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Abstract 

This thesis is concerned with the preparation, and subsequent application of, 

hydrogels as devices for analysing axillary malodour in order to test the efficacy of 

antiperspirant / deodorant products. Using the well documented ability of hydrogels 

to absorb water and small molecules, the absorption, storage and subsequent 

extraction of a model sweat was investigated. Ten volatile fatty acids, one 

unsaturated aldehyde and one thiol were used in an aqueous solution to represent 

malodorous sweat in order to investigate the plausibility of such a device.  

Quantitative analysis of the malodorous compounds was carried out via GC-FID, with 

unknown compound identification carried out via GC-MS. Qualitative analysis was 

acquired with the addition of pH indicators such as bromophenol blue and quinine 

to the hydrogel device. 

The physical properties of the hydrogels were also probed by investigating a range of 

crosslinker concentrations and alternative hydrogel materials. The swelling kinetics 

in deionised water and the mechanical properties were investigated by dynamic 

mechanical analysis and Universal tester. 

Bacterial studies illustrated the hydrogels’ suitability for in vivo testing which then 

illustrated that the model protocol could be transferred to natural samples. 
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1. Introduction 

An axilla is one of the most densely populated areas of the skin; there are over 10 

million bacteria living in the underarm. Wilson reported, in a study of healthy males 

and females, 6.9 x 105 cfu/cm2 and 8.9 x 105 cfu/cm2 respectively (number of colonies 

found per square cm), when counting total aerobes in the axillae.1 Soap alone is not 

enough to combat the potentially unpleasant problem of body odour that can often 

affect self-esteem. As a result, antiperspirants and deodorants are a large global 

business. Statista estimate the size of the global antiperspirant and deodorant 

market in 2018 to be worth US$72.7 billion2 and estimate that Unilever had 26.6 % 

of the market share worldwide in the same year.3 

The terms antiperspirant and deodorant are often used interchangeably but they 

have different purposes. Antiperspirants are worn to reduce the volume of sweat 

that reaches the skin surface in the axilla, whilst deodorants limit the concentration 

of malodorous compounds as they contain antimicrobial ingredients, where any 

product can perform one or both of these functions. It is proposed that by using the 

analytical techniques discussed in this thesis, the efficacy of a deodorant; i.e. its 

ability to limit the production of these malodours, can be determined by monitoring 

the concentration of volatile fatty acids in the axilla. 

The axilla malodour arises from a combination of volatile fatty acids (VFAs), 

thioalcohols and steroids. These are by-products of the metabolism of proteins and 

lipids secreted in sweat by the bacteria that is found on the skin, and it is these that 

are malodorous rather than what is secreted directly (Figure 1-1).4–6 In their review, 

de lacy Costello et al. suggest that there is a total of 532 volatile organic compounds 

reportedly emanating from the skin.7 This thesis focuses on a sample of 10 VFAs, one 

unsaturated aldehyde and one thioalcohol in a mixed aqueous solution to mimic 

sweat when testing sampling devices and analytical techniques.  
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Currently there is no method in place for the quantitative analysis of the 

effectiveness of an antiperspirant/deodorant concerning the malodour produced in 

the axilla, however, Dormont et al. published a useful review on previous related 

work, which indicated that no method applied alone allows trapping of the whole 

human scent.8 They even went further as to suggest more than one method would 

need to be simultaneously applied in order to sample the whole scent profile from 

the human skin. 

The “Official, Standardised and Recommended Methods of Analysis”, although 

outdated now, only had methods referenced for fatty acids in buttermilk and gave 

reference for them in only one bodily fluid; blood.9 

1.1 Literature and Unilever’s Current Methods 

The industrial standard for testing the efficacy of a deodorant is to employ ‘sniffers’ 

to mark the strength of the malodour in volunteers’ underarms out of five on a ten 

point scale. This is carried out under regulated conditions whilst allowing people to 

carry on their daily lives so as to get as close to realistic data to the everyday lives of 

the end user; the consumer. 

An alternative used to monitor antiperspirant efficacy is to attach textile patches to 

underarms of t-shirts and weigh these after wearing for a set period to determine 

the mass of sweat produced. Even for this limited information storing is a difficulty 

Figure 1-1: Formation of malodour by axillary bacteria adapted from James et al.5 
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as the patches are immediately vacuum-packed and stored at -80 °C in order to avoid 

bacterial growth / loss of sweat. 

1.2 Collection Media 

Prada et al. demonstrated that contact sampling is better than non-contact sampling 

in both the range of volatiles collected and also the mass of scent collected.10 

Furthermore, they found that cellulosic type materials (e.g. cotton) provided the 

widest range of functional groups collected, and the largest mass of scent. This has 

been previously suggested to be a combination of differing volatilities of the 

compounds and the structure of the collection materials themselves. Obendorf et al. 

elucidated that the distribution of chemicals varied within cotton and poly(ethylene 

terephthalate) (PET) fibres. They are only found on the external surface of the PET 

whereas cotton fibres have a more complex structure with capillary forces and pore 

structures influencing the adsorption of liquids.11 In addition, cotton is very 

hydrophilic with strong polar interactions. These are capable of forming bonds with 

the acidic molecules. Equally, McQueen et al. discussed the hydrophobic nature of 

polyester fabric which has no hydrogen bonding groups available, and therefore 

tends to be more oleophilic, with an affinity for the longer chain malodour 

precursors.12 

Conversely, polyester-type materials appear optimal for the collection of acidic 

volatiles, however, this could be related to polyester being a better environment for 

the continuous production of volatile fatty acids via bacterial biotransformation even 

after the removal from volunteers, as hypothesised by McQueen et al. who observed 

an increase in short chain fatty acids after 7 days storage at room temperature.12 

Currently used polyester swatches have several drawbacks. These drawbacks include 

the inability to control the stability of the sample, which requires the samples to be 

vacuum-packed and stored at -80 °C to limit bacterial growth alongside the loss of 

the volatile components of sweat to the environment. Moreover, there is no 

standardised fabric of choice across the industry. Furthermore, there is currently no 

method for the recovery of the malodourous compounds from the polyester 

swatches, instead these are sniffed and graded on a 1-5 scale of strength and also 

weighed to determine the mass of sweat produced. The medium within which a 
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fabric containing collected sample is stored is also influential to the results of analysis 

along with the conditions at which it is stored. Hudson et al. found that glass was 

better for storage of cotton samples so that the results of the analysis were most 

similar to if they were analysed immediately, compared to storage in polymeric or 

aluminized materials, however, the heat-sealing process applied to some of these 

methods may have been partly responsible for some of the difference. Additionally, 

excessive exposure of samples to UVA/UVB lights leads to greater number of methyl 

esters and aldehydes being detected in the headspace analysis.13 It is of note that 

these studies were undertaken in order to determine the reliability of the use of 

canine scent evidence in forensic science10,13,14 rather than to test deodorant 

capabilities. 

Axilla patches that have been patented over the last 25 years are mostly for odour 

control.15,16 These are likely to contain active ingredients such as antiperspirants, 

deodorant elements or antimicrobial agents, and have no associated analytical 

element. Another patent was issued in 2006 for a much more complicated device 

including a circulation element and a sampling element such as an SPME fibre or a 

PDMS-coated stirrer bar for analysis by thermal desorption.17 

Currently, sweat analysis is carried out for medical purposes. For example, in disease 

diagnosis, chloride concentration can be analysed as a test for cystic fibrosis. Due to 

the wide range of biomarkers available in sweat, it has also been shown to be a 

promising biofluid for use in the diagnosis of cancer and schizophrenia.18 More 

recently, sweat has been investigated as an alternative to finger-prick blood testing 

for people with diabetes. A recent review of continuous glucose monitoring 

technology suggested that while there is a correlation between glucose 

concentrations in the blood and sweat, glucose concentration decreases from blood 

to skin surface and therefore the limit of detection, accuracy and precision of 

measurements using sweat samples remains a challenge.19 

One product that has been commercially available for nearly 30 years is the 

PharmChek® sweat patch,20 which is FDA approved and permissible as evidence in 

court for the detection of illicit drugs and their metabolites. This is a relatively basic 

non-occlusive patch consisting of an absorbent pad with an adhesive backing,21 
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something that is interesting as a possible device for collection of the malodorous 

components of sweat as is the goal of this research. 

 

Figure 1-2: Representation of the PharmChek® patch reproduced from Kintz et al.21 

Twenty years ago, Schoendorfer was granted a patent for a method and apparatus 

for determination of chemical species in perspiration.22 Unlike hydrogels, this was a 

dissolvable patch rather than one that required extraction. Although it was used for 

analysis, it was designed to monitor controlled drug (e.g. cocaine) metabolites as a 

less invasive technique than blood sampling and was looking for volatiles such as 

ethanol (rather than VFAs).  

Ten years later, Savelev et al. were granted a patent for a more complicated sampling 

device.17 This was a device that enclosed a volume above the skin surface. It 

contained a sampling element, examples being an SPME fibre or a PDMS-coated stir 

bar. Both SPME fibres and PDMS-coated stir bars have appeared in other literature 

as sampling materials for this application and are completely different to the current 

solvent extraction method employed with the hydrogel as they would be transferred 

directly in to an analytical device (e.g. GC-MS) for analysis preferably by a transfer 

method such as thermal desorption. Furthermore, the device included a mechanical 

element which encouraged the circulation of the entrapped air. This is not something 

that is part of the hydrogel device. 
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A third patent came in the same year, from Villain, who created a disposable 

underarm patch.16 This was a kidney-shape design made of ‘flexible’ material with 

the intention of protecting the wearer’s clothing from sweat stains. There is no 

mention of recovering from the device for any sort of analysis of the sweat. This was 

also prior art in the patent of Van Bavel. 

In 2013, Van Bavel et al. were granted a patent for a disposable, self-adherent odor-

control patch.15 This was for the same application as that of Villain. Although it was 

probably polymeric, there was no mention of hydrogels. It also included an odour-

control agent (e.g. activated carbon / zeolite / clay / silica / cyclodextrin) and 

potentially other additives. 

1.2.1 Hydrogels 

The aim of this project requires an absorbent material to form part of the collection 

device, one possible material for such a device is a hydrogel. Hydrogels are 

superabsorbent cross-linked polymer networks which can be >90 % water. This 

makes them viscoelastic and, with a soft consistency and high porosity, often similar 

to animal tissue.23 There are many patents and literature references for hydrogels 

being used in a wide range of medical and personal applications such as on ECG 

electrodes,24 contact lenses,25,26 wound care27 and transdermal drug delivery28,29 as 

well as a much wider range of applications, making them ideal for their use in this 

novel application. As demonstrated in Figure 1-3, the interest in hydrogel research 

has grown exponentially over recent decades.30,31 
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Figure 1-3: Results by year from the search term ‘hydrogels’ on pubmed.31 

The applications of hydrogels are often either for absorption (in the case of wound 

dressings) or release (transdermal drug delivery), but thus far no studies have been 

found which report an application requiring both. Most of the characteristics 

required of a wound dressing hydrogel are relevant to this application as the device 

will also remain on the skin for extended periods of time; maintain natural skin 

moisture level and temperature, demonstrate good gas permeability, are able to be 

supplied sterile and be easy to apply then remove.32 

Some polymers commonly used for the synthesis of hydrogels both as homopolymers 

or copolymers include: poly(vinyl alcohol), poly(N-vinyl-2-pyrrolidone), poly(ethylene 

glycol), poly(N-isopropylacrylamide), poly(acrylic acid) and polyurethanes,33 

however, these will not be focussed on in this work. 

Another monomer widely used in the production of hydrogels is 2-acrylamido-2-

methylpropane sulfonic acid (AMPS, Figure 1-4) and its sodium salt, NaAMPS.23,27,34–

39 It is suitable for use in human contact devices and widely used as such, however, 

according to Kabiri et al. the synthesis of full-AMPS hydrogels is yet to be reported.35 
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A further possible monomer is hydroxyethyl methacrylate (HEMA). The use of HEMA 

was first reported for this use in the 1960s by Wichertle and Lim;25,40 around the time 

that ‘plastics’ for biomedical applications were first being studied. At that time the 

main challenge was the lack of materials akin to biological tissue, a property that, 

these days, hydrogels are well known for. HEMA also produces biocompatible 

hydrogels and is commonly used in the synthesis of contact lenses known as soft 

contact lenses. It also affords different structural and mechanical properties to a 

hydrogel. Unlike p(AMPS) hydrogels, these will only swell to ~40 % water.41 This is 

something investigated in Chapter 3 of this thesis. 

 

Figure 1-5: Structure of HEMA monomer. 

1.2.1.1 Swelling 

Hydrogels can absorb most solvents as opposed to dissolution when placed in solvent 

due to their chemical or physical crosslinks. The degree of swelling is one of the most 

important parameters when designing and synthesising hydrogels for medical 

applications such as the delivery and release of drugs.42 Thus, the kinetics of the 

swelling and, similarly, deswelling equilibrium of hydrogels have been studied; 

originally this was published by Peppas in two consecutive articles defining a simple 

equation for description of solute release.43,44 In the first of the two articles, he 

reports that drug release can be modelled by Fickian’s diffusion mechanism for 

polymeric devices of various geometries (equation 1-1, below). 

Figure 1-4: Structure of AMPS monomer. 
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 𝑀𝑡

𝑀∞
= 𝑘𝑡𝑛 (1-1) 

Where Mt/M∞ is the fractional solute release, t is the release time, k is a constant 

incorporating characteristics of the macromolecular network system and the drug, 

and n is the diffusional exponent which is indicative of the transport mechanism. For 

disks or tablets (the shape of a hydrogel), depending on the ratio of diameter to 

thickness, the Fickian diffusion mechanism is described by 0.43 < n < 0.50. 

In the second article, Peppas describes how swellable devices can still be modelled 

using equation 1-1 as long as the equilibrium swelling ratio is not higher than 1.33 

(25 % water content by volume). 

Meanwhile, other research has been carried out in an attempt to determine the 

length of time necessary to reach swelling equilibrium.27,42 Kabiri et al. reported a 0.2 

g sample of polymer was left for two hours in 500 ml of water in order to reach 

equilibrium whilst Taleb et al. reported HEMA/AMPS hydrogels required 10 hours to 

reach swelling equilibrium under irradiated conditions. Taleb et al. used equation 1-

2, where ws and wd are the mass of the swollen sample and the dried sample 

respectively, to calculate the water uptake as a percentage until equilibrium was 

reached. 

Although gravimetric methods are the most widely used methods to calculate water 

content and swelling kinetics in literature, they are not the only methods available. 

Similar calculations can be performed using volumetric methods.45 Alternatively, the 

water content can be related to the refractive index of the material. As the RI of water 

is known (1.33), as a hydrogel becomes more hydrated, the RI of the material will 

tend towards this number. Conversely, as it is dehydrated, the RI will increase. By 

carrying out the RI measurements on a series of hydrogels with known water content, 

a calibration curve can be created to be used on unknown samples. As illustrated by, 

Efron and Brennan, this calibration curve does not change regardless of the 

polymeric material investigated.46  

 
𝑊𝑎𝑡𝑒𝑟 𝑢𝑝𝑡𝑎𝑘𝑒 (%) =

𝑊𝑠 − 𝑊𝑑

𝑊𝑑
× 100 (1-2) 
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Research into the effect of drying methods of hydrogels on their swelling capacity 

has also been reported.35 Although Kabiri et al. concluded that oven-drying was the 

most cost-effective, and therefore favourable industrial method, this would not work 

for the application in this project as it is assumed the VFAs would evaporate first. 

