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ANALYSIS OF UK CAR HABITS 

The tendency of EV drivers to charge their vehicles can be characterised by 

considering i) the energy requirement of the vehicles and ii) the opportunities for 

charging, both given a set of required trips. 

The UK National Travel Survey (NTS) is conducted annually for around 15,000 

UK residents. Data for the years 2002-2016 (inclusive) are available online, 

containing information on 2,042,058 car-based trips between 126,186 vehicles. 

PARKING 

• Cars in the UK spend on 

average 96% of their time parked – 

76% at home, 11% at work and 8% at 

other public places. 

 

• Due to the inherently low 

utilisation rate of private cars, their 

charging demand is likely to be flexible. 

 

•  

 

Figure 2 Arrival times and parking duration at home, work and public parking events - 2002-

2016 NTS 

• Arrival times at home are concentrated around 15:00-20:00 for parking 

durations of 10-16 hours 

• Arrival times at work are concentrated around 07:00-10:00 for parking 

durations of 7-10 hours 

• Arrival times at public places are spread throughout the middle of the day, 

with most parking durations under 3 hours. 

Figure 1 Parking durations by location, 2002-

2016 NTS 
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DRIVING 

 

Figure 3 Total distance driven, number of trips and driving time - 2002-2016 NTS travel diaries 

• On average (mean), drivers made 15.3 trips in the week (corresponding to 

1.1 return trips per day), spending a total of 5.5 hours at the wheel and 

covering a distance of 223 km. 

• The modal time and distance are significantly less: approximately 3 hours 

and 80 km respectively. This shows that the small number of active drivers 

skew the dataset for the entire population. 

• These drivers could tend to be located in particular geographical locations, 

connected to particular electricity networks (e.g. commuter suburbs). This 

effect – known as ‘clustering’ – could lead to disproportionate stress on a 

subset of distribution networks. 

CHARGING ARCHETYPES 

On the basis of this analysis, it is hypothesised that there are four charging 

archetypes, characterised by location, power rating and charging window 

(parking duration). The latter two set the flexibility of the charging demand. 

 

Figure 4 Four charging archetypes: location, power rating & charging window 
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ON THE EASE OF BEING GREEN: THE INCONVENIENCE OF 

ELECTRIC VEHICLE CHARGING 

The perception that EV charging carries some inconvenience relative to internal 

combustion vehicle (ICV) fuelling is a major barrier to their adoption. The aim of 

this work was to quantify the likeliness of ‘convenience parity’ between EVs and 

ICVs for different combinations of battery capacity, charger power and level of 

access to charging (i.e. home, work, public). Further analysis is carried out to 

quantify the likely delays resulting from charging during long journeys (those that 

exceed the vehicles’ range), given that drivers are advised to take 15 minutes’ 

break for every 2 hours’ driving (UK Highway Code Rule 91). 

GOING ELECTRIC: BATTERIES VS INTERNAL COMBUSTION 

  

   

• The energy storage capacity1 and the rate at which it can be replenished2 

are far greater for the ICV than the EV. 

• However, the fact that their energy storage content can be replenished 

while parked (during which time the driver is engaged in some other 

activity) could – at some level of battery capacity, charger power and level 

of access to charging at different locations – mean that EV drivers may 

achieve ‘convenience parity’ with ICV drivers. 

 
1 The 2019 Fiat 500 has a 40 litre fuel tank, and the US Department of Energy assumes the calorific 

value of petrol to be 33.7 kWh. However, due to the significantly greater losses associated with the 
combustion engine of an ICV than those associated with the motor and traction drive of an EV, EVs 
can travel around 3-4 times further on the same amount of energy storage. 
2 Petrol pumps in the UK are limited (for light cars) to around 40 litres per minute. 

2019 Nissan Leaf 2019 Fiat 500 

• Battery capacity = 40 kWh 

• Range ~ 240 km 

• Charging power = up to 50 kW 

• Fuel storage ~350 kWh 

• Range ~ 500 km 

• Refuelling rate ~ 5000 kW 
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CHARGING SCHEDULES AND TIME PENALTIES 

• Charging schedules are derived from 

NTS travel diaries using a heuristic 

approach (Figure 5). 

• Time penalty of parked charging 

consists of the time taken to plug and 

unplug the cable (Table 1). 

