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Highlights

● Liquidity risk has been largely ignored for online portfolio selection methods.● We present an optimal intraday trading algorithm that considers liquidity risk.● Our algorithm is compatible with any existing online portfolio selection methods.● We develop a simplified suboptimal solution to increase computational efficiency.● The suboptimal solution converges when the fund size is over $10 million.
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We propose an optimal intraday trading algorithm to reduce overall transaction costs by absorbing price
shocks when an online portfolio selection (OPS) method rebalances its portfolio. Having considered the
real-time data of limit order books (LOB), the trading algorithm optimally splits a sizeable market order
into a number of consecutive market orders to minimize the overall transaction costs, including both the
liquidity costs and the proportional transaction costs. The proposed trading algorithm, compatible with
any OPS methods, optimizes the number of intraday trades and finds an optimal intraday trading path.
Backtesting results from the historical LOB data of NASDAQ-traded stocks show that the proposed
trading algorithm significantly reduces the overall transaction costs when market liquidity is limited.
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1. Introduction

Online portfolio selection (OPS henceforth) rebalances a portfolio in every period with the aim
of maximising the portfolio’s expected terminal wealth as a whole. OPS differs from the previous
studies of prediction-based portfolio selection (Freitas et al. 2009, Otranto 2010, Ferreira and
Santa-Clara 2011, DeMiguel et al. 2014, Palczewski et al. 2015) which forecast the expected values
or covariance matrix of stock returns under the mean-variance optimization framework. Most of
the existing OPS methods, see Györfi and Vajda (2008), Kozat and Singer (2011) among others,
consider only the proportional transaction costs (hereafter TCs). However, liquidity risk or the
market impact costs (MICs), a common feature of financial markets, has been largely ignored
in OPS literature. Although Castellano and Cerqueti (2014) consider a mean–variance optimal
portfolio selection problem in presence of limited liquidity reflected by the dynamics of low-frequency
trading (illiquid) assets following pure-jump processes, they mainly focus on the liquidity condition
of financial markets. Ha and Zhang (2018) propose a more practical OPS method that considers
both the proportional TCs and MICs, but none compatible optimal intraday trading algorithm has
been developed in their framework to reduce the higher liquidity risk involved.

As Bertsimas and Lo (1998) pointed out‘‘the demand for financial securities is not perfectly
elastic, and the price impact of current trades, even small trades, can affect the course of future
prices”, then a big concern for existing OPS methods is its sizeable TCs when frequently sending
large market orders to rebalance a large-sized portfolio.Indeed a large market order might not be
executed due to limited liquidity at the rebalancing time. Even if it is executed, the transaction
normally involves significantly high liquidity risk due to large volume trading, pushing the price up
when buying the asset and pushing it down while selling (Damodaran 2012, Chapter 5). Moreover,
it might cause a permanent rather temporary impact on asset prices, thus making OPS strategies
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Table 1. A 5-level limit order book of Microsoft Corporation, traded on NASDAQ, on 21 Jun 2012 at 16:00:00
(downloaded from https://lobsterdata.com/info/DataSamples.php). Bid-ask spread is USD 0.01, and midpoint

price is USD 30.135.

Level Price (USD) Volume (shares)

Asks

5 30.18 110,006
4 30.17 86,886
3 30.16 65,399
2 30.15 80,663
1 30.14 16,600

Bids

-1 30.13 -50,426
-2 30.12 -83,306
-3 30.11 -8,506
-4 30.10 -43,838
-5 30.09 -167,371

unprofitable. As the main assumption that portfolio rebalancing by OPS in the current period
does not affect the stock prices in the next one is no longer valid should the rebalancing cause a
permanent impact.

Existing trading algorithms might be considered for OPS to rebalance a large-sized portfolio,
however, almost most of them are impractical as none of which considers the liquidity risk reflected
by the limit order book (hereafter LOB; Table 1 provides an example of LOB). For example,
Almgren and Chriss (2000) and Kissell et al. (2004) mathematically model the market impact
but do not consider LOB. Alfonsi et al. (2008, 2010) consider the shape of LOB as a block or a
continuous function rather than using LOB data. Guéant et al. (2012) use LOB data to calibrate
the intensity parameters of trading execution, but they do not directly use LOB data for optimal
trading.

The aim of this paper, therefore, is to develop an algorithmic trading strategy that splits a very
large market order into a number of consecutive market orders to reduce price shocks and minimize
the overall TCs when market liquidity is limited. This is straightforward as the market usually
absorbs shocks from these smaller slices, resulting in reduced MICs (Kissell et al. 2003, p. 196).
To our knowledge, this paper is the first attempt to combine OPS with algorithmic trading under
limited market liquidity. Propose an optimal intraday trading algorithm by considering real-time
LOB data, and being compatible with any OPS method and available for any fund size, is the main
contribution of this paper. Moreover, we provide further evidence of the superiority of our method
from the backtesting using real-world historical NASDAQ LOB data.

The rest of this paper is organized as follows. Section 2 briefly reviews existing algorithmic
trading strategies. Some key mathematical notations used in this paper are summarized in Section 3.
Section 4 introduces a liquidity risk measure using LOB and develops a mathematical model of
optimal intraday trading for multi-asset portfolios, followed by backtesting in Section 5. Finally,
Section 6 concludes. Technical details and further numerical results can be found in Appendices.

2. Literature review of algorithmic trading

Algorithmic trading is the computerised execution of financial instruments following pre-specified
rules and guidelines (Kissell 2013, p. 269), and it is classified by Kissell (2013, pp. 17–20) as follows:

(i) Arrival price algorithm that optimizes a trading path to balance the trade-off between
cost and risk at a user-specified level of risk aversion;

(ii) Implementation shortfall algorithm, which is similar to the arrival price algorithm,
but incorporates real-time adaptation, i.e. the trading path of implementation shortfall
algorithm is updated by real-time data on every intraday trade while that of the arrival
price algorithm is determined before trading and does not change during an intraday trade;

(iii) Black box algorithm that searches for profitable opportunities and makes investment
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decisions based on market signals (e.g. asset prices and trading volume).

Based on the Kissell (2013)’s classification,we briefly review the aforementioned three trading
algorithms in the following subsections.

2.1. Arrival price algorithm

Almgren and Chriss (2000) and Kissell et al. (2004) propose an efficient frontier (akin to the
Markowitz efficient frontier in the portfolio theory) in a two-dimensional plane whose axes are:
the expected value of MICs arising from the temporary and permanent market impact and its
variance, which comes from price volatility. Hence, the efficient frontier allows investors to choose
their trading strategy for portfolio management with a user-specified parameter of risk aversion.
The difference between the two methods is how to derive the equation of MICs. The former was
derived from consecutive trades, whereas the latter was derived from an aggregate trade.

Alfonsi et al. (2008) suggest a trading strategy that splits a very large market order for a
single-asset portfolio into a number of consecutive market orders to reduce expected overall market
impact. The size of the individual orders is determined by a parameter of the resilience rate of a
block-shaped LOB (it is assumed that an LOB consists of a continuous price distribution of orders
with a constant height). However, the strategy does not consider the risk of price volatility as
it assumes that traders are risk-neutral, which is different from the Almgren and Chriss (2000)
and Kissell et al. (2004)’s trading strategy. Therefore, the Alfonsi et al.’s strategy minimises the
expected value of MICs regardless of the risk.

Alfonsi et al. (2010) extend their previous trading strategy in LOBs of the constant function to
one of a general shape function. They modeled discrete data of LOB as a continuous function of LOB
density. Both strategies have the same optimal solution of intermediate orders: ξ1 = ξ2 = ⋯ = ξN−1,
where ξn is the size of the market order placed at time tn, and tN is the ending time of trading.
However, the optimal initial market order ξ0 for the generally-shaped LOBs is expressed as an
implicit formula, while that for the block-shaped LOBs is expressed as an explicit formula.

2.2. Implementation shortfall algorithm

A path-dependent or dynamic trading strategy by Lorenz (2008, Chapter 2–3), where the trading
path is updated by real-time data, is superior in terms of generating a more efficient frontier to the
path-independent or static trading strategy by Almgren and Chriss (2000), where the trading path
is determined before trading starts. The superiority of the dynamic strategy comes from trading
faster and reducing the risk of price volatility for the remaining time in the future if there was a
windfall trading gain (i.e. lower trading cost) in the past.

Two other trading strategies as in Almgren and Chriss (2000), Guéant et al. (2012) respectively
are similar in terms of liquidating a certain quantity of a single-asset portfolio within a given time
horizon. However, they are different in terms of order types and optimization methods. The former
sends market orders by considering the trade-off between price risk and MICs, whereas the latter
sends limit orders by considering both price risk and non-execution risk. Moreover, the Almgren and
Chriss’s strategy uses quadratic programming to construct an efficient frontier where the trade-off
between price risk and MICs is binding, whereas the Guéant et al.’s strategy applies the dynamic
programming method to solve the stochastic control problem of optimal liquidation.

2.3. Black box algorithm

The following types of black box algorithm are reviewed:

● Pairs trading
Statistical arbitrage strategies based on cointegrated pairs of assets;
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● High-frequency trading
Short-term trading strategies using sophisticated mathematics and high-speed computers;● Artificial intelligence trading
Alpha generation strategies using artificial intelligence techniques.

