
The Complexity of Verifying Loop-Free Programs
as Differentially Private
Marco Gaboardi
Boston University, MA, USA

Kobbi Nissim
Georgetown University, Washington, DC, USA

David Purser
University of Warwick, Coventry, UK
Max Planck Institute for Software Systems, Saarbrücken, Germany

Abstract
We study the problem of verifying differential privacy for loop-free programs with probabilistic choice.
Programs in this class can be seen as randomized Boolean circuits, which we will use as a formal
model to answer two different questions: first, deciding whether a program satisfies a prescribed
level of privacy; second, approximating the privacy parameters a program realizes. We show that
the problem of deciding whether a program satisfies ε-differential privacy is coNP#P-complete. In
fact, this is the case when either the input domain or the output range of the program is large.
Further, we show that deciding whether a program is (ε, δ)-differentially private is coNP#P-hard,
and in coNP#P for small output domains, but always in coNP#P#P

. Finally, we show that
the problem of approximating the level of differential privacy is both NP-hard and coNP-hard.
These results complement previous results by Murtagh and Vadhan [35] showing that deciding the
optimal composition of differentially private components is #P-complete, and that approximating
the optimal composition of differentially private components is in P.

2012 ACM Subject Classification Security and privacy; Theory of computation → Probabilistic
computation

Keywords and phrases differential privacy, program verification, probabilistic programs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.129

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of the paper is available at https://arxiv.org/abs/1911.03272.

Funding M. G. and K. N. were supported by NSF grant No. 1565387 TWC: Large: Collaborative:
Computing Over Distributed Sensitive Data. D. P. was supported by the UK EPSRC Centre for
Doctoral Training in Urban Science (EP/L016400/1).

Acknowledgements Research partially done while M.G. and K.N. participated in the “Data Privacy:
Foundations and Applications” program held at the Simons Institute, UC Berkeley in spring 2019.

1 Introduction

Differential privacy [22] is currently making significant strides towards being used in large
scale applications. Prominent real-world examples include the use of differentially private
computations by the US Census’ OnTheMap project1, applications by companies such as
Google and Apple [24, 36, 4, 18], and the US Census’ plan to deploy differentially private
releases in the upcoming 2020 Decennial [1].

1 https://onthemap.ces.census.gov

EA
T

C
S

© Marco Gaboardi, Kobbi Nissim, and David Purser;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 129; pp. 129:1–129:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/323058092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6632-8645
https://orcid.org/0000-0003-0394-1634
https://doi.org/10.4230/LIPIcs.ICALP.2020.129
https://arxiv.org/abs/1911.03272
https://onthemap.ces.census.gov
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

129:2 The Complexity of Verifying Loop-Free Programs as Differentially Private

More often than not, algorithms and their implementations are analyzed “on paper”
to show that they provide differential privacy. This analysis – a proof that the outcome
distribution of the algorithm is stable under the change in any single individual’s information
– is often intricate and may contain errors (see [32] for an illuminating discussion about several
wrong versions of the sparse vector algorithm which appeared in the literature). Moreover,
even if it is actually differentially private, an algorithm may be incorrectly implemented when
used in practice, e.g., due to coding errors, or because the analysis makes assumptions which
do not hold in finite computers, such as the ability to sample from continuous distributions
(see [34] for a discussion about privacy attacks on naive implementations of continuous
distributions). Verification tools may help validate, given the code of an implementation, that
it would indeed provide the privacy guarantees it is intended to provide. However, despite
the many verification efforts that have targeted differential privacy based on automated or
interactive techniques (see, e.g.,[37, 9, 40, 25, 7, 44, 6, 2, 14, 15]), little is known about the
complexity of some of the basic problems in this area. Our aim is to clarify the complexity
of some of these problems.

In this paper, we consider the computational complexity of determining whether pro-
grams satisfy (ε, δ)-differential privacy. The problem is generally undecidable, and we hence
restrict our attention to probabilistic loop-free programs, which are part of any reasonable
programming language supporting random computations. To approach this question form-
ally, we consider probabilistic circuits. The latter are Boolean circuits with input nodes
corresponding both to input bits and to uniformly random bits (“coin flips”) where the latter
allow the circuit to behave probabilistically (see Figure 1). We consider both decision and
approximation versions of the problem, where in the case of decision the input consists of
a randomized circuit and parameters ε, δ and in the case of approximation the input is a
randomized circuit, the desired approximation precision, and one of the two parameters ε, δ.
In both cases, complexity is measured as function of the total input length in bits (circuit
and parameters).

Previous works have studied the complexity of composing differentially private components.
For any k differentially private algorithms with privacy parameters (ε1, δ1), . . . , (εk, δk), it is
known that their composition is also differentially private [22, 23, 35], making composition
a powerful design tool for differentially private programs. However, not all interesting
differentially private programs are obtained by composing differentially private components,
and a goal of our work is to understand what is the complexity of verifying that full programs
are differentially private, and how this complexity differs from the one for programs which
result of composing differentially private components.

Regarding the resulting parameters, the result of composing the k differentially private
algorithms above results in (εg, δg)-differentially private for a multitude of possible (εg, δg)
pairs. Murtagh and Vadhan showed that determining the minimal εg given δg is #P-
complete [35]. They also gave a polynomial time approximation algorithm that computes εg
to arbitrary accuracy, giving hope that for “simple” programs deciding differential privacy or
approximating of privacy parameters may be tractable. Unfortunately, our results show that
this is not the case.

1.1 Contributions

Following the literature, we refer to the variant of differential privacy where δ = 0 as pure
differential privacy and to the variant where δ > 0 as approximate differential privacy. We
contribute in three directions.