Other methods including non-solvent dewatering, room-temperature drying and 

freeze drying have been reported. Freeze-drying has been used to prepare hydrogels 

for scanning electron microscopy (SEM) analysis.39  

1.2.1.2 Oxygen Permeability 

Oxygen permeability is useful for sweat collection devices as it allows the aerobic 

respiration of the skin bacteria as in the natural state, thus keeping the environment 

as realistic as possible and therefore the efficacy data of deodorant products akin to 

without the hydrogel device being there. 

Oxygen permeability of hydrogels increases logarithmically with increase in 

hydration irrespective of polymer type,29,46,47 where, as discussed, water content can 

be measured and calculated in several ways. This is likely due to water having a 

greater oxygen permeability than the polymer and, as hydration increases, the water 

has a greater influence. The relationship between EWC and oxygen permeability has 

been found to be:48  

 𝐷𝑘 = 1.67𝑒0.0397𝐸𝑊𝐶  1-3 

Where D is the diffusivity of the material, k is the oxygen solubility and EWC is the 

equilibrium water content of the material.49 The units of Dk are known as Barrer (a 

non-SI unit for gas permeability used in the contact lens industry).50 A high Dk value 

suggests a high oxygen transmittance where Dk < 12 are considered a low value.51 

Due to oxygen permeability also being dependent on the thickness of the material, 

the transmissibility level (Dk per thickness) is more commonly used and expressed as 

Dk/t. Where hydrogels use the water to transport oxygen, the maximum Dk/t is 

approximately 40. Silicone hydrogels have a higher oxygen permeability (> 100Dk/t) 

as the silicone molecules are better than the water molecules at the transportation 

of oxygen.52 
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1.2.1.3 Smart gels 

‘Smart gels’ are environmentally sensitive hydrogels; they react to chemical (e.g. pH 

changes and solvent exchange) or physical stimuli (e.g. temperature, light, electric 

forces, magnetic forces, and mechanical forces). These types of hydrogel are already 

being used in medical applications including transdermal drug delivery which 

suggests that the recovery of the volatile components of sweat is possible via one, or 

a combination, of these stimuli.53  

For example, according to Taleb et al., the SO3H groups on the AMPS can readily 

dissociate to form SO3
-  “mobile ions” that can create an osmotic pressure difference 

between the gel and the solvent which leads to an enhancement in swelling.42 As a 

result of this, the uptake and release from an AMPS containing hydrogel can be pH 

controlled. Bao et al. reported that when using the sodium salt form of the AMPS or 

taking the hydrogel above pH = 9, excess Na+ causes a “charge screening effect” and 

therefore a decrease in the swelling equilibrium. This led to them reporting an 

optimum pH for degree of swelling of pH = 5.54 

1.2.1.4 Polymerisation 

Generally, hydrogels can be synthesised 2-ways; either by crosslinking the water-

soluble, linear polymer post-polymerisation using radiation, heating or a crosslinking 

agent, or via ‘three-dimensional polymerisation’ which is the polymerisation of the 

chosen monomer in the presence of a multi-functional crosslinking agent.55 It is the 

latter that will be focused on in this work. 

Hydrogels can be synthesised via photo-initiated radical polymerisation. They can be 

produced in the dry state via a bulk process (e.g. soft contact lenses47) or via solution 

polymerisation using water or other solvents to dilute the system as a way of 

controlling heat transfer and other properties of the hydrogels produced.56 Although 

this may lead to some uncontrollability, it is often a preferred synthetic route. 
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Irgacure 1173 (2-hydroxy-2-methylpropiophenone, Figure 1-6) is a 

hydroxyacetophenone which is a Type I photoinitiator. This means it is a 

unimolecular photoinitiating system, i.e. no coinitiator or catalyst is required instead, 

typically one bond is broken via homolytic cleavage to form a pair of radicals. 

Whereas with type II initiators, hydrogen abstraction is used to create two radicals 

on separate molecules e.g. benzophenone.57,58 Hydroxyacetophenones usually 

absorb shorter wavelength UV-A radiation than benzophenones (300-350 nm). 

 

Figure 1-6: Structure of Irgacure 1173. 

1.2.1.5 Copolymers 

Most hydrogel literature found is on copolymers i.e. they contain two or more 

different monomers within the one network. Ahmed suggests that at least one is a 

hydrophilic component, and that they can be arranged in a random, block or 

alternating configuration along the chain of the polymer network.56 For example, the 

hydrogel copolymer composition patent by Munro and Boote,59 and in the literature; 

AMPS and N-isopropylacrylamide,60 Poly(acrylamidoxime‐co‐AMPS),61 AMPS, N-

vinylpyrrolidone and acrylic acid,62 HEMA and acrylic acid,63,64 and many more. 

Copolymers of AMPS and HEMA have been reported by Taleb et al. and, more 

recently, Elgueta et al.42,65 

This method of combining monomers has not been investigated in this research. 

Scheme 1-1: General equations for the stages of free radical polymerisation. 
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1.2.1.6 Interpenetrating Polymer Networks 

Another method of combining more than one monomer is interpenetrating polymer 

networks (IPNs) which are composed of two polymer networks within one material. 

There can be many benefits of double networks compared to single networks 

depending on the specific constituent combinations, Figure 1-7. This allows for 

flexibility in tuning the properties of the materials. The synthetic route to these 

double networks is dependent on the network required, that is what monomeric 

species to use. 

 

Figure 1-7: Comparison of the mechanical strength of various polymeric materials taken from Gong 
where DN = double network and SN = single network.66 

According to Peak et al. double networks (DNs) consist of two interpenetrating and 

covalently crosslinked polymer networks with Gong et al. suggesting that these 

networks illicit opposing properties.67 This can be achieved via a 2-step synthetic 

process, known as sequential IPNs, whereby one network is formed then the 

resultant gel is soaked in the monomer of the second network before a second 

polymerisation is carried out, Scheme 1-2.68,69 This itself can be an issue as not only 

is it comparatively time consuming compared to a 1-pot synthesis, but it also relies 

on the second monomer being readily and uniformly absorbed by the first network. 

A good example for this first network are polyelectrolytes, e.g. 2-acrylamido-2-

methyl-1-propanesulfonic acid (AMPS). According to Chen et al., this was first double 
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network, reported in 2003 by Gong et al. using a combination of acrylamide and 

AMPS.68,70 

 

 

Alternatively, IPNs can be synthesised via a one-pot process known as simultaneous 

IPNs, Scheme 1-3.69,71 Here, both sets of monomer, crosslinker and initiator are 

included in one solution prior to polymerisation which may take advantage of two 

different, noninterfering initiation methods. 

 

 

 

Gel networks can be covalently or physically crosslinked. Covalent bonds require the 

use of a chemical crosslinker during polymerisation whilst physical crosslinking can 

be achieved with either natural polymers (e.g. polysaccharides such as alginate) or 

synthetic polymers, post-polymerisation of linear chains, by modification to form 

hydrogen-bonds, Van der Waals interactions or ionic bonding. 

Covalently-crosslinked gel networks are typically stronger than the physically 

crosslinked networks, however, in covalent networks, once the bonds are broken, 

they cannot be recovered. Conversely, physically crosslinked networks often break 

more easily, however, this is often reversible once no longer under stress. A DN does 

not have to be purely covalent or physical, it can be a combination of one of each 

type. This allows for even more diversity of material properties. Depending on the 

combination of double network types used, the increase in strength compared to a 

single network gel will occur via a different mechanism. Gong reported that covalent 
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Scheme 1-2: Sequential IPN formation. Where M denotes monomer, I = initiator, X = Crosslinker. 
Black is the first network and red is the second. Filled circles are crosslinking points. Adapted from 
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– covalent DNs are strengthened via the ‘sacrificial bond’ mechanism.66 Here, bonds 

of one network break in order to ‘protect’ the other network and in doing so leave 

pockets of the initial network intact along with dissipating the energy from the stress. 

In this case it is the AMPS network that breaks protecting the acrylamide network of 

the original AMPS-AAm material. 

A similar mechanism occurs in a chemical-physical double network, except here it is 

the weaker, physical network that breaks and, unlike in the covalent-covalent 

system, this is reversible. These are known as hybrid DNs. Chen et al. proposed a 

‘chain pulling-out mechanism’ for these hybrid double networks.72 This can allow for 

strength to be maintained over a number of cycles compared to the covalent-

covalent networks that will likely see a decrease in strength in subsequent 

mechanical test cycles. 

1.3 Analytical Method Development 

As the products of bacterial metabolism, VFAs are found in many scenarios and as 

such their analysis is needed in many areas, not just human (and animal) body 

fluids,7,73–75 such as: wastewater,76,77 landfill leachates,78,79 food80,81 and other 

environmental systems. Analysis of sweat is carried out for many reasons including: 

medical diagnoses and testing,74,82 forensic science applications7,10,13,14,83 and drug 

testing.18  

According to Anderson and Yang, volatile fatty acids (VFAs) analysis can be carried 

out via a number of methods including titration, (steam) distillation and 

chromatography,84 where Fernandez et al. suggest chromatography (gas, liquid, 

anion exchange and ion exclusion) and capillary electrophoresis.85 Anderson and 

Yang described a new alkalinity test to determine total volatile fatty acid 

concentration as their favoured method as distillation is time consuming and gas 

chromatography requires more expensive instruments. They also suggested a more 

direct titration method from several decades earlier,86 however, both of these would 

only elicit total VFA concentration. For this reason, titration is not applicable to our 

application as it does not elicit as much information as chromatography methods 

would. However, they did demonstrate comparable concentrations via their titration 
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method and a GC method suggesting it could be useful as a pre-screening method. 

Furthermore, their analyte samples are larger as they are sampling anaerobic 

digesters, whereas it is very difficult to (naturally) collect a large enough sample of 

sweat (not absorbed) for this to be viable.  

Carboxylic acids for axillary odour investigations have also been analysed by proton-

transfer-reaction mass spectrometry (PTR-MS).87 This relies on the chemical 

ionisation of the acids primarily to the protonated carboxylic acid ions (RCOOHH+). 

This is a relatively simple technique for the detection and quantification of 

compounds in a mixture although does not provide exact identification though 

identification can be suggested based on the molecular weight as there is low 

fragmentation occurring with this soft ionisation technique. With the use of a bell jar 

sampling device, von Hartungen et al. reported successful measurements of short-

chain fatty acids (SCFAs) direct from the underarm via headspace extraction. Notably, 

they stated no quantifiable effect by the treatment with an antiperspirant, however, 

this was a very small study where the authors noted very little adherence to protocol 

by the participants. 

1.3.1 Chromatography 

Analysis of free VFAs (note: not the ester derivatives), predominantly by gas 

chromatography (GC) and high performance liquid chromatography (HPLC), both 

with and without mass spectrometry (-MS), is widely reported from as far back as the 

1960s.88 This includes samples recovered from human sources such as plasma and 

saliva.89 Furthermore, this was also applied to sweat samples by Perry et al., although 

these samples were collected under ‘forced’ conditions (volunteer was sat in a large 

plastic bag with the addition of heating).90  

A further example of forced conditions is the use of pilocarpine. This is a molecule 

with a variety of medicinal applications. Its side effect of excessive sweat production 

is exploited in biomedical sweat testing. It is introduced to the patient via 

iontophoresis (diffusion of ions driven by an electric current) and was first reported 

by Gibson and Cooke in 1959 who also discussed the problems (including fatalities!) 

associated with the bag method.91 
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These forced conditions were deemed necessary because, naturally, humans only 

produce relatively small volumes of sweat, where, the aim of this research is to create 

a device that is more feasible to use in a more realistic situation, and therefore with 

a more realistic quantity collected, consequently the sensitivity of the analytical 

technique must be considered. Fleming et al. carried out the GC of human biological 

specimens using a polar column with a mixed solvent that was partially acidified, 

where the method development for this project was based on this research.89 

Concentrations of VFAs from various bodily fluids have been quantified using linear 

regression analysis based on the integrated areas of the peaks compared to the linear 

calibration in relation to the internal standard.73 In 1975, Hauser and Zabransky used 

GC to determine the presence of VFAs in order to identify the presence of anaerobic 

bacteria.92 It is this methodology that we aim to use as a method to quantify the 

efficacy of an antiperspirant / deodorant product.  

The advantage of using GC in combination with mass spectrometry (GC-MS), as when 

using any combination of analytical techniques, is that it provides more information 

than if the two techniques were used separately, as a result of this it is a widely used 

technique. In the case of GC-MS, the addition of molecular splitting patterns, along 

with database identification, gives more definitive proof of the compounds’ identities 

rather than relying on a comparison of elution times (as in GC-FID) as there can be 

more than one compound with the same elution time. GC-MS has been a popular 

analytical technique for the analysis of fatty acids since the 1980s. A literature survey 

of this area indicates that most of this work was carried out on ester derivatives. The 

most obvious reason for this is that derivatization increases the volatility of the fatty 

acids. Due to the polar hydroxyl groups on the free acids, intermolecular hydrogen 

bonding can occur, therefore increasing the boiling point of the free acids.93  Masking 

these groups, e.g. by derivatisation, therefore increases volatility by removing these 

intermolecular interactions as is illustrated in Table 1-1.94 In addition, the esters tend 

to smell more favourable than the free acids, with esters being responsible for many 

fruit aromas which may make the esterified forms more appealing to handle, Table 

1-2.95 
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Table 1-1: Comparison of boiling points96 of straight chain saturated acids and their methyl esters.94 

 Free acid methyl ester 

IUPAC 
name 

common 
name 

melting 
point 
(°C) 

boiling 
point 
(°C) 

melting 
point 
(°C) 

boiling 
point 
(°C) 

methanoic formic 8 101 — 32 

ethanoic acetic 17 118 — 56 

propanoic propionic −21 141 — 80 

butanoic butyric −8 162 — 102 

pentanoic valeric −35 184 — 127 

hexanoic caproic −2 205 — 150 

heptanoic enanthic −9 223 — 172 

octanoic caprylic 16 240 — 193 

 

Table 1-2: Pictorial table of esters and the associated odour.97 
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The most common esters employed are methyl, benzyl and trimethylsilyl (TMS) 

esters.98–103 However, derivatisation is time consuming and the aim of this project is 

to develop a method of analysing the free fatty acids (FFAs) as this is more efficient 

and cost effective and, as mentioned above, has already been reported for 

standalone GC. Despite this, in order to test this hypothesis for our own 

circumstances, derivatization and analysis was briefly investigated (Chapter 2 section 

2.2) 

Sample preparation 

In 2015, Jadoon et al. indicated that, unlike with other bodily fluids, generally sweat 

is directly analysed without the need for extraction.18 One form of GC-MS commonly 

used for analysis of VFAs is solid-phase micro-extraction –GC-MS (SPME-GC-MS).104 

The advantage of this technique is that it analyses the volatiles in the air above the 

solid sample in the vial which is ideal for volatiles. In addition, this is more useful for 

smaller volume / less concentrated samples as there is no further dilution by the 

addition of solvent for recovery. Dormont et al. hypothesised that the extraction 

method effects which parts of the scent profile are detected.8 The example they give 

is that Curran et al. use SPME as their extraction technique104 but do not detect thiols 

known to be part of malodour whereas when using solvent extraction (e.g. Zeng et 

al. and Natsch et al.105) the key compounds were detected. 