2.3.1. Pairs trading. Avellaneda and Lee (2010) construct a statistical arbitrage strategy of a
market-neutral long–short portfolio. To be specific, they long one dollar in a stock and short βj
dollars in the j-th factor, where a multi-factor regression model decomposes a stock return R into
the sum of systematic components ∑mj=1 βjFj (m is the number of factors) and an idiosyncratic

component R̃:

R = m∑
j=1

βjFj + R̃. (1)

This method generates trading signals of buy, sell, or close of the long (short) position by using the
mean-reverting property of the long–short portfolio’s return.

Similar to Avellaneda and Lee (2010), Caldeira and Moura (2013) also consider a market-neutral
strategy but use a different long–short portfolio. Avellaneda and Lee’s strategy constructs either a
pair of one stock and multiple exchange-traded funds or a pair of one stock and factors calculated
from the principal component analysis while Caldeira and Moura construct only two stocks as a pair.
Moreover, if these two stocks selected are cointegrated, then it is possible to form a mean-reverting
stationary process from a linear combination of stock A and B.

Having extended previous pairs trading research in another direction, Huck (2010) incorporates
the forecasting techniques (neural networks) into multi-criteria decision making methods (Electre
III), the application of which leads to better pairs selection in a highly non-linear environment.

2.3.2. High-frequency trading. A Markov chain model of the short-term dynamics of a LOB
has been proposed by Cont et al. (2010). To be specific, the volume of limit orders (see Table 1)
is modeled as a Markov state, where a state transition occurs by a limit order, a market order,
or a stop order. Furthermore, this model can be applied to high-frequency trading by making a
short-term prediction of the mid-price and making a round-trip transaction. It enters a long position
when the probability of the mid-price increasing is high, and it exits the position either when a
profit is secured or when a loss of one tick is made.

A high-frequency arbitrage opportunity through an empirical analysis of the LOB resiliency of
stocks traded on Shenzhen Stock Exchange was found by (Xu et al. 2017). The analysis showed that
buy (sell) market orders attract more buy (sell) limit orders especially i) when the bid-ask spread is
one tick and ii) when the buy (sell) market order size is less than the best ask (bid) volume, which
is the volume of LOB at level 1 (−1) (see Table 1).

2.3.3. Artificial intelligence trading. Tan et al. (2011) show how to detect stock cycles
from historical stock prices. Based on the mean reverting property of stock prices they provide a
reinforcement learning framework to trade on the cycles. Specifically, long positions are held after
detecting troughs of stock cycles, and short positions are held after detecting peaks of stock cycles.
Besides, a dynamic asset switching strategy was proposed to detect buying opportunities (troughs)
of all assets in a portfolio.

Mousavi et al. (2014) propose a multi-tree genetic programming model that i) extracts profitable
trading rule bases for a multi-asset portfolio from historical data (daily closing price and transaction
volume) and ii) updates the portfolio weights over time. Even though it generates a distinct decision
rule for each stock, the rules for multiple stocks evolve simultaneously, and the correlations among
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multiple stocks are taken into account. Besides, the proposed model includes liquidity risk and TCs
to make the trading system more realistic.

Bendtsen and Peña (2016) develop a single-asset trading algorithm with either a long or closed
position (i.e. no short selling) by using technical indicators such as moving average and relative
strength index. Its goal is to generate buy or sell signals for trading a stock by learning and
predicting the stock movement. A gated Bayesian network has been adopted to create a lower risk
investment strategy compared with the buy-and-hold strategy. The network goes back and forth
between the buy and sell phases and seeks opportunities to buy or sell shares.

Krauss et al. (2017) generate daily trading signals from lagged returns of stocks. They conduct
nonparametric nonlinear regression between the lagged returns and one-day-ahead return. In
particular, the following nonlinear regression methods were employed: deep neural networks,
gradient-boosted trees, and random forests. After the regression, a daily portfolio of either going
long for the stocks of higher expected returns or going short for lower expected return stocks has
been constructed from the combined signals of the three methods.

3. Notations

The following notations are used in this paper:

● A lower case italic letter x indicates a deterministic scalar value, while a capital italic letter X
indicates a random variable. A lower case italic bold letter x indicates a deterministic vector,
while a capital italic bold letter X indicates a multivariate random variable (i.e. a random
vector). A capital upright bold letter X denotes a deterministic matrix or a random matrix.● R+ = {x ∈ R∣x > 0} denotes a positive real number, and

Rd+ = {[x(1) x(2) . . . x(d)]T ∈ Rd∣x(j) > 0,∀j ∈ {1,2, . . . , d}} denotes a d-dimensional vec-

tor of positive real numbers.

● bn = [b(1)n b
(2)
n . . . b

(d)
n ]T

is a portfolio vector of d risky assets (there is no risk-free asset in the

portfolio) on the n-th day (see Figure 1), where n ∈ {1,2, . . .}, b
(j)
n ∈ 0 ∪R+ (i.e. neither short

selling nor buying stocks on margin is permitted), and ∑dj=1 b
(j)
n = 1 (i.e. b

(j)
n is the proportion

of a portfolio invested in asset j ∈ {1,2, . . . , d} at the n-th day). Hence, bn ∈ ∆d−1, where

∆d−1 = {[b(1) b(2) . . . b(d)]T ∈ Rd ∣ ∑dj=1 b
(j) = 1, b(j) ≥ 0} is the standard (d − 1)-simplex.

● bn,t ∈ ∆d−1 is an intraday portfolio vector at time t after the end of the n-th day, where
t ∈ {0, 1, . . . , τ}, and τ is the number of intraday trades (see Figure 1; the portfolio rebalancing
from bn,τ to bn+1 is not counted as an intraday trade).● b1 = [1/d 1/d . . . 1/d]T

is an initial portfolio vector.● A deterministic value m
(j)
n (if n is a past or present day), or a random variable M

(j)
n (if n is a

future day) is the mid-price of asset j at the end of the n-th day.● A deterministic value m
(j)
n,t (if n, t is in the past or at the present), or a random variable M

(j)
n,t

(if n, t is in the future) is the mid-price of asset j at time t after the end of the n-th day.

Technically, m
(j)
n,0 =m(j)n and M

(j)
n,0 =M (j)

n .

● A deterministic value x
(j)
n = m

(j)
n

m
(j)
n−1

, or a random variable X
(j)
n = M

(j)
n

M
(j)
n−1

⎛⎝or X(j)n = M (j)
n

m
(j)
n−1

⎞⎠ is

the relative price of asset j for one day at the end of the n-th day.

● A deterministic vector xn = [x(1)n x
(2)
n . . . x

(d)
n ]T ∈ Rd+, or a multivariate random variable

X n = [X(1)n X
(2)
n . . . X

(d)
n ]T ∈ Rd+ is the vector of the relative prices of all assets at the end of

the n-th day (xn or X n is called a market vector in this paper).
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⋯

time

portfolio

0 mn−1 was given

at the end of
the (n − 1)-th day

(past)

mn is being given
at the end of

the n-th day

(present)

Mn+1 will be given
at the end of

the (n + 1)-th day

(future)

1st day n-th day (n + 1)-th day

b1

b2

bn−1

bn

bn+1

portfolio rebalancing

from bn to bn+1
at the present moment

⋯ ⋯ ⋯

time

portfolio

bn
bn,1

bn,2
bn,3

bn,τ
bn+1

mn,0 is being given

at time 0
(after or

at market opening)

after the end of
the n-th day

Mn,1 will be given

at time 1
after the end of

the n-th day

Mn,2 will be given

at time 2
after the end of

the n-th day

Mn,τ will be given

at time τ
(before or

at market closing)

after the end of
the n-th day

Figure 1. The timeline of intraday trading when the present moment is the end of n-th day. OPS rebalances a
portfolio at the end of every trading day (a day ends at time 0, e.g. 9:30 a.m. or 10:00 a.m., not midnight, in this
paper), and an algorithmic trading strategy cushions the shock by portfolio rebalancing from bn to bn+1.

● A deterministic value x
(j)
n,t = m

(j)
n,t

m
(j)
n,t−1

, or a random variable X
(j)
n,t = M

(j)
n,t

M
(j)
n,t−1

⎛⎝or X
(j)
n,t = M

(j)
n,t

m
(j)
n,t−1

⎞⎠
is the intraday relative price of asset j between time t − 1 and t after the end of the n-th day,

where mn,−1
def= mn−1,τ , and Mn,−1

def= Mn−1,τ .

● A deterministic vector xn,t = [x(1)n,t x(2)n,t . . . x(d)n,t ]T ∈ Rd+, or a multivariate random variable

X n,t = [X(1)n,t X
(2)
n,t . . . X

(d)
n,t ]T ∈ Rd+ is the vector of the intraday relative prices of all assets, at

time t after the end of the n-th day (xn,t or X n,t is called an intraday market vector in this
paper).

4. Model Setup

In this section, we aim to minimize the overall TCs including both the proportional transaction
costs and liquidity costs for OPS methods when rebalancing a portfolio. We first introduce the
measure of liquidity risk using real LOB data and incorporate the liquidity risk measure within
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the framework of transaction cost factor in Section 4.1. Then we construct a benchmark model,
being compatible with existing OPS methods, where there is no intraday trading activity. We
further extend our benchmark model to a more general case with intraday trading and propose the
Algorithm 1 to calculate the optimal number of intraday trades. Finally, we develop the Algorithm 2
for intraday algorithmic trading that considers real LOB data.