M. Gaboardi, K. Nissim, and D. Purser 129:3

Bounding pure differential privacy. We show that determining whether a randomized
circuit is ε-differentially private is coNP#P-complete.2 To show hardness in coNP#P we
consider a complement to the problem E-Maj-Sat [31], which is complete for NP#P [13].
In the complementary problem, All-Min-Sat, given a formula φ over n+m variables
the task is to determine if for all allocations x ∈ {0, 1}n, φ(x,y) evaluates to true on no
more than 1

2 of allocations to y ∈ {0, 1}m.
Bounding approximate differential privacy. Turning to the case where δ > 0, we
show that determining whether a randomized circuit is (ε, δ)-differentially private is
coNP#P-complete when the number of output bits is small relative to the total size of
the circuit and otherwise between coNP#P and coNP#P#P

.
Approximating the parameters ε and δ. Efficient approximation algorithms exist
for optimal composition [35], and one might expect the existence of polynomial time
algorithms to approximate ε or δ in randomized circuits. We show this is NP-hard and
coNP-hard, and therefore an efficient algorithm does not exist (unless P = NP).
Our results show that for loop-free programs with probabilistic choice directly verifying

whether a program is differentially private is intractable. These results apply to programs in
any reasonable programming language supporting randomized computations. Hence, they
set the limits on where to search for automated techniques for these tasks.

The relation to quantitative information flow

Differential privacy shares similarities with quantitative information flow [17, 27], which is an
entropy-based theory measuring how secure a program is. Alvim et al. [3] showed that a bound
on pure differential privacy implies a bound on quantitative information flow. So, one could
hope that bounding differential privacy could be easier than bounding quantitative information
flow. Yasuoka and Terauchi [42] have shown that bounding quantitative information flow
for loop free boolean programs with probabilistic choice is PP-hard (but in PSPACE).
In contrast, our results show that bounding pure differential privacy is coNP#P-complete.
Chadha et al. [11] showed the problem to be PSPACE-complete for boolean programs with
loops and probabilistic choice (notice that this would be not true for programs with integers).
We leave the analogous question for future works.

2 Preliminaries

Numbers

By a number given as a rational we mean a number of the form x
y where x, y are given as

binary integers.

2.1 Loop-free probabilistic programs
We consider a simple loop-free imperative programming language built over Booleans, and
including probabilistic choice.

x ::= [a−z]+ (variable identifiers)
b ::= true | false | random | x | b ∧ b | b ∨ b | ¬b (boolean expressions)
c ::= SKIP | x := b | c; c | if b then c else c (commands)
t ::= x | t, x (list of variables)
p ::= input(t); c; return(t) (programs)

2 The class coNP#P is contained in PSPACE and contains the polynomial hierarchy (as, per Toda’s
Theorem, PH ⊆ P#P).

ICALP 2020

129:4 The Complexity of Verifying Loop-Free Programs as Differentially Private

In
pu

t

C
oi

n
Fl

ip
s

O
ut

pu
t

Boolean Circuit
Randomized Circuit

Figure 1 Example randomized circuit.

Probabilistic programs [30] extend standard programs with the addition of coin tosses; this
is achieved by the probabilistic operation random, which returns either true or false with
equal probability. A standard operation, sometimes denoted by c⊕ c, which computes one
of the two expressions with probability 1

2 each is achieved with if random then c else c.
The notation c⊕ c is avoided as ⊕ refers to exclusive or in this paper.

The semantics of the programming language are standard and straight forward. Without
loss of generality, each variable assignment is final, that is, each assignment must go to a fresh
variable. Looping behaviour is not permitted, although bounded looping can be encoded by
unrolling the loop.

I Remark 1. Our results also hold when the language additionally supports integers and the
associated operations (e.g. +,×,−,≥,= etc.), providing the integers are of a bounded size.
Such a language is equally expressive as the language presented here. Further details are
given in the full version of the paper.

2.2 Probabilistic circuits

I Definition 2. A Boolean circuit ψ with n inputs and ` outputs is a directed acyclic graph
ψ = (V,E) containing n input vertices with zero in-degree, labeled X1, . . . , Xn and ` output
vertices with zero out-degree, labeled O1, . . . , O`. Other nodes are assigned a label in {∧,∨,¬},
with vertices labeled ¬ having in-degree one and all others having in-degree two. The size of
ψ, denoted |ψ|, is defined to be |V |. A randomized circuit has m additional random input
vertices labeled R1, . . . , Rm.

Given an input string x = (x1, . . . , xn) ∈ {0, 1}n, the circuit is evaluated as follows.
First, the values x1, . . . , xn are assigned to the nodes labeled X1, . . . , Xn. Then, m bits
r = (r1, . . . , rm) are sampled uniformly at random from {0, 1}m and assigned to the nodes
labeled R1, . . . , Rm. Then, the circuit is evaluated in topological order in the natural way.
E.g., let v be a node labeled ∧ with incoming edges (u1, v), (u2, v) where u1, u2 were assigned
values z1, z2 then v is assigned the value z1 ∧ z2. The outcome of ψ is (o1, . . . , o`), the
concatenation of values assigned to the ` output vertices O1, . . . , O`.

M. Gaboardi, K. Nissim, and D. Purser 129:5

For input x ∈ {0, 1}n and event E ⊆ {0, 1}` we have

Pr[ψ(x) ∈ E] = |{r ∈ {0, 1}
m : ψ(x, r) ∈ E}|

2m .

I Remark 3. The operators, ∧,∨ and ¬ are functionally complete. However, we will also use
⊕ (exclusive or), such that p⊕ q ⇐⇒ (p ∨ q) ∧ ¬(p ∧ q).

2.3 Equivalence of programs and circuits

I Lemma 4. A loop-free probabilistic program can be converted into an equivalent probabilistic
boolean circuit in linear time in the size of the program (and vice-versa).

Proof sketch. It is clear that a probabilistic circuit can be expressed as a probabilistic
program using just boolean operations by expressing a variable for each vertex after sorting
the vertices in topological order.

To convert a probabilistic Boolean program into a probabilistic circuit, each of the
commands can be handled using a fixed size sub-circuit, each of which can be composed
together appropriately. J

Given the equivalence between loop-free probabilistic programs and probabilistic circuits,
the remainder of the paper will use probabilistic circuits.

2.4 Differential privacy in probabilistic circuits

Let X be any input domain. An input to a differentially private analysis would generally be
an array of elements from a data domain X, each corresponding to the information of an
individual, i.e., x = (x1, . . . , xn) ∈ Xn.

The definition of differential privacy depends on adjacency between inputs, we define
neighboring inputs.