A further extraction method that can be combined with GC-MS is thermal desorption. 

This is where the analytes are extracted from the solid substrate using a combination 

of heat and an inert gas flow to carry the volatiles to the GC. According to Agilent, 

this is reliably up to 95 % efficient compared to solvent extraction techniques which 

are reported to be 30 – 80 % efficient.106 

When not using either of these solid phase extraction techniques, the extraction 

method to be used has to be considered in order to minimise loss of analyte pre-

analysis. Prada et al. compared supercritical fluid extraction (SFE), subcritical water 

extraction (SWE), Soxhlet extraction and the use of an autoclave on various brands 

of sterile pads and cottons.83 They found that even with sterilization, headspace 

analysis of ‘blank’ gauze pads still revealed the presence of volatile organic 
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compounds (VOC) limiting the analysis results. They concluded that, of the methods 

tested, SFE resulted in the complete removal of VOCs from the sorbent materials 

under optimised conditions and therefore this was the best of those tested. The 

drawback of SFE is that there is a limit to the amount of water that can be introduced 

into the system because of the cooling that occurs, as the water will likely freeze and 

cause blockages. 

Supercritical Fluid Extraction (SFE, not to be confused with supercritical fluid 

chromatography – SFC) is a technique that most commonly uses supercritical carbon 

dioxide (sCO2) as the extraction solvent. A supercritical fluid is one that is above its 

critical temperature and pressure. For carbon dioxide, these are 304 K and 72.8 bar 

respectively (Figure 1-8).107,108 Cardea et al. reported the use of sCO2 to dry 

hydrogels, removing all solvent to form scaffolds for tissue engineering 

applications.109 This is something that will be investigated in Chapter 4. 

 

Furthermore, Kanda et al. used a six hour long Soxhlet extraction to remove foot 

sweat samples from socks for GC-MS analysis. They found that although all samples 

contained SCFAs, only those with a strong foot odour contained isovaleric acid.104,110 

A further analytical technique that is used for the analysis of malodour is 

olfactometry.111 In olfactometry, odours are pushed down a tube to an opening made 

for someone to place their nose and sniff. The ‘sniffers’ then pick from an extensive 

list of descriptive words  such as that put together by Harper in 1968112 as their rating. 

Figure 1-8: Left diagram of the phases of carbon dioxide by temperature / pressure. Right schematic 
of supercritical fluid extraction apparatus. 
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This was used in conjunction with GC by Dravnieks to create an odorgram; a GC 

chromatogram annotated with the assigned descriptors, and is still used in such a 

manner or in conjunction with GC-MS (GC-MS-O) to this day (see Figure 1-9). 

Interestingly, Dravnieks used the Kovats index (converts retention times to system 

independent constants by comparing them to the elution of known n-alkanes) for his 

GC data. This is the only use I am aware of, even though it was first coined by Ervin 

Kováts in 1958, as it appears not to have been widely adopted.113 The advantage of 

GC-MS-O is that the individual malodour components in a mixed sample will elute at 

different times and therefore can be smelled separately. Olfactometry is most similar 

to the real life sniff panels which, although somewhat outdated, is still necessary to 

understand consumer perception of fragrances and the success of antiperspirant / 

deodorant products created in an industrial setting. This is because GC or GC-MS can 

only identify / quantify the compounds involved in a sample, they cannot determine 

the significance of a compound to the overall smell. 

 

Figure 1-9: A GC-Olfactometer. 

As evidence for this necessity, in 1996, Behan et al. reported how the skin changes 

perfume.114 They found that there is some evidence for changes in perfume 

ingredients in the underarm and suggested this was probably due to microbially 

catalysed reactions. They did this via monitoring ‘underarm headspace’ followed by 

thermal desorption GC. They reported the hydrolysis of esters within microbially rich 

areas such as the axilla and that the product of this could be useful perfume 

ingredients in their own right. It is also stated that this did not occur in the rest of 
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their experiments carried out on the forearm. This could be of further interest as it 

means the fragrance may last longer than if the alcohol was applied directly. 

Interestingly, they also noted the appearance of a large number of peaks ‘extraneous 

to the experiment’ which could be accounted for by sampling untreated axillae. I 

suggest this is likely to be components observed in other literature, including the 

volatile malodorous compounds of interest within this research. 

HPLC of VFAs from human and animal samples of multiple biological materials was 

carried out by Stein et al. and Wagner and co-workers in the 1990s.75,115 Just prior to 

this, Chen and Lifschitz reported achieving similar results by HPLC compared to the 

usually preferred GC when analysing VFAs.116 HPLC is advantageous compared to GC 

if subsequent manipulation of the separated VFAs is desired. Furthermore, it is easier 

to collect the separated VFAs when they are still in liquid form compared to the gas 

form which would require condensation.115 Stein et al. made an unusual solvent 

choice of sulphuric acid.75 This resulted in a reportedly highly sensitive and 

reproducible detection method by UV without the need for esterification. Wagner 

and coworkers used a common solvent ratio of 15 to 85 % acetonitrile to water for 

short chain fatty acids.115 This is investigated in Chapter 2. 

The analysis of antiperspirant / deodorants should also be investigated. Previously, 

GC-MS was carried out by Rastogi,117,118 however, they did not attempt the analysis 

of deodorant components and VFAs simultaneously which could be a challenge if 

elution times are too similar. 

1.3.1.1 Qualitative, visual analysis 

A further possible application would be to include indicators for elements of sweat 

in the device for a more instantaneous output (visual, e.g. colour change), for 

example a pH indicator as sweat is generally acidic in nature due to the presence of 

volatile fatty acids. On a slightly more simplistic level, colorimetric data is a powerful 

tool for gathering data from people’s skin. 

Lambers et al. suggested that the natural skin pH is an average of below 5, especially 

without the use of soap and other cosmetics or even tap water (typical pH ca. 8).119  

It has also been documented that the acidic skin surface (often referred to as the 
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acidic mantle) helps the bacteria attach to the skin surface. However, their study was 

carried out on the volar forearm but they also suggested that the pH of occluded 

areas, such as the axilla, is likely to be slightly higher. These areas are often referred 

to as ‘holes’ in the acid mantle. 

Koh et al. used a multitude of colour-change indicators within one microfluidic device 

to simultaneously determine many features of sweat.120 This colourimetric sensing 

allowed assessment of rate and volume of sweating, pH and concentrations of 

chloride, lactate and glucose. They used anhydrous cobalt (III) chloride to chelate 

with the water in sweat to form the hexahydrate complex; a colour change from blue 

to purple. In sweat, pH is often considered an index of hydration state. Meanwhile, 

universal pH indicators including dyes such as bromothymol blue, methyl red and 

phenolphthalein were suggested as they all cover a ‘medically relevant’ pH range. 

Table 1-3: List of indicators recommended by Koh et al. with information collated from Bates.120,121 

Indicator pH transition Visible transition 

Bromothymol blue 6.0-7.6 Yellow-blue 

Bromophenol blue 3.0-4.6 Yellow-blue 

Methyl red 4.4-6.0 Red-yellow 

phenolphthalein 8.0-10.0 Colourless-red 

 

This was illustrated in 1961 by Tashiro et al. who used bromophenol blue to visualise 

finger prints after Manuila had used it to investigate sweating in the human axilla 

some 10 years earlier,122,123 furthermore, in 2013, Liu et al. used quinine as a pH-

responsive chemfluorescence indicator for the detection of human body sweat 

odour,124 however, this was not used directly as a biosensor. Instead, the samples 

were collected then sprayed onto the quinine-containing gels and the fluorescent 

results captured using a specialised camera. This is no more user friendly than 

traditional sampling. 

Also in 2013, Oncescu et al. published a paper that included a smartphone-based 

app. for the colorimetric detection of biomarkers in sweat.82 However, this involved 

a purpose-built case for the smartphone for test strips to be inserted into an optical 
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reading system after being placed on, for example, the forehead to collect a sweat 

sample. This was designed for monitoring the pH in relation to sodium ion 

concentration as a guide to hydration levels of the test subject with a view to 

monitoring during exercise. It is a step in the right direction for point-of-care 

monitoring using a non-invasive sample collection method but improvements need 

to be made so that less specialist phone modifications are required. These 

smartphone-based technologies can be quite complex in nature, using lab-on-a-chip 

technology such as microfluidics and transmitting data to a smart phone. 

Previous work in the Haddleton group has used the substitution reaction of thiols 

onto dibromomaleimide for stabilisation;125–127 this reaction invokes a yellow 

product, from colourless starting solutions, which also fluoresces, allowing for the 

reaction to be monitored, and potentially be quantitatively analysed by UV / 

fluorescence spectroscopy.128 

In 2016, Park et al. illustrated the use of polydiacteylenes for sweat-pore mapping of 

fingerprints.129 This was an advancement as it is a photo-curable polymer that can be 

inkjet-printed onto a substrate to make a patch for sampling; a high throughput 

technique. This gives immediate data through a hydrochromic colour change (blue to 

red) and was illustrated with the ability to visualise a fingerprint. This can then be 

analysed further by Raman spectroscopy or a more simple photograph followed by 

RGB analysis. 

Recent Advances  

Most recent advances in the field of sweat analysis have been in the development of 

wearable biosensors. 

In 2015, Jadoon et al. published a review article on the recent developments in sweat 

analysis and its applications.18 This was mainly in comparison of the ease of using 

sweat as a biofluid, compared to blood samples, for detection of drugs (and their 

metabolites), ethanol, metals, ions and salts or volatile organic compounds. This 

application is of most interest to this work but was unfortunately a relatively small 

part of this review in comparison to drug detection and disease diagnosis. 

Furthermore, the sweat detection techniques discussed were devices found in 
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literature previously such as filter paper, occlusive devices and a water-tight sweat 

collection bag which illustrates the lack of recent progress in this area and therefore 

the need for this research. They also only discussed traditional analytical techniques, 

such as chromatography, after solvent-based extraction techniques, where 

necessary. 

In 2014, Dutkiewicz et al. published the most relevant article to this project.130 They 

used agarose gel probes to collect sweat from the forearm then carried out direct 

desorption-ionisation into a mass spectrometer (without any separative 

chromatography). Interestingly, they suggest that the skin-excreted metabolites 

diffuse into the already trapped water within the hydrogel evidenced by no observed 

increase in the mass of the probe after sampling and that dry agarose patches are 

less efficient at trapping metabolites. Furthermore, they were not looking for the 

malodourous compounds but at the potential use in healthcare and drug testing 

applications. They also indicated that the probes could be refrigerated for ~20 hours 

prior to analysis and results would still be valid. However, one of the goals of this 

project is to avoid refrigeration. Finally, they did not use a model solution to 

determine the efficiency of recovery from their patch, as they noted there is no 

suitable in vitro model to simulate excretion of metabolites with sweat, but did 

estimate recovery between 30-68 % depending on compound and concentration. 

In 2016, Peng et al. published a paper on a new oil/membrane approach for 

integrated sweat sampling.131 They claim that the use of the oil layer against the skin 

reduces analyte concentration (something that had also been reported 

previously132), and also that they could reduce the sample volumes required from µl 

to nl. This is the most important advancement reported in this paper as sweat is not 

usually produced in large amounts unless forced conditions are used90 so for the ‘real 

life’ application of my project, this would be extremely beneficial. This oil/membrane 

approach had previously been used in a more simplistic manner in 1961 by Tashiro 

et al. who used bromophenol blue (a standard colorimetric pH indicator) to visualise 

finger prints.122  
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In conclusion, there has been very little advancement in the field of simplistic 

sampling and analysis of sweat especially from an antiperspirant deodorant 

perspective. However, there is an increase in wearable technology that can provide 

much data from the content of sweat for medical advances. 

During a patent search for prior art to such a device, prior art was found pertaining 

to both sweat capture devices and hydrogels but our invention is combining the two. 

The following chapters of this thesis aim to address the challenges discussed above. 

Chapter 2 illustrates gas chromatography method development, utilising a model 

sweat as well as investigating esterification and liquid chromatography. Chapter 3 

examines all aspects of the synthesis of p(NaAMPS) and p(HEMA) hydrogels then 

compares them to more complex double network hydrogels. Chapter 4 then takes 

these p(NaAMPS) hydrogels and explores their use as a sweat collection device; 

investigating model sweat absorption, storage and extraction. Finally, Chapter 5 

explores the use of the device in vivo alongside the inclusion of additives such as 

fragrances and indicators for qualitative pre-screening. 
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2. Chromatography 

Currently, there is no industrial standard method for the identification and 

quantification of malodourous compounds from the axilla as a measure of the 

efficacy of antiperspirant / deodorant products. Chromatography, especially gas 

chromatography, is a relatively low cost, widely available technique that could meet 

this requirement. 

2.1 Gas Chromatography 

Gas chromatography (GC) is a common and well-established analytical technique 

used to separate and analyse mixtures of compounds. Depending on the detector 

used, this can be useful for identifying unknown compounds and determining 

concentrations. It is an interactive chromatography; it involves separation via a 

combination of polarity and boiling points of the compounds, due to the use of a 

column with a stationary phase and a heating method. 

Typically, upon injection of a liquid sample, it is vaporised before being carried down 

the column by the mobile phase, also known as the carrier gas. This is most 

commonly hydrogen, helium or nitrogen.  In this work, the GC-FID uses hydrogen and 

the GC-MS uses helium. Separation then takes place in the column, followed by 

detection via the chosen detector, Table 2-1. 

Table 2-1: Detectors and their associated detection limits.1 

Detector Approximate detection limit Linear range 

Thermal Conductivity 400 pg ml-1 (propane) >105 

Flame Ionisation 2 pg s-1 >107 

Electron Capture 5 fg s-1 104 

Flame Photometric <1 pg s-1 (phosphorous) 
<1 pg s-1 (sulfur) 

>104 
>103 

Nitrogen-phosphorous 100 fg s-1 105 

Sulfur chemiluminescence 100 fg s-1 (sulfur) 105 

Photoionisation 25-50 pg (aromatics) >105 

Fourier Transform Infrared 200 pg – 40 ng 104 

Mass Spectrometry 25 fg – 100 pg 105 
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The most common detectors are flame ionisation detector (FID) and mass 

spectrometry (MS). Although Table 2-1 reports general detection limits for these 

detectors, Fernandez et al. demonstrated the range of LOD reported in literature 

since the 1990s specifically for VFAs.2 They indicate that for FID, this ranges from 10 

mg l-1 to less than 1x10-3 mg l-1 (both valeric acid). For mass spectrometry, this was 

reported as 1 mg l-1 (acetic acid) to 1x10-6 mg l-1 (valeric acid), with the linear dynamic 

ranges of 3 to 4 orders of magnitude for both. These will depend on factors such as 

sample matrix and pre-treatment employed in each case. 

In flame ionisation detectors, analytes are burned under the carrier gas, H2, and air. 