To be more specific, we explain in details in the following subsections:

(i) how to incorporate liquidity costs into the framework of existing OPS methods in Section 4.1;
(ii) how to calculate the expected value of the gross wealth of tomorrow in the case of no

intraday trading (i.e. τ = 0) in Section 4.2;
(iii) how to obtain an optimal trading path when rebalancing a portfolio from bn to bn+1, given

the number of intraday trades τ ≥ 1 (see Figure 1) in Section 4.3;
(iv) how to calculate the optimal number of intraday trades τ∗ in Section 4.4;
(v) and how to consider real-time LOB data for optimal intraday trading in Section 4.5.

For the simplicity of our proposed intraday trading model, we make the following assumptions:

Assumption 4.1 Asset prices follow the multi-dimensional Brownian motion with zero drift (fore-
casting expected returns is not performed in this paper) during intraday trading;

● hence, the increments of asset prices are jointly normally distributed;● and the increments of asset prices are mutually independent for different trading times t ≠ t′.
Assumption 4.2 LOB at time t′ ∈ {t + 1, t + 2, . . . , τ} is the same as LOB at time t on the same
day, where the time unit ‘‘1” is 30 minutes in our case.

4.1. Liquidity risk measure and transaction cost factor

Following Olsson (2005), we first define the average price per share p̄(q, . . .) for the order size q.
Obviously, the average price per share for specific order size depends on the LOB structure. For
example, as in Table 1, if an investor wants to buy 10,000 shares of Microsoft, she pays $30.14 per
share. If she wants to buy 20,000 shares, then she pays $30.14 for the first 16,600 shares purchased,
and for the remaining 3,400 shares she has to pay a higher price ($30.15 per share). Indeed, the
higher the order size in this case, the higher average price per share to be paid by the investor.

The average price per share for the order size q is defined as (Olsson 2005, Chapter 2.3)

p̄(q,m, p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . .)

def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1∑
i=k+1

pivi + pk (q − −1∑
i=k+1

vi)
q

, if q < v−1

p−1, if v−1 ≤ q < 0

m, if q = 0

p1, if 0 < q ≤ v1

k−1∑
i=1

pivi + pk (q − k−1∑
i=1

vi)
q

, if v1 < q

,
(2)

where

● m = p−1+p1
2 is the midpoint between the best bid and the best ask price, called mid-price,● positive (negative) q stands for buying (selling) stocks,● pi and vi with positive (negative) i are the quoted ask (bid) price and volume at level i,
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respectively (pi and vi correspond to the second and third column of Table 1, respectively,
where vi ≥ 0, v−i ≤ 0,∀i ∈ {1,2, . . .}),● and the highest (lowest) trading level k when q > v1 (q < v−1) is given by

k = {x ∈ Z ∣ x ≥ 2,
x−1∑
i=1

vi < q ≤ x∑
i=1

vi} , (3a)

(k = {x ∈ Z ∣ x ≤ −2,
−1∑
i=x vi ≤ q <

−1∑
i=x+1

vi}) , (3b)

Indeed k represents the level in the order book where the q-th share would be executed.
Similar to Györfi and Vajda (2008), we now define the transaction cost factor as the ratio of the

net wealth over the gross wealth, which is given by

wn,t
def= νn,t

sn,t
, (4)

where νn,t
def= sn,t − γn,t is the net wealth, γn,t is transaction cost (TC) at time t after the end of the

n-th day, and sn,t, the gross wealth, is given by

sn,t = νn,t−1

d∑
j=1

b
(j)
n,tx

(j)
n,t = νn,t−1⟨bn,t,xn,t⟩. (5)

Unlike Györfi and Vajda (2008), our model considers both the proportional transaction costs and
market impact costs (MICs) in our transaction cost factor, where MICs, a key measure of liquidity
risk when OPS methods rebalance a portfolio, are defined as

MICs
def= d∑

j=1

(p̄ (q(j)n,t ) −m(j)n,t) q(j)n,t . (6)

Indeed, MICs can be explained as the extra price paid (the lower price received) for stock buyers
(stock sellers) in our model.

The gross wealth sn,t is the sum of the net wealth νn,t, the MICs, the purchase TCs, and the sale
TCs (Ha and Zhang 2018, Section 5.2–5.3):

sn,t = νn,t + d∑
j=1

(p̄ (q(j)n,t ) −m(j)n,t) q(j)n,t + cp d∑
j=1

(p̄ (q(j)n,t ) q(j)n,t )+ + cs d∑
j=1

(−p̄ (q(j)n,t ) q(j)n,t )+ , (7)

where cp, cs ∈ [0,1) denotes the rate of proportional TCs when purchasing and selling stocks

respectively and a+ def= max(0, a). 1 q
(j)
n,t is an unknown order size of asset j:

q
(j)
n,t = b

(j)
n,t+1sn,twn,t − b(j)n,tx(j)n,tνn,t−1

m
(j)
n,t

; (8)

1 Some arguments of Equation (2), m,p1, p2, . . . , p−1, p−2, . . . , v1, v2, . . . , v−1, v−2, . . . of asset j, are omitted in Equation (7) and

the subsequent expressions for notational simplicity.
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and b
(j)
n,τ+1

def= b
(j)
n+1. Equation (7) can be simplified, by the property of a+ = a + (−a)+, as

sn,t = νn,t + d∑
j=1

((1 − cs)p̄ (q(j)n,t ) −m(j)n,t) q(j)n,t + (cp + cs) d∑
j=1

(p̄ (q(j)n,t ) q(j)n,t )+ , (9)

and this can be rewritten, using Equation (4), as

wn,t = 1 − ∑dj=1 ((1 − cs)p̄ (q(j)n,t ) −m(j)n,t) q(j)n,t + (cp + cs)∑dj=1 (p̄ (q(j)n,t ) q(j)n,t )+
sn,t

, (10)

where w0,t
def= 1,∀t ∈ {0,1, . . . , τ} (i.e. there are no TCs between time 0 and τ on the

0-th day). Equation (8) and (10) are solvable by using a root-finding algorithm, where
wn,t = w (bn,t,bn,t+1,xn,t, νn,t−1) is an unknown variable, cp and cs are omitted here for notational
simplicity.

4.2. Benchmark: no intraday trading (τ = 0)

We first consider a benchmark case where there is no intraday trading activity. This is the worst case
of liquidity risk management that existing OPS methods do not optimally minimize the liquidity
risk.

Suppose that a filtered probability space (Ω,F ,{Fn}n∈{1,2,...},P) is given, where Fn denotes the
natural filtration of the process {X n}n∈{1,2,...} up to day n. If no intraday trading occurs, the
conditional expected value of the gross wealth at the end of the (n + 1)-th day, given the past
observations x 1,x 2, . . . ,xn, and using Equation (5) and (4), is given by

E[Sn+1∣Fn] =E[Nn⟨bn+1,X n+1⟩∣Fn]
=snwnE[⟨bn+1,X n+1⟩], (11)

where

● Nn is stochastic net wealth at the end of the n-th day,● Sn = s0∏ni=1⟨bi,X i⟩ is stochastic gross wealth at the end of the n-th day with an initial wealth
s0,● Wn = w(bn,bn+1,X n,Nn−1) is stochastic TCF at the end of the n-th day (SnWn and⟨bn+1,X n+1⟩ are mutually independent by Assumption 4.1 that X n and X n+1 are mutu-
ally independent),● sn = s0∏ni=1⟨bi,x i⟩ is deterministic gross wealth at the end of the n-th day,● wn = w(bn,bn+1,xn, νn−1) is deterministic TCF at the end of the n-th day (SnWn is converted
to snwn by the conditional expectation given Fn),● and the market vector X n+1 is jointly normally distributed with the mean vector of all 1’s[1 1 . . . 1]T.

By Assumption 4.1, Equation (11) can be further simplified, and the price change M n+1 −mn

follows the multi-dimensional Brownian motion with zero drift:

(M n+1 −mn) ∼ N(0 ,Σn), (12)

where M n+1 = [M (1)
n+1 M

(2)
n+1 . . . M

(d)
n+1]T

is the random mid-price vector at the end of the (n + 1)-th
day, mn = [m(1)n m

(2)
n . . . m

(d)
n ]T

is the deterministic mid-price vector at the end of the n-th day,

10
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0 denotes the all-zero vector, and Σn is the covariance matrix of price changes between the end of
the n-th day and the end of the (n + 1)-th day. Hence, M n+1 is jointly normally distributed as

M n+1 ∼ N(mn,Σn). (13)

Also, as X n+1 can be calculated as

X n+1 = D−1M n+1, (14)

where D = diag(mn), it is jointly normally distributed as

X n+1 ∼ N (1 ,D−1ΣnD
−1) . (15)

Consequently, E[Sn+1∣Fn] in Equation (11) can be simplified as

E[Sn+1∣Fn] =snwnE[⟨bn+1,X n+1⟩]
=snwn (b(1)n+1E [X(1)n+1] + b(2)n+1E [X(2)n+1] + ⋯ + b(d)n+1E [X(d)n+1]) = snwn. (16)

4.3. General intraday trading (τ ≥ 1)

In a general case with intraday trading, then the conditional expected value of the gross wealth at
the end of the (n + 1)-th day, given the past observations x 1,x 2, . . . ,xn, and using Equation (5),
(4), and (11), is given by

E[Sn+1∣Fn] = snwnE [( τ∏
t=1

⟨bn,t,X n,t⟩Wn,t) ⟨bn+1,X n+1,0⟩] , (17)

where

● wn = w(bn,bn,1,xn,0, νn−1,τ),
○ xn,0 = [ m(1)n

m(1)n−1,τ
m(2)n
m(2)n−1,τ . . .

m(d)n
m(d)n−1,τ ]T

,

● X n,t =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[M(1)
n,1

m(1)n
M(2)
n,1

m(2)n . . .
M(d)
n,1

m(d)n ]T

, if t = 1

[ M(1)
n,t

M(1)
n,t−1

M(2)
n,t

M(2)
n,t−1 . . .

