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Abstract 

High performance (HP) battery electric vehicle (BEV) and racing applications represent 
significantly different use cases than those associated with conventional consumer vehicles and 
road driving. The differences between HP-BEV use cases and the duty cycles embodied within 
established lithium ion battery cell (LIB) test standards will lead to unrepresentative estimates 
for battery life and performance within HP-BEV applications. Furthermore, the behaviour of LIBs 
in these applications is not well understood due to a lack of suitable testing cycles and 
experimental data. The research presented within this thesis addresses this knowledge gap 
through the definition and implementation of a new framework for LIB performance and 
degradation testing. 

The new framework encompasses the definition of a methodology through which a suitable duty 
cycle may be derived, and subsequent definition of the experimental procedures required to 
conduct LIB performance and degradation testing. To underpin the development of a suitable 
duty cycle, a method is presented to simulate race circuits, a HP-BEV and a driver model to 
generate a database that defines a range of HP duty cycles that are deemed representative of 
the real-world use of a HP-BEV. Subsequently, two methods to design a HP duty cycle are 
evaluated and validated. One of the methods studied (HP Random Pulse Cycle) extends an 
established driving-cycle construction technique, based on the derivation of micro-trips. The 
second method (HP Multisine Cycle) utilises a time-frequency domain-swapping algorithm to 
develop a duty cycle with a target amplitude spectrum and histogram. The design criteria for both 
construction techniques are carefully selected based on their potential impact on battery 
degradation. The new HP duty cycles provide a more representative duty cycle compared to a 
traditional battery test standard and facilitate experimental work, which will more accurately 
describe the performance and degradation rate of cells within HP-BEV use. 

Utilising the newly developed HP-Multisine Cycle, an experimental procedure for LIB 
performance and degradation testing is presented. Six lithium ion cells are characterised, 
followed by a performance and degradation study. The performance study investigates the 
thermal behaviour of the cells when subjected to HP-BEV scenarios and a standard testing cycle 
(IECC). Results show an increase in excess of 200% in surface temperature gradients for the HP 
use case compared to the standard testing cycle. The degradation study compares the 
degradation progression between the HP-BEV environment and conventional testing standards. 
Two test groups of cells are subject to an experimental evaluation using the HP Multisine Cycle 
and the IECC. After 200 cycles, both test groups display, counter to expectations, an increased 
energy capacity, increased pure Ohmic resistance, lower charge transfer resistance and an 
extended OCV operating window. The changes are more pronounced for the cells subjected to 
the HP Multisine Cycle. It is hypothesised that the ’improved’ changes in cell characteristics are 
caused by cracking of the electrode material caused by high electrical current pulses. With 
continued cycling, the cells cycled with the HP Multisine Cycle are expected to show degradation 
at an increased rate. 

The results from the experimental studies provide new insights into the thermal management 
requirements and evolution of cell characteristics during use within HP-BEVs, and highlight the 
limitations in the understanding of the complex cell degradation in this area. The new framework 
addresses the lack of suitable testing cycles and experimental investigations for the HP-BEV 
environment. The methodologies presented are not limited to the automotive sector but may be 
used in all areas, where existing testing standards are unrepresentative of the typical usage 
profile, and LIB degradation and performance are a concern.  
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1 Introduction 

1.1 Context 

Tailpipe emissions from internal combustion engine (ICE) vehicles have an adverse effect on 

human health [8] and contribute significantly to the greenhouse gasses responsible for global 

climate change [9,10]. Consequently, state governments and intergovernmental institutions such 

as the European Union (EU) have introduced legislation aiming to reduce the overall emissions of 

road vehicles [11]. Additionally, in 2018 the government of the United Kingdom announced their 

“Road to Zero” policy, detailing their ambition to end the sale of new conventional powered 

petrol and diesel cars and vans by 2040, stating that by then all new cars will have “significant 

zero-emission capability” [12]. Electric vehicles (EVs) and battery electric vehicles (BEVs) provide 

a potential pathway to reduce these emissions. If the power for charging is sourced from 

renewables, BEVs offer a route toward eliminating all mobile emissions [13]. 

EVs for the mainstream mass market have been explored over several years. Examples include 

the Detroit Electric (in production 1907-1939) [14] and the General Motors EV1 (1997-2003). The 

latter received wide criticism as it was expensive to produce and the batteries lacked the capacity 

and durability to supply the range demanded by customers [15], [16]. Over the past decade, the 

improvement of lithium ion batteries (LIBs) has underpinned the electrification of the transport 

sector [17]. As of 2018, many major automotive original equipment manufacturers (OEMs) offer 

at least one hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (pHEV) and/or BEV in 

their product line-up. Examples include the Nissan Leaf, Renault ZOE, Mitsubishi Outlander pHEV, 

Volkswagen e-Golf and BMW i3 and i8 and Mercedes C-Class pHEV. Although BEVs are reported 

to have  lower cost of ownership compared to ICE vehicles and pHEVs [18], prominent barriers to 

the commercial success of these vehicles are the high initial vehicle cost, range anxiety [19], 

safety and reliability [20]. These are functions of key battery characteristics, such as cell cycle life, 

degradation, energy capacity, power capability, safety, reliability and cost, as well as all system 

integration requirements, such as packaging and thermal management [21]. 

With ongoing developments, battery energy capacity and power capability are steadily increasing 

whilst costs are decreasing [22]. This in turn has opened up the strategically important high-

performance (HP) vehicle segment, which has become a target for many new start-up 

organisations and more established OEMs [23]. Initially pioneered by Tesla Motors with the Tesla 

Roadster in 2008, currently an increasing number of automotive OEMs are developing BEVs for 
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this segment. Specific examples include the Jaguar I-PACE, launched in 2018, and the Aston 

Martin Rapide-E, with customer deliveries planned for Quarter 4 in 2019 [24], in addition to more 

established vehicles such as the Tesla Model S. A prominent use case for these HP-BEVs are track 

applications; specifically Formula E [25], which launched in 2014 and is the FIAs first fully electric 

racing championship, and the Jaguar I-PACE eTrophy [26], a Formula E support racing series. 

In order to decide upon the most appropriate battery type and their management strategies for 

automotive use cases, researchers and industry conduct a wide range of research regarding 

characterisation, performance and degradation of battery cells [27,28]. One limitation of this 

research is that often, several studies use relatively simplistic constant current charge and 

discharge tests, often at different current rates and environmental temperatures as a means to 

estimate cycle life over a broad spectrum of operating conditions [28–30]. These tests are known 

to be largely unrepresentative of the day-to-day LIB operation within an EV. Research published 

by Barre et al. [31] has indicated that complex electrical loading profiles result in different ageing 

characteristics than conventional galvanostatic profiles. 

As such, more complex testing profiles are required to predict the behaviour and cycle ageing 

progression of cells in HP automotive use cases. A further study by Barre et al. [32]  investigated 

battery system data, which was collected from a passenger EV following a predetermined driving 

cycle, to determine the causality between vehicle use and  battery ageing. This study identified 

that capacity fade increases at elevated temperatures and over time, is primarily related to 

temperature and test duration, and impedance rise is primarily related to the current profile and 

the maximum current delivered by the battery. Omar et al. [33] used the cycle life tests defined 

within the International Standard IEC 62660-1 [34] and ISO 12405-2 [35] to determine the cycle 

life of a cell intended for passenger vehicle use. Further, Dubarry et al. utilised a dynamic stress 

test, described within [36], in a cycle life evaluation to determine the rate of change and nature 

of battery degradation within passenger vehicles [37,38], providing further evidence that battery 

degradation is a function of usage profiles. 

As such, the testing methodologies employed to evaluate the suitability of LIBs for a given 

automotive use case should encompass the thermal conditions and electrical loading profiles that 

the battery cell will experience.  
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1.2 Problem statement 

HP-BEV and EV racing applications represent significantly different use cases than those 

associated with conventional consumer EVs and road driving. Such HP-BEVs are typically driven 

to the performance limits of the vehicle or the capabilities of the driver. Asus et al. [39,40] 

conducted extensive tests on a series hybrid racing car to develop a detailed mathematical model 

of the vehicle that characterised its dynamic behaviour and could underpin drive-cycle prediction. 

The authors present experimental data, including driver pedal input and system power demands, 

for the vehicle being driven on the Magny-Cours racing circuit in France. Their analyses highlight 

significant proportions of time spent at peak demand, in addition to rapid transitions from vehicle 

acceleration and braking. For a HP-BEV, such a usage profile would translate to extended periods 

of time when the battery system is under full electrical load for charging or discharging. 

By comparing the data presented within [39,40] with that found in studies into urban driving, e.g. 

[41,42] one of the unique measures of HP driving is not just the high amplitude power demands 

placed on the vehicle’s powertrain, but also the relative time that the vehicle spends at peak-

power. In contrast, peak power demand in urban driving is rare, of short duration and interspaced 

with extended periods of low demand. For HP applications, a complete energy discharge of the 

battery pack may occur within less than a single hour. Conversely, with a conventional EV it may 

take many hours or even days to deplete the energy content of the battery pack [43]. 

These differences between HP-BEV use cases and existing LIB research are likely to influence 

requirements for battery thermal management and the rate of degradation that may occur within 

the cells that comprise the HP vehicle battery system. The author asserts that, consequently, 

existing testing methodologies and their findings are unlikely to capture the performance and 

degradation of LIBs in HP-BEV applications. 

1.3 Introduction to the sponsoring companies and motivation for the 

direction of research 

The research presented within this thesis was conducted in collaboration with the two companies 

Jaguar Land Rover and Delta Motorsport. Jaguar Land Rover (JLR) are the UK’s largest premium 

automobile manufacturer comprising the two brands Jaguar and Land Rover, known for luxury 

saloon and high-performance sports cars, and premium all-wheel drive vehicles, respectively. JLR 

are actively involved in research and development (R&D) of powertrains and energy storage [44]. 

The company is the first European premium manufacturer with a fully electric battery powered 
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sports utility vehicle (SUV) and aims to become the European brand leader for BEVs. 

Furthermore, JLR competes within the FIA Formula E racing series, a championship for all electric 

vehicles. For the 2018/2019 season JLR is also sponsoring the “I-PACE eTROPHY”, a support racing 

series in which 20 Jaguar I-PACE vehicles compete over 10 races [26]. 

As a manufacturer whose brands are associated with premium and HP vehicles, JLR needs to 

ensure that their vehicles are competitive and reliable. This requires maximising the vehicle 

power output, concurrently with component weight reduction, whilst guaranteeing safe 

operation. Specific examples for LIBs are the design and sizing of the battery pack and battery 

management system (BMS) and battery thermal management system (BTMS), which account for 

a large portion of the overall pack weight. Furthermore, warranty issues may be avoided by 

developing mitigation strategies to address the degradation and failure modes of the battery 

pack. For these purposes, the company requires extensive knowledge of the thermal 

performance and degradation behaviour of LIBs. 

Delta Motorsport was founded in 2005 with background in HP vehicle engineering and since then 

has established itself as a consultancy in motorsport, road vehicle, and low carbon vehicle 

engineering. The company has its office at Silverstone race circuit and offers consultancy services 

ranging from single component design and development through to complete programmes. Their 

low carbon projects include amongst others the “E-4”, a high-performance electric vehicle, the 

“Microcab”, a hydrogen-hybrid vehicle, and a lightweight high power electric motor [45]. Delta 

Motorsport have been working with JLR as a development and consulting partner for a range of 

projects with a high-performance focus, an example of which is the battery system of Jaguar C-

X75 prototype. 

1.4 Scope of the Thesis 

The scope of this thesis is to investigate the instantaneous performance and long-term 

degradation of LIBs within HP-BEV and racing applications from an engineering perspective. As 

such, a non-invasive testing methodology, through which LIB characteristics, performance and 

degradation can be evaluated, requires definition. Non-invasive in this context refers to testing 

methods that do not require the disassembly of batteries. This, in turn, demands the evaluation 

of the fundamentals of LIB operation and degradation, and a review of existing testing methods 

and determination of their applicability to HP driving and racing applications. Where no suitable 

methodologies can be found, new testing procedures are defined. Once a testing procedure has 

been devised, an experimental investigation into the short and long-term behaviour of cells 
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subject to HP-BEV specific use cases and standardised testing is undertaken on a commercial 

battery cell. The author asserts that the outcomes of this research will provide a suitable testing 

methodology to evaluate the performance of LIBs and to identify the onset and progression of 

degradation specifically encountered within HP applications. 

1.5 Thesis outline 

This thesis is structured as follows. Chapter 2 presents a critical literature review of LIB operation, 

degradation and current best practice procedures for battery characterisation, performance 

testing, and degradation testing. The applicability of these methods to HP use cases is examined 

and a knowledge gap within the existing literature pertaining to degradation and performance 

testing of LIBs in HP-BEV applications is identified. Chapter 3 critically reviews testing-profile 

design methodologies to devise an electrical loading profile representative of HP applications. A 

further knowledge gap regarding a systematic approach to the generation of LIB testing profiles 

is identified. Subsequently, four distinct research tasks are defined to address these two 

knowledge gaps. Chapter 4 describes the development of a driving and duty cycle database for 

track driving applications. Chapter 5 describes a systematic approach to the development of 

testing profile for LIB performance and degradation testing, that is representative of the database 

derived in Chapter 4. Chapter 6 details the experimental work conducted to perform 

characterisation, performance and degradation testing to investigating the short and long-term 

performance of a commercial LIB pouch cell. Chapter 7 presents and discusses the results from 

the experiments, and offers a hypothesis to explain the findings. Chapter 8 provides conclusions 

of this thesis and recommendations for future work.  
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2 A Review of Lithium ion battery cells and testing 

methodologies  

2.1 Introduction 

HP-BEV applications such as racing represent significantly different use cases than those 

associated with standard consumer BEVs. It is believed that this will influence the performance 

and degradation of LIBs employed within the energy storage systems of the vehicles. The 

operation, performance and degradation of LIBs is dependent  on several intrinsic factors such as 

the battery’s cell chemistry, manufacturing processes and form factor [46], and extrinsic factors 

such as environmental conditions and operational parameters [47]. Furthermore, battery 

degradation is difficult to forecast as the dominating mechanisms and resulting impedance 

augmentation and capacity fade are heavily influenced by the operating conditions and electrical 

[48], mechanical [49] and thermal [50] loading profiles. To better understand the relationship 

between these parameters and battery degradation, researchers have developed extensive test 

methodologies to investigate the degradation related to storage [51–56] and operation 

[30,54,55]. Consequently, this leads to a key research question: 

2.1.1 Research Question 1: Do existing LIB testing methodologies adequately 

represent HP-BEV racing applications? 

To answer this question, it is first necessary to understand the operational principles and 

degradation mechanisms of LIBs as well as the influence of external factors and operational 

parameters. Further, through a critical review of the existing body of literature regarding LIB 

testing methodologies, it can be determined whether these procedures adequately capture those 

operating conditions likely to be encountered during HP-BEV use. 

As such, sections 2.2 and 2.3 describe the basic components of LIBs, and their operational 

principles. Section 2.4 reviews the different degradation mechanisms, and identifies those 

environmental conditions and operating parameters, which affect LIB degradation most. 

Sections 2.5 – 2.7 provide a critical review of testing methodologies to assess the operation and 

degradation in LIBs. These are characterisation testing (section 2.5), degradation testing (section 

2.6), and performance testing (section 2.7). Characterisation testing enables the identification of 
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key cell attributes, which often underpin the parameterisation of electrical and thermal models. 

Furthermore, regular characterisation throughout a battery cell’s useful life allows for the 

identification and tracking of degradation. Degradation testing or ageing are umbrella terms for 

tests intended to investigate the causes and progression of LIB degradation. Degradation testing 

can often be categorised into mechanical testing, storage testing, and cycling degradation testing. 

Cycle testing is conducted by subjecting cells to galvanostatic profiles or transient duty cycles 

over time. 

Performance testing within this work describes cycling testing with the aim to determine the 

instantaneous behaviour of cells. This primarily comprises electrical loading of cells under 

galvanostatic and transient duty cycles. Outcomes of these tests include the determination of cell 

self-heating during electrical loading, useful energy capacity in realistic operation, and datasets 

underpinning the validation of electrical and thermal models derived from characterisation 

testing. As such, overlaps exist between characterisation testing, performance testing, and 

degradation testing. 

To provide a standardised set of methodologies for charge and discharge, performance, 

reliability, abusive, and cycle life testing within the automotive context, a number of international 

testing standards and guidelines have been conceptualised. Each standard, parts of which are 

reviewed within this chapter, addresses different requirements for performance, robustness and 

safety and how testing should be undertaken at either a cell (i.e. IEC 62660-1 [34]), module (i.e. 

ISO 12405-2 [35]) or system level (i.e. Department of Energy (DoE) battery test manual for electric 

vehicles [36]). 

Following this review, key findings are summarised in section 2.8, and a knowledge gap is 

identified. 

2.2 Basic components and operational principles 

A schematic diagram of a commercial LIB under discharge is shown in Figure 2-1. The principal 

components of a LIB are two electrodes, an electrolyte, current collectors, and a separator. For a 

cell under discharge, the negative and positive electrodes are referred to as anode and cathode, 

respectively. For simplicity and consistency, in this work, anode always refers to the negative 

electrode under discharge. In modern LIBs, the active electrode materials in powder form are 

mixed with binders and additives and attached to metal current collectors, and saturated with 

electrolyte to create porous electrodes. 
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For many commercially available LIBs, the anode active material is carbon based (𝐿𝑖𝑥𝐶), and the 

cathode active material is a metal oxide (𝐿1−𝑥𝑀𝑂2), where the M represents a transition metal. 

The active materials are discussed in more detail in section 2.3. The electrolyte enables ion 

transfer between the electrodes and is often a non-aqueous liquid or gel containing a lithium salt 

such as 𝐿𝑖𝑃𝐹6 [57], 𝐿𝑖𝐶𝑙𝑂4 or 𝐿𝑖𝐴𝑠𝐹6  [58], acting as the ion conducting medium. The current 

collectors serve as terminals for the electrodes and are not actively involved in the chemical 

redox-reactions under operation. For anodes, the material of choice is copper, for cathodes, the 

current collector is usually an aluminium alloy. The separator provides a physical barrier between 

the anode and the cathode to prevent internal short circuits. As such, the material needs to be 

electrically insulating and block the flow of electrons. For ion transfer between the electrodes to 

occur, the separator requires a porous structure. The material of choice for this is usually a 

microporous polyethylene or polypropylene film [59–61]. 
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FIGURE 2-1 - SCHEMATIC DRAWING OF A LI-ION BATTERY CELL 

Using the example illustrated in Figure 2-1 the chemical equations for the charge discharge cycles 

can be written as  [62,63]: 

Cathode 𝐿𝑖𝑀𝑂2
𝑐ℎ𝑎𝑟𝑔𝑒
→    
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←        

𝐿𝑖1−𝑥𝑀𝑂2 + 𝑥𝐿𝑖+ + 𝑥𝑒− (1) 
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Anode: 6𝐶 + 𝑥𝐿𝑖+ + 𝑥𝑒−
𝑐ℎ𝑎𝑟𝑔𝑒
→    
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←        

 𝐿𝑖𝑥𝐶6 (2) 

Overall: 6𝐶 + 𝐿𝑖𝑀𝑂2
𝑐ℎ𝑎𝑟𝑔𝑒
→    
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
←        

𝐿𝑖1−𝑥𝑀𝑂2 + 𝐿𝑖𝑥𝐶6 (3) 

During discharge, lithium stored in metal form in the anode, gives up an electron and becomes a 

lithium ion. The electron travels through the external circuit which results in an electrical current 

in the opposite direction to electron flow. As current is defined as the rate of charge flow, the 

current which can be supplied by the cell is dependent on the rate at which the redox reactions 

can occur. For every electron travelling through the external circuit, an ion needs to transfer from 

the anode to the cathode to maintain charge balance. The lithium ions de-intercalate from the 

anode, travel through the electrolyte and separator, and intercalate into the cathode, accepting 

an electron. 

2.2.1 Open circuit potential and capacity 

The electrode reactions (1) and (2) are accompanied by either a release or absorption of energy. 

The energy change for the reaction is the change in Gibbs free energy (Δ𝐺) as described in 

equation (4), where 𝑛 is the number of moles of electrons transferred in the reaction, 𝐹 is the 

Faraday constant (9.649 ∗ 104 𝐶𝑚𝑜𝑙−1), and 𝑈𝑐𝑒𝑙𝑙
𝑒  is the cell potential required for the reaction. 

 Δ𝐺 = −𝑛𝐹𝑈𝑐𝑒𝑙𝑙
𝑒  (4) 

In the absence of a current, each of the two electrodes are at equilibrium, i.e. for each electrode, 

the backward and forward reactions occur at the same rate. In this case, the open circuit potential 

(OCV, 𝑈𝑐𝑒𝑙𝑙
𝑒 ) of the cell can be measured and is defined as the difference between the cathode 

equilibrium potential (𝑈𝑐𝑎𝑡ℎ𝑜𝑑𝑒
𝑒 ) and the anode equilibrium potential (𝑈𝑎𝑛𝑜𝑑𝑒

𝑒 ), as described in 

equation (5).  

 𝑈𝑐𝑒𝑙𝑙
𝑒 = 𝑈𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑒 −𝑈𝑎𝑛𝑜𝑑𝑒
𝑒  (5) 

In this case, the equilibrium potential for individual electrodes (𝑈𝑒
𝑒) against lithium ions in the 

solution can be measured using a reference electrode and potentiostat, and calculated from the 

Nernst equation shown (6). 
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 𝑈𝑒
𝑒 = 𝑈𝑒

0 +
2.3𝑅𝑇

𝑛𝐹
log (

𝑐𝑂
𝑐𝑅
) (6) 

𝑈𝑒
0 is the formal equilibrium potential, 𝑅 is the universal gas constant (8.314 𝐽𝐾−1𝑚𝑜𝑙−1), 𝑇 is 

the absolute temperature in Kelvin, and 𝑐𝑂 and 𝑐𝑅  are the concentrations of oxidant and 

reductant, respectively [64]. As such, the open circuit potential is dependent on the 

concentration of reactive species at the chemical reaction sites on the surface of the electrode.  

The coulombic capacity of a cell (𝑄), measured in Ah, is a representation of the total amount of 

charge which can be stored within, or be extracted from a cell. This depends on the amount of 

lithium ions, which can transfer between anode and cathode, also referred to as cyclable lithium. 

This relates to the amount of active material used in the electrodes. When all cyclable lithium is 

present within the anode, the state of charge (SOC) of the cell is at 100%. Similarly, when no 

cyclable lithium, which is the amount of lithium inventory that can shuttle between electrodes, 

is present within the anode, the state of charge of the cell is 0%. A change in cyclable lithium in 

the electrodes is synonymous with a change in concentration at the electrodes and as such, the 

OCV of a cell changes with SOC. 

2.2.2 Operating potential 

When a discharge current is flowing, the operating potential of a cell is smaller than the OCV due 

to internal impedance losses and polarisation owing to the electrochemical and physical 

properties of the cell. Polarisation refers to the deviation of the electrode potential from its 

equilibrium values. The relationship between these potential drops and the discharge current is 

illustrated in Figure 2-2. 
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FIGURE 2-2 – CELL POLARISATION, AND SOURCES OF POTENTIAL DROPS ADAPTED FROM [65] 

The potential drop 𝜂𝐼𝑅 is caused by the impedance in the bulk materials such as the electrode 

materials, electrolyte and current collectors, as illustrated in equation (7) where 𝑅𝑏𝑢𝑙𝑘  is the 

Ohmic impedance of the cell bulk materials. 

 𝜂𝐼𝑅 = 𝐼𝑅𝑏𝑢𝑙𝑘 (7) 

The second potential drop, 𝜂𝑐𝑡, is related to the charge transfer resistance in the cell. For a net 

charge transfer to occur at an individual electrode and current to flow, an overpotential 

(𝜂𝑐𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒), defined in equation (8) must be overcome, where 𝜙𝑆 is the potential of the solid 

electrode and 𝜙𝐸 is the potential of the electrolyte. 

 𝜂𝑐𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝜙𝑆 − 𝜙𝐸 − 𝑈𝑒
𝑒 (8) 

The overpotential relates to the current density (𝑗𝑐𝑑) through the Butler-Volmer equation (9), 

where 𝑗0 is the exchange current density at equilibrium, 𝑇 is the temperature, 𝛼𝐴 and 𝛼𝐶 are the 

anodic and cathodic exchange coefficients, relating to the rate of  forward and backward 

reactions at the electrode surface and 𝛼𝐴 + 𝛼𝐶 = 𝑚 , where 𝑚  is the number of electrons 

involved in the reaction [66]. 
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 𝑗𝑐𝑑 = 𝑗0 [exp (
𝛼𝐴𝑛𝐹𝜂

𝑅𝑇
) − exp (−

𝛼𝐶𝑛𝐹𝜂

𝑅𝑇
)] (9) 

At small values of 𝑗𝑐𝑑 , the overpotential and current density follow a linear relationship with 

regards to the charge transfer resistance (𝑅𝑐𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) as shown in equation (10). 

 𝜂𝑐𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 = 𝑗 ∗ 𝑅𝑐𝑡𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 (10) 

For larger values of 𝑗𝑐𝑑, the relationship between overpotential and current density behaves in a 

non-linear manner. If 𝑗𝑐𝑑 is sufficiently large, the overpotential 𝜂 is proportional to the log of the 

current and the Butler-Volmer equation simplifies to equation (11), where 𝛼 is the exchange 

coefficient. 

 𝑗𝑐𝑑 = 𝑗0 exp (
𝛼𝑛𝐹𝜂

𝑅𝑇
) (11) 

The change in potential at the electrode causes the surface of the electrode to take up a charge, 

attracting oppositely charged ions in the electrolyte to the electrode surface. This results in an 

electrical double layer providing capacitance (𝐶𝑑𝑙). This double layer capacitance acts in parallel 

to the Butler-Volmer equation producing a current (𝑗𝑑𝑙) as described in equation (12)[66]. 

 𝑗𝑑𝑙 = 𝐶𝑑𝑙 ∗
𝑑𝜂

𝑑𝑡
 (12) 

Finally, the potential drop 𝜂𝐶  is caused by concentration differences of active species at the 

reaction sites, and in the bulk material. As reactions occur, reactants are used resulting in 

localised concentration changes in electroactive species. The concentration polarisation is 

defined in equation (13), where 𝐶𝐵 is the concentration of active species in the bulk, and 𝐶𝐸 is 

the concentration of species at the electrode surface. 

 𝜂𝐶 =
2.3𝑅𝑇

𝑛𝐹
log

𝐶𝐵
𝐶𝐸
   (13) 

The active materials in LIBs are contained in porous electrodes, giving a larger interfacial area for 

chemical reactions. The effect of this is a reduction in charge transfer and concentration 
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polarisation. The interfacial area between electrolyte and electrode material depends on 

electrode porosity, particle size, and surface area per volume.  

The overall polarisation increases with increasing current. On a full cell, this results in self-heating 

and irreversible heat losses following an 𝐼2𝑅 relationship. As HP-BEV applications are likely to 

experience increased current compared to on-road driving, this will influence the magnitude of 

current density, and therefore the polarisation within the cell. Furthermore, these higher 

currents will tend to cause increased cell heating. 

2.2.3  Temperature dependency 

Many of the Li-ion battery cell’s characteristics are largely influenced by temperature. The rate 

of chemical reactions within the cell increases with an increase of temperature and decreases 

with a decrease in temperature. Furthermore, mass transport kinetics such as diffusion rates 

increase with an increase in temperature and decrease with a decrease in temperature. As such, 

cells display higher capacity and power capability at increased temperature, and lower capacity 

and power capability at low temperature. This dependency is often described through an 

Arrhenius type relationship as described in equation(14), where Ψ𝑟𝑒𝑓 is the property value at the 

defined reference temperature (𝑇𝑟𝑒𝑓 = 25 °𝐶 ), and 𝐸𝑎𝑐𝑡
Ψ  is the activation energy for the process. 

 Ψ = Ψ𝑟𝑒𝑓 exp [
𝐸𝑎𝑐𝑡
𝛹

𝑅
(
1

𝑇𝑟𝑒𝑓
−
1

𝑇
)] (14) 

2.3 Electrode materials 

The choice of active material dictates the open circuit potential and maximum specific power and 

energy, which a cell can deliver. Ideally, anode and cathode materials are chosen to deliver high 

specific charge capacity (measured in Ah/kg) and high charge density (measured in Ah/l) to 

optimise the weight and volume of a battery cell. Anodes should have a low potential, and 

cathodes have a high potential versus Lithium, respectively, to maximise the open circuit 

potential of the full cell. The de/intercalation process of lithium should always occur in a 

reversible manner without structural changes to the electrode, and the materials should operate 

within the electrochemical stability window of electrolyte components to prevent increased 

degradation. Furthermore, materials should be chemically stable at elevated temperatures. The 
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choice of anode and cathode combinations is a trade-off of reliability, safety and energy and 

power capability of the cell, examples of which are given below. 

2.3.1 Anode materials 

The characteristics of selected anode materials are listed in Table 2-1. For a more complete 

overview of anode materials, the author recommends the research presented within [67,68]. 

Anode Material Potential vs Li Charge Capacity Ref 

Lithium 0 V 3861 Ah/kg [69] 

Carbon 0.07-0.3 V 372 Ah/kg [68,70–72] 

𝐿𝑖4𝑇𝑖5𝑂12  1.55 V 175 Ah/kg [67,68,73,74]  

Silicon 0.4 V 3500-4200 Ah/kg [67,75] 

TABLE 2-1 – PROPERTIES OF SELECTED ANODE MATERIALS 

The first LIBs contained metallic lithium as their anode material. Under charging, metallic lithium 

is susceptible to dendritic growth posing a safety concern due to potential internal short-circuits 

and catastrophic failure, which makes this material unviable for commercial automotive 

applications. Modern commercial LIBs favour carbon based anodes, due to low cost, abundancy, 

non-toxicity, and electrochemical properties of the material [46,47,76,77]. Graphite (G) is used 

commonly in batteries. It can achieve a high specific capacity of lithium concentration for carbon 

anodes, and in its lithiated state, i.e. charged to its maximum capacity, has a low potential close 

to 0 V versus lithium metal [68,70,71]. During ion de/intercalation, as illustrated in Figure 2-1, 

lithium diffuses between graphene layers. During this process the material undergoes only small 

volume changes below 10% during [47,71], which is desirable as it reduces the risk of structural 

damage to the electrode during dis/charging processes. 

Carbon anodes operate outside the electrochemical stability window of common non-aqueous 

electrolytes within LIBs. At contact points between electrolyte and electrode the electrolyte 

decomposes at a potential of 0.8 V vs Li metal [61] resulting in the formation of a passivating 

layer on the surface contact region between the electrolyte and the solid electrode [78], 

irreversibly locking cyclable lithium within the layer. This solid-electrolyte interphase (SEI) layer 

[47,78–80], illustrated in Figure 2-3, is ionically conductive but blocks further contact between 

the electrolyte and the electrode, slowing down future side reactions. Over time, this SEI 

continues to grow and manifests as a degradation mechanism of the battery cell. The degradation 

of LIBs is discussed in more detail later. 
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FIGURE 2-3 - SCHEMATIC DRAWING OF THE SEI LAYER 

Two other anode materials of interest are silicon based anodes and spinel Lithium Titanium Oxide 

(LTO – 𝐿𝑖4𝑇𝑖5𝑂12). Although silicon anodes offer a 10 times higher capacity than carbon anodes 

they are currently not used in automotive applications due to their low maturity and very limited 

cycle life which results from a 270% expansion/contraction during charge and discharge [68]. 

Similarly to carbon LTO is also non-toxic [81]. The potential of LTO vs lithium metal is higher than 

that of graphite at 1.55 V [82], and as such operates within the stability window of most 

electrolytes, preventing the formation of an SEI film. Furthermore, LTO is not susceptible to 

lithium dendrite growth [68], undergoes negligible volume changes during lithium 

de/intercalation  [68,73,83], has lower heat generation than carbon anodes during operation 

[84], and a higher onset temperature for thermal runaway [85], making it a safer choice than 

graphite. However, the specific capacity and charge density of LTO is much lower than that of 

graphite. The high operating potential vs lithium metal also means that when paired with 

common cathode materials, the resulting cell operates at lower voltages around 2 V, making it 

less favourable for automotive applications. 

2.3.2 Cathode Materials 

Cathodes are the limiting of the two electrodes in terms of capacity. The cathode material used 

in commercial LIBs are predominantly metal oxides. An exception to this is Lithium Iron 

Phosphate (LFP (𝐿𝑖𝐹𝑒𝑃𝑂4). Table 2-2 provides information on the characteristics of selected 

cathode materials found in commercial LIBs. For a more detailed review on cathode materials 

the author recommends the literature [68,86,87]. 
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Cathode Material Potential vs Li Charge Capacity  Ref 

𝐿𝑖𝐶𝑜𝑂2  3.7 - 4.2 V 140 - 150 Ah/kg [61,88] 

𝐿𝑖𝑁𝑖𝑥𝐶𝑜𝑦𝑀𝑛𝑧𝑂2  3.7 - 4.2 V  150-230 Ah/kg [68,89] 

𝐿𝑖𝑀𝑛2𝑂4  4.1 V 120 Ah/kg [89] 

𝐿𝑖𝐹𝑒𝑃𝑂4  3.4 V 170 Ah/kg [68,87] 

TABLE 2-2 – PROPERTIES OF SELECTED CATHODE MATERIALS 

Early commercial LIBs contained Lithium Cobalt Oxide – LCO (𝐿𝑖𝐶𝑜𝑂2) electrodes. The material 

has a layered structure, allowing intercalation of lithium ions in between planes as illustrated in 

Figure 2-1. LCO in commercial cells has a voltage of 4.2V with respect to lithium metal 

corresponding to the cycling of 0.5 𝐿𝑖+ ions per 𝐿𝑖𝐶𝑜𝑂2 and a useful capacity of 140-150 Ah/kg. 

Modern commercial batteries still contain Cobalt but the material bears several disadvantages 

over newer alternative electrode materials, being harmful to the environment, and relatively 

scarce and expensive. Furthermore, instability at high temperatures and proneness to thermal 

runaway at overcharge [79,88] make it less favourable for vehicle applications.   

Another layered oxide material is Lithium Nickel-Manganese-Cobalt Oxide – NMC 

(𝐿𝑖𝑁𝑖𝑥𝐶𝑜𝑦𝑀𝑛𝑧𝑂2 , where 𝑥 + 𝑦 + 𝑧 = 1). It is much cheaper and less toxic than LCO due to the 

reduced cobalt content, and safer in operation and storage [90]. The exact properties of the 

electrode material depend on the composition [91]. The achievable specific charge capacity of 

NMC mentioned in literature ranges between 140-230 Ah/kg, giving it a big advantage over LCO 

in terms of energy capacity. A further significant advantage over LCO cells is the higher power 

capability, making a preferred candidate for automotive use. The material in various 

compositions is used in several commercially available EVs [58], and was used within the batteries 

of Formula E racing vehicles [92] during sessions in years 2014 – 2018. 

Lithium Manganese Oxide – LMO (𝐿𝑖𝑀𝑛2𝑂4) is an alternative to layered oxide. Its spinel structure 

is a different atomic structure to NMC and LCO cathodes. It is used in automotive applications as 

the main cathode for the cells comprising the battery system within the Nissan Leaf [87]. The 

material is relatively cheap compared to LCO, and has a better thermal safety behaviour than LCO 

with a higher thermal runaway temperature [86]. The voltages the cells can produce are similar 

those of LCO and NMC. However, the material has a lower charge capacity, and is outperformed 

by NMC by a factor of 2, making it less attractive for some automotive applications. 

Unlike the other cathode materials, LFP is not a transition metal oxide but an iron phosphate with 

an olivine structure. Like LMO, the material is also non-toxic and cheaper than LCO [79], and 



2 A Review of Lithium ion battery cells and testing methodologies 

18 

 

thermally more stable than LCO and NMC [93]. Compared to the cathode materials discussed 

above, LFP has a lower potential against lithium [86], and compared to NMC in particular a lower 

charge capacity [93], putting the material at a disadvantage for automotive use cases. 