Hydrocarbons produce CH radicals while carbonyls and carboxyls produce CHO+. FID 

is insensitive to any other (non-C-H) group. For compound identification, flame 

ionisation detection relies on comparison of the retention time of known 

compounds. A second method traditionally employed is relating the retention time 

to those of straight chain alkanes known as Kovats’ index.3 

Gas chromatography-Mass spectrometry (GC-MS) can provide both quantitative and 

qualitative information. By comparison of the mass spectra to internal databases, 

compounds can be identified with more reliability than when using a GC-FID. Here 

the mass spectrometry detector is typically quadrupole (1, 2, or 3 in series) and the 

compounds are fragmented by electron ionisation (EI) or chemical ionisation (CI). 

This is ideal for the investigation of unknown compounds. A general m/z scan (e.g. 

40-400 amu) can give a poor signal to noise ratio, which can be problematic for 

quantitation, however, if the compounds are known, selected ion monitoring (SIM) 

may be used. Dodds et al. compared the use of GC-FID with EI GC-MS for analysis of 

fatty acid methyl esters (FAMEs)4 and Wu et al. highlighted the use of SIM mode for 

analysis of volatile fatty acids (VFAs).5 
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Table 2-2: Details of SIM mode analysis of short chain VFAs from Wu et al. The target ions used for 
quantification are highlighted.5 

VFAs Retention time 
(minutes) 

Retention Window 
(minutes) 

Selected ions 
(m/z) 

C2 8.96±0.01 8.00-10.00 43, 45, 60 

C3 10.82±0.02 10.00-11.20 29, 45, 74 

i-C4 11.42±0.01 11.20-12.00 41, 43, 73 

n-C4 12.68±0.01 12.00-13.20 60, 73 

i-C5 13.50±0.00 13.20-14.00 29, 57, 74 

n-C5 14.85±0.03 14.00-15.20 60, 73 

C5 (d9-nC5) 14.63±0.02 14.00-15.20 45, 63 

Note: each retention time value is the mean value ± standard deviation (n=5). 

As illustrated in Figure 2-1, where there is a large amount of co-elution in the total 

ion count (TIC) chromatogram that quantification would be impossible, SIM mode 

allows for complete peak separation. This not only leads to better signal to noise but 

can also allow faster methods as peak overlap is no longer an issue. This is further 

highlighted in Figure 2-2, where the peaks in the 74 m/z chromatogram can be 

attributed to C3 and i-C5. 

 

Figure 2-1: Overlaid SIM and TIC chromatograms. 
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Figure 2-2: Highlighting the ability to differentiate between i-C5 and n-C5 by using SIM mode. 

2.1.1 Column 

There are two general types of columns that have been employed in gas 

chromatography since its inception; packed columns and capillary columns. Capillary 

columns can be further divided into wall coated open tubular (WCOT) columns and 

porous layer open tubular columns (PLOT), Figure 2-3, where the difference is 

whether the inner wall lining is a high boiling liquid (WCOT) or a porous layer of a 

solid absorbent (PLOT).6 

 

 

 

Figure 2-3: Illustration of the different types of column available for gas chromatography; packed 
(left), WCOT (middle) and PLOT (right).6 
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Table 2-3: Column information adapted from Practical Gas Chromatography A Comprehensive 
Reference.6 

Column type Packed Column WCOT PLOT 

Stationary 

Phase 

a) Porous support 

impregnated 

with a liquid 

b) Adsorbent 

particles 

Thin film of a 

high boiling point 

liquid 

Porous layer of a 

solid adsorbent 

Retention 

Mechanism 

a) Partition 

b) Adsorption 

Partition 

(solubility) 

Adsorption 

Length 0.5 – 6 m 5- 100 m 5 – 30 m 

Inner diameter 2 - 4 mm 0.1 -0.6 mm 0.2 – 0.6 mm 

Particle size 100 – 300 µm N/A 5 – 50 µm 

Film thickness N/A 0.1 – 10 µm N/A 

Column 

material 

Copper, stainless steel, 

glass, quartz 

Glass, fused silica (quartz) with 

polyimide coating, fused silica coated 

with stainless steel 

 

Today, WCOT columns are the most commonly used column type (>80 % of all 

applications). The first paper on GC analysis of acids using a capillary column was 

published by Lipsky in 1959.7 This thesis uses only capillary columns made of fused 

silica. 

As well as the material that forms the stationary phase, other factors to consider are 

the thickness of this stationary phase, the inner diameter of the column and the 

length of the column. Increasing the thickness of the stationary phase increases the 

retention time of compounds which increases the resolution of fast-eluting peaks. 

Resolution also increases proportionally to the square root of the column length. 

Finally, narrower column inner diameters also provide increased resolution. All these 

factors must be considered in combination. 
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Table 2-4: Functional Groups and potential interactions.8 

Functional groups Dispersion/induction Dipole H-bond 

Methyl Strong None None 

Phenyl Very Strong None Weak 

Cyanopropyl Strong Very Strong Medium 

Trifluoropropyl Strong Medium Weak 

Polyethylene glycol Strong Strong Moderate 

 

Initially, GC was carried out using an Agilent DB-1ms non-polar column where the 

stationary phase is poly(dimethyl siloxane) (PDMS). This is regarded as a good general 

purpose column whereby separation relies more on the respective boiling points of 

the analytes than the chemistry due to very little interactions with the stationary 

phase. 

As reported by Fleming et al. amongst others, a polar column was used for the 

analysis of volatile fatty acids.9 In this work, a Restek Stabilwax column (stationary 

phase polyethylene glycol) was employed. It is suggested that with the non-polar 

column, separation is reliant on boiling point of the analytes whereas with this polar 

column, hydrogen bonding to the stationary phase will play a major role. The increase 

in column length is a major factor in the separation of the analytes, Figure 2-4. The 

polar PEG column elicits sharper, taller peaks compared to the non-polar column, 

making this more ideal for quantification. 
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Figure 2-4: Comparison of the effect of column material and length on the separation of analytes by 
comparing chromatograms from a non-polar 15 m length column (Rxi1MS) and a polar 30 m length 
column (Stabilwax) both on the GC-FID using the Fleming oven heating method. 

2.1.2  Heating Method 

Gas chromatography can be run isothermally or using a temperature program. At a 

constant temperature, more volatile components will elute close together and less 

volatile components will have very long retention times or not elute at all if too low 

an isothermal program. With a temperature gradient, analytes will elute with an even 

distribution across the chromatogram, with the more volatile compounds eluting 

faster. 

The heating method chosen, alongside the column type, is key to the separation of 

the compound mixture. The ideal method will be as fast as possible for efficient data 

acquisition but this can be hindered if there is a large number of compounds to be 

separated or if the compounds are of very similar nature. Therefore a compromise 

between these two factors must be made. For example, the original method used in 

this work was a very quick method (40 °C min-1, total run time ~8 minutes) as the 

application was concentration determination of a single compound within a mix of 2 

or 3 including solvent. In the case of this application, this was not suitable. As 

illustrated in the chromatogram, most of the compounds were co-eluting which is 
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not suitable for quantification, Figure 2-5. Therefore, a longer method (slower 

heating gradient) was necessary to try and split the 12 different compounds in the 

model sweat used throughout this research, Figure 2-6.9 

 

Figure 2-5: GC-FID chromatogram of the attempt to separate the 12 malodour compounds using the 
original, fast method. 

 

Figure 2-6: Comparison of the heating profiles employed in the different GC-FID methods. 
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Figure 2-7: Chromatogram illustrating improved separation using the slower heating rate method. 

Although this proved effective with the polar column on the GC-FID system, further 

method development was required for the GC-MS which had a shorter, non-polar 

column, Figure 2-8. 

 

 

 

 

 

 

 

 

 

 

Figure 2-8: TIC chromatograms for the two different column oven heating methods tested, where 
the black line uses the same method as successfully used on the longer, polar column on the GC-FID 

(left). Corresponding heating profiles (matching colours) where the Fleming method (GC-FID 
standard) heats from 60 to 200 °C at 8 °C min-1 whereas the new method is from 35 to 100 °C at 2 °C 

min-1 (right). All other conditions remained the same. 
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2.1.3 Solvent 

Solvents are used as a vehicle to transfer the analytes to the column. Ideally, a highly 

volatile, low boiling point solvent that all analytes are soluble in would be used. 

Special attention should be paid if the analytes are very highly volatile themselves as 

there can be overlap with the solvent peak (in the case of FID) or analyte peaks will 

not be seen by the detector, in the case of mass spectrometry, as they could appear 

before the detector is switched on, the time known as solvent cut time (the delay 

between sample injection and detector starting, usually 1-2 minutes, to protect the 

detector from saturation damage by the solvent). 

Initially a co-solvent system reported by Fleming et al. was investigated whereby they 

found that using 1 N HCl in the presence of 80 % of an organic solvent provided the 

optimum results.9 However, aqueous-containing solvent systems are not suitable for 

extraction from a hydrogel due to hydrogel absorption, therefore this would require 

further steps in recovery / analysis which is not ideal.  

The solvent that could be used for the gas chromatography was limited based on the 

interaction with the hydrogels during the extraction procedure. This meant that 

aqueous-based solvent systems and similarly polar organic solvents were ruled out 

as they are absorbed by the hydrogel (where water has a normalised relative polarity 

of 1.00010). Therefore, relatively non-polar solvents, which still had relatively low 

boiling points, were chosen. Based on this, acetonitrile (0.460, b.p. 81.6 °C) and ethyl 

acetate (0.228, 77 °C) were deemed good candidates. 

A further factor involved in solvent choice was the potential for side reactions during 

the gas chromatography analysis. For example, Brondz reported if methanol was 

used during the analysis of the volatile fatty acids it could result in the formation of 

FAMEs,11 then the heating cycle could initiate methyl esterification of the analytes, 

complicating the analysis (2.2.1 Fatty Acid Methyl Esters (FAMEs)). Based on this 

information, the solvent was changed from methanol to acetonitrile. As illustrated 

by Figure 2-9, this change in solvent did not affect the chromatography. 
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Figure 2-9: Overlaid chromatograms illustrating that changing the eluent did not affect the 
chromatography. 

2.1.4 Quantification including Calibration 

Quantification can be achieved using either the peak height or the peak area, 

however, peak area is used in this thesis as it avoids many of the potential problems 

associated with the use of peak height. These include changing temperatures, change 

in gas flow, peak tailing and overloading of the column or detector. Common 

methods of quantification are discussed in the following subsections. 

2.1.4.1 Response Factor 

Equivalent concentrations of different analytes yield different peak areas hence the 

need for individual calibrations for each analyte. Calculating the response factor (RF) 

is the most simple of these: 

 𝑅𝐹 =  
𝑤

𝐴
 (2-1) 

 

where w is amount of analyte and A is the associated peak area. The peak area of a 

sample of unknown concentration can then be simply multiplied by this RF value to 

calculate the concentration. 
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2.1.4.2 Area Percent 

This is a relative quantification method that allows the comparison of different 

analytes within a mixture by comparing the peak area of an individual analyte with 

the total of the peak areas of all analytes. It has a severe limitation in that it only 

works effectively if the mixture comprises of only chemically similar compounds. This 

method can be used to check purity but is not recommended for use in trace 

analyses. 

2.1.4.3 Calibrations 

External standard 

An external standard calibration relies on a calibration curve of peak area vs known 

concentration for a series of concentrations, over the range to be analysed, being 

created.  

Internal standard 

An internal standard calibration relies on the addition of another compound (of 

known concentration) to the mixture to be analysed prior to analysis. Ideally, this 

would be a compound that is similar to the compounds of interest but that does not 

co-elute with anything already present in the mixture. Deuterated forms of the 

analytes are often chosen12 but may still co-elute, this would be better for use on a 

GC-MS. If this is added pre-extraction (where such procedures are carried out), then 

it can elucidate information on the efficiency of the extraction procedure if that is 

not otherwise known. In the case of this work, this was not necessary due to most 

work being carried out by dosing with a mixture of known concentration for research 

purposes. 

Bromobenzene (PhBr) is widely used as an internal standard in gas chromatography 

analysis of volatile organic compounds from wastewater and other environmental 

monitoring.13 As this work did not rely on the internal calibration alone for 

concentration calibrations, it was less important that the chosen standard was of 

similar chemical and physical properties to the analyte. Instead it was chosen as there 

was good separation between PhBr, the solvent peak and the analyte peaks and 
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therefore useful for monitoring consistent detector response of the instrument over 

time. 

This work takes advantage of both an internal and an external calibration 

simultaneously. 

Standard Addition method 

An alternative is the standard addition method. A mixture is analysed before and 

after being spiked with a known concentration of one of the analytes that is already 

present in the sample, where the difference in peak area gives a reference. 

2.1.4.4 Internal Standard Ratios 

Calibration curves were created for use in determining unknown concentrations of 

VFAs within samples by linear regression. Calibration curves were only produced for 

five of the VFAs as the others overlapped in the chromatogram and therefore the 

individual peak area could not be determined, Figure 2-10. The peaks that are used 

are highlighted by the orange boxes on the overlaid chromatograms in Figure 2-11. 

The axes in Figure 2-10 are labelled as ratios. The y-axis is the ratio of the peak area 

of the VFA of interest divided by the peak area of the PhBr internal standard. 

Similarly, the x-axis is the ratio of the concentration of the VFA divided by the 

concentration of the PhBr which is kept constant between samples at 0.04 mol dm-3. 

This is implemented following the analysis of Fleming et al.9 and is useful to account 

for any fluctuation in performance of the GC instrument over time. 
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Figure 2-10: Calibration curves of the 5 separated VFAs. 

 

 

 

 

Figure 2-11: Overlaid chromatogram of the serial dilution highlighting the VFAs of interest. 



46 
 

The lower limit of detection (LLOD) was also determined using the same serial 

dilution samples. This is reported as the calculated concentration of the last sample 

in the serial dilution where its peak in the chromatogram can be separated from any 

background noise, Figure 2-12. For all but one of the VFAs used, the calculated lower 

detectable concentration is between 0.03 – 0.10 mmol dm-3, these are displayed in 

Table 2-5 along with the respective elution times. The lowest detectable limit of 4-

ethyloctanoic acid is approximately 100 times more concentrated than the other 

VFAs although this is most likely due to one or more of the following; the GC method, 

column conditions or an inappropriate solvent choice. 

 

Figure 2-12: Chromatogram of lowest concentration determinable peak. 
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Table 2-5: Elution time and calculated minimum concentration for the 12 volatile compounds used. 

Volatile Compound Elution time 
(minutes) 

Calculated minimum 
concentration (mmol dm-3) 

Acetic acid 9.6 0.0904 

Propionic acid 10.9 0.0694 

Trans-2-nonenal 10.9 0.0312 

Isobutyric acid 11.4 0.0558 

Butyric acid 12.3 0.0566 

2-methylbutyric acid 12.9 0.0474 

Isovaleric acid 12.9 0.0469 

Valeric acid 13.9 0.0476 

4-methylvaleric acid 14.9 0.0411 

Hexanoic acid 15.4 0.0413 

3-mercapto-1-hexanol 15.4 0.0376 

4-ethyloctanoic acid 20.0 3.29 

 

Following a review of the literature, the following compounds were found to be used 

as internal standards during VFA analysis: valeric acid,14,15 biphenyl acid,16 heptanoic 

acid,17 2,2-dimethylbutyric acid,18 isobutyric acid, 2-methylpentanoic acid and 

benzoic acid,19 n-heptadecanoic acid,20 d3-stearic acid,21 hexanoic acid,22 and 

diethylacetic acid.23 Immediately, valeric acid and isobutyric acid can be discounted 

as they are already present as malodours in sweat and make up part of the model 

sweat utilised in this thesis. Two of the other acids were investigated as options for 

an internal standard that was chemically more similar to the analytes than 

bromobenzene. Firstly, formic acid was assessed. However, due to the mechanism of 

FID, it is very low sensitivity compared to similar compounds of longer carbon chain. 

