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The role of conventions in the formulation of Thomas Reid’s theory of the geometry of
vision, which he calls the “geometry of visibles”, is the subject of this investigation. In
particular, we will examine the work of N. Daniels and R. Angell who have alleged that,
respectively, Reid’s “geometry of visibles” and the geometry of the visual field are non-
Euclidean. As will be demonstrated, however, the construction of any geometry of vision
is subject to a choice of conventions regarding the construction and assignment of its
various properties, especially metric properties, and this fact undermines the claim for a
unique non-Euclidean status for the geometry of vision. Finally, a suggestion is offered
for trying to reconcile Reid’s direct realist theory of perception with his geometry of

visibles.
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While Thomas Reid is well known as the leading exponent of the Scottish “common-
sense” school of philosophy, his role in the history of geometry has only recently been
drawing the attention of the scholarly community. In particular, several influential works,
by N. Daniels and R. B. Angell, have claimed Reid as the discoverer of non-Euclidean
geometry, an achievement, moreover, that pre-dates the geometries of Lobachevsky,
Bolyai, and Gauss by over a half century. Reid’s alleged discovery appears within the
context of his analysis of the geometry of the visual field, which he dubs the “geometry
of visibles”. In summarizing the importance of Reid’s philosophy in this area, Daniels is
lead to conclude that “there can remain little doubt that Reid intends the geometry of
visibles to be an alternative to Euclidean geometry”;1 while Angell, similarly inspired by
Reid, draws a much stronger inference: “The geometry which precisely and naturally fits
the actual configurations of the visual field is a non-Euclidean, two-dimensional,
elliptical geometry. In substance, this thesis was advanced by Thomas Reid in 1764, .. .”2
The significance of these findings has not gone unnoticed in mathematical and scientific
circles, moreover, for Reid’s name is beginning to appear more frequently in historical
surveys of the development of geometry and the theories of space.3

Implicit in the recent work on Reid’s “geometry of visibles”, or GOV, one can
discern two closely related, but distinct, arguments: first, that Reid did in fact formulate a

non-Euclidean geometry, and second, that the GOV is non-Euclidean. This essay will



mainly investigate the latter claim, although a lengthy discussion will be accorded to the
first. Overall, in contrast to the optimistic reports of a non-Euclidean GOV, it will be
argued that there is a great deal of conceptual freedom, or slack, in the construction of
any geometry pertaining to the visual field. Rather than single out a non-Euclidean
structure as the only geometry consistent with visual phenomena, an examination of Reid,
Daniels, and Angell, will reveal the crucial role of geometric “conventions”, especially of
the metric sort, in the formulation of the GOV (where a “metric” can be simply defined
as a system for determining distances, the measures of angles, etc.). Consequently, while
a non-Euclidean geometry is consistent with Reid’s GOV, it is only one of many different
geometrical structures that a GOV can possess. Angell’s theory, that the GOV can only
be construed as non-Euclidean, is thus incorrect. After an exploration of Reid’s theory
and the alleged non-Euclidean nature of the GOV, in section 1 and 2 respectively, the
focus will turn to the tacit role of conventionalism in Daniels’ reconstruction of Reid’s
GOV argument, and in the contemporary treatment of a non-Euclidean visual geometry
offered by Angell (sections 3 and 4). Finally, in the conclusion, a suggestion will be
offered for a possible reconstruction of Reid’s GOV that does not violate his avowed
“direct realist” theory of perception, since this epistemological thesis largely prompted

his formulation of the GOV.

(13 Tat 2

In the Inquiry into The Human Mind, Reid’s first major work (from 1764), the GOV
is put forward as the geometry of the visual field. The structure of Reid’s argument can

be briefly summarized: since human vision lacks the ability to determine the depth of all



our “visible figures” (i.e., the figure of a body/thing as experienced visually), it follows
that all visible figures appear to be equally distant. Based on this equality of our
experience of distance, Reid infers that every visible figure has geometrical properties
that are indistinguishable from a figure drawn on a sphere, or “spherical figure”, thus
singling out the representation of visual figures by means of spherical figures. Reid then
demonstrates that the properties of spherical figures differ from the properties associated
with Euclidean geometry: e.g., the sum of the angles of a spherical triangle exceeds 180
degrees. Consequently, the geometry of visible figure, or GOV, is non-Euclidean
spherical geometry.

As for the specific details of the GOV, Reid begins his exposition by first noting that
the definitions of point, line, angle, and circle, in his new geometry “are the same as in
common geometry” (Ing. 6.9)4, where “common geometry” presumably denotes
Euclidean (although he does not actually provide any of these definitions). He then
argues, in principles 1 and 2, for the construction of a visible spatial geometry modeled
on a sphere (doubly-elliptical, using the modern terminology) with the eye placed at its
center:

Supposing the eye placed in the centre of a sphere, every great circle of the sphere
will have the same appearance to the eye as if it was a straight line; for the curvature
of the circle being turned directly toward the eye, is not perceived by it. And, for the
same reason, any line which is drawn in the plane of a great circle of the sphere,
whether it be in reality straight or curve, will appear straight to the eye.

Every visible right line will appear to coincide with some great circle of the
sphere, and the circumference of that great circle, even when it is produced until it
returns into itself, will appear to be a continuation of the same visible right line, . . . .
For the eye, perceiving only the position of objects with regard to itself, and not their

distance, will see those points in the same visible place which have the same position
with regard to the eye, how different soever their distances from it may be. (Ing. 6.9)



For Reid, since every visible right line “appears” to coincide with a great circle (which is
a circle of greatest diameter on the sphere), he concludes, in principle 4 and 5, that the
properties of visible angles and triangles are the same as the properties of spherical angles
and triangles:

Since the visible [right] lines appear to coincide with the great circles, the visible

angle comprehended under the former must be equal to the visible angle

comprehended under the latter. But the visible angle comprehended under the two
great circles, when seen from the centre, is of the same magnitude with the spherical

angle which they really comprehended, as mathematicians know; . . . .

The properties, therefore, of visible right-lined triangles are not the same with the

properties of plain triangles, but are the same with those of spherical triangles. (Inq.

6.9)

After procuring a list of propositions for the GOV, that spell out in more detail some
of its specific features, he concludes his presentation by drawing a sharp distinction
between the GOV and Euclidean geometry:

Those figures and that extension which are the immediate objects of sight, are not the

figures and the extension about which common geometry is employed; that the

geometrician, while he looks at his diagram, and demonstrates a proposition, hath a

figure presented to his eye, which is only a sign and representative of a tangible

figure; . . . and that these two figures have different properties, so that what he

demonstrates of the one, is not true of the other. (Ing. 6.9)

This passage also reveals Reid’s thoughts on the geometry of the sense of touch, which
he dubs “tangible” figure; a view, moreover, that is obviously derived from Berkeley’s
New Theory of Vision.s In contrast to the two-dimensional non-Euclidean GOV, tangible
figure is governed by ordinary three-dimensional Euclidean geometry. In fact, Reid does
appear to hold that Euclidean geometry is the geometry of the external, material world
(considered apart from vision), while it is only the GOV that is non-Euclidean. In Essays,

2.14, for instance, he repeatedly affirms (Berkeley’s thesis) that a three-dimensional

Euclidean structure is an intrinsic feature of physical objects: it is the “real” magnitude of



a body, as opposed to the “apparent” magnitude discerned through vision: “The real

magnitude of a line is measured by some known measure of length. . . . This magnitude is
an object of touch only, and not of sight; . . . .” (We will return to this issue below).
> Reid and Non-Euclid .