Nevertheless, LFP is a popular candidate for high power applications and vehicles such as the 

Rimac Concept One [94], due to its high power capability and thermal stability [93]. 

Cells subjected to HP-BEV applications, as identified in Chapter 1, are likely exposed to high C-

rates and thus more thermal loading. As such, cells intended for this use should have high rate 

capability and thermal stability. Furthermore, a key factor for racing applications is weight. As 

such, the selected cells should have a high specific capacity. Based on the existing literature, G-

NMC and G-LFP cells appear suitable candidates for this application, where G represents the 

graphite anode. 

2.4 LIB Degradation mechanisms 

Over time, LIBs display a reduction of the useful energy capacity, and impedance augmentation. 

For EVs, these changes within the cell manifest themselves in a reduction of driving range and 

power capability for acceleration. This process, which is referred to as battery degradation, is 

coupled to structural and chemical changes within the cell called degradation mechanisms. 

Degradation within LIBs occurs at all times including resting conditions and can be further caused 

by fatigue during cell operation during charging and discharging, by mechanical stresses such as 

vibrations and shock impacts occurs over time, and by certain environmental conditions such as 

high temperatures. 

Although the specifics of battery degradation such as rate and pathway are highly dependent on 

the choice of battery cell chemistry and format, the degradation is similar for a variety of 

chemistries of LIBs [47]. The most common degradation mechanisms for commercial LIBs, which 

are based on a carbon anode and a lithium-transition metal cathode, are illustrated within Figure 

2-4 and described below. The overall degradation mechanisms can be broadly grouped into 

surface film effects, including SEI growth and lithium plating, structural changes to the bulk 

materials, mechanical changes, and parasitic side reactions [95]. The degradation of a battery cell 

is complex as all degradation mechanisms are interlinked and no mechanism occurs in isolation. 
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FIGURE 2-4 – COMMON DEGRADATION MECHANISMS OF A LIB 
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2.4.1 Surface film effects 

During initial cycling, an SEI forms on anode surfaces, irreversibly locking cyclable lithium in the 

process. Throughout the lifetime of the cell, the SEI continuously grows, locking up further 

cyclable lithium, although at a much slower rate [96]. Elevated temperature operation and 

storage is known to accelerate the process of SEI growth at the carbon anode. The chemical 

composition and morphology of the SEI changes at elevated temperatures above 60-80 °C [97],  

resulting in a more porous layer. Furthermore, the SEI can decompose, exposing fresh graphite 

to the electrolyte. Under these conditions side reaction compounds such as phosphates, 

carbonates and 𝐿𝑖𝐹 are formed, accumulate on graphite particles and form a barrier to 𝐿𝑖+ ion 

diffusion causing an increase in cell impedance. Additionally more SEI is gradually formed, locking 

more 𝐿𝑖+ ions in the process, causing capacity fade [47,78,97–99]. 

Lithium plating is the deposition of solid lithium metal on the anode surface during charging 

[47,78]. With increasing SOC [100], and at low temperatures [99,101] the diffusivity of lithium in 

graphite is reduced. At high charge current rates [102,103] the 𝐿𝑖+ ions cannot intercalate into 

graphite layers quick enough to reach the theoretical capacity limit of the anode. This may lead 

to local areas on the electrode surface to be fully lithiated and subsequently lithium plating and 

dendrite growth occurs. Not only does this process reduce the amount of Li-ions available for 

shuttling between electrodes, but also acts as a potential failure mode. The metallic lithium 

subsequently reacts with fresh electrolyte, reducing charging efficiency and further increasing 

growth of the SEI [104–106]. Additionally to impedance rise and loss of cyclable lithium, lithium 

dendrites can penetrate the separator and cause an internal short circuit with the cathode 

causing catastrophic failure of the cell [68,71,79]. 

At the cathode, the formation of surface films similar to SEI on the anode has been reported 

within [107,108]. The formation of these films is accompanied by a reduction in cyclable lithium, 

and increased impedance. The decomposition and future growth of the passivating layer at the 

cathode surface is strongly related to charging the cells above a critical potential, which depends 

on the choice of cathode material. For example, charging NMC cells above 4.5 V results in 

significantly higher rate of layer growth than for 4.1 V  [108]. 

2.4.2 Structural changes 

Structural changes refer to changes in the electrodes at an atomic level, such as Jahn-Teller 

distortion and transition metal dissolution in spinel LMO cathode-based batteries [109]. In spinel 

LMO, Manganese is predominantly present as Mn3+ and Mn4+ ions. During discharging of the 
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battery cell, the cathode is being lithiated. As Li+-ions diffuse much quicker within the electrolyte 

than in solid LMO particles, these ions may accumulate at the electrode surface and Mn4+ is 

reduced to Mn3+. This causes a distortion in the atomic structure within the electrode material 

and a volume change within the electrode. The Mn3+ can then reduce further to Mn2+, which is 

soluble in the electrolyte [29]. This process is augmented at low SOCs, and high discharge rates, 

as a localised increase of Li+  [78]. 

The dissolution of Manganese into the electrolyte results in a reduction of active cathode 

material and electrolyte, and mechanical damage to the cathode material and thus a reduction 

in cyclable lithium capacity and increase in impedance. Furthermore, Mn2+-ions can transfer to 

the anode through the electrolyte, deposit on the anode, and result in decomposition of the SEI 

[90,110]. 

2.4.3 Mechanical changes 

Mechanical changes are structural changes on a particle rather than atomic level, resulting 

predominantly in particle cracking. During de/intercalation of lithium in the electrodes, the active 

material particles can undergo expansion and contraction of up to 10% by volume for graphite 

[47], and up to 16% for LMO [78]. Over time, the repeated expansion and contraction of the 

electrode material can lead to cracking in the active particles due to fatigue. Not only does this 

expose electrolyte to fresh reaction sites, resulting in additional SEI formation, but also cause 

impedance rise through poor electric contact between active particles, binder, and the current 

collectors [111]. 

Another pathway for cracking is the co-intercalation of solvents from the electrolyte into the 

graphite anode [112]. The electrolyte reacts reductively, as in SEI formation, accompanied by gas 

release within the electrode particle. This can lead to the expansion of the graphite of up to 200%, 

resulting in particle cracking and exfoliation, resulting in a reduction in active material, and 

further SEI formation [47,61,71,113–115]. 

2.4.4 Parasitic reactions 

Parasitic reactions in LIBs involve the degradation of passive materials such as the current 

collectors and binders. On the anode side, the corrosion of copper current collectors can occur 

at low SOC, when the anode is highly delithiated [78,116]. At the cathode, at high SOCs, the 

electrolyte decomposes and partly forms hydrofluoric acid (𝐻𝐹), which corrodes the electrode 

material and aluminium current collector [117,118]. Both mechanisms result in a loss in electrical 
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contact and thus increase in cell impedance but are accompanied by some electrolyte loss and 

thus also result in further reduction in cyclable lithium. 

Similarly, Binder decomposition occurs in both extremes of SOC (high and low)[116], and at high 

temperatures [119]. This causes a loss of electrical contact between the electrode active material 

particles and current collectors, manifesting itself in increased cell impedance. Furthermore, 

decomposed binder components can migrate to anode and cathode surfaces and block lithium 

diffusion pathways [119]. 

2.4.5 Influencing environmental factors and operating parameters 

The onset and progression of the discussed degradation mechanisms is influenced by various 

environmental conditions and operational parameters. A short summary of these differentiating 

factors and their effect on battery degradation is listed in Table 2-3. Notably, increased cell 

temperature and high operating currents accelerate most degradation mechanisms. As most 

chemical processes are assumed to follow an Arrhenius type relationship, an increase in 

temperature brings the system closer to the activation energy of unwanted side reactions, thus 

accelerates the degradation of the cell [116]. 

High electrical currents can cause rapid volume changes during intercalation and de-

intercalation, which results in contact loss between the electrode and current collectors, changes 

in surface porosity of the electrode material, and subsequently expose fresh graphite to the 

electrolyte resulting in increased SEI growth on the anode. At the cathode large currents cause 

volume changes causing particle cracking resulting in increased cell impedance [50,120]. High 

currents are particularly damaging if a cell experiences uneven current distribution. Local areas 

within the cell will encounter larger currents than their surroundings causing localised hotspots 

coupled with SOC inhomogeneity  resulting in  localised ageing and further degradation of the 

cell [121]. 

Further information and detailed reviews on battery degradation can be found within 

[47,61,96,99,110]. 
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Cause/ 
Aggravating 
factor 

Affects Causes Reference 

High Current 

Anode 

Lithium plating during charging at high SOC and 
subsequent SEI growth at locations where Li 
metal is exposed to electrolyte 

[47,105,116] 

Volume changes resulting in contact loss of active 
material particles and particle cracking, exposing 
fresh graphite to the electrolyte and subsequently 
further SEI growth 

[47,116] 

Cathode 
Volume changes and tensile compressive stresses 
causing particle cracking 

[50,120] 

Transition metal dissolution [78] 

High 
temperature 

Anode 

Decomposition of electrolyte resulting in loss of 
cyclable lithium and further SEI growth 

[47,98,99,116] 

Increased SEI film growth decreasing accessible 
surface area 

[47,99] 

Parasitic side reactions exposing fresh graphite to 
electrolyte and increased SEI growth 

[47] 

Decomposition of binder causing mechanical 
instability 

[47] 

Cathode 

Oxidation of electrolyte causing gas evolution and 
loss of cyclable lithium 

[46,77,116] 

Increase in phase changes in active material [116] 

Dissolution of transition metal, and deposition on 
anode (LMO) 

[47,50,99,116] 

Decomposition of binder [119] 

Low 
Temperature 

Anode Lithium plating during charging at high SOC 
[47,122] 

High DOD 

Anode 
Volume changes causing mechanical stresses and 
particle cracking with subsequent SEI growth 

[47] 

Cathode 
Volume changes causing mechanical stresses [47,116] 

Crystal structure disorder causing particle 
cracking 

[116] 

High SOC 

Both 
Binder decomposition [116] 

Electrolyte decomposition [78] 

Anode Lithium plating at high charging rates [47,122] 

Cathode Current collector corrosion [78,116] 

Low SOC 

Both 
Electrolyte decomposition [78] 

Binder decomposition [116] 

Anode Current collector corrosion [117,118] 

Cathode Transition metal dissolution [78] 

TABLE 2-3 – LIB OPERATING CONDITIONS AND RESULTING DEGRADATION MECHANISMS FOR LIBS 
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2.5 Characterisation Testing 

To characterise LIBs, and to identify and quantify battery degradation, researchers have 

employed a variety of invasive [123] and non-invasive [29] test methodologies. Invasive methods, 

such as scanning electron microscopy (SEM) can be used to measure physical characteristics. An 

example of this is the size of particles within the electrode active materials They can also be used 

to detect surface film formation on particles, and mechanical changes such as electrode cracking 

within the electrode materials [124]. X-ray diffraction (XRD) can be used to identify structural 

changes on an atomic level. As such, these methods allow for the identification of the 

degradation mechanisms described previously, and for the parameterisation of electrochemical-

physical models as described within [125]. However, these methods are destructive and require 

cell disassembly and complex sample preparation [126], thus cannot be easily done within an 

engineering framework outlined in Chapter 1. The use of destructive testing methods therefore 

is outside the scope of this work, and as such, only non-destructive methodologies are described 

in more detail. 

Non-invasive testing methods are most commonly based on electrical characterisation tests and 

do not require deconstruction of the cell. Utilising these characterisation tests at regular intervals 

during a cell’s useful life, and tracking their outcomes enables researchers to quantify the effect 

of degradation on the performance of the cells primarily in terms of energy capacity fade and 

impedance rise. The onset and progression of specific degradation mechanisms such as surface 

film effects can only be inferred, and only the effects of this degradation may be quantified, as 

discussed in detail below. 

2.5.1 Galvanostatic energy capacity 

Galvanostatic energy capacity tests are one of the most commonly used characterisation tests in 

research [127,128], and in industry as defined within industrial standards [34–36]. These tests 

determine the amount of electrical energy, which can be released from a fully charged cell under 

defined conditions. Typically, a cell is charged using a constant current-constant voltage (CC-CV) 

schedule as illustrated in the example in Figure 2-5 for a 53 Ah cell comprising a graphite anode, 

and NMC cathode. The specifics of data collection and post processing for this example are 

described in detail in Chapter 6. 
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FIGURE 2-5 – CURRENT AND VOLTAGE PROFILE OF A 53 AH G-NMC CELL DURING CC-CV PROCEDURE. 

Initially the cell is charged at a predefined C-rate until it reaches its maximum operating potential 

as specified by the manufacturer. The C-rate is a measure of the applied current compared to the 

manufacturer’s rated capacity and a C-rate of 1C will discharge a cell in 1 hour [129]. Hence, for 

a cell with a capacity of 50 Ah, a C-rate of 1C would represent a current of 50 A. It is subsequently 

held at this potential with a decreasing current until the charging current drops below a 

predefined threshold, typically C/20 or less [104]. The cell is then left at open circuit potential for 

a set amount of time, typically 1h, to equilibrate, before being discharged at a constant current 

until the cell cut-off potential is reached. The discharge energy capacity is defined as the energy 

extracted during the discharge. 

The magnitude of charging and discharging C-rates, as well as upper and lower cell potential limits 

influences the amount of energy, which can be extracted from the cell, and how much time is 

required to complete the test. As the C-rate is increased, more energy is lost as heat due to 

increases in polarisation, and the overall usable capacity in one cycle is decreased. As such, the 

measurements for capacity vary at different C-rates. This effect is illustrated in Figure 2-6. To 

track the capacity of a cell to determine the effects of degradation in terms of capacity fade, the 

test parameters must be kept consistent throughout the testing period.  
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FIGURE 2-6 - GALVANOSTATIC CHARGE/DISCHARGE POTENTIAL PROFILES MEASURED AT VARIOUS C- RATES FOR A 

CARBON-LFP CELL AT 25°C. FROM [130]. INCREASES IN CURRENT REDUCE THE OVERALL ENERGY CAPACITY THAT 

MAY BE EXTRACTED FROM THE CELL, CAUSED BY INCREASED POLARISATION AND THERMAL LOSSES. 

2.5.2 Pseudo-OCV testing and dQ/dV analysis 

The pseudo-OCV tests serves as a capacity test at a low C-rate and can be used for incremental 

capacity analysis, a method often used to identify gradual changes within LIBs [38,131–133] and 

to infer degradation through a non-destructive test process. The test can be conducted either 

during charging or during discharging. The test procedure is illustrated in Figure 2-7 for the same 

53 Ah cell. The specifics of data acquisition for this example are detailed in Chapter 6. 
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FIGURE 2-7 – CURRENT AND VOLTAGE PROFILE OF A 53 AH G-NMC CELL DURING PSEUDO-OCV MEASUREMENTS 

The cell is discharged to 0% SOC, and left for a predefined duration to equilibrate (typically 1h). 

It is subsequently charged with a low C-rate under a CC-CV schedule, and voltage and capacity 

are recorded. The amplitude of the C-rate must be small enough to keep the cell in a state close 

to its OCV, but not so small as to fall within the accuracy limitations of the measurement and 

electrical loading equipment. Furthermore, the c-rate influences the duration of time it takes to 

complete the test. Pastor-Fernandez [134] et al suggest a rate of 0.1C or lower to find a 

compromise between test duration and data resolution. The corresponding capacity vs. potential 

curve (illustrated in Figure 2-8) is then differentiated to obtain the dQ/dV curve shown in Figure 

2-9. 
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FIGURE 2-8 – CAPACITY VS CELL POTENTIAL CORRESPONDING TO THE P-OCV CHARGE IN FIGURE 2-7 

The dQ/dV curves themselves are the derivatives of the charge vs. voltage, and the area under 

the curve equates to the capacity of the cell. Plateaus in the OCV curve are transformed to 

identifiable peaks on the dQ/dV curves (marked with red arrows). 

 

FIGURE 2-9 – DQ/DV CURVE DERIVED FROM FIGURE 2-8, RED ARROWS INDICATE PEAKS ASSOCIATED WITH PHASE 

CHANGES IN THE ACTIVE ELECTRODE MATERIALS DURING CHARGING 
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These peaks in dQ/dV curves, and plateaus in OCV curves are associated with phase 

transformations in the active materials. Conducting dQ/dV on individual electrodes reveals the 

phase changes within the materials individually, as illustrated in the example for graphite 

electrodes in Figure 2-10 [135]. 

 

FIGURE 2-10 – OCV AND PHASES OF GRAPHITE AS A FUNCTION OF LITHIATION, ADAPTED FROM  [135] 

On a full cell, the analysis is more complex as the attribution to either electrode is not always 

straightforward. By monitoring changes in the shape and position of these peaks during cell life, 

crucial information about changes in the electrochemical properties of the cell can be extracted 

[133]. 
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2.5.3 Hybrid Pulse Power Characterisation (HPPC) 

When a discharging current is applied to a cell, the potential of the cell drops. For pure Ohmic 

systems, this potential drop is directly proportional to the current, which is applied and can be 

calculated if the internal resistance is known (Δ𝑈 = Δ𝐼𝑅). The voltage response of LIBs to an 

applied current is not linear and is illustrated in Figure 2-11 on the same example cell as the 

previous two. 

 

FIGURE 2-11 – VOLTAGE RESPONSE OF A CELL TO A DISCHARGING CURRENT INPUT 

The total voltage drop within the cell can be divided into a static, and dynamic part [136]. The 

instantaneous voltage drop (Δ𝑈0) is caused by the pure Ohmic resistance within the cell. The 

dynamic part of the total voltage drop (Δ𝑈1) is caused by electrochemical changes within the cell. 

These electrochemical processes such as the concentration changes of reactants and products at 

the reaction sides in the electrodes are time dependent, thus the second voltage drop changes 

over time. The “Hybrid Pulse Power Characterisation” (HPPC) test consists of a sequence of 

alternating 10s discharge and charge current pulses of increasing C-rate applied at a pre-defined 

SOC and temperature with a rest-interval between each pulse to allow the voltage to equilibrate 

[137]. The duration of pulses is kept short at 10 s to limit the impact of SOC variation on the 

measurement.  
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The measured voltage response of these tests can then be used to parameterise an equivalent 

circuit model (ECM) for a specific SOC, temperature, and current input. ECMs of various degrees 

of complexity have been used in research to model the voltage response of lithium ion batteries 

for on-board SOC estimation in electric vehicles [138,139], and for estimating the state of health 

(SOH) of a cell by tracking the parameters for internal resistance over time [140]. An example of 

an ECM often utilised in research [134,136,139] is the Randles equivalent circuit consisting of a 

resistor, in series with two RC networks as illustrated in Figure 2-12. 

 

FIGURE 2-12 – RANDLES ECM WITH 2 RC PAIRS, R1 REPRESENTS THE CHARGE TRANSFER RESISTANCE, C1 IS USED 

TO MODEL THE EFFECT OF THE DOUBLE LAYER CAPACITANCE. THE 2ND RC PAIR CAN BE USED TO MODEL THE EFFECTS 

OF THE SEI 

In this example 𝑅0  represents the bulk Ohmic resistance in the bulk materials and current 

collectors, 𝑅1  represents the charge transfer resistance, 𝐶1  represents the double layer 

capacitance, and the second RC pair represent the electrical effects of the SEI. 

2.5.4 Pulse-Multisine Characterisation 

The Pulse Multisine Characterisation (PMC) test, first introduced by Widanage et al. [141,142], is 

a characterisation test based on a similar principle as the HPPC test. The profile utilised for this 

test differs from the charging and discharging pulses used within the HPPC, as it is the result of a 

zero-mean multisine superimposed on a sequence of pulses, as illustrated in Figure 2-13. The 

resulting profile aims to charge sustaining and approximates the amplitude spectrum of a duty 

cycle derived from a real-world driving cycle. As such, the profile is more representative of the 

dynamics a cell is exposed to during operation. Within [142], the PMC test was successfully 

employed to characterise several different cell-types and provide the necessary dataset to 

parameterise an ECM which better captured non-linear behaviour of cells. The fundamentals of 

the method are briefly explained below, the MATLAB® code and scripts to design the PMC, and 

evaluate the test results were made available within [141,142]. 

𝐶1 𝐶2

𝑅0

𝑅1 𝑅2

𝑈 𝑡
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FIGURE 2-13 – PULSE MULTISINE CHARACTERISATION PROFILE FROM [141]. THE DYNAMIC MULTISINE SIGNAL IS 

SUPERIMPOSED ON THE MODAL BASE SIGNAL TO CREATE A MORE DYNAMIC PROFILE.  

Several, typically 5, periods of the PMC signal (𝑖(𝑛)) are applied to a cell and the voltage response 

(𝑣(𝑛)) is recorded. This data can subsequently be used to parameterise a non-linear ECM (NL-

ECM) as illustrated within Figure 2-14. The NL-ECM consists of linear ECM block coupled with a 

non-linear over-potential function and a parallel OCV model block. 

 

FIGURE 2-14 – NON-LINEAR ECM CONSISTING OF A LINEAR ECM, OCV BLOCK, AND NON-LINEAR OVER-POTENTIAL 

FUNCTION, ADAPTED FROM [142] 

To parameterise the linear ECM, first the cell Impedance is estimated under steady state 

conditions. As such, to lessen the effect of transient behaviour, the first period of the measured 

current and voltage should be discarded. The measured voltage and current signals are then 

averaged over a single period as described in equations (15) and (16), where 𝑃 is the number of 

periods of the PMC signal applied, 𝑁 is the number of samples per period in the PMC signal, and 

𝑛 = 0,… (𝑁 − 1). 

 𝑖(̅𝑛) =
1

𝑃 − 1
∑ 𝑖(𝑁(𝑝 − 1) + 𝑛)

𝑃

𝑝=2

 (15) 

 𝑢̅(𝑛) =
1

𝑃 − 1
∑𝑢(𝑁(𝑝 − 1) + 𝑛)

𝑃

𝑝=2

 (16) 

In a further processing step, the mean voltage of the voltage response signal 𝑣̅(𝑛)  is then 

subtracted from 𝑢̅(𝑛), as it is interchangeable with the OCV for that particular SOC. The resulting 

signal 𝑢̅0(𝑛) thus represents the over-potential arising from the applied current. 

ECM 𝑓(𝑢1)

OCV

𝑢1(𝑡)
+

𝑖(𝑡) 𝑢(𝑡)
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Subsequently, the Discrete Fourier Transform of the signals 𝑖(̅𝑛) and 𝑢̅(𝑛) are determined as 

described in equations (17) and (18), respectively, where k denotes the harmonic and 𝑘 =

0, 1,… , 𝑁 − 1 

 𝐼(𝑘) = ∑ 𝑖̅

𝑁−1

𝑛=0

(𝑛)𝑒−
2𝑗𝜋𝑛
𝑁  (17) 

 𝑈(𝑘) = ∑ 𝑣̅

𝑁−1

𝑛=0

(𝑛)𝑒−
2𝑗𝜋𝑛
𝑁  (18) 

This representation of the current and voltage signals within the frequency domain are linked via 

equation (19), where 𝑍(𝑘) is the impedance of the cell, and 𝐸(𝑘) is an error term accounting for 

any non-linear behaviour. 

 𝑈(𝑘) = 𝑍(𝑘)𝐼(𝑘) + 𝐸(𝑘) (19) 

From equation (19), the Impedance of the cell can be estimated whilst minimising the influence 

of 𝐸(𝑘). This is achieved through what the authors describe as a local-polynomial-method, where 

𝑍(𝑘)  is estimated locally around 𝑘  via a low degree polynomial as described within [143]. 

Following the estimation of 𝑍(𝑘) a transfer function model 𝑍𝑚(𝑘) approximating the impedance 

is determined via the Frequency Domain System Identification Toolbox in MATLAB®. From this 

function, ECM parameters can be estimated via partial fraction expansion of 𝑍𝑚(𝑘). Within [142] 

𝑍𝑚(𝑘) was a 2nd order transfer function and was expanded as described within equation (20) to 

parameterise a 2nd order ECM, similar to that shown in Figure 2-12. The internal cell resistance is 

represented by 𝑅0 . 𝑅1  and 𝑅2  represent the polarisation resistances, and 𝜏1  and 𝜏2  the time 

constants. 

 𝑍𝑚(𝑘) = −𝑅0 −
𝑅1

𝜏1𝑗𝜔𝑘 + 1
−

𝑅2
𝜏2𝑗𝜔𝑘 + 1

 (20) 

The resulting ECM can then be used to model the voltage response 𝑣1(𝑡) to a current input 𝑖(𝑡). 

Any non-linear behaviour of the cell arising from reaction kinetics can be examined by plotting 

the measured over-potential 𝑢̅(𝑛)  against the modelled over-potential. Within [142], non-

linearity was observed predominantly for low temperatures, and modelled using a sigmoid  

function. 
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By conducting PMC testing on a regular basis and tracking changes of the estimated ECM 

parameters over time, changes within the cell could be inferred. In addition to the PMC requiring 

a shorter testing time than the HPPC, an additional advantage is the possibility to observe any 

changes in non-linear behaviour of the cell. This is beneficial since high current densities may 

result in non-linear behaviour of cells as identified above. Furthermore, the emergence of non-

linear behaviour might occur over time due to electrochemical changes within the cell. 

2.5.5 Electrochemical Impedance Spectroscopy 

The voltage drops Δ𝑈1 and Δ𝑈2 measured in HPPC tests is caused by the combined effects of the 

electrochemical processes that occur within a cell. Each process has its own time constant 

[136,144], and as such the proportion that each process contributes to the voltage response 

cannot be easily extracted from HPPC data. Electrochemical impedance spectroscopy (EIS) offers 

the possibility of investigating each process individually [145]. 

EIS tests in galvanostatic mode are undertaken by applying an AC sinusoidal current (𝑖(𝑡)), as 

defined in equation (21) to the cell and measuring the voltage response (𝑢(𝑡)) as defined in 

equation (22). 𝑖0 is the magnitude of the excitation current, 𝜔 is the excitation frequency, and 𝜙1 

is the phase angle of the current signal. 𝑢0 is the voltage amplitude, and 𝜙2 is the phase angle of 

the resulting voltage response, which is different from 𝜙1 due to cell impedance [146,147]. 

 𝑖(𝑡) = 𝑖0 sin(𝜔𝑡 + 𝜙1) (21) 

 𝑢(𝑡) = 𝑢0sin (𝜔𝑡 + 𝜙2) (22) 

The frequency domain representation of equations (21) and (22) are given in equations (23) and 

(24), respectively. 

 𝐼(𝜔) = 𝐼0(𝜔)𝑒
𝑗𝜙1(𝜔) (23) 

 𝑈(𝜔) = 𝑈0(𝜔)𝑒
𝑗𝜙2(𝜔) (24) 

The impedance of the cell for a certain frequency (𝑍(𝜔)) can then be calculated from the above 

equations and as described in equation (25). 

 𝑍(𝜔) =
𝑈(𝜔)

𝐼(𝜔)

𝑈0𝑒
𝑗𝜙2

𝐼0𝑒𝑗𝜙1
= 𝑍0𝑒

𝑗(𝜙2−𝜙1) (25) 
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The signal is applied throughout a range of frequencies (e.g. 10 mHz to 10kHz), and the calculated 

impedance, 𝑍(𝜔), consists of a real and an imaginary component. This is represented on a 

Nyquist plot, where the imaginary part of the impedance is plotted on the y-axis and the real part 

of the impedance is plotted on the x-axis. A typical Nyquist plot for an LIB is illustrated in Figure 

2-15. 

The plot can be divided into three distinct regions: high-frequency inductive tail (>1kHz), mid-

frequency semicircle (1kHz – 10Hz), and Warburg impedance at low-frequency (<10Hz) [148]. The 

inductive tail in the high frequency region is associated with conduction through the bulk material 

of the cell, separator, electrolyte and wires. The pure Ohmic resistance can be extracted from the 

intersection of the inductive trail with the real axis. The semicircle in the mid-frequency region is 

attributed to charge transfer phenomena and reaction kinetics. The Warburg region of the plot 

correlates with diffusion and mass transport effects. The EIS frequency response can be used to 

parameterise an ECM, similar to that shown in Figure 2-12, to model the dynamic behaviour of 

the cell. 

 

FIGURE 2-15 - TYPICAL NYQUIST PLOT FOR A LIB, SEPARATED INTO THREE DISTINCT FREQUENCY REGIONS. 
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In addition to characterising cell dynamics, EIS testing is commonly used to characterise the 

degradation of cells over time [149]. Through tracking changes in the shapes of the graphs and 

thus the resulting ECM parameters, it is possible to gather more detailed information about the 

degradation of cells. For example, a second semicircle is formed and appears on the Nyquist plots 

in the high- to mid-frequency over prolonged use of the cell. This semicircle is believed to 

originate from the growth of the SEI layer [107]. 

2.5.6 Ultrasonic testing 

Unlike the previously discussed electrical characterisation tests, ultrasonic testing has been 

utilised in several studies as an alternative non-destructive means to determine the SOC and SOH 

of cells [150–153]. As ions intercalate and de-intercalate from an electrode, physical changes 

occur within the active material. As a result, the density and elastic modulus of an electrode 

changes as a function of its state of charge. A typical setup for ultrasonic testing is detailed within 

Figure 2-16. 

 

FIGURE 2-16 – SCHEMATIC OF ULTRASONIC TESTING SET UP 

A piezo transmitter produces an acoustic signal pulse, which travels through the cell and is 

recorded at the receiver. The intensity of the measured pulse and time of flight can subsequently 

be correlated with the cell’s SOC. Hsieh et al. [151] show that a strong correlation exists between 

a cell’s SOC and the density distribution determined through ultrasonic measurements. 

Furthermore, they describe observable changes in measurements as the cell is cycled, indicative 

of degradation processes. They argue that ultrasonic testing offers an effective analysis technique 

regardless of cell chemistry and form factor. Gold et al. [153] show that within their study, the 

time of flight from piezo transmitter to receiver correlates approximately linearly with the SOC 

of a cell. However, the parameterisation of models that emulate the electrical behaviour of a cell 

is currently not possible. As such, ultrasonic testing will not be employed within this work. 

Li-ion battery cellPiezo transmitter Piezo receiver
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In summary, the electrical characterisation tests described allow for the identification of cell 

characteristics such as internal impedance and energy capacity, and the parameterisation of 

models that emulate the dynamic behaviour of cells. The effects of LIB degradation can be 

measured by tracking the values of these parameters over the lifetime of a specific cell. The 

testing conditions such as C-rates, SOC range and testing temperature can be selected such that 

it replicates conditions encountered within a HP-BEV environment. The existing electrical 

characterisation testing framework is assessed as adequate to characterise LIBs for this use case. 

2.6 Degradation Testing / Ageing 

The typical process for degradation testing is illustrated in Figure 2-17 and detailed below.  

 

FIGURE 2-17 – TYPICAL PROCESS OF DEGRADATION TESTING. 

Initially, a cell is selected considering form factor, chemistry and manufacturer. Subsequently, 

the cells are characterised to define their state at the cell’s beginning of life (BOL). The specific 

methods chosen depend on each study, and comprise test described in the previous section. 

From this initial characterisation, the cells end of life (EOL) criteria are also are also defined based 

on the use case (usually 80% retained rated capacity, 100% impedance increase for automotive 

applications [36]). Cells then undergo testing to examine the influence of specific aspects of 
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operation on their degradation. This can be for example the influence of temperature under 

storage [55], or the influence of high current rates [154]. During testing, batteries are 

characterised periodically to monitor the progression of the effects of degradation, and testing 

is concluded if the EOL of the cells has been reached, or cells have undergone catastrophic failure. 

This is sometimes followed by post-mortem analysis to identify the degradation mechanisms. The 

research presented within this work focuses on storage and cycle degradation testing which are 

discussed in detail below. For more information on the degradation related to mechanical 

stresses the author recommends the research presented within [49,155,156]. 

2.6.1 Storage Testing – Calendar Ageing 

Calendar ageing studies are used to investigate the degradation, which occurs over time without 

subjecting the cell to electrical loading. A typical experimental set-up involves storing LIBs at a 

predefined set of temperatures and SOCs, and to observe the impedance rise and capacity fade 

over time [52]. 

An example of such a study is the work by Käbitz et al. [54], who tested 10Ah pouch-format cells 

comprising a graphite anode and NMC(0.33, 0.33, 0.33) cathode. Cells were stored under open 

circuit and constant voltage conditions at four different temperatures between 25°C and 60°C, 

and five different SOCs between 20% and 100%. The degradation of the cells was measured based 

on impedance augmentation and capacity fade, by running pulse power tests and capacity tests, 

respectively every six weeks of storage. It was shown that the rate of impedance augmentation 

and capacity fade follows an Arrhenius-type relationship with respect to temperature and time. 

Cells stored at elevated temperatures experienced a greater rate of capacity fade and impedance 

augmentation, than those stored at lower temperatures. This was attributed to a relative 

increase in SEI growth and electrolyte decomposition compared to cells stored at lower 

temperatures. Cells stored at full charge (100% SOC) displayed higher impedance rise and 

capacity fade at the end of testing than cells stored at lower SOCs, and little difference of effects 

could be observed for SOCs between 90% and 50%. These observations are in accordance with 

those of a similar study investigating a different format type cell of similar chemistry [55]. 

Further extensive studies on storage and calendar ageing for a number of different format-type 

and cell chemistries and can be found within [52,157–160]. The results obtained from such 

studies provide information about optimum cell storage conditions with respect to SOH, and 

underpin the derivation of lifetime prediction models [140,161] to develop a better 

understanding of the ageing process during storage. These models are essential to simulate the 
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proportion of ageing which occurs whilst vehicles are parked, and to estimate differences in 

degradation rates for different geographic locations [95,162]. 

The environmental conditions, which HP-EVs experience during storage, could be assumed 

similar to those of standard road vehicles in the scenario of a vehicle being parked on a drive or 

in a garage. For a vehicle dedicated to racing applications, it can be argued that the storage 

conditions of the vehicle are optimised to minimise capacity fade and impedance rise of the cell. 

Gering et al. [163] have shown that the degradation during calendar ageing can be influenced if 

a cell is cycled in between calendar tests. Thus, the author asserts that the sequence of operating 

conditions as well as their nature directly influence the rate of ageing. This process is described 

as path-dependence. As such, to gain comparable results between two different studies, the 

sequence of tests should be kept the same. Provided, any differences in cycling profiles between 

HP-BEVs and standard passenger vehicles is taken into account, existing calendar ageing 

methodologies should be sufficient to provide datasets suitable for HP-EV applications. Hence, 

no further exploration into HP-BEV specific calendar ageing is covered within this work. 

2.6.2 Cycle Testing 

Cycle tests are suitable to provide several deliverables. Firstly, to identify the effect of specific 

cycling profile characteristics such as C-rate, depth of discharge (DOD = Δ SOC) and SOC cycling 

range on individual degradation mechanisms [29,54,164–166]. Secondly, to provide a dataset 

that underpins the development of an empirical degradation model to predict capacity fade and 

impedance augmentation for batteries in use such as electric vehicles [51]. Finally, to evaluate 

cell performance with respect to self-heating under operation [167,168], and to parameterise 

and validate electro-thermal models that predict the evolution of cell temperature and capacity 

under different testing conditions [125]. 

2.6.2.1 Galvanostatic Profiles 

In its most simple form, cycling tests are conducted using galvanostatic profiles. Ecker et al. [55] 

complemented their calendar ageing study with a cycle ageing study investigating the effect of 

DOD, and starting SOC on the degradation of an NMC cell. Cells were cycled at a rate of 1C at 

35°C through 6 different DODs for a range of starting SOCs. The degradation was measured in 

terms of capacity fade and impedance rise. Capacity fade was determined using a galvanostatic 

discharge at 1C, and impedance rise was determined using pulse power tests. The study found 

that cell degradation increases with increasing DOD, and that cycling around a mean of 50% SOC 

was least detrimental for the tested cells compared to lower and higher SOCs. The faster 
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degradation rate was linked to cells crossing transitions in voltage plateaus in the individual 

electrodes, i.e. phase transitions in the active materials, thus resulting in higher mechanical 

stresses on the material particles.  