As reported by Agilent, formic acid has a retention time after acetic acid24 (ca. 10 

minutes) and therefore adds to an already busy area of the chromatogram which is 

not ideal, Figure 2-13. 
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Figure 2-13: Overlaid chromatograms with formic acid. 

As suggested by Stein et al., 2,2-dimethylbutyric acid was also analysed. As observed 

in Figure 2-14, 2,2-methylbutyric acid has a much stronger signal and a retention time 

after those of the analytes. 

 

Figure 2-14: Overlaid chromatograms investigating the potential of 2,2-dimethylbutyric acid. 
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2.2 Esterification 

As discussed in Chapter 1, most literature analysis of volatile fatty acids, is carried out 

on the esters due to the associated increase in volatility.25 

The ideal esterification method, for this application, would be carried out at room 

temperature with minimal additional reagents required so as it is possible to be done 

within the hydrogel patch at the point of sweat absorption. One method attempted 

was the formation of the trimethyl silyl (TMS) ester, Scheme 2-1. 

 

Scheme 2-1: General reaction of a volatile fatty acid to form the TMS ester. 

The successful conversion of butyric acid in this reaction was followed by 1H NMR, 

Figure 2-15. The disappearance of the hydroxyl proton that is clearly visible in the 

butyric acid spectrum is a clear indication of successful conversion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15: 1H NMR spectra of the starting materials and product in the TMS esterification of 
butyric acid. 
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2.2.1 Fatty Acid Methyl Esters (FAMEs) 

This was carried out based on the procedure reported by Kanda et al.26 where 0.5 % 

p-toluene sulfonic acid (catalyst) methanol solution is added to the VFA and heated 

to 100 °C for an hour, Figure 2-16 where R = Bu. Although the elevated temperature 

is undesirable, the literature procedure was attempted to determine initial success 

before decreasing the temperature could be investigated. The disappearance of the 

hydroxyl hydrogen combined with the appearance of the methyl ester peak in the 

proton NMR of the free acid and the esterification product respectively, indicates the 

reaction was successfully performed.  

 

Figure 2-16: 1H NMR characterisation of the FAME reaction of butyric acid. 

b a 

a 

b 
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However, the malodourous nature of the materials used renders this process non-

ideal for this application. The smell given off by the reaction suggests that the butyric 

acid was evaporating rather than being converted which would not be helpful for 

quantification of malodorous compounds which is the intended application. Further, 

the comparison of the GC chromatograms of the starting materials and product 

mostly reveal the catalyst plus a peak at the same retention time as the free butyric 

acid with no definitive peak for the product observed. It would be expected that the 

methyl ester product would appear earlier in the chromatogram than the free acid 

as it is known that esterification lowers the boiling point compared to free acids as it 

disrupts the hydrogen bonding that would otherwise occur.25 It is possible that the 

two low intensity peaks at 6 and 8 minutes could be attributed to this but this would 

require further investigation, Figure 2-17. Alternatively, the decrease in boiling point 

to approximately 102 °C after conversion would suggest that it is possible that the 

butyric acid is converted to the ester then evaporates as the reaction temperature is 

100 °C. 

 

Figure 2-17: GC-FID chromatograms of the methyl esterification reaction starting materials and 
product. 
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Due to the reasons described above, plus esterification adding an additional step to 

the procedure and as a result, potentially leading to the loss of analytes, esterification 

has not been used in this research and, instead chromatography will be carried out 

on the free fatty acids. 

2.3 High Performance Liquid Chromatography (HPLC) 

A method described by Kroumova and Wagner for the separation of free short chain 

fatty acids by HPLC was investigated as an alternative to gas chromatography. 

Analysis was carried out using a UV detector set at 205 nm. The solvent is a mix of 

acetonitrile and acidified water which would mean modifying extraction solvent 

post-extraction as discussed previously. Moreover, this method resulted in butyric 

acid and isobutyric acid eluting at almost identical times (Figure 2-18), suggesting 

that further method development would be required to optimise separation, thus GC 

remained the main analytical technique as there was no real advantage to using HPLC 

over the work already carried out by GC. This is in agreement with the findings of the 

review by Fernandez et al.2 

 

Figure 2-18: Overlaid HPLC traces of acetic acid, butyric acid and isobutyric acid (left) and zoomed in 
on the analyte peaks (right). 
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2.4 Conclusion 

Based on the analytical method development presented above, unless otherwise 

stated, the conditions employed throughout this research are the use of a GC-FID 

(Shimadzu GC2014 with AOC20 autosampler) with a polar, PEG stationary phase 

column such as a Restek Stabilwax-DA (30 m length, 0.32 mm ID and 0.25 µm film 

thickness) with hydrogen as carrier gas (supplied from an external hydrogen 

generator). The heating profile will be 8 °C min-1 from 60 °C (2 minutes) to 220 °C (5 

minutes) to analyse free ‘model sweat’ (10 free fatty acids, one thioalcohol and one 

aldehyde) unless otherwise discussed. Furthermore, calibration will be carried out 

externally, prior to analysis and all calibrants and analyte samples will include an 

internal standard, PhBr, which will be spiked, at a known concentration, for ratios of 

the concentrations and peak areas to be used in calculations. 

GC-MS and HPLC will not be focussed on throughout the remainder of the thesis, 

instead GC-FID has been used for concentration determinations. 
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3. Hydrogel Synthesis 

Standard p(NaAMPS) hydrogels are synthesised according to a procedure described 

previously within the Haddleton group.1 Briefly, 2-acrylamido-2-methyl-1-

propanesulfonic acid sodium salt (monomer), poly(ethylene glycol) diacrylate 

(crosslinker), 2-hydroxy-2-methylpropiophenone (photoinitiator) and water are 

mixed in batch before aliquots are transferred to silicone moulds and passed under 

a UV light source via a conveyor belt (~5 m min-1) five times to complete the synthesis 

(full details, Chapter 7). This chapter describes all parts of the process in order to 

optimise its synthesis for potential industrial scale synthesis and application. 

Attention will then focus on the mechanical properties of the hydrogel and further 

comparison with more sophisticated double network materials. 

3.1 Gel Proton NMR Method Development 

Typically, in polymer research, NMR is a very common analytical method used to 

probe monomer conversion, however, solution state NMR relies on the analyte 

samples being soluble in a deuterated solvent to obtain data. Where often for 

synthesised polymers a suitable solvent can be found, the crosslinked materials 

presented in this thesis are a considerable challenge. However, solid state NMR or 

non-solution samples for solution NMR are possible but are less readily available and 

leads to broader peaks and lower resolution. 

With this knowledge it was decided to test solution-state NMR on gel samples. 

Practically it is challenging to get a pre-made hydrogel into a standard size 5 mm NMR 

tube homogenously therefore it was determined that the hydrogels could be 

synthesised for NMR analysis with some minor modifications to the standard 

procedure. Namely, the water would be replaced with D2O and that the synthesis 

would be carried out on 1 ml aliquots directly in NMR tubes rather than the silicon 

moulds.2 Studies were carried out to determine the viability of relying on solution 

NMR of a gel to illustrate the vinyl proton peaks. Firstly, a study was carried out 

whereby extra monomer was added to a hydrogel that had been passed under the 

UV lamp 50 times post polymerisation (and original analysis, see section 3.2.2) and 
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left to allow the hydrogel to absorb the monomer. This was in order to prove viability 

of observing the monomer by NMR if it is trapped in the gel matrix. 

In order to show that the monomer was being absorbed far enough into the gel for 

it to be in the NMR window, red food colouring was added to the NaAMPS monomer 

before addition to the gel (Figure 3-1). It is worth considering that, where 0.1 ml of 

50 % monomer was added, clearly not all of the material had permeated the gel 

(evidenced by the food dye – Figure 3-1). This suggests the concentration of 

monomer detected by the gel NMR is < 10 %. Figure 3-1 illustrates the 1H NMR 

spectra of the 50 passes gel before and after the extra dyed monomer was added. As 

can be observed, the vinyl protons are visible in the monomer-doped sample but not 

before doping, suggesting that if vinyl peaks are not observed in later analyses that 

quantitative conversion has occurred. 

 

This indicated that it took ~24 hours for absorption through the gel, something which 

is interesting for the swelling method employed for the doping of the gels with model 

sweat for further research (Chapter 4), however, in this NMR tube study, absorption 

will likely be slower due to the decreased surface area compared to the standard 3 

cm diameter discs. 

 

 

Figure 3-1: Left the diffusion of the dyed monomer. Right the 1H NMR of the hydrogel before and 
after this addition, stacked. 
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3.2 Curing Efficiency 

As the goal of this work is to fulfil an industrial need, there was cause to investigate 

adapting the synthetic process to prepare larger (and possibly thinner) sheets of the 

hydrogel. Ideally, it would also only require one pass (instead of the standard five) 

under the Light Hammer (a high-powered UV lamp). One pass refers to once along 

the conveyor belt under the UV lamp. The conveyor belt speed is set to 5 m min-1 

which equates to approximately 7 seconds of UV exposure per pass. Therefore the 

standard reaction is ca. 35 seconds. 

3.2.1 Gravimetry 

Standard 3 ml p(NaAMPS) hydrogels were prepared using a different number of 

passes on the conveyor belt under the UV lamp, effectively investigating UV exposure 

time required to complete the reaction. The mass of the gels formed was recorded 

and compared to the mass of the ‘standard’ five passes gels. There is a significant 

difference in mass between one and five passes observed, Figure 3-2. This is likely 

caused by evaporation of water due to increased exposure to increased temperature 

caused by the powerful UV source. Unsurprisingly, 50 passes illustrates a further, 

significant mass decrease. This suggests that minimising the number of passes is 

beneficial not only for industrial scale synthesis but also to maintain the hydrated 

state and preventing phenomena such as the crazing discussed later in this chapter. 

Therefore, the conversion of monomer needs to be investigated to determine 

whether five passes are necessary or whether one is sufficient for quantitative 

conversion. 
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Figure 3-2: Percentage difference in mass of hydrogels exposed to the Light Hammer for varying 
amounts of time compared to the standard. 
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3.2.2 Proton NMR analysis 

The kinetics of this polymerisation were then assessed by NMR using the solution 

method validated in Section 3.1. As discussed, the polymerisations had to be carried 

out in situ as it is not feasible to get the gel into an NMR tube after polymerisation, 

nor could a suitable solvent be found due to the crosslinked nature of the product. 

For the same reason, there is no molecular weight data from SEC as this technique 

also requires solubility. As can be seen in Figure 3-3, the vinyl protons at 5.75 and 

6.25 ppm are only visible in the starting material, which is evidence of quantitative 

conversion of the monomer, even after one pass. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3: Stacked 1H NMR of the hydrogels synthesised using different UV exposure times with the 
highlighted disappearance of the vinyl peaks. 
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3.2.3 Infrared Spectroscopy 

The overlaid FTIR spectra confirm the disappearance of the vinyl groups, Figure 3-4, 

as previously illustrated by NMR (Figure 3-3). The key peaks are highlighted on the 

spectra with the main differences being related to the vinyl groups of the monomer 

and their disappearance in the polymers. With the C=C stretch at 1635-1620 cm-1 and 

the terminal vinyl protons appearing as the multiple peaks at 3100-3010 cm-1. The 

other key peaks that identify NaAMPS, as reported by Zhang and Easteal are 

presented in Table 3-1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-C=CH 

stretch 

disappears 
C=C stretch 

disappears 

compared to 

monomer 

Figure 3-4: Overlaid FTIR spectra of the hydrogels produced with different reaction times and the 
NaAMPS starting material. 
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Table 3-1: Infrared Spectroscopy characterisation of p(NaAMPS) and NaAMPS monomer.3 

Wavenumber (cm-1) Functional group 

3500-3200 N-H stretch, amide group 

(overlaps with O-H from water) 

3435-3469 N-H vibrations 

3100-3010 =CH stretch 

1652 Secondary amide carbonyl groups 

1635-1620 Vinyl C=C stretch 

1552-1557 Secondary N-H deformation (in the 

solid state) 

1224-1225 SO2 asymmetric stretch 

1180 C-N stretch 

1039 SO3 symmetric stretch 

623-624 C-S stretch 

Further work could be to analyse the xerogels so as to minimise the water peak, 

effectively removing the water from the sample, or investigate the possibility of using 

Raman spectroscopy as it is blind to water. 
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3.2.4 TGA 

TGA analysis shows similar transitions for all samples (Figure 3-5), indicating that the 

same polymer networks form regardless of the total polymerisation time. Moreover, 

it can be seen in the initial mass loss, which is predicted to be loss of water, that the 

fifty passes contains less water than both the one and five pass equivalents which is 

in agreement with the gravimetric data discussed previously. The second transition 

is suggested to be a result of desulfonation but may also be attributed to backbone 

degradation.4,5 With Aggour et al. suggesting two degradation steps at 182 °C and 

303 °C and that there was 28 % residual left at 550 °C which is in keeping with the 

observed step-changes in the thermograms.6 

 

 

 

 

 

Figure 3-5: Overlaid TGA data from the hydrogels made using different UV exposure times. 
– are the percentage mass loss curves. - - - are the first derivatives of the mass loss curves. 

Differences in starting mass percentage may be attributed to water loss after sample 
preparation (whilst in autosampler queue). 
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3.3 Initiator Concentration 

A further study was then carried out using decreased initiator concentrations. 

Physical differences in the materials produced were observed; the 20 vol% initiator 

sample became gel like in appearance after 2-3 passes on the conveyor belt under 

the UV lamp compared to the standard material which appears gel-like after 1 pass. 

The 2 vol% initiator material required 10 passes to form some gel and was still not a 

homogenous material, with some liquid remaining, after 25 passes. As predicted, the 

intensity of the vinyl peaks increases with decreasing initiator concentration, Figure 

3-6. This is evidence that the initiator concentration is appropriate for quantitative 

conversion, whilst also further evidencing that this method is suitable for monitoring 

the conversion in the UV exposure study discussed previously. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Stacked 1H NMR spectra of the polymers produced using different initiator 
concentrations (relative to standard). 
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3.4 UV Sources 

The standard procedure relies on a LightHammer®, a UV lamp (h bulb) with a 

conveyor belt passing under it to control exposure to seconds at a time. When first 

attempting to scale up from a ~7 cm2 disc to a 15.5 cm by 10.0 cm rectangle (both 

0.5 cm thick) it was noticed that the conveyor belt was creating a wave which was 

instantaneously cured into a gel of uneven thickness, Figure 3-7. 

 

 

 

3.4.1 Crazing 

To avoid this wave, a UV “nail lamp” was employed to polymerise the sample whilst 

keeping the sample static, however, due to increased exposure time to elevated 

temperature (50 °C7) compared to the few seconds per pass under the Light Hammer 

this caused a phenomenon known as ‘crazing’, Figure 3-8. This is where water 

evaporation from the hydrogel causes cracks in the upper face of the hydrogel, which 

gives it the appearance of crazy paving. 