Before beginning our examination of the use of conventions in the formulation of the
GOV, a discussion of Reid’s alleged “discovery” of non-Euclidean geometry is in order.
Daniels insists that the GOV is a fully-fledged non-Euclidean geometry, and not merely a
spherical Euclidean geometry, since “[Reid] did think that the [GOV] is a fully consistent
alternative to Euclidean geometry, if only for two-dimensional visual space” (Daniels,
128). Although not explicitly stated, Daniels may believe that the similar geometrical
work of many of Reid’s predecessors, most notably, G. Saccheri and J. Lambert, does not
fall under a non-Euclidean classification due to the simple fact that these mathematicians
did not accept their alternative geometries as “real”.s Saccheri, for instance, had seriously
investigated the “obtuse angle hypothesis”, which allows the angles of an quadrilateral to
exceed 90 degrees, as a means of proving the parallel postulate of Euclidean geometry
(i.e., by deriving an inconsistency from the obtuse angle hypothesis, which is
incompatible with Euclidean geometry, he hoped to establish the truth of the parallel
postulate). Saccheri did not believe that his non-Euclidean constructions were “real”, in
the mathematical sense, although he did obtain non-Euclidean geometrical results that far
exceed the modest philosophically-based conclusion of Reid’s GOV. Consequently, are
Saccheri’s results, which are so similar to Reid’s, to be demoted to the status of

“spherical Euclidean”, rather than “non-Euclidean”, simply because he thought that such



geometries were (or would ultimately prove) inconsistent? If this is Daniels’ main
rationale for granting Reid an exclusive right to the non-Euclidean crown, then it is
tantamount to claiming that a mathematician’s beliefs about her work is itself sufficient to
secure a mathematical classification of its content; in this case, either Euclidean or non-
Euclidean. But, how can a mathematician’s beliefs about a mathematical theory, an
external feature of that theory, determine its classification? More Plausibly, any judgment
concerning a theory’s overall characteristics should depend on its internal mathematical
properties, and not on the author’s mere intentions (an external property).

Overall, Daniels, and the other proponents of a non-Euclidean GOV, assume that
there exists a straightforward and unproblematic definition of what constitutes a non-
Euclidean geometry. Yet, the development of modern mathematics reveals a much more
complex and intricate story, as the “evolving” classification of Spherical geometry clearly
demonstrates. In Reid’s day, the failure of the parallel postulate on the surface of a sphere
was not seen as heralding a new brand of geometry, since the peculiar properties of great
circles on spheres had long been a part of the Euclidean tradition (and, indeed, extended
back to Euclid himself)7; but, as J. Gray points out: “this geometry [i.e., spherical] is now
given almost immediately in modern textbooks as an example of a non-Euclidean
geometry” (Gray 1989, 169). A part of this classification problem resides in an over-
dependence on Euclidean insights and definitions: that is, spherical Euclidean geometries,
which admit the obtuse angle hypothesis, mark an advance on the path to the modern
non-Euclidean notion, but such geometries still lean heavily on Euclidean definitions and
metrical intuitions (as will be examined in the case of Reid below). The two most

important conceptual breakthroughs on the road to a full-fledged non-Euclidean geometry



had to await the nineteenth century, when the analytic approach to geometrical concepts
was launched by the work of Taurinus and Gauss, and the investigation of the intrinsic
structure of manifolds (differential geometry) was begun by Beltrami and Riemann.
Analytic techniques allowed geometers to move away from the Euclidean understanding
of geometrical objects, such as “surface” or “line”, by defining these objects purely by
means of algebraic equations, and not via their often Euclidean-biased geometrical
representations (i.e., since algebraic equations are essentially neutral and uninterpreted as
regards their geometric meaning, they do not uniquely favor a Euclidean interpretation).
Differential geometry, which is largely based on the analytic achievement, introduced the
characterization of surfaces in terms of their intrinsic, as opposed to extrinsic, curvature;
where “intrinsic” refers to the determination of a surface’s curvature from a perspective
confined entirely to that surface, and “extrinsic” pertains to its calculation from outside
(or off) the surface. As a result of Riemann’s pioneering work, curvature could now be
characterized intrinsically for each point on a surface (or, more precisely, for the
infinitesimal neighborhood surrounding each point on a manifold) without having to
embed that surface in a larger, Euclidean space. Using these procedures, geometry was
freed from the necessity, or “tyranny”, of a Euclidean backdrop for making
measurements of curvature. (Determining the “radius of curvature” of a point on a curve
by finding the circle that best approximates the curvature at that point is an example of an
extrinsic approach, since the circle’s radius lies outside the curve.)

Returning to Reid, there can be little doubt as to which geometrical category the GOV
falls under: despite the pleas of Daniels and other commentators, Reid’s theory clearly

presupposes the non-analytic, global (i.e., non-local or non-infinitesimal), and extrinsic



scaffolding of the older Euclidean classical tradition—and this conclusion would seem to
place Reid’s GOV in the “spherical Euclidean” tradition, rather than in the more modern
“non-Euclidean”. Like Lambert and Saccheri, for example, his investigation proceeds
from an intractable Euclidean intuition concerning the definition of a “line”, which in the
Inquiry is taken to be “the same as in common geometry [i.e., Euclidean]” (Inq. 6.9); and,
in his manuscripts, his final version proposes that “a right line is said to be parallel to a
right line when being in the same plane it is in every point equally distant from it.”’s This
last definition, moreover, betrays the influence of Euclidean metrical notions in Reid’s
overall approach, an influence that even extends to the handling of his most basic
geometrical concepts. In fact, proposition 8 in the exposition of the GOV is based on this
understanding of parallel lines: “a circle may be parallel to a right line—that is, may be
equally distant from it in all its parts” (Ing. 6.9). In the modern theory, where the distance
function takes on a local (infinitesimal), algebraic form, there are many lines which can
be classified as “equally distant” to a given line, since there are many metrics (different
algebraic functions) that can be employed. Reid, on the other hand, follows his Euclidean
predecessors in confidently assuming that a unique global determination of “same
distance from” can be applied to the entire surface of the sphere, thus picking out a
privileged class of lines. Reid’s metric, furthermore, is not based on any infinitesimal
procedure (of which Reid was suspiciouso), but is merely an extension of the common
Euclidean understanding of length on a plane surface to measurements on a spherical
surface. Just as the lines in plane geometry are projected onto the sphere, it would appear

that the concepts of Euclidean distance are included in the transfer as well.