Käbitz et al. [54], conducted similar tests, cycling cells using a current rate of 1C through different 

DODs at 4 different SOCs at 40°C. Furthermore, they conducted full cycle tests from 100% SOC to 

0% SOC at 25°C, 40°C and 60°C. They found that cycling at low DODs did not lead to any 

observable additional capacity fade, compared to the cells in their calendar ageing study at the 

same SOCs. Discharging cells through higher DODs however did increase capacity fade. 

Impedance augmentation increased at elevated temperatures. At 25° C and high DOD, in contrast 

the impedance rise was lower than in the calendar ageing study over the same period. The 

reasons stated for this specific observation were believed to be complex interactions of volume 

increases and deposition reactions in the anode material during cycling [54]. 

Groot et al. [27] investigated the effects of symmetric and asymmetric cycle testing profiles at 

different temperatures, varying DODs, and resting periods between cycling on LFP cells. 

Symmetric profiles refer to tests where charging current rates and discharging current rates are 

of equal magnitude, asymmetric refers to situations, where different rates are used for charging 

and discharging respectively. Whilst for symmetric profiles capacity fade strongly related to 

current rate and temperature, the observed impedance augmentation did not directly correlate 

with capacity decrease. The increase in Ohmic resistance, measured using the EIS test technique, 

more closely related to the total test time, and the increase in low frequency impedance 

correlated well to the total capacity throughput and cycling temperature. For asymmetric cycles, 

i.e. situations where charging and discharging occurred at different current magnitudes, charging 

at elevated C-rates coupled with discharging at low c-rates lead to shorter cycle life than scenarios 

where the charging and discharging current magnitudes were reversed. Furthermore, in both 

cases degradation was worse than compared to high c-rate charge coupled with high c-rate 

discharge. 

The cycling studies discussed above enable the investigation of the effects that some specific 

cycling conditions, namely DOD, SOC, C-rate and temperature, have on the characteristics of LIB 

degradation. The datasets obtained from such galvanostatic testing may underpin the 

development of degradation models under steady state and dynamic conditions allowing the 

user to make lifetime predictions. 

One example is given by de Hoog et al. [51]. In this particular study 20 Ah pouch-format NMC 

cells were tested over 2.5 years with an extensive calendar life and cycle life test program, testing 
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several cells using a combination of 6 different temperatures, C-rates of C/3, 1C and 2C for 

symmetric and asymmetric cycling, 5 middle SOCs, and 7 different DODs. The resulting dataset 

was used to develop a lifetime prediction model comprising separate calendar and cycling ageing 

components. The model was validated against test data of cells undergoing realistic, and 

accelerated duty cycle ageing utilising a scaled profile based on the WLTP driving cycle. Although 

the authors declared satisfactory accuracy for lifetime prediction capability of the model, the 

study did not explore higher charging or discharging current rates than 2C. As the effects of 

degradation cannot be extrapolated for higher current rates, this mapping approach is limited to 

the currents used. The authors stated that the charge and discharge current rate have a negligible 

effect on cycle ageing. Whilst this assumption may be acceptable for the described study, for cells 

being subjected to higher C-rates this is known to be not the case [27]. Specifically as identified 

in section 2.4, high currents can cause cracking of the electrode and extensive cell heating. 

Although these tests provide some insights into the generic degradation of LIBs, the use of 

galvanostatic profiles however, is not representative of any passenger vehicle use case beyond 

charging or cruising on a motorway. As such, these tests are not suitable for the work presented 

within this thesis. 

2.6.2.2 Transient Profiles 

Cycling tests using more complex and transient profiles are common practice in literature to 

determine the cycle-life and degradation of cells of LIBs under transient profiles and realistic EV 

duty cycles. 

As part of their path-dependence study, Gering et al. [163] investigated how the relative 

magnitude and randomness of constant-power pulses could influence the degradation of 18650-

format cells. 15 cells were tested on 5 different profiles (3 per test case), for which the time-

average cumulative discharge energy was equal, but profiles varied in terms of pulse duration, 

pulse peak, and rest phases between pulses. Their initial analysis found that cells, which 

experience a higher frequency of higher magnitude power pulses, degrade faster than those, 

which experience lower magnitude pulses with the same energy throughput. This indicates that 

the shape of any duty cycle will be an influencing factor in the degradation, which may be 

observed. 

Groot et al. [169] tested LFP cells with five different load cycles to determine the nature of cell 

degradation in HEV use cases. It was found that three of the tested cycles, which were similar in 

terms of SOC range and mean current rate yielded significantly different degradation rates and 
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characteristics, providing further evidence that degradation is heavily dependent on the duty 

cycles employed. 

Ma et al. [170] used the profile of an electric Bus operating in Beijing to determine and quantify 

the degradation and cycle life for LMO cells for this particular use case. It was observed that a 

high DOD and elevated temperature negatively affected the capacity and impedance of the cells. 

However, the use of a realistic profile allows identifying dominant mechanisms under real world 

operation rather than specific profile characteristics. Through cross-referencing the observed 

degradation against literature, the likely degradation paths could be determined. 

Friesen et al. [171] tested commercial 40Ah G-NMC pouch cells under a galvanostatic charging 

and discharging regime, and under a duty cycle derived from the common Artemis Driving Cycle 

between 80% and 20% SOC, at 25°C and 40°C. Regular characterisation tests were carried out to 

track discharge capacity and cell impedance at 50% SOC. EOL was defined as 200.000 km 

equivalent for the cell tested under the Artemis regime, and 80% retained capacity for the 

galvanostatic regime. The cells exhibited an approximately linear capacity fade until a retained 

capacity of 90% followed by accelerated degradation, and cells cycled at the higher temperature 

displayed worse degradation compared to the cells cycled at 25°C. A post-mortem analysis 

identified SEI growth and lithium plating as the main degradation mechanisms, and localised 

ageing near the tabs, which the authors attributed to a higher level heat generation. 

A standardised approach to degradation testing is presented within the testing standards IEC 

62660-1, ISO 12405-2, and DoE Battery Test Manual. These standards contain cycle life testing 

procedures to determine the degradation characteristics of battery cells and systems. An 

overview and comparison of the cycle life testing procedure for the three standards and 

guidelines is shown in Table 2-4. ISO 12405-2 and IEC 62660-1 cycle life tests both contain two 

testing profiles A and B. The objective of Profile A is to represent a battery profile associated with 

“typical driving” on a road, the objective of Profile B is to represent a battery profile of a vehicle 

driving uphill [34]. The Dynamic Stress Test (DST) as defined within the DoE Battery Test Manual 

uses a similar profile to Profile A. These profiles are illustrated in Figure 2-18, where discharging 

is identified by negative values, charging by positive values. The DST testing profile is a simplified 

version of the Federal Urban Driving Schedule (FUDS) with the same average value of net 

discharge power. The net discharge power is 12.7% of the peak discharge power; the mean 

discharge power is 25.5% of the peak discharge power. The FUDS is the power profile that is 

produced when the Federal Testing Procedure (FTP-75) driving cycle is applied to a specific EV 

[172]. A key assumption for this simplification is that the transient profile of the FUDS can be 
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simplified to a periodic profile utilising seven power amplitudes without affecting the outcome 

of degradation testing and cycle life. However, this assumption is problematic for degradation 

testing as the research discussed above suggests otherwise [163,169] 

 

FIGURE 2-18 – CYCLE LIFE TESTING PROFILES 

Although the testing profiles appear to be very similar for all three standards, the testing 

procedures and the testing peak of power vary substantially (see Table 2-4). The term peak power 

(𝑃𝐶𝐿𝑇 ) in Figure 2-18 is not uniformly defined as each testing procedure offers different, 

sometimes ambiguous definitions, for differing reference frames (cell, module, pack). 

For the IEC-62660 standard 𝑃𝐶𝐿𝑇 and is equal to the maximum power required of the cell by the 

vehicle, if its value is smaller than the maximum power allowed by the cell manufacturer. For the 

ISO-12405-2 standard 𝑃𝐶𝐿𝑇 on the y-axis is defined as the 10s discharge pulse power at room 

temperature (RT) and 35 % SOC. This is defined in equation (26). 

 𝑃𝐶𝐿𝑇 = 𝑃10𝑠,𝑑𝑐ℎ = 𝑈35%,𝑅𝑇 ∗ 𝐼𝐷𝑃,𝑀𝑎𝑥 (26) 

𝐼𝐷𝑃,𝑀𝑎𝑥 is the maximum rated pulse discharge current as defined by the manufacturer, 𝑈35%,𝑅𝑇 

is the average voltage of the battery during the test pulse [35]. 

𝑃𝐶𝐿𝑇 in the DST is 470 W/kg on pack level and 700 W/kg on cell level for a 30s peak discharge 

pulse. These targets represent the technical requirements for the commercial viability for Li-ion 

battery use in EVs. The DST test requires 45kWh on a system level to be depleted in every test 

cycle, and a lifetime of 1000 cycles, equating to a total energy throughput of 45 MWh during the 

system’s life. 
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Sequence IEC-62660 ISO-12405 DoE-DST 

Device tested Cell Battery system Cell, module or 
system 

Preconditioning N/A Discharge capacity 
test 

C/3 constant current 
& HPPC 

Reference Tests Discharge capacity & 
dynamic discharge 
capacity test at 25 °C 
& 45 °C, HPPC 

Discharge capacity at 
25°C & -10°C 

Discharge capacity, 
Low-current HPPC, 
Peak Power, HPPC 
verification 

Cycle Life 
sequence 

T = 45 °C ± 2 K 
100%-20% SOC 

T = 25 °C & 45 °C 
100%-20% SOC 

T = 30 °C SOC 
100% - 20% SOC or 
agreed with 
manufacturer 

Step 1 Full discharge Standard discharge  Full charge 
Step 2 Full charge Standard charge Discharge to 

specified SOC 
Step 3 Profile A until CD = 

50% ± 5% 
Profile B 
Profile A until CD = 
80% 

Profile A - Profile B - 
Profile A until SOC = 
20 % or U < limit 

DST until net energy 
= 45kWh on a 
System level, or as 
specified by 
manufacturer at the 
cell level 
15 min rest 

Step 4 N/A Charge to 100% SOC  Charge to 100% SOC  
Step 5 Repeat Steps 1-3 for 

28 days, proceed to 
characterisation if 
U< limit during 3 - 5 

Repeat Steps 3 and 4 
for 28 days 

Repeat steps 3 and 4 
for 300-600 times 
(32 days) 

Step 6: Reference 
Tests: 

Capacity test & 
dynamic discharge 
capacity test (25 °C 
only), HPPC 

Capacity  & HPPC at 
25 °C, standard 
charge 
Every 8 weeks: 
additional capacity 
and HPPC at -10 °C, 
standard cycle at 25 
°C 

C/3 constant current 
test 
Low-current HPPC 
test 
Peak Power Test 
HPPC Verification 
Test 

 
Repeat steps 1-6 Repeat steps 3-6 Repeat steps  3-6 

Termination 
conditions 

- The test sequence 
is repeated 6 times 
- Any performance 
criteria measured < 
80% of the initial 
value 
- upper cell limit is 
reached during 
testing 

- Cycle life test 
cannot be performed  
- Performance 
criteria can no longer 
be reached 
- Agreement 
between 
manufacturer and 
customer 

- Test profile cannot 
be executed within 
Voltage limits 
- Performance 
criteria can no longer 
be reached 
- 1000 DST cycles 
- Capacity or peak 
power drops below 
target 

TABLE 2-4 – OVERVIEW AND COMPARISON OF CYCLE LIFE TESTS IN IEC-62660, ISO-12405, AND DOE BATTERY 

TEST MANUAL 
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Based on the literature discussed, the use of representative transient profiles for degradation 

testing is essential, as the shape of the testing profile is an influencing factor in the degradation 

of the cell under test. Although a number of research articles exist, in which transient degradation 

testing profiles are used, none of these studies explore testing profiles from a HP-BEV 

perspective. The discussed battery testing standards aim to provide a unified approach to 

produce comparable results between different cells, but are broadly based on driving cycles. 

Thus, they also do not cater toward HP-BEV applications. 

2.7 Performance Testing 

Performance testing partially overlaps with cycling degradation and characterisation testing. 

Instead of long-term degradation, other test outcomes such as range estimation and thermal 

performance of cells are the focus of these tests. Barcellona et al. [173] characterised cells to 

parameterise an ECM to predict EV range. To validate the model, cells were subsequently tested 

with duty cycles, which were derived from the New European Driving Cycle (NEDC) and SC03 

driving cycles with the aid of an electric vehicle model, at 0°C, 25°C and 50°C. Based on these 

tests the driving range for the BEV was determined. 

As increased cell temperature and cell temperature gradients have a detrimental effect on 

battery life, tests that determine the thermal behaviour of cells are particularly important to 

evaluate the requirements for a BMTS. Worwood et al. [6] developed a 1D electrochemical model 

coupled with a 3D thermal model for a 20 Ah G-LFP pouch cell. The model was validated against 

temperature measurements taken from a test cell subject to 1C, 3C and 5C continuous discharge 

conditions. The resulting model was used to determine the temperature increase of the cells 

when subject to an HP-BEV duty cycle, the development of which constitutes part of this thesis. 

In an additional study, Worwood et al. [3] developed a thermal model for cylindrical G-NCA 18650 

cells with a capacity of 2.9 Ah. The model was validated by subjecting cells to a dynamic current 

profile at temperatures of 10°C and 25°C. The developed model facilitated the prediction of cell 

temperature under PHEV and a HP-BEV duty cycle and the conceptualisation and analysis of a 

radial tab cooling solutions suitable to deliver an acceptable cooling solution. Using these duty 

cycles, the authors investigated aluminium and copper as potential materials for a single edge fin 

cooling solution on G-NMC pouch cells [7]. 
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2.8 Conclusion & Definition of the Knowledge Gap 

The problem statement in Chapter 1 outlines that the differences in usage profiles between HP-

BEV applications such as racing and those scenarios associated with driving on public roads will 

likely influence the thermal performance and long-term degradation of LIBs employed within EV 

energy storage systems. To address “Research Question 1: Do existing LIB testing methodologies 

adequately represent HP-BEV racing applications?”, this chapter has critically reviewed the 

fundamentals of LIB operation and degradation, as well as the existing body of literature 

regarding LIB characterisation, performance and degradation testing. 

The electrical characteristics and performance of cells are largely determined by the choice of 

active materials. During use and storage, the performance of cells degrades. The degradation is 

broadly grouped into surface film effects including SEI growth and metal plating, structural 

changes on an atomic level such as Jahn-Teller distortions, mechanical changes on a particle level 

such as electrode cracking, and parasitic side reactions including binder decomposition. The 

onset and progression of degradation is complex, and no mechanisms occur exclusively. 

Furthermore, it is dependent on environmental conditions such as temperature and operational 

parameters such as current, SOC and DOD. 

The onset and progression of LIB degradation over time can be identified through regular 

characterisation testing and tracking the test outcomes such as ECM parameters and energy 

capacity. Although specific degradation mechanisms cannot be quantified, their effect on 

performance characteristics can be measured through a combination of non-destructive 

techniques such as energy capacity and EIS testing. 

The use of transient duty cycles within the LIB degradation and performance-testing framework 

for EVs focusses primarily on driving scenarios on public roads. This is exemplified through the 

common use of duty cycles derived from existing driving cycles, such as the cycle life testing 

profiles described in international standards. Research articles which do not utilise existing 

driving cycles often utilise duty cycles from recorded driving data. During everyday operation on 

public roads, all vehicles are typically restricted by traffic congestion and regulations. As such, the 

transient duty cycle profiles of HP-BEVs do not greatly diverge from those of the vehicles around 

them. For those specific scenarios, the existing testing procedures are believed to be sufficient 

to predict cell thermal behaviour and degradation. 
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2.8.1 Definition of the Knowledge Gap 

On-road driving and HP driving on dedicated racing circuits are fundamentally different and so 

are the resulting electric loading profiles for batteries. Thus, the performance and long-term 

degradation behaviour of LIBs is expected to be different for those two use cases. As reviewed 

within sections 2.6 and 2.7, to obtain representative datasets, the experimental investigations 

into the behaviour of batteries should be underpinned by realistic duty cycles associated with the 

intended battery use. Whilst this is currently commonplace for public road driving, the existing 

body of literature pertaining LIB performance and battery degradation does not specifically cater 

to the fundamentally different driving scenarios encountered within HP and track driving. The 

results obtained from existing research are therefore assumed to be not transferrable to HP-BEV 

applications. The lack of experimental procedures required to conduct investigations into the 

performance and degradation of LIBs within HP-BEV applications constitute a knowledge gap, as 

illustrated in Table 2-5. 

Procedure On-Road driving HP-BEV application 

Characterisation Testing   

Performance Testing   

Degradation Testing   

TABLE 2-5 – KNOWLEDGE GAP IN EXISTING TESTING PROCEDURES 

This knowledge gap is compounded by a lack of suitable HP-BEV testing cycles that may underpin 

experimental investigations or simulation studies. As such, prior to any experimental study, a 

strategic requirement exists to define a methodology that may be used to create a representative 

HP-BEV duty cycle. 
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3 A Review of Duty Cycle Construction Methods 

3.1 Introduction 

The transient duty cycles utilised within existing research concerning the performance and 

degradation of LIBs in passenger vehicles are often derived from driving cycles with the aid of a 

suitable vehicle model [36,173,174]. These driving cycles are usually based around real world 

driving data, for example the ARTEMIS driving cycles [175,176], or synthetically produced as in 

the case for the soon to be phased-out New European Driving Cycle (NEDC). The topic of 

degradation and performance testing of LIBs in the context of HP-BEV and racing applications 

remains largely unexplored within the existing body of literature. To progress the research into a 

better understanding of the performance requirements and cell degradation of LIBs within HP-

BEVs it is first necessary to conduct experimental work with a suitable HP-BEV duty cycle. Battery 

duty cycles associated with driving on a race circuit are defined through the performance 

parameters of the vehicle being used, the ability of the driver, and the physical aspects of each 

individual track. To test every possible duty cycle within a laboratory setting is not feasible within 

the context of a PhD studentship. Instead, testing should be conducted using a battery test cycle 

that is representative of a larger number of HP-BEV use cases. Currently there is no such duty 

cycle available within the literature, which consequently leads to another research question: 

3.1.1 Research Question 2: How can a duty cycle representative of HP-BEV racing 

applications be defined?   

A representative duty cycle should capture the signal characteristics and conditions that are 

responsible for degradation and ageing of LIBs in a representative manner. It should contain a 

realistic composition of these operating conditions in appropriate proportions and ensure those 

operating conditions which mostly affect cell ageing such as high current amplitudes, the 

frequency of their occurrence [47,105,116] and the resulting cell-heating [47,98,99,116] are 

preserved. The resulting testing data from batteries undergoing those cycles should provide 

information about representative cell-heating profiles, ageing rates, the most prevalent ageing 

mechanisms and what conditions should be avoided to improve battery life. To underpin this 

study, this chapter provides a critical review of methods for the derivation of a representative 

duty cycle. 
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3.2 Driving Cycle Methods 

The underlying principle of driving cycle construction is to develop a profile whose properties 

match specific criteria extracted from a database of recorded driving scenarios. Most of these 

construction methods follow broadly the same steps. Initially, real-world driving data is collected, 

secondly, the driving data is segmented into shorter sections, these segments are rearranged to 

construct several cycles, and lastly these cycles are evaluated, and a final profile is selected. 

Although the measured quantities of driving cycles (speed vs. time) and duty cycles (battery 

power demand vs. time) are different, the assertion is that the methodologies employed within 

driving cycle research lend themselves to the development of a HP duty cycle. 

3.3 Data Collection 

For driving-cycles based on real world driving data, there are two main approaches to driving 

data collection: on-board measurements, and the car-chase method. On-board measurements 

are obtained by instrumenting privately owned vehicles of volunteers or lending out 

instrumented vehicles to volunteer drivers for their everyday use. This approach has been used 

amongst other studies for the development of the FTP-75 [177], and the ARTEMIS project 

[175,176]. For the car-chase method a single or several vehicles are equipped with driving data 

recording instrumentation and follow randomly selected vehicles along a chosen route or within 

a certain geographic location at an approximately constant distance recording their velocity and 

acceleration. This method has been employed successfully in several driving cycle studies, for 

example within Hong Kong [178,179], Los Angeles [180], Athens [181], and Sydney [182]. 

An advantage of the on-board method is that data is collected straight from the vehicle thus 

providing a more accurate measurement of driving conditions compared to the car-chase 

method. One disadvantage identified with the on-board method is that the driver’s knowledge 

of being recorded may influence their driving behaviour [183]. In contrast, the drivers of vehicles 

followed for the car-chase method are assumed unaware that their driving patterns are being 

recorded, thus their driving should remain uninfluenced.  

Driving patterns on public roads vary significantly depending on geographic regions [180]. 

Furthermore, traffic and population density, frequency of junctions, and traffic lights influence 

the magnitude, frequency and duration of steady state speed, acceleration and deceleration 

events in urban, rural and motorway driving [180]. As such, driving cycles are often specific to a 

certain geographic location and road type. Depending on the goal of the study, the routes over 
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which driving is recorded include home-to-work trips [184], following a specific route during 

“rush-hour” [185], or general vehicle use over a prolonged period of time [175]. Other factors 

influencing driving pattern are driver demographic and vehicle performance [186,187], with 

average driving speeds and accelerations being systematically higher for higher powered vehicles 

[175,176]. To capture a broad range of driving, studies using the on-board method often use a 

fleet of different drivers and vehicles rather than employing just one driver and vehicle type 

[175,176,188,189]. 

Within the context of HP duty cycles, regarding data collection there are two main factors to be 

considered compared to the methods presented within the existing driving cycle literature. 

Firstly, rather than collecting speed vs time traces the battery power demand should be recorded 

through voltage and current measurements. Secondly, the use case of HP driving on dedicated 

circuits is restricted by fundamentally different limitations compared to driving on public roads.  

Driving on racing circuits, and thus the resulting battery power profiles are predominantly limited 

by driver ability, vehicle power and handling limits and the layout of the circuit, instead of traffic 

volume, road regulations and road type as is the case for public roads. As such, data should be 

recorded directly from the driven vehicle via on-board measurements, as following a vehicle at a 

fixed distance at handling limits is an unrealistic task for most drivers. 

3.4 Data Segmentation, Processing & Cycle Construction 

3.4.1 Random Microtrip Cycles 

A common cycle construction method utilises a random selection of microtrips. The data 

processing and construction sequence is illustrated within Figure 3-1 and described below. 
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FIGURE 3-1 - THE PROCESS OF DETERMINING A RANDOM DRIVING CYCLE, AS DESCRIBED WITHIN 

[178,179,184,189] 

Following data collection, the vehicle speed-time traces are broken up into microtrips. A 

microtrip can be defined in several ways. In most cases, it represents a driving segment bound by 

stopping phases as illustrated in Figure 3-2 on the LA 92 driving cycle. For long sections of highway 

driving where a stop does not occur, they can alternatively be defined by an arbitrary duration of 

time, or change in driving mode such as acceleration or braking [188]. 

 

FIGURE 3-2 - MICROTRIPS FOR THE FIRST 220S OF THE LA92 CYCLE [188] 
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In a second step, the desired cycle length is chosen and target criteria for a driving cycle are 

determined. These target criteria serve as a tool for comparison between the constructed driving 

cycle and the source driving data. By matching the target criteria of a constructed cycle to that of 

the source data a statistically representative cycle may be found [188]. In the case of driving 

cycles, the choice of target criteria is often based on driving features that correlate to exhaust 

emissions and fuel consumption. The emphasis is put on average speed, average running speed, 

acceleration, idle time, and the speed-acceleration frequency distribution (SAFD) [178,182–

184,190,191]. The SAFD expresses the amount of time spent at each instantaneous speed and 

acceleration. An example is illustrated in Figure 3-3 reference.  

 

FIGURE 3-3 - ILLUSTRATION OF SPEED ACCELERATION CROSS DISTRIBUTIONS OF TWO URBAN DRIVING SCENARIOS 

FROM [175] 

For cycle construction, microtrips may be selected randomly or quasi-randomly until the desired 

cycle length is reached. Quasi-random selection refers to studies where microtrips are selected 

to match the overall SAFD before final comparison. The resulting cycle is referred to as a 

candidate cycle, which is then analysed and the target criteria and deviation from the source data 

are calculated. A candidate cycle is accepted when the characteristics from the cycle are within a 

certain threshold, typically 5% or 10% [178,179] of the target criteria of the source data. This 

process is repeated until 10 or more [178,179]  of those cycles have been found, from which the 

cycle that most accurately matches the target criteria, based on a lowest cumulative error, is 

chosen. One difficulty with such a construction method is the appropriate selection of target 

criteria. By choosing statistically average values, more severe conditions may be 

underrepresented within the resulting driving cycle. For example, two driving segments with 

similar average velocities and duration may vary substantially with respect to instantaneous 

values of velocity and instances of high and low acceleration and deceleration rates, which in the 
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context of BEVs may not affect the overall energy requirement for a segment but influences the 

required power rating of the energy storage system. 

The microtrip method can be adapted to duty cycles. Instead of vehicle speed traces, battery 

power profiles could be segmented into “duty-pulses” which are separated by instances, where 

no charging or discharging occurs. Using this criterion for segmentation may be suitable for 

driving recordings on public roads, as the resulting segments would directly relate to microtrips. 

For HP driving scenarios, this approach is impractical, since driving on a circuit does not contain 

frequent instances at which the vehicle stops, and no power is drawn from the traction battery. 

Instead, the power demand profile should be broken up into individual charging and discharging 

pulses, thus segmentation would be based on a zero crossing of electrical current. The selection 

of target criteria, rather than concentrating on driving features should focus on those aspects of 

the battery profiles that have a direct impact on battery degradation and heating. Reconstruction 

of a new cycle can then be undertaken following the same remaining steps as the driving cycle 

method illustrated in Figure 3-1 above. 

3.4.2 ARTEMIS Cycles 

The construction of the ARTEMIS driving cycles, described within [175,176], follows a probability 

based approach. A database of driving records is split into segments of equal size (i.e. a time 

duration of 120 seconds), similar to microtrips. Each segment is analysed with respect to idling 

duration and SAFD. The segments are subsequently classified using correspondence analysis 

based on the chi-squared distance of their respective SAFDs. The chi-squared distance (𝑑 ) 

between two normalised histograms 𝑥 = [𝑥1, 𝑥2, … 𝑥𝑛] and 𝑦 = [𝑦1, 𝑦2…𝑦𝑛], with 𝑛 bins each 

can be calculated using equation (27). 

 𝑑(𝑥, 𝑦) =∑
(𝑥𝑖 − 𝑦𝑖)

2

2

𝑛

𝑖=1

 (27) 

From the equation above the smaller the chi-squared distance between the SAFDs of two 

segments, the more similar they are. Using this information, segments are then clustered and 

sorted into bins associated with specific driving conditions. In the study described within 

[175,176], conditions such as congested urban, free-flow urban extra-urban, motorway, etc. were 

identified through data measured under known conditions, as identified by researchers in the 

measuring vehicle. 
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The overall driving data is analysed further to in terms of trip history based on the driving 

conditions to establish a typical composition of driving cycles in urban, rural, and motorway 

driving scenarios. Cycles are then constructed from the segments by selecting successive 

segments from bins to match observed probabilities for successive driving conditions. The 

selection of individual segments to optimise the distance of each segment from their cluster 

centre, and to match target criteria, such as start and end speed of each segment, road specific 

SAFDs, and the composition and chronology of driving conditions.  

Several facets of this methodology need to be adapted to make it suitable for the creation of a 

HP duty cycle. In principle, each profile could be split into homogeneous segments and each 

segment could be analysed through a power demand vs rate of change in power demand 

frequency distribution, similarly to the SAFD. The segments could then be clustered based on 

their current amplitude and sorted into bins using the same method as described by Andre et al. 

[175,176]. 

For any circuit, a driving cycle, and the battery power profile associated with it would be expected 

to be approximately periodic in nature, with each period limited to a few minutes. The driving 

conditions encountered over a lap could be associated with the physical layout of the circuit, i.e. 

there is expected to be several straight sections of varying length, and several corners of different 

radii. As such, an obvious way of classifying the data is to associate segments of the recorded 

battery profiles with different types of corners and straights. When a vehicle is coming to the end 

of a straight and entering a corner, the driver would be expected to apply the brakes. This would 

result in a change from discharging power to charging power for vehicles with, or alternatively to 

a battery rest period for vehicles without regenerative braking capability. Once the desired 

cornering speed is reached, a driver would be expected to apply the accelerator pedal again, thus 

changing to a new period of discharging power demand. As such, a much more practical approach 

would be to use a segmentation of charging and discharging pulses as discussed in the previous 

section, and subsequent clustering into pulses based on pulse duration. 

A disadvantage of the methodology employed within the ARTEMIS project is the amount of data 

required. To classify the data into several driving classes requires a dataset large enough to 

achieve meaningful clustering results. The specific size would need to be determined 

experimentally. The dataset used within the study by Andre et al. [175] utilised more than 2000 

hours of recorded real-world driving traces from several countries, drivers and vehicles. This is 

not achievable with the monetary and time constraints associated with this work. 
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3.4.3 Markov Chain Cycles 

Lin et al. [192] introduce a Markov chain approach to derive a vehicle driving cycle. A Markov 

chain is a stochastic model describing a sequence of events in which the probability of each event 

occurring depends only on the state in the previous event. Considering a set of states (𝑆 ) 

displayed in equation (28). 

 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} (28) 

The starting state is defined by an initial probability distribution on 𝑆, and moves successively 

from one state to another. This state change occurs according to a transition probability (defined 

below) that only depends on the current state. Assuming the process starts in state 𝑠𝑖 and moves 

to state 𝑠𝑗, the probability of this change is given by 𝑝𝑖𝑗. The probability of the state remaining in 

𝑠𝑖, is given by probability 𝑝𝑖𝑖. A Markov chain with 𝑚 states has 𝑚2 transition probabilities. The 

transition probability matrix is displayed in (29) and (30). 

 𝑄𝑖𝑗 = 𝑃(𝑠𝑛+1 = 𝑗 | 𝑠𝑛 = 𝑖) (29) 

 𝑄𝑖𝑗 =

[
 
 
 
 
 
 
𝑠1 → 𝑠1 𝑠2 → 𝑠1 ⋯ 𝑠𝑚 → 𝑠1

𝑠1 → 𝑠1 𝑠2 → 𝑠2 ⋯ 𝑠𝑚 → 𝑠2

⋮ ⋮ ⋱ ⋮

𝑠1 → 𝑠𝑚 𝑠2 → 𝑠𝑚 ⋯ 𝑠𝑚 → 𝑠𝑚]
 
 
 
 
 
 

 (30) 

The current state is 𝑠𝑛, the next state is 𝑠𝑛+1, and P is the transition probability from 𝑠𝑛 to 𝑠𝑛+1. 

Within [192], each journey was broken into segments based on acceleration and deceleration 

and sorted into modal event bins based on average, minimum, and maximum speeds and 

acceleration rates. These modal event bins containing original journey segments were then 

defined as the states in the state space form. The transition probability matrix was populated 

based on observations of the frequency of one state changing to another. The segmentation of 

the source data could also be done according to microtrips and trips could be clustered into bins 

representing different states associated with specific driving conditions. 

A starting segment is chosen according to desired initial criteria, the next modal event bin is 

selected using a random number generator weighted with the transition probability matrix based 

on the current modal event bin. The best-fit segment within the bin is chosen. Within [192], best-
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fit is determined by matching the initial speed of the new segment to the end speed of the 

previous segment to within 0.5mph, and by matching the SAFD of the resulting profile to the 

desired SAFD. These steps are repeated until the cycle length reaches the desired trip length to 

produce a candidate cycle. This process is repeated to generate several candidate cycles, from 

which a single representative cycle is chosen, based on desired target criteria, as for the random 

process approach. 

An example of the implementation of a Markov chain approach for the development of several 

duty cycles for battery degradation and cycle-life testing is presented by Groot et al. within 

[169,193]. A HEV prototype bus was driven along a city-bus route in Gothenburg, Sweden, and 

battery current, voltage, SOC and temperature were recorded using a sampling rate of 10 Hz. The 

current vs time profile was subsequently filtered with a 10-point moving average filter in 

combination with a sample-and-hold filter, resulting in a stepwise profile with a minimum step 

duration of 1s. This is illustrated in Figure 3-4. It can clearly be seen that within the filtered profile, 

some dynamics are not preserved. Within [169] the author states that this processing step is 

necessary to reduce the likelihood of differences between profile setpoints and actual values 

during subsequent experimentation, thus improving test robustness. Although this may not be a 

problem for testing within heavy-duty HEV applications, this processing step may be problematic 

for HP applications. The reason for this are frequent transient changes that may be expected 

during racing driving. 

 

FIGURE 3-4 - HEV DUTY CYCLE RECORDING AND FILTERED VERSION. MANY OF THE DYNAMIC CHANGES ARE NOT 

PRESERVED WITHIN THE FILTERED PROFILE. FROM [169]. 
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To comply with the rating of the cells employed within the research, the author further scaled 

the profile down to 80% of its original value, and reduced the peak charging current. 

Furthermore, to reduce the risk of accelerated ageing from high average SOC and increased 

temperatures, the target SOC range of the filtered profile was adjusted to a range between 25% 

and 55% SOC, and the target temperature modified to fall between 25°C and 45°C. This cycle was 

subsequently used as a reference load cycle from which new synthetic profiles were derived using 

a Markov chain process. 

The reference cycle was defined to contain 𝑚 unique states, corresponding with unique values 

of the profile itself. The 𝑚 x  𝑚  transition probability matrix (𝑄 ) was populated by stepping 

through each sample and incrementing the corresponding state 𝑄𝑖𝑗. Subsequently, each value in 

a column was normalised with the total number of samples in each column, such that the sum of 

each column equalled 1. Within [193], the author details that this process of populating the 

probability matrix can be expanded  to any number of duty cycles, provided they all are sampled 

at the same rate, and the total number of cycle samples are used to normalise the columns. A 

duty cycle was then created, using a random number generator and a support matrix 𝑄𝑠, where 

the probability values in each column were replaced by the cumulative column sum of 𝑄, and the 

element closest to the generated number was selected as the next state. 

As HEVs re required to operate within a narrow SOC operating range, the author within [193] 

implemented an SOC estimation algorithm based on a single resistance ECM to modify the 

amplitude of the selected state to prevent a duty cycle to cause a battery to exceed SOC limits of 

a cell under test. Due to the relatively narrow SOC range and temperature operating windows, a 

constant OCV and resistance was suggested. This simplification would not be appropriate if the 

target application required larger temperature and SOC operating ranges. Furthermore, the 

restriction of the cycle construction based on SOC range is not necessary for BEV applications 

operating throughout the entire operating range. This process was followed to create several 

candidate cycles, which were subsequently compared to the original reference cycle with respect 

to the SOC over the duration of the cycle, RMS power and maximum energy window, difference 

in power and energy distribution. 

Although the construction method varies for the two discussed Markov chain construction 

approaches by Lin et al. [192] and Groot et al. [193], the underlying principle is still to match the 

final duty cycle to some desired target criteria. As such, they contain similar limitations to the 

previous construction methods, which is the selection of appropriate targets. The approach as 

suggested by Groot et al, which requires the filtering and smoothing of data is problematic for 
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the derivation of a duty cycle for HP applications, as fast transient changes and dynamics could 

be lost. Within [169] it is stated that the excluded fast transients in the original cycle are not 

believed to have a significant impact on cycle life, but no evidence is given to support this. As fast 

transient changes are an intrinsic element to HP automotive applications, as will be shown in 

detail within Chapter 4, the author asserts that such a filtering process would not be suitable in 

this case. Without smoothing, the number of individual states would be inadequately large, 

especially if a large number of duty cycles were to be employed. 