• Time penalty of en route charging is 

that above plus the time taken for the 

EV’s battery to charge to the 

required state of charge (SoC)3. 

• Time penalties found from 

experiments at DTU Powerlab4. 

• Home and en route = fixed 

cable; work and public = loose cable. 

• Charging dictated by constant voltage 

constant current (CC-CV) charging 

curve (Figure 6); example shown for 

24 kWh battery and 3.7 kW charging 

power (88% efficient). 

• This sets the energy transferred 

during a parked charging event and 

the time taken to reach a specific SoC 

during an en route charging event. 

INTERNAL COMBUSTION VEHICLE FUELLING 

• To allow fair comparison, the time taken for 50 ICVs to pass through a 

petrol station in Glasgow was recorded, from their arrival at the pump to 

their departure (neglecting any queueing time). 

• Lower and upper quartiles used as best (207 seconds) and worst (294 

seconds) case values for total fuelling time penalty respectively.  

• These time penalties are applied to ICVs completing the same travel 

diaries, proportionally to how many tanks of fuel they would use. 

 
3 Such that it has at least 25 km remaining range at the next charging opportunity 
4 http://www.powerlab.dk/ 

Figure 5 Derivation of charging schedules 

from NTS travel diaries 

Table 1 Time penalties for plugging and 

unplugging charging cable 

Figure 6 Example constant current-

constant voltage charging curve 

http://www.powerlab.dk/
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VEHICLE PARAMETERS 

• 3 battery sizes – 30 kWh, 60 kWh and 100 kWh. 

• Corresponding values of energy consumption (kWh/km) taken from US 

Environmental Protection Agency (EPA)’s Federal Test Procedure of 

representative EVs: 2015 30 kWh Nissan Leaf and 2012 Tesla Model S (60 

kWh and 100 kWh variants). 

• 2 levels of charging power – slow (3.7 kW at home, 11 kW at work/public 

places and {50 kW for battery sizes less than 60 kWh; 120 kW for battery 

sizes 60 kWh and above} for en route); and fast (7.4 kW at home, 22 kW 

at work/public places and {150 kW for battery sizes less than 60 kWh; 300 

kW for battery sizes 60 kWh and above} for en route). 

• Level of access to charging: combinations of home, work and public 

denoted by H, W and P respectively. A negative (¬) sign preceding any 

letter indicates lack of access to charging at that location. 

• Two ICV models used for comparison. 

INCONVENIENCE OF EV CHARGING VS ICV FUELLING  

 

Figure 7 Cumulative distribution functions – total time penalty per hour driving 
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• Figure 7 shows the probability that the total time penalty experienced over 

the week is less than or equal to a certain value in minutes’ charging per 

hours’ driving. 

IMPACT ON LONG JOURNEYS 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

• Most (≥80%) of drivers can achieve ‘convenience parity’ even at 30 kWh 

with slow charging if they can charge at home. 

• At 60 kWh, ~90% of drivers suffer less inconvenience in an EV than an ICV 

• If they can’t charge at home, convenience parity is much less likely – 95% 

of cases spend more than 2 minutes’ charging per hour driving for 30 kWh 

with slow charging. 

• Increasing charging power and access to charging at work and public 

places can help: ~70% of drivers with ¬HWP charging access, 60 kWh 

batteries and fast charging can achieve convenience parity. 

• The resultant effect on long journeys from EV charging is small, if charging 

can be done when drivers take breaks: fewer than 0.01% of journeys are 

delayed from EV charging with batteries of 60 kWh and over. 

  

Proportion of trips in NTS 

dataset greater than battery 

range (EPA real world range 

of corresponding EVs) 

<0.01% of journeys delayed 

for battery sizes of 60 kWh 

and above 

Figure 8 Proportion of trips delayed from charging 

Drivers stop for 15 minutes’ every 

2 hours, and are assumed to 

have access to EV charging 

during that time (e.g. at motorway 

service stations) 
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CHARACTERISING PUBLIC CHARGING DEMAND USING 

SMARTPHONE GPS DATA 

It was presented in the last section that widespread access to workplace and 

public charging is crucial in order to minimise the inconvenience on individuals 

who may find it difficult to charge their vehicles at home due to lack of off-street 

parking5. EV charging infrastructure is already appearing at UK supermarkets, 

leisure centres, shopping centres and other ‘destinations’ where individuals may 

leave their cars for periods ranging 15 minutes to 3 hours. The aim of this work 

was to develop a method for characterising the spatial and temporal variation of 

this charging demand based on the availability of large datasets of individuals’ 

movements from their use of smartphone GPS applications. 