In addition, the description of the GOV places the observer, or eye, at the center of
the sphere, and it is from this position that measurements of position, length, and angle
are conducted. Since the eye is not on the spherical surface, the GOV correspondingly
fails to count as an intrinsic theory of geometrical curvature—in fact, the center position
of the eye constitutes (somewhat ironically) the origin of a spherical polar coordinate
system, which is appropriately deemed a spherical geometry in most text books, and thus
not necessarily a non-Euclidean geometry (as noted above).10 Various claims of Reid
tacitly expose this extrinsic characterization of the GOV, as: “I require no more
knowledge in a blind man, in order to his being able to determine the visible figure of
bodies, than that he can project the outline of a given body, upon the surface of a hollow
sphere, whose centre is in the eye” (Inq. 6.7). Despite Daniels’ appeals, such descriptions
make would seem to suggest that the GOV is best interpreted as a sphere embedded in a
larger Euclidean space, such that the figures of plane Euclidean geometry can be
projected onto the sphere’s surface.

As a possible rejoinder to this line of criticism, one might try to enlist Reid’s many
claims concerning the spherical “representation” of the visible figures, since a
representation need not be interpreted as an actual spatial projection. Reid asserts, for
example, that “visible figure will be represented by that part of the surface of the sphere,
on which it might be projected, the eye being in the center” (Ing. 6.9). If one also
includes Reid’s denial of three-dimensional curvature for his visibles (as will be explored
further below), then the extrinsic characterization of the GOV can be seen as merely a
property of the particular model—namely, spherical geometry—that Reid employed to

demonstrate the consistency of his alternative geometry. In other words, Reid used
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spherical Euclidean geometry to provide an intuitively comprehensible instantiation
(model) of his bare geometric definitions and principles, and thus one should not impute
an extrinsic classification to the entire GOV based on a simple confusion between the
theory and its model. This response may go a long way towards clearing Reid of the
charge of inconsistency in developing his account of visible figure (although not
necessarily Daniels’ reconstruction, as will be seen in the next section), but it raises a
further issue that needs to be addressed if the GOV is to qualify as a genuine or valid
geometry: Does Reid first provide a set of axioms/postulates for his geometry, and then
proceed to construct a model? Or, has Reid simply reversed the process, and assembled a
set of postulates that hold true of a model that he had picked out beforehand? Daniels
regards the latter case as a more accurate portrayal of Reid’s actual construction of the
GOV:
Reid begins with an interpretation or model, visible space [i.e., spherical geometry],
and develops a geometry for it, which turns out to be non-Euclidean. Starting with a
model may be what leads Reid to think of his geometry as specifically tied to this
particular model. (Daniels 1989, 22)
Indeed, the GOV’s eight basic principles (see section 1) directly refer to spherical
geometry almost out of necessity, since they largely function as set of auxiliary or
correspondence definitions that connect the more basic elements (lines, points, etc.) to
Reid’s theory of visible space. This realization does not necessarily restrict the GOV
from a non-Euclidean classification, but it does raise serious doubts over its status as an
“axiomatic” system, and thus in what sense it can stand comparison with the more
geometrically formal and comprehensive results produced in the nineteenth (and

eighteenth) century. (It should be noted, moreover, that Daniel never claims that the GOV

is a complete and consistent axiomatic formulation of a non-Euclidean geometry.)
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Consequently, although some of Reid’s claims would seem to downplay the importance
of projections on a spherical model, the very construction of the GOV (as well as many
of Reid’s own explanations, as above) puts the spherical Euclidean model, extrinsically
considered, on the very ground floor of the GOV’s construction, if not ultimate
meaning.11

In conclusion, Reid’s conception of the GOV—global, non-analytic, extrinsic, and
heavily indebted to Euclidean ideas—falls naturally within the spherical Euclidean
tradition in geometry, and this realization seriously weakens the GOV’s claim to be
regarded as the first non-Euclidean geometry (but, see endnote 11). Of course, if the
distinction between Euclidean and non-Euclidean is not precise, and allows for a
continuum of values ranging from, say, “clearly Euclidean” to “clearly non-Euclidean”,
then one could simply declare that all crude geometrical forays into the obtuse angle
hypothesis qualify as non-Euclidean. If Daniels and company were to adopt this strategy,
however, then nearly all previous work on the geometry of the sphere would have to be
classified as “non-Euclidean.” Yet, I whole-heartedly agree with J. Van Cleve’s comment
on this kind of geometric classification: “No one credits the ancient Greek astronomers
who worked out the geometry of figures on the celestial sphere with being the first

discoverers of non-Euclidean geometry.”12

3 Daniels’ R . ¢ The GOV
The presuppositions involved in the act of measurement, especially determinations of
spatial distance, received their first important philosophical treatment by H. Poincaré at

the turn of the twentieth century. Poincaré’s views became the central doctrine of the
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“conventionalist” faction within the Logical Positivist program for the philosophy of
science, as most persuasively defended by H. Reichenbach and A. Griinbaum. In brief,
conventionalism as it pertains to the measurement of spatial distance, dubbed “metrical
conventionalism”, holds that the determination of distance, and thus spatial geometry, is
always dependent upon certain stipulations concerning the properties of our measuring
instruments and procedures. Stipulations about the behavior of a standard meter stick, for
example, directly determine the type of geometry we ascribe to a space, since we can
always retain a particular geometry if we adopt an appropriate “convention” for the
measurements carried out with the meter stick: if one desires a flat space-time, in the
modern setting of General Relativity, then one must posit the existence of “forces” in the
space-time that distort the meter sticks (in order to account for their failure to obtain the
standard Euclidean measures); but if one simply stipulates that the meter sticks retain an
invariant magnitude throughout all space and time, then the measurements of distance
will produce a non-Euclidean result, thus vindicating a curved space-time view. In either
case, the properties we assign to our measuring apparatus, which are conventional,
determine the geometry we assign to a given space.i3

Although it need not affect our examination of the GOV, many of the criticisms
aimed at the metric conventionalist school centered upon their implicit anti-realist
conception of magnitude and distance: e.g., one might reasonably wonder if
conventionalism allows any objective, non-conventional features of congruence or
length. Because metric conventionalism in the realm of physical geometry raises these
troubling realist/anti-realist worries, it is interesting to note that a better case for metric

conventionalism could be made with respect to the geometry of vision, where the relevant
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geometry is purely conceptual, and not physical. That is, in a conceptual geometry
constructed from our “visible figures”, the realist difficulties are rendered largely
irrelevant. With this in mind, we shall now proceed to explore the extent of
conventionalist metrical doctrine in Daniels’ and Angell’s version of the GOV.

