible. However, 

after reduction at 900 °C, carbon fibres attached to Ni particles were clearly present. This suggests 

that as the reduction temperature increases, the anchorage of nanoparticles on the support 

decreases, making them more prone to coking.  This is possibly due to the use of Ca2+ on the A-
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site of the perovskite which was used to promote exsolution but, which for higher 

reduction/exsolution temperatures, seems to be detrimental for the maintenance of a good 

anchorage of the formed particles to the perovskite support. Contrary to our expectations, the high 

population, small size particles formed at lower exsolution temperature did not appear to be more 

active in terms of low temperature CH4 activation, which seems to be rather dominated by the 

extent of exsolution and consequently by the oxygen capacity of the material. 

 

Comparison between exsolved and infiltrated samples  

We compare our system (1.2 m2 g-1) with exsolved Ni particles, on a weight basis against the 

same low surface area system but with impregnated Ni particles and against a high surface area 

(100 m2 g-1) Ni/Al2O3, which is a reference material for various catalytic CH4 transformations 

(~8 nm size). We choose to compare those to the La0.5Ca0.4Ni0.2Ti0.8O3-γ perovskite after exsolution 

at 875 °C, which showed the best combination of high CH4 conversion and low carbon deposition 

during testing under CH4 stream (Fig 6f). The microstructural analysis of the samples after 

reduction (Fig 6a-c) shows that the Ni is well dispersed on the porous alumina support. For the Ni-

impregnated perovskite, the Ni particles are, with an average diameter of 44 nm, considerably 

larger than the exsolved ones.  

For Ni/Al2O3 a high conversion was expected, because of the high Ni loading available on the 

surface (10 wt% versus approx. 3 wt% exsolved to the surface), compared to our exsolved 

perovskites. However, carbon deposition was very pronounced and the starting temperature for 

CH4 activation was the highest of the three materials, despite the good dispersion (Fig 6d). For the 

impregnated sample, CH4 activation temperature and MTPR conversion profile were at lower 

temperature very similar to the exsolved sample reduced at 1000 °C, even though the metal content 
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is double (6 wt%) (Fig 6e). This might indicate that indeed part of the Ni exsolved at higher 

temperatures is loosely anchored to the support and acts as if it was an infiltrated sample. In 

addition, the gas phase selectivity to CO is only about 55%. However, even for those samples the 

interaction with a perovskite support seems to be beneficial in terms of resistance against coking. 

To define the carbon deposition on those surfaces qualitatively (Fig 6g) and quantitatively (Fig 

6h), oxidation of the surface carbon followed testing (OTPO experiments42). The Ni/Al2O3 sample 

deposited the most carbon on the surface even in comparison to the high particle size impregnated 

perovskite. For all three samples, CO2 is detected above 400 °C. Surface carbonaceous species 

which are gasified at temperatures higher than 400 °C usually correspond to Cγ or graphitic carbon 

and their formation has been reported previously for Ni-catalysts exposed to CH4 above 550 °C. 

The two perovskite samples show only one type of carbon, while three different types were 

detected for the Ni/Al2O3. Generally, it is known that the oxidation temperature increases with the 

degree of crystallization of the carbon. Therefore, the high temperature OTPO peak for Ni/Al2O3 

possibly belongs to more crystalline Cγ 43,41. The OTPO peak at lowest temperature could 

accordingly be originated from less crystalline carbon or from coke containing hydrogen44,45. In 

total, the well anchored exsolved nanoparticles after reduction at 875 °C provide the best 

selectivity ratio of the gas products COx to carbon deposition, essentially the selectivity to desired 

products, when compared to the other two impregnated samples (Fig 6i). Interestingly, even the 

impregnated perovskite has better performance than the Ni/Al2O3 which can be attributed to the 

interactions of the Ni particles with the highly mobile perovskite support.  

 

 

 



 13 

Stability during redox cycling  

In order to test the applicability of the system we test its stability and cyclability over multiple 

chemical looping cycles (Fig. 7a). We select the material reduced at 875 °C based on the 

considerations discussed above. We carry out cycling with various cycle lengths (1 and 5 min, Fig. 

7b-e) at 550 °C, corresponding to the end of the temperature activity window identified above (Fig. 

4f) and at 30 mL min-1 (NTP). The results show that the system is cyclable and does not seems to 

display signs of degradation with time on stream and cycling (see first and last 5 cycles of each 

experiment Fig. 7). Nanostructure analysis of the material at different stages of the process (after 

reduction, after TPO and stability Fig. 7f-h) show that particles generally maintain their size and 

position even after oxidation and multiple cycles. The above findings demonstrate that the 

materials designed here can be used for cyclable applications providing long term stability and 

high activity.    