GOOGLE MAPS POPULAR TIMES 

• Google Maps Popular Times is a feature within the app that tracks the 

throughflow of app users (who have not actively disabled the app’s location 

services) through a particular business, designed to allow users to see 

when a particular venue is likely to be busy. 

• The data is shown as a percentage of the peak occupancy over the last 

several weeks (e.g. Figure 9). 

 

Figure 9 Example Google Maps Popular Times data for a gym in West Scotland 

 
5 According to the Department for Transport (see http://bit.ly/2ROpC3F), this applies to 43% of 
households in the UK 

http://bit.ly/2ROpC3F
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QUEUE THEORY MODELLING 

• Little’s theorem (eq. 1) is used to derive a distribution of the arrival rate of 

vehicles 𝜇 (which is Poisson distributed about a mean of 𝜇̅ (eq. 2)) in terms 

of the number of agents in the system 𝑁 and the average service time 𝑇. 

 𝑁 = 𝜇𝑇 eq. 1 
 

𝑃(𝜇) =  𝑒
(−

𝑁
𝑇

)
(

𝑁
𝑇

) 𝜇̅

𝜇̅!
 

 
eq. 2 

• 𝑁 is the number of vehicles in the car park (i.e. the percentage value in 

Figure 9 multiplied by an assumed peak) and 𝑇 is the average duration of 

stay in the particular business (also available in the Popular Times data). 

• The resulting arrivals profile is a rate of arrival of vehicles per hour with an 

assumed battery SoC (Figure 10), arrival minute within the hour (random) 

and intended stay time. The charging car park parameters (charging power, 

grid capacity and converter capacity are fixed (Figure 11). 

INITIAL STATE OF CHARGE 

• The initial state of charge for each 

vehicle is sampled from a Beta 

distribution (Figure 10), limiting 

possible values in the range {0,1}. 

• Shape parameters 𝛼 and 𝛽 derived 

from ~2,500 real public EV charging 

events from the SwitchEV dataset. 

• This gives a mean of 51%. 

EV CHARGING CAR PARK 

• DC bus interfaced to grid via 

converter, allows controllable power 

flows to each vehicle via DC/DC 

converters at each charging station. 

• Vehicles charged proportionately to 

their ‘empty space’ (the difference 

between their battery capacity and 

current energy level) as a proportion of 

the ‘empty space’ of all vehicles. 

Figure 10 Beta distribution for initial SoC 

Figure 11 EV charging car park 
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EV CHARGING AT A GENERIC GYM BASED ON 2,221 UK GYMS 

• Eq. 1 & eq. 2 used to generate arrivals profile for a generic gym, based on 

a sample of Popular Times data for 2,221 gyms in the UK for a weekday 

(Tuesday) and weekend day (Saturday). 

• Figures 12 & 13 show cumulative distribution functions for the likeliness of 

charging demand being less than or equal to a certain value, based on a 

100-car charging car park with 2 MW grid capacity and 50 kW converter 

rating. 

• This approach could be valuable to planners assessing the demand from 

the installation of charging at a new facility, and evaluating how it might 

interact with the existing network peak. 

 

Figure 12 Cumulative distribution function of charging demand at gym, Tuesday 

 

Figure 13 Cumulative distribution function of charging demand at gym, Saturday 
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CASE STUDY: EV CHARGING AT BRAEHEAD SHOPPING CENTRE 

• Braehead shopping centre is a large leisure & shopping complex in the 

outskirts of Glasgow. Due to its 6,500 space car park and proximity to both 

the M8 motorway and electricity transmission infrastructure, it has the 

potential to serve as a large charging hub for visitors to charge their 

vehicles as they visit the centre. 

• Popular Times data are used to characterise charging demand and level of 

service provision to EVs for various car park parameters. 

• It was found that 25 MW of grid capacity is required to service the majority 

of EVs, and 20 kW converter capacity is sufficient. 