Daniels’ exposition of a doubly-elliptical GOV closely follows Reid’s theory, mainly
for the reason that Daniels seems intent on merely laying out Reid’s arguments for the
GOV, rather than attempting to conclusively prove, as does Angell, that the geometry of
vision is spherical. Accordingly, the starting point of Daniels reconstruction is the
placement of the eye at center of a sphere, along with restriction that “the eye is capable
of 360 degree rotation, but not translation” (point (e), 6). The case for a spherical GOV
follows naturally, if not inevitably, from this stipulation, as revealed in Reid’s
characterization of “right-line” (see section 1).

Yet, what justifies the choice of a spherical model for vision? Is it due to the fact that
the eye is, albeit roughly, a sphere? Daniels admits that “the anatomy of the human eye
seems to have been one motivating consideration” (10). And, in more detail, he
comments:

Since the material impression on the retina is what “suggests” visible figure, Reid

seems to feel we can preserve the properties of visible figure if we preserve the

properties of the material impression. But the retina is treated by Reid as just a

portion of the surface of a hollow sphere. To preserve properties of a material

impression on such a surface, Reid projects the impression back through the center

(focal point) of The Eye and out onto an arbitrary sphere. (10-11)

In this context, “material impression” refers to the physical effects (or event) of a ray of
light striking the retina, where an impression “suggests two things to the mind—namely,

the colour and position of some external object” (Inq. 6.8, but an impression is not a

sensation). While Daniels’ view may retain a degree of plausibility, he also claims that
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“visible surfaces are neither curved nor plane” (8), a judgment that closely follows Reid’s
own presentation. In the analysis of the hypothetical Idomenians, who only possess the
two-dimensional sense of sight (and not three-dimensional tactile sense organs), Reid
explains:

The beings we have supposed, having no conception of a third dimension, his
visible figures have length and breadth indeed; but thickness is neither included nor
excluded, being a thing of which he has no conception. And, therefore, visible
figures, although they have length and breadth, as surfaces have, yet they are neither
plain surfaces nor curve surfaces. For a curve surface implies curvature in a third
dimension, and a plain surface implies the want of curvature in a third dimension; and
such a being can conceive neither of these, because he has no conception of a third
dimension. (Inq. 6.9)

Unfortunately, the conjunction of these various claims brings to light an internal
inconsistency in Daniels’ reconstruction: (1) the eye projects the “material impressions”
through the eye onto a sphere, but (2) the visible figures, which are “suggested” by these
material impressions, do not possess any curvature—indeed, “visible surfaces are neither
curved nor plane” (Daniels, 8). Yet, what point is there in singling out a spherical surface,
or any surface possessing a determinate curvature, for that matter, if the eye cannot
discern that surface’s curvature? Daniels may simply have transferred the “sphericality”
of the projection of the material impressions to their corresponding visible figures, but,
once again, this move is unwarranted if the figures “suggested” by the impressions are
only two-dimensional (i.e., not curved, which requires a third-dimension). Moreover,
even if Daniels’ division between material impression and visible figure is rejected, for it
apparently constitutes a separate metaphysical problem of its own in need of substantial
argument, one is still left with a projection onto a curved surface (the sphere) of a figure

that does not possess curvature. (Daniels’ attempt to meet this difficulty will be addressed

below.)
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If visible figure does not possess curvature, can visible figure be projected onto a
different surface, such as a plane or cube? In response to this question, Daniels states:
Anatomical considerations and Reid’s theory of perception, as well as the special
properties of The Eye make the sphere the “natural” representation of visible space.
Projection onto no other surface preserves the properties of visible figure. Projection
onto a cube with The Eye at its center would violate the symmetry considerations
based on the anatomy of the eye (a sphere, in Reid’s idealization). Similarly, it would
seem arbitrary in view of property (g), the claim that The Eye sees all points as (if
they are) equidistant. (11)
There are numerous objections that can be raised against this argument (and some we will
have to postpone until the discussion of Angell), but we will focus on a few points. First,
even granting the hemispherical shape of the retina, the choice of the sphere remains
problematic since the retina does not span the entire 360 degrees of the eye (as mandated
in Daniels’ construction, point (¢)—but more on this later). Second, Daniels reasons that
the equidistant position of all points from the eye (point (g)) naturally favors a spherical
GOV, which is based on his further contention that the eye cannot make depth
discriminations among visible figures or points (point (b), Daniels 6; and Reid, Inq. 6.9).
Now, it is not all that clear that one can legitimately move from the claim that “the
relative distances among visible figures cannot be distinguished” to the conclusion that
“all visible figures have the same distance from the eye”. Analogous instances of this
argument quickly leads to absurd results: for example, from the fact that “I cannot
determine the relative colors among dogs” it does not necessarily follow that “I judge that
all dogs have the same color”: that is, I may not be able to discern a color difference
between dog x and dog x’, and between dog x’ and dog x"’, etc., but this does not entail

that I judge that x, x’, X", etc., all possess an identical color (since transitivity may fail—I

may judge x#x"', although x=x', and x'=x'"). What Daniels (and Reid) need to make their
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case are the further stipulations that, while depth discrimination fails between (or among)
visible figures, (i) a depth discrimination can be discerned between the eye and each
visible figure, and (i1) that the distance between the eye and each visible figure, in (i), is
identical.

Quite possibly, a vague awareness of this dilemma may have prompted Daniels’
thesis that visible figures are formed out of an equivalence class of real objects: “Visible
points, lines, and figures can be thought of as the objects that result when Reid’s
equivalence-relation, same position with regard to The Eye, is treated as an identity
relation (for The Eye in the construction)” (17-18). In other words, a visible point is
created when all the real (i.e., physical) points that lie on the same (radial) line drawn
from the center of the eye are regarded (by the mind?) as an identical point. Returning to
our discussion from section 1, Daniels would appear to be offering a quasi-analytic
interpretation of visible figure, since it eschews direct reference to geometric elements:
1.e., it 1s just a class of real objects grouped under the property, “same position with
respect to the eye”. Daniels then infers that the GOV is a mathematical (geometric)
description of these equivalence classes when so grouped, much like a geometric line is a
model for an algebraic equation (in analytic geometry):

Seeing through The Eye forces us to collapse the equivalence relation into an identity

relation. . . . This now gives us a way of restating the sense in which the notions of

point, line, figure, and surface are “less determined” for a being that (having vision
for its only sense) cannot conceive of three dimensions: the equivalence relation
collapses into an identity relation

We might say that the visible point is an “hypostatized” object. The Eye converts
the equivalence class into an object, a visible point, which is the object we see when
we see a visible point by means of The Eye. It is these objects, and not their
projections onto a sphere, which are the visibles. Reid’s geometry of visibles is

developed in order to give a mathematical description of the properties of these
special objects. (17-18)
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Construed in this analytical fashion, Daniels aims to free the GOV of any Euclidean
connotations (of a projection onto a sphere), as well as accommodate Reid’s demand that
visible figures do not possess any three-dimensional characteristics: the GOV, rather, is
simply a model of Reid’s special equivalence class of points. Nevertheless, the property
that collapses the equivalence class into an identity claim, i.e., “same position with
respect to the eye”, is itself a geometric, three-dimensional property—and thus Daniels’
analytic proposal is seriously compromised, if not outright falsified. This property makes
reference to the eye as the center of (Daniels’) unit sphere, thereby favoring the
interpretation of the GOV as a Euclidean projection of the visible figures radially
outward in the third dimension to the sphere’s surface. Yet, even if we put aside this
major obstacle, and straightforwardly accept Daniels’ analytic thesis, there would still
appear to be no special reason for adopting a non-Euclidean reading of the GOV over a
spherical Euclidean interpretation. The equivalence class construction, since it is
presumably analytic, can admit any geometric model that captures the GOV’s collected
principles and “same position” clause—but spherical Euclidean geometry clearly meets
these criteria, as so many of Reid’s and Daniel’s “projective” descriptions of the GOV
reveal. Consequently, why is the non-Euclidean model singled out as the only viable
candidate?