Conclusions  

In this work, we design a porous perovskite, La0.5Ca0.4Ni0.2Ti0.8O3-γ, capable of Ni exsolution 

and characterise its activity for CH4 conversion in a chemical looping application. Through this 

choice of stoichiometry, it was possible to control the microstructure of the material in a way that 

was beneficial for promoting exsolution. Reduction of the material under different temperatures 

and conditions allowed us to tailor the extent of exsolution and the particle characteristics. Firstly, 

the amount of exsolved Ni increased linearly with the reduction temperature, while the perovskite 

lattice remained stable. Interestingly, the activation energy of the exsolution process matches well 

with the values reported for oxygen ion diffusion within perovskites, which consequently implies 

that the controlling factor for exsolution could be oxygen rather than cation transport. Additionally, 

employing XRD and SEM image analysis we show that neither the reducing gas nor the reduction 
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time are the determining factors for exsolution control in this case, but predominantly the reduction 

temperature, where the particle population decreased and the particle size increased with 

increasing reduction temperature. However, in contrast to the monotonic development of the 

particle properties with increasing reduction temperature, MTPR tests showed a step change in 

activity towards CH4 conversion after reduction at 900 °C, for which the CH4 activation 

temperature dropped while the coking increased importantly. Through evaluation of a n-

dimensional plot of the determined properties, the extent of exsolution is directly connected to the 

oxygen capacity and the CH4 conversion of the material. Furthermore, particle characteristics were 

found to influence the activation temperature and the selectivity, but also the socketing and 

therefore the coking resistance of the nanoparticles. Additionally, comparison with Ni-

impregnated samples showed, that our systems have superior resistance to coking and provide 

higher selectivity for syngas production. When tested under redox cycling for more than 50 cycles 

the material seems to not display signs of degradation with the particles maintaining their position 

and size. Finally, the materials prepared in this study should display moderate electronic and ionic 

conductivity values characteristic of titanates which would make them applicable in other energy 

conversion technologies such as fuel electrodes in solid oxide fuel or electrolysis cells.  
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Experimental  

Sample preparation 

Perovskite Synthesis  

A modified solid-state method was applied for the synthesis of the La0.5Ca0.4Ni0.2Ti0.8O2.95 

perovskite. The process is described in detail elsewhere21. La2O3 nanopowder (99%, Sigma-

Aldrich Chemistry), CaCO3 (99.95%, Alfa Aesar), Ni(NO3)2·6H2O (98%, Alfa Aesar) and TiO2 

nanopowder (99.5%, Sigma-Aldrich Chemistry) were used as precursors. First, the oxide and 

carbonate precursors were dried (CaCO3 and TiO2 for 3 h at 400 °C; La2O3 for 3 h at 800 °C) and 

weighed while hot. Afterwards, the Ni nitrate and polymeric dispersant (Hypermer KD1-SO-(AP), 

CRODA) were added and the mixture was sonicated in acetone. After evaporating the acetone, the 

resulting powder was calcined at 1000 °C for 12 h, followed by ball-milling and subsequent 

sintering in pellet form at 1100 °C for 12 h. After sintering, the pellets were crushed and sieved to 

get powder with a particle size between 80 and 160 µm. 

 

Processing  

In order to populate the perovskite surface with exsolved nanoparticles, the sintered powder was 

reduced under a 100 mL min-1 gas flow of 5% H2/He for 10 h. The reduction temperature was 

varied between 700 °C and 1000 °C in order to control the extent of exsolution and the particle 

properties. Reduction for 30 h at 700 °C was additionally conducted. Afterwards, the reduced 

samples were oxidised in air for 1 h at 600 °C. All heating and cooling rates were set to 5 °C min-1. 
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Reference samples  

For the preparation of the impregnated samples, 6 wt% Ni/La0.4Ca0.4TiO3 and 6 wt% Ni/Al2O3, 

a commercial γ-Al2O3 (~100 m2 g-1) powder and a La0.4Ca0.4TiO3 (prepared by modified solid-

state method) were used as supports. The support was dispersed in a dilute aqueous solution of Ni 

nitrate under continuous stirring, followed by water evaporation and drying at 90 °C overnight. 

The dried material was submitted to temperature programmed calcination (10 °C min-1); the final 

temperature was 500 °C with a dwell time of 4 h. After calcination, the material was sieved to the 

same size as above, 80-160 μm, and reduced under a continuous flow of 5% H2/He (25 mL min-1) 

at 900 °C for 4 h with heating and cooling rates of 5 °C min-1. 