 

 

 

 

In an attempt to overcome these undesirable morphologies, using a combination of 

the nail lamp and the Light Hammer was investigated. The goal was to carry out a 

‘pre-cure’ under the nail lamp; long enough that gel formation began but not long 

enough for crazing to begin, before passing it under the Light Hammer to complete 

polymerisation without a wave forming. 

Figure 3-8: ‘Crazed’ larger hydrogel. 

Figure 3-7: Larger hydrogel with the wave cured in. 
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The optimum time for this was found to be 8 – 9 minutes pre-cure, Figure 3-9, 

however, this is not ideal for industrial scale-up as it adds more steps to the synthetic 

procedure. 

 

 

 

 

A further UV light source was also investigated; a UVP CL-1000 Ultraviolet 

Crosslinker. This was unsuccessful, likely due to the wavelength of the bulb being 

higher energy  than that in the nail lamp (~254 nm compared to ~360 nm).8 As can 

be seen in Figure 3-10, the UV spectrum of the initiator indicates no activity from the 

initiator below ~260 nm, therefore it is the wavelength of the bulb that is key to a 

successful polymerisation. 

 

 

 

 

When polymerisation was further attempted using a UV crosslinker machine, this 

time with a 365 nm wavelength bulb, a standard p(NaAMPS) 3 ml gelled within 30 

minutes. However, the increased exposure time resulted in crazing as noted 

previously when using the nail lamp. The strength of the UV radiation and resident 

time in the heated environment are clearly key factors in the synthesis of hydrogels 

of successful morphology. 

Figure 3-10: UV-vis spectrum of irgacure 1173. 

Figure 3-9: Standard hydrogel disk using Lighthammer only (left) and a hydrogel square cut from the 
bigger sheet synthesised using 8-9 minute pre-cure followed by lighthammer (right). 
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3.4.1.1 Laser Scanning Confocal Microscopy 

Laser Scanning Confocal Microscopy (LSCM) was carried out in order to observe the 

structure of these crazed hydrogels.  Initially, the hydrogels were soaked in a solution 

of fluorescein isothiocyanate (FITC), Figure 3-11, before being imaged using an LSCM9 

whereby the crazed structure is clearly visible, Figure 3-12. 

 

Figure 3-11: FITC dyed hydrogels (crazed and standard, left and right respectively) under UV light. 

 

Figure 3-12: LCSM image of a crazed hydrogel. 
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3.4.1.2 Dosing and recovery 

A standard dosing, absorption and recovery procedure study was carried out on this 

crazed hydrogel to determine if the crazing affected the end application. Figure 3-13 

demonstrates that the standard hydrogel and the crazed version show comparable 

recovery across all five acids included, suggesting that the crazing is only an aesthetic 

issue. Further work would be required to determine if a difference in the surface and 

texture is a problem in situ, that is, does it change contact with the axilla, potentially 

reducing absorption efficiency. However, subsequent optimisation of swelling and 

extraction is carried out on the standard hydrogels, not the crazed version. 

 

Figure 3-13: Comparison of absorption and extraction efficiency of a standard p(NaAMPS) hydrogel 
and a ‘crazed’ p(NaAMPS) hydrogel. 

3.5 Crosslinker Concentration study 

The standard crosslinker used in this work is poly(ethylene glycol) diacrylate (Mn~575 

g mol-1) used at 0.2 mol%. This study investigated 0.2, 0.4, 1.0 and 2.0 mol% in order 

to determine the effect of crosslinker concentration on the mechanical and physical 

properties of the p(NaAMPS) hydrogel in order to investigate the possibility of 

improving the hydrogels’ resilience under the increased pressures and temperatures 

applied during supercritical fluid extraction (Chapter 4). 
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3.5.1 Swelling Kinetics 

Throughout this work, swelling kinetics have been carried out on hydrogels that have 

been dehydrated. These materials will be referred to as xerogels; dry gels prepared 

by evaporating the pore liquid (“xero” rooted from Greek meaning “dry”).10 

Swelling is a critical property for the use of the hydrogel as part of a device for 

sampling and analysing sweat. The method is described in Chapter 7, with the 

swelling ratio based on the equation reported by Nalampang et al.11: 

where Ws and Wd are the mass of the swollen and the dry hydrogel respectively. This 

is illustrated in Figure 3-14 for the crosslinker level study hydrogels whereby 

increasing crosslinker concentration both decreases the maximum swelling ratio 

(equilibrium water content, see below) and slows the swelling kinetics; observations 

that were also previously reported by Nalampang et al.11 

 

 

 

 

 

 

 

The maximum volume of water absorbed by a hydrogel (from the xerogel state) can 

also be calculated and is conventionally reported as a percentage of the water in the 

whole mass known as equilibrium water content (EWC): 

where We is the mass of the hydrogel at equilibrium swollen state. 

 
𝑆𝑤𝑒𝑙𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 = 𝑆𝑅 =

𝑊𝑠 − 𝑊𝑑

𝑊𝑑
 (3-1) 

 
𝐸𝑊𝐶 =

𝑊𝑒 − 𝑊𝑑

𝑊𝑒
× 100 (3-2) 

Figure 3-14: Swelling kinetics of the hydrogels containing different concentrations of crosslinker. 
Swelling ratio as calculated in eq. 1-1. Yellow highlighted region illustrated on RHS. 
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There is a clear negative correlation between increasing concentration of crosslinker 

(PEGDA) and decreasing EWC, Figure 3-15. This is also depicted in the image where 

the hydrogels are arranged from lowest to highest concentration of crosslinker (left 

to right) and the volumes give a good indication of the swelling properties. The lowest 

concentration taking up over half of the volume of the 500 ml jar whilst the highest 

concentration takes up less than half the volume of a 250 ml jar. This has been 

suggested by Holmes and Stellwagen to be due to the increasing crosslinker 

concentration leading to decreasing pore size within the gel matrices.12 

 

 

 

 

 

 

Due to the method requiring the surface of the hydrogel to be dried prior to weighing 

for an accurate mass, some water is lost at every time point. This means that even 

though the 0.2, 0.5 and 1.0 mol% samples absorb ‘all’ the water they reach different 

maximum masses, all of which are less than the initial 50 g of water added to each 

sample at t = 0.  

Consequently, only the 2.0 mol % sample reached its equilibrium swelling state. 

Therefore, the kinetics of the other 3 samples were further monitored by adding 

more water to these now, semi-swollen hydrogels and monitored gravimetrically 

until they reached their respective equilibrium swelling states, Figure 3-15. 

Furthermore, all 4 samples break up to varying degrees, during the kinetic study. This 

in part is due to the maximum swelling that causes rupturing of the network but also 

could be exacerbated by the repeated handling / general handling procedure. This 

meant that not 100 % of the hydrogel was removed from the water at every time 

point, and not the same pieces / amount of gel were removed at different points. It 

Figure 3-15: Four different hydrogel crosslinker concentrations swollen to their maximum. For 
reference the large jar is 500 ml. Graph of EWC as a factor of crosslinker concentration (right). 

0.2 mol% 0.4 mol% 1.0 mol% 

2.0 mol% 
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also meant that some gel was lost during weighing, as there was transfer between 

vessels and small bits left on the tissue used to dry the surface. 

Conversely, once the hydrogel has broken up significantly, there is a large increase in 

surface are for water absorption, which is one possible explanation for the significant 

increase in the rate of water up take exhibited in the 0.2 mol % hydrogel. 

In addition, either the 0.2 or 0.4 mol % sample exhibits anomalous behaviour from 

90 minutes. In theory (based on data published by Nalampang and correlation of 

crosslinker concentration vs. swelling) the 0.2 mol % sample should always have a 

greater mass than the 0.4 mol % sample (and so on …) as it should swell to a greater 

mass and should do so faster. This is the case until 90 minutes but may be attributed 

to loss of hydrogel through the measurement process errors already discussed. 

According to Efron and Brennan, this gravimetric determination of the water content 

is accurate to approximately ±2 % water content.13 The main limitation is the removal 

of surface water prior to weighing the hydrogel. This confirms the challenges we 

experienced in evaluating gravimetric data, future work could include using a 

refractometer (inspired by Efron and Brennan) to calculate the water content based 

on the difference between the measured refractive index of the hydrogel and water. 
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3.5.2 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) was carried out in frequency sweep mode using 

the tension test geometry to measure hydrogel stiffness with respect to the storage 

modulus as a function of frequency, Figure 3-16. There is a clear trend between the 

increase in crosslinker concentration and an increase in storage modulus at every 

frequency. This is illustrated for 1 Hz in Figure 3-17. 

 

 

 

 

 

 

 

Figure 3-16: Storage modulus versus frequency of the increasing crosslinker concentration hydrogels 
at 25 °C.  

 

Figure 3-17: Storage modulus (at 1 Hz, 25 °C) as a function of increasing crosslinker concentration. 
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3.5.3 Tensile testing 

The mechanical properties of the materials containing each of the four crosslinker 

concentrations tested were measured using a Universal tester in order to determine 

elongation at break and Young’s modulus, Figure 3-18. 

 

Figure 3-18: Tensile test Stress-strain repeat curve for the four crosslinker concentrations tested. 

As with the storage modulus from DMA, there is a clear positive correlation between 

increasing crosslinker concentration and increasing Young’s modulus, Figure 3-19. 

This suggests that the p(NaAMPS) hydrogels exhibit an increase in stiffness with 

increasing crosslinker concentration. 
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Figure 3-19: Young’s modulus as a function of increasing crosslinker concentration. 

 

By considering both the absorption capacity and the mechanical data of this series of 

materials, an optimal crosslinker concentration may be determined depending on 

the weighting given to the importance of these characteristics, whereby a 

compromise may be reached. 

3.6 Other Monomers 

3.6.1 2-Hydroxyethyl acrylate 

2-Hydroxyethyl acrylate (HEA) was used to synthesise single network hydrogels, 

initially to compare the properties to the p(NaAMPS) hydrogels with a view to 

producing covalent-covalent double networks (Section 3.7). 

This proved difficult when trying to simply switch monomer in the standard 

photopolymerisation system used for synthesising p(NaAMPS). 1H NMR of attempts 

to carry out these reactions reveals there is still the presence of monomer (via the 

presence of vinyl peaks) evidence that the conversion is lower than ideal, red 

spectrum, Figure 3-20. A further experiment is overlaid with this whereby ten times 

the original concentration of initiator was employed. In this case the vinyl peaks have 

decreased in intensity, suggesting greater monomer conversion as would be 
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expected, however, the conversion is still not quantitative (green spectrum, Figure 

3-20). 

 

Figure 3-20: 1H NMR of HEA monomer and p(HEA) hydrogels with different initiators concentrations 
investigated. Black = monomer, red = standard initiator conc. used, green = 10 times standard 

initiator concentration used. 

3.6.1.1 Swelling kinetics 

As illustrated in Figure 3-21, gravimetric monitoring of the swelling of an oven dried 

HEA hydrogel (xerogel) revealed a steady increase in water uptake over time. 

However, these reactions show slower kinetics than that of a comparable p(NaAMPS) 

hydrogel, Figure 3-22. Furthermore, the EWC is also much lower than the comparable 

standard p(NaAMPS) hydrogel as it is 90 % (compared to >99 %). This may be due to 

the high charge density associated with the sulfonate groups of NaAMPS as it is 

known that an increasing number of ionic groups increases the swelling capacity.14 

Notably the p(HEA) xerogel is a flexible material, compared to the standard 

p(NaAMPS) xerogel which is hard and relatively brittle, suggesting a difference in 

glass transition temperature. Rault et al. reported the glass transition temperature 

of a p(HEA) homopolymer as ~ 10 °C when investigating its use in IPNs alongside the 

effect of water content on thermal properties.15 It is also notable that crosslinking 

density and molecular weight all effect glass transition temperature, so future work 
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would require analysis of these hydrogels and their xerogels by DSC in order to obtain 

accurate data. 

 

Figure 3-21: Initial 6 hour swelling kinetics of the HEA single network. 

 

Figure 3-22: Comparison of swelling ratios for the two different single networks over time. 

 

 



76 
 

3.6.2 Hydroxyethyl methacrylate 

Hydroxyethyl methacrylate was evaluated as an alternative to hydroxylethyl acrylate. 

As mentioned in Chapter 1, a common application for p(HEMA) hydrogels is for 

contact lenses. Unlike the hydrogels discussed previously, these are often produced 

in bulk rather than solution, therefore bulk polymerisation of these materials was 

also attempted. A thermally-initiated polymerisation was also investigated as an 

alternative to photopolymerisation. 

When using the concentration of initiator reported by Al-Shohani (0.45 mmol, 0.6 

mol%)16 for the synthesis of p(HEMA) hydrogels via bulk polymerisation, it was 

observed that the glassy solid formed was full of bubbles, Figure 3-23. It was 

hypothesised that this was due to the concentration of AIBN being too high causing 

autoacceleration of the reaction, which is a common disadvantage of the bulk 

polymerisation process compared to solution polymerisation. 

Autoacceleration, also known as the Trommsdorff-Norrish effect, is a process 

whereby the initiation of the radical initiator (in this case by a thermal input) is an 

exothermic process. This therefore increases the temperature further within the 

reaction and encourages more initiation that will keep repeating itself 

uncontrollably. This is a more common problem in bulk polymerisation than in 

solution polymerisation as the solvent helps to dissipate this additional heat 

therefore keeping the temperature better regulated. Furthermore, in this procedure, 

there is also no stirring involved, which leaves pockets of increased temperature 

within the mixture. The increase in viscosity as the reaction progresses is also a factor 

in the heat retention and therefore autoacceleration.  
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Figure 3-23: P(HEMA) hydrogel synthesised via thermally induced bulk polymerisation as per 
literature. 

It was also noted that this was a concentration of initiator a factor of 10 greater than 

is used in the standard p(NaAMPS) hydrogel synthesis (0.065 mol%). Therefore the 

bulk polymerisation was modified to use the concentration of initiator previously 

used in the synthesis of p(NaAMPS) hydrogels, however, after 6 hours in the oven at 

70 °C (standard procedure, Al-Shohani) instead of a colourless solid forming, as 

expected, it remained a liquid that appeared transparent but yellow, suggesting this 

initiator concentration is too low to lead to complete polymerisation. An 

intermediate concentration of 0.3 mol% was therefore investigated. This proved 

successful, producing a glassy, transparent, colourless solid with relatively few 

bubbles. Future investigations could probe the optimum initiator concentration for 

ideal pHEMA hydrogels. 

When p(HEMA) hydrogels are synthesised using a starting aqueous solution (rather 

than the bulk discussed previously), opaque white hydrogels are formed compared 

to the bulk produced materials, however, these become colourless and transparent 

when the water is removed, Figure 3-24. This is due to differences in refractive index 

of p(HEMA) and water. 



78 
 

 

Figure 3-24: P(HEMA) hydrogel as synthesised from aqueous solution (left) and after being dried to 
the xerogel state (right). 

Lower monomer concentration p(HEMA) hydrogels were also investigated. 