 

Figure 14 Demand profile of charging at Braehead for various grid and converter capacities 

 

Figure 15 EV service provision at Braehead for various grid and converter capacities 
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HOME CHARGING AND THE RESULTING NETWORK IMPACT 

In their Road to Zero report of 2018, the UK Department for Transport state that 

they expect the majority of EV charging to be carried out overnight at home. This 

means moving a significant proportion of the energy required to move the UK’s 

car fleet to the end of the distribution networks, which were not designed for this 

level of demand. The aim of this work was to develop sociotechnical models 

taking into account local demographic traits of a distribution network and assign 

likely charging demand to electrical models generated from the same network. 

This is used to examine the likely differences in EV charging demand between 

areas of different socioeconomic traits, if drivers adopt different charging 

behaviours and if EV technical parameters (battery size, charger power and set 

of locations at which charging can be done) continue to change as rapidly as 

they have been doing in recent years. 

GLASGOW SOUTHSIDE STUDY NETWORKS 

• Geographical information systems (GIS) data of two networks covering 

quite different areas in Glasgow Southside: Pollokshields, a leafy suburb 

characterised by Victorian mansions, and Gorbals, a recently regenerated 

area of high-density housing in the inner city. 

 

Figure 16 Pollokshields and Gorbals distribution networks, Glasgow Southside 
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SOCIOTECHNICAL MODELLING APPROACH 

• Network GIS data matched with 

2011 UK Census Output Area (OA) 

data 6 , Scottish Index of Multiple 

Deprivations (SIMD) data and an OS 

building dataset – such that each 

endpoint in the network had 

assigned probabilities of a given 

Census & SIMD outcome (e.g. 

number of cars at household, Figure 

17) and an associated building type 

(e.g. terraced, detached, flat). 

• NTS travel diaries disaggregated on the basis of economic activity 

(employed, self-employed, unemployed) and means of travel to work 

(train, bus, car driver, car passenger bicycle etc.). An example of the 

differences between these disaggregated sets (the arrival time – and hence 

charge start time) is shown in Figure 18. Here, it is shown that individuals 

who travel to work by car are significantly more likely to arrive between 5 

and 7 pm, and therefore more likely to add to the existing network peak. 

• Travel diaries assigned to EVs instantiated in the network according to 

Monte Carlo-style simulation (sampling probability distributions for each 

Census/SIMD outcome and assigning travel diary from corresponding set). 

 

Figure 18 Probability of arrival time at home by economic activity and means of travel to work 

 
6 Data for each OA (comprising around 50 households) in GB are available from the UK Data 

Service; infuse.ukdataservice.ac.uk. Fields used: number of cars at household, employment/means 
of travel to work, heating type, number of rooms, tenure and household composition. 

Figure 17 Number of cars at household, 

Pollokshields & Gorbals 
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• Established and validated Markov chain domestic demand model7 used to 

generate domestic demand profiles (before the introduction of EVs) for 

each household in the network according to its sampled socioeconomic 

characteristics (Figure 20). 

CHARGING BEHAVIOUR MODELLING 

• Two models for deriving charging schedules from NTS travel diaries: 

o An idealised method finds the least time-costly set of charge events 

as previously presented.  

o A routine method is based on the same model but an EV will always 

plug in upon arrival at home (providing it has access to charging there). 

• The latter represents a scenario where charging at home is of idealised 

inconvenience and drivers plug in ‘routinely’; this could be due to drivers 

being incentivised to plug in – such as in a Vehicle 2 Grid scheme. 

DIFFERENCES IN EV CHARGING BETWEEN NETWORKS 

• Sociotechnical modelling approach applied to Pollokshields and Gorbals 

networks. Key differences in socioeconomic traits shown in Figures 19-21. 

 

Figure 19 Car/van availability and employment, Pollokshields and Gorbals 

 
7G. Flett and N. Kelly, “A disaggregated, probabilistic, high resolution method for assessment of 

domestic occupancy and electrical demand,” Energy Build., vol. 140, pp. 171–187, 2017. 
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Figure 20 Factors influencing domestic demand, Pollokshields and Gorbals 
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• Figures 19-20 demonstrate that 

households in Pollokshields are 

more likely to have access to 

vehicles than those in Gorbals. 

Though Gorbals is shown to 

have a higher employment rate, 

Figure 21 shows that employed 

individuals in Pollokshields are 

far more likely to use their cars 

to travel to work. 