3.4.4 Best-fit Cycles 

Rather than deconstructing a database and subsequently reassembling duty cycles, another 

approach is to select a specific duty cycle from within the database, which most closely matches 

some target criteria extracted from the database. One example of this approach is the 

development of the Edinburgh Driving Cycle (EDC) [194]. 

For the EDC, six pre-determined routes in the city centre of Edinburgh, Scotland were driven at 

four different times of day and data was recorded using the car-chase method. The routes were 

chosen to represent typical commuting journeys. Additional information such as abnormal traffic 

and weather conditions, distances and start and end times of each segment of the route were 

recorded by an assistant who was in the car with the driver, and traffic volume flow data for 

major roads in the city centre was provided by the City of Edinburgh Council.  

The resulting speed-time traces analysed were analysed with respect to the amount of time spent 

at five specific speed intervals. A number-code was generated for each journey by going through 

the data second by second and incrementing a counter in a specific speed interval bin for each 

second at that speed. This is illustrated on the example in Figure 3-5, where a journey contained 

402 s at a speed of 0 mph, 208s between 0 and 15 mph, and so forth, resulting in the final code 

402-208-103-165-167. 
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FIGURE 3-5 - TABLE CONTAINING THE CODE FOR A JOURNEY ANALYSED BY TRAFIX METHOD, FROM [194] 

The total number of codes was reduced to 72 by calculating average codes for each of the six 

routes, at the three measured periods, one for weekdays, one for Saturdays, and one for Sundays. 

The supplementary traffic information was used to determine which routes were travelled on 

most, at what times, and which were most representative of the average traffic in the city. 

Weighting factors were calculated based on the traffic volume flow along each route compared 

to the overall traffic volume flow within the city. These weighting factors were then used to 

calculate a final weighted code for the EDC cycle. This final code was then compared to the 

database of all original driving recordings, and the recording with the closest matching code was 

selected as the EDC. 

To adapt this method to battery duty cycles, instead of speed interval bins, appropriate power 

level bins need to be defined, and codes can be generated for a lap of each circuit. The sampling 

frequency of 1 Hz used within the EDC development may not be sufficient for the dynamics of a 

HP application, and thus a higher frequency should be used. The use of weighting factors with 

respect to traffic volume would not be applicable for track driving, and as such the method could 

be simplified. One concern with this approach is that by choosing a single individual cycle, some 

features present in other duty cycles may be lost. 

3.5 Frequency Domain Methods 

The existing driving cycle analysis and construction methods discussed operate primarily within 

the time domain. Driving data is recorded as a time series, and in most cases analysed using 
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several easily identifiable traits such as average speed, time on idle, or acceleration rates. An 

alternative, relatively unexplored approach would be to analyse the data within the frequency 

domain and construct a signal with a specific amplitude spectrum. Recent publications by 

Widanage et al. [141,142] show that the consideration of target amplitude spectra in the design 

of excitation signals for cell characterisation tests can positively affect the representativeness of 

the testing procedures. The research identifies that pulse tests often used to parameterise ECMs 

do not cover the same bandwidth as the validation test cases such as dynamic duty cycles. As 

such, the resulting ECMs can underperform when simulating a dynamic scenario, as the 

parameterisation dataset does not contain the same excitation frequencies and amplitudes as 

the validation profile. 

Since the voltage response of an LIB to a current input is dependent on the current input 

amplitude spectrum, this should be taken into account for the design of long term degradation 

testing. As discussed within Chapter 2, the operating potential of a cell is the culmination of the 

OCV and polarisation caused by internal cell resistance, charge transfer phenomena and 

concentration changes. As such, any profile employed to conduct cell degradation testing for a 

specific test case should not only be representative within the time domain but also within the 

frequency domain as to excite the cell under test over a representative frequency range 

[141,142]. 

The amplitude spectrum of a periodic time-based function 𝑥(𝑛)  describes how much power the 

signal contains at each frequency 𝑓. This spectrum may be obtained from the Fourier series. The 

Fourier series of a time-based function 𝑥(𝑛) is defined in equation (31). 

 𝑥(𝑛/𝑓𝑠) = 𝐴0 +∑𝐴𝑘 

∞

𝑘=1

𝑠𝑖𝑛(2𝜋𝑛𝑓𝑘 +𝜙𝑘) (31) 

 

𝐴𝑘 is the amplitude and 𝜙𝑘 is the phase of the 𝑘𝑡ℎ harmonic, 𝑓𝑘 is the frequency at 𝑘𝑡ℎ harmonic 

and is 𝑓𝑘 = 𝑘𝑓𝑠/𝑁 with 𝑓𝑠 the sampling frequency, and 𝑁 is the number of samples per period. A 

detailed discussion into the derivation and use of Fourier Series for signal analysis is presented 

within a number of educational text, such as [195–197]. As such, provided a target amplitude 

spectrum is known, a profile can be synthesized using equation (31), which satisfies the desired 

target criteria within the frequency domain. 
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However, a desired amplitude spectrum alone may not be sufficient to design an appropriate 

testing profile. The selection of phases 𝜙𝑘 has a direct impact on the shape of the profile within 

the time domain, such as influencing the resulting profile’s crest factor, defined as the ratio of 

the profile’s absolute maximum value over its root mean square (rms) [198,199], and  magnitude 

distribution or histogram [200]. As discussed in Chapter 2, the magnitude and duration of 

charging and discharging pulses are directly linked to cell self-heating and degradation, as is the 

total energy throughput over time. Consequently, the phases should be selected to result in a 

testing profile representing these features within the time domain. 

The research presented within [200] describes a time-frequency domain swapping algorithm by 

which a signal is constructed which matches a user imposed amplitude spectrum in the frequency 

domain and whose phases are optimised to match a desired inverse Cumulative Distribution 

Function (iCDF) in the time domain. The Cumulative Distribution Function (CDF) for a quantity 𝑦 

that takes a real value at random is defined in equation (32). The right-hand term describes the 

probability that a given variable 𝑦 has a value less than or equal to a specific value 𝐵. The function 

𝐹(𝐵) is limited by boundaries of 0 and 1 and is non-decreasing. 

 𝐹𝑦(𝐵) = 𝑃[𝑦 ≤ 𝐵]              𝑓𝑜𝑟             𝐵 ∈  ℝ (32) 

 

Within a battery duty cycle, if 𝑦 is the amplitude of the power profile at a given point, then 𝐹𝑦(𝐵) 

is the probability that the amplitude of that operating point is equal to or less than 𝐵. For a profile 

with 𝑁  data points the empirical cumulative distribution function (eCDF) is a step function 

increasing by 1/n at each data point. The iCDF is simply the inverse of the eCDF and is described 

in equation (33). 

 𝑔(𝑃) = 𝐹𝑥
−1(𝑃) (33) 

Provided, a database of HP-BEV duty cycle recordings is available, the amplitude spectrum of 

each individual duty cycle can be extracted from the Fourier series, via the Fast Fourier Transform 

(FFT) routine; the iCDF can be determined through equation (33). As the resulting profile solely 

depends on the amplitude spectrum and iCDF, the selection of the former and the latter in the 

profile design stages is of paramount importance.  

A potential disadvantage of this approach is that the resulting cycles would no longer be 

reconstructed from the database source data, but synthesized from functions, which 
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approximate a target amplitude spectrum and iCDF. As every approximation involves a loss of 

information, some aspects of the database may not be captured in the resulting cycles. Although 

frequency domain approaches are a proven methodology for the design of excitation signals in 

system identification research [141,198,200], their application for the development of a duty 

cycle for degradation and performance testing of batteries is currently unproven. 

3.6 Conclusion & Definition of the knowledge gap 

To address “Research Question 2: How can a duty cycle representative of HP-BEV racing 

applications be defined?” this chapter critically reviewed both, time domain and frequency 

domain approaches, to develop a representative testing profile. 

The discussed time-domain approaches are predominantly used within driving cycle research. As 

part of this review, for each methodology necessary key modifications to the data collection, 

processing and reconstruction steps were identified to optimise each process for the 

development of a duty cycle for performance and degradation testing of BEV batteries. The 

majority of the discussed methods are analysed and evaluated with respect to measures and 

targets extracted from the time-domain. As such, to develop a profile that is representative of a 

larger database of recordings, a multitude of target criteria, which best describe the generic 

shape of the profiles must be defined. Targets need to be selected such that key aspects 

pertaining battery degradation and self-heating, such as current amplitude, pulse duration, and 

energy throughput are preserved. 

Another approach reviewed in this chapter requires the analysis of data within both, the time-

domain and frequency-domain. Rather than selecting several target measures exclusively from 

within the time domain, the evaluation and design criteria would be a target amplitude spectrum 

in the frequency-domain and a target iCDF in the time-domain. A potential advantage of this 

method would be that a specific bandwidth of excitations could be selected, and the final profile 

could be optimised where limitations such as peak power demand for charging and discharging 

are not exceeded. 

3.6.1 Definition of the knowledge gap 

As identified within Chapter 2, a knowledge gap exists with respect to the experimental 

procedures required to conduct investigations into the performance and degradation of LIBs 

representative of HP-BEV applications. This knowledge gap can be addressed through the 
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definition of a new experimental procedure, which itself must be underpinned by a 

representative duty cycle.  The literature review presented within this chapter further highlights 

a second knowledge gap regarding the need for a suitable methodology to derive such a duty 

cycle. 

Although the use of driving cycles coupled with a suitable BEV model may be adequate to derive 

a representative duty cycle for on-road driving scenarios, this approach is not suitable for HP-BEV 

applications. The design of LIB testing profiles from a database of battery measurements is 

limited to few examples such as [169,193] discussed in section 3.4.3, which as highlighted in their 

current format are not suitable for HP-BEV applications. Furthermore, all other discussed 

approaches to duty cycle development require extensive adaptations. Therefore, Table 2-5 can 

be extended as illustrated in Table 3-1 to define the complete knowledge gap pertaining to the 

research problem. 

Procedure On-Road driving HP-BEV application 

Characterisation Testing   

Performance Testing   

Degradation Testing   

LIB test cycle construction   

TABLE 3-1 – KNOWLEDGE GAPS IN THE EXISTING TESTING FRAMEWORK 

The author asserts that the shortcomings of established experimental procedures and cycle 

construction methodologies render the existing framework for performance and degradation 

testing insufficient for HP-BEV applications. It is believed that other automotive applications, 

whose typical usage profiles do not conform to established testing standards, are disadvantaged 

by similar shortcomings. As such, the author proposes the development of an additional 

framework for LIB performance and degradation testing, illustrated within Figure 3-6, to 

supplement existing testing procedures for applications, where existing testing standards are 

unrepresentative of the typical usage profile. 
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FIGURE 3-6 – PROPOSED ADDITION TO THE EXISTING TESTING FRAMEWORK 

Following the definition of the use case, a database is required that describes those usage profiles 

encountered during operation, that are outside the scope of the established testing procedures. 

The proposed framework specifies a methodology through which a representative duty cycle for 

LIB performance and degradation testing may be derived from the database, thus addressing the 

shortcomings of existing cycle construction methodologies. Based on a more representative duty 

cycle, an experimental procedure for additional performance and degradation testing is defined 

to address the knowledge gap identified within Chapter 2. 

The following chapters present a series of research tasks, summarised within Table 3-2, that are 

required to develop and implement this new testing framework within the context of HP-BEV 

applications. Further, academic publications relating to each research task are highlighted within 

Table 3-2 for completeness. 

3.6.2 Research Task 1: Collate a database of battery duty cycles representative of 

HP-BEV racing applications. 

A common prerequisite to determining a methodology for the derivation of a battery duty cycle 

is the existence of a database of real world recordings, from which the target design and 

assessment criteria can be extracted. This task is addressed within Chapter 4, in which the 

development of a duty cycle database that is representative of HP-BEV track driving scenarios is 

described. The methodology presented within this chapter has been published within [1,4]. 

3.6.3 Research Task 2: Define a methodology, from which a duty cycle that is suitable 

for LIB performance and degradation testing may be derived. 

Chapter 5 presents two novel methodologies that may be used to develop a generic duty cycle. 

Both methodologies have been published within [1]. Within this context, “suitable” refers to 
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preserving profile traits that are known to be detrimental to LIB degradation and heat generation. 

To address the knowledge gap identified within Chapter 3, the methodologies should not be 

exclusive to the use-case of HP-BEVs but be applicable to any application, where LIB degradation 

is a concern. 

3.6.4 Research Task 3: Devise an experiment to conduct LIB performance and 

degradation testing to investigate differences between HP-BEV applications 

and standard testing procedures. 

Based on the literature review presented within Chapter 2, Chapter 6 presents the experimental 

set-up and testing procedures required to conduct LIB cell characterisation, performance and 

degradation testing. The experiment is designed such that any difference in cell behaviour over 

time can be ascribed to the use case in question. The experimental procedure has been published 

as parts of the publications [2,5]. 

3.6.5 Research Task 4: Analyse the experimental results and determine any use-case 

specific behaviour between HP-BEV applications and standard testing 

procedures. 

Chapter 7 presents the results from the experimental investigation and provides a detailed 

analysis of the observations made. The work surrounding this has been published within [2]. 
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Step 
Research Task Chapter Pub 

Duty Cycle 

Design 

Methdology 

Data 

Collection 

Research Task 1: Collate a database of 

battery duty cycles representative of HP-

BEV racing applications. 

4 [1,4] 

Cycle 

Construction  

& 

Methodology 

Research Task 2: Design a methodology, 

from which a duty cycle that is suitable for 

LIB performance and degradation testing 

may be derived. 

5 [1] 

Performance 

& 
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Test 
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Research Task 3: Devise an experiment to 

conduct performance and degradation 

testing and investigate differences 

between HP-BEV applications and 

standard testing procedures. 

6 [2,5] 

Performance 

& 

Degradation 

Testing 

Research Task 4: Analyse the experimental 

results and determine any use-case 

specific behaviour between HP-BEV 

applications and standard testing 

procedures. 

7 [2] 

TABLE 3-2 – RESEARCH TASKS COMPLETED WITHIN THIS THESIS 
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4 Development of a High-Performance Duty Cycle 

Database 

4.1 Introduction 

To support the design of a generic HP duty cycle, and to fulfil “Research Task 1: Collate a database 

of battery duty cycles representative of HP-BEV racing applications.”, a database of real-world HP 

duty cycles is required, from which key performance indicators (KPIs) can be extracted. Ideally, 

this dataset would comprise actual vehicle data recorded over a diverse range of different race 

circuits. However, there are obvious financial and logistical challenges associated with obtaining 

this data within the context of this initial study. In this chapter, a method is presented, using the 

commercially available simulation software IPG CarMaker, to simulate race circuits, a HP-BEV and 

a driver to generate a database that defines a range of HP duty cycles that are deemed 

representative of the real-world use of a HP-BEV. The IPG CarMaker software packages are 

simulation tools commonly used within the automotive industry. The model capability has been 

validated for some use cases [201–203]. The author asserts that these tools are thus fit for 

purpose. It is beyond the scope of this thesis to present the full derivation and validation of the 

mathematical models that underpin the IPG software packages. This information is contained 

within [204–206] and will therefore not be repeated. 

4.2 Vehicle model 

4.2.1 Target vehicle 

Vehicle performance characteristics are a limiting factor within HP driving and racing scenarios. 

Therefore, the choice of vehicle has a substantial effect on the resulting battery duty cycle. Within 

the HP vehicle market, performance characteristics such as acceleration times, top speed, and 

system power can vary substantially, as illustrated in Table 4-1. As such, a target vehicle sub-

segment must be chosen for which a duty cycle database is constructed.  
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Vehicle Model 0-100 km/h 0-200 km/h Top-Speed Peak Power 

Tesla Model S P85D 3.5 s 14.7 s 249 km/h 515 kW 

Jaguar I-Pace 4.5 - 200 km/h 294 kW 

NIO – EP9 2.9 s 7.1 s 313 km/h 1000 kW 

Rimac Concept_1 2.5 s 6.2 s 355 km/h 913 kW 

VW ID-R 2.3 s - - 507 kW 

Conventional “Supercar” ≈ 4.0 s ≈ 13 s ≈ 300 km/h ≈ 300 kW 

TABLE 4-1 – COMPARISON OF SELECTED PERFORMANCE CHARACTERISTICS OF DIFFERENT COMMERCIALLY AVAILABLE 

AND CONCEPT EVS, DATA FROM [94,207–210] 

The target vehicle for this research is situated within what is referred to as the “Supercar” 

segment in popular media. This segment was chosen, as it is a strategically important market for 

the sponsoring companies. Examples of traditionally powered vehicles within this segment are 

the Jaguar F-Type R, Audi R8, and Aston Martin V8 Vantage. Although no concrete definition 

exists on what makes a vehicle a “Supercar”, there are certain commonalities with respect to the 

performance parameters, listed in the last row of Table 4-1. As such, the conceptualized HP-BEV 

within this work is benchmarked against these performance parameters of existing, traditionally 

powered vehicles within this segment. A list of vehicle model parameters are presented within 

Table 4-3 and discussed below 

4.2.2 Chassis and handling 

The starting point for the vehicle model is the conventionally powered Audi R8 demonstration 

vehicle that is made available within the IPG CarMaker software. This is a model of a typical 

vehicle within the “Supercar” segment. Within this model, all key vehicle subsystem models, 

including the vehicle suspension, hydraulic brakes, hydraulic steering, tyre and powertrain 

models are preconfigured and parameterised. 

For the model used within this work, it was decided that only the powertrain sub-model would 

be replaced to represent that of an HP-BEV. Although each individual model provided within the 

software can be parameterised by the user to represent the specific characteristics of real 

components much of the information required to do so is proprietary for each OEM, and thus 

not readily available. Due to the associated time and cost efforts to reverse engineer those 

subsystems, it was decided that the models for the suspension, hydraulic brakes steering and 

tyres models remained unchanged from the original model. 
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The overall vehicle mass of 1564 kg was also left unchanged, with a 50-50 mass distribution 

between the front and rear of the vehicle. This mass is approximately 300kg lighter than the 

Rimac Concept One [94], 180 kg lighter than the NIO EP9 [209], and 650 kg lighter than the Tesla 

Model S P85D [207], and Jaguar I-Pace[208]. To achieve this for a commercially available electric 

road vehicle would be challenging and require extensive engineering effort due to the mass of 

the traction battery system required to provide power to the vehicle. However, this goal is 

achievable, exemplified through the battery utilised in the 2017-18 Formula E vehicles, which has 

a specific peak power exceeding 860 W/kg [211]. An example of how this mass saving could be 

achieved is illustrated within Table 4-2, where negative values indicate a mass saving and positive 

values indicate a mass gain.  

Component approx. mass (kg) Notes 

Motor/inverter assemblies 150 ± 20 2 lightweight assemblies 

Battery pack 440 ± 60 Assuming 60kWh pack 

Engine -300 ± 50 4.2l supercharged V8 wet weight 

Air system -40 ± 10 exhaust, catalytic converters, etc 

Seats -50 ± 10 Carbon fibre vs standard 

Wheels -15 ± 5 lightweight sport wheels 

Fuel Tank and lines -10 ± 5 Assuming empty tank 

Air conditioning -35 ± 10 Optionally stripped out for racing 

Infotainment cluster -25 ± 10 Optionally stripped out for racing 

Total mass balance 115  ± 170  

TABLE 4-2 – ESTIMATED MASS SAVING POTENTIALS TO ACHIEVE TARGET VEHICLE MASS 

4.2.3 Powertrain 

A schematic of the HP-BEV powertrain model as conceptualised within CarMaker is shown in 

Figure 4-1. It comprises two drive sources, composed of an electric machine (EM) – inverter 

assembly mechanically coupled through an automated two-speed gearbox and differential to the 

front and rear axles respectively, a power supply representing the traction battery, and a 

powertrain control unit comprising a battery control unit (BCU), motor control unit (MCU), and 

traction control unit (TCU).  
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FIGURE 4-1 – POWERTRAIN SCHEMATIC OF THE HP-BEV WITHIN CARMAKER COMPRISING TWO DRIVE SOURCES 

COMPOSED OF AN EM-INVERTER ASSEMBLY, A 2 SPEED GEARBOX, AND A DIFFERENTIAL FOR EACH, A POWER SUPPLY 

REPRESENTING THE BATTERY, AND A POWERTRAIN CONTROL SYSTEM, COMPRISING A BATTERY CONTROL UNIT (BCU), 
MOTOR CONTROL UNIT (MCU), AND TRACTION CONTROL UNIT (TCU). 

Most vehicles within the HP segment use a rear-wheel drive (RWD) or all-wheel drive (AWD) 

powertrain architecture. An RWD architecture is lighter than AWD systems, as the resulting 

powertrain contains fewer components, resulting in better acceleration at higher speeds than a 

similarly powerful AWD system. During friction braking, the largest portion of braking energy is 

dissipated into heat. In contrast, the utilisation of separate front and rear electric machines for 

an AWD architecture allows for a larger proportion of the braking force to be used for 

regenerative braking. Furthermore, AWD can provide more traction during acceleration, resulting 

in faster acceleration rates at low speed, and usually allow for better handling in situations where 

limited traction is available [212]. To increase vehicle range through regenerative breaking, and 

for the benefit of better acceleration, the AWD architecture was chosen with a power-split of 50-

50 between the front and rear axle as recommended within [213]. 

The power supply within the model was parameterised to provide an ideal power source capable 

of delivering and receiving 300 kW of electrical power throughout operation at a constant 

voltage. This approach was selected to gather data in which the battery performance does not 

derate. This is not always representative of real life situations, as a BMS may derate battery 

power output and input to prevent excessive battery degradation due to temperature, current, 

voltage, and SOC limitations [214].  
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Figure 4-2 illustrates the typical voltage dependency of electric machines, whereby a decrease in 

in voltage due to SOC result s in an earlier onset of the knee-point on the torque-curve. The knee-

point is the instance at which operation changes from constant torque to constant power mode. 

 

FIGURE 4-2 – TYPICAL TORQUE-SPEED CHARACTERISTICS OF ELECTRIC MACHINES 

The energy efficiency maps of the EM-inverter assembly models for acceleration and 

regenerative braking are shown in Figure 4-3. 

 

FIGURE 4-3 – EM-INVERTER EFFICIENCY MAPS FOR FRONT AND REAR DRIVE SOURCES; THE DATA WAS PROVIDED BY 

AN INDUSTRIAL PARTNER. 

The efficiency is defined as the ratio of mechanical output power to electrical input power and 

quantified as a function of machine speed and torque. The source data used for parameterisation 

of this model within this work was based on real-world test data from commercially available 
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systems. The source data was provided by an industrial partner and scaled to 150 kW for each 

motor to match the desired battery power output of the target vehicle. To maximise energy 

recovery during regenerative braking, a sequential braking strategy was implemented, where 

mechanical brakes are only in use for braking torques that exceed the EM’s regenerative 

capability. The automated gearboxes, and final drive are assumed to have an efficiency of 95% 

[215]. Gear ratios were parameterised by simulating straight-line accelerations from 0 km/h to 

top speed and iteratively adjusting gearing to achieve typical performance for acceleration times 

and top speed within the target sector. Ancillary loads for power steering or air conditioning were 

not considered within the model as their impact on the overall power demand is not expected to 

exceed 1%. 

Parameter Value 

Vehicle body Rigid body 

Vehicle mass 1564 kg 

Combined motor input power 300 kW 

Combined motor torque 850 Nm 

Height of center of gravity 0.5m 

Wheelbase 2.67m 

Longitudinal drag coefficient 0.3 

Effective frontal area 2.0 m 

Gearing ratio 1st  gear 1.4 : 1 

Gearing ratio 2nd gear 0.45 : 1 

Final drive gear ratio 5.8 : 1 

Tire rolling resistance 𝑘𝑟𝑟  0.01 

Tire friction coefficient 𝜇𝑟  1 

Tire radius 𝑟 0.27 m 

Axle power split 50-50 

0 - 100 km/h 3.8 s 

0 - 200 km/h 12.4 s 

Top speed (km/h) 300 km/h 

TABLE 4-3 – VEHICLE MODEL PARAMETERS USED WITHIN THE IPG SOFTWARE 
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4.3 Circuit Models 

The circuit design affects the resulting driving profile, and subsequently battery duty cycle. The 

selection of circuits forming the basis of a HP duty cycle database should capture as many 

different HP driving scenarios as possible. As such, to avoid any potential bias with regard to 

racing class, or circuit length, the database should contain a number of circuits from different 

geographic locations, and differentiating track design concerning length, number of corners, and 

target racing class. Within this work, an arbitrary number of circuits (12) compliant with these 

targets were chosen. Table 4-4 summarises, for each race-circuit, the location, a summary of 

popular use, actual and modelled circuit length, and the associated percentage error. The track 

models deviate from official circuit length from 6m to 272m. This deviation translates to an error 

in track length of 2.5% in the worst case but lower than 1% in most cases, which was deemed 

acceptable. 

The modelling process for the circuits is illustrated within Figure 4-4 on the example of the 

Nürburgring GP and Nürburgring Nordschleife tracks, and described below. IPG Road allows for 

the modelling of road segments or tracks by two means. Firstly, individual segments can be 

created manually, parameterised through length, road with, corner radius and road inclination. 

Alternatively, geographic coordinates can be imported in the “.kml” file format, and the software 

automatically computes splines between these waypoints and generates a road model with a 

constant, user-defined width. Due to restricted resources in terms of required survey data to 

recreate models of the racing tracks, it was decided to opt for the simpler approach of importing 

geographic coordinates, recorded from Bing Maps Satellite images. 

Waypoints were collected by manually retracing the centreline of the road on each circuit. The 

road width chosen within this work is 12m, as it is the minimum width for any new Formula 1 

circuit [216]. Furthermore, most circuit operators state a track width between 10m and 14m. 

Road elevation and inclination and thus gradient was not included in the model, as this data is 

not readily available. One exception is the Nürburgring Nordschleife, for which GPS data linked 

with an altitude profile can be found online [217]. To assess the effect of road inclination on the 

resulting duty cycles, the Nordschleife circuit is included twice within the Database, once with 

elevation included, and once without elevation. The implications of this are discussed in further 

detail in section 4.6.2. 
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FIGURE 4-4 - LEFT TO RIGHT, NÜRBURGRING GP AND NORDSCHLEIFE TRACKS TRACED IN BING MAPS, BIRDS' EYE 

VIEW OF NÜRBURGRING GP TRACK IN IPG ROAD, NÜRBURGRING NORDSCHLEIFE IN IPGROAD 

 

Racing-circuit Location Use Model 

length 

(km) 

Official 

length 

(km) 

Delta 

(%) 

Anglesey International Circuit UK TD 3.294 3.381 -2.57 

Bahrain GP Bahrain F1, TD 5.439 5.412 0.50 

Brands Hatch Grand Prix Circuit UK DTM, GT, F3 3.908 3.917 -0.23 

Dunsfold Park UK Top Gear  2.852 2.818 1.22 

Goodwood Full Circuit UK TD 3.853 3.832 0.55 

Lausitzring Automobilsport Germany DTM 4.551 4.534 0.37 

Le Mans Circuit de la Sarthe France End. 13.626 13.629 -0.02 

Magny Cours GP France (F1), TD, GT, 

End.  

4.436 4.411 0.57 

Nürburgring GP Germany F1, DTM, GT 5.142 5.148 -0.12 

Nürburgring Nordschleife Germany (F1), TD 20.800 20.832 -0.15 

Nürburgring Nordschleife (with 

altitude) 

Germany (F1), TD 20.560 20.832 1.31 

Silverstone GP UK F1, End., GT 5.920 5.892 0.46 

Suzuka GP Japan F1, GT 5.828 5.807 0.36 

TABLE 4-4 – RACING-CIRCUIT MODEL OVERVIEW – NOMENCLATURE: TRACK DAY (TD), DEUTSCHE TOURING 

MASTERS (DTM), FORMULA 3 (F3), FORMULA 1 (F1) ENDURANCE (END.) 
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The road conditions can be described through a coefficient of adhesion between the tyres and 

the road surface. Typically, for dry asphalt this value ranges between 0.75 and 1 depending on 

the condition of the tyre and the vehicle speed. In wet and icy conditions, this coefficient may 

decrease to 0.1. Special racing compounds exist providing coefficient of up to 1.8 on dry asphalt 

[212]. The coefficient of adhesion within this model was set to 1 as it is the best case [212] for a 

typical road tyre, and the maximum possible within the software. 

4.4 Driver Model 

IPG Driver is an artificial intelligence (AI) driver model which can be parameterised to follow a 

course and a speed on a given track [204,205]. The software provides a model, which can be 

parameterised by the user (User Driver) and a closed loop artificial intelligence (AI) racing driver 

(Racing Driver). For either driver model, a static path is calculated along the circuit. The user can 

influence this calculation through a corner cutting coefficient which dictates how much of the 

road width the AI driver may use, with a value of 1 allowing the driver to utilise the entire width 

of the track, a value of 0 forcing the driver to drive along the centre of the road. 

The Racing Driver can learn the dynamic vehicle limits through an in-built simulation procedure 

called "Driver Adaption". The dynamic behaviour of the User Driver can be manually 

parameterised in terms of aggressiveness, tuneable with respect to both, lateral and longitudinal 

dynamics (see Figure 4-5).  

Initially, the Racing Driver model was employed for driving simulations. However, during the 

simulations for three circuits (Dunsfold, Lausitzring, and Norschleife), the vehicle left the road 

and the simulation was automatically stopped. This could be avoided by reducing the corner-

cutting coefficient for those circuits track, effectively resulting in less aggressive driving. To 

provide a reproducible process, it was decided to parameterise the User Driver model. A 

description of the tuneable parameters and their final values are detailed within Table 4-5 and 

Table 4-6. The process of parameterisation is described below. 
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FIGURE 4-5 – IPGDRIVER PARAMETERISATION. EACH PARAMETER IS TUNEABLE TO INCREASE OR DECREASE DRIVER 

AGGRESSIVENESS WITH RESPECT TO LONGITUDINAL AND LATER VEHICLE DYNAMICS. 
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Parameter Description Value 

Cruising speed The speed the driver will aim to reach during driving 

unless otherwise limited 

300 km/h 

Corner Cutting 

Coefficient 

Defines how much of the track width may be used. A 

value of 1 allows the driver to use full track width, a 

value of 0 

1 

Max Long. 

Acceleration 

The longitudinal acceleration in the direction of travel 

that the driver will aim to achieve 

10.5 m/s2 

Max Long. 

Deceleration 

The longitudinal deceleration the driver will aim to 

achieve 

8.7 m/s2 

Max Lat. 

Acceleration 

Maximum allowed maximum lateral acceleration 

during cornering 

9.0 m/s2 

g-g Diagram representation of the speed dependent maximum 

longitudinal and lateral acceleration, similar to friction 

circle for tyres 

See Table 4-6 

TABLE 4-5 – MODEL PARAMETERS AND EXPLANATIONS FOR THE PARAMETERISATION FOR IPG DRIVER 

Speed (km/h) Acceleration Deceleration 

25 2.00 2.00 

50 1.30 1.20 

100 1.00 0.95 

150 0.65 0.60 

200 0.30 0.30 

250 0.10 0.10 

300 0 0 

TABLE 4-6 – G-G DIAGRAM EXPONENTS DESCRIBING THE SPEED DEPENDENT DRIVER BEHAVIOUR WITH RESPECT TO 

LONGITUDINAL AND LATERAL ACCELERATION DURING CORNERING 

For the driver parameterisation and to start with an extremely aggressive driver, the initial value 

for cruising speed was set to the maximum vehicle speed of 300km/h, lateral and longitudinal 

acceleration values were set to 9 m/s2, and all g-g exponents to 2. To optimise the longitudinal 

acceleration parameter, straight-line acceleration simulations were conducted and the 

parameter value was iteratively increased in increments of 0.1 m/s2 until no improvement of 

acceleration times could be recorded any more. This process overlaps with that of gearing 
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optimisation described in section 4.2.1. Deceleration was optimised by running straight-line 

deceleration tests and a value of 8.7 m/s2 was chosen at which the wheels did not lock up. 

To calibrate the lateral dynamic driving behaviour, consecutive simulations of the Lausitzring 

circuit were conducted. The g-g exponent values resulted in several aborted simulations as the 

driver left the track and crashed. For each of those instances, the gg-exponents were reduced 

iteratively, until a crash was avoided. The final parameters are displayed in Table 4-6. This user-

parameterised driver could be used to complete simulations without crashing and achieved 

faster lap times than the built in Racing Driver AI on every circuit. There is currently no feature 

within the used software to automate the parameterisation process, as a failed driving scenario, 

where the vehicle leaves the road, ends the simulation program. 

4.5 Simulation & Data processing 

The processes that constitute the simulation work and subsequent data processing are illustrated 

within Figure 4-6 and discussed below.  

 

FIGURE 4-6 – SUMMARY OF THE DATA PROCESSING STEPS. FOLLOWING SIMULATION WORK, THE SIGNALS FOR 

VELOCITY AND POWER DEMAND ARE RECORDED. AN INITIAL PART OF THE SIGNAL IS DELETED TO AVOID THE 

STANDSTILL PORTION OF EACH SIMULATION. THE PERIOD, I.E. LAP LENGTH OF EACH CIRCUIT IS DETERMINED 

THROUGH AN UNBIASED AUTO-CORRELATION. THE COLLECTED SIGNAL IS SPLIT INTO INDIVIDUAL LAPS, FROM WHICH 

A MEAN LAP IS CALCULATED. 

A simulation was carried out for each circuit. The data extracted from simulations are the vehicle 

speed and battery power profiles at the power source terminals as illustrated within Figure 4-7a 

and Figure 4-7b, respectively, on the example of the Silverstone circuit simulation. Each 

simulation starts with the vehicle at standstill and 1800 seconds of driving are recorded for each 

racing-circuit. This is done to ensure that each recorded power demand profile contains at least 
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one complete lap without a start from standstill. The sampling frequency was set to 10 Hz, which 

is the maximum sampling frequency of the available battery testing equipment, discussed in 

more detail in Chapter 6. For real-life data, sampling at higher frequencies would be useful to 

analyse the effect of traction limiting scenarios such as tyre slipping, free spinning, or locked up 

wheels, on the power profiles. However, this level of fidelity cannot be achieved with the current 

models. 

 

FIGURE 4-7 – A) VEHICLE SPEED RECORDED FROM THE SILVERSTONE SIMULATION; B) ASSOCIATED BATTERY DUTY 

CYCLE PROFILE FROM THE SILVERSTONE SIMULATION 

Both, the vehicle speed and the battery power profile follow a periodic pattern, with almost 

identical profiles for every lap, as would be expected for a racing driver. As such, a typical duty 

cycle for each circuit can be approximated as a mean lap from the simulations. An initial step in 

this process is to determine the period, thus lap duration, of each profile. To reduce the effect of 

the standing start on each mean lap, the initial portion of each power profile is eliminated. This 

initial starting point can be defined at the the first point at which charging of the power source 

exceeds a minimum threshold, or after a specific amount of time has passed. Within this work, a 

minimum charging threshold value of 10kW was chosen arbitrarily. From this reduced profile, the 
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number of individual periods and their duration can be determined through an unbiased auto-

correlation function [218].  

Assuming the recorded data is a signal 𝑥(𝑛) containing 𝑁 data points as described in equation 

(34). 

 𝑥(𝑛) = [𝑥0, 𝑥1, … 𝑥𝑁] (34) 

The unbiased auto-correlation (𝑅𝑥𝑥) of 𝑥(𝑛) is the unbiased correlation of 𝑥(𝑛) with a shifted 

copy of itself as a function of the shift (𝑚) as described in equation (35), where 𝑥∗ is the complex 

conjugate of 𝑥. 