Compared to the initial 30 wt% hydrogels, these new 10 and 5 wt% hydrogels also 

formed white opaque hydrogels when thermally polymerised, however, unlike the 

30 wt% materials, they appeared to undergo phase separation during the process as 

there was a significant volume of water remaining on top of the solid at the end of 

the reaction, Figure 3-25. The standard 3 ml aliquot of the 5 wt% p(HEMA) hydrogel 

is not displayed in Figure 3-25 as it did not form the anticipated opaque white 

hydrogel, suggesting that polymerisation did not occur, this is hypothesised to be due 

to the reaction mixture being too dilute. For the three reactions that did appear to 

occur, regardless of the volume of solution (and therefore volumes of monomer and 

water depending on concentration) they achieved an average of 70 % water content 

(±4.58 %). 

 

Figure 3-25: standard 3 ml volume hydrogel, 10 wt% p(HEMA) (left), 10 wt% p(HEMA) hydrogel 
(middle) and 5 wt% p(HEMA) hydrogel (right) all with excess water on top. 

This inability to retain relatively large amounts of water during synthesis is in 

agreement with the swelling kinetics for standard p(HEMA) hydrogels, where they 



79 
 

were found to not swell to anywhere near the same degree as p(NaAMPS) networks, 

Figure 3-26. Instead, p(HEMA) displays similar swelling kinetics to p(HEA); 

significantly slower than p(NaAMPS) with a significantly lower EWC. 

 

Figure 3-26: Comparison of swelling kinetics for p(NaAMPS), p(HEA) and p(HEMA) (left) and focusing 
on p(HEA) and p(HEMA) (right). 

3.7 Double Networks 

As discussed in Chapter 1, there can be great advantages to using a combination of 

networks as a double network in order to create a material that has mechanical and 

physical properties better than the sum of its parts. Therefore, double networks were 

synthesised in an attempt to increase the resilience of the hydrogel under more 

rigorous extraction procedures such as SFE (see Chapter 4). Given the complex nature 

of the 1H NMR procedure utilised for the analysis of single networks (Section 3.1), 

plus the difficulties of the dehydrating and swelling necessary in the synthesis of 

double networks especially with such a small surface area available in an NMR tube, 

attempts to apply this method to the in situ NMR tube procedure proved 

unsuccessful therefore only physical properties of the respective homo-networks 

alongside these double networks will be compared. 
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3.7.1 Physical-Covalent DNs 

Combining a physically crosslinked network with a covalently crosslinked network 

can result in a DN material with significantly improved properties. Double networks 

consisting of sodium alginate plus either NaAMPS, AMPS or acrylamide (AAm) were 

investigated where sodium alginate is the physically crosslinked hydrogel through a 

divalent metal ion, Figure 3-27.  

3.7.1.1 NaAMPS 

The standard monomer concentration in the p(NaAMPS) hydrogels is ~30 wt%, 

however, this was found to not be compatible with the addition of sodium alginate. 

On the other hand, it was observed that a concentration of ~2.5 wt% was 

compatible.17 In view of this the monomer concentration was reduced to ~2.5 wt% 

(initiator and crosslinker concentration also reduced accordingly), however, this did 

not produce a ‘solid’ gel when UV cured as is seen at 30 wt%. Thus, the challenge was 

to find a monomer concentration that was both compatible and produced a solid 

network. 

The pre-polymerisation solution is a transparent solution when preparing the single 

network, however, the 15 and 20 wt% pre-mix solutions that contained sodium 

alginate were cloudy. It is suggested that this is the sodium alginate in suspension 

rather than dissolving into a fully homogenous transparent solution. These cloudy 

solutions were still polymerised as standard procedure with a degree of success. The 

15 wt% solution produced a highly viscous polymer that remained a liquid rather than 

Figure 3-27: Sodium alginate gel physically crosslinked using Ca2+ as the divalent metal ion. 
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solid gel matrix, Figure 3-28. The 20 wt% appeared to produce a solid hydrogel within 

seconds of UV exposure as standard, however, on closer inspection (touch) the gel 

was much more sticky and much more stretchy than the standard single network 

p(NaAMPS). 

 

Figure 3-28: Viscous polymer formed at 15 wt% monomer. 

Both the 15 and 20 wt% gels were then swollen in a Ca2+ solution in order to form 

the second physical network in the double network system. 

Furthermore, attempts to adapt the acrylamide/alginate literature procedures by 

switching the acrylamide for NaAMPS also appeared unsuccessful. For example Yuk 

et al. use methylene bisacrylamide as crosslinker and ammonium persulfate with 

TEMED as initiator. It is hypothesised in this case that the lack of gelation could be 

because of an acid/base reaction between the TEMED used to catalyse these 

reactions with the sulfonate groups available on the NaAMPS monomer that are the 

key difference between the two monomers. However, this was not rectified by 

increasing the concentration of TEMED to above stoichiometric equivalents. 

Sadeghi et al. suggest that a thermal polymerisation containing AMPS and alginate 

would result in grafting of the AMPS onto the alginate backbone, Scheme 3-1.17  
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Scheme 3-1: Sadeghi et al proposed mechanistic pathway for synthesis of alginate-AMPS hydrogel.17 

However, as this method involves stirring, the product was gel particulate rather than 

a single molded solid, Figure 3-29, therefore it is deemed not useful for the 

application. Further, the addition of a solution of Ca2+ showed no observable changes 

to the granules. 

 

Figure 3-29: Proposed AMPS-graft-alginate reaction product. 
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3.7.1.2 Acrylamide 

Acrylamide – sodium alginate hydrogels were synthesised as various literature 

protocols, such as that of Liu et al.18, Yang et al.19 and Yuk et al.,20 can be found that 

use this combination. 

One procedure investigated was that of Yang et al.19 This thermal polymerisation of 

acrylamide (with sodium alginate also in the solution) synthesised a solid gel, Figure 

3-30, which did not visibly change upon the addition of calcium chloride solution 

(source of divalent ions for crosslinking of sodium alginate). 

 

Figure 3-30: Acrylamide gel containing sodium alginate (left) and with added Ca2+ solution (right). 

Cyclic compression testing to 5N indicated that both these materials have good 

recovery properties from this load, with the first cycle only marginally tougher in both 

cases, Figure 3-31. Although there was no observable change on addition of CaCl2 to 

the gel, a difference is evidenced during compression of the two materials. The IPN 

is significantly tougher, with a decrease in compression required to reach the 5N load 

set compared to pre second network crosslinking, as theory suggests. Whilst the 

maximum stress for the two materials is similar (0.0126 N mm-2, standard deviation 

0.00009 N mm-2, before Ca2+ addition and 0.01029 N mm-2, standard deviation 

0.0001 N mm-2, after IPN formation), the maximum compression strain is very 

different. Before full IPN formation the average maximum strain of the material is 

78.1 % (standard deviation 1.66 %) whereas once the physical-covalent IPN is fully 

formed maximum strain is 42.2 % (standard deviation 1.03 %). 
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Figure 3-31: Overlaid compression cycles for the p(NaAlg) hydrogel before and after the second 
(physical) network was crosslinked. 

3.7.2 Covalent-Covalent DNs 

3.7.2.1 NaAMPS-HEA 

Initially, a single network p(NaAMPS) hydrogel was synthesised via standard 

procedure before being dried in the 70 °C oven until a xerogel was formed. This was 

subsequently swollen in 3 ml of 30 wt% pre-polymerisation HEA solution for 24 hours 

in the absence of light before being UV cured as standard procedure. However, on 

exposure to the UV light, it became obvious that there was not enough monomer / 

volume of solution and that 24 hours may not have been long enough for complete 

diffusion throughout the network, Figure 3-32. However, this did highlight a strange 

result in that the double network is white and opaque whereas both individual single 

networks are colourless and transparent. This was attributed to clashing refractive 

indices. 
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Figure 3-32: Initially synthesised double networks. 

3.7.2.2 NaAMPS-HEMA 

The same IPN procedure was tested to combine p(NaAMPS) and p(HEMA) networks. 

Here 10 ml of a 10 wt% HEMA solution was absorbed by a pre-made p(NaAMPS) 

xerogel then thermally polymerised via standard procedure to create an evenly 

distributed 1:1 (by mass) sequential IPN. This was then dried in the vacuum oven to 

give an indication of second network content by gravimetry. Here a 1.2682 g 

p(NaAMPS) xerogel absorbed all of the 10 ml of 10 wt% HEMA solution (HEMA 

content: 1 ml, 1.073 g). After thermal polymerisation and dehydration (as described 

in Chapter 7) the total mass was 2.4594 g indicating the mass of the second network 

was 1.1908 g suggesting quantitative retention of the second monomer, which is an 

indication that it has polymerised as it is was not volatile enough to be removed in 

the vacuum oven. 

The swelling kinetics of this double network xerogel were then investigated, Figure 

3-33. Interestingly, this showed that the swelling ratio of the double network was in 

between those of the component single networks. The EWC for this double network 

was calculated = 98.8 %. 
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Figure 3-33: Overlaid swelling kinetics of NaAMPS and HEMA single networks as well as the 
combined double network. 

Initially, the standard sequential synthetic procedure of IPN formation was tested. 

However, when HEMA was used as the first network, the swelling kinetics illustrate 

that it is incredibly difficult to achieve the absorption of the second network 

components. Conversely, while the NaAMPS hydrogel is highly absorbent, the 

challenge here was to find a suitable, water-soluble thermal initiator / attempting to 

absorb HEMA for a bulk polymerisation.  

It was determined that a synthetic procedure somewhere between the sequential 

and simultaneous synthetic pathways may overcome these issues. All the 

components for the two networks would be included in the initial solution (as with 

the simultaneous method) but then there would be two sequential reactions carried 

out. The first would be the photopolymerisation to form the NaAMPS network 

followed by the thermal-polymerisation to form the p(HEMA) network. This would 

take advantage of the difficulties experienced when attempting to synthesise the 

p(HEMA) homo-network via photopolymerisation, discussed previously, Scheme 3-2.  
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It was attempted as a 30 wt% NaAMPS and 30 wt% HEMA starting solution; Figure 

3-34 displays the product of the first (UV-induced) polymerisation where it can be 

seen that a solid hydrogel has not formed as is the case for the p(NaAMPS) single 

network but that a highly viscous ‘gel’ is observed.  

 

Figure 3-34: p(NaAMPS)-HEMA after first UV-induced polymerisation but before thermal (HEMA) 
polymerisation. 
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Scheme 3-2: pseudo-simultaneous IPN synthesis; both reaction mixtures are present prior to first 
network polymerisation but the reactions are carried out in sequence. Where M denotes 

monomer, I = initiator, X = Crosslinker. Black is the first network and red is the second. Filled 
circles are crosslinking points. 
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The swelling kinetics of this DN were then recorded, Figure 3-35. Where it is observed 

that, once again, the DN expresses swelling behaviour in between that of the 

equivalent single networks. This can again be treated as evidence that both 

monomers underwent their respective polymerisations, though further analysis 

would be needed in order to establish, how much, if any, co-polymerisation has taken 

place during this process. 

 

Figure 3-35: Swelling kinetics of the p(NaAMPS-HEMA) pseudo-simultaneous DN compared to the 
equivalent single networks. 

Comparing the swelling kinetics of the sequential DN with the pseudo-simultaneous 

DN gives an insight into the effect of the polymerisation process on the physical 

properties, Figure 3-36. As illustrated, the sequential DN demonstrates faster 

swelling kinetics, achieving a greater swelling ratio. Future work would include the 

synthesis of a single network copolymer of AMPS-HEMA to compare the effect of the 

method of monomer combination in the materials. 
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Figure 3-36: Comparison of the swelling kinetics of two NaAMPS-HEMA DNs synthesised via two 
different routes. 

3.8 Conclusions 

A standard synthetic procedure for the synthesis of p(NaAMPS) hydrogels was 

initially adopted. In order to improve the process for industrial scale up and 

processing, various characteristics of the hydrogel were investigated including the 

polymerisation time, light source, initiator concentration and crosslinker 

concentration. It was found that the initiator concentration was already optimised 

but that varying the concentration of crosslinker significantly altered the physical 

properties. It was also suggested that using a double network could significantly 

improve the physical properties of the hydrogel. To this end, a physical-covalent IPN 

and a covalent-covalent IPN have been investigated where monomer compatibility 

issues made the physical-covalent system unusable but the covalent-covalent system 

has shown positive initial results. 

For simplicity and proof of concept the device investigated in subsequent chapters is 

a standard single network p(NaAMPS) hydrogel, unless otherwise stated. 
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4. Optimising Swelling, Storage and Recovery 

Hydrogels are materials that can be used as devices that will absorb sweat and the 

malodorous compounds within. This chapter details investigations into optimising all 

the stages of this process, leading to the most efficient device possible. This will also 

allow for comparison between the proposed new device and current Unilever 

methods. 

4.1 Current Unilever Methods 

The current industrial standard test method for antiperspirant / deodorant products 

involves test subjects wearing the test product under controlled conditions 

(regulations around eating and drinking, underarms pre-washed and product applied 

for them). Depending on the specific test, they are either then sent to go about their 

day as normal or are subjected to forced conditions of increased temperature / 

humidity in the ‘hot room’ to mimic climates from around the world. These subjects 

then have their armpits sniffed by ‘experts’ and marked out of five based on the 

strength of the malodour present, Figure 4-1. This is very subjective although the 

‘experts’ are chosen for their sensitivity to smell and there is always a panel of testers 

with an average value taken. However, it is only a semi-quantitative method, which 

is very subjective, that gives little insight into the efficacy of a product nor to the 

identity of the problem compounds that may be present. 

 

Figure 4-1: An insight into current, industrial olfactory assessment. 
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4.1.1 Gravimetry 

The only other option currently available is for removable textile patches to be fixed 

into the armpits of t-shirts which are then worn by the test subjects before they are 

removed and weighed for the mass of perspiration produced. These studies can vary 

depending on the advertising claim being evaluated, but typically this would be for a 

‘normal’ 24 hours, or after a period of exercise / in the ‘hot room’ (temperature and 

humidity controlled, usually both at elevated conditions, to mimic international 

environments). This gives limited information which may be of use when testing an 

antiperspirant product but does not help with malodour information as there is not 

necessarily a correlation between high volume of sweat and a high level of malodour. 

Neither of these methods give information about which chemical compounds need 

focusing on to tackle a particular malodour. 

4.2 Model Sweat Uptake Kinetics 

The uptake kinetics study was carried out to determine the optimum time a dosed 

hydrogel should be left to absorb ‘sweat’ before recovery is attempted, in order to 

optimise recovery (this would also determine appropriate time periods it should be 

worn in ‘real’ studies). Each hydrogel was placed in a jar with 0.5 ml of model sweat 

and sealed for the appropriate length of time. The mass of model sweat (0.55 g) was 

chosen based on the mass of sweat observed in studies previously. It is suggested 

that a ‘heavy sweater’ can produce 2 g of sweat per axilla per time period. For 

simplicity, extraction was carried out via a basic solvent extraction process (24 hours 

in 3 ml of solvent) in order to determine uptake of malodorous compounds via GC. 

This process is optimised in Section 4.4. 

Table 4-1 shows the average percentage uptake, and associated standard deviation 

across all time points measured by gravimetry. The data indicate that uptake was 

quantitative at all time points, with the majority being absorbed in less than an hour 

and all time points thereafter being within a standard deviation of each other. 
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Table 4-1: Average uptake percentage and associated standard deviation (σ) over absorption time 
where n = 3. 