M(d)
n,t

M(d)
n,t−1 ]T

, if 2 ≤ t ≤ τ ,

● Wn,t = w(bn,t,bn,t+1,X n,t, snwn∏t−1
t′=1⟨bn,t′ ,X n,t′⟩Wn,t′),○ ∏0

t′=1(⋅) def= 1,○ bn,τ+1
def= bn+1,

● and X n+1,0 = [M(1)
n+1

M(1)
n,τ

M(2)
n+1

M(2)
n,τ

. . .
M(d)
n+1

M(d)
n,τ

]T

.

By Assumption 4.1 that the random vectors X n,1,X n,2, . . . ,X n,τ ,X n+1,0 are mutually independent,
Equation (17) can be rewritten as

E[Sn+1∣Fn] = snwnE [ τ∏
t=1

⟨bn,t,X n,t⟩Wn,t]E[⟨bn+1,X n+1,0⟩], (18)

but ⟨bn,t,X n,t⟩ and Wn,t are mutually dependent because Wn,t is a function of X n,t. Also,⟨bn,t,X n,t⟩Wn,t and ⟨bn,t′ ,X n,t′⟩Wn,t′ are mutually dependent, where t ≠ t′, because Wn,t is a func-
tion of X n,1,X n,2, . . . ,X n,t−1 as well as X n,t. Finally, by using the property of E[⟨bn+1,X n+1,0⟩] = 1,

11
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as proved in Equation (16), E[Sn+1∣Fn] in Equation (17) can be simplified as

E[Sn+1∣Fn] = snwnE [ τ∏
t=1

⟨bn,t,X n,t⟩Wn,t] . (19)

Our goal is to find the optimal portfolio vectors b∗n,1,b∗n,2, . . . ,b∗n,τ that maximize E[Sn+1∣Fn],
and this is a stochastic programming problem as follows:

b∗n,1,b∗n,2, . . . ,b∗n,τ
= arg max
bn,1,bn,2,...,bn,τ∈∆d−1 E[Sn+1∣Fn]

= arg max
bn,1,bn,2,...,bn,τ∈∆d−1wn∫xn,1∈Rd+ ∫xn,2∈Rd+ ⋯∫xn,τ∈Rd+

τ∏
t=1

⟨bn,t,xn,t⟩wn,tf(xn,t)dxn,1dxn,2⋯dxn,τ ,
(20)

where

● wn,t = w(bn,t,bn,t+1,xn,t, snwn∏t−1
t′=1⟨bn,t′ ,xn,t′⟩wn,t′),○ bn,τ+1

def= bn+1,● f(xn,t) is the PDF of the multivariate normal distribution N (1 ,D−1
n,t−1Σn,tD

−1
n,t−1),

○ and Dn,t−1 = ⎧⎪⎪⎨⎪⎪⎩
diag(mn), if t = 1

diag(M n,t−1), if 2 ≤ t ≤ τ
and arg maxbn,1,bn,2,...,bn,τ∈∆d−1 snwnE [∏τt=1⟨bn,t,X n,t⟩Wn,t]
is equivalent to arg maxbn,1,bn,2,...,bn,τ∈∆d−1 wnE [∏τt=1⟨bn,t,X n,t⟩Wn,t] since the gross wealth at the

end of the n-th day sn = s0∏ni=1⟨bi,x i⟩ is independent of bn,1,bn,2, . . . ,bn,τ . Therefore, not only
forecasting the covariance matrix of price changes between time t − 1 and t after the end of the
n-th day Σn,t, but also calculating the Monte Carlo numerical integration is required to obtain
b∗n,1,b∗n,2, . . . ,b∗n,τ .

To make the stochastic programming problem in Equation (20) simpler, the expected value
solution of the stochastic programming (a suboptimal solution of b∗n,1,b∗n,2, . . . ,b∗n,τ ) is calculated
by replacing all the random variables X n,1,X n,2, . . . ,X n,τ in Equation (20) with their expected
values E[X n,1] = E[X n,2] = . . . = E[X n,τ ] = 1 (Birge and Louveaux 2011, p. 165):

b
∗
n,1,b

∗
n,2,⋯,b∗n,τ = arg max

bn,1,bn,2,...,bn,τ∈∆d−1wn
τ∏
t=1

⟨bn,t,1 ⟩wn,t
= arg max
bn,1,bn,2,...,bn,τ∈∆d−1wn

τ∏
t=1

wn,t,

(21)

where wn,t = w (bn,t,bn,t+1,1 , snwn∏t−1
t′=1wn,t′), and bn,τ+1

def= bn+1 (the unimodality of wn∏τt=1wn,t
with respect to bn,1,bn,2, . . . ,bn,τ ∈ ∆d−1 is not proved in this paper; therefore, a local optimum

is not guaranteed to be a global optimum). b
∗
n,1,b

∗
n,2, . . . ,b

∗
n,τ is always worse than or equal to

b∗n,1,b∗n,2, . . . ,b∗n,τ in terms of the value of the stochastic solution (VSS), defined as the loss by not
considering the random variations (Birge and Louveaux 2011, p. 9):

w∗
nE [ τ∏

t=1

⟨b∗n,t,X n,t⟩W ∗
n,t] −w∗

nE [ τ∏
t=1

⟨b∗n,t,X n,t⟩W ∗
n,t] ≥ 0, (22)

where
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Figure 2. The suboptimal path of two intraday trades is dependent on cp, cs, and νn−1,τ (cp = 0, bn = [1/3 1/3 1/3]T,
bn+1 = [0.8 0.1 0.1]T, and xn,0 = [0.6 0.9 1.4]T). 10-level limit order book data of AAPL (b(1)), AMZN (b(2)), and
GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.

● w∗
n = w(bn,b∗n,1,xn,0, νn−1,τ),● w∗
n = w (bn,b∗n,1,xn,0, νn−1,τ),

● W ∗
n,t = w (b∗n,t,b∗n,t+1,X n,t, snw

∗
n∏t−1

t′=1 ⟨b∗n,t′ ,X n,t′⟩W ∗
n,t′),

○ b∗n,τ+1
def= bn+1,

● W
∗
n,t = w (b∗n,t,b∗n,t+1,X n,t, snw

∗
n∏t−1

t′=1 ⟨b∗n,t′ ,X n,t′⟩W ∗
n,t′),

○ and b
∗
n,τ+1

def= bn+1.

Meanwhile, forecasting intraday returns can be performed to find a more optimal solution than

b
∗
n,1,b

∗
n,2, . . . ,b

∗
n,τ . Firstly, if forecasting intraday expected returns is possible, Equation (21) can

be rewritten as the following equation by replacing 1 in Equation (21) with E[X n,t]:
b
∗
n,1,b

∗
n,2,⋯,b∗n,τ = arg max

bn,1,bn,2,...,bn,τ∈∆d−1wn
τ∏
t=1

⟨bn,t,E[X n,t]⟩wn,t, (23)

where wn,t = w (bn,t,bn,t+1,E[X n,t], snwn∏t−1
t′=1⟨bn,t′ ,E[X n,t′]⟩wn,t′), and bn,τ+1

def= bn+1. The com-
putational burden of Equation (23) is the same as that of Equation (21) because the numerical
integration is not performed in both the cases. Secondly, intraday (each day is divided into 10-minute
intervals) volatility forecasting can be employed by using the univariate GARCH model (Σn,t is
assumed as a diagonal matrix) by Engle and Sokalska (2012). However, calculating integrations in
Equation (20) is required, which in turn causes a heavy computational burden. Lastly, the optimal
solution b∗n,1,b∗n,2, . . . ,b∗n,τ in Equation (20) can be obtained by forecasting both intraday expected
returns and volatilities.
b
∗
n,1,b

∗
n,2, . . . ,b

∗
n,τ is a function of cp, cs, and νn−1,τ as shown in Figure 2 because wn and

wn,t,∀t ∈ {1,2, . . . , τ} are functions of cp, cs, and νn−1,τ . To be specific, each arrow indicates a

suboptimal trading path from the starting point b⋆n,1 = bn⊙xn,0⟨bn,xn,0⟩ to the end point bn+1.
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A recommended initial value of bn,t for the optimization of Equation (21) is

b†
n,t = b⋆n,1 + t

τ + 1
(bn+1 − b⋆n,1), (24)

where t ∈ {1, 2, . . . , τ} (i.e. b†
n,t,∀t is linearly located between b⋆n,1 and bn+1 with the same distance).

This is because the suboptimal portfolio vector b
∗
n,t,∀t is not far from b†

n,t,∀t as shown in Figure 2.

As a result, using the initial value b†
n,t will reduce computation time searching for the solution

b
∗
n,1,b

∗
n,2,⋯,b∗n,τ in Equation (21).