 

• While there are more 

households served by the 

Pollokshields network (857 

compared to 1522 in 

Gorbals), the likelihood of 

higher vehicle ownership 

means that the number of 

vehicles simulated was 

significantly higher in 

Pollokshields (Figure 22). 

• Vehicles instantiated within the Pollokshields network drove, on average, 

10% further over the course of the week (Figure 23Error! Reference 

source not found.). 

• Vehicles in the 

Pollokshields network are 

more likely to arrive at 

home (and begin charge 

events) during peak times 

(Figure 24). 

• Figure 25 and Figure 26 

show total EV charging 

demand without and 

with domestic demand 

respectively for both 

networks. 

Figure 21 Employed individuals' means of 

travel to work, Pollokshields and Gorbals 

Figure 22 Number of households and number of 

vehicles in network, Pollokshields and Gorbals 

Figure 24 Number of charge events by charge start time, 

Pollokshields and Gorbals 

Figure 23 Travel diary distance 

(km), Pollokshields and Gorbals 

Mean = 210 km Mean = 231 km 
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Figure 25 Total EV charging demand, Pollokshields and Gorbals – idealised and routine 

charging behaviour 

 

Figure 26 Total domestic demand and total domestic demand plus EV charging demand, 

Pollokshields and Gorbals – idealised and routine charging behaviour 

• Uncontrolled EV charging is expected to increase the network peak by 35% 

(idealised case) – 58% (routine) in Gorbals, and by 84% (idealised) – 122% 

(routine) in Pollokshields. 

• Though most of this difference can be accounted for by the greater number 

of vehicles (~40% difference), greater charging demand is accounted for 

by the longer distances expected to be driven) – both likely a result of a 

higher incidence of car-based commuters. 

• The demographic make-up of the area served by the distribution network 

is expected to have a significant effect on the resulting EV charging impact. 
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DIFFERENCES IN EV CHARGING WITH EV PARAMETERS  

• Differences in EV parameters (battery size, charger power and level of 

access to charging) is expected to affect the resulting charging demand. 

Figure 27 shows the total demand on the Pollokshields network for 100% 

penetration of EVs if all EVs had different configurations of parameters. 

 

Figure 27 Total demand on Pollokshields network for different configurations of EV 

parameters, idealised charging behaviour 

• Increasing battery capacity is expected to reduce the peak and shift it 

later into the night, resulting in a ‘valley filling’ effect. 

• Increasing charger power gives a sharper, sooner peak that is the most 

likely to coincide with the peak in domestic demand. 

• Providing workplace and public charging reduces the burden on the 

residential network – workplace charging is most effective. 
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OPPORTUNITIES FOR SMART CHARGING 

As of July 2019, it is mandated that every EV charger eligible for government 

grant in the UK must be ‘smart’8. Smart charging is often discussed as a way of 

limiting network stress or enabling EVs to better integrate renewable energy 

sources (RES) into the grid by providing demand when RES is in surplus or by 

providing grid services (such as frequency response) to mitigate potential 

stability issues resulting from large penetrations of DC-interfaced RES. The aim 

of this work was to use the travel data-derived charge diaries and sociotechnical 

modelling approach to investigate the extent to which EV charging could be 

managed to minimise network stress or maximise the integration of RES. 

VALLEY FILLING OPTIMISATION TO MINIMISE PEAK DEMAND  

• ‘Valley filling’ approach used to manage EVs’ charging such that overall 

network loading is kept to a minimum subject to all EVs receiving the same 

amount of energy as they would have done if their charging uncontrolled. 

• DC optimal power flow (OPF) formulation used with line losses; objective 

function seeks idealised cost of energy delivered, which leads to minimum 

losses (hence minimum power) solution. 

• Figure 28 shows optimal scheduling of EV charging demand in the 

Pollokshields network for 100% penetration of EVs for both the idealised 

and routine cases. 

 

Figure 28 Total network loading for Pollokshields network, uncontrolled and valley filling 

optimised schedule: idealised (left) and routine charging (right) 

 
8 Defined as having the ‘capability to receive, interpret and react to a signal’ (http://bit.ly/2Z3vX1Z) 
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• Shifting charging demand later into the night can significantly reduce the 

peak demand by 16%-28% (idealised and routine cases respectively). 