Absorption time (hours) Uptake (%) σ 

1 97.3 2.03 

3 98.0 1.35 

5 97.8 1.67 

7 99.3 1.70 

9 99.7 1.42 

12 98.7 4.65 

24 97.7 0.808 

48 98.3 1.70 

144 97.8 1.67 

168 >99.9 3.27 

 

Figure 4-2 illustrates VFA recovery percentage from these model sweat absorption 

hydrogel kinetics. It demonstrates that there is no significant difference in the 

percentage recovery across all the time points for all five VFAs studied. Considering 

all the VFAs are in the stock solution at approximately the same concentration, the 

variability in the recovery requires investigation. 
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Figure 4-2: Comparison of the average recovery of VFAs from dosed hydrogels using different 
swelling lengths of swelling time. 

The outcome of this investigation is that the standard absorption procedure of 0.5 

ml model sweat solution added to a hydrogel in a 60 ml (4 cm diameter) jar and left 

sealed for 24 hours prior to further experimentation will be adopted for all further 

studies, unless stated otherwise. 

4.3 Swelling monitored by Contact angle 

Contact angle measurements were used as a measure of the speed of absorption – 

the faster the contact angle decreased, the quicker the drop of water is absorbed.1  

Tecophilic™ is a range of polyurethanes, commercially available, produced by 

Lubrizol.2 It reportedly absorbs water, like a hydrogel, and therefore was deemed to 

be an interesting comparison product to the hydrogels synthesised in this work. 

The data in Table 4-2 suggests that, initially, the Tecophilic™ product is the most 

hydrophilic as it has the lowest contact angle. These data are converted to 
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percentage of the initial contact angle for each material tested, which is displayed in 

Figure 4-3, as there is a difference in the initial contact angle due to the relative 

hydrophilicity of the surfaces. From both these representations of the data, the 

favourability of the p(NaAMPS) hydrogel for this application is obvious in the sharp 

decrease in the contact angle between the first two time points recorded, suggesting 

absorption within minutes. The initial steep drop may be due to wetting of the 

surface before the more shallow decrease indicating absorption as suggested by 

Modaressi and Garnier.1 Note, the difficulty in collecting data every minute for 

p(NaAMPS) as the contact angle continually changed a noticeable amount hence, 

data was recorded every two minutes. As Figure 4-4 illuminates, the initial water 

droplet is clearly defined but after ~10 minutes the software fails to make a 

distinction between the droplet itself and the hydrogel surface and therefore cannot 

calculate a contact angle. 

Table 4-2: Average contact angles of a water droplet, on the three materials tested, over time. 

Time 
(minutes) 

Average Contact Angle (°) 

Tecophilic™ P(AMPS) hydrogel Polyester Patch 

0 71.4  124.2 

1  105.2 150.2 

2 67.3  142.1 

3 66.4 37.1 123.4 

4 65.5  121.0 

5 63.5 33.7 120.6 

6 64.0  124.0 

7 62.3 29.3 115.9 

8 62.6  112.9 

9 62.4  116.1 

10 60.5 24.6 113.3 
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Figure 4-4: Contact angle of p(NaAMPS) at  two different time points; 2 minutes (left) and 10 
minutes (right). 

 

 

 

 

 

 

Figure 4-3: Average contact angle of the three materials, normalised to their own starting contact 
angle. 
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4.4 Solvent Extraction 

Solvent extractions have long been a traditional procedure employed in small 

molecule analysis for a variety of applications.3 This includes everything from a 

simple, minimal solvent extraction to a Soxhlet extraction and as such these will all 

be examined. 

4.4.1 Recovery Optimisation – simple solvent extraction 

Standard solvent recovery uses ethyl acetate as solvent, it was chosen based on the 

fact that it is a volatile solvent convenient for GC analysis, immiscible with water and 

is not absorbed by the hydrogel. Garcia-Villalba et al. also found ethyl acetate to be 

the best solvent in a similar application; the extraction of VFAs from aqueous 

supernatants of faecal samples, when comparing it to diethyl ether and 

dichloromethane.4 

In order to optimise the recovery method, different surface areas of hydrogels were 

investigated alongside different extraction time lengths and methods within a basic 

minimal solvent extraction procedure. No difference in recovery was observed 

between the whole and cut up hydrogels over 24 hours, however, when compared 

to the shorter time period of one hour, both with and without sonication, the cut up 

hydrogel showed a significantly better recovery. This is most likely due to the 

increased surface area. Furthermore, it suggests that the 24 hour samples showed 

no difference as this was long enough for the recovery from the whole hydrogel to 

reach the same concentration as the more efficient cut up hydrogel. It can also be 

seen in Figure 4-5 that sonication improves recovery when comparing the 1 hour 

samples for both the whole and cut up hydrogels. Notably, in Figure 4-5 it is clearly 

illustrated that significantly less acetic acid is recovered compared to the other VFAs 

regardless of recovery method employed although there is less variability in its 

recovery across the different methods. This is thought to be because acetic acid is 

the shortest chain VFA used here and therefore the most volatile, although it has not 

been proven that it is not because it is more difficult to remove from the hydrogel 

due to it having the highest charge density / polarity as the smallest acid. 
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Figure 4-5: Analytical recovery data from the different solvent extractions for comparison. 

The data are also in agreement with literature which suggests that most solvent 

extraction methods are 30 – 80 % efficient.5 This was further investigated by 

determining the partition coefficient of the utilised volatile compounds between 

water and ethyl acetate, Table 4-3. This illustrated that there is a 65-77 % extraction 

efficiency for all 12 compounds tested, from the aqueous formulation into the 

chosen extraction solvent, ethyl acetate. With the exception of the acetic acid 

recovery, the partition recovery data indicates that the hydrogel matrix does not 

inhibit recovery from the aqueous solvent within. 
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Table 4-3: Percentage recovery from liquid-liquid extraction based on GC peak areas. 

Volatile Compound Recovery (%) 

solvent (Ethyl Acetate) 105 

Acetic acid 73.1 

Propionic acid 71.3 

Trans-2-nonenal 66.2 

Isobutyric acid 72.2 

Butyric acid 73 

2-methylbutyric acid 74.2 

Isovaleric acid 76 

Valeric acid 76.7 

4-methylvaleric acid 72.5 

Hexanoic acid 69.7 

3-mercapto-1-hexanol 70.5 

4-ethyloctanoic acid 76.5 

In addition, Figure 4-6 illustrates the recovery rates when comparing increased 

recovery time. When comparing the 24 hour and 7 day (168 hours), it can be seen 

that there is a slight increase in the recovery percentage of all five acids tested, with 

the increased duration although it is not a significant one when accounting for the 

error bars. This is also an increase on the middle data set on the graph which is the 

same total time but split the opposite way; i.e. the week one, 24 hour samples has 

been left absorbing for 168 hours (7 days) then extracted for 24 hours (a total of 192 

hours) whereas the week zero, 7 day recovery samples have been left absorbing for 

only 24 hours but extracting for 168 hours (also a total of 92 hours) to determine 

whether it is the length of time or the stage in the process that this time is utilised 

that is the most important factor. As anticipated, Figure 4-6 clearly evidences that it 

is the extended time being part of the extraction procedure that is beneficial rather 

than just the length of time itself as the longer absorption with shorter extraction 

combination gave the worst recovery of the three. 

Furthermore, the 24 + 24 is more reproducible than the other two experiments as 

indicated by the shorter error bars in Figure 4-6. 
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Figure 4-6: Analytical recovery data from different length of extractions. 

4.5 Soxhlet 

This is a standard chemistry technique with respect to solvent extractions. A Soxhlet 

extraction was carried out so that a recovery comparison between the polyester 

patches, currently employed for scent olfactory analysis, and a hydrogel could be 

made. This is because a polyester patch will absorb the extraction solvent added if a 

simple solvent extraction with minimal solvent (standard procedure with a hydrogel) 

is attempted. 

After reviewing the literature, several different extractions using various solvents 

were reported as part of the process of analysing VFAs. Examples include diethyl 

ether6–9 and binary solvent systems,10 most notably chloroform/ethanol mix as 

developed by Folch et al.11 and Bligh & Dyer.12 The hydrocarbon solvents are the 

traditional choice with the mixed solvent procedure developed later as a preference. 

Notably, these extractions are from fabrics such as gauze13 or socks6,9 or more 

directly from biological samples.7,8,10–12,14,15 Literature for extraction of hydrogels 

focuses on removal of any possible monomer using aqueous/polar solvents.16 

However, as discussed previously, the interaction between the hydrogel and chosen 

solvent system had to be considered, hence the traditional, non-polar diethyl ether 

was investigated. 
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As can be seen in Figure 4-7, a mixture of volatiles was recovered via this method, 

after rotary evaporation to concentrate the extracts, from both the hydrogel and the 

polyester patch. The overlaid spectra, and more obviously, the calculated results in 

Figure 4-8, indicate a very similar level of extraction from both the hydrogel and the 

textile. 

  

 

 

 

 

 

 

 

 

 

Figure 4-7: Overlaid GC chromatograms from the Soxhlet extraction of a hydrogel and a polyester 
patch. 
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Figure 4-8: Concentration of three of the malodour acids as percentage of the dosed concentration. 

A larger study of this method would need to be carried out to validate the 

reproducibility and reliability of this more complex process. Although Soxhlet 

extraction is a relatively short extraction method compared to simple solvent 

extraction (~5 hours compared to 24 hours), it is more labour intensive and, due to 

it being a more complicated process involving heat and rotary evaporation, there is 

a much greater risk of losing analytes throughout. It also uses an increased volume 

of solvent, therefore is a less environmentally friendly and cost effective technique. 

Interestingly, Figure 4-9 illustrates the stark difference in the extraction efficiency of 

the two different solvent extractions of interest for the hydrogel. In the case of all 

five acids calculated, the Soxhlet performs significantly worse than the 24 hours, no 

input, minimal solvent extraction procedure. This is theorised to be due to the 

challenges suggested above. 
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Figure 4-9: Comparison of simple solvent recovery and soxhlet extraction of a hydrogel. 

Schafer suggested quantitative lipid extractions are often not possible via Soxhlet 

extraction due to solvents’ poor ability to displace polar analytes from stable 

matrices.7 The combination of all these negative factors mean that this is not a 

favourable extraction method for this application. 
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4.6 Supercritical Fluid Extraction 

Supercritical fluid extraction (SFE) is a greener technique than the normal solvent-

based techniques already discussed due to its minimisation of solvent used. Although 

this has potential as an extraction method that would allow for comparison between 

collection matrices, the hydrogel extraction via this method is still in its infancy and 

undergoing method development and optimisation / validation at Suprex (a spin-out 

company of Prof. Marriot at Bangor University). Investigations into using this 

technique are still ongoing with Figure 4-10 illustrating some initial chromatograms 

from preliminary extractions; top is a 20 minute supercritical fluid extraction using 

acetonitrile and CO2, of a dosed hydrogel and bottom a dosed hydrogel extracted at 

90 bar and 35 °C where the volatile fatty acid peaks are between 0 and 7.5 minutes 

and a benzoic acid internal standard at 12 minutes. This indicates there is potential 

in this method. 

 

 

 

 

 

 

 

Figure 4-10: Example total ion count (TIC) chromatograms, supplied by Suprex, from the method 
development of SFE of hydrogels. 
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4.6.1 Optimisation of conditions 

The temperature, pressure and solvent systems were experimented with in order to 

improve extraction. As shown in Figure 4-11, the main observation is the damage 

caused to the hydrogel by SFE not seen in previous extraction methods. It was noted 

that the worst SFE method was when acetonitrile was used as a co-solvent with sCO2 

so it was deemed that this would be added after the extraction chamber, before 

analysis. 

 

Figure 4-11: Hydrogels after various SFE procedures; 0.2 mol% Hydrogel after 20 min at 90 bar/35 °C 
(left) And after 20 min at 300 bar/50 °C (right) (a), 1.0 mol% X-linker Hydrogel CO2 only, 300 bar (b), 

2.0 mol% X-linker Hydrogel CO2 only, 300 bar (c), and 2.0 mol% X-linker Hydrogel CO2 and 
acetonitrile, 300 bar (d). All hydrogels are p(NaAMPS) where the mol% refers to the concentration of 

crosslinker (PEGDA). 

Other non-solvent extraction methods for GC analysis exist, for example thermal 

desorption and gas analysis. These are discussed in Chapter 2, but not examined 

here, as we did not have the technology available. 

 

 

 

a b 

c d 
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4.7 Stability Studies 

The end goal of this project is to create a device that not only can absorb sweat then 

release it with a stimuli / extraction technique but also that may be stored, with 

minimal effort until a suitable time for analysis. Testing is often carried out in UK / 

EU, but ideally, sampling would take place all over the world to assess efficacy under 

different environmental conditions. Currently, collected samples are vacuum packed 

and store at -80 °C making it difficult for testing / sampling to be carried out anywhere 

apart from at the testing facility as shipping under such conditions is impractical and 

expensive. This means that limited data are collected for product use in extreme 

climates. 

4.7.1 One month Room Temperature Incubation 

Preliminary data illustrated an increase in recovery between week zero and week one 

for all five VFAs which highlighted the need for the swelling equilibrium study. 

Furthermore, week four (the final week) had a percentage concentration recovered 

that was at least the same as week zero indicating a stable capture device over time 

(Figure 4-12). Although notably, for three of the VFAs, there was a decrease week-

on-week from week one to week four, however, for butyric acid and acetic acid there 

was an increase in recovery in the final week. Furthermore, valeric acid shows an 

oscillating pattern across the weeks. Moreover, Table 4-4 indicates that the mass loss 

percentage was insignificantly different across all four weeks tested. 

Table 4-4: Mass data for preliminary stability test. 

Time 

(weeks) 

Hydrogel Mass (g) Change in Mass 

over storage time 

(%) 

Before 

absorption 
After uptake After time 

0 3.279 3.667 N/A N/A 

1 3.340 3.860 3.850 -0.257 

2 3.329 3.852 3.842 -0.262 

3 3.337 3.840 3.831 -0.237 

4 3.253 3.752 3.743 -0.235 
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Figure 4-12: Calculated percentage concentration recovered of the five VFAs with calibration curves 
over a four week stability study at 25 °C. 

The week zero sample should be comparable to the standard 24 hour recovery and 

the 24 hour swelling time samples from the previous studies. For three of the 

analysed VFAs (isobutyric acid, butyric acid and valeric acid), the measured recovery 

amounts were comparable to those obtained during the standard 24 hour recovery. 

For the remaining two VFAs (acetic acid and 4-methyl valeric acid) the measured 

recovery amounts were comparable to those obtained by the 24 hour swelling 

sample. The inconsistency of these measurements (between all three studies) 

highlights the need for optimisation of the swelling and recovery method. 
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4.8 Conclusion 

In conclusion, the research in this chapter has demonstrated that a hydrogel can 

absorb a relevant volume of ‘sweat’ in less than one hour and this can also be 

maintained over 24 hours, therefore hydrogels would work for any study length to 

be tested (including 24 hour efficacy claims). It was then illustrated that a simple 24 

hour solvent extraction in a minimum amount of non-polar solvent (3 ml of ethyl 

acetate or acetonitrile) was