 𝑅𝑥,𝑥,𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑(𝑚) =
∑ 𝑥𝑛+𝑚. 𝑥𝑛

∗𝑁−𝑚−1
𝑛=0

𝑁 − |𝑚|
 (35) 

 𝑚 = [0,1,…𝑁 − 1] (36) 

The calculated correlation function is unique for each power profile. The peak values for 𝑅 have 

a different amplitude for each individual circuit. To ease the processing of multiple profiles within 

MATLAB®, the values of each correlation function are normalised through equation (37) to 

provide values between a maximum and minimum limit of 1 and -1, respectively. 

 𝑅𝑁𝑜𝑟𝑚 =
𝑅

max(𝑅)
 (37) 

A plot of 𝑅𝑁𝑜𝑟𝑚 vs the lag 𝑚 for the Silverstone profile is shown in Figure 4-8. 
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FIGURE 4-8 – NORMALISED UNBIASED AUTOCORRELATION VS SAMPLE SHIFT. THE RED CROSSES MARK THE LOCATION 

OF THE HIGHEST PEAKS, INDICATING COMPLETION OF A FULL LAP.  THE NUMBER OF SAMPLE POINTS BETWEEN PEAKS 

IS EQUAL TO THE SAMPLES CONTAINED WITHIN EACH LAP. 

The number of samples for each period, thus lap, is equal to the number of samples between the 

highest peaks marked by a red cross. These are determined through use of the MATLAB® 

“findpeaks” function. The number of peaks and their location indices (𝑙𝑜𝑐 = [𝑙𝑜𝑐0, 𝑙𝑜𝑐1… 𝑙𝑜𝑐𝐼]) 

with respect to the sample shift are stored. The definition for a single lap profile (𝑥𝑖(𝑛𝑖)), is 

described in equation (38) and equation (39), where 𝑖  denotes the lap number, and 𝐼  is the 

number of peaks in Figure 4-8. 

 𝑥𝑖(𝑛) = [𝑥𝑙𝑜𝑐𝑖 , 𝑥𝑙𝑜𝑐0+1, … 𝑥𝑙𝑜𝑐(𝑖+1)−1] (38) 

 𝑖 = [1,2,… 𝐼 − 1] (39) 

The resulting power profiles for the laps are shown in Figure 4-9a. As the data stems from 

simulations, the individual laps vary only by one sample, i.e. 0.1 s. For the Silverstone simulation, 

the shortest period contains 1631 samples, and the longest period 1632 samples. The shorter 

period length was used for every lap, and the last data sample for longer laps was omitted, such 

that all laps have the same length. A typical lap profile (𝑃(𝑡)) is then approximated as the mean 

lap over the periods displayed in Figure 4-9b.  
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FIGURE 4-9 – A) LAP PROFILES EXTRACTED FROM ORIGINAL RECORDING FOR THE SILVERSTONE SIMULATION; B) 

MEAN LAP CALCULATED FROM THE LAPS SHOWN IN SUBFIGURE A). 

This approximation is only justifiable as each simulation returns lap profiles, which are almost 

indistinguishable from one another. For real world data, where more variation is expected, an 

intermediate data processing step may be required. For larger differences between individual 

periods, each lap profile could be scaled and interpolated onto the same time vector, as 

suggested within [219], and a mean lap calculated.  

4.5.1 Normalised duty cycles 

Normalisation of the mean lap power profiles with equation (40) allows decoupling of the power 

profile from battery and system parameters with the resulting profiles containing values between 

-100% and 100%. This processing step allows the scaling of the profiles to a subsystem or cell 

level, as it is independent of the internal design features of the power management system.   

 𝑃𝑁𝑜𝑟𝑚(𝑡) =
𝑃𝐶𝑦𝑐𝑙𝑒(𝑡)

max(𝑃𝑆𝑦𝑠𝑡𝑒𝑚)
 (40) 
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𝑃𝑁𝑜𝑟𝑚(𝑡) is the normalised power profile, referred to as a duty cycle within this work, 𝑃𝐶𝑦𝑐𝑙𝑒(𝑡) 

is the power demand profile resulting from the simulation, and max (𝑃𝑆𝑦𝑠𝑡𝑒𝑚) is the peak power 

that the power source can supply to the electric machines. These resulting duty cycles, although 

dimensionless, are still fully dependent on the specific properties of the vehicle and driver 

models, and race-circuit selection. As such, they relay information about their intensity as a 

function of the system’s peak capability, without eliminating crucial information about 

differences between individual profiles. Furthermore it enables direct comparison with the 

battery testing profiles within the ISO 12405-2, IEC 62620-1 and Battery Test Manual [34–36], 

that aim to represent the best practice approach for LIB testing. 

4.6 Results 

4.6.1 Recorded profiles 

Table 4-7 provides for each circuit, the mean values of speed, absolute power, discharge power 

after considering regenerative braking, RMS of the absolute power, and peak power when 

modelled within the CarMaker software. The mean value for each of the columns within Table 

4-7 are displayed in Figure 4-10, where error bars represent one standard deviation. 

The peak power demand for each driving scenario is limited by the vehicle capability, reaching a 

maximum of 300 kW. Most circuits lie within a narrow band of values for each measure, except 

for the Anglesey International circuit and Le Mans Circuit de la Sarthe. The Anglesey International 

circuit is the second shortest in terms of length but its layout features a relatively high portion of 

tight corners, requiring slow passing speeds. The Le Mans circuit in contrast is well known for 

long sections of straight track, thus resulting in higher speeds and large portions of time spent at 

full power. 
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Racing-circuit 

Mean 

speed 

(m/s) 

Mean 

absolute 

Power 

(kW) 

mean 

Power 

(kW) 

Peak 

discharge 

power 

(kW) 

Anglesey International Circuit 29.0 118.3 43.6 300 

Bahrain GP 33.7 176.6 73.9 300 

Brands Hatch Grand Prix Circuit 34.0 135.9 53.2 300 

Dunsfold Park (Top Gear) 33.1 137.8 55.8 300 

Goodwood Full Circuit 42.4 153.0 77.5 300 

Lausitzring Automobilsport 31.9 132.9 52.8 300 

Le Mans Circuit de la Sarthe 44.9 201.3 109.9 300 

Magny Cours GP 34.5 161.0 68.4 300 

Nürburgring Nordschleife 39.9 142.7 76.0 300 

Nürburgring Nordschleife (with altitude) 40.8 145.5 75.8 300 

Nürburgring GP 32.5 138.5 59.3 300 

Silverstone GP 35.9 143.3 59.8 300 

Suzuka GP 33.0 139.2 60.6 300 

TABLE 4-7 – RACING CIRCUIT MODEL AND SIMULATION RESULT OVERVIEW 
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FIGURE 4-10 – MEAN VALUES FOR THE MEASURES LISTED IN TABLE 4-7. ERROR BARS REPRESENT ONE STANDARD 

DEVIATION FROM THE MEAN. ERROR BARS REPRESENT ONE STANDARD DEVIATION FROM THE MEAN 

4.6.2 Effect of road inclination 

Ignoring road inclination and the resulting gravitational forces on the vehicle influences both, the 

vehicle speed and power demand profile of a vehicle driving on a track. As it is expected that a 

driver will push the vehicle to its performance limits. With reference to power demand, driving 

uphill would result in a longer demand in power for propulsion and a shorter braking duration. 

Similarly, for driving downhill, the duration of peak power demand will be shorter, whereas the 

braking duration increases. This simplification is equivalent to a vehicle driving on a circuit with 

longer/shorter straights. 

Comparing the results for the two versions of the Nürburgring Nordschleife track as tabulated 

within Table 4-7, there are only minor differences between both. Except for mean vehicle speed, 

the three other measures, which relate to the characteristics of the power profiles, lie well within 

one standard deviation of the mean values shown in Figure 4-10. As such, it was deemed that 

both simulation results are treated as individual entries in the database. 
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4.6.3 Normalised profiles 

The normalised battery power profile for the Silverstone circuit is shown within Figure 4-11a, and 

the IEC 62660-1 Cycle Life Profile A, as described within the IEC 62660-1 standard [34], is shown 

within Figure 4-11b. Visual comparison of these two profiles reveal obvious differences. These 

are the frequency of changes between charging and discharging, the amplitude of charging and 

discharging power and the portion of the profile at high amplitudes. This further strengthens the 

arguments for performance and degradation testing to be conducted with a bespoke HP-BEV 

duty cycle. 

 

FIGURE 4-11 – A) NORMALISED PROFILE OF THE MEAN LAP FROM THE SILVERSTONE CIRCUIT SIMULATION, B) IEC 

62660-1 CYCLE LIFE PROFILE A 

4.7 Duty cycle selection 

Two options are considered for duty cycle selection to conduct performance and degradation 

testing. Either, the most demanding cycle in terms of mean absolute power, mean net power and 

RMS power from the database could be chosen, or a generic duty cycle representative of the 

database as a whole could be developed. 

Testing with the most demanding duty cycle would provide a dataset, which is specific to one 

particular scenario rather than the database as a whole. If this data were to be used for the 

specification of BTMS requirements, the resulting system would be able to cope with the thermal 

requirements for all HP duty cycles present in the database. Further, within the context of 
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degradation testing, this would provide a worst-case scenario dataset, thus provide a benchmark 

for minimum battery life rather than representative degradation over a wider variety of 

scenarios. If the most demanding profile is rare in occurrence, any system specified to these 

requirements could be potentially over-engineered (e.g. heavy and costly) for the majority of 

other use cases. Similarly, if a generic duty cycle is to be used, the resulting data should provide 

an estimation of thermal management requirements and degradation for a large portion of the 

HP-BEV use case, but any system specified to cater to these requirements might be unsuitable 

for the most demanding scenarios. To gain an initial understanding of the performance and 

degradation of LIBs within the HP-BEV use cases as identified within Chapter2 , the author asserts 

that a generic cycle representative of the database should be chosen.  

4.8 Limitations of the database 

There are limitations associated with the approach described within this chapter that must be 

explored. First is the use of simulations instead of real-world data, which could not be obtained 

due to financial and resource limitations. However, the software packages used to develop the 

models and simulate the duty cycles are tools used within industry and the model capability has 

been validated for comparable use cases [201–203]. Secondly, there is a lack of data, which may 

underpin the development of more accurate and higher fidelity models. As such, assumptions 

and simplifications needed to be made to formulate and parameterise the models discussed in 

sections 4.2, 4.3 and 4.4. 

Much of the required information to build a representative vehicle model is proprietary and not 

easily accessible within the public domain. As such, the vehicle model developed within this 

chapter is only conceptual and not a real vehicle. The approach of benchmarking the performance 

of the HP-EV model against performance targets of ICE powered vehicles that operate within the 

same market segments, and, where available using real-world measurements to parameterise 

models, offers a degree of confidence that the vehicle model is representative of the target 

market. Additional validation of vehicle subsystem and component models would improve the 

overall accuracy of the full vehicle model. Furthermore, as vehicle performance is one of the 

limiting factors in circuit driving, each vehicle segment would require its own bespoke database, 

as duty cycles between two vehicle classes would differ significantly. 

The driver model parameterised within this work emulates a vehicle user with a high level of 

ability to control the vehicle, and consistency with respect to driving on a racing circuit. For 

professional racing drivers this approximation may be suitable. However, taking a sample from 
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the general populous, a group of real human drivers would be expected to display much larger 

variability in terms of ability and consistency, thus duty cycles. As such, an expansion of the duty 

cycle database through additional simulations with different driver parameter settings may be 

required for future studies. 

The circuits are currently modelled without considering road inclination, or differing road 

surfaces. Concerning road inclination, it was shown within section 4.6.2 that the resulting error 

from this simplification is relatively small and thus deemed acceptable. Although the current 

number of circuits within the database is relatively small, the resulting duty cycles are very similar 

with respect to the measures listed within Table 4-7. The database itself can be expanded though 

the inclusion of additional circuits. To expand the database through different road conditions is 

outside the scope of this thesis but should be addressed in further studies. 

The process to develop a database of duty cycles as described within this chapter is the most 

accurate approximation to collecting real-world data with the information available to the author. 

The accuracy and fidelity of the data obtained through this process could be improved through 

the inclusion of models that are more accurate and proprietary information currently not 

available in the public domain. These limitations, however, do not invalidate the method 

presented. 

4.9 Conclusion 

The work presented within this chapter fulfils the requirements demanded from “Research Task 

1: Collate a database of battery duty cycles representative of HP-BEV racing applications.” In this 

chapter a method to develop a duty cycle database of previously unexplored HP-BEV driving on 

racing circuits, based on simulations has been discussed. A description of the vehicle, circuit and 

driver models underpinning the simulation work has been given, and the model parameterisation 

process was discussed on detail. The HP-BEV model represents a hypothetical vehicle operating 

in the “Supercar” segment; its acceleration and speed has been validated against existing ICE-

powered vehicles operating within the same segment. The driver is parameterised to resemble a 

racing driver, and 13 internationally known circuits of varying length, geographic location, and 

main use were modelled for driving simulations. As such, this database supports the development 

of a generic HP duty cycle, the derivation of which is discussed in Chapter 5.  



5 Development of a generic HP duty cycle 

89 

 

5 Development of a generic HP duty cycle  

5.1 Introduction 

This chapter addresses “Research Task 2: Define a methodology, from which a duty cycle that is 

suitable for LIB performance and degradation testing may be derived.” Two methodologies to 

develop a duty cycle are presented. The resulting methodologies constitute a key component of 

the framework outlined within Figure 3-6, and address the knowledge gap identified within 

Chapter 3, pertaining to the scarcity of appropriate duty cycle design methodologies. 

Each methodology is used to generate a duty cycle representing 12 out of the 13 duty cycles 

established in the previous chapter. The 13th profile, chosen arbitrarily as the duty cycle derived 

from the simulation for the Bahrain circuit is used as a validation profile to determine the validity 

of the presented methodologies and resulting profiles. The process for each methodology and 

selection of target criteria are described in full detail below. 

Secondly, results are presented that quantify the differences in performance requirements for a 

cell based on HP duty cycles compared to the IEC 62660 Dynamic Discharge Profile A (IECC), 

initially described in Chapter 2. Finally, results from a thermal modelling simulation are reported 

that highlight the level of heat generation within a cell under HP-BEV applications and compares 

this to that predicted using established battery test methods.  

5.2 Method One: HP Random Pulse Cycle (HP-RPC) 

The first of the two methods extends the research described in [178,179]. This new method, 

illustrated in Figure 5-1, follows the same principle as the random microtrip methodology initially 

discussed in Chapter 3.4.1. The key differences between this new method and the existing 

established driving cycle method are highlighted with a red box within Figure 5-1. Firstly, the 

source data, which are normalised duty cycles instead of driving profiles, is segmented into duty 

pulses, defined as the time signal between two zero crossings. Secondly, to ensure the resulting 

cycle is suitable for LIB performance and degradation testing, the target criteria is selected to 

represent those aspects of the database, which mainly influence cell heating and degradation. 

These are defined later within the chapter. Duty cycle construction subsequently involves 

randomly selecting pairs of discharging and charging pulses and combining them to generate the 

complete HP duty cycle. The resulting cycle is called a “HP Random Pulse Cycle” (HP-RPC). The 
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specifics of data processing, target criteria selection, and cycle generation are described in detail 

below. 

 

 

FIGURE 5-1 – DUTY CYCLE CONSTRUCTION PROCESS AS SUGGESTED FOR THE HP-RPC. 

5.2.1 HP-RPC Data Processing and Target Criteria 

The target criteria for the first method comprises several measures in the time-domain. A profile 

matching these criteria should represent the generic shape of the original profiles in the 

database. Furthermore, key profile features pertaining to battery degradation and self-heating 

should be preserved. 

As described in detail in Chapter 2, cells cycled at higher C-rates, i.e. higher power, are known to 

display reduced cycle life [27,220] which should be reflected in the target criteria. Preliminary 

results presented within [163] indicate that both, charging and discharging pulses, at peak power 

cause a higher capacity loss over time than a pulse with the same cumulative energy but lower 

magnitude. Pulsed profiles also appear to cause more capacity fade than a constant current 

discharge with the same cumulative discharge energy [154]. Accurate representation of the 

magnitude and duration of charging and discharging pulses is therefore deemed necessary. As 

the anode and cathode degrade under different ageing mechanisms [47] it is also required to 
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take into account the duration the cell is being charged and discharged respectively to ensure 

that this is equally represented within the derived HP duty cycle. 

To extract information such as power pulse duration and magnitude from the duty cycles, the 

following process was followed. Each normalised race circuit duty cycle signal (𝑃𝑁𝑜𝑟𝑚(𝑡)) was 

divided into a set of duty pulses (𝑝(𝑡)). As mentioned, this is defined as the time signal between 

two zero crossings. This is similar to the definition of a microtrip often employed within drive-

cycle construction studies [180]. The entire database is broken down into a finite number of duty 

pulses and expressed as a single set ℙ with 𝑘 number of duty pulses in the database. 

 ℙ = { 𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡),… , 𝑝𝑘(𝑡)} (41) 

Furthermore, the set ℙ  is broken down into two subsets, 𝔻  and ℂ  containing all recorded 

discharging (𝑑𝑖(𝑡)) and charging (𝑐𝑖(𝑡)) pulses, respectively, where 𝑖 is the 𝑖𝑡ℎ pulse contained 

within in each set. The conditions for a pulse of duration 𝐿 to be classified as a discharging or 

charging pulse are defined in equations (42) and (43) respectively. 

 𝑝(𝑡) = 𝑑(𝑡), 𝑓𝑜𝑟 ∫ 𝑝(𝑡)
𝐿

0

𝑑𝑡 < 0 (42) 

 𝑝(𝑡) = 𝑐(𝑡), 𝑓𝑜𝑟 ∫ 𝑝(𝑡)
𝐿

0

𝑑𝑡 > 0 (43) 

As such: 

 ℙ = 𝔻 ∪  ℂ (44) 

 𝔻 = {𝑑1(𝑡), 𝑑2(𝑡),… , 𝑑𝑗(𝑡)} (45) 

 ℂ = {𝑐1(𝑡), 𝑐2(𝑡),… , 𝑐𝑗(𝑡)} (46) 

The two subsets 𝔻 and ℂ can be further arranged into racing-circuit specific duty pulses as 

 𝔻 = 𝐷1 ∪ 𝐷2 ∪ …𝐷𝑀 (47) 

 ℂ = 𝐶1 ∪ 𝐶2 ∪ …𝐶𝑀 (48) 
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where 𝑀 (𝑀 = 12) is the number of racing-circuit duty cycles in the database. Each subset (𝐷𝑚, 

and 𝐶𝑚) contains the duty pulses 𝑑𝑖
𝑚(𝑡) and 𝑐𝑖

𝑚(𝑡),  where 𝑚 is the index for a specific racing-

circuit and 𝑖 is the index for a particular duty pulse. 

 𝐷𝑚 = {𝑑1
𝑚(𝑡), 𝑑2

𝑚(𝑡),… , 𝑑𝑖
𝑚(𝑡)} (49) 

 𝐶𝑚 = {𝑐1
𝑚(𝑡), 𝑐2

𝑚(𝑡),… , 𝑐𝑖
𝑚(𝑡)} (50) 

Duty pulses for charging and discharging are easily associated with driving manoeuvres on a 

racing circuit as illustrated within Figure 5-2, whereby discharging pulses are associated with 

driving on straights and accelerating out of corners, and charging pulses are associated with 

braking into a corner. 

 

FIGURE 5-2 – ILLUSTRATION OF DUTY PULSES AND ASSOCIATED DRIVING MANOEUVRES 

The racing-circuits in this study produce a total of 189 charging and 189 discharging pulses. Based 

on this knowledge, the race circuit driving cycle database is analysed in terms of the parameters 

(𝜁𝐶𝑦𝑐𝑙𝑒) described in Table 5-1. 

  

Discharging pulse during 
acceleration/cruising

Charging pulse during regenerative 
braking, entering into a corner

Discharging pulse during 
acceleration out of the corner



5 Development of a generic HP duty cycle 

93 

 

No 
Parameter 

(𝜻 𝒚 𝒍 ) 
Description 

Value from 

database 

1 P𝐷𝐶  Normalised mean duty cycle discharge power 57.06%  

2 P𝐶  Normalised  mean duty cycle charge power 34.95% 

3 𝑃𝑛𝑒𝑡 Normalised  net duty cycle discharge power 22.02% 

4 𝑃𝑎𝑏𝑠 Normalised  mean duty cycle absolute power 48.59% 

5 𝜅𝐷𝐶 % of time on discharge 61.6% 

6 𝜅𝐶  % of time on charge 38.4% 

7 𝜏𝐴𝑣𝑔𝐷𝐶  Mean discharge pulse duration 8.3s 

8 𝜏𝑚𝑎𝑥𝐷𝐶  Maximum discharge pulse duration 23.4s 

9 𝜏𝐴𝑣𝑔𝐶 Mean charge pulse duration 4.7s 

10 𝜏𝑚𝑎𝑥𝐶  Maximum charge pulse duration 10.4s 

11 𝑡𝐶𝑦𝑐𝑙𝑒 Duration of the cycle 204.8s 

TABLE 5-1 - RANDOM PULSE CYCLE TARGET PARAMETERS 

𝑃𝐷𝐶 and 𝑃𝐶 represent the average power sunk or sourced from the battery system during a duty 

cycle. 𝑃𝑛𝑒𝑡 is the net power demand that indicates how much power is demanded on average at 

every instant. 𝑃𝑎𝑏𝑠  defines the mean absolute power throughput describing how much power is 

either supplied to or demanded from the battery. 𝜅𝐷𝐶 represents the fraction of time the battery 

is discharging. Conversely, 𝜅𝐶 is the fraction of time the battery is charging over the course of a 

duty cycle. As the peak power demand for charging and discharging within this study is vehicle 

limited, the peak pulse amplitudes do not require an individual measure. These target 

parameters, collectively, describe the amount of energy supplied to and extracted from the 

system and the proportions in which this occurs. 

The arithmetic mean and maximum duration of discharge pulses, 𝜏𝐴𝑣𝑔𝐷𝐶 and 𝜏𝑚𝑎𝑥𝐷𝐶 are chosen 

to represent the shape and composition of the different discharge pulses. The target parameter 

for maximum pulse duration (𝜏𝑚𝑎𝑥𝐷𝐶) ensures that a wide range of pulses are used and therefore 

the potential effects arising from prolonged high power demand are not excluded from the duty 

cycle. Finally, the target duration of the duty cycle (𝑡𝐶𝑦𝑐𝑙𝑒) defines the length of one period of the 

test profile. 
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5.2.2 HP-RPC Construction 

Using the target parameters from Table 5-1 in conjunction with the sets 𝔻 and ℂ it is possible to 

construct a representative duty cycle following the steps illustrated in Figure 5-3 and described 

in detail below. 

 

FIGURE 5-3 – RANDOM PULSE CYCLE (HP-RPC) CONSTRUCTION METHODOLOGY 

A uniform random number generator using the MATLAB® function “rand” determines an integer 

index 𝑚 with the condition 1 ≤ 𝑚 ≤ 189 for the sets 𝔻 and ℂ. The indexed discharging pulse is 

selected from the set 𝔻 followed by the charging pulse with the same index resulting in a duty 

cycle as described in equation (51), where 𝑙 is the number of generated indices. 

 𝑃𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(t) = [𝑑1, 𝑐1, 𝑑2, 𝑐2, … , 𝑑𝑙 , 𝑐𝑙] (51) 

Once a pulse has been selected, it is not excluded from the set. Selecting the charging pulse with 

the same index as the previous discharging pulse ensures a realistic sequence of charge and 

discharge pulses is created. This avoids the occurrence of a short discharging pulse followed by a 

long charging pulse, which may not be possible within a real-world application since it results in 

a battery over-charge condition. This stage of the process is repeated and the pulses are 
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concatenated until the target time duration 𝑡𝐶𝑦𝑐𝑙𝑒 is reached or exceeded as shown in equation 

(52). This resulting cycle is referred to as a “candidate cycle”. 

 𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≥ 𝑡𝐶𝑦𝑐𝑙𝑒 (52) 

The candidate cycle is subject to an assessment test to evaluate its suitability. Each of the eleven 

assessment parameters from Table 5-1 (𝜁𝐶𝑦𝑐𝑙𝑒) are calculated for the candidate cycle (𝜁𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒). 

The error (𝛿𝜁) is calculated for each 𝜁𝐶𝑦𝑐𝑙𝑒 using equation (53). 

 
𝛿𝜁
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 = |

ζ𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 − 𝜁𝐶𝑦𝑐𝑙𝑒

𝜁𝐶𝑦𝑐𝑙𝑒
| 

(53) 

A cycle passes the assessment test if it fulfils the condition in equation (54) for each target 

parameter. 

 𝛿𝜁
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ≤ 10%, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜁  (54) 

In [178,179] a cycle is only accepted as a candidate cycle if each of the assessment parameters is 

within a 5% error margin. Within this work however, a relaxation of the convergence criteria was 

required to ensure a candidate-cycle satisfied the criteria within an acceptable number of 

iterations. With  𝛿𝜁  set to 10%, it was found that 200 iterations of the process were required 

before suitable candidate cycles were identified. Conversely, with  𝛿𝜁  set to 5% more than 40,000 

iterations failed to return an acceptable candidate cycle. The excessive computational time 

required with a reduced error margin was therefore deemed to reduce the usefulness of the 

method.  A larger database with greater variation of pulses may return a cycle that matches a 

more stringent selection criterion with a reduced number of iterations. 

The evaluation process is repeated until 10 cycles are found that pass the assessment test. The 

cumulative error (𝜀𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) is calculated as the sum of errors from 𝛿𝜁
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 for a particular 

candidate cycle as in equation (55), and the cycle with the smallest (𝜀𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) is chosen as the 

HP-RPC.  

 𝜀𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =∑𝛿𝜁
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝜁

 (55) 
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5.3 Method Two: HP Multisine Cycle (HP-MSC) 

The second of the two methods utilises the frequency domain approach presented within [200], 

and initially described in section 3.5. Using a frequency-time domain swapping algorithm, a duty 

cycle is derived from a user defined amplitude spectrum and iCDF. The choice of target amplitude 

spectrum and iCDF are described in detail below. 

5.3.1 HP-MSC Data Processing and Target criteria 

The amplitude spectrum for each of the normalised duty cycles contained within the database 

can be determined from a Fourier series first described in equation (31), and again in equation 

(56), where 𝑃𝑁𝑜𝑟𝑚(𝑡) = 𝑥 (
𝑛

𝑓𝑠
) , and each profile 𝑃𝑁𝑜𝑟𝑚(𝑡)  contains 𝑛  samples, sampled at 

frequency 𝑓𝑠. This is obtained via the Fast Fourier Transform (FFT) routine in MATLAB®. 

 𝑥 (
𝑛

𝑓𝑠
) = 𝐴0 +∑𝐴𝑘 

∞

𝑘=1

𝑠𝑖𝑛(2𝜋𝑛𝑓𝑘 +𝜙𝑘) (56) 

This approach assumes that the profile 𝑃𝑁𝑜𝑟𝑚(𝑡) is periodic. In a real-world scenario this is not 

entirely the case due to small lap-to-lap variations that are expected from human driving. 

However, the author asserts that this assumption is acceptable due to the nature of driving on a 

closed circuit. In the analysis stages, the amplitude component at 0 Hz frequency (the DC 

component 𝐴0) can be removed as long as it is accounted for at the cycle design stage. Therefore, 

the mean (averaged over time) of each duty cycle is removed to produce a zero-mean duty cycle 

𝑃𝑁𝑜𝑟𝑚,𝑧𝑚(𝑡). This processing step is required to aid function fitting as discussed later. 

The iCDF was initially shown in equations (32) and (33), and again equations (57) and (58). Again, 

𝑦 is the amplitude of the power profile at a random point, 𝐹𝑦(𝐵) is the probability that the 

amplitude of that operating point is equal to or less than 𝐵, and the iCDF in equation (58)  is the 

inverse of the eCDF in equation (57). As the iCDF is a representation of a histogram, it contains 

similar information to the target parameters associated with the random pulse method (see 

Table 5-1), except for the pulse duration parameters (𝜏). 

 𝐹𝑦(𝐵) = 𝑃[𝑦 ≤ 𝐵]              𝑓𝑜𝑟             𝐵 ∈  ℝ (57) 

 𝑔(𝑃) = 𝐹𝑦
−1(𝑃) (58) 
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Figure 5-4(a) shows the amplitude spectra (in dB1) for each 𝑃𝑁𝑜𝑟𝑚,𝑧𝑚(𝑡), as well as a function 

approximating the mean of the 12 duty cycles. The exclusion of the component 𝐴0  simply 

removes the amplitude at a frequency of 0 Hz. The remaining shape and values of the amplitude 

spectra are unaffected. The values of the amplitude spectra lie within a certain band and all retain 

a similar shape with a broad spread of values at low frequencies converging to a narrower spread 

at higher frequencies. The mean spectrum lies within the band of spectra and follows the general 

shape and thus captures the characteristic in the frequency domain [141]. The mean amplitude 

spectrum here is approximated by a rational function 𝑓(𝑓𝑘) as expressed in equation (59).  

 𝑓(𝑓𝑘) =
∑ 𝑎𝑖𝑓𝑘

𝑖4
𝑖=0

∑ 𝑐𝑙𝑓𝑘
𝑙5

𝑙=0

 (59) 

In this case, the function most accurately representing the mean amplitude spectrum 𝑓(𝑓𝑘) 

(obtained by running a MATLAB curve-fitting algorithm) is composed of a 4th order polynomial in 

the numerator and 5th order polynomial in the denominator.  

                                                             

1 𝑑𝐵(𝑥) = 20 log(𝑥) 
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FIGURE 5-4 – AMPLITUDE SPECTRA FOR 𝑃𝑁𝑜𝑟𝑚,𝑧𝑚(𝑡)FOR 12 CIRCUITS OF THE DATABASE; MEAN AMPLITUDE 

SPECTRUM; FUNCTION APPROXIMATING THE MEAN AMPLITUDE SPECTRUM 

Figure 5-5 shows the iCDF for each zero-mean duty cycle in the database as well as the mean and 

a fitted function. The removal of the DC component results in a shift of the iCDF without 

influencing its shape. The functions all lie within a certain band and follow the same trend in 

terms of shape. An outlier in the results presented is the Le Mans racing-circuit (Table 4-7) duty 

cycle. This circuit is known for long straights associated with extended high-power discharge 

pulses and fewer corners relating to fewer braking opportunities and thus fewer charging pulses. 

This makes the Le Mans racing-circuit a more aggressive but not improbable scenario. Therefore, 

it is not excluded from further analysis. The mean of the iCDFs is approximated by a rational 

function 𝑔(𝑃) as shown in equation (60). This forms the desired iCDF for the signal generation 

method. 



5 Development of a generic HP duty cycle 

99 

 

 𝑔(𝑃) =
∑ 𝑎𝑖𝑃

𝑖5
𝑖=0

∑ 𝑐𝑙𝑃𝑙
4
𝑙=0

 (60) 

The function best approaching the mean inverse CDF (𝑔(𝑃)) contains a 5th order polynomial in 

the numerator and 4th order polynomial in the denominator. The parameters for both the mean 

amplitude spectrum (equation (59)) and iCDF (equation (60)) functions are estimated using the 

MATLAB® function fitting toolbox. Out of the tested functions in MATLAB®, the rational function 

with the highest 𝑅2  value and narrowest 95% confidence intervals for the coefficients was 

chosen. 

 

FIGURE 5-5 – ICDF FOR 𝑃𝑁𝑜𝑟𝑚,𝑧𝑚(𝑡) FOR 12 CIRCUITS OF THE DATABASE; MEAN AMPLITUDE SPECTRUM; 

FUNCTION APPROXIMATING THE MEAN AMPLITUDE SPECTRUM 
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5.3.2 HP-MSC Construction 

The process for the construction of the HP-MSC is summarised within the flowchart in Figure 5-6 

and described below. The progression of the implemented time-frequency swapping algorithm 

is illustrated in Figure 5-7. The derivation and explanation of this algorithm is discussed within 

[200]. 

 

FIGURE 5-6 – HP-MSC CONSTRUCTION PROCESS 

The algorithm starts by generating a single period of a random phase multisine, which is a series 

of superimposed sinewaves with random phases (uniformly distributed between 0 and 2𝜋), as 

defined in equation (61).  

 𝑥𝑖(𝑛) =∑𝐴𝑘 sin(2𝜋𝑛𝑓𝑘 + 𝜙𝑘)

𝐹

𝑘=1

      𝑛 = 0,1,… ,𝑁 − 1 (61) 

Calculate 𝑓𝑎𝑐𝑟𝑚𝑠 and 
adjust 𝐴𝑘𝑖𝑛𝑖𝑡 to 𝐴𝑘

Generate 𝑥𝑖 𝑛 from 𝐴𝑘
with random phases 𝜙𝑘𝑖

Replace the largest value of 
𝑥𝑖 𝑛 with the largest value 
of 𝑔 𝑃 , replace the second 
largest value of 𝑥𝑖 𝑛 with 
the second largest value of 
𝑔 𝑃 , etc, producing signal 

𝑦𝑖(𝑛)

Calculate the Amplitude 
spectrum 𝐴 𝑘 and phases 

𝜙 𝑘𝑖of 𝑦𝑖 𝑛

Discard 𝐴 𝑘, and uses 𝜙 𝑘𝑖 for 
the next iteration: 𝜙𝑘𝑖+1 =

𝜙 𝑘𝑖

Define 𝑡𝑡𝑎𝑟𝑔𝑒𝑡, 𝑓𝑠, 𝐹𝑚𝑎𝑥, 

𝐴𝑘𝑖𝑛𝑖𝑡, 𝑔(𝑃)
Generate 𝑥𝑖𝑛𝑖𝑡(𝑛)
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Again, 𝑓𝑘 is the frequency at the  𝑘𝑡ℎ harmonic and is 𝑓𝑘 = 𝑘𝑓𝑠/𝑁 with the sampling frequency 

𝑓𝑠 (10 Hz), 𝑁  is the number of samples per period (𝑁 = 𝑡𝑡𝑎𝑟𝑔𝑒𝑡𝑓𝑠 ), where 𝑇  is the period in 

seconds. For this duty cycle 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 is set to the HP-RPC target of 204.8s, which in combination 

with the 10 Hz sampling rate results in 2048 samples. The amplitudes 𝐴𝑘𝑖𝑛𝑖𝑡 for frequencies 𝑓𝑘 =

𝑓𝑠

𝑁
,
2.𝑓𝑠

𝑁
, … , 𝐹𝑚𝑎𝑥 are determined from equation (62), where 𝐹𝑚𝑎𝑥 denotes the highest frequency 

of interest. 

 𝐴𝑘𝑖𝑛𝑖𝑡 = 𝑓(𝑓𝑘)  (62) 

The function 𝑓(𝑓𝑘) approximates the mean amplitude spectrum as described in equation (59) 

and shown in Figure 5-4. It can also be seen in Figure 5-4 that the majority of power in the 

amplitude spectrum is contained within the range from 0 – 0.3  Hz. As such 𝐹𝑚𝑎𝑥 is set to 0.3 Hz 

and a total of 𝐹  amplitudes are determined for the first 𝐹  frequencies where 𝐹 =
𝐹𝑚𝑎𝑥

𝑓1
. The 

phases 𝜙𝑘 for the 𝐹 harmonics are initially chosen at random between 0 and 2π. Subsequently, 

the values for the desired iCDF (𝑔(𝑃)) are determined by using equation (60) for 𝑃 =
1

𝑁
,
2

𝑁
, … , 1. 

At first, as only a reduced spectrum is selected, the initial profile of 𝑥𝑖𝑛𝑖𝑡(𝑛) and 𝑔(𝑃) have 

different RMS values. For the algorithm to work it is necessary that the values of 𝐴𝑘𝑖𝑛𝑖𝑡  are 

adjusted to account for this using a correction factor (𝑓𝑎𝑐𝑟𝑚𝑠) as described in equation (63), and 

adjusting 𝐴𝑘𝑖𝑛𝑖𝑡 as described in equation (64). The value of this correction factor is dependent on 

the frequency bandwidth of choice. 