4.4. Optimal number of intraday trades

The optimal number of intraday trades τ∗ can be written as

τ∗ = arg max
τ∈{0,1,...} sn+1(τ), (25)

where sn+1(τ) is the gross wealth at the end of the (n + 1)-th day i) when a portfolio is rebalanced

through the suboptimal trading path b
∗
n,1,b

∗
n,2, . . . ,b

∗
n,τ , given the number of intraday trades τ ,

and ii) when LOBs does not change between time 0 and time τ after the end of the n-th day (this
corresponds to Assumption 4.2). sn+1(τ) can be written, using Equation (16) and (21), as

sn+1(τ) = ⎧⎪⎪⎨⎪⎪⎩
snw(bn,bn+1,xn,0, νn−1,τ), if τ = 0

snw
∗
n∏τt=1w

∗
n,t, if τ ≥ 1

, (26)

where

● w∗
n = w (bn,b∗n,1,xn,0, νn−1,τ),

● w∗
n,t = w (b∗n,t,b∗n,t+1,1 , snw

∗
n∏t−1

t′=1w
∗
n,t′),

○ and b
∗
n,τ+1

def= bn+1.

Also, sn+1(τ) can be rewritten, using Equation (5), as

sn+1(τ) = sn − τ∑
t=0

γn,t(τ), (27)

where γn,t(τ) is overall TCs at time t after the end of the n-th day, given the number
of intraday trades τ . By using Equation (9) and the no price change of Assumption 4.2

(i.e. m
(j)
n,t =m(j)n ,∀t ∈ {1,2, . . . , τ}), Equation (25) can be further simplified as:

τ∗

= arg min
τ∈{0,1,...}

τ∑
t=0

γn,t(τ)
= arg min
τ∈{0,1,...}

τ∑
t=0

⎡⎢⎢⎢⎢⎣
d∑
j=1

((1−cs)p̄ (q(j)n,t∗(τ))−m(j)n ) q(j)n,t∗(τ) + (cp+cs) d∑
j=1

(p̄ (q(j)n,t∗(τ)) q(j)n,t∗(τ))+
⎤⎥⎥⎥⎥⎦ ,

(28)

where q
(j)
n,t

∗(τ) is the order size of asset j when rebalancing a portfolio by following the suboptimal

trading path from b
∗
n,t to b

∗
n,t+1, given the number of intraday trades τ .
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Figure 3. The optimal number of intraday trades τ∗ is not unique (cp = 0, cs = 0.00218%, bn = [1/3 1/3 1/3]T, bn+1 =[0.8 0.1 0.1]T, xn,0 = [0.6 0.9 1.4]T, and νn−1,τ = 2 × 106 USD). 10-level limit order book data of AAPL (b(1)),
AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used (each value above the line is the change

amount of sn+1(τ)
sn

).

Equation (28) implies that the overall TCs ∑τt=0 γn,t(τ), consisting of proportional TCs and

MICs, can be minimised if τ is large enough to make trading order size ∣q(j)n,t∗(τ)∣ small for

all j and all t ∈ {0,1, . . . , τ}. Also, the small trading order is equivalent to that where all as-

sets are traded at the best ask price p
(j)
1 or the best bid price p

(j)−1 for all t ∈ {0,1, . . . , τ}:

p̄ (q(j)n,t∗(τ∗)) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p
(j)
1 , if q

(j)
n,t

∗(τ∗) > 0

p
(j)−1 , if q

(j)
n,t

∗(τ∗) < 0

m
(j)
n , otherwise

, as v
(j)−1 ≤ q(j)n,t∗(τ∗) ≤ v(j)1 ,∀t. Consequently, the overall TCs

can be minimised when τ = τ∗ as

τ∗∑
t=0

γn,t(τ∗) = d∑
j=1

⎡⎢⎢⎢⎢⎣((1 + cp)p
(j)
1 −m(j)n ) τ∗∑

t=0

(q(j)n,t∗(τ∗))+ + (m(j)n − (1 − cs)p(j)−1 ) τ∗∑
t=0

(−q(j)n,t∗(τ∗))+
⎤⎥⎥⎥⎥⎦

(29)
The optimal number of intraday trades τ∗ in Equation (28) is not a unique number, it can be

several numbers as τ∗ ∈ {τ ∈ Z∣τ ≥ τ∗min}, where τ∗min is the minimum optimal number of intraday

trades. This is because both ∑τt=0 (q(j)n,t∗(τ))+ and ∑τt=0 (−q(j)n,t∗(τ))+ in Equation (29) are constants

if τ ≥ τ∗min. As a result, sn+1(τ)sn
is a monotonically increasing function of τ as shown in Figure 3, and

sn+1(τ)
sn

does not change after τ = τ∗min (τ∗min is 7 in the case of Figure 3).

Algorithm 1 describes how to obtain the minimum optimal number of intraday trades τ∗min from

the property of v
(j)−1 ≤ q(j)n,t∗(τ∗) ≤ v(j)1 ,∀j ∈ {1,2, . . . , d},∀t ∈ {0,1, . . . , τ}. This algorithm increases

the number of intraday trades τ from 0 until either i) when τ equals the upper limit τmax (see
the 5th line of Algorithm 1), where τmax is a user parameter decided by trading hours and an
intraday trading interval, or ii) when trading all assets at the best ask or best bid price is possible
(see the 7th line of Algorithm 1).
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Algorithm 1: How to obtain the minimum optimal number of intraday trades.

Input: τmax, νn−1,τ , xn,0, and limit order book data at the end of the n-th day.
Output: the minimum optimal number of intraday trades τ∗min.

1 calculate order size q
(j)
n,0,∀j when there is no intraday trading by using Equation (8) and (10);

2 if v
(j)−1 ≤ q(j)n,0 ≤ v(j)1 ,∀j then

3 τ∗min ← 0;
4 else
5 for τ ← 1 to τmax do

// τ is the number of intraday trades

6 b
∗
n,1,b

∗
n,2, . . . ,b

∗
n,τ ← arg max

bn,1,bn,2,...,bn,τ∈∆d−1wn
τ∏
t=1

wn,t, where wn = w(bn,bn,1,xn,0, νn−1,τ),
wn,t = w (bn,t,bn,t+1,1 , snwn∏t−1

t′=1wn,t′), and bn,τ+1
def= bn+1; // from

Equation (21)

7 if v
(j)−1 ≤ q(j)n,t∗(τ) ≤ v(j)1 ,∀j ∈ {1,2, . . . , d},∀t ∈ {0,1, . . . , τ} // where q

(j)
n,t

∗(τ),
calculable from Equation (8) and (10), is the order size of asset j

when rebalancing a portfolio from b
∗
n,t to b

∗
n,t+1 (b

∗
n,0

def= b n and

b
∗
n,τ+1

def= b n+1), given the number of intraday trades τ

8 then
9 break;

10 end

11 end
12 τ∗min ← τ ;

13 end

4.5. Algorithmic trading using real-time LOB data

The proposed method described in Algorithm 2 is an implementation shortfall algorithm (an
intraday trading strategy determined by real-time LOB data at every intraday trading time t) for a
multi-asset portfolio. It performs intraday trading by sending market orders in the following order.

(i) The portfolio vector of next day bn+1 is obtained from an OPS algorithm (see the 2nd line
of Algorithm 2) at the end of every trading day (the end of the trading day is the market
opening, not midnight; see Figure 1).

(ii) The current LOBs of all assets in the portfolio are taken into account at every intraday
trading time t until either the time that satisfies t = τmax (see the 3rd line of Algorithm 2)

or the time that satisfies (v(j)−1 )
n,t

≤ q(j)n,t ≤ (v(j)1 )
n,t
,∀j (i.e. whether trading all assets in the

current best ask or best bid price is possible or not is checked on every t; see the 10th line
of Algorithm 2), whichever happens first.

(iii) If any of the inequalities at the 10th line of Algorithm 2 are false, then the minimum optimal
number of intraday trades τ∗min is obtained by considering the current LOBs and by using
Algorithm 1 (see between the 15th line and the 21st line of Algorithm 2).

(iv) Among the suboptimal path components b
∗
n,t+1,b

∗
n,t+2, . . . ,b

∗
n,τ , calculated at the 16th line

of Algorithm 2, only one component b
∗
n,t+1 is used for the rebalancing at time t (see the 22nd

line of Algorithm 2), but the other components of the suboptimal path b
∗
n,t+2,b

∗
n,t+3, . . . ,b

∗
n,τ

are ignored. This is because new LOBs will be given at time t + 1 (see the 8th line of
Algorithm 2).

However, Algorithm 2 ignores the risk of intraday price volatility as Alfonsi et al. (2008, 2010) did
(i.e. the volatility of the random intraday market vectors X n,t+1,X n,t+2, . . . ,X n,τ is not considered
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Algorithm 2: Proposed method of optimal intraday trading.

Input: s0, µ, τmax, where s0 is an initial wealth, and (µ − 1) is the number of rebalancing days
by online portfolio selection.