If Daniels is to be faulted for an unjustified choice of a non-Euclidean GOV, much of
the blame, however, should rightly be placed on Reid’s own lack of clarity in his analysis
of material impressions. Unlike Berkeley, who is rather clear in denying that any metrical
(distance) information can be derived or obtained from our visual experience alone (prior

to experience), Reid’s development of the GOV leaves open the possibility that he might
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allow a certain degree of spatial information to be directly derived from material
impressions. This spatial information would take the form of Daniel’s point (g), of
course, 1.e., that all visibles are the same distance from the eye, thereby leading to the
natural choice of a sphere for a geometric model of the GOV. The imaginary two-
dimensional Idomenians would appear to support this inference, since Reid stipulates that
the visual geometry of the Idomenians is, in fact, the (alleged) non-Euclidean spherical
geometry of the GOV. In contrast to Reid, Berkeley clearly denies that one can move
from the inability of the eye to make depth discriminations (Daniel’s point (b)), to the
further contention that all visibles are “seen” as having the same distance from the eye.
This distinction, of mere depth (or “outness”) from distance, arises within the context of a
discussion of Molyneux’s problem, which concerns the spatial and geometrical
judgments that a previously blind person would make on first obtaining sight. Berkeley
concludes that a person given sight would deem that all of his perceived visible figures
were “in his eye, or rather in his mind”, which, in our terms, amounts to a lack of depth
discrimination (“outness”) for visibles.14 Nevertheless, Berkeley also contends that we do
not perceive visible figures as either flat or curved; in other words, they are two-
dimensional, rather than three-dimensional (New Theory of Vision, 158-159; compare
with Reid, Inq. 6.9, as above). The absence of a third-dimensional component means that
the only spatial information that the visible figures can impart to the perceiver will
involve the relative positions of contiguity and non-contiguity in two dimensions (i.e., the
chair is next to, or three feet to the left of, the table), whereas the visible figures cannot
provide any information on the differences in depth among the figures (i.e., the chair is

also two feet behind the table). Accordingly, Daniels’ point (g) is absent from Berkeley’s
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account of vision despite the fact that he (Berkeley) denies that the eye can perceive
differences in depth.1s Reid’s failure to sufficiently separate the notion of the depth of
visible figures, which provide no information on their distance relative to the eye, from
the concept of the actual outward distance of the figures as judged by the eye, might thus
constitute the basis of the problems plaguing both Reid’s case for the GOV, as well as
Daniels’ reconstruction of that theory.16

Overall, if Reid and Daniels’ move from a lack of depth discrimination to spherical
distance is not a justified maneuver, then one must inevitably judge that the cornerstone
of the GOV is a conventional stipulation—a stipulation, moreover, whose plausible
rejection undermines the non-Euclidean status of the GOV. In the next section, further
aspects of the conventionalist approach, especially of the metric variety, will be

discussed with respect to Angell’s (and Daniels’) theory.

4. Angell’s Case for The GOV.

Angell’s theory of the geometry of vision closely parallels Reid’s, although the
construction of his system generally proceeds along independent lines. In order to
establish a spherical non-Euclidean GOV, Angell puts forth a number of specific
examples (of which we need only to consider a few). First, if a person stands between a
set of railroad tracks and looks forward in the direction of the tracks, they will see the
tracks converge at some point on the horizon, and thus form an angle of a determinate
number of degrees (greater than zero). Yet, if the person gazes down at their feet, the
wooden ties (that lie underneath the tracks) will form two 90 degree angles at the juncture

where wooden ties and railroad track meet, thus forming a large triangle possessing a
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non-Euclidean measure of more than 180 degrees (90 + 90 + a value greater than 0 = a
value greater than 180; Angell, 95). Second, consider a person measuring the angles
formed by three stars: one situated due north on the horizon, another due east on the
horizon, and the third directly overhead. As with the previous example, the combined
measure of the angles will exceed 180 degrees (95). Finally, if one simply examines the
four corners of a square ceiling, where two walls meet the ceiling, the combined total of
the four angles will surpass 360 degrees, once again violating Euclidean geometric
doctrine (95-96, although this example is adapted from J. R. Lucas).

As a means of measuring the angles in these (and other) examples, Angell develops a
procedure that utilizes a ruler, protractor, and a stick, all held rigidly under the eye:

Take a stick 14.35 inches long, attach a six-inch metal strip marked off in quarter

inches to one end of it, and bend the metal strip so that each point on it is equidistant

from the free end of the stick. When the free end is placed just below the eye, the

quarter-inch marks on the metal strip at the other end each mark off just one degree. .

. of visual distance.

For objective measurements of seen angles among visibles . . . it suffices to attach

a protractor perpendicularly to the same stick, with its center at the end where the

metal strip is attached. When this device is held to the eye and the angles in the

protractor are aligned with the angles in the visible, an accurate, objective measure of

the angles in the visible is provided. (93)

Employing this device, Angell believes an unambiguous determination of the GOV can
be provided, and that the results will favor a non-Euclidean geometric structure.