 𝑓𝑎𝑐𝑟𝑚𝑠 =
𝑟𝑚𝑠(𝑔(𝑃))

𝑟𝑚𝑠(𝑥𝑖𝑛𝑖𝑡(𝑛))
 (63) 

 𝐴𝑘 = 𝐴𝑘𝑖𝑛𝑖𝑡 . 𝑓𝑎𝑐𝑟𝑚𝑠 (64) 

This produces the desired amplitude shown in Figure 5-7-b. 

Following this adjustment, another random phase multisine is generated using the adjusted 

spectrum. This signal has the desired spectrum but the random phases do not produce the 

desired iCDF (see Figure 5-7-c) for this random phase multisine signal (see Figure 5-7-a). The time-

frequency domain swapping algorithm enforces the desired iCDF (𝑔(𝑃) ) and the desired 

amplitude spectrum (𝑓(𝑓𝑘)) iteratively until a convergence criterion is met as described below. 
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The sample values of the random phase multisine (𝑥𝑖(𝑛), 𝑖 denotes the iteration index) are sorted 

in ascending order and the indices of the values original position are recorded. These values of 𝑦 

are the iCDF of 𝑥𝑖 (the zero-mean HP duty cycle at the ith iteration). The position variable (𝜑) 

serves as a timestamp indicating at which time in the duty cycle the value y occurs. It can be seen 

in Figure 5-7-c that the iCDF differs from the desired mean iCDF as described equation (60) in and 

shown in Figure 5-5. 

To match the desired iCDF, a new duty-cycle (𝑦𝑖(𝑛)) is created by replacing each value in 𝑥𝑖(𝑛) 

with the corresponding value of 𝑔(𝑃). This  implies that the smallest of the calculated values of 

𝑔(𝑃) replaces the smallest value in 𝑥𝑖(𝑛), the second smallest value of 𝑔(𝑃) replaces the second 

smallest value in 𝑥𝑖(𝑡), and so forth. This process is repeated for all 𝑦 resulting in a new duty 

cycle with a changed amplitude spectrum and phases. The phases of this new duty cycle are 

determined via the Discrete Fourier Transform and used to generate a new duty cycle using the 

desired amplitude spectrum. This process is repeated, each time using the updated phases until 

a defined convergence between 𝑠𝑜𝑟𝑡(𝑥𝑖(𝑛)) and 𝑔(𝑃) is met. 

The convergence criteria chosen in this work is met if the change in the sum of errors between 

desired and optimised inverse CDF is smaller than 10−7. This value was chosen as a compromise 

between accuracy and computational effort. The progression of this is shown in Figure 5-7-d, the 

resulting zero-mean cycle is shown in Figure 5-7-a. The HP Multisine Cycle (HP-MSC) is obtained 

once the mean DC component, synonymous with 𝑃𝑛𝑒𝑡 in Table 5-1 is added. The final HP-MSC 

contains instances where peak discharge demands exceed the -100% limit. This is attributed to 

the approximation of the mean iCDF by a function. Instances where the HP-MSC exceeds the 

discharging limit are constrained to -100%. 
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FIGURE 5-7 - OVERVIEW OF ALGORITHM OUTCOME A) A SINGLE PERIOD OF THE ZERO-MEAN MULTISINE CYCLE; B) 

THE AMPLITUDE SPECTRUM UP TO 0.3 HZ; C) DESIRED, INITIAL AND OPTIMISED INVERSE CUMULATIVE DISTRIBUTION 

FUNCTION; D) PROGRESSION OF POWER ROOT MEAN SQUARED ERROR (RMSE) 
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5.4 Results 

To verify the new duty cycles that represent HP driving scenarios three different studies were 

undertaken. Firstly, the HP-MSC and HP-RPC are validated, using the assessment criteria for HP-

RPC and HP-MSC, against the duty cycle for the Bahrain International Circuit (Bahrain). The 

selection of this circuit was arbitrary and made prior to the development of the duty cycles. 

Secondly, the HP-RPC and HP-MSC are compared to the IECC [34] to further highlight the 

differences in these realisation of a HP duty cycle compared with traditional and widely accepted 

test and characterisation cycles. The power-time traces of HP-RPC, HP-MSC, Bahrain, and IECC 

are shown in Figure 5-8. 

 

FIGURE 5-8 - A) MULTISINE CYCLE; B) RANDOM PULSE CYCLE; C) BAHRAIN RACING-CIRCUIT SIMULATION DUTY 

CYCLE; D) IEC 62660-1 CYCLE LIFE TEST PROFILE A 
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Finally, a thermal simulation study is undertaken for HP-RPC, HP-MSC, Bahrain, and IECC to 

estimate cell heating and the average volumetric temperature profile for a discharge from 100% 

to 10% SoC. As identified in the introduction, cell temperature is a main contributor to battery 

degradation and as such, the self-heating of a cell during electrical loading should be considered 

as an influencing factor when considering cell degradation and the usefulness of the battery duty 

cycle.  

5.4.1 Validation of HP-MSC and HP-RPC 

Figure 5-9a and b show the design parameters, described in Table 5-1, calculated for HP-RPC, 

HP-MSC and the Bahrain duty cycle. Despite the different methodologies applied to design each 

duty cycle, the calculated parameters for HP-RPC and HP-MSC are very similar. Compared to the 

Bahrain cycle, a lower demand for mean discharge power (𝑃𝐷𝐶) and mean charge power (𝑃𝐶) 

may be observed for both HP-RPC and HP-MSC. In turn, this results in corresponding lower values 

for net discharge power (𝑃𝑛𝑒𝑡) and mean absolute power (𝑃𝑎𝑏𝑠). The difference between HP-

RPC and the Bahrain cycle for these parameters range from 12.9% to 19.9%. Conversely, when 

comparing the HP-MSC and Bahrain circuit profile, the differences range from 11.6% to 20.7% 

respectively (see Figure 5-9c). The percentage of time the battery is subjected to discharge (𝜅𝐷𝐶) 

and subjected to charge (𝜅𝐷𝐶) is similar between all cycles with differences of less than 8%. 

Similar variations can be found for the time-based parameters, except for the maximum 

discharge pulse duration  (𝜏𝑀𝑎𝑥𝐷𝐶)  and cycle duration (𝑇 ). Further analysis of the profiles, 

illustrated in Figure 5-8 a, b and c, reveals that the longest discharge pulse for the HP-RPC is 23.7s 

compared to 22.1s for the HP-MSC and 19.2s for the Bahrain Cycle. The difference in peak pulse 

duration is small, in absolute terms, but amounts to 23.4% between Bahrain and HP-RPC, and 

15.1% between Bahrain and HP-MSC.  

Figure 5-9d shows the amplitude spectra for the HP-RPC and Bahrain cycle up to 5 Hz and for the 

HP-MSC up to the design frequency of 0.3Hz as presented in section 5.3.1. The HP-MSC, HP-RPC 

and Bahrain cycle amplitude spectra follow the same general trend and as such all signals carry 

similar characteristics within the frequency domain. 

The flatness in peak power demand represented by the HP-RPC and Bahrain cycle is not captured 

in the HP-MSC. This observation is due to the exclusion of higher frequencies in the selection of 

the amplitude spectrum in the HP-MSC approach. Inclusion of higher frequencies (in the range of 

0.3Hz to 5Hz) would allow for a flattened peak demand for discharge pulses, but also results in 
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more frequent periods of charging and discharging. The performance of the HP-MSC against the 

time-based parameters in Figure 5-9b may be adversely affected by fluctuations around zero 

amplitude, causing increased switching between charging and discharging. The performance of 

HP-MSC against target parameters, shown in Figure 5-9a, and the cycle duration (𝑇) remain 

unaffected by the inclusion of higher frequencies. 

The iCDFs for all three cycles are displayed in Figure 5-9e. They show that the discharge power 

demand for HP-RPC remains at peak power (𝑃 < −0.9) for 20.6% of the cycle duration compared 

to 16.7% for the HP-MSC and 29.2% for the Bahrain cycle. The proportion of power demand for 

discharging and charging, respectively, is similar between all cycles, an observation which is 

synonymous with the results presented in Figure 5-9a, b and c. 
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FIGURE 5-9 – VALIDATION OF HP-MSC AND HP-RPC AGAINST THE BAHRAIN CYCLE BASED ON HP-RPC AND HP-
MSC DESIGN CRITERIA. A) FRACTION BASED CRITERIA; B) TIME BASED CRITERIA; C) DEVIATION OF HP-MSC & HP-
RPC FROM BAHRAIN CYCLE BASED ON HP-RPC CRITERIA; D) AMPLITUDE SPECTRA FOR HP-RPC, HP-MSC AND 

BAHRAIN; E) ICDF FOR HP-RPC,HP-MSC AND BAHRAIN. 

5.4.2 Comparison between HP cycles and the IEC Test standard 

To highlight the difference between the realisation of a generic HP duty cycle and a traditional 

automotive testing duty cycle, HP-RPC and HP-MSC are compared to the cycle life test profile A 

(IECC) defined within the IEC 62660-1. The IECC contains only 8s of peak discharging power 

demand per period compared to the previously identified 23.7s for the HP-RPC and 22.1s for the 
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HP-MSC. In conjunction with a much longer period, this results in a very low value for the mean 

discharge power (𝑃𝐷𝐶) of 0.255. As shown in Figure 5-10a, similar observations can be made for 

mean charge power 𝑃𝐶. As such, the values for net discharge power (𝑃𝑛𝑒𝑡) and mean absolute 

power (𝑃𝑎𝑏𝑠)  also adopt much lower values for the IECC compared to the HP profiles. The 

percentage of time the battery is on discharge (𝜅𝐷𝐶) is comparable between the HP cycles and 

standardised cycle. However, as the IECC contains resting periods at zero power demand and the 

HP profiles do not, their respective values for percentage of time the battery is on charge (𝜅𝐶) 

do not correlate. 

The maximum and mean pulse duration for charging and discharging are shown in Figure 5-10b 

and highlight further large differences. Although 𝜏𝐴𝑣𝑔𝐷𝐶  and 𝜏𝑀𝑎𝑥𝐷𝐶  indicate much longer 

individual discharging pulses for the IECC, the amplitude of the pulses is up to 70% lower and as 

such would result in much lower instantaneous heat generation. Assessing the deviation of HP-

RPC, HP-MSC and IECC from the HP-RPC design targets as illustrated in Figure 5-10c, reveals that 

the smallest deviation of the IECC from HP targets can be found for 𝜏𝑀𝑎𝑥𝐶 at a value of 25.3% 

(except for 𝜅𝐷𝐶). Conversely, the largest deviation is for 𝜏𝐴𝑣𝑔𝐷𝐶 at a value of 410%. 

As expected from a visual inspection of the cycles in Figure 5-8, and the discrepancies between 

the different duty cycles (HP-RPC, HP-MSC, and the IECC) shown in Figure 5-10a-c, the amplitude 

spectra of HP-RPC, HP-MSC and IECC (Figure 5-10d) follow separate trends. The excitation 

amplitudes for the IECC is lower than that of the HP-MSC, RPC, and Bahrain circuit for a broad 

bandwidth. As such, the IECC is deemed not to be representative of HP driving scenarios within 

the frequency domain. Similarly, for the iCDFs in Figure 5-10e, there is no identifiable correlation 

between these three cycles.  
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FIGURE 5-10 - DIRECT COMPARISON BETWEEN HP-RPC, HP-MSC AND IECC IN TERMS OF A) FRACTION BASED 

CRITERIA; B) TIME BASED CRITERIA; C) DEVIATION OF HP-RPC, HP-MSC AND IECC FROM HP-RPC TARGETS 

CRITERIA; D) AMPLITUDE SPECTRA FOR HP-RPC, HP-MSC AND IECC; E) ICDF FOR HP-RPC,HP-MSC AND IECC 
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5.4.3 Thermal simulation study  

To further illustrate the discrepancies between the IECC and HP duty cycles, defined as part of 

this work and also to further highlight the correlation between the HP-RPC, HP-MSC and Bahrain 

cycle, a thermal simulation was undertaken to estimate the value of self-heating during a 

discharge from 100% to 10% SOC for each of the cycles. 

A coupled 1D electrochemical-thermal model, developed through a complementary research 

activity within the University, for example [6], was employed. The commercial software Comsol 

Multiphysics was employed for the numerical simulation. The validated thermal model was 

developed for a 20 Ah pouch cell, where the anode is made of graphite and the cathode material 

is LFP. The model has been validated at different C-rates, 0.5C, 1C, 3C, 5C and 10C under 20°C 

ambient temperature.  During this simulation study, the input power of each cycle was scaled to 

cell level. The maximum C-Rate for discharge was set at 8, a value that resides within the validated 

range of the model. The maximum charge rate of the profile was subsequently limited to 3 to 

comply with the manufacturer’s specification for the cell. The ambient temperature of the 

simulation was set to 20°C, and the heat transfer coefficient from the cell surface to the 

surroundings was defined as 10 Wm-2K-1 to emulate natural convection. Natural convection refers 

to a condition in which fluid motion for heat exchange is not generated by any external source, 

such as a fan or ventilator. 

The derivation and parameterization of this model does not constitute part of this thesis. This 

and the numeric results were provided by the main author of the research presented within [6]. 

The results from this study are tabulated in Table 5-2 and presented in Figure 5-11. The terms 

temperature and heat generation refer to the average volumetric temperature and average 

volumetric heat generation respectively within the cell. 

Cycle Duration (s) Max. 

Temperature (°C) 

Mean volumetric 

heat generation 

(kWm-3) 

Mean heat 

generation (W) 

HP-RPC 1491 44.0 107 28.3 

HP-MSC 1530 43.9 106 27.9 

Bahrain 1280 47.5 135 35.5 

IECC 3121 30.0 30 7.9 

TABLE 5-2 - THERMAL SIMULATION RESULTS FOR 20AH POUCH CELLS 
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Figure 5-11-a shows the volume average cell temperature for all four use cases. For the HP cycles 

the maximum temperature is reached at the end of discharge. This translates to 1280s for the 

Bahrain cycle, 1491s for HP-RPC, and 1530 for HP-MSC and ranges from 43.9°C to 47.5°C. As the 

Bahrain cycle is more aggressive, as shown by Figure 5-9a, than HP-RPC and HP-MSC respectively, 

the end of electrical loading is reached within a shorter time. In contrast, a cell undergoing the 

IECC schedule requires more than twice the time for the energy discharge to occur and reaches 

a peak temperature of only 30.0°C. 

The cell heat generation for all four cycles is displayed in Figure 5-11-b-e. As expected, the three 

HP cycles show a good correlation to each other. The highest recorded instance of heat 

generation is similar between all cycles to within 3%. However, the mean heat generation for the 

duration of the cycles varies significantly, with Bahrain displaying the highest heat generation 

term of 135kW.m-3. The mean heat generation for the IECC is of a lower order of magnitude at 

30kW.m-3 resulting in a much lower temperature rise through electrical loading. 
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FIGURE 5-11 – A) AVERAGE CELL TEMPERATURE IN DEGC DURING CYCLING FROM 100% - 10% SOC FOR A 20 AH 

LFP CELL; B) CELL HEAT GENERATION FOR HP-RPC; C) CELL HEAT GENERATION FOR HP-MSC; D) CELL HEAT 

GENERATION FOR BAHRAIN; E) CELL HEAT GENERATION FOR IECC 

5.5 Discussion 

5.5.1 Validation of the HP duty cycles for the Bahrain International Circuit 

Validation of the cycles has shown a good degree of correlation between HP-RPC, HP-MSC and a 

cycle chosen at random from the database representing the Bahrain International Circuit. 
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Although some differences such as power demand and time spent at peak have been observed, 

the results presented in section 5.4.1 clearly show that the HP-MSC and HP-RPC offer a good 

approximation for this particular HP scenario with the average error between HP-RPC and HP-

MSC compared with the Bahrain cycle of 14.0%, and 12.8% respectively. The amplitude spectra 

of all cycles follow a similar shape highlighting the similarity between the profiles. As discussed 

within Chapter 3, the representation within the frequency domain is desirable, as the amplitude 

spectrum of the current input signal influences the voltage response of the LIB, thus the 

electrochemical processes taking place. Over time, this will affect the outcome of degradation. 

The iCDFs show clearly that the Bahrain cycle is more aggressive and demanding than the generic 

cycles. To cater for more demanding cycles, the database for HP-RPC may be expanded with 

further aggressive duty cycles. For the HP-MSC generation method, an adjustment of the desired 

iCDF would be sufficient to tune the nature of the cycle to better represent this facet of the target 

HP duty-case.  

Power demand and energy throughput for the Bahrain cycle are higher, but the longest pulse at 

peak power is smaller than that from the HP-RPC and HP-MSC. As shown in Figure 5-11, this 

results in higher heat generation during electrical loading for the Bahrain cycle. The largest 

discrepancy between the cycles is the period (𝑇) with a 34.8% deviation for HP-RPC and 28.5% 

deviation for HP-MSC. Arguably due to the repetitiveness of the pulses the shorter period of the 

Bahrain cycle by itself may be of lower significance to the profile as combined effects of 𝜏𝑀𝑎𝑥𝐷𝐶, 

𝜏𝑀𝑎𝑥𝐶 and 𝑇 are indirectly captured in the parameters 𝑃𝐷𝐶, 𝑃𝐶, 𝑃𝑛𝑒𝑡 and 𝑃𝑎𝑏𝑠. The Bahrain cycle 

is only one particular scenario falling within the band of HP cycles, and as such, both HP-MSC and 

HP-RPC are deemed satisfactory to represent a typical HP cycle. 

5.5.2 Comparison of the HP Duty cycles against Standard Test and Characterisation 

Cycles  

The subsequent comparison of the HP scenarios with standardised tests shows large 

discrepancies between the cycles based on the HP-RPC and HP-MSC design criteria. This was 

confirmed by the thermal simulation study which showed much smaller peak temperatures and 

self-heating effects for the IECC compared to the HP cycles. As such, it can be concluded that 

there is too little commonality between the standard IECC and HP duty cycles to warrant 

representation of the latter by the former. 
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5.6 Conclusion 

This chapter has addressed “Research Task 2: Define a methodology, from which a duty cycle 

that is suitable for LIB performance and degradation testing may be derived.” Two methods to 

design HP battery duty cycles for cycle life and performance evaluation have been derived. The 

methodologies are not limited to HP-BEVs but provide a step-by-step guide for engineers and 

researchers to develop their own duty cycles for other applications, where standard testing 

procedures are not representative of real-world use and therefore address the first knowledge 

gap defined within Table 3-2. Either of the two methodologies can be used as part of the 

framework proposed within Chapter 3 and illustrated within Figure 3-6. 

As discussed within a number studies, for example [221,222], a representative duty cycle 

supports a range of additional engineering functions such as component sizing, energy 

management, simulation and testing of the complete vehicle powertrain and key subsystems. As 

a result, the two methodologies are highly transferable to a number of different sectors that are 

investigating opportunities for electrification and the integration of battery systems. These 

include the electrification of marine and aerospace systems [223], either for more energy 

efficient propulsion or because of the inclusion of more electrically powered ancillaries. Further 

areas are the hybridisation of off-highway or construction vehicles [224,225], where the diverse 

usage patterns prohibit the creation of a generic drive-cycle such as the NEDC or US06 that are 

common within the road transport sector. 

The HP-RPC method extends a well-established technique from the literature for drive-cycle 

construction [178,179]  by randomly selecting alternating charging and discharging power pulses. 

The target criteria for cycle evaluation can be assessed to reflect the engineering challenge under 

investigation. The relative error margins between each candidate cycle and the criteria can be 

selected by the engineer to optimise the inherent trade-off between computation time and cycle 

accuracy. For this research, the error was set to 10% for each target criterion.  

The second method evaluated for HP cycle definition follows a frequency-time swapping 

algorithm [200]. This generates a cycle that matches a user defined amplitude spectrum and an 

iCDF. Both functions can be chosen by the design engineer, following the general criteria 

presented in section 5.3.1. The choice of amplitude spectrum and iCDF in this work are based on 

the mean of the spectra and iCDFs within the HP duty cycle database, representing different 

international race circuits. It has been shown that the HP-MSC method can be tuned to match 

the same targets as the HP-RPC by adaption of the iCDF. An advantage of this method is the 
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relatively small amount of data required to generate a duty cycle. Only the two design target 

functions are required in contrast to an entire database of duty pulses.  

Direct comparison of the HP-RPC, and HP-MSC with the Bahrain duty cycle has shown good 

agreement between the newly constructed cycles and the target use case within both, the time 

and frequency domain. Representation within the time domain ensures that both, average and 

peak charge and discharge power demand are matched to within a small margin. Representation 

within the frequency domain ensures that the LIB under test is excited over a representative 

frequency range. If either cycle was used in degradation testing, this should result in comparable 

degradation patterns between the target use case and the developed duty cycles. Further 

comparison with the IECC highlight that the new HP duty cycles provide a more representative 

duty cycle compared to traditional battery test standards. Hence, both the HP-RPC and HP-MSC 

are deemed suitable for LIB performance and degradation testing. 

As the HP-MSC was designed with a target amplitude spectrum, this duty cycle will be further 

utilised in this thesis to conduct extensive performance and degradation testing on battery cells. 

This is described in the following chapters.  
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6 Experimental Assessment of Cell Performance 

and Degradation  

6.1 Introduction 

This chapter presents the cell selection process, hardware set-up and experimental procedures 

required to fulfil “Research Task 3: Devise an experiment to conduct LIB performance and 

degradation testing to investigate differences between HP-BEV applications and standard testing 

procedures.”  Building upon the previous research tasks, tabulated within Table 3-2, and utilising 

the HP-MSC as a suitable duty cycle, this chapter presents the test definition part of the proposed 

framework illustrated within Figure 3-6.  

The experimental procedures entail characterisation testing, performance testing, and 

degradation testing of a 53Ah pouch cell of G-NMC chemistry. Characterisation testing ensures 

there is little spread between cells prior to performance and degradation testing. Performance 

testing is conducted to build upon the findings of the simulation study presented within Chapter 

5. Although this test utilises different cells to those described by the model in the previous 

chapter, it further refines the validity of the HP-MSC through an experimental assessment, 

specifically with regard to the instantaneous electrical behaviour and heat generation of cells. 

The degradation study investigates the possible effects and consequences of continuous HP 

cycling on the electrical characteristics of the cells. Within the duty cycle degradation study, two 

test groups of cells are subjected to continuous cycling using the HP-MSC and IECC standard 

profiles to identify the rate and nature of changes in cell behaviour. These changes are identified 

through regular characterisation of the cells during electrical cycling. As all conditions except the 

duty cycle are kept the same for both sets of cells, this offers a systematic approach to identify 

any use-case specific LIB behaviour and thus investigate differences between HP-BEV applications 

and standard testing procedures as demanded by the research task. 
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6.2 Experimental set-up 

6.2.1 Cell selection 

The cells selected are large format pouch cells with G-NMC chemistry at a rated C/2 Capacity of 

53 Ah (196 Wh); key cell parameters are listed in Table 6-1. The cell format features a larger 

surface area-to-volume ratio compared to cylindrical cells and as such, the cell is described by 

the manufacturer as having better heat dissipation. According to the manufacturer, the cells 

target high-energy applications such as energy storage for HEVs and EVs, grid storage, marine 

vessels, and locomotives. The combination of high power capability, low internal resistance and 

higher heat dissipation capability compared to cylindrical cells makes this cell a suitable candidate 

for HP-EV applications. Another factor influencing the choice of cells was that they were provided 

free of cost by an industrial partner.  

Performance Characteristics Typical Value (2016) 

Capacity at C/2 53 Ah 

Nominal Voltage 3.7 V 

Discharge Energy (C/2) 196 Wh 

Weight 1.15 kg 

DC Resistance (10s @ 50% SOC) 1.33 mΩ 

Peak Discharge C-Rate (10s @ 50% SOC) 8.0 C 

Upper Voltage Limit 4.2 V 

Lower Voltage Limit 2.7 V 

Charge Tempertaure Range 0°C ~ 45°C 

Discharge Temperature Range -20°C ~ 60°C 

Cell Dimensions (LxWxT) 225x225x11.8 mm 

TABLE 6-1 – CELL CHARACTERISTICS  

6.2.2 Test equipment 

The experimental rig required to facilitate this research is described below. Hosseinzadeh et al. 

[125] conducted experiments on the same type of cells as used within this research to develop 

an electrochemical-thermal model. They have shown that when subject to a galvanostatic 

discharge of 5C at an environmental temperature of 25 °C under convection cooling, these cells 

can reach peak temperatures in excess of 60 ℃. As such, due to the intensity of the employed 

testing profiles, for performance and degradation testing an active cooling system is required to 
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keep cells within their thermal safety window. As such, the requirement for the experimental rig 

is to provide a suitable housing for a cooling system, and to facilitate a means of connecting 

individual cells to a battery cycler. 

The experimental rig described below was conceptualised and manufactured in collaboration 

with other research involving active thermal management of pouch cells [7]. The experimental 

rig was modelled using the commercially available software Solidworks. A computer drawing of 

the test rig is provided in Figure 6-1a, a picture of the completed assembly is shown in Figure 

6-1b, the dimensions of components are tabulated in Table 6-2 for reference. A description of its 

design features, as well as an outline of the assembly process is provided below. 
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FIGURE 6-1 - TEST RIG DESIGN PROCESS ILLUSTRATION; A) TEST RIG CAD MODEL B) TOP VIEW OF THE ASSEMBLED 

EXPERIMENTAL RIG; C) FRONT VIEW OF HALF RIG WITH BENT COOLING PLATES; D) FOAMGLAS® AND POLYSTYRENE 

PACKING OF GAPS BETWEEN CELLS; E) POSITIONS OF THERMOCOUPLES; F) INSTRUMENTED COOLING FINS. 

The test rig comprises two Perspex casings, housing a total of 6 cells and an external cooling 

system. In each casing, three pouch cells are suspended by their tabs, clamped between two 
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brass blocks, which serve as the connection terminal for the battery cycler and allow for in situ 

EIS testing. Technical drawings for the design of the brass blocks are provided within Figure 6-2. 

 

FIGURE 6-2 – BRASS BLOCK DESIGN AND DIMENSIONS; TAPPED HOLES IN BLOCK 2 ALLOW FOR IN SITU EIS TESTING.  

The cooling circuit consist of an aluminium cooling plate with internal ducts and a Lauda 

Thermostat, with the former being located in one of the Perspex casings. The front and back face 

of each cell are in contact with a pair of L-shaped copper cooling fins. The short edge of each fin 

is bent at 90° with a radius of 1mm to form a 25mmx210mm patch as shown in Figure 6-1c. These 

patches are in contact with the aluminium cooling plate, thus providing a means of heat 

extraction from the testing assembly by means of single edge fin cooling. Space between cooling 

fin faces of adjacent cells is filled with slabs of polystyrene and FOAMGLAS®, resulting in a densely 

packed layered structure, thereby ensuring good thermal contact between the cooling fins and 

cell surface, as shown in Figure 6-1d. The FOAMGLAS® slabs are incompressible and enable even 

pressure to be applied along the length of the cooling fin edge onto the cold plate via hand 

tightened ratchet straps. Each pair of cooling fins is instrumented with 10 T-type thermocouples 

connected to a “HIOKI® 8423 HiLogger”. 

Of the thermocouples, 9 are placed on the fin contacting the front face of a cell, and 1 on the fin 

contacting the back. This serves to investigate the development of cell temperature and thermal 

gradients during cell cycling. Figure 6-1e shows a schematic of the thermocouple locations for 

the front facing fin, with a pair of instrumented fins photographed in Figure 6-1f. Given the good 

contact between the cooling fins and the cell surface, the thermocouple measurements are used 

Block 1 Block 2
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as pseudo-cell surface measurements [7]. The testing rig was placed in an ESPEC PL-3KPH 

environmental chamber. Each cell is individually connected to cell cycling channels of a “BITRODE 

MCV 16-100-5” cycler, which can provide a maximum current of 400 Ampere per cell. In addition 

to the thermal instrumentation, a thermocouple from the Bitrode cycler is installed for safety 

temperature monitoring at the cell edge next to position 4. The sample frequency for data 

acquisition of this system for cell voltage and current is 10 Hz. For all tests the maximum charging 

currents were limited to 106 A per cell (defined by the manufacturer), and discharging currents 

were limited to 400 A as per test-equipment limitation. Due to limited availability of BITRODE 

testing equipment, cells 1, 4, 5 and 6 were connected to a cycler with firmware of type “kj”, cells 

2 and 3 were connected to a cycler with firmware type “dC”. According to the equipment 

manufacturer, the type of firmware should not influence testing outcomes.  

Component Height (mm) Length (mm) Thickness 

(mm) 

Aluminium cooling plate 210 250 30 

Copper cooling fin (fin-cell body) 220 235 0.52 

Copper cooling  fin (fin-plate contact 

patch) 

220 25 0.52 

TABLE 6-2 - TEST RIG COMPONENTS DIMENSIONS 

The accuracy, operating range, accuracy and resolution of the HIOKI logger, Bitrode cycler and 

espec chamber are detailed within Table 6-3. 

Component Operating range Accuracy 
Maximum sampling 

Frequency 

HIOKI® 8423 HiLogger -100 °C to 100 °C ±0.05% full scale (°C) 100 Hz 

BITRODE MCV 16-100-5 
0 A to 100 A 
0 V to 5 V 

±0.1 % full scale 10 Hz 

Espec Thermal Chamber -40 °C to 150 °C ± 1 °C n/a 

TABLE 6-3 – TESTING HARDWARE OPERATING RANGES 

6.3 Cell characterisation testing 

A total of six cells were provided by an industrial partner for the experimental work. To ensure a 

small spread of variation between individual specimens and ensure robustness of the testing 
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outcomes, a full characterisation of the cells’ attributes prior to performance and degradation 

testing was deemed to be required. The characterisation process employed within this research 

is defined in Table 6-4 and discussed below. A full characterisation refers to the entire table; a 

partial characterisation refers to those tests marked in bold. Implementation of either a full or 

partial characterisation test is discussed below. 

Unless otherwise stated, all tests were conducted using the “BITRODE MCV 16-100-5” system. 

The sampling rate for cell current and voltage measurements during charge and discharge were 

set to 10 Hz, the fastest sampling rate available with the equipment. During resting periods, 

where a less dynamic cell response is expected, the sampling rate was set to 1 Hz to reduce the 

amount of data collected. The results from the initial characterisation tests are presented and 

discussed within the next chapter in section 7.2. 

Assessment Test Description SOC C-Rate 

Discharge energy 

capacity 

Standard test to determine the 

discharge capacity of every cell 
100-0% 1C 

Slow charge 

capacity/ p-OCV 

Test 

Slow charge/p-OCV test. Can be 

used for DQ/DV analysis 
0-100% C/10 

PMC Test 

A characterisation test to 

characterise an equivalent circuit 

model, similarly to the HPPC test 

10%, 20%, 

50%, 80%, 

95% 

max 7.5C discharge 

(equipment limited), 

max 2C charge (cell 

limited 

EIS Test 

Used to investigate the 

behaviour of the cell. Response 

can be used to infer degradation 

mechanisms 

10%, 20%, 

50%, 80%, 

95% 

n/a 

TABLE 6-4 – CHARACTERISATION TESTS. TESTS IN BOLD CONSTITUTE PARTIAL CHARACTERISATION TESTS DURING 

DUTY CYCLE DEGRADATION STUDY. 

6.3.1 Galvanostatic energy capacity 

The galvanostatic energy capacity tests are reviewed within section 2.5.1. This test is selected as 

it is commonly used to identify the energy content that can be extracted from a cell during 

discharge, or stored within a cell under charge. As the amount of energy which can be stored or 
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extracted is current dependent, the current used is kept the same throughout the duration of 

testing. Test were conducted for charging and discharging. 

For each discharge energy capacity test, cells were charged using a CC-CV schedule with a 

charging current of 26.5 A (0.5 C) up to the upper voltage limit of 4.2V. Subsequently, the cells 

were kept at this voltage until the current dropped below 2A, after which the cells were left to 

equilibrate for 1 hour. This state was defined as fully charged or 100% SOC. Following this rest 

period, the cells were discharged to the lower voltage limit of 2.7V with a current of 53 A (1 C), 

followed by another resting period of 1 hour to let the cells equilibrate again. The discharge 

energy capacity was defined as the recorded dissipated energy capacity during the discharge.  

Following the discharge capacity tests, cells were subsequently charged with a smaller current of 

5.3 A (0.1C) up to the cells’ upper potential limit of 4.2 V, and again held there until the charging 

current dropped below 2 A. This lower current was chosen such that the resulting voltage vs. 

capacity profile could be used for dQ/dV analysis during degradation testing as described within 

section 2.5.2. For a true pOCV analysis, to minimise effects of polarisation, some researchers 

suggest that the currents employed should ideally be at C/25 or lower [38]. However, the internal 

resistance of the cells employed within [38] was reported to be 0.18 Ω, compared to 0.0013 Ω 

for the cells employed within this research. With the constrained access to experimental facilities 

associated with this work, and accounting for the low internal impedance declared by the cell 

manufacturer, the current of C/10 was deemed acceptable. The dQ/dV curves can be obtained 

by differentiating the capacity vs voltage data. The charge capacity was then defined as the total 

energy sunk into each cell during this charging step. The results of this test are presented and 

discussed within section 7.2.1.  

6.3.2 Pulse-Multisine Characterisation 

Within this study, the Pulse Multisine Characterisation (PMC) test is chosen over the HPPC test, 

that is defined within the IEC 62660 standard [34], to characterise cell internal resistance. Unlike 

the HPPC test, the PMC test does not require a 30-minute equilibration time between each 

individual current pulse. As such it requires less testing time whilst providing equally reliable 

characterisation results [142]. 

Testing was carried out at five different SOCs, at 95%, 80%, 50%, 20% and 10%. Each cell was 

charged to 100% SOC using the same CC-CV schedule as the one prior to the discharge capacity 

test. Following this charging step, the cell was left to equilibrate for 1 hour before being 

discharged at 26.5 A to 95% SOC. SOC intervals were determined via coulomb counting based on 
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the rated coulombic capacity of the cell; i.e. a 5% DOD discharge from 100% SOC to 95% SOC 

requires the dissipation of 2.65 Ah. Following the SOC adjustment, the cells were left to 

equilibrate for another hour before they were subject to five consecutive repetitions of the PMC 

profile during which voltage and current measurements are acquired.  Upon completion of this 

test, the cells were left for 1 hour to equilibrate and for their temperatures to drop back down to 

20 °C, followed by the next SOC adjustment period from 95% to 80% SOC. These steps were 

repeated for all five SOCs at which the tests were conducted. The composition of the PMC profile 

used is illustrated within Figure 6-3. 
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FIGURE 6-3 – PULSE MULTISINE PROFILE COMPOSITION: (A) BASE SIGNAL WITH PULSES OF 357.6 A DISCHARGING 

AND 67.6 A CHARGING CURRENT AMPLITUDE; (B) ZERO-MEAN MULTISINE SIGNAL WITH A PEAK AMPLITUDE OF 43.4 

A; (C) COMBINED PULSE MULTISINE SIGNAL USED FOR PMC CHARACTERISATION TESTS 

The profile consists of a charge-neutral base signal illustrated in Figure 6-3a, which is 

superimposed with a zero-mean multisine signal (illustrated in Figure 6-3b), resulting in a charge 

sustaining combined profile as shown in Figure 6-3c. The base signal comprises a 5 second 

discharging pulse with a magnitude of 357.6 A, followed by a resting period of 20 seconds. This 

is followed by a charging pulse with an amplitude of 63.6 A followed by another 20 second resting 

period. To maintain charge neutrality, the duration of the charging pulse is 28.1 seconds. The 

multisine signal is a random-phase multisine as defined within [141]. It has a flat spectrum with 
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a uniform distribution of random phases between –𝜋 and 𝜋 radians. This results in a zero mean 

profile in which the magnitudes of the profile have a normal distribution. The peak amplitude of 

the multisine is 43.4 A such that the peak discharging and charging currents of the combined 

signal do not exceed 400 A and 106 A, respectively. The recorded current and voltage signals are 

subsequently processed to parameterise an NL-ECM, the structure and parameterisation of 

which are initially described within section 2. The results of this test are described and discussed 

within section 7.2.2. 