I Definition 5. Inputs x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) ∈ Xn are called neighboring

if there exist i ∈ [n] s.t. if j 6= i then xj = x′
j.

In this work, we will consider input domains with finite representation. Without loss
of generality we set X = {0, 1}k and hence an array x = (x1, . . . , xn) can be written as a
sequence of nk bits, and given as input to a (randomized) circuit with nk inputs. Our lower
bounds work already for for k = 1 and our upper bounds are presented using k = 1 but
generalise to all k.

I Definition 6 (Differential Privacy [22, 21]). A probabilistic circuit ψ is (ε, δ)-differentially
private if for all neighboring x,x′ ∈ Xn and for all E ⊆ {0, 1}`,

Pr[ψ(x) ∈ E] ≤ eε · Pr[ψ(x′) ∈ E] + δ.

Following common use, we refer to the case where δ = 0 as pure differential privacy and
to the case where δ > 0 as approximate differential privacy. When omitted, δ is understood
to be zero.

ICALP 2020

129:6 The Complexity of Verifying Loop-Free Programs as Differentially Private

2.5 Problems of deciding and approximating differential privacy
We formally define our three problems of interest.

I Definition 7. The problem Decide-ε-DP asks, given ε and ψ, if ψ is ε-differentially
private. We assume ε is given by the input eε as a rational number.

I Definition 8. The problem Decide-ε, δ-DP asks, given ε, δ and ψ, if ψ is (ε, δ)-
differentially private. We assume ε is given by the input eε as a rational number.

I Definition 9. Given an approximation error γ > 0, the Approximate-δ problem and the
Approximate-ε problem, respectively, ask:

Given ε, find δ̂ ∈ [0, 1], such that 0 ≤ δ̂ − δ ≤ γ, where δ is the minimal value such that
ψ is (ε, δ)-differentially private.
Given δ, find ε̂ ≥ 0, such that 0 ≤ ε̂− ε ≤ γ, where ε is the minimal value such that ψ is
(ε, δ)-differentially private.

2.6 The class coNP#P

The complexity class #P is the counting analogue of NP problems. In particular #Sat, the
problem of counting the number of satisfying assignments of a given a boolean formula φ
on n variables, is complete for #P. Similarly #CircuitSat, the problem of counting the
satisfying assignments of a circuit with a single output, is complete for #P.

A language L is in coNP#P if membership in L can be refuted using a polynomial
time non-deterministic Turing machine with access to a #P oracle. It is easy to see that
coNP#P = coNPPP, and PH ⊆ coNP#P ⊆ PSPACE, where PH ⊆ coNP#P follows
by Toda’s theorem (PH ⊆ P#P) [39].

The following decision problem is complete for NP#P [13]:

I Definition 10. E-Maj-Sat asks, given φ a quantifier free formula over n+m variables if
there exist an allocation x ∈ {0, 1}n such that there are strictly greater than 1

2 of allocations
to y ∈ {0, 1}m where φ(x,y) evaluates to true.

The complementary problem All-Min-Sat, is complete for coNP#P: a formula φ is
All-Min-Sat, if φ is not E-Maj-Sat. That is, φ a quantifier free formula over n + m

variables is All-Min-Sat if for all allocations x ∈ {0, 1}n there are no more than 1
2 of

allocations to y ∈ {0, 1}m where φ(x,y) evaluates to true.

3 The complexity of deciding pure differential privacy

In this section we classify the complexity of deciding ε-differential privacy, for which we show
the following theorem:

I Theorem 11. Decide-ε-DP is coNP#P-complete.

It will be convenient to consider the well-known simpler reformulation of the definition of
pure differential privacy in finite ranges to consider specific outcomes o ∈ {0, 1}` rather than
events E ⊆ {0, 1}`.

I Reformulation 12 (Pure differential privacy). A probabilistic circuit ψ is ε-differentially
private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,

Pr[ψ(x) = o] ≤ eε · Pr[ψ(x′) = o].

M. Gaboardi, K. Nissim, and D. Purser 129:7

3.1 Decide-ε-DP is in coNP#P

We show a non-deterministic Turing machine which can “refute” ψ being ε-differentially
private in (non-deterministic) polynomial time with a #P oracle. A circuit ψ is shown
not to be ε-differentially private by exhibiting a combination x,x′,o such that Pr[ψ(x) =
o] > eε · Pr[ψ(x′) = o]. The witness to the non-deterministic Turing machine would be a
sequence of 2n bits parsed as neighboring inputs x,x′ ∈ {0, 1}n and ` bits describing an
output o ∈ {0, 1}`. The constraint can then be checked in polynomial time, using the #P
oracle to compute Pr[ψ(x) = o] and Pr[ψ(x′) = o].

To compute Pr[ψ(x) = o] in #P we create an instance to #CircuitSat, which will
count the number of allocations to the m probabilistic bits consistent with this output. We
do this by extending ψ with additional gates reducing to a single output which is true only
when the input is fixed to x and the output of ψ was o.

3.2 coNP#P-hardness of Decide-ε-DP
To show coNP#P-hardness of Decide-ε-DP we show a reduction from All-Min-Sat in
Lemma 14; together with the inclusion result above, this entails that Decide-ε-DP is
coNP#P-complete (Theorem 11).

Randomized response [41] is a technique for answering sensitive Yes/No questions by
flipping the answer with probability p ≤ 0.5. Setting p = 1

1+eε gives ε-differential privacy.
Thus p = 0 gives no privacy and p = 0.5 gives total privacy (albeit no utility).

I Definition 13 (Randomized Response).

RRε(x) =
{
x w.p. eε

1+eε

¬x w.p. 1
1+eε

I Lemma 14. All-Min-Sat reduces in polynomial time to Decide-ε-DP.

Proof. We will reduce from All-Min-Sat to Decide-ε-DP using randomized response. We
will take a boolean formula φ and create a probabilistic circuit that is ε-differentially private
if and only if φ is All-Min-Sat.

Consider the circuit ψ which takes as input the value z ∈ {0, 1}. It probabilistically
chooses a value of x ∈ {0, 1}n and y ∈ {0, 1}m and one further random bit p1 and computes
b = z ⊕ ¬(p1 ∨ φ(x,y)). The circuit outputs (x, b).