• The resultant peak (after optimisation) is remarkably similar between the 

two cases – though more cars are plugging in under the routine scenario, 

their energy requirement tends to be lower (as they will tend to have 

charged more recently) and therefore their charging is more flexible. 

• Figure 29 shows the impact of EV charging on the minimum endpoint 

voltage in the Pollokshields network, for uncontrolled charging of 100% 

penetration of EVs and optimised scheduling using the valley filling 

approach for both the idealised and routine charging cases. 

 

Figure 29 Minimum endpoint voltage in Pollokshields network - uncontrolled and valley filling 

optimised schedule: idealised (left) and routine charging (right) 

• The pink dashed lines on Figure 29 represent the minimum allowable 

endpoint voltage in the GB system. While the management of EV charging 

increases the minimum voltage for both cases and the severity of the 

breaches (Table 2), it is an important result that even under the ‘best case’, 

100% EV penetration cannot be accommodated in the Pollokshields 

network within statutory voltage limits. 

Table 2 Summary metrics for violation of voltage limits in Pollokshields network for 

uncontrolled and optimised charging; idealised and routine charging cases 

 IDEALISED ROUTINE 

Proportion of time 
voltages in violation (%) 

20.3 17.8 25.3 25.2 

Min voltage (pu) 0.910 0.929 0.893 0.915 

Av breach magnitude 
(pu) 

0.0069 0.0023 0.0114 0.0049 
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HEURISTIC-BASED APPROACHES 

• The results shown in the preceding section represent a case whereby the 

charging controller has access to the future arrival times, leave times and 

energy requirements of all charging EVs – in short, the ability to tell the 

future. While the future of EV smart charging could be based on accurate 

forecasts of said information based on historical data, a smart EV charger 

must be able to control the demand with the information that would be 

available to it: the SoC of every vehicle plugged in as it arrives. 

• Three heuristic-based methods are detailed in Figure 30. 

 

 

 

 

 

 

 

 

 

Figure 31 Total network loading, Pollokshields network - heuristic based charging control, 

idealised and routine cases 

SIMPLE DELAY 

•All charge events 

16:00-00:00 delayed to 

midnight 

•All charge events now 

come online at the 

same time 

FIRST COME FIRST 

SERVED (FCFS) 

•All charge events 

16:00-18:00 delayed to 

at least 18:00 

•Charge events brought 

online in the order they 

originally plugged in, 

separated by a time 

interval proportional to 

the number of plug-ins 

LOWEST RANGE 

FIRT SERVED (LRFS) 

•All charge events 

16:00-18:00 delayed to 

at least 18:00 

•Charge events brought 

online in the order of 

lowest-highest 

remaining range, 

separated by a time 

interval proportional to 

the number of plug-ins 

Figure 30 Heuristic-based approaches for managing EV charging demand 
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• The simple delay heuristic results in a loss of diversity and an increase in 

charging demand when all the delayed events come online at the same 

time – for the routine case, this means that (even though it’s been shifted 

late into the night) the new network peak is higher than it was before. 

• The FCFS and LRFS methods are shown to improve the network loading 

similarly to the ‘best case’ optimisation using DC OPF; however, whereas 

the latter guaranteed that all EVs would receive the same amount of energy 

as they would have done without smart charging, these heuristic methods 

do not. Figure 32 shows the impact of these methods on drivers’ travel 

habits by further analysing the travel diaries of each charging vehicle to find 

out if a driver is rendered unable to reach their next charging opportunity 

(without stopping to charge en route) as a result of the heuristic methods. 

 

Figure 32 Bar chart showing proportion of EVs that plugged in to charge that were rendered 

unable to reach their next charging opportunity following a heuristic charging method being 

applied – idealised (left) and routine charging (right) 

• If vehicles charge routinely, a diminishingly small proportion of vehicles 

have their travel plans affected by these charging strategies, likely because 

the SoC on plugin tends to be higher for these vehicles, as the distance 

travelled since their last charging event tends to be lower. While an average 

of 0.35% of vehicles that plugged in had to charge before their next 

charging opportunity under the simple delay heuristic, this was reduced to 

0.054% and 0.017% for the FCFS and LRFS queue heuristics respectively. 