6.3.3 Electrochemical Impedance Spectroscopy 

As identified within the literature review, the Nyquits plots resulting from EIS testing can be used 

to model the response of cells to different frequency inputs and map this response to the SEI, 

charge transfer phenomena, and diffusion effects. Thus this test gives a deeper insight into the 

processes occurring within the cell. 

Electrochemical Impedance Spectroscopy (EIS) testing was carried out at five different SOCs at 

95%, 80%, 50%, 20% and 10% during full characterisation tests and at 95%, 50% and 10% SOC 

during partial characterisation tests. The charging and SOC adjustment procedures prior to each 

EIS test followed the same protocol as for the PMC tests. Following SOC adjustment, an extended 

equilibration period of at least 4 hours was employed as recommended by Barai et al. [145], to 

allow the dynamics of the cell to stabilise before measurements were made. The EIS tests were 

carried out in galvanostatic mode using a Solartron EnergyLab XM” system with a 2-Ampere 

booster. Each cell was excited with a sinusoidal AC current with an RMS value of 1.41 A, and cell 

impedance was measured in a frequency range from 10 mHz to 10 kHz with 10 frequency points 

per decade as suggested within [136]. To analyse the impedance measurements, the resulting 

Nyquist plots were subsequently fitted to an ECM using “Scribner® ZView2”. The process of ECM 

fitting and results of these tests are detailed within section 7.2.3. 

6.4 Performance testing 

One of two key components required to fulfil research task 3 is to define a procedure to conduct 

performance testing. Emphasis is placed on energy throughput and cell temperatures, as those 

are often identified as key contributors to cell degradation [47] and are known to greatly 

influence cell performance. Additionally, building upon the work presented within section 5.4 

this test serves to provide experimental data for the validation of the HP-MSC. The HP-RPC has 

not been included in the experimental study. Given the similarity between the HP-RPC and HP-
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MSC that were identified within the previous chapter, the author assumes the use of the HP-MSC 

sufficient for the purpose of performance testing and cycle validation. 

To investigate differences between HP-BEV applications and standard testing procedures, three 

different tests are designed based on the three duty cycles shown in Figure 6-4: The HP-MSC (a), 

the IECC (b), and the duty cycle from the Bahrain International circuit (Bahrain) simulation (c). Six 

cells are subject to one test cycle of each profile.  

 

FIGURE 6-4 – A SINGLE PERIOD OF THE THREE DUTY CYCLES SELECTED FOR TESTING: A – HP-MSC; B – IECC; C – 

BAHRAIN  
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Within this context, a test cycle comprises the following. Cells are charged to the upper cut-off 

voltage of 4.2 V using the CC-CV procedure discussed within section 6.3.1, followed by a rest 

period of 1 hour allowing the cells to equilibrate. They are then discharged to 95% SOC at 0.5C, 

followed by another 1-hour rest period. Subsequently the cells are subjected to repetitions of 

one of the three duty cycles shown within Figure 6-4 until either they reached a SOC of 10%, 

resulting in a 85% DOD (45.05 Ah) charge depletion, or the peak cell surface temperature reached 

the thermal safety limit of 65 °C (defined by the manufacturer). The SOC operating window and 

DOD can be chosen in accordance with the defined use case. Within this thesis, the value of 85% 

DOD was chosen after discussions with the partnering companies. A resulting test cycle on the 

example of the IECC is shown within Figure 6-5. 

 

FIGURE 6-5 – ANNOTATED IECC TEST CYCLE: RED – CC-CV PERIOD, GREEN – EQUILIBRATION PERIODS 

Rather than scaling each profile to a maximum C-rate as done for the simulation study in the 

previous chapter, each profile is scaled to a peak power demand to more accurately portray a 

realistic duty profile. Peak power per cell is defined as 1400 W. This value is chosen as a 

compromise between maximising the power demand and keeping cells within the thermal safety 

window throughout testing. Negative values of power represent cell discharging, whereas 

positive values represent charging. 

Comparison between the results from the HP-MSC test and the test employing the Bahrain duty 

cycle will further refine the validity of the duty cycle construction methodology described within 

section 5.3. Further comparison between the tests employing the HP-MSC and IECC, respectively 

will allow for direct comparison of thermal performance of LIBs between HP-BEV applications 

and standard testing procedures. The results of all three test cycles are presented and discussed 

within section 7.3.  
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6.5 Duty cycle degradation study 

To complete research task 3 and assess the longer-term effects of HP-BEV applications on LIBs, a 

duty cycle degradation study is required to investigate how the differences between duty cycles 

representing HP-BEV application, and standard duty cycles affect the electrical characteristics of 

LIBs in the long-term. Following the full characterisation (defined in Table 6-4), the cells are split 

evenly into two sets, and tested simultaneously with two different usage profiles. 

In this study, cells No. 1-3 were cycled using the test cycle based on the HP-MSC as discussed in 

the previous section. Cells No. 4-6 were cycled using the test cycle based on the IECC. Again, a 

test cycle within this context refers to a single completion of the protocol used for the 

performance testing described within section 6.4, followed by a 2-hour rest period for cells to 

cool and equilibrate. 

Both sets of cells underwent 200 test cycles with regular partial characterisations. These partial 

characterisation tests were employed at regular intervals as detailed within Table 6-5 to detect 

whether any effect on the cells’ attributes could be observed. Once each cell completed 200 duty 

cycles, a full characterisation test was once again undertaken. The complete test schedule is 

summarised in Table 6-5. 

Throughout the duty cycle degradation study, both test groups, i.e. all six cells, are subject to the 

same characterisation tests at the same time. As tests are conducted simultaneously, the only 

differentiating factor between the two test groups is the test cycle itself. Thus any differences in 

cell characteristics, which may emerge between the two test groups during the degradation 

study, can be attributed to the test cycle used. 

Based on the literature review in Chapter 2, it would be expected, that cells undergoing the HP-

MSC schedule will degrade at an earlier point, and more rapidly than the group undergoing the 

IECC schedule. This assessment is primarily based on the higher frequency of high amplitude 

currents and expected increased temperatures, the HP-MSC groups are experiencing. 
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Number of cycles Total cycles Test 

0 0 (start of test) Full characterisation 

10 10 Partial characterisation 

10 20 Partial characterisation 

10 30 Partial characterisation 

20 50 Partial characterisation 

20 70 Partial characterisation 

20 90 Partial characterisation 

20 110 Partial characterisation 

40* 150 Partial characterisation 

10* 160 EIS at 50% 

Laboratory closure due to construction work 

40* 200 (end of test) Full characterisation 

TABLE 6-5 - TEST PROGRAM FOR SHORT TERM CYCLING STUDY, * INDICATES OCCURRENCES WHERE HARDWARE 

MALFUNCTIONS WERE ENCOUNTERED  

During the timeframe of the experimental work, the laboratory facilities underwent major 

refurbishment and construction work. As such, after 160 cycles, testing was suspended for 5 

weeks, during which the experimental-rig was disconnected from the BITRODE equipment and 

stored at 20℃, with all cells at 50% SOC. EIS testing was conducted on all cells prior to storage 

(Figure 6-6-blue plot), and again post storage at 50% SOC (Figure 6-6-red plot). As the cells were 

not cycled during the refurbishment work, no SOC adjustment was conducted prior to the second 

measurement. 
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FIGURE 6-6 – NYQUIST PLOTS OF EIS MEASUREMENTS AT 50% SOC PRE STORAGE, POST STORAGE AND 13 

GALVANOSTATIC 1C DISCHARGES POST-STORAGE 

Figure 6-6 reveals a significant increase in charge transfer resistance for the test post storage 

compared to those tests conducted 5 weeks prior. This was attributed to reversible changes, 

which may occur within the cells post use and during storage as reported within literature [53]. 

As such, prior to commencing the degradation study, each cell was subject to 13 galvanostatic 

charge-discharge cycles following the same regime as the energy discharge capacity test (1C 

discharge, C/2 charge). After 13 cycles, there were only minimal differences between the Nyquist 

plots (Figure 6-6-yellow plot) and those taken prior to the laboratory closure. These differences 

were deemed satisfactory, and subsequently testing was commenced with the HP-MSC and IECC 

test cycles. The results of the completed degradation study are presented and discussed within 

section 7.4. 

6.5.1 Hardware malfunctions 

In addition to the prolonged resting period, BITRODE hardware malfunctions were encountered 

on multiple occasions. These are tabulated within Table 6-6, as well as the action taken post 
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interruption. On all occasions, where testing was interrupted, cells had been cycled through 

approximately 5% DOD. 

Cell  No Cycling interval Occurrences Action 

Cell 1 160 – 200  10 Continue cycling program 

Cell 2 

111 – 121 1 Trouble-shooting – Bitrode-engineer attributed 

fault to broken voltage sensor. Restart test 

program with reduced loops 

121 – 127 2 1st instance: Continue cycling program,  

2nd instance: Trouble-shooting – Bitrode-engineer 

identified firmware as potential cause. Restart test 

program with reduced loops 

127 – 200  17 Continue cycling program 

Cell 3 

111-121 1 Fault-finding: No error could be found 

Restart test program with reduced loops 

121 – 129  2 1st instance: Continue cycling program,  

2nd instance: Trouble-shooting – Bitrode-engineer 

identified firmware as potential cause. Restart test 

program with reduced loops 

129 – 150  1 Continue cycling program 

TABLE 6-6 – LIST OF BITRODE MALFUNCTIONS DURING LONG TERM TESTING FOR THE HP-MSC TEST GROUP.  

The first of these instances were encountered during cycle No 121, where the equipment stopped 

the experimental run for both, both, cell 2 and cell 3. A broken voltage sensor was identified by 

a BITRODE service engineer on the leads connected to cell No 2. No issue could be identified with 

the circuitry connected to cell No 3. The faulty component was replaced by the service engineer, 

and the testing program was restarted with a reduced number of loops to account for the 

complete cycles. Despite no other failure being identified, the hardware continued to 

malfunction and halt cycling on several occasions. Testing on cells 2 and 3 was suspended one 

further time, whilst trouble shooting was conducted on the BITRODE hardware. A firmware 

limitation was subsequently stated by the equipment manufacturer as a possible cause of the 

malfunctions. However, prior to cycle 121, no issues had been encountered with the same testing 

equipment, making a firmware limitation unlikely. Following trouble-shooting, cells were charged 

back to 100% SOC. This resulted in cells 2 and 3 being subject to two additional charging cycles 

compared to cell 1. As this amounts to less than 1% of the total number of charging events, it is 

not expected to influence the overall outcome of the experimental work. 
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Following the 5-week break in testing, the HP-MSC group was connected to equipment with “kj”-

type firmware, the IECC test group was connected to equipment with “dC”-type firmware. This 

decision was made, as prior to this point no testing issues were encountered on cell 1, which had 

previously been connected to a cycler with “kj”-firmware. However, this did also not resolve the 

issue and subsequently, testing issues were encountered on cells 1 and 2, but not on cell 3. 

As no error source could be identified by either, the laboratory staff or service engineer, and to 

minimise the interruption to the test plan, it was decided to continue the test program in all 

instances where cycling was interrupted due to a fault. When testing was continued following a 

malfunction, a cell would cycle from the last recorded point down to 10% SOC, thus completing 

a full cycle. However, for those cycles with a forced break, the recorded cell surface temperatures 

at the end of discharge were lower than during uninterrupted cycles, as shown in Figure 6-7, 

where the difference in the peak surface temperature is 4.2°C. The impact of this difference in 

temperature on the outcomes of the degradation study is deemed small due to the low number 

of total occurrences, which are 10% for cell 2, 5% for cell 1, and 2% for cell 3. 

 

FIGURE 6-7 – CELL SURFACE TEMPERATURE ON THERMOCOUPLE POSITIONS 1, 4, AND 6 ON CELL 3 DURING 

BITRODE MALFUNCTION. TEMPERATURE DIFFERENCE AT HOTTEST POINT OF 4.2 ℃ FOR TC4 AND 0.3℃ FOR TC6. 
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6.6 Conclusion 

This chapter satisfies “Research Task 3: Devise an experiment to conduct LIB performance and 

degradation testing to investigate differences between HP-BEV applications and standard testing 

procedures.” It presents the cell selection process, hardware set-up, and experimental 

procedures required to conduct characterisation, performance and degradation testing for LIBs 

within the context of HP-BEV applications. The definition of the required experimental 

procedures constitute part of the proposed framework illustrated within Figure 3-6, and fulfils 

part of the requirements to address the knowledge gap pertaining to the lack of experimental 

studies within the HP-BEV segment as illustrated within Table 3-1. 

The selection and parameterisation of the characterisation tests that provide a detailed 

description of cell behaviour follows the best practices as discussed within the literature review 

in Chapter 2. The procedure suggested for performance testing is designed to provide datasets 

to evaluate the thermal and electrical performance of LIBs subject to three test cycles: The HP-

MSC test cycle, representing typical HP-BEV applications, IECC test cycle, representing a standard 

testing profile, and the Bahrain test cycle, representing a specific HP-BEV use case. The results 

from this test will enable direct comparison between standard and HP-BEV testing scenarios and 

further serve as a validation exercise for the duty cycle construction methodologies presented 

within Chapter 5. 

The methodology employed for degradation testing investigates how the characteristics of LIBs 

change over prolonged use within both, HP-BEV applications, and when subject to standard 

testing cycles. This is achieved through regular characterisation testing throughout the 

degradation study. Any changes in cell characteristics occurring over the course of the 

experiment between the two test groups are a function of the test cycles employed and thus use 

case specific. The results from the experimental procedures described within this chapter are 

presented and discussed within Chapter 7. 
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7 Experimental Results & Discussion 

7.1 Introduction 

This chapter addresses “Research Task 4: Analyse the experimental results and determine any 

use-case specific behaviour between HP-BEV applications and standard testing procedures.” It 

presents and discusses the results obtained from the testing procedures described in Chapter 6, 

thus completing the tasks required to address the knowledge gaps listed within Table 3-1. 

Furthermore, it addresses the final step of the framework illustrated within Figure 3-6. 

The results from cell characterisation tests provide a set of control values against which changes 

in cell characteristics throughout the duty cycle degradation study may be compared. The results 

from performance testing are analysed to provide a greater level of insight into the thermal 

performance of LIBs under standard and HP-BEV scenarios. The results from the duty cycle 

degradation study are analysed to identify and explain the divergence of cell characteristics for 

the HP-MSC and IECC test groups. 

7.2 Cell characterisation testing 

The results presented within this section correspond with the experimental procedure described 

in section 6.3. 

7.2.1 Galvanostatic energy capacity 

The voltage vs energy capacity plots of all six cells for a 1C discharging and 0.1C charging rate are 

shown within Figure 7-1(a) and (b), respectively. The final recorded energy and coulombic 

capacities for both tests are tabulated within Table 7-1. 

The mean discharging capacity is 52.01 Ah with a standard deviation of 0.29 Ah. For the charge 

capacity test at 0.1C the mean charging capacity is 51.47 Ah with a standard deviation of 0.38 Ah. 

The measurement spread between the cells for charging and discharging capacity is small as 

expected and falls within 0.7% and 0.6%, respectively. As currents of different magnitude were 

used for both tests, the measured capacity between charge and discharge varies. The lower 

charging current of 0.1C results in lower polarisation and thermal losses during charging, 

compared to the higher discharging current of 1C.  Although the Capacity is measured in Ah and 
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is larger for the higher discharging current, the total amount of energy transferred into the cell 

(measured in Wh) is larger for the lower current. 

 

 

FIGURE 7-1 - CAPACITY TEST RESULTS. (A) DISSIPATED ENERGY CAPACITY DURING A 1C DISCHARGE, (B) TOTAL 

ENERGY DURING CHARGE 

 

Test Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 

1C Discharge Capacity (Ah) 51.57 52.25 52.20 51.74 52.07 52.24 

0.1C Charge Capacity (Ah) 50.99 51.61 51.49 51.66 51.09 52.00 

1C Discharge Capacity (Wh) 184.52 186.44 186.22 184.97 185.92 186.97 

0.1C Charge Capacity (Wh) 192.00 193.85 193.43 194.45 192.01 195.78 

TABLE 7-1 – ENERGY CAPACITY TEST RESULTS FROM INITIAL CHARACTERISATION TESTS 
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7.2.2 Pulse Multisine Characterisation 

Figure 7-2(a) and (b) show the cell voltage and surface temperature response, respectively, to 

the current input signal (𝑖(𝑛)) of the PMC (Figure 6-3) for cell 3 at 50% SOC. The temperature was 

measured using the Bitrode thermocouple. The magnitude of the voltage response to the high 

current pulse decreases steadily over the five periods, with the largest change occurring primarily 

over the first two periods. This change could be attributed to the increase in cell temperature 

over the same period. As the impedance should be estimated under steady state conditions, the 

first two periods of the measurement were eliminated prior to further processing as described 

within Chapter 2. 

 

FIGURE 7-2 – VOLTAGE AND TEMPERATURE RESPONSE OF CELL NO 1 AT 50% SOC, INITIAL CHARACTERISATION 

TEST (A) MEASURED VOLTAGE RESPONSE TO THE PMC SIGNAL. (B) BITRODE SAFETY THERMOCOUPLE 

MEASUREMENT 

Figure 7-3 shows the cell impedance (𝑍(𝑘)) as estimated from equation (19), and a fitted first 

order transfer function (𝑍𝑚(𝑘)) as described within equation (65), where 𝜔𝑘 =
2𝜋𝑘𝑓𝑠

𝑁
, and 𝑎𝑛 and 

𝑏𝑛 are transfer function coefficients. 
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 𝑍𝑚(𝑘) = −(
𝑏1𝑗𝜔𝑘 + 𝑏0
𝑎1𝑗𝜔𝑘 + 𝑎0

) (65) 

 

FIGURE 7-3 – ESTIMATED CELL IMPEDANCE AND 1ST ORDER TRANSFER FUNCTION FIT. 

From Figure 7-3-a and b it can be seen that a first order function offers a good fit for the estimated 

impedance. The transfer function is subsequently expanded via a partial fraction expansion to 

produce a function as described within equation (66), yielding the parameters for a 1st order ECM 

as illustrated within Figure 7-4. The model comprises a series resistor 𝑅0−𝑃𝑀𝐶  representing the 

cells internal resistance and an RC pair, where 𝑅1−𝑃𝑀𝐶  represents the polarisation resistance, 

𝜏1−𝑃𝑀𝐶 the time constant, and 𝜏1−𝑃𝑀𝐶 = 𝑅1−𝑃𝑀𝐶𝐶1−𝑃𝑀𝐶. 

 𝑍𝑚(𝑘) = −𝑅0−𝑃𝑀𝐶 −
𝑅1−𝑃𝑀𝐶
𝜏1𝑗𝜔𝑘 + 1

 (66) 
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FIGURE 7-4 – 1ST ORDER EQUIVALENT CIRCUIT MODEL COMPRISING A SERIES RESISTOR WITH ONE RC PAIR USED TO 

MODEL THE OVER-VOLTAGE RESPONSE. 

By plotting the measured over voltage 𝑣(𝑛) vs the modelled overvoltage 𝑣1(𝑛) resulting from 

the current 𝑖(𝑛) being applied to the ECM, the presence of any non-linear behaviour associated 

with high current densities can be detected. Figure 7-5(a-e) shows the measured vs modelled 

data points for 95%, 80%, 50%, 20%, and 10% SOC for cell 3 as well as a fitted sigmoid function 

described in equation (67), where 𝑐𝑁𝐿1 and 𝑐𝑁𝐿2 are coefficients estimated via the lsqcurvefit 

function from the MATLAB® Optimisation Toolbox. 

 𝑓(𝑣̅1) =
𝑐𝑁𝐿1𝑣̅1

√1 + 𝑐𝑁𝐿2𝑣̅
2
1

 (67) 

A linear relationship between the measured and modelled over voltage is observed for all SOCs 

except 10%, where the fitted function indicates some non-linear behaviour. However, voltage 

clipping was encountered during PMC testing at 10% SOC, as illustrated by the red circles within 

Figure 7-6, meaning the desired current input could not be achieved due to cell voltage 

limitations. As such, with the available data, it is not possible to conclude whether or not non-

linear cell behaviour is present. 

 

 

 

 

𝑅0

𝑅1

𝐶1

𝑣1(𝑡)

𝑖(𝑡)



7 Experimental Results & Discussion 

140 

 

 

FIGURE 7-5 – MEASURED OVER-VOLTAGE VS MODELLED OVER-VOLTAGE MODELLED FROM ECM. A LINEAR 

RELATIONSHIP BETWEEN MODELLED AND MEASURED OVER-VOLTAGE CAN BE OBSERVED; SOME NON-LINEAR 

TENDENCY FOR 10% SOC 
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FIGURE 7-6 – PMC VOLTAGE RESPONSE FOR CELL 3 AT 10% SOC DURING INITIAL CHARACTERISATION. RED CIRCLES 

INDICATE OCCURRENCES, WHERE THE CELL VOLTAGE SAFETY LIMIT WAS REACHED, RESULTING IN CURRENT DE-
RATING. 

Table 7-2 presents the mean values for the ECM parameters and non-linear coefficients 𝑐𝑁𝐿1 and 

𝑐𝑁𝐿2 as well as their standard deviation for 95%, 80%, 50%, 20%, and 10% SOC. Figure 7-9(a – c) 

shows the fitted ECM parameters for those cells under the PMC for a single RC pair ECM. The 

data points represent the mean value for all six cells, and the error bars the standard deviation 

from the mean. 

 95% SOC 80% SOC 50% SOC 20% SOC 10% SOC 

𝑅0−𝑃𝑀𝐶  

 (𝑚Ω) 
1.31 ± 0.04 1.32 ± 0.04 1.38 ± 0.04 1.53 ± 0.05 1.60 ± 0.04 

𝑅1−𝑃𝑀𝐶  

 (𝑚Ω) 
0.40 ± 0.03 0.50 ± 0.03 0.50 ± 0.03 0.33 ± 0.03 0.62 ± 0.04 

𝜏1−𝑃𝑀𝐶 

(𝑠) 
5.91 ± 0.51 7.26 ± 0.52 9.90 ± 0.61 3.42 ± 0.55 1.06 ± 0.05 

𝑐𝑁𝐿1 0.966 ± 0.005 0.950 ± 0.002 0.962 ± 0.001 0.987 ± 0.014 0.905 ± 0.007 

𝑐𝑁𝐿2 0.004 ±0.035 -0.052 ± 0.019 -0.052 ± 0.004 0.073 ± 0.076 -0.179 ±0.021 

TABLE 7-2 – MEAN AND STANDARD DEVIATION OF THE ESTIMATED ECM PARAMETERS FOR THE DC INTERNAL 

RESISTANCE AND CHARGE TRANSFER PHENOMENA FROM SIX G-NMC 53AH CELLS. 

For the PMC, the impedance is determined for frequencies up to 1Hz, and the cell internal 

resistance 𝑅0−𝑃𝑀𝐶  is estimated from the partial fraction expansion described in equation (66). As 
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such this parameter does not only represent the pure Ohmic resistance of the bulk materials, but 

is also influenced by some charge transfer phenomena occurring within the cell under discharge 

[147]. Similarly to HPPC test results reported within literature, 𝑅0−𝑃𝑀𝐶  displays an SOC 

dependency with higher values at the low SOCs at 10% and 20%, and a flat profile between 50% 

and 95% SOC [226,227].  

 

FIGURE 7-7 – PMC MEAN ECM PARAMETERS AND STANDARD DEVIATION. (A) DC RESISTANCE 𝑅0. (B) CHARGE 

TRANSFER AND DIFFUSION RESISTANCE 𝑅1. (C) TIME CONSTANT 𝜏1. 

The resistance 𝑅1−𝑃𝑀𝐶  and time constant 𝜏1−𝑃𝑀𝐶 , shown within Figure 7-7(b) and (c), 

respectively, are associated with the continual voltage response as charge transfer and diffusion 

phenomena dominate the cell dynamics. As voltage clipping occurred during the high current 

discharge pulses at 10% SOC, the values for 𝑅1−𝑃𝑀𝐶 and 𝜏1−𝑃𝑀𝐶 may not be completely reliable, 

and are omitted from all further analysis. Values for 𝑅1−𝑃𝑀𝐶 would usually be expected to follow 
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a bathtub shape with higher values for low SOCs, and very high SOCs, as polarisation and charge 

transfer phenomena influence cell behaviour. However, the opposite can be observed within 

Figure 7-7(b), which can partially be attributed to the fact that part of the charge transfer 

phenomena are accounted for within 𝑅0−𝑃𝑀𝐶. The combined resistance (𝑅0−𝑃𝑀𝐶 + 𝑅1−𝑃𝑀𝐶) for 

the cells results in a flat profile around 1.8 mΩ for all cells. As 𝜏1−𝑃𝑀𝐶  and 𝑅1−𝑃𝑀𝐶  are co-

dependent, the overlap in resistances also influences the values of the time constant used to 

model the remaining dynamic voltage response. 

7.2.3 EIS tests 

Figure 7-8  shows a Nyquist plot of the measured EIS response for cell 3 at 50% and the modelled 

EIS response when fitted to the second order ECM at the bottom of the figure. The imaginary 

part of the impedance is plotted on the y-axis, and the real part of the impedance is plotted on 

the x-axis. The shape of the Nyquist plot is in agreement with those found within literature [227–

229], displaying the traits as described within Chapter 2, i.e. high-frequency inductive tail, mid-

frequency semicircle, and Warburg impedance at low-frequency.  

The software “Scribner® ZView2” was used to parameterise the model to fit the EIS response for 

all SOCs. To decide upon a suitable equivalent circuit model, each of the three distinct regions 

was examined individually and a partial ECM was parameterised. Subsequently, these models 

were combined to a full ECM and the software’s parameter optimisation tool was run to generate 

and optimised set of ECM parameters. The optimisation step is achieved through the use of a 

non-linear least squares algorithm. The inductive tail and skin effect [229] was modelled using an 

inductor 𝐿𝑖 in parallel with a resistor 𝑅𝑖. The intersection of the inductive tail with the real axis 

corresponds with the pure Ohmic resistance, represented by a single resistor 𝑅0−𝐸𝐼𝑆. The mid-

frequency semicircle is modelled by two Resistor-Constant-Phase-Element pairs (𝑅1−𝐸𝐼𝑆 − 𝐶𝑃𝐸1 

and 𝑅2−𝐸𝐼𝑆 − 𝐶𝑃𝐸2 ) to model effects caused by charge transfer phenomena and the 

electrochemical double layer. The local minimum at the end of the semicircle is associated with 

the charge transfer resistance (𝑅𝑐𝑡−𝐸𝐼𝑆) and corresponds with the values of 𝑅1−𝐸𝐼𝑆 + 𝑅2−𝐸𝐼𝑆 . 

Finally, an open Warburg element is used to model behaviour caused by mass transport effects 

[229]. 

Although a first order model with a single R-CPE pair is suggested to be sufficient for Nyquist plots 

which only present one suppressed semi-circle [136], the inclusion of a second R-CPE pair 

generally resulted in a lower sum of squares error  between modelled and measured value. 

Furthermore, as the cells are used a second semicircle associated with continued SEI growth 
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often appears over time as the cell degrades. To avoid alternating between different order ECMs 

for a comparison between the initial characterisation and subsequent tests it was thus decided 

to use the model shown within Figure 7-8. 

 

FIGURE 7-8 – SECOND ORDER ECM USED TO MODEL THE IMPEDANCE RESPONSE OF A CELL UNDER EIS WITHIN 

SCRIBNER® ZVIEW. 

Figure 7-9 shows the Nyquist plots for initial EIS characterisation at 95%, 80%, 50%, 20% and 10% 

SOC for all cells. All cells display similar characteristics. Figure 7-10 shows the mean value and 

standard deviation of the Pure Ohmic resistance, charge transfer resistance, and total combined 

resistance 𝑅𝑇𝑜𝑡𝑎𝑙−𝐸𝐼𝑆 for 95%, 80%, 50%, 20% and 10% SOC over all six cells. Similarly to findings 

within literature [227,230,231] the cells display little variation of the pure Ohmic resistance 

throughout the SOC range. In contrast, a large SOC dependency can be observed for the charge 

transfer resistance 𝑅𝑐𝑡−𝐸𝐼𝑆 from the position of the local minimum of the semicircle within Figure 

L
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L Free(+) 9.7184E-08 N/A N/A

Ri Free(+) 0.10882 N/A N/A
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R1 Free(+) 0.00030785 N/A N/A

CPE1-T Free(+) 11.68 N/A N/A
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Wo1-P Free(±) 0.65065 N/A N/A
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7-9, and the mean values portrayed within Figure 7-10. Values are lower in the in the middle SOC 

window, and a distinct increase can be observed at the lower SOCs of 20% and 10%. This is 

assumed to be caused by changes in the lithium concentration within, and physical characteristics 

of the electrode materials as described within Chapter 2. 

 

FIGURE 7-9 –  NYQUIST PLOTS FOR EIS MEASUREMENTS AT 95%, 80%, 50%, 20% AND 10% SOC. 
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FIGURE 7-10 – RESISTANCE PARAMETERS DETERMINED FROM EIS MEASUREMENTS. (A) PURE OHMIC 

RESISTANCE(𝑅0). (B) CHARGE TRANSFER RESISTANCE 𝑅𝑐𝑡−𝐸𝐼𝑆. (C) COMBINED RESISTANCE 

By comparison of the findings between the PMC and EIS tests, it can be seen that for the PMC 

tests, values for 𝑅0  are higher than those found for the EIS tests by a factor of up to 2. This 

observation is attributed to the measurement timescale utilised in each test [147]. As the 

maximum frequency applied for the PMC test is 1 Hz, a more suitable comparison would be to 

compare those values with the EIS impedance measured at 1 Hz (𝑅1𝐻𝑧−𝐸𝐼𝑆), as illustrated within 

Figure 7-11 for cell 3 at 50% SOC. For cell 3 this returns a resistive value of 1.469 mΩ, which 

corresponds well with the 𝑅0−𝑃𝑀𝐶 value from the PMC test of 1.402 mΩ.  
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FIGURE 7-11 – NYQUIST PLOT FOR CELL 3 AT 50% SOC. THE 1HZ IMPEDANCE HAS A RESISTIVE VALUE OF 1.469 

𝑚Ω. THIS CORRESPONDS WELL WITH THE 𝑅0−𝑃𝑀𝐶  MEASUREMENTS  

7.2.4 Initial characterisation summary 

Based on the initial characterisation test, little differences are observed between the cells with 

regards to cell capacity, DC resistance as measured via PMC tests, and AC Impedance measured 

via EIS. From the PMC test results, the cells have shown to display linear characteristics between 

95% and 20% SOC, which can be accounted for by a first order ECM. It is currently inconclusive 

whether non-linear behaviour is present at 10% SOC or not. Values for 𝑅0−𝑃𝑀𝐶  increase for 20% 

and 10% SOC, combined values for 𝑅0−𝑃𝑀𝐶 +𝑅1−𝑃𝑀𝐶 result in a flat resistance profile around 1.8 

𝑚𝛺 between 95% and 20% SOC. Due to voltage clipping occurring for PMC tests at 10% SOC, 

values from these specific measurements are unreliable and need to be omitted from further 

analysis. For other SOCs, Comparison between 𝑅0−𝑃𝑀𝐶 and 𝑅1𝐻𝑧−𝐸𝐼𝑆 indicates good agreement 

between PMC and EIS testing outcomes. The small spread of values between cells for energy 
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capacity, PMC and EIS tests, shows that there is little variation between individual cells at the 

beginning of testing. As such, any divergence of characterisation test outcomes between the two 

test groups during the degradation study will enable the identification of use-case specific 

degradation behaviour. 

7.3 Performance testing 

The results presented within this section correspond with the experimental procedure detailed 

within section 6.4. Figure 7-12, Figure 7-13 and Figure 7-14 show the duty cycle profile, voltage 

response, and cell surface temperature for an 85% depth of discharge (DOD) on cell No. 4 for the 

HP-MSC, IECC, and Bahrain duty cycle, respectively. This cell was chosen as all installed 

thermocouples operated without interruption throughout the duration of all tests, and as such 

provides the most reliable thermal test data. Table 7-3 lists the mean time taken for each duty 

cycle (∅ time), and the mean energy throughput (∅ Wh) for the set of cells with the associated 

standard deviation (𝜎) for each measure. Whilst the HP-MSC takes 1406 seconds to complete 

with an absolute energy throughput of 230 Wh, the IECC requires 122% longer duration with a 

13% lower energy throughput and the Bahrain cycle is 42% shorter with only a 9% lower energy 

throughput. It is clear that the IECC lacks the dynamic behaviour, which both the HP-MSC and 

Bahrain cycle exert on the cells. As the HP-MSC is aimed to be representative of a variety of HP 

duty cycles and the Bahrain cycle is only a single example of the target use case, the differences 

between these two cycles concerning duration and energy requirements are deemed acceptable.  

Cycle ∅ time(s) 𝝈 time ∅ Wh throughput 𝝈 Wh 

HP-MSC 1406.1 0.4 230.18 0.73 

IECC 3121.1 0.0 199.41 0.52 

Bahrain 826.0 0.1 209.49 0.95 

TABLE 7-3 – MEAN DURATION OF THE DISCHARGE FOR EACH DUTY CYCLE, MEAN ENERGY THROUGHPUT AND THE 

ASSOCIATED STANDARD DEVIATION FOR EACH MEASURE FOR THE SET OF CELLS 

The vast differences in intensity of the HP-MSC and Bahrain duty cycle compared to the IECC is 

further illustrated in the three sub-graphs Figure 7-12c, Figure 7-13c, and Figure 7-14c and the 

data presented within Table 7-4. The figure presents the measured cell surface temperatures 

during discharge for cell No. 4, the table lists the mean peak temperatures (∅ peak °C) for the 

hottest and coldest part of the cells, and the peak temperature differences across the cell surface 

for each cycle, as well as one standard deviation (𝜎) for each measure. The hotspot on every cell 

is generally measured on the thermocouple placed at the edge of the cell furthest away from the 
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cooling plate (Pos. 4 – see Figure 6-1b). The position underneath the tab, which is furthest away 

from cooling (Pos. 1), experiences similar temperatures. This, however, is not the always the case, 

when Pos. 1 displays marginally hotter temperatures then Pos. 4. This observation may be a 

feature of individual cells, as reported within [232] or, alternatively, attributed to uneven 

pressure distribution across the cell surface arising from an uneven surface of the polystyrene 

and FOAMGLAS® slabs, the swelling of cells during cycling, or a shift in position of the 

thermocouples. The cold-spot of the cell is always measured on the edge of the cell, located 

closest to the cooling plate in Pos. 6. 

The intensity of the HP-MSC and Bahrain cycle cause cell surface temperatures to reach much 

higher peak temperatures compared to the IECC. The cell surface hotspots for the IECC reach 

similar temperature levels to the cold-spots for the HP-MSC, but remain 6.31 ⁰C below the cold 

spot of cells undergoing the Bahrain cycle. Surface temperature gradients for the IECC reached a 

mean of 8.34 °C across the cell samples, whereas the surface gradients of the HP-MSC and 

Bahrain cycle were 200% and 300% of that value respectively. 