B Claim 15. ψ is ln(3)-differentially private if and only if φ is All-Min-Sat.

Suppose φ ∈ All-Min-Sat then, no matter the choice of x,

0 ≤ Pr
y

[φ(x,y) = 1] ≤ 1
2 ,

and hence

1
4 ≤ Pr

y,p1
[¬(p1 ∨ φ(x,y)) = 1] ≤ 1

2 .

We conclude the true answer z is flipped between 1
4 and 1

2 of the time, observe this is
exactly the region in which randomized response gives us the most privacy. In the worst case
p = 1

4 = 1
1+eε , gives eε = 3, so ln(3)-differential privacy.

ICALP 2020

129:8 The Complexity of Verifying Loop-Free Programs as Differentially Private

In the converse, suppose φ ∈ E-Maj-Sat, then for some x
1
2 < Pr

y
[φ(x,y) = 1] ≤ 1,

and then

Pr
y,p1

[¬(p1 ∨ φ(x,y)) = 1] < 1
4 ,

in which case the randomized response does not provide ln(3)-differential privacy. J

I Remark 16. We skew the result so that in the positive case (when φ ∈ All-Min-Sat)
the proportion of accepting allocations is between 1

4 and 1
2 , resulting in the choice of ln(3)-

differentially privacy. Alternative skews, using more bits akin to p1, shows hardness for other
choices of ε.

Hardness by circuit shape
In our proof of the upper-bound we use coNP to resolve the non-deterministic choice of
both input and output. We show this is necessary in the sense coNP is still required for
either large input or large output. The hardness proof used in Lemma 14 shows that when
|ψ| = n the problem is hard for Ω(1)-bit input and Ω(n)-bit output.

We can also prove this is hard for Ω(n)-bit input and Ω(1)-bit output. Intuitively a
counter example to differential privacy has two choices: a pair of adjacent input and a
given output upon which the relevant inequality will hold. So to “refute” All-Min-Sat
the counterexample of the All choice (i.e. x) can be selected in the input, rather than the
output as in our case. Since the input is now non-trivial we must take care of what happens
when the adjacent bit is in the choice of x. Details are given in the full version.

Further the problem is in P#P for O(log(n))-bit input and O(log(n))-bit output, as in
this case, the choices made by coNP can instead be checked deterministically in polynomial
time. In this case we show PP-hardness, which applies even when there is 1-bit input and
1-bit output.

4 On the complexity of deciding approximate differential privacy

It is less clear whether deciding (ε, δ)-differential privacy can be done in coNP#P. First we
consider restrictions to the shape of the circuit so that coNP#P can be recovered, and then
show that in general the problem is in coNP#P#P

.
Recall that in the case of ε-differential privacy it was enough to consider singleton events

{o} where o ∈ {0, 1}`, however in the definition of (ε, δ)-differential privacy we must quantify
over output events E ⊆ {0, 1}`. If we consider circuits with one output bit (` = 1), then
the event space essentially reduces to E ∈ {∅, {0}, {1}, {0, 1}} and we can apply the same
technique.

We expand this to the case when the number of outputs bits is logarithmic ` ≤ log(|ψ|).
To cater to this, rather than guessing a violating E ∈ {0, 1}`, we consider a violating subset
of events E ⊆ {0, 1}`. Given such an event E we create a circuit ψE on ` inputs and a
single output which indicates whether the input is in the event E. The size of this circuit is
exponential in `, thus polynomial in |ψ|. Composing ψE ◦ ψ, we check the conditions hold
for this event E, with just one bit of output.

B Claim 17. Decide-ε, δ-DP, restricted to circuits ψ with ` bit outputs where ` ≤ log(|ψ|),
is in coNP#P (and hence coNP#P-complete).

The claim trivially extends to ` ≤ c · log(|ψ|) for any fixed c > 0.

M. Gaboardi, K. Nissim, and D. Purser 129:9

4.1 Decide-ε, δ-DP is in coNP#P#P

We now show that Decide-ε, δ-DP in the most general case can be solved in coNP#P#P
.

We will assume eε = α is given as a rational, with α = u
v for some integers u and v. Recall

we use n, ` and m to refer to the number of input, output and random bits of a circuit
respectively. While we will use non-determinism to choose inputs leading to a violating event,
unlike in Section 3 it would not be used for finding a violating event E, as an (explicit)
description of such an event may be of super-polynomial length. It would be useful for us to
use a reformulation of approximate differential privacy, using a sum over potential individual
outcomes.

I Reformulation 18 (Pointwise differential privacy [7]). A probabilistic circuit ψ is (ε, δ)-
differentially private if and only if for all neighboring x,x′ ∈ Xn and for all o ∈ {0, 1}`,∑

o∈{0,1}`

δx,x′(o) ≤ δ,

where δx,x′(o) = max (Pr[ψ(x) = o]− eε · Pr[ψ(x′) = o], 0) .

We defineM, a non-deterministic Turing Machine with access to a #P-oracle, and where
each execution branch runs in polynomial time. On inputs a probabilistic circuit ψ and
neighboring x,x′ ∈ Xn the number of accepting executions ofM would be proportional to∑

o∈{0,1}` δx,x′(o).
In more detail, on inputs ψ, x and x′, M chooses o ∈ {0, 1}` and an integer C ∈

{1, 2, . . . , 2m+dlog(v)e} (this requires choosing `+m+ dlog(v)e bits). Through a call to the
#P oracle,M computes

a = |{r ∈ {0, 1}m : ψ(x, r) = o}|

and

b = |{r ∈ {0, 1}m : ψ(x′, r) = o}| .

Finally,M accepts if v · a− u · b ≥ C and otherwise rejects.

I Lemma 19. Given two inputs x,x′ ∈ Xn,M(ψ,x,x′) has exactly v ·2m
∑

o∈{0,1}` δx,x′(o)
accepting executions.