• A shortfall of this analysis is that it does not consider the ‘knock-on effect’ 

of these charging management strategies; i.e. if a driver is faced with 

having their charging managed for subsequent nights while parked, the 

probability of them having to stop to charge en route may increase. 
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EV CHARGING TO SUPPORT RENEWABLES INTEGRATION 

• The aim of this work was to examine how EV charging could be managed 

to take place at times when CO2 intensity was at a minimum – and make 

use of surplus renewable energy that would otherwise be wasted. 

• CO2 intensity of the 

GB grid varies 

significantly – and is 

forecasted by National 

Grid.  

• The carbon intensity 

(grams of carbon dioxide 

per kilowatt-hour of 

energy) of EV charging 

sets a large part of EVs’ 

environmental impact. 

 

• Whitelee wind farm, around 15 km to the south of Glasgow, has 215 

turbines with a total capacity of 539 MW.  

• The wind farm is curtailed when generation exceeds local demand and 

transmission system capacity. 

• Curtailment in period 1 June 2018 – 31 May 2019 occurred on 112 out of 

365 days; the total was 227,841 MWh.  

• The wind farm is paid to curtail this generation at an average of £70/MWh 

– bringing the total yearly sum to over £15.9m. 

 

Figure 34 Total curtailment at Whitelee wind farm, 1 June 2018 - 31 May 2019 

Figure 33 GB grid carbon intensity, 1 June 2018 - 31 May 2019 
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• Whitelee curtailment data was used to assess the feasibility of a large fleet 

of EVs in Scotland’s Central Belt ‘soaking up’ excess wind generation, that 

tends to be highest overnight (when EVs are most likely to be charging). 

• During periods with curtailment, it is assumed that EVs can charge with an 

intensity of 0 gCO2/kWh up to the volume of curtailment in that period. 

• 10,000 individual NTS travel diaries used to simulate large sets of EV 

charging schedules – which are scaled up to represent large fleets of EVs. 

• Effectively, this represents a single bus model (Figure 35). 

 

Figure 35 Single bus model used for analysis of EVs supporting renewables 

• Figure 36 shows the resulting CO2 intensity for charging. 

 

Figure 36 Carbon intensity of charging for different battery sizes & charger power, idealised 

and routine charging 
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• Figure 36 shows CO2 emissions per km driven9, to allow comparison with 

other road vehicles. The potential of smart charging to reduce CO2 intensity 

is affected by the flexibility of the charging events, in turn affected by battery 

size and charger power, and drivers’ charging behaviour. 

• If ‘dumb’ charged from the current GB grid, average EVs’ emissions from 

their charging is 35-56 gCO2/km.  

• This can be reduced to 27-39 gCO2/km by smart charging and taking 

advantage of excess renewables – around 20-30% of the average new 

car sold in Europe10. 

• Figure 37 shows the variation in total reduction in curtailment at Whitelees, 

following the introduction of various EV fleet sizes if their charging could be 

controlled to seek minimum carbon intensity. 

 

Figure 37 Total reduction in curtailment at Whitelees by number of EVs, idealised and 

routine charging 

• 500,000 EVs (20% of Scotland’s current car fleet11 could absorb around 

three quarters of curtailment at GB’s largest onshore wind farm. 

• The rate of increase is shown to be diminishing – this is likely due to the 

small proportion of curtailment that happens in the middle of the day when 

EVs are unlikely to be plugged in (Figure 34). 

 
9 These were converted from CO2/kWh using a typical spread of EV driving ‘efficiencies’ of 0.15-
0.19 kWh/km from the US EPA’s test data 
10

 121.5 gCO2/km (petrol) and 123.4 gCO2/km (diesel), bit.ly/2mo8iXu 
11 Transport Scotland, “Scottish Transport Statistics”, bit.ly/33kFi3o 
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FURTHER READING 

The summary results presented in this booklet are excerpts from the thesis, with 

much of the detailed methods, literature reviews and extensive analysis omitted. 

The full thesis is available on the author’s PURE webpage12, as are a list of 

publications that have resulted from this work. 

If there are any queries resulting from this booklet, please contact: 

James Dixon 

Institute for Energy & Environment 

Department of Electronic & Electrical Engineering 

University of Strathclyde, Glasgow G1 1RD 

james.dixon@strath.ac.uk  

 
12 https://pureportal.strath.ac.uk/en/persons/james-dixon 
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