1 for n← 1 to µ − 1 do
2 obtain bn+1 from an online portfolio selection algorithm;
3 for t← 0 to τmax do
4 if t = τmax then
5 rebalance a portfolio from bn,t to bn+1;
6 break; // the for-loop of t

7 end
8 receive real-time limit order book data at time t after the end of the n-th day;

9 calculate order size q
(j)
n,t ,∀j for rebalancing a portfolio from bn,t to bn+1 by using

Equation (8) and (10);

10 if (v(j)−1 )
n,t

≤ q(j)n,t ≤ (v(j)1 )
n,t
,∀j // where (v(j)i )

n,t
is the quoted volume of limit

order book of asset j at level i at time t after the end of the n-th
day

11 then
12 rebalance a portfolio from bn,t to bn+1;
13 break; // the for-loop of t

14 else
15 for τ ← t + 1 to τmax do

16 b
∗
n,t+1,b

∗
n,t+2, . . . ,b

∗
n,τ ← arg max

bn,t+1,bn,t+2,...,bn,τ∈∆d−1wn,t
τ∏

t′=t+1

wn,t′ ,

where wn,t = w(bn,t,bn,t+1,xn,t, νn,t−1),
wn,t′ = w (bn,t′ ,bn,t′+1,1 , sn,t′−1wn,t′−1∏t′−1

t′′=t+1wn,t′′), and bn,τ+1
def= bn+1;

// from Equation (21)

17 if (v(j)−1 )
n,t′ ≤ q(j)n,t′∗ ≤ (v(j)1 )

n,t′ ,∀j ∈ {1,2, . . . , d},∀t′ ∈ {t, t + 1, . . . , τ} // where

q
(j)
n,t′

∗
, calculable from Equation (8) and (10), is the order size

of asset j when rebalancing a portfolio from b
∗
n,t′ to b

∗
n,t′+1

(b
∗
n,t

def= b n,t and b
∗
n,τ+1

def= b n+1)

18 then
19 break; // the for-loop of τ
20 end

21 end

22 rebalance a portfolio from bn,t to b
∗
n,t+1;

23 end

24 end

25 end

under the assumption that traders are risk-neutral).

5. Simulations

Monte Carlo (MC) simulations that consisting of independent trials of random stock selection have
been conducted to compare the performance between OPS without and with the intraday trading
via the proposed method.
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Figure 4. The median values of intraday bid-ask spreads of NASDAQ 100 Index Components (between 1 Jan 2008
and 31 Mar 2016).

The following assumptions were made for simplicity:

● Assets are arbitrarily divisible (i.e. q
(j)
n,t ∈ R instead of q

(j)
n,t ∈ Z) to avoid mixed-integer nonlinear

programming.● Hidden limit orders (HLOs), invisible in limit order books, are never submitted.● The execution of market orders by OPS at the current time t does not affect the LOBs at the
next time t + 1.● The computation time to calculate bn,t+1 is zero. Neither the running time between the 9th
line and the 11th line in Algorithm 2 nor that between the 15th line and the 21st line in
Algorithm 2 is considered in our simulation.

Trading at the market opening (9:30 a.m.) was not conducted in this experiment because bid-ask
spreads are much higher at the opening than mid-day or closing, as shown in Figure 4 2. Therefore,
we assume trading starts at 10:00 a.m. in this experiment, which corresponds to time 0 (t = 0; see
Figure 1). The trading interval was fixed at 30 minutes under an assumption that LOBs reverts to
its normal shape within 30 minutes after the execution of market orders by OPS (Xu et al. 2017).
Consequently, τmax is set at 12 because trading starts at 10:00 a.m. instead of 9:30 a.m. and because
NASDAQ regular market hours end at 4:00 p.m.

5.1. The source of the backtesting data

10-level historical LOB data of NASDAQ 100 Index Components from 1 Jan 2008 to 31 Mar 2016
(total 2076 trading days) was downloaded from the Limit Order Book System: The Efficient
Reconstructor (LOBSTER). The LOB data was sampled in periods of 30 minutes during NASDAQ
regular market hours. The number of stock candidates used in this experiment is 83 because 17
companies were delisted before 31 Mar 2016.

In addition, if accessing LOB data at greater than level 10 is required, ask price and volume at level

i ∈ {11,12, . . .} are estimated as pi = p10 + p10−p−1
10 (i − 10) and vi = ∑10

k=1 vk
10 , respectively. Similarly, if

accessing LOB data at less than level -10 is required, bid price and volume at level i ∈ {. . . ,−12,−11}
are estimated as pi = p−10 + p−10−p1

10 (−i − 10) and vi = ∑10
k=1 v−k

10 , respectively. When calculating the

2 Figure 4 corresponds to the empirical analysis by Kissell (2013, pp. 67–69) that bid-ask spreads decrease and level out after

about the first 15–30 minutes for large cap stocks and after about 30–60 minutes for small cap stocks.
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Table 2. A list of online portfolio selection (OPS) strategies.

Category Author(s) OPS strategy Abbreviation

Follow the winner

Cover (1991) Universal portfolio UP
Helmbold et al. (1998) Exponential gradient EG
Borodin et al. (2000) Markov of order zero M0, T0a

Agarwal et al. (2006) Online Newton step ONS
Kozat and Singer (2011) Universal semi-constant rebal-

anced portfolio
USCRP

Follow the loser

Borodin et al. (2004) Anti-correlation ANTICOR, ANTICOR ANTICORb

Li and Hoi (2012) Online moving average reversion OLMAR1, OLMAR2c

Li et al. (2012) Passive aggressive mean reversion PAMR, PAMR1, PAMR2d

Li et al. (2013) Confidence weighted mean rever-
sion

CWMR VAR, CWMR STDEVe

Pattern matching
Györfi et al. (2006) Nonparametric kernel-based log-

optimal
BK

Györfi et al. (2008) Nonparametric nearest neighbour
log-optimal

BNN

Li et al. (2011) Correlation-driven nonparametric
learning

CORN, CORNU, CORNKf

aT0 considers historical market vectors x1,x2, . . . ,xn fully, while M0 does not.

bANTICOR ANTICOR is the twice compounded algorithm of ANTICOR.

cOLMAR1 uses a simple (equally weighted) moving average, while OLMAR2 uses an exponential (exponentially weighted)
moving average.

dPAMR1 added a slack variable ξ to the objective function of PAMR, and PAMR2 added ξ2.

eCWMR STDEV is a modified algorithm of CWMR VAR to obtain convex constraints (Crammer et al. 2008).

fCORN: each expert has a weight proportional to its historical performance; CORNU: all experts have the same weight; CORNK:
only the K-best experts have weights.

relative price of asset j between time τ after the end of the (n − 1)-th day and the end of the n-th
day, cash dividends, stock dividends, and stock splits were considered as

x
(j)
n,0 =

m
(j)
n,0

a
(j)
n,τmax

g
(j)
n,τmax

m
(j)
n−1,τ

a
(j)
n−1,τmax

g
(j)
n−1,τmax

, (30)

where m
(j)
n,t is the mid-price of asset j at time t after the end of the n-th day from LOBSTER, and

{g(j)n,τmax
, a
(j)
n,τmax

} (the subscript n, τmax indicates time τmax after the end of the n-th day) is the

{closing, adjusted closing} price of asset j of the (n + 1)-th day, not the n-th day (a day ends after
or at the market opening in this paper; see Figure 1), from Yahoo Finance.

5.2. Performance comparison between OPS methods with and without the
proposed method

A list of OPS strategies has been summarized in Table 2. Based on the p-values of the t-tests in
Table C1, T0, UP, and ONS have been selected as the best three OPS methods for the comparison.
We compare the performance of each OPS method without and with the proposed method (PM
henceforth) using Algorithm 2. All of these three methods increase the relative weights of more
successful assets in the past periods (i.e. following the winner), as the portfolio vector of each

algorithm in the next period bn+1 (or b
(j)
n+1) is

● T0: b
(j)
n+1 = c

(j)
n + β

dβ +∑dj′=1 c
(j′)
n

, where c
(j)
n = c(j)n−1 + log2 (1 + x(j)n ), and β ∈ [0,∞) is a parameter;
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● UP: bn+1 = ∫∆d−1 bsn(b,x 1∶n)db∫∆d−1 sn(b,x 1∶n)db , where, sn(b,x 1∶n) = s0∏ni=1⟨b,x i⟩ is wealth at the end of

the n-th period with an initial wealth s0 (the integral can be calculated numerically by using
MC methods (Ishijima 2001));

● ONS: bn+1 = arg max
b∈∆d−1 ( n∑

i=1

ln⟨b,x i⟩ − β
2
∥b∥2), where β ∈ [0,∞) is a trade-off parameter between

the follow the winner term ∑ni=1 ln⟨b,x i⟩ and the regularisation term ∥b∥2.

20

                  



A
p

ril
6
,

2
0
2
0

E
O

R
1
6
4
1
8
-m

s

Table 3. Statistics of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 105 USD)

cs (%) 0.00218 0.00218 0.00218 0.00218 0.00218 0.00218 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667

B&H
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
P -value of JB test 0.956 0.594 0.617 0.509 0.503 0.076 0.082 0.603 0.585 0.519 0.514 0.073 0.079

Standard deviation (%) 1.26 1.53 1.53 1.50 1.50 10.93 11.22 1.53 1.53 1.50 1.50 10.88 11.12
Mean (%) 9.3 11.3 11.3 11.2 11.2 21.3 22.1 11.0 11.0 11.0 11.0 20.1 20.7

Difference of meansa (%) - 1.97∗∗∗ 1.97∗∗∗ 1.92∗∗∗ 1.92∗∗∗ 11.99∗∗∗ 12.73∗∗∗ 1.69∗∗∗ 1.69∗∗∗ 1.65∗∗∗ 1.65∗∗∗ 10.72∗∗∗ 11.36∗∗∗
P -value of t-test - 4.6×10-19 4.9×10-19 1.3×10-18 1.3×10-18 8.9×10-19 1.3×10-19 4.9×10-15 4.0×10-15 8.2×10-15 8.2×10-15 2.4×10-16 4.1×10-17