Proof. Let 1{X} be the indicator function, which is one if the predicate X holds and zero
otherwise.

v · 2m
∑

o∈{0,1}`

δx,x′ (o) =
∑

o∈{0,1}`

v · 2m max
(
Pr[ψ(x) = o]− αPr[ψ(x′) = o], 0

)

=
∑

o∈{0,1}`

v2m max

 1
2m

∑
r∈{0,1}m

1{ψ(x, r) = o} − α 1
2m

∑
r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0

=

∑
o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − vα
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0

ICALP 2020

129:10 The Complexity of Verifying Loop-Free Programs as Differentially Private

. . . =
∑

o∈{0,1}`

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0

=

∑
o∈{0,1}`

2dlog(v)e+m∑
C=1

1

max

v ∑
r∈{0,1}m

1{ψ(x, r) = o} − u
∑

r∈{0,1}m

1
{
ψ(x′, r) = o

}
, 0

 ≥ C

= number of accepting executions in M̂ J

We can now describe our coNP#P#P
procedure for Decide-ε, δ-DP. The procedure

takes as input a probabilistic circuit ψ.
1. Non-deterministically choose neighboring x and x′ ∈ {0, 1}n (i.e., 2n bits).
2. LetM be the non-deterministic Turing Machine with access to a #P-oracle as described

above. Create a machine M̂ with no input that executesM on ψ,x,x′.
3. Make an #P#P oracle call for the number of accepting executions M̂ has.
4. Reject if the number of accepting executions is greater than v ·2m · δ and otherwise accept.

By Lemma 19, there is a choice x,x′ on which the procedure rejects if and only if ψ is
not (ε, δ)-differentially private.

4.2 Hardness
Theorem 11 shows that Decide-ε-DP is coNP#P-complete, in particular coNP#P-hard
and since Decide-ε-DP is a special case of Decide-ε, δ-DP, this is also coNP#P-hard.
Nevertheless the proof is based on particular values of ε and in the full version we provide
an alternative proof of hardness based on δ. This proof result will apply for any ε (even for
ε = 0) and for a large range of δ (but not δ = 0).

The proof proceeds by first considering the generalisation of All-Min-Sat to the version
where minority, i.e. less than 1

2 of the assignments, is replaced with another threshold. This
problem is also coNP#P-hard for a range of thresholds. Note however, if this threshold is
exactly 1 the problem is true for all formulae, and if the threshold is 0 the problem is simply
asks if the formula is unsatisfiable (a coNP problem).

This generalised problem can then be reduced to deciding Decide-ε, δ-DP, where the
threshold corresponds exactly to δ. It will turn out in the resulting circuit ε does not change
the status of differential privacy, i.e. it is (ε, δ)-differentially private for all ε, or not.

The proof shows hardness for Ω(n)-input bits and 1-output bit; the case in which there
also exists a coNP#P upper-bound. Hence, showing hardness in a higher complexity class,
e.g., coNP#P#P

, would require a reduction to a circuit with more output bits.

5 Inapproximability of the privacy parameters ε, δ

Given the difficulty of deciding if a circuit is differentially private, one might naturally
consider whether approximating ε or δ could be efficient. We show that these tasks are both
NP-hard and coNP-hard.

We show that distinguishing between (ε, δ), and (ε′, δ′)-differential privacy is NP-hard,
by reduction from a problem we call Not-Constant which we also show is NP-hard. A
boolean formula is in Not-Constant if it is satisfiable and not also a tautology.

I Lemma 20. Not-Constant is NP-complete. (hence Constant is coNP-complete).

M. Gaboardi, K. Nissim, and D. Purser 129:11

Proof. Clearly, Not-Constant ∈ NP, the witness being a pair of satisfying and non-
satisfying assignments. We reduce 3-SAT to Not-Constant. Given a Boolean formula
φ over variables x1, . . . , xn let φ′(x1, . . . , xn, xn+1) = φ(x1, . . . , xn) ∧ xn+1. Note that φ′ is
never a tautology as φ′(x1, . . . , xn, 0) = 0. Furthermore, φ′ is satisfiable iff φ is. J

In Definition 13 we used randomized response in the pure differential privacy setting. We
now consider the approximate differential privacy variant RRε,δ : {0, 1} → {>,⊥} × {0, 1}
defined as follows:

RRε,δ(x) =

(>, x) w.p. δ
(⊥, x) w.p. (1− δ) α

1+α

(⊥,¬x) w.p. (1− δ) 1
1+α

where α = eε

I.e., with probability δ, RRε,δ(x) reveals x and otherwise it executes RRε(x). The former
is marked with “>” and the latter with “⊥”. This mechanism is equivalent to the one
described in [35] and is (ε, δ)-differentially private.

I Definition 21. Let 0 ≤ ε ≤ ε′, 0 ≤ δ ≤ δ′ ≤ 1, with either ε < ε′ or δ < δ′. The
problem Distinguish-(ε, δ), (ε′, δ′)-DP takes as input a circuit ψ, guaranteed to be either
(ε, δ)-differentially private, or (ε′, δ′)-differentially private. The problem asks whether ψ is
(ε, δ)-differentially private or (ε′, δ′)-differentially private.

I Lemma 22. Distinguish-(ε, δ), (ε′, δ′)-DP is NP-hard (and coNP-hard).

Proof. We reduce Not-Constant to Distinguish-(ε, δ), (ε′, δ′)-DP. Given the boolean
formula φ(x) on n bits, we create a probabilistic circuit ψ. The input to ψ consists of the
n bits x plus a single bit y. The circuit ψ has four output bits (o1, o2, o3, o4) such that
(o1, o2) = RRε,δ(y) and (o3, o4) = RRε′,δ′(φ(x)).

Observe that (o1, o2) = RRε,δ(y) is always (ε, δ) differentially private. As for (o3, o4) =
RRε′,δ′(φ(x)), if φ ∈ Not-Constant then there are adjacent x,x′ such that φ(x) 6= φ(x′).
In this case, (o3, o4) = RRε′,δ′(φ(x)) is (ε′, δ′)-differentially private, and, because (ε, δ) <
(ε′, δ′), so is ψ . On the other hand, if φ 6∈ Not-Constant then φ(x) does not depend on x
and hence (o3, o4) does not affect privacy, in which case we get that ψ is (ε, δ) differentially
private.