 

Material characterisation 

XRD analysis and Rietveld refinement 

Room temperature XRD analysis in reflection mode was carried out for all samples before and 

after reduction, using a PANalytical X'Pert Pro Multipurpose diffractometer (MPD) equipped with 

an X'Celerator (Real Time Multiple Strip detector). For data processing the software programme 

Win XPOW was used. The theoretical pattern of a perovskite double cell with the space group 

Pm3̅m was calculated, to identify peaks originating from the perovskite and from secondary 

phases. Subsequent identification of secondary phases was done with HighScore Plus. 

To quantify the fraction of the secondary phases and to further evaluate the perovskite phase, 

Rietveld refinement was done with the software programme GSAS-246.  

From the volume of the perovskite unit cell V obtained by Rietveld refinement, the pseudocubic 

perovskite cell parameter aP was calculated with Eq. 1. 
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𝑎𝑝 = √
𝑉

4

3

 

(Eq. 1) 

Out of the refined mass fraction w of Ni, the molar amount of Ni per molar amount of perovskite 

n(Ni)/n(P) was calculated using Eq. 2. This is referred to as the extent of exsolution ξ. 

𝜉 ≡
n (Ni)

n (P)
 = 

𝑤

1 − 𝑤
  ∙ 

M (P)

M (Ni)
 = 

𝑤

1 − 𝑤
 ∙ 

182.71 g/mol

58.69 g/mol
 

(Eq. 2) 

 

SEM and image analysis 

High resolution SEM measurements were carried out with a JEOL JSM-6700 field emission 

SEM, equipped with SE and BSE detectors. For image processing the software ImageJ-win64 was 

used47. The particles were identified and measured in size with the Analyze Particles plugin. The 

average diameter size s was determined and for further investigation of the exsolved particles, the 

particle population P was calculated by dividing the number of identified particles through the 

analysed area A. Assuming spherical nanoparticles, the number of exsolved Ni atoms per area ηNi 

was calculated with Eq. 3.  

𝜂Ni=
∑

1
6 π s 3 ∙ 

ρ (Ni) ∙ NA

M (Ni)Particles 

A
=

∑
1
6 π s 3 ∙ 91.42 nm-3

Particles

A
 

(Eq. 3) 

 

Specific surface area measurement 

Specific surface area was determined based on Kr physisorption at 77 K using an Autosorb iQ 

2 (Quantachrome Instruments, Boynton Beach, Florida) apparatus and the samples were dried for 

12 h before measurement. For calculation of the specific surface areas the standard Brunauer, 

Emmett and Teller (B.E.T.) equation was applied.  
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Material testing 

Methane Temperature Programmed Reduction (MTPR) 

In order to evaluate the reactivity of the catalysts to CH4, MTPR experiments were carried out 

after oxidation. The setup included a quartz fixed-bed reactor tube (internal diameter of 6 mm) in 

a vertical furnace. Mass flow controllers were used to regulate the gas flow through the reactor. 

For testing, 150 mg of sample were used and gas flow rates were set to 50 mL min-1 (STP). First, 

the reactor was flushed with He, then the flow was changed to 5% CH4/He. Afterwards, a heating 

program with a ramp of 10 °C min-1 was started from room temperature up to 750 °C. The exact 

temperature of the sample was monitored using a K-type thermocouple placed on the reactor bed. 

Outlet gas analysis was performed with a Hiden Analytical QGA mass spectrometer working with 

electron impact ionisation, a quadrupole mass filter and a secondary electron multiplier detector. 

The following m/z-values were tracked during MTPR: 2 (H2
+), 15 (CH3

+), 28 (CO+), 44 (CO2
+). 

To gain quantitative results, the mass spectrometer was calibrated with gas mixtures of 5% H2/He, 

5% CH4/He, 5% CO/He and 5% CO2/He.  

 

 

Oxygen Temperature Programmed Oxidation (OTPO) 

To examine the carbon deposition during MTPRs, some of them were followed by OTPO 

experiments in the same setup. The CO2 production during OTPO provides insights into the coking 

behaviour of an oxygen carrier. For the OTPO experiments, a sample, reduced through a previous 

MTPR, was oxidized under a flow of 5% O2/He. In addition to the signals for MTPR, the m/z-

value 32 (O2
+) was tracked and the mass spectrometer was additionally calibrated with 5% O2/He. 