Difference of meansb (%) - -0.00 0.00 0.73 0.01 0.00 0.63
P -value of t-test - 0.990 0.999 0.641 0.976 0.999 0.684

cs (%) 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.5 0.5 0.5 0.5 0.5 0.5
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM

P -value of JB test 0.612 0.595 0.529 0.524 0.070 0.075 0.621 0.606 0.539 0.534 0.067 0.073
Standard deviation (%) 1.53 1.53 1.50 1.50 10.83 11.08 1.53 1.53 1.50 1.50 10.78 11.02

Mean (%) 10.7 10.7 10.7 10.7 18.8 19.4 10.4 10.4 10.4 10.4 17.5 18.1
Difference of meansa (%) 1.40∗∗∗ 1.40∗∗∗ 1.38∗∗∗ 1.38∗∗∗ 9.45∗∗∗ 10.08∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 1.11∗∗∗ 8.18∗∗∗ 8.78∗∗∗

P -value of t-test 3.0×10-11 2.6×10-11 3.2×10-11 3.2×10-11 7.3×10-14 1.1×10-14 7.3×10-8 6.3×10-8 5.4×10-8 5.3×10-8 2.0×10-11 3.2×10-12

Difference of meansb (%) 0.01 0.00 0.63 0.01 0.00 0.60
P -value of t-test 0.977 0.999 0.686 0.977 0.999 0.699

aDifference equals average annualised return of corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

bDifference equals average annualised return of corresponding OPS method with proposed method (PM) minus that without PM. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 5. Box plots of annualised returns of different online portfolio selection methods without and with the proposed method (PM) (cp = 0, s0 = 105 USD).
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Table 4. Statistics of annualised returns of different online portfolio selection methods without and with proposed method (PM) (cp = 0, s0 = 106 USD)

cs (%) 0.00218 0.00218 0.00218 0.00218 0.00218 0.00218 0.16667 0.16667 0.16667 0.16667 0.16667 0.16667

BnH
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
P -value of JB test 0.956 0.643 0.552 0.511 0.487 0.059 0.090 0.651 0.564 0.520 0.503 0.057 0.086

Standard deviation (%) 1.26 1.53 1.54 1.50 1.51 10.12 11.23 1.53 1.53 1.50 1.50 10.10 11.17
Mean (%) 9.3 11.3 11.3 11.3 11.3 18.6 22.1 11.0 11.0 11.0 11.0 17.5 20.8

Difference of meansa (%) - 1.95∗∗∗ 2.00∗∗∗ 1.93∗∗∗ 1.93∗∗∗ 9.24∗∗∗ 12.74∗∗∗ 1.66∗∗∗ 1.71∗∗∗ 1.66∗∗∗ 1.66∗∗∗ 8.12∗∗∗ 11.51∗∗∗
P -value of t-test - 9.2×10-19 2.0×10-19 8.5×10-19 8.8×10-19 9.8×10-15 1.3×10-19 9.2×10-15 2.4×10-15 5.5×10-15 5.9×10-15 2.2×10-12 2.5×10-17

Difference of meansb (%) - 0.05 0.00 3.50∗∗ 0.05 -0.00 3.39∗∗
P -value of t-test - 0.810 0.995 0.022 0.825 1.000 0.025

cs (%) 0.33333 0.33333 0.33333 0.33333 0.33333 0.33333 0.5 0.5 0.5 0.5 0.5 0.5
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM
T0

w/o PM
T0

w/ PM
UP

w/o PM
UP

w/ PM
ONS

w/o PM
ONS

w/ PM

P -value of JB test 0.659 0.578 0.530 0.513 0.055 0.082 0.667 0.591 0.540 0.524 0.054 0.079
Standard deviation (%) 1.53 1.53 1.50 1.50 10.08 11.11 1.52 1.53 1.50 1.50 10.06 11.06

Mean (%) 10.7 10.8 10.7 10.7 16.3 19.6 10.4 10.5 10.5 10.4 15.2 18.4
Difference of meansa (%) 1.37∗∗∗ 1.42∗∗∗ 1.39∗∗∗ 1.39∗∗∗ 6.99∗∗∗ 10.27∗∗∗ 1.09∗∗∗ 1.12∗∗∗ 1.12∗∗∗ 1.11∗∗∗ 5.86∗∗∗ 9.02∗∗∗

P -value of t-test 5.4×10-11 1.7×10-11 2.2×10-11 2.4×10-11 4.9×10-10 5.5×10-15 1.2×10-7 4.9×10-8 3.9×10-8 4.4×10-8 8.3×10-8 1.2×10-12

Difference of meansb (%) 0.04 -0.00 3.28∗∗ 0.04 -0.00 3.16∗∗
P -value of t-test 0.841 0.993 0.030 0.856 0.987 0.036

aDifference equals average annualised return of corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

bDifference equals average annualised return of corresponding OPS method with proposed method (PM) minus that without PM. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure 6. Box plots of annualised returns of different online portfolio selection methods without and with the proposed method (PM) (cp = 0, s0 = 106 USD).
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The overall TCs, consisting of both the proportional TCs and MICs, has been calculated whenever
a portfolio was rebalanced for each case. More specifically, for the case of OPS without using the
PM, TCs is calculated at 10:00 a.m. on every trading day, whereas TCs is calculated not only at
10:00 a.m. but also between 10:30 a.m. and 4:00 p.m. 30 minutes on every trading day for the case
of OPS using the PM.

If initial wealth s0 is as small as USD 100,000, the performance difference between OPS without
and with the PM is not statistically significant, as shown in Table 3 and Figure 5, reflecting the PM
is not useful for small-sized funds. However, the PM is useful when initial wealth s0 is as large as
USD 1,000,000 as shown in Table 4 and Figure 6. In particular, the performance difference between
ONS without and with the PM is statistically significant. Indeed the performance difference between
without and with the PM varies by OPS method. ONS makes a greater performance gap than T0
and UP. This is because ONS is a more dynamic investment strategy than T0 and UP as shown in
Figure C2; i.e. the PM has more opportunities to reduce TCs when OPS tries to cause the higher
TCs.

The performance difference between without and with the PM (the difference of means in
Table 3 and Table 4) is less significant when cs is higher. This is because proportional TCs,

cp∑dj=1 (p̄ (q(j)n,t ) q(j)n,t )+ + cs∑dj=1 (−p̄ (q(j)n,t ) q(j)n,t )+ in Equation (7), are more dominant compared to

MICs, ∑dj=1 (p̄ (q(j)n,t ) −m(j)n,t) q(j)n,t in Equation (7), when cp or cs is the greater. Even if a large market

order is divided into consecutive intraday market orders by the PM, proportional TCs with the
PM are as large as those without the PM. Consequently, the PM is more useful with the lower cp
and cs.

6. Conclusion
As claimed in the introduction, this paper is, to the best of authors’ knowledge, the first attempt to
combine OPS with an algorithmic trading under limited market liquidity. We develop a mathematical
framework within which the optimal intraday trading strategy minimises overall TCs, consisting of
both the proportional TCs and liquidity risk, when rebalancing a multi-asset portfolio.

By considering the real-time LOBs when rebalancing the portfolio, the strategy optimally splits
very large market orders into small sequential market orders, which significantly cushions the shock
especially for large volume trading. Moreover, the proposed intraday trading algorithm is applicable
to any portfolio rebalancing strategy, including all the OPS methods regardless of capital size.

It is also worth noting that the applications of our PM algorithm is not limited to OPS methods
mainly discussed in this paper. One could easily apply the PM algorithm to other aspects of financial
trading such as optimal control of execution costs of trading a portfolio.

Using historical NASDAQ LOB data, the numerical experiments and backtesting results have
demonstrated that:

● The proposed algorithm is much effective for large capital investment as it generally leads to
higher TCs;● Our intraday trading algorithm generates more benefit (higher TCs reduction) for OPS methods
which rebalance more frequently such as ONS;● The lower the proportional transaction fees rate is, the more benefit the proposed algorithm
creates as the overall TCs is much sensitive to MICs other than the proportional TCs.

The backtesting results are very promising, however, the heavy computation, analysed in Sec-
tion C.3, should be reduced further for real-time algorithmic trading.
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(a) 1,000 random initial guesses from the Dirichlet distribution
with α = [1 1 1]T.
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(b) The suboptimal solutions by the proposed method when
νn−1,1 is USD 105.

    0

  0.2

  0.4

  0.6

  0.8

  0 0.2 0.4 0.6 0.8

  0

0.2

0.4

0.6

0.8

(c) The suboptimal solutions by the proposed method when
νn−1,1 is USD 106.
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(d) The suboptimal solutions by the proposed method when
νn−1,1 is USD 107.

Figure A1. Ternary scatter plots of single intrady trading with the fixed values: bn = [1/3 1/3 1/3]T,
xn,0 = [0.6 0.9 1.4]T, bn+1 = [0.8 0.8 0.1]T, cp = 0, and cs = 0.00218%. 10-level limit order book data of AAPL (b(1)),
AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012 at 16:00:00 was used.