The same argument also gives coNP-hardness. J

Notice that the above theorem holds when δ = δ′ and ε < ε′ (similarly, ε = ε′ and δ < δ′),
which entails the following theorem:

I Theorem 23. Assuming P 6= NP, for any approximation error γ > 0, there does not
exist a polynomial time approximation algorithm that given a probabilistic circuit ψ and δ
computes some ε̂, where |ε̂− ε| ≤ γ and ε is the minimal such that ψ is (ε, δ)-differentially
private within error γ. Similarly, given ε, no such δ̂ can be computed polynomial time where
|δ̂ − δ| ≤ γ and δ is minimal.

I Remark 24. The result also applies when approximating within a given ratio ρ > 1 (e.g.
in the case of approximating ε, to find ε̂ such that ε̂

ε ≤ ρ). Moreover, the result also holds
when approximating pure differential privacy, that is when δ = 0.

ICALP 2020

129:12 The Complexity of Verifying Loop-Free Programs as Differentially Private

6 Related work

Differential privacy was introduced in [22]. It is a definition of privacy in the context of data
analysis capturing the intuition that information specific to an individuals is protected if
every single user’s input has a bounded influence on the computation’s outcome distribution,
where the bound is specified by two parameters, usually denoted by ε, δ. Intuitively, these
parameters set an upperbound on privacy loss, where the parameter ε limits the loss and the
parameter δ limits the probability in which the loss may exceed ε.

Extensive work has occurred in the computer-assisted or automated of verification of
differential privacy. Early work includes, PINQ [33] and Airavat [38] which are systems that
keep track of the privacy budgets (ε and δ) using trusted privacy primitives in SQL-like
and MapReduce-like paradigms respectively. In other work, programming languages were
developed, that use the type system to keep track of the sensitivity and ensure the correct
level of noise is added [37, 9, 16, 8]. Another line of work uses proof assistants to help prove
that an algorithm is differentially private [7]; although much of this work is not automated,
recent work has gone in this direction [2, 44].

These techniques focuses on “soundness”, rather than “completeness” thus are not
amenable to complexity analysis. In the constrained case of verifying differential privacy on
probabilistic automata and Markov chains there are bisimulation based techniques [40, 12].
Towards complexity analysis; [15] shows that computing the optimal value of δ for a finite
labelled Markov chain is undecidable. Further [14] and [15] provides distances, which are
(necessarily) not tight, but can be computed in polynomial time with an NP oracle and a
weaker bound in polynomial time. Recent works have focused on developing techniques for
finding violations of differential privacy [19, 10]. The methods proposed so far have been
based on some form of testing. Our result limits also the tractability of these approaches.
Finally, [5] proposes an automated technique for proving differential privacy or finding
counterexamples. This paper studies a constrained class of programs extending the language
we presented here, and provides a “complete” procedure for deciding differential privacy for
them. The paper does not provide any complexity guarantee for the proposed method and
we expect our results to apply also in their setting.

As we already discussed, Murtagh and Vadhan [35] showed that finding the optimal
values for the privacy parameters when composing different algorithms in a black-box way is
#P-complete, but also that approximating the optimal values can be done efficiently. In
contrast, our results show that when one wants to consider programs as white-box, as often
needed to achieve better privacy guarantees (e.g. in the case of the sparse vector technique),
the complexity is higher.

Several works have explored different property testing related to differential privacy [20,
29, 26], including verification [26]. In the standard model used in property testing, a user
has only black-box access to the function and the observable outputs are the ones provided
by a privacy mechanism. In contrast, our work is based on the program description and
aim to provide computational limits to the design of techniques for program analyses for
differential privacy.

We already discussed some works on quantitative information flow. In addition to those,
it was shown that comparing the quantitative information flow of two programs on inputs
coming from the uniform distribution is #P-hard [43]. However, when quantifying over all
distributions the question is coNP-complete [43].

As we remarked earlier, our language is equally expressive when integers of a fixed size
are added. Recently Jacomme, Kremer and Barthe [28] show deciding equivalence of two
such programs, operating over a fixed finite field, is coNPC=P-complete and the majority
problem, which is similar to pure differential privacy, is coNPPP-complete – matching the

M. Gaboardi, K. Nissim, and D. Purser 129:13

class we show for deciding ε-differential privacy. Further the universal equivalence problem,
which shows the programs are equivalent over all field extensions, is decidable in 2-EXP;
the universal majority problem is not know to be decidable.

7 Conclusions and future work

Verifying differential privacy of loop-free probabilistic boolean programs

We have shown the difficulty of verifying differential privacy in loop-free probabilistic
boolean programs through their correspondence with probabilistic circuits. Deciding ε-
differential privacy is coNP#P-complete and (ε, δ)-differential privacy is coNP#P-hard and
in coNP#P#P

(a gap that we leave for future work). Both problems are positioned in the
counting hierarchy, in between the polynomial hierarchy PH and PSPACE.

Verifying differential privacy of probabilistic boolean programs

One interesting question that our work leaves open is the characterization of the complexity
of deciding differential privacy problems for probabilistic boolean programs, including loops.
Similarly to the works on quantitative information flow [11], we expect these problems to
be decidable and we expect them to be in PSPACE. However, this question requires some
further investigation that we leave for future work.

Solvers mixing non-determinism and counting

Returning to our motivation for this work – developing practical tools for verifying differential
privacy – our results seem to point to a deficiency in available tools for model checking. The
model checking toolkit includes well established Sat solvers for NP (and coNP) problems,
solvers for further quantification in PH, solvers for #Sat (and hence for #P problems3).
However to the best of our knowledge, there are currently no solvers that are specialized for
mixing the polynomial hierarchy PH and counting problems #P, in particular coNP#P

and coNP#P#P
.

Approximating the differential privacy parameters

We show that distinguishing (ε, δ)-differential privacy from (ε′, δ′) differential privacy where
(ε, δ) < (ε′, δ′) is both NP- and coNP-hard. We leave refining the classification of this
problem as an open problem.

References
1 John M. Abowd. The U.S. census bureau adopts differential privacy. In Yike Guo and Faisal

Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, page 2867. ACM,
2018. doi:10.1145/3219819.3226070.