The heating program with a ramp of 10 °C min-1 was stopped when all signals reached the baseline.  
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Chemical looping cycling (CL) stability tests 

In order to determine the stability of the material, following repeated oxidation/reduction cycles 

were performed in a setup that consists of a furnace in a vertical orientation, automated 4-way 

valves to control the gas composition being fed each time into the reactor, computer-controlled 

mass flow controllers (SLA5850, Brooks Instrument) that were used to regulate the flow through 

the system and pressure transducers (PG309-100GV, Omega) to record the system pressure. The 

reactor of the system is a quartz tube with internal diameter of 4 mm and 2 mm wall thickness and 

the local temperature was recorded with a K-type thermocouple placed in contact with the quartz 

reactor tube and was increased from RT to the specific experiment’s temperature at a rate of 

5 °C min-1. The cycling was performed at 1 atm and 550 °C. The reactor was flushed with a He 

flow of 30 mL min-1 prior to commencing testing. The sample was subjected to multi-cycle 

isothermal reduction under 5% CH4/He and isothermal oxidation under 5% O2/He with inlet flow 

rates of 30 mL min -1. Reduction and oxidation half cycles were performed for 5 min while inert 

gas (He) was purged through the reactor for 5 min between each half cycle in order to avoid mixing 

of the reducing and oxidising gases. The long-term cycling was carried out using 400 mg of 

sample. 

 

Data processing 

The molar fraction of all gases in the outlet (yx)outlet was calculated by multiplying the 

calibration factor with the recorded signal minus any cracking signal from other species on that 

particular mass to charge ratio channel.  

For the calculation of conversion, selectivity, carbon deposition and capacity, the following 

values were calculated. 
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NCO= ∫(yCO)outlet ṅ dt

R

 
(Eq. 4) 

NCO2
= ∫(yCO2

)
outlet

 ṅ  dt

R

 
(Eq. 5) 

NC= ∫(yCO2
)

outlet
 ṅ dt

O

+ ∫(yCO)outlet ṅ  dt

O

 
(Eq. 6) 

NCH4
= ∫(yCH4

)
inlet

 ṅ dt

R

- ∫(yCH4
)

outlet
 ṅ  dt

R

 
(Eq. 7) 

The letter under the integral denotes the reduction step (R for MTPR or reduction half-cycle) or 

the oxidation step (O for OTPO or oxidation half-cycle). NCO andNCO2
 are the total moles of CO 

and CO2, produced, respectively, during the reduction step. NC is the total moles of C produced 

during an OPTO experiment. NCH4
 is the total moles of reacted CH4. 𝑛̇ is the total molar flow rate 

corresponding to each experiment. 

 

Oxygen capacity (mol O/g of material) was calculated by: 

δ = (2NCO2
+NCO)∙

1

m
 

(Eq. 8) 

m is the sample weight used in the respective experiments. 

 

Overall CH4 conversion (mmol CH4/g of material) was calculated by the following equation: 

XCH4

 * =(NCO+NCO2
+NC)∙

1

m
 

(Eq. 9) 

m is the sample weight used in the respective experiments. 
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Selectivities (%) were calculated by the following equations: 

SCO=
NCO

NCO+NCO2
+NC

∙100 
(Eq. 10) 

  

SCO2
=

NCO2

NCO+NCO2
+NC

∙100 
(Eq. 11) 

  

SC=
NC

NCO+NCO2
+NC

∙100 
(Eq. 12) 

 

Selectivity ratio was calculated by the following equation: 

 

Sr=
SCO+SCO2

SC
 

(Eq. 13) 

 

Gas phase selectivity to CO (%) was calculated by the following equation: 

Sg=
NCO

NCO+NCO2

∙100 
(Eq. 14) 

 

Carbon deposition (mmol C/g of material) was calculated as shown in Eq. 15, by the 

integration of the CO2 curve of the TPO experiments as CO was completely absent, meaning that 

the carbon oxidation led only to total combustion products. 

Cdeposition = 
 Nc

m
 

(Eq. 15) 

m is the sample weight used in the respective experiments. 
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Carbon deposition* (mmol C/g of material) was calculated by carbon balance the MTPR 

experiments according to Eq. 16. 