Appendix A: The convergence of the proposed method with random initial guesses

The convergence of the proposed method can be visually estimated by scatter plots as shown
in Figure A1. 1,000 random initial guesses were chosen to solve the optimization problem in
Equation (21), as shown in Figure 1(a). The suboptimal solutions bn,1 are not converged for
small-sized funds as shown in Figure 1(b) and Figure 1(c). This is because small-sized funds need a
small amount of intraday trading, and bn,1 is not critical to minimise transaction costs. In contrast,
the suboptimal solutions bn,1 are converged for large-sized funds as shown in Figure 1(d). This is
because large-sized funds need a large amount of intraday trading, and bn,1 is critical to minimise
transaction costs. Consequently, the proposed method is more effective for large-sized funds than
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Figure B1. Ternary contour plots and 1D plots of the product of transaction cost factors wnwn,1 with the variable
bn,1 and the fixed values: bn = [1/3 1/3 1/3]T, xn,0 = [0.6 0.9 1.4]T, νn−1,τ = 106 USD, bn+1 = [0.8 0.8 0.1]T, cp = 0,
and cs = 0.00218%. 10-level limit order book data of AAPL (b(1)), AMZN (b(2)), and GOOG (b(3)) on 21 Jun 2012
at 16:00:00 was used.

small-sized funds.

Appendix B: An example of unimodality of wnwn,1

The product of TCFs wnwn,1 can be rewritten as a function of bn,1 as

wnwn,1 =w(bn,bn,1,xn,0, νn−1,τ)w(bn,1,bn+1,1 , snwn)
=w(bn,bn,1,xn,0, νn−1,τ)w(bn,1,bn+1,1 , νn−1,τ ⟨bn,xn,0⟩w(bn,bn,1,xn,0, νn−1,τ)), (B1)

and it is plotted as a unimodal function of bn,1 (i.e. wnwn,1 strictly decreases as bn,1 goes away from

the maximum point b
∗
n,1) as shown in Figure B1. Therefore, wnwn,1 in Figure B1 is a unimodal

function of bn,1 ∈ ∆2. However, this is only one example from the given values (bn, xn,0, νn−1,τ ,
bn+1, cp, and cs) and the LOBs of the three stocks. The mathematical proof of the unimodality of
wnwn,1 is not provided in this paper.

Appendix C: Further Results

C.1. Benchmark case: performance comparison among online portfolio selection
methods without TCs

The annualised return of the OPS methods in Table 2 without TCs (cp = 0, cs = 0, and zero MICs)
is compared in Table C1 and Figure C4 3, where all the OPS methods rebalanced a portfolio at
10:00 a.m. on every U.S. trading day. In particular, the unpaired two-sample t-tests with unequal
variances (hereafter we simply referred to as t-tests), whose null hypothesis is that the data in
two groups comes from independent random samples from normal distributions with equal means
but different variances, were performed to compare the performance between i) a buy-and-hold

3 MATLAB programs of OPS by Li and Hoi (2015, Appendix A) were used to obtain Table C1 and Figure C4.
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(B&H) strategy with the initial portfolio b1 = [1/d 1/d . . . 1/d]T
and ii) the OPS methods listed in

Table 2. Also, the normality assumption of the t-test was confirmed by the Jarque–Bera (JB) test
with the significance level of 0.05 as shown in Table C1 except OLMAR1, OLMAR2, and BK. The
standard deviation in Table C1 can be interpreted as the sensitivity of the annualised return to the
random stock selection. USCRP and OLMAR1 are the least and the most sensitive, respectively.

The t-tests provide the answer as to whether the performance difference of the two methods is
significant or whether it is due to random fluctuations (Simon 2013, p. 631). To be specific, the
p-value of the t-test is interpreted as the probability that a difference in the mean values would
be obtained, given that the population means of the two methods are equivalent (the p-value
is not equal to the probability that the population means are equivalent) (Simon 2013, p. 635).
Hence, if the p-value of the t-test is less than a significance level, the performance difference is
significant. All the OPS methods of follow the winner are highly superior to B&H as shown in
Table C1. In contrast, all the OPS methods of follow the loser and pattern matching except BNN
are not superior to B&H, and some of them are inferior to B&H (i.e. the differences of means are
negative with low p-values in Table C1). However, this should not be interpreted that the OPS
methods of follow the loser and pattern matching are always inferior to those of follow the winner,
as the NASDAQ bull market between 2009 and 2016 (see Figure C1) was unfavourable to the OPS
methods of follow the loser.

The performance of each OPS method without TCs and intraday trading in Table C1 and
Figure C4 can be considered as the upper limit of the performance with TCs and intraday trading.
This is because OPS carries out a long-term investment for every period at time t = 0, while the
proposed method of intraday trading absorbs the shock to the market whenever OPS rebalances
a portfolio. In other words, the proposed method minimises the performance gap between OPS
without TCs and OPS with TCs, but no additional profits made.

C.2. Graphical comparisons

Figure C1 shows gross wealth sn of a portfolio consisting of six stocks with an initial wealth of a
million USD. The PM of intraday trading has little value in the case of T0 and UP as shown in
Figure 1(a) and Figure 1(b). However, the PM works well when ONS is used as shown in Figure 1(c).
These correspond to the performance difference without and with the PM in Table 4 and Figure 6.

Figure C2 shows the proportion of the portfolio (the portfolio vector bn) that made the gross
wealth plots in Figure C1, in the form of area plots (bn is independent of the usage of an intraday
trading algorithm). The portfolio vector of B&H changes over time as the prices of assets also
change over time as shown in Figure 2(a). T0 generates almost constant portfolio bn = b1 as shown
in Figure 2(b), and UP generates rougher portfolio weights over time than those of T0 but smoother
changes than those of B&H as shown in Figure 2(c). ONS makes the most abrupt changes of
portfolio weights over time as shown in Figure 2(d).

Figure C3 shows how much the PM can decrease TCs cn, consisting of both proportional TCs
and MICs, when following the gross wealth in Figure C1. TC reduction by the PM is not significant
in the case of T0 and UP as shown in Figure 3(a) and Figure 3(b) since both T0 and UP do not
trade stocks too much. On the contrary, TCs are reduced greatly in the case of a high-volume
trading algorithm like ONS as shown in Figure 3(c).

C.3. Computation time

The mean computation time of the PM depends on the OPS strategy, initial wealth s0, and intraday
trading time t as shown in Figure C5. Firstly, the PM requires more computation time for the
higher-volume trading algorithms (e.g. ONS) than the lower-volume trading algorithms (e.g. T0 and
UP) as shown in both Figure 5(a) and Figure 5(b). Secondly, the PM requires more computation
time for the bigger-sized funds (see Figure 5(b)) than the smaller-sized funds (see Figure 5(a)).
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(a) T0.
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Figure C1. Gross wealth over time when the portfolio consists of AAPL, BIDU, EXPE, QVCA, UAL, and VRSN
(s0 = 106 USD, cp = 0, cs = 0.00218%).
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(a) Buy-and-hold (B&H).

(b) T0.

(c) UP.

(d) ONS.

Figure C2. The proportion of portfolio over time.
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Figure C3. Transaction costs, consisting of proportional costs and market impact costs, over time (s0 = 106 USD,
cp = 0, and cs = 0.00218%).
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Table C1. Statistics of annualised returns of different online portfolio selection methods without transaction costs (cp = 0, cs = 0, and zero market impact costs).

B&H UP EG ONS USCRP ANTICOR ANTICOR ANTICOR OLMAR1 OLMAR2 PAMR PAMR1
P -value of JB test 0.956 0.450 0.530 0.077 0.570 0.330 0.766 0.048 0.034 0.332 0.332

Standard deviation (%) 1.26 1.50 1.51 11.43 1.32 8.29 11.93 17.37 17.18 16.58 16.58
Mean (%) 9.3 11.4 11.4 23.1 10.4 8.4 6.6 6.2 9.6 9.2 9.2

Difference of meansa (%) - 2.11∗∗∗ 2.10∗∗∗ 13.81∗∗∗ 1.08∗∗∗ −0.88 −2.75∗∗ −3.11∗ 0.24 −0.12 −0.12
P -value of t-test - 2.0×10-21 3.4×10-21 3.3×10-21 1.3×10-8 2.9×10-1 2.4×10-2 7.8×10-2 8.9×10-1 9.4×10-1 9.4×10-1

PAMR2 CWMR VAR CWMR STDEV BK BNN CORN CORNU CORNK M0 T0

P -value of JB test 0.357 0.233 0.231 0.002 0.127 0.672 0.629 0.729 0.445 0.533
Standard deviation (%) 16.53 16.07 15.99 5.39 8.05 9.46 6.34 8.90 3.36 1.53

Mean (%) 9.5 11.1 11.3 8.6 12.2 5.3 10.0 6.0 12.8 11.5
Difference of meansa (%) 0.16 1.80 1.96 −0.73 2.85∗∗∗ −3.99∗∗∗ 0.68 −3.30∗∗∗ 3.43∗∗∗ 2.18∗∗∗

P -value of t-test 9.2×10-1 2.7×10-1 2.2×10-1 1.9×10-1 7.1×10-4 6.0×10-5 3.0×10-1 3.8×10-4 1.3×10-16 3.9×10-22

aDifference equals average annualised return of the corresponding OPS method minus that of buy-and-hold (B&H). ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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Figure C4. Box plots of annualised returns of different online portfolio selection methods without transaction costs (cp = 0, cs = 0, and zero market impact costs).
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Figure C5. The mean computation time of the proposed method when the initial wealth s0 is USD 105 and 106

respectively.

Thirdly, the computation time changes over time during the day. To be specific, the computation
time of the PM with ONS decreases as time goes by during NASDAQ trading hours as shown in
Figure 5(b). This is because Algorithm 2 has the iteration for (τmax−t) times for each t (see the 15th
line of Algorithm 2) to calculate the minimum optimal number of intraday trades. Consequently,
the time complexity of the PM is O(τmax).
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