2 Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of differential privacy. Proc.
ACM Program. Lang., 2(POPL):58:1–58:30, 2018. doi:10.1145/3158146.

3 See, for example, http://beyondnp.org/pages/solvers/, for a range of solvers.

ICALP 2020

https://doi.org/10.1145/3219819.3226070
https://doi.org/10.1145/3158146
http://beyondnp.org/pages/solvers/

129:14 The Complexity of Verifying Loop-Free Programs as Differentially Private

3 Mário S. Alvim, Miguel E. Andrés, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
On the relation between differential privacy and quantitative information flow. In Luca Aceto,
Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming - 38th
International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part II, volume 6756 of Lecture Notes in Computer Science, pages 60–76. Springer, 2011.
doi:10.1007/978-3-642-22012-8_4.

4 Apple. Apple differential privacy technical overview. URL: https://www.apple.com/privacy/
docs/Differential_Privacy_Overview.pdf.

5 Gilles Barthe, Rohit Chadha, Vishal bibsource = self, Jagannath, A Prasad Sistla, and Mahesh
Viswanathan. Deciding differential privacy for programs with finite inputs and outputs. In
LICS 2020 (to appear), 2020. arXiv preprint: arXiv:1910.04137.

6 Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and
Pierre-Yves Strub. Higher-order approximate relational refinement types for mechanism design
and differential privacy. In Sriram K. Rajamani and David Walker, editors, Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 55–68. ACM, 2015.
doi:10.1145/2676726.2677000.

7 Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.
Proving differential privacy via probabilistic couplings. In Martin Grohe, Eric Koskinen, and
Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 749–758. ACM,
2016. doi:10.1145/2933575.2934554.

8 Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce. Programming language
techniques for differential privacy. SIGLOG News, 3(1):34–53, 2016. URL: https://dl.acm.
org/citation.cfm?id=2893591.

9 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic rela-
tional reasoning for differential privacy. In John Field and Michael Hicks, editors, Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, pages 97–110. ACM,
2012. doi:10.1145/2103656.2103670.

10 Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, and Martin T. Vechev.
Dp-finder: Finding differential privacy violations by sampling and optimization. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, pages 508–524. ACM, 2018. doi:10.1145/
3243734.3243863.

11 Rohit Chadha, Dileep Kini, and Mahesh Viswanathan. Quantitative information flow in
boolean programs. In Martín Abadi and Steve Kremer, editors, Principles of Security and
Trust - Third International Conference, POST 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings, volume 8414 of Lecture Notes in Computer Science, pages 103–119. Springer,
2014. doi:10.1007/978-3-642-54792-8_6.

12 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized
bisimulation metrics. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 - Concur-
rency Theory - 25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, volume 8704 of Lecture Notes in Computer Science, pages 32–46. Springer,
2014. doi:10.1007/978-3-662-44584-6_4.

13 Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in SMT
and value estimation for probabilistic programs. Acta Inf., 54(8):729–764, 2017. doi:10.1007/
s00236-017-0297-2.

https://doi.org/10.1007/978-3-642-22012-8_4
https://www.apple.com/privacy/docs/ Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/ Differential_Privacy_Overview.pdf
https://arxiv.org/abs/1910.04137
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/2933575.2934554
https://dl.acm.org/citation.cfm?id=2893591
https://dl.acm.org/citation.cfm?id=2893591
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1007/978-3-642-54792-8_6
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1007/s00236-017-0297-2
https://doi.org/10.1007/s00236-017-0297-2

M. Gaboardi, K. Nissim, and D. Purser 129:15

14 Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Bisimilarity distances for approxim-
ate differential privacy. In Shuvendu K. Lahiri and Chao Wang, editors, Automated Technology
for Verification and Analysis - 16th International Symposium, ATVA 2018, Los Angeles, CA,
USA, October 7-10, 2018, Proceedings, volume 11138 of Lecture Notes in Computer Science,
pages 194–210. Springer, 2018. doi:10.1007/978-3-030-01090-4_12.

15 Dmitry Chistikov, Andrzej S. Murawski, and David Purser. Asymmetric distances for approx-
imate differential privacy. In Wan Fokkink and Rob van Glabbeek, editors, 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the
Netherlands, volume 140 of LIPIcs, pages 10:1–10:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.10.

16 Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen, and Ben-
jamin C. Pierce. Sensitivity analysis using type-based constraints. In Richard Lazarus, Assaf J.
Kfoury, and Jacob Beal, editors, Proceedings of the 1st annual workshop on Functional program-
ming concepts in domain-specific languages, FPCDSL@ICFP 2013, Boston, Massachusetts,
USA, September 22, 2013, pages 43–50. ACM, 2013. doi:10.1145/2505351.2505353.

17 Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.
18 Differential Privacy Team, Apple. Learning with privacy at scale, 2017. URL:

https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/
appledifferentialprivacysystem.pdf.

19 Zeyu Ding, Yuxin Wang, Guanhong Wang, Danfeng Zhang, and Daniel Kifer. Detecting
violations of differential privacy. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
475–489. ACM, 2018. doi:10.1145/3243734.3243818.

20 Kashyap Dixit, Madhav Jha, Sofya Raskhodnikova, and Abhradeep Thakurta. Testing the
lipschitz property over product distributions with applications to data privacy. In Amit Sahai,
editor, Theory of Cryptography - 10th Theory of Cryptography Conference, TCC 2013, Tokyo,
Japan, March 3-6, 2013. Proceedings, volume 7785 of Lecture Notes in Computer Science,
pages 418–436. Springer, 2013. doi:10.1007/978-3-642-36594-2_24.

21 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor, Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006,
Proceedings, volume 4004 of Lecture Notes in Computer Science, pages 486–503. Springer,
2006. doi:10.1007/11761679_29.

22 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise
to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science, pages
265–284. Springer, 2006. doi:10.1007/11681878_14.

23 Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 51–60. IEEE Computer Society, 2010. doi:
10.1109/FOCS.2010.12.

24 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 1054–1067. ACM, 2014. doi:10.1145/
2660267.2660348.