Cdeposition
 *  = 

NCH4
- NCO- NCO2

m
 

(Eq. 16) 

m is the sample weight used in the respective experiments. 
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FIGURES  

a b 

 

 

Figure 1. Structure and morphology of a porous perovskite capable of Ni exsolution. a, 

Rietveld refinement (wR 5%) of the room-temperature XRD pattern of the La0.5Ca0.4Ni0.2Ti0.8O2.95 

perovskite after sintering at 1100 °C for 12 h, with an inset of the crystal structure obtained by 

refinement (space group Pnma, individual cell parameters are a = 5.4822 Å; b = 5.4803 Å; c = 

7.7594 Å and aP = 3.8771 Å). b, Microstructure (SEM) of the La0.5Ca0.4Ni0.2Ti0.8O2.95 perovskite 

after sintering, illustrating high porosity and homogenous grain size. 
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a b 

  

c d 

 

Figure 2. Controlling the extent of exsolution through the reduction temperature. a, Room-

temperature XRD pattern of the La0.5Ca0.4Ni0.2Ti0.8O2.95 perovskite after reduction in H2 for 10 h 

at temperatures between 700 °C and 1000 °C. The theoretical pattern of a Pm3̅m perovskite double 

cell indicates the reflections expected for the perovskite single phase. b, XRD pattern detail of a 

reflection of the Ni phase after reduction at different temperatures c, Extent of exsolution ξ and 

pseudocubic perovskite unit cell parameter ap with reduction/exsolution temperature d, Arrhenius 

plot of ξ versus reduction temperature. 
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a b 

 

 

Figure 3. Controlling particle size and population through the reduction temperature. a, 

Micro- and Nanostructure (SEM) of the La0.5Ca0.4Ni0.2Ti0.8O2.95 perovskite after reduction in H2 

for 10 h at temperatures (TR) between 700 °C and 1000 °C. In situ reduction was done by heating 

in CH4 up to 750 °C without additional dwell time. Reduction for 30 h at 700 °C produced very 

similar particle size characteristics as the 10 h one. b, Particle average diameter size (s), population 

(P) and number of exsolved Ni atoms per area (ηNi) determined by SEM image analysis, as well 

as the extent of exsolution ξ for different reduction temperatures.  
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Figure 4. The effect of the extent of exsolution on CH4 conversion. a, MTPR profile of the 

unreduced La0.5Ca0.4Ni0.2Ti0.8O2.95 perovskite after sintering. The experiment resembles an in-situ 

reduction in CH4, leading to the exsolution of Ni nanoparticles as showed in Fig 3. b, MTPR testing 

after oxidation of sample in a. c-i MTPR testing for the perovskite samples reduced in H2 for 10 h 

at temperatures (TR) between 700 °C and 1000 °C, with i being a detail of d.  
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a b 

  

c 

 

Figure 5. Correlating the characteristics of the exsolved systems with their reactivity. a, 

MTPR H2 signals of the perovskite reduced at different temperatures (TR) in H2 for 10 h b, n-

dimensional plot of the determined sample characteristics with ξ being the extent of exsolution, δ 

the oxygen capacity, X*CH4 the overall CH4 conversion, s the average particle diameter size, 

C*deposition the carbon deposited on the samples surface during MTPR testing, P the particle 

population of the exsolved Ni particles and Ts the temperature of CH4 activation. c, Micro- and 

Nanostructure of the La0.5Ca0.4Ni0.2Ti0.8O2.95 perovskite, reduced at different temperature (TR), 

after MTPR testing. The smaller nanoparticles formed at lower reduction temperature seem to be 

less prone for carbon fibre formation, since carbon fibres were only present at higher extent for 

reduction at 900 °C. 
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a d g 

 

  

b e h 

 

 
 

c f i 

 

 
 

Figure 6. Comparison between exsolved and infiltrated samples. a-c, Micro- and 

Nanostructure (SEM) of the Ni/Al2O3, the Ni-infiltrated perovskite (Ni/P) and the Ni-doped 

perovskite after reduction at 875 °C (NixP), respectively. d-f, MTPR testing of the Ni/Al2O3, the 

Ni-infiltrated perovskite and the Ni-doped perovskite after reduction at 875 °C, respectively. g, 

CO2 produced during oxidation of the samples after MTPR testing and h, the corresponding 

calculated C deposition for g i, Selectivity ratio Sr of oxygenated gas products (COx) to C 

deposition produced during CH4 activation testing. 
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Figure 7. Long-term stability of the exsolved system in CLPO. a. Schematic illustrating the 

concept presented in this paper. b. Close up of outlet gas composition over time with cycle length 

of 5 min in cycles 1-3 and 28-30 c. Outlet gas composition over time. d. Close up of outlet gas 

composition over time with cycle length of 1 min in cycles 1-3 and 28-30 e. Outlet gas composition 

over time. Nanostructure (SEM) of the Ni-doped perovskite after f. Reduction at 875 °C, g. TPR 

and TPO and h. stability testing at 550 °C after experiments shown in b-e (60 cycles).  
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