What is initially puzzling about Angell’s theory is the inordinately central role that
Euclidean measurements assume in the construction of his GOV. He begins by setting up
a convention for the measurements of angle and distance using a set of devices that are
presumed to retain Euclidean characteristics. Second, the examples afforded by Angell do

not exhibit a non-Euclidean GOV from a single perspective, or “single view” (to borrow

Van Cleve’s term, 37); rather, as in the railroad track example, one needs first to look
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along the horizon, and then look down at one’s feet (or at each successive star, or
individual corner of the ceiling). There is no single view, in short, from which all the
angles of the rail track (stars, ceiling corners) can be surveyed.17 Now, combining these
two observations, the classic conventionalist argument would focus on the arbitrary
nature of Angell’s measuring techniques as regards their, for lack of a better term,
“global” veracity: that is, do the measuring devices retain an invariant measure of angle
and distance as they are moved around in the visual field among different view points?
Just as Poincaré’s meter sticks can possess different expansion properties, and thereby
provide measurements favoring many alternative geometries, it would seem that Angell’s
ruler and protractor could equally undergo different expansion or contraction rates. A
non-Euclidean determination of, say, the ceiling corners could then be judged to be the
result of a “funny” force in various parts of physical space that contracts the protractor
(i.e., shrinks the distance between its calibrated angles) as it moves from measuring one
visible figure to another—one could then conclude that the protractor provided a false
non-Euclidean measurement of a “real” Euclidean visual space. It must be admitted,
however, that this conventionalist strategy does not seem to work as successfully in the
context of visual space as with physical space. It does not seem plausible to posit a real
force in space that could change with the perspective of an observer alone, since this
would quickly lead to contradictory ascriptions of the value of the force to the same
visual object at the same time: for example, an observer A may judge that a force shrunk
his protractor as he turned to look at an object X, but another observer B who maintained
an unaltered perspective in observing X, would judge that no force interfered with her

protractor measurements—so, how can the existence of a real force in space, which
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really distorts the physical apparatus, depend entirely on the relative measurements
(conducted by different observers) with respect to the same object at the same time?1s
Conventionalism does play a crucial role in the measurements of visual geometry,
nevertheless, despite its somewhat different character. The first problem relates to
Angell’s aforementioned dependence on Euclidean measuring devices: in short, how does
one guarantee that the stick and protractor system maintains, or even initially determines,
a Euclidean measure? Even if the existence of external forces is dismissed, there appears
to be no means of guaranteeing that the measuring stick is consistently and identically
employed to all visible figures. For instance, if the measuring stick is tilted slightly left or
right in measuring a particular angle, then a veritable host of diverse results could be
obtained that will directly decide the overall geometry: a protractor that is tilted away
from the eye might find more degrees in an angle than one slanted toward the eye, and
the cumulative effect of such changing and variable uses of the system could make the
difference between a Euclidean or non-Euclidean determination of the overall geometry
of vision. Similar metric conventions are at work in Reid’s and Daniels’ version of the
GOV, moreover. Daniels explains that the distances between visible points can be
determined by fixing radial lines, or rays, from the points to the center of his non-rotating
eye, and then calculating the angle of rotation between the rays: “In order to measure
distance between the positions of [visible] points, the eye must keep track of (1) angles
formed by rays projected from points to the center of the stable (non-rotating) eye and (2)
angle of rotation” (Daniels, 7). But, Daniels must assume, as a convention, that the final

ray remains fixed as the angle is measured off from the initial ray to the final ray. If the
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final ray changes it position relative to the first as the measurement is conducted, then
nearly any length, and thus geometry, can be attributed to the system.19

Returning to Angell’s version of the GOV, one might guard against the potential for
varying applications of the measuring apparatus by claiming that there is a single
viewpoint, and thus a unique visible figure, that reveals the Euclidean characteristics of
the stick and protractor setup. This unique viewpoint would thereby ensure an invariant
visible figure for all subsequent measurements with the system (i.e., the unique visible
provides a method for checking the apparatus to guarantee its correct application in all
measurements). Yet, what visual configuration could reveal an intrinsic Euclidean
property if the GOV is, as Angell concludes, non-Euclidean? If the three-dimensional
Euclidean geometry of Angell’s measuring stick, a physical object, is different from the
geometry of the corresponding visible figure (the visible stick and protractor), then there
would appear to be no objective, non-conventional way of picking out a preferred visible
figure to represent the physical object. Since the two geometries are not identical, any
visible figure, even one provided by the variably-slanting stick perspectives, would
appear to have as much claim to represent a Euclidean physical object as any other.
Alternatively, if there is only one viewpoint that correctly represents the real three-
dimensional stick and protractor, then this admission is tantamount to basing a non-
Euclidean geometry on a Euclidean visible figure. Since the unique visible measuring
stick is now deemed to accurately represent the real Euclidean physical object, and this
visible figure (stick and protractor) occupies a large portion of any possible single visual
experience (i.e., the measuring stick can accompany all single views), it would seem that

the most natural interpretation of the GOV’s geometry should now favor a Euclidean
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structure. In essence, Angell is admitting that (i) some visible figures are Euclidean, (ii)
these Euclidean figures take up the majority of any single view (“momentary visual
field”), but (i11) the geometry of vision is non-Euclidean—but, is this a coherent position?
Furthermore, relying on the concept of an “approximate” Euclidean visible figure, as
opposed to a real Euclidean visible figure, fails to avoid the dilemma just described: if
visible figures are non-Euclidean approximations to Euclidean visible figures, then this
assumes that one has knowledge of what constitutes a Euclidean visible figure; (a) either
by conventional stipulation (which raises the same conventionalist worries as above—the
first horn of the dilemma); or (b) by some visible figure that is virtually identical to a
Euclidean visible figure (which implies that we have some independent, and mysterious,
knowledge of what constitutes a Euclidean visible outside of our experience of only non-
Euclidean visibles—the second horn of the dilemma). So, approximation runs afoul of the
same difficulties, once more raising concerns over the consistency of Angell’s GOV.20
Angell would likely contest the preceding judgment, insisting that the GOV is
founded on the geometry of large visible figures, such as ceilings and stellar triangles,
and not on the geometry of small visible figures that can be encompassed in an individual
viewpoint (or what we labeled above, a “single view”). Large visible figures, in contrast
to the visible figure of the measuring stick, cannot be included in a single view, but
require several individual views that are pieced together “geometrically”, thus revealing
their overall non-Euclidean character. Reid argued a similar point, recognizing that small
visible figures closely approximated Euclidean figures (Ing., 6.9). By declaring that the
domain of visibles is exclusively devoted to large figures, however, Angell is moving the

GOV inexorably away from the actual, single viewpoints that comprise our visual



25

phenomena to a more hypothetical, generalized realm of visual “figure”. In other words,
these large-scale visual figures are not possible figures of visual experience since they
cannot be included in a single view: they are largely hypothetical constructs formed from
several distinct single views (along with their accompanying small scale visible figures).

It is in this move from the small scale to the large scale visibles that conventionalist
worries of a different sort begin to creep in, for there are no non-conventional methods
for constructing a large scale visible figure from the small scale visibles contained in
several single views. Angell and Daniels, as well as Reid, seem content to construct these
large visible figures by a process that only allows a fixed spatial position and the
rotations about that fixed point. From a fixed position in the center of a room, it is indeed
true that rotations about that point will disclose four obtuse ceiling corners, thereby
sanctioning a non-Euclidean GOV. Yet, this is only one of many processes or formulas
for constructing a large-scale visible figure. If one admits both rotations about a spatial
point and translations (motions) of that point in space, then an entirely different species
of large scale visible figure can be assembled from the small scale visibles: since the eye
can now move to a perspective directly underneath each corner, a 90 degree measurement
can be obtained as mandated by a Euclidean version of the GOV. Given that there are
numerous potential candidates for constructing a GOV, what other grounds, besides
convention, can Angell appeal to in justifying his choice (of fixed spatial position and
rotations)?