Increased cell temperatures in excess of 45 ⁰C have long been identified as a key contributor to 

accelerated cell degradation, due to accelerated growth of the passivating solid-electrolyte 

interface (SEI) layer at the anode and increased rate of undesired side reactions as reported 

within [54,89,99]. Furthermore, temperature gradients within cells through the central plane 

have been reported to also contribute to accelerated degradation [121,233]. Parts of the cell at 

elevated temperatures are expected to have a lower resistance, allowing more current to flow 

through it, in turn heating up more via a positive feedback process between unique layers that 

are electrically connected in parallel and localised parts in the same layer. This in turn may lead 

to localised aging, and accelerate the ageing process [234]. For realistic cycle life studies the 

choice of a testing profile which results in representative cell self-heating is therefore of 

paramount importance. From a thermal perspective, it may be argued that within the HP use 

case, international testing standards such as IEC 62660-1/2 and ISO 12405-1/2 are inadequate 

for evaluating cycle life and thermal design requirements and that the presented HP-MSC offers 

a more realistic target profile. 
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Cycle 
∅  peak °C 

hotspot 
σ 

∅ peak °C 

coldspot 
σ 

∅  peak 

surface °C 

gradient 

σ 

HP-MSC 54.00 1.56 36.75 0.93 17.24 1.97 

IECC 36.93 0.66 28.40 0.81 8.34 0.71 

Bahrain 67.30 1.99 43.24 1.76 24.06 2.53 

TABLE 7-4 – MEAN PEAK TEMPERATURES OF THE HOTSPOT, COLDSPOT, AND GRADIENTS FOR THE SET OF CELLS. 
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FIGURE 7-12 – PERFORMANCE TEST RESULTS FOR THE HP-MSC FOR CELL 4 FOR A DYNAMIC DISCHARGE FROM 95-
10% SOC. (A) POWER PROFILE. (B) MEASURED VOLTAGE RESPONSE. (C) MEASURED CELL SURFACE TEMPERATURE 
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FIGURE 7-13 – PERFORMANCE TEST RESULTS FOR THE BAHRAIN CYCLE FOR CELL 4 FOR A DYNAMIC DISCHARGE FROM 

95-10% SOC. (A) POWER PROFILE. (B) MEASURED VOLTAGE RESPONSE. (C) MEASURED CELL SURFACE 

TEMPERATURE 
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FIGURE 7-14 – PERFORMANCE TEST RESULTS FOR THE IECC FOR CELL 4 FOR A DYNAMIC DISCHARGE FROM 95-10% 

SOC. (A) POWER PROFILE. (B) MEASURED VOLTAGE RESPONSE. (C) MEASURED CELL SURFACE TEMPERATURE. 
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7.4 Duty Cycle Degradation Study 

This section presents and discusses the results obtained from the experimental procedure 

detailed within section 6.5. Figure 7-15 presents for both, the HP-MSC Group and IECC Group, 

the progression of cell capacity retention against the cells’ energy throughput from HP-MSC and 

IECC cycling, respectively, throughout the duty cycle degradation study, as measured during each 

partial characterisation test. The discharge capacity extracted from the 1C discharge tests is 

shown in the top two graphs, the charge capacity, determined during C/10 charging is shown in 

the bottom two graphs. The data points represent the mean of each group, with the error-bars 

measuring one standard deviation. Both, the discharge and charge capacity increases throughout 

testing for both test groups. The initial and final charging and discharging capacities for both test 

groups, and the calculated change (Δ) are tabulated in Table 7-5. 

 Initial Ah Final Ah Δ % Initial Wh End Wh Δ % 

IECC (discharge) 52.02 53.28 2.42 186.00 189.70 1.99 

HP-MSC (discharge) 52.01 53.04 1.98 185.70 188.90 1.72 

IECC (charge) 51.58 53 2.75 194.10 198.80 2.42 

HP-MSC (charge) 51.36 52.62 2.45 193.10 197.30 2.18 

TABLE 7-5 - CHARGE AND DISCHARGE CAPACITY FOR THE HP-MSC AND IECC TEST GROUPS 

The highest measured capacity for the HP-MSC group is at 53.15Ah (189.4 Wh), in the 

penultimate characterisation, before reducing to 53.04Ah (188.9 Wh) at the final 

characterisation, whereas the IECC group’s capacity is still steadily increasing. However, the 

capacity measurements of the HP-MSC group are within the error of the previous measurement 

and overlap with the error of the IECC group. From the capacity measurements alone, no 

definitive start of capacity fade can be asserted from the experimental data. 

Increases in cell capacity at the early stages of cycling for cells of similar chemistry and format 

have been reported within [166] and [51]. Jalkanen [166] et al. tested 3 Dow Kokam®2 40Ah 

pouch at room temperature, 45°C and 65°C for continuous 1C charge and discharge cycling. All 

three cells initially have a higher discharge capacity than the nominal capacity declared by the 

manufacturer, and capacity increases to a maximum, before decreasing. Based on the presented 

                                                             

2 Dow Kokam rebranded to XALT Energy 
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results, the cell discharged at 45 and 65 °C reach their maximum capacity within the first 100 

cycles, the cell cycled at room temperature reaches a first peak at around 200 cycles and a second 

at 500 cycles. The rate of subsequent decrease in capacity is marginally fastest for the cell cycled 

at 65°C, which gave a shorter cycle life than the other two cells. 

De Hoog et al. [51] tested EIG® 20Ah NMC pouch cells to formulate a model which separates 

calendar and cycle ageing. They observed an initial increase in cell capacity for calendar ageing 

and combined calendar and cycle ageing tests, an effect which was more pronounced for cells 

stored at low states of charge, and subject to lower DOD. 

Both studies explained their observations with a process referred to as electrochemical milling. 

During charge and discharge electrodes expand and contract, resulting in internal stresses, which 

in the case of non-uniform stress distribution within the electrode may result in micro-cracks 

forming in the electrode material, exposing fresh sites and pathways for lithium ion intercalation 

[235]. This in turn causes a widening of the of the operating voltage window of the electrodes, 

the extent of which can be determined using reference electrode tests. Provided parasitic side 

reactions are minimal, and fractured particles maintain good electronic contact, this may result 

in an increase in the energy capacity and a reduction of the internal resistance. As discussed 

within [50] cracking in electrode material can be caused by high currents and high DOD. Both 

duty cycles tested reach c-rates exceeding 7.5C, making electrode cracking a possible pathway 

for changes in the electrode particles. Hence, the capacity increase observed in both test groups 

within this work may also be correlated to the onset of electrochemical milling. However, based 

on these results alone, it is not possible to fully validate this hypothesis.  

Another possible explanation for the capacity increase observed within this study is a potential 

gradual decrease in external pressure applied to the cells over time. As the cells are densely 

packed at the beginning of cycling, continual cycle testing, and the associated expansion and 

contraction of cells may lead to deformations in the packed polystyrene slabs that will in turn 

reduce the lateral force on the cells. Barai et al. [236] reported a decrease of cell capacity coupled 

with an increase in impedance for NMC pouch cells which had an external pressure applied to 

them. They observed a 2% capacity decrease for an external pressure of 0.8 bar. The author 

asserts that a pressure difference of 0.8 bar resulting from deformed polystyrene slabs is unlikely. 

Furthermore, a change of this magnitude would result in significantly worse and observable cell 

cooling nearer the end of the duty cycle degradation study. However, no such observation could 

be made within the recorded data. As such, the more plausible cause of capacity increase is that 

of electrochemical milling. However, it is noteworthy that based on the capacity test data alone, 
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without further observations from within the cells themselves, it is not possible to make a 

definitive conclusion. 

 

FIGURE 7-15 - CELL CAPACITY THROUGHOUT TESTING AT CHARACTERISATIONS. 

Graphs for differential capacity analysis for both test groups are presented in Figure 7-16. The 

curves show the derivatives of the charge vs. voltage (dQ/dV) curves recorded for the 0.1C charge 

for the p-OCV test, with the area under the curve equating to the energy capacity of the cell. The 

upper subplots show the results for both test groups at the initial and final characterisation tests, 

respectively. The lower subplots present a direct comparison between the initial and final 
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characterisations for the HP-MSC and IECC groups, respectively. An advantage of these plots is 

that changes in the p-OCV and voltage vs. capacity plots can be seen more easily. The 

underpinning theory behind the analysis of these graphs is discussed in detail in [38,131–133]. 

Based on the Initial characterisations, three regions of interest were investigated and displayed 

in magnified areas within Figure 7-16a, b and c. The features of the curves displayed in the initial 

characterisation graph are explained as follows. At 0% SOC, the graphite electrode is almost 

completely delithiated. During charging, Li+ ions intercalate into the graphite layers and the 

material transitions through several phases as the lithium content within the material increases 

[135,148]. One of these phase transitions is indicated in the peak around a full cell potential of 

3.52 V in Figure 7-16a, in which a wide spread of peak height can be observed within the cells in 

terms of the height of the dQ/dV peak. Cells No. 2 and 3 display the most pronounced peak whilst 

Cell No.1’s peak is least defined. 

At the beginning of charge, the NMC electrode material is almost fully lithiated in a hexagonal O3 

layered structure [79]. During charge, as lithium is extracted, a phase change occurs from the 

hexagonal to a monoclinic lattice [237], manifesting in the peak identified in Figure 7-16b around 

a cell potential of 3.66V. Similarly, to the peak in Figure 7-16a, a wide spread of peak height can 

be observed for the test groups. Cells No. 6, 4 and 1 have the three highest peaks, respectively, 

with the remaining cells showing similar behaviour. Between 3.75 V and 4.2 V NMC then displays 

a steady potential with the material in the solid-solution region. The third region of interest is 

located at the beginning of charge in Figure 7-16c. All 6 cells display a similar OCV between 3.46 

V and 3.48 V. However, the initial dQ/dV values vary significantly. 

Comparing the observations of the initial full characterisation to the results displayed for the final 

full characterisation, significant differences may be observed. Firstly, by comparing Figure 7-16a 

with Figure 7-16d, the intensity of the peak in the latter appears to have increased whilst the 

spread of intensity between cells has been greatly reduced. The increase in area underneath this 

peak indicates that a larger amount of energy capacity may be attributed to the phase change 

process associated with the graphite electrode compared to initial measurements. The order of 

peak intensity as seen for the initial characterisation test has also changed, with the HP-MSC 

group having slightly lower peak intensity than the IECC group. Furthermore, a shift in the peak 

position toward the lower cell potential is observed, which is associated with a shift to a lower 

impedance within the cell [131]. By examination of Figure 7-16-g the peak for the HP-MSC group 

after 200 cycles shifted approximately 10 mV from 3.53 V to 3.52 V, whereas the shift for the IECC 

group (Figure 7-16k) is slightly larger at 20 mV from 3.53 V to 3.51 V. 
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Secondly, by comparing Figure 7-16-b and  Figure 7-16-e, a smaller spread in peak height for final 

characterisation tests can be seen, but no clear trend in height gain or reduction for either the 

HP-MSC (Figure 7-16-h) or IECC (Figure 7-16-l) group. Whilst cells No. 1, 4 and 6 show a decrease 

in peak height, cells No. 2 and 5 show an increase, and no significant change can be observed for 

cell No 3. However, a horizontal shift of the peaks toward higher cell potentials is observed, with 

the shift of the HP-MSC group being slightly larger, which may indicate a higher internal 

resistance. 

Thirdly, linking region f) to region c), a significant change in the starting OCV is observable with a 

mean shift of 85 mV for the HP-MSC group (Figure 7-16j), and a mean shift of 63 mV for the IECC 

group (Figure 7-16m) toward a lower potential, in conjunction with a lower spread in initial dQ/dV 

values for both test groups. Inspection of Figure 7-16f and j also reveal an additional peak at a 

potential of 3.45 V. Based on the information provided within [135,148], this new peak is most 

likely resulting from a phase change in the earlier lithiation process of the graphite electrode. 

This decrease of the OCV is directly related to the increase in energy capacity. An increase in the 

OCV of a cell, as reported by Stiaszny et al. [228], is caused by a reduction in cyclable lithium 

stemming from the NMC electrode as lithium is irreversibly used in SEI layer formation and 

growth. The reduced OCV observed in this study thus requires an increase in cyclable lithium. 

A possible source for these observations may be minor cracks in the NMC material, providing 

fresh reaction sites, which previously were not accessible due to diffusion or mass transfer 

limitations in the electrode particles or porous electrode matrix, respectively. Without reference 

electrode tests it is not possible to assign definitively the observed changes in the OCV to changes 

in either the graphite, or NMC electrode, but these results, combined with evidence from the 

literature [235]  provide further indication that cells experience electrochemical milling. Further 

work required to reaffirm this conclusion is presented in section 7.6. 
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FIGURE 7-16 - INCREMENTAL CAPACITY ANALYSIS - TOP LEFT: INITIAL CHARACTERISATION; TOP RIGHT: FINAL 

CHARACTERISATION; BOTTOM LEFT: HP-MSC CELL PROGRESSION; BOTTOM RIGHT: IECC CELL PROGRESSION 

Figure 7-17 (a – c) illustrates the change in ECM parameters, extracted from the PMC tests of the 

two test groups during the duty cycle degradation study. Table 7-6 tabulates the percentage 

change for each ECM parameter. Values for 𝑅0 show an increase from their initial values through 

to their final characterisation for both test groups. with the HP-MSC group having a slightly higher 

increase throughout the SOC range. Values for 𝑅1, partially associated with charge transfer and 

diffusion phenomena, decrease after cycling for SOCs of 50%, 80% and 95%, and show an increase 

for an SOC of 20%. The increase in 𝑅1 at 20% SOC is linked to the change in peak between 3.5 V 

and 3.56 V in Figure 7-16d. Values for 𝑅1−𝑃𝑀𝐶 and 𝜏1−𝑃𝑀𝐶 at 10 % SOC have been excluded from 

the results as the cell lower voltage limit of 2.7 V was reached during characterisation tests. 
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FIGURE 7-17 – PROGRESSION OF ECM PARAMETERS AS DERIVED FROM PMC TESTS FOR A – 𝑅0; B – 𝑅1; C – 𝜏1. 

Parameter Group 95% SOC 80% SOC 50% SOC 20% SOC 10% SOC 

𝑅0−𝑃𝑀𝐶 
HP-MSC 3.45% 3.11% 2.90% 3.65% 0.39% 

IECC 1.84% 1.51% 1.43% 2.12% -0.66% 

𝑅1−𝑃𝑀𝐶  
HP-MSC -30.59% -42.05% -42.23% 88.01% [-] 

IECC -25.84% -37.83% -40.04% 78.28% [-] 

𝜏1−𝑃𝑀𝐶 
HP-MSC -44.27% -58.15% -54.53% 176.17% [-] 

IECC -37.41% -54.70% -51.86% 140.18% [-] 

TABLE 7-6 – PERCENTAGE CHANGE FOR MEAN VALUES OF PMC-ECM PARAMETERS FROM INITIAL TO FINAL 

CHARACTERISATION. 
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Figure 7-18-a and Figure 7-18-b show the Nyqiuist plots derived from the EIS tests for Cell No. 1 

from the HP-MSC group at the initial characterisation and after 200 cycles, respectively, for a 

number of SOCs. Figure 7-18-c and Figure 7-18-d, show the same Nyquist plots for cell No. 4 from 

the IECC test group. For both cells, a shift of the intersection of the inductive trail toward higher 

values of 𝑍′ is observed. The position of the local minimum in the mid-frequency semicircles, 

however, does not show any obvious signs of movement from its original location. 

 

FIGURE 7-18 – NYQUITS PLOTS: A – NYQUIST PLOTS FOR CELL 1 AT BEGINNING OF TESTING; B – NYQUIST PLOT FOR 

CELL 1 AFTER 200 CYCLES; C – NYQUIST PLOTS FOR CELL 4 AT BEGINNING OF TESTING; D – NYQUIST PLOT FOR CELL 

4 AFTER 200 CYCLES 

The mean values of the pure Ohmic resistance (𝑅0−𝐸𝐼𝑆), as extracted from the Nyquist plots, for 

the HP-MSC and IECC groups, is presented in Figure 7-19-a, with the error bars representing one 

standard deviation from the mean. Table 7-7 lists the percentage change of the mean EIS-ECM 

parameters. Values of 𝑅0−𝐸𝐼𝑆, which is attributed to the resistance of the bulk electrode material 

and electrolyte, show an increase for both test groups throughout the SOC range. This 
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observation is in agreement with the increase for 𝑅0 from the PMC test. It indicates changes in 

the cell bulk material, likely associated with degradation mechanisms, such as potential particle 

cracking. The values of the charge-transfer resistance, (𝑅𝑐𝑡−𝐸𝐼𝑆 ), associated with the local 

minimum of the mid frequency semicircle in the Nyquist plots, show a decrease after the 

completion of the study, as shown in Figure 7-19-b. This downward shift is known [145] to be 

linked to improved transfer kinetics at the electrode electrolyte interfaces in the porous 

electrode. As discussed within [51,235,238], one reason for this may be an increase in active 

surface area for Li-ion intercalation which could have been caused by electrode cracking. This 

shift appears to be of a larger magnitude for the HP-MSC test sample.  

 

FIGURE 7-19 – A – MEAN OHMIC RESISTANCE OF TEST GROUPS DERIVED FROM NYQUIST PLOTS, B – MEAN CHARGE-
TRANSFER RESISTANCE OF TEST GROUPS DERIVED FROM NYQUIST PLOTS. 
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Parameter Group 95% SOC 80% SOC 50% SOC 20% SOC 10% SOC 

𝑅0−𝐸𝐼𝑆 
HP-MSC 10.25% 11.70% 12.35% 12.45% 13.13% 
IECC 11.25% 11.16% 12.56% 12.69% 13.63% 

𝑅𝑐𝑡−𝐸𝐼𝑆 
HP-MSC -12.41% -6.00% -4.21% -10.97% -12.47% 
IECC -12.28% -0.86% -1.51% -7.60% -8.01% 

TABLE 7-7 - PERCENTAGE CHANGE OF MEAN VALUES OF EIS-ECM PARAMETERS FROM INITIAL TO FINAL 

CHARACTERISATION 

The reduction in charge transfer resistance in combination with the increase in bulk resistance is 

a further indication that electrochemical milling may be occurring during the test. As previously 

suggested, the introduction of micro-cracks in the electrode material may allow fresh sites, some 

of which may have previously been diffusion limited, to be exposed to the electrolyte. This in turn 

would result in an increased surface area of reaction sites, transfer kinetics, and allow for a 

greater amount of lithium to be used for cycling reactions, thus providing a plausible explanation 

for the decrease in 𝑅𝑐𝑡−𝐸𝐼𝑆 , and increase in cell energy capacity. The increase in bulk resistance 

in this case is assumed to stem from a degradation of the electrolyte and slightly worsened 

electrical contact of the electrode material. As high-currents are a known pathway for electrode 

particle cracking, the higher reduction of 𝑅𝑐𝑡−𝐸𝐼𝑆 for the HP-MSC group as shown in Figure 7-19j 

is plausible, as their cycling profile more frequently utilises high currents. 

7.5 Further Discussion on the Results of the duty cycle degradation 

Study 

Both test groups show a minor increase in the pure Ohmic resistance, and small decrease in the 

charge transfer resistance, and an increase in the overall cyclable capacity. At the end of the study 

(200 cycles) the cells from the HP-MSC group appear slightly more degraded in terms of 

impedance rise and capacity retention in direct comparison with the cells from the IECC test 

group. However, these differences cannot completely be correlated to the aggressiveness of the 

HP-MSC cycle profile, as the overall energy throughput of the HP-MSC group’s cells is higher, and 

the spread of experimental results within both test groups overlap. These observed changes of 

cell characteristics are likely ascribed to micro-cracking in the electrode material, or 

electrochemical milling. However, to eliminate any doubt about this hypothesis, additional 

testing is required. Initially, a reference electrode test would enable the analysis of the graphite 

and NMC electrodes separately. Secondly, post-mortem testing, such as XRD and SEM can be 

used to confirm if micro-cracking or milling is present in electrode materials in their current state. 

Similar investigations have been reported within [239].  
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It is currently not known whether the observations made within this work are solely conditional 

on the use of high electrical currents, or if the cells are designed to operate in this fashion. If 

testing were to be continued, it would be expected that, once the cell side reactions overtake the 

milling effect, the micro-cracking in the cells would cause accelerated degradation over time 

compared to cells that would not expect this cracking. A possible way to test for this eventuality 

would be to cycle a further test group with the same mean current as the HP-MSC or IECC, but 

lower peak currents. From the test results it can then be observed, whether cells tested under 

these conditions also display an initial increase in energy capacity, and decrease in charge transfer 

resistance, and at which rate these changes occur. The author aims to continue the experimental 

work and report further results in future articles. 

Concerning temperature related behaviour, as previously identified, cells subject to elevated 

temperatures, and high temperature differences across the cell surface, are known to experience 

accelerated degradation mechanisms and ageing. Elevated temperatures enable increased 

parasitic side reactions between the electrolyte and the carbon electrode, leading to increased 

SEI growth and a reduction in energy capacity. The rate of this degradation is known to follow 

the Arrhenius law [99]. However, at the end of the duty cycle degradation study within this work, 

neither the HP-MSC, nor the IECC group show significant signs of temperature related ageing. 

Even for the HP-MSC group, which is exposed to significantly higher temperatures during cycling 

than the IECC group, no temperature related ageing has yet been observed. Although average 

cell temperature in the HP-MSC cells regularly exceeds 40 ⁰C during cycling, the total duration of 

these instances is relatively small due to active cooling of the cells during cycling and rest periods, 

possibly explaining the absence of temperature related degradation indicators. Although no 

observations of this nature could be made, it is possible that, with continued testing, the cells 

within the HP-MSC group would show signs of temperature related degradation before the cells 

in the IECC group. 

The atypical degradation behaviour observed within this study has several implications for the 

design and operation of battery management systems concerning SOC and SOH estimation. 

Traditionally, SOC is determined via coulomb counting and OCV, whilst SOH is estimated through 

the observation of a reduction in cell energy capacity and increase internal resistance [214]. As 

such, the observed widening of the OCV window and capacity increase demand more complex 

methods of SOC estimation. Furthermore, the non-linearity in degradation observed in this case 

may mean that BMS identifies little to no change in energy capacity and cell impedance for a 

prolonged period, identifying a high SOH, followed by rapid decrease in usability of the cell, 

resulting in driver dissatisfaction. 
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7.6 Limitations of the experimental study 

The duty cycle degradation study presented within this work is limited to 200 cycles (circa 180 

days) and cells show only little degradation in their electrical characteristics. The expected 

degradation sequence has not been observed yet and further testing is required to confirm 

whether the cells within this study follow a typical degradation profile. As such, the author 

recommends continued testing of the cells until their end of useful life (80% retained capacity, 

100% impedance increase) can be verified. To confirm the occurrence of micro-cracks in the 

electrode material, further testing of the cells in their current state is also recommended. Firstly, 

reference electrode tests can be performed to identify whether the change in cell characteristics 

are underpinned by changes in the anode or cathode, secondly XRD and SEM tests to check for 

visible structural changes within the electrode. 

The observations and assessments made regarding the cycling study within this work are only 

valid for the type of cell used, and for the thermal constraints of the tests. The experimental rig 

set-up was primarily designed to maintain the safe operating temperature of the cells, and to 

maximise their operating window. As such, its intended use is constrained to experiments within 

a laboratory environment and in its current form it is not proposed as a vehicle solution for cell 

thermal management. For these research findings to be applicable to vehicles, a battery thermal 

management system would be required to extract the same amount of heat from the cells as the 

experimental rig within this study. 

It is noteworthy that the cells are designed for long cycle life and high-power applications as they 

have a lower energy density and internal resistance than standard automotive cells. Furthermore, 

the manufacturer of the cells used within this study is a supplier to FIA Formula-E. The effect of 

HP cycling on batteries with different chemistries and form factors cannot be known without 

further testing, although testing on standard automotive cells (i.e. higher energy density and 

internal impedance) would be more likely to show degradation at earlier stages and would reveal 

the impact of HP scenarios when compared to standard road vehicles. The author also 

recommends that the testing procedure within this work is repeated without active cooling 

efforts to identify the effect of thermal management on the results of the duty cycle degradation 

study. 

The tests within this work only consider the effects of electrical loading and ignore other 

degradation modes caused through mechanical and thermal loading. It is known that vehicle 

vibrations contribute to the degradation of cells [49,156] and as such a combined testing study 
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with vibration and cycling demands further exploration. Lastly, the effect of AC current ripples, 

as discussed within [149] in the system during cell operation, as may occur during operation in 

an EV, is not considered due to the fidelity of the testing equipment. 

7.7 Conclusion 

This chapter successfully addresses “Research Task 4: Analyse the experimental results and 

determine any use-case specific behaviour between HP-BEV applications and standard testing 

procedures.” The completion of this task fulfils the remaining requirements to address the 

knowledge gap relating to a lack of LIB performance and degradation testing within HP-BEV 

applications, as illustrated within Table 3-1. The findings of this chapter exemplify the outcomes 

of the proposed framework, illustrated within Figure 3-6, when applied to the Use case of HP-

BEV applications. They provide an insight into the evolution of cell characteristics within this use 

case, and highlight the limitations in the understanding of cell degradation in this area. 

Furthermore, they deliver important information pertaining to the thermal management 

requirements of cells within the HP-BEV segment. These findings will enable additional activities 

regarding the operation and degradation of cells used within HP-BEVs.  

The results obtained from the performance study illustrate the necessity for the additional testing 

framework to conduct representative performance testing for HP-BEVs. By direct comparison of 

the HP-MSC with the Bahrain duty cycle and the IECC, it has become evident that the new 

proposed HP-MSC is more representative of HP driving scenarios than existing procedures. The 

disparity between the heat generation within cells during the IECC and the HP-MSC further 

highlights that the use of a representative duty cycle is vital when benchmarking cells for design 

activities pertaining to battery thermal management. The considerable differences in thermal 

behaviour of the two test cases also underpins the requirement that cycle-life studies employ the 

HP-MSC over the IECC to characterise cells for their usable cycle-life in automotive HP scenarios. 

The requirement for the proposed framework to conduct representative degradation testing is 

less conclusive, based on the experimental results from the duty cycle degradation study. Over 

200 duty cycles, counterintuitively, the cells in both test groups have shown an increase in 

cyclable energy capacity, a reduction in charge-transfer resistance, and an increase in pure Ohmic 

resistance. Although the cells within the HP-MSC test sample have shown larger changes in cell 

characteristics than those in the IECC group, the results have to be treated as inconclusive, due 

to the higher overall energy throughput of the HP-MSC group, and overlapping values spread of 

experimental results. The cells used within this study can deliver a total of 200 track driving 
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sessions without showing signs of capacity decrease or significant overall impedance rise, 

provided active cell cooling is present. 

The atypical progression of cell characteristics observed in this work, suggest that the changes in 

cell characteristics could be caused by cracking of the electrode material, although no definitive 

conclusion can be drawn without further reference electrode testing and destructive SEM and 

XRD tests. From a review of the academic literature [47,50,116], the high electrical currents 

employed within the tests have been identified as a likely source. This in turn indicates future 

accelerated degradation such as a reduction in energy capacity and impedance rise due to 

extensive cracking and the associated worsened electrical contact with continued use compared 

to cells, which do not show signs of cracking. The higher frequency of occurrence of high electrical 

current pulses in the HP-MSC group compared to the IECC group furthermore suggests that with 

continued cycling, cells within the HP-MSC test group will degrade at a faster rate as electrical 

testing continues. 

Temperature dependent degradation effects have not yet been observed within either test 

group. The higher cell temperatures and surface temperature differences observed in the HP-

MSC test group suggest that, with continued use, accelerated capacity loss and impedance rise 

due to faster SEI growth may also be observed compared to the IECC cells.  
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8 Conclusions and future direction 

The motivation underpinning this thesis as described in Chapter 1 is to investigate the 

instantaneous performance and long-term degradation of LIBs within the context of HP-BEV and 

racing applications from an engineering perspective. Following a critical review of the existing 

literature relating to LIB characterisation, performance and degradation testing within Chapter 

2, it was concluded that the existing testing methods for performance and degradation testing 

currently do not fully address the requirements of HP-BEV applications, and that the results 

obtained from existing research are not transferrable to this use case. Therefore, a lack of 

experimental investigations into the performance and degradation of LIBs within HP-BEV 

applications was identified as a first knowledge gap. 

Furthermore, it was found that the absence of experimental studies within this field could be 

partially attributed to a lack of representative testing profiles suitable for experimental 

investigations. As such, a prerequisite for testing is to develop a new testing profile. To address 

this, Chapter 3 critically reviewed methodologies to construct representative test cases. It was 

found that there is no systematic approach to generate a duty cycle for the use of LIB 

performance and degradation testing from vehicle battery recordings. Based on these 

shortcomings, it was concluded that the existing framework for performance and degradation 

testing is insufficient for HP-BEV applications. 

8.1 Contributions to knowledge 

The key contribution of this work is the definition and implementation of a framework for LIB 

performance and degradation testing for applications, where existing testing standards are 

unrepresentative of the typical usage profile. This framework is illustrated within Figure 8-1. 

 

FIGURE 8-1 – PROPOSED FRAMEWORK FOR PERFORMANCE AND DEGRADATION TESTING 
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The development and implementation of this framework on the use case of HP-BEV applications 

has addressed the research gaps identified within Chapters 2 and 3, as illustrated within Table 

8-1. This was achieved through a series of four research tasks.  

Procedure 
On-Road 

driving 

HP-BEV without 

framework 

HP-BEV with 

framework 

Characterisation Testing    

Performance Testing    

Degradation Testing    

LIB test cycle construction    

TABLE 8-1 – KNOWLEDGE GAPS IN THE EXISTING FRAMEWORK FOR LIB PERFORMANCE AND DEGRADATION TESTING; 
 - ADDRESSED,  - NOT ADDRESSED,  - INCONCLUSIVE 

The first process was defined in “Research Task 1: Collate a database of battery duty cycles 

representative of HP-BEV racing applications.” This task is representative of the data collection 

step of the new framework illustrated within Figure 8-1. Data collection within this thesis consists 

of extensive modelling and simulation work to produce a duty cycle database of previously 

unexplored HP-BEV driving on racing circuit, the specifics of which are covered in Chapter 4. It 

requires the modelling and parameterisation of a conceptual HP-BEV in accordance with the 

sponsoring companies’ ambitions, the modelling of racing circuits, and the parameterisation of 

an AI racing driver. Although the resulting database is based off simulation, this approach offers 

the most accurate approximation to collecting real-world data with the information available to 

the author and lays the foundation for the development of a generic duty cycle.  

The second stage of the process was defined in “Research Task 2: Define a methodology, from 

which a duty cycle that is suitable for LIB performance and degradation testing may be derived.” 

This encapsulates the cycle construction methodology and cycle construction steps of the new 

framework. Chapter 5 presented the successful adaption of two signal design approaches to 

develop methodologies that allow for the derivation of testing profiles, which accurately capture 

signal traits that influence battery performance and degradation, thus addressing the research 

gap pertaining to LIB test cycle construction as indicated through the -symbol in column 4 

within Table 8-1. Both methodologies presented within Chapter 5 are suitable for the design of 

duty cycles for battery performance evaluation within HP-BEV applications. Subsequently these 

methods yield two suitable duty cycles, one of which (HP-MSC) was selected for further testing. 

The new HP duty cycles provide a more representative test profile compared to traditional 

battery test standards. The resulting methodology including database generation and cycle 

design were published in the Journal of Energy Storage [1]. 
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For HP-BEVs, the ability to more accurately predict the performance requirements for the battery 

system within this emerging and strategically important BEV sector will further support a range 

of engineering functions, such as the ability to optimise the energy capacity and power capability 

of a battery pack and to select and design the most appropriate thermal management strategy. 

This, in turn, may reduce system costs whilst concurrently increasing energy and power density 

of the resulting pack. Since it’s conception, the new HP duty cycle has facilitated further research 

regarding the evaluation of cell cooling strategies [3,7], and for the validation of a 1D 

electrochemical-thermal model of the Xalt 53Ah pouch cell [125]. On a wider impact, the devised 

methodologies are not limited to automotive use cases but are transferrable to all applications, 

where LIB performance and degradation are a concern. Therefore, the first two research tasks 

address the knowledge gap of a systematic approach to create duty cycles specifically for LIB 

performance and degradation testing. 

Based on the derivation of the HP-MSC, Chapter 6 addressed “Research Task 3: Devise an 

experiment to conduct LIB performance and degradation testing to investigate differences 

between HP-BEV applications and standard testing procedures.” This relates to the test definition 

step within Figure 8-1. It describes the experimental procedures for characterisation, 

performance and degradation testing. The selection and parameterisation of the characterisation 

tests that provide a detailed description of cell behaviour follows the best practices as discussed 

within the literature review in Chapter 2. The performance and degradation tests are designed 

to benchmark the HP-BEV use case against standard testing procedures. 

The results of the experimental work and their analysis are presented within Chapter 7 and fulfil 

“Research Task 4: Analyse the experimental results and determine any use-case specific 

behaviour between HP-BEV applications and standard testing procedures.” The completion of 

research tasks 3 and 4 narrow the knowledge gap pertaining to LIB performance and degradation 

testing within HP-BEV applications. The results provide a direct comparison for battery cell 

thermal performance, and degradation behaviour between the HP and a standard test case. The 

results highlight the necessity for the proposed framework for performance testing, as indicated 

through the -symbol in column 4 within Table 8-1. From the experimental results obtained 

within this work, it is inconclusive whether this framework needs to be extended to degradation 

testing for this particular use case, as indicated through the -symbol in column 4 within Table 

8-1. Considering the existing body of literature, however, the implementation of the framework 

for degradation testing would be expected to be beneficial. This assertion needs to be tested in 

further studies and could be achieved through continued testing until EOL is reached for both 

test groups. With regard to the degradation study, this work offers a hypothesis, based on 
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existing research, for the atypical degradation process observed. The testing methodology, 

results, and explanation for the likely degradation process from this experimental work have 

been published in the Journal of Energy Storage [2]. 

These findings impact the wider scientific community in a number of ways. The increase in cell 

temperature surface gradients for HP applications compared to standard testing procedures, and 

potential impact on degradation, require more capable thermal management strategies. 

Secondly, the atypical OCV, capacity and degradation progression pose additional challenges for 

the SOH and SOC estimation algorithms in a BMS. The changes observed within this study are not 

detectible without EIS and dQ/dV measurements, which are both time consuming and the 

implementation of which is not always feasible for commercialised vehicles due to the time-

scales and equipment involved. 

8.2 Future direction and further work 

Both, the development and implementation of the proposed framework provide opportunities 

for additional research and further work. 

Pertaining to the data collection phase, within this thesis the database of HP-BEV duty cycles is 

obtained through simulation and modelling. As such, the representation of the simulated duty 

cycles compared to real world driving scenarios is limited by the fidelity of the models that 

comprise the HP-BEV, AI driver, and racing circuits. The inclusion of additional validated 

component models or real-world battery data would improve the fidelity of the database. Within 

this study only one type of vehicle and driver were considered. An expansion of the database 

through additional driver and vehicle models, would allow the database to be split into several 

classes. From this database, a larger number of duty cycles can be constructed to represent a 

wider variety of HP use cases. 

It was shown that the duty cycle construction methodologies that constitute part of the 

framework could be used to produce representative profiles for HP-BEV applications. Although 

in principle, these methodologies are transferrable to other use cases, their usefulness for these 

applications should be validated. 

The battery cell characterisation and degradation testing has shown that the proposed 

framework is required within the context of performance testing. For degradation testing, the 

usefulness of the framework, based on experimental data acquired within this thesis, is 
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inconclusive. The continuation of the degradation study until the EOL of the batteries in both test 

groups would resolve this unknown. 

Regarding the presented hypothesis explaining the atypical aging behaviour, a post mortem study 

should be conducted to validate the explanation of electrode cracking, or to provide an 

alternative rationale for the observed changes. A repetition of the study without active cooling 

would provide additional information regarding the thermal performance of the cell, and 

quantification of a safe HP-operation capacity. As this study only investigates one specific cell, 

this work should be extended to additional LIB chemistries and formats to investigate the 

transferability of the results on those factors. 

The proposed framework has only been implemented for HP-BEVs. The usefulness of this 

framework to other automotive use cases or industrial applications should be investigated. 
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