ICALP 2020

https://doi.org/10.1007/978-3-030-01090-4_12
https://doi.org/10.4230/LIPIcs.CONCUR.2019.10
https://doi.org/10.1145/2505351.2505353
https://machinelearning.apple.com/docs/learning-with- privacy-at-scale/appledifferentialprivacysystem.pdf
https://machinelearning.apple.com/docs/learning-with- privacy-at-scale/appledifferentialprivacysystem.pdf
https://doi.org/10.1145/3243734.3243818
https://doi.org/10.1007/978-3-642-36594-2_24
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1109/FOCS.2010.12
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348

129:16 The Complexity of Verifying Loop-Free Programs as Differentially Private

25 Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: a new approach for
analyzing privacy properties. In Thomas A. Henzinger and Dale Miller, editors, Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 42:1–42:10. ACM, 2014. doi:
10.1145/2603088.2603097.

26 Anna C. Gilbert and Audra McMillan. Property testing for differential privacy. In 56th
Annual Allerton Conference on Communication, Control, and Computing, Allerton 2018,
Monticello, IL, USA, October 2-5, 2018, pages 249–258. IEEE, 2018. doi:10.1109/ALLERTON.
2018.8636068.

27 J. W. Gray. Probabilistic interference. In Proceedings. 1990 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 170–179, May 1990. doi:10.1109/RISP.1990.
63848.

28 Charlie Jacomme, Steve Kremer, and Gilles Barthe. Universal equivalence and majority on
probabilistic programs over finite fields. In LICS 2020 (to appear), 2020.

29 Madhav Jha and Sofya Raskhodnikova. Testing and reconstruction of lipschitz functions with
applications to data privacy. SIAM J. Comput., 42(2):700–731, 2013. doi:10.1137/110840741.

30 Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst. Sci., 22(3):328–350,
1981. doi:10.1016/0022-0000(81)90036-2.

31 Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational complexity
of probabilistic planning. J. Artif. Intell. Res., 9:1–36, 1998. doi:10.1613/jair.505.

32 Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse vector technique for differential
privacy. Proc. VLDB Endow., 10(6):637–648, 2017. doi:10.14778/3055330.3055331.

33 Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving
data analysis. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul,
editors, Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 19–30. ACM,
2009. doi:10.1145/1559845.1559850.

34 Ilya Mironov. On significance of the least significant bits for differential privacy. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and
Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 650–661.
ACM, 2012. doi:10.1145/2382196.2382264.

35 Jack Murtagh and Salil P. Vadhan. The complexity of computing the optimal composition of
differential privacy. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part I, volume 9562 of Lecture Notes in Computer Science, pages 157–175. Springer, 2016.
doi:10.1007/978-3-662-49096-9_7.

36 Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian J. Goodfellow, and Kunal Talwar.
Semi-supervised knowledge transfer for deep learning from private training data. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL: https://openreview.
net/forum?id=HkwoSDPgg.

37 Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus for
differential privacy. In Paul Hudak and Stephanie Weirich, editors, Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 157–168. ACM, 2010. doi:10.1145/1863543.
1863568.

38 Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.
Airavat: Security and privacy for mapreduce. In Proceedings of the 7th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2010, April 28-30, 2010, San Jose,
CA, USA, pages 297–312. USENIX Association, 2010. URL: http://www.usenix.org/events/
nsdi10/tech/full_papers/roy.pdf.

https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1145/2603088.2603097
https://doi.org/10.1109/ALLERTON.2018.8636068
https://doi.org/10.1109/ALLERTON.2018.8636068
https://doi.org/10.1109/RISP.1990.63848
https://doi.org/10.1109/RISP.1990.63848
https://doi.org/10.1137/110840741
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1613/jair.505
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1007/978-3-662-49096-9_7
https://openreview.net/forum?id=HkwoSDPgg
https://openreview.net/forum?id=HkwoSDPgg
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/roy.pdf

M. Gaboardi, K. Nissim, and D. Purser 129:17

39 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

40 Michael Carl Tschantz, Dilsun Kirli Kaynar, and Anupam Datta. Formal verification of
differential privacy for interactive systems (extended abstract). In Michael W. Mislove and
Joël Ouaknine, editors, Twenty-seventh Conference on the Mathematical Foundations of
Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011, volume 276
of Electronic Notes in Theoretical Computer Science, pages 61–79. Elsevier, 2011. doi:
10.1016/j.entcs.2011.09.015.

41 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

42 Hirotoshi Yasuoka and Tachio Terauchi. On bounding problems of quantitative information
flow. In Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, Computer
Security - ESORICS 2010, 15th European Symposium on Research in Computer Security,
Athens, Greece, September 20-22, 2010. Proceedings, volume 6345 of Lecture Notes in Computer
Science, pages 357–372. Springer, 2010. doi:10.1007/978-3-642-15497-3_22.

43 Hirotoshi Yasuoka and Tachio Terauchi. Quantitative information flow - verification hardness
and possibilities. In Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010, pages 15–27. IEEE Computer
Society, 2010. doi:10.1109/CSF.2010.9.

44 Danfeng Zhang and Daniel Kifer. Lightdp: towards automating differential privacy proofs. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017, pages 888–901. ACM, 2017. URL: http://dl.acm.org/citation.cfm?id=3009884.

ICALP 2020

https://doi.org/10.1137/0220053
https://doi.org/10.1016/j.entcs.2011.09.015
https://doi.org/10.1016/j.entcs.2011.09.015
https://doi.org/10.1007/978-3-642-15497-3_22
https://doi.org/10.1109/CSF.2010.9
http://dl.acm.org/citation.cfm?id=3009884

	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Loop-free probabilistic programs
	2.2 Probabilistic circuits
	2.3 Equivalence of programs and circuits
	2.4 Differential privacy in probabilistic circuits
	2.5 Problems of deciding and approximating differential privacy
	2.6 The class coNP^#P

	3 The complexity of deciding pure differential privacy
	3.1 Decide epsilon DP is in coNP^#P
	3.2 coNP^#P-hardness of Decide epsilon DP

	4 On the complexity of deciding approximate differential privacy
	4.1 Decide epsilon DP is in coNP^#P^#P
	4.2 Hardness

	5 Inapproximability of the privacy parameters epsilon, delta
	6 Related work
	7 Conclusions and future work