At this point, Angell could invoke the general shape of the eye, which is spherical,
along with the contention that a fixed point (plus rotation) enjoys a simplicity over any

other design for the GOV (which is similar to Daniels’ conclusions, as mentioned in
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section 3). More precisely, rotation about a fixed point is the easiest means of scanning
the angles and distances contained in large visible figures. Unfortunately, there are
numerous problems with this line of argument: not only does the portion of the eye
actually responsible for vision, the retina, lack a completely spherical shape, but it is also
physically impossible for an eye to rotate 360 degrees about a fixed point. A movement
of the head is also required to view Angell’s large visible figures—that is, for the eye to
measure all of the angles that comprise the ceiling, a translation of the eye must occur (as
the head moves up and down). Yet, once a translation is shown to be an integral
component of any measurements involving large-scale figures (e.g., in the track example,
first looking at the horizon, and then moving your head down to gaze at your feet), the
rationale for Angell’s (Daniels’, Reid’s) “fixed spatial position” construction is seriously
weakened, if not outright repudiated. In short, why not admit measuring conventions that
incorporate translations if Angell’s own method is shown to rely upon them?

In addition, once the necessity of the eye’s translation is acknowledged, another
conventional component of Angell’s system comes to the forefront: namely, the
assumption that, once an angle is measured, it retains the same value as the eye is moved
to a new position (to measure a new angle). When a translation of the eye to a new spatial
position occurs, the visible angle of the object that is subtended at the eye will change,
resulting in a change of value for the previously measured angles.21 Hence, if Angell
needs to stipulate that all of the previously measured angles maintain an identical value
across the many translations that comprise the measurement process, not only is this a
conventional assumption, but the rules of projective geometry would declare that is false,

as well.
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5. Final Assessment of the GOV.

Once the role of conventional assumptions in the construction of the GOV is taken
fully into account, the claims for its unique non-Euclidean structure appear greatly
exaggerated, and quite possibly untenable. This is not to say that a non-Euclidean
interpretation of visible phenomena is necessarily false; rather, as mentioned at the outset,
a non-Euclidean GOV is just one of the many different geometries that can be
constructed from visible figures. Given a particular set of measuring conventions, the
visible figures will favor a specific geometrical interpretation—yet, once a new set of
conventions is adopted, a new geometric structure will likely prevail. The reason for this
liberal tolerance of alternative geometries probably resides in the idiosyncratic,
foundational role allotted to large-scale visible figures. Since these large visibles cannot
be encompassed in a single view, the diversity of methods for stitching together several
such views, to form a large-scale picture, inevitably leads to their metrically “amorphous”
character. Reid, along with Daniels and Angell, have demonstrated one procedure for
obtaining these large-scale visible figures, but it is only one of many such procedures.

Before concluding, it would useful to briefly examine the underlying intent or goal of
Reid’s GOV, since our preceding discussion may shed light on some of the
interpretational difficulties associated with Reid’s project.

Reid’s GOV appears within the context of his overall analysis of vision, a
philosophical (or natural philosophical) problem that largely prompted his “direct realist”
theory of perception. Contrary to Locke, Hume, and nearly all of his Early Modern

predecessors, Reid believes that sense experience does not consist in a three-part
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relationship between a perceiver, a perceived object, and a mental item that represents
that perceived object (a theory often dubbed “representational realism”). In contrast, Reid
holds that perception is a direct, two-part relation between the observer and observed
object. As mentioned in section 1, he also accepts (following Berkeley) that the geometry
of the external world is three-dimensional Euclidean, and that tactile experiences provide
direct information in this format. Moreover, tactile experience discloses the “real”, as
opposed to “apparent”, magnitude of bodies. Given this unpromising background, can a
direct realist embrace Reid’s GOV?

Luckily for the direct realist, there are several passages that suggest a somewhat
different interpretation of the GOV: “the visible figure of bodies is a real and external
object to the eye, as their tangible figure is to the touch, . ..” (Inq., 6.8). As explained in
this context, the “reality” of the objects or figures of visible experience are equal to the
“reality” of the corresponding figures of tangible experience. In a later work, he states:

When I use the names of tangible and visible space [i.e., the space of tangible and

visible figure], I do not mean to adopt Bishop Berkeley’s opinion, so far as to think

that they are really different things, and altogether unlike. I take them to be different
conceptions of the same thing; the one very partial, and the other more complete; but

both distinct and just, as far as they reach. (Essays, 2.29)

On the whole, the cumulative effect of these explanations would seem to raise doubts
about the lower epistemological status accorded to visible experience. Reid is conferring
a certain degree of independence to visible figures, as contained in his reference to their
“distinct and just” conception. However, Reid is careful not to imply that these two
experiences of spatial figure, “are really different things, and altogether unlike.” What

does this last assertion mean? To answer this question, it is important to observe that he

qualifies his claim in the next sentence, concluding that they are “different conceptions of
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the same thing.” The best way to understand these two claims, I believe, is to conjoin
them so as to read: “the two figures (of spatial experience) are not different in that they
are two different conceptions of two different things, rather they are two different
conceptions of the same thing.” The advantages of this translation of the passage will
become apparent below. Next, it is important to resist the temptation to interpret Reid’s
mention of “partial” and “complete” conceptions, corresponding to visible and tangible
figures respectively, as invoking some form of dependence of the visibles on the
tangibles. Understood in this manner, inconsistencies soon arise, as Van Cleve has
carefully argued (70): for example, if a non-Euclidean visible triangle (with angles
totaling over 180 degrees) is part of a Euclidean tangible triangle (with angles totaling
180 degrees exactly), then the corresponding object in the external world possesses a
contrary pair or predicates (180 degrees and not 180 degrees). Yet, by heeding Reid’s
advice, that the visible and tangible figures are “distinct” and “different conceptions”, this
interpretational option is excluded.

Returning to our previous discussion, if visible and tangible figures are “distinct and
just”, and “different conceptions of the same thing”, then one can construe both figures as
two different perspectives (or constructions, frameworks) of the same external, material
object.22 In other words, material objects are geometrically “amorphous” or non-unique
(much like large scale visible figures), since they only manifest a particular geometric
structure from within a perceptual perspective. The perspectives that brings about these
individual geometric forms are the human tactile and visual sensory processes—and these
sensory frameworks only allow specific geometric formulations of the same external

object: they are, in effect, the “different conceptions of the same thing” (i.e., a two-
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dimensional non-Euclidean perspective for visibles, and a three-dimensional Euclidean
perspective for tangibles). Therefore, both the non-Euclidean GOV and the Euclidean
tangibles can be viewed as complementary, but not competing, conceptions of an
underlying “object” (and the perceptual “space” dependent on those figures). These
external objects only divulge their information within a chosen, and probably
conventional, perspective, but neither framework is the “correct” framework (although
Reid does state that tangible experience is more complete than the visible). More
precisely, the conventional construction of the alternative GOV parallels the
conventional sensory representation of external objects, for an evolutionist would likely
claim that a different development of the human species might have endowed our sensory
organs with a different form of geometry.

Nevertheless, this rendition of Reid’s theory suffers at the hands of the numerous
passages that seem to equate external objects exclusively with tangible figure, and not
with both tangible and visible figure; e.g., in the quote from section 1, where he asserts:
“The real magnitude of a line is measured by some known measure of length. . . . This
magnitude is an object of touch only, and not of sight; . . .” (Essays, 2.14). These types of
descriptions make it difficult to accept a direct realist rendering of the GOV, needless to
say, for the visible figures are once more being grouped under the seemingly non-realist
category of “apparent” magnitudes. Accordingly, even granting the value of this
interpretation, the nature of Reid’s visible figures, and GOV, must remain a continuing

source of scholarly investigation and debate.
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by T. Lennon and P. Olscamp (Cambridge: Cambridge U. Press, 1997), 40-47.

17 Angell does admit this point, moreover, noting that “we shall want to speak of a given
person’s visual field as more extended spatially than any momentary visual fields [which
are limited in spatial extent to a small portion of the face]” (91). Unfortunately, he
immediately plunges into conventionalist waters by reasoning that “in following a line
with the eye (e.g., scanning the horizon), we take portions of the line previously scanned
but no longer in the momentary visual field to be continuous with the portions later
scanned” (91). But, why make this assumption, rather than another?
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18 We are leaving aside, in this discussion, the relativity of various properties in the
Special and General Theories of Relativity. Although temporal coordinates are relative to
the observer, the time-like and space-like separation among events is not relative, of
course, nor is the space-time interval. In addition, in the conventionalist model of
spatiotemporal (intrinsic) measurements, it is assumed that all inhabitants on a given
surface will agree as to the results of the measurement (but may disagree as to their
interpretation), which is not the case as described above (since their would be no
agreement on the results of a hypothetical measurement).

19 Reid does state, Inq.6.7., that two visible figures are the same size (“congruent”) if they
subtend an identical angle with the eye. Yet, as Daniels’ openly admits (55-56), this does
not equip the GOV with a metric (although Daniels’ believes that Reid must have
intended his comments to function as a metric). For example, a conformal space can
determine if two distinct angles on a given surface possess an identical angle size, yet this
information is not sufficient to determine the quantitative magnitude of these angles (i.e.,
which angle is bigger, and by how much—see, e.g., E. Kreyszig, Differential Geometry
(New York: Dover, 1963), 193). Accordingly, Reid’s brief mention of the congruence of
angle size for identical visibles falls far short of specifying a distance function for
measuring the angle subtended at the eye by any single visible figure. In addition, Reid
never discusses the difficulties associated with estimating the size of visible figures, a
subject that Berkeley treats at length in the New Theory of Vision (sec. 54-78). Berkeley
was aware that the judgment of the size of bodies (visible figures) was subject to illusions
and errors, as the “moon illusion” nicely demonstrates: i.e., the moon on the horizon
appears bigger than the moon high overhead, although the visible figure is the same size.
The measurement of non-adjacent, spatially separated visible figures is thus potentially
prone to error; and this realization seriously threatens any system of measurement (of
visible figure) that relies exclusively on fixing rays and gauging angles that subtend the
eye. In short, how can we be certain that are estimates of the rays and angles are not
subject to the same class of visual illusions and misperceptions?

20 Interestingly, Angell’s attempt to supply the GOV with an invariant, non-conventional
measuring apparatus is reminiscent of a similar maneuver by H. Reichenbach and A.
Griinbaum as regards the measurement of physical geometry. Reichenbach, for example,
put forward the notion that the metric of physical space could be unambiguously
determined once the existence/non-existence of universal distorting forces had been
stipulated (i.e., forces that distort all measuring apparatus to the same degree regardless
of their material composition). Therefore, an empirical aspect of the measurement
process—the overall behavior of the rigid measuring rods—was taken as fixed, and thus
non-conventional (after the conventional choice of universal forces had been made). Yet,
as Einstein later argued, the “rigidity” of the measuring rods also depends on the ability
to detect, and correct for, the local forces of thermal expansion, mechanical stress, etc.,
that likewise distort the measuring rods (but the distortion effects vary for different
materials). Thus, the physical laws that largely determine which rods are “rigid”
presuppose metrical concepts (i.e., how heat changes the length of the rod). Even the
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local rigidity of the measuring rods now appears conventional, since any geometry can be
utilized in the local distortion laws—and the different geometries chosen for these laws
can determine the overall spatial geometry. In a similar fashion, Angell believes that he
can regard the visible figure of the measuring stick as an empirically unproblematic
feature of his theory, and then proceed to ascertain the overall geometry of vision by
direct measurement. The visible figures of the measuring apparatus thus play the same
role as the local rigidity correction laws for physical geometry. Just as one must stipulate
a metric for the local distortion of the measuring rods, one faces an equally conventional
dilemma in choosing among a host of different visible figures to represent the physical
measuring stick and protractor. And, like the physical case, the overall geometry of vision
(or large visible figures) is underdetermined as a direct consequence of this local
conventionalist choice: i.e., a different choices of visible figure to represent the
measuring stick, such as a variably slanting or non-slanting visible figure, can result in a
different overall geometry of vision. Einstein’s comments appear in “Remarks on the
Essays”, in Albert Einstein, Philosopher-Scientist, ed. by P. Schilpp (La Salle, I11.: Open
Court, 1949), 663-688. See, also, M. Carrier, The Completeness of Scientific Theories
(Dordrecht: Kluwer, 1994), 191-194, for a nice discussion of these issues.

21 See, for example, the discussion of lateral motion on perceived size and angle in M.
Hershenson, Visual Space Perception (Cambridge, Mass.: MIT Press, 1999), 145-155.
Here, it should also be mentioned that once the translations of the eye (or of the objects in
the visual field) are allowed into the calculations of the visual geometry, the behavior of
the visible figures will not be consistent with a spherical non-Euclidean geometry.
Rather, the rapid increase and decrease in the size of bodies, as they move forward or
backward respectively, will favor a hyperbolic non-Euclidean geometry. R. Luneburg’s
important work on the geometry of vision was largely based on this fact: “Luneburg
argued...in favor of a hyperbolic space because only in a hyperbolic space would the
visual size of a distant object (as measured by its projection on a nearby transparent
screen) decrease...with the object’s distance from the observer.” (P. Heelan, Space-
Perception and the Philosophy of Science (Berkeley: U. of California Press, 1983), 328,
fn. 29. It should be noted, however, that if one confines their investigation of visual
geometry to the non-translation case, then the visual data that Luneburg refers to is
different from Reid’s (and Angell’s) data, so the GOV (and Angell’s theory) need not
conflict with Luneburg’s theory.

22 “Perspectives” is not ideally the best choice of term, however, since it harbors visual
connotations that would tend to downplay the potential for gathering information from
the other sense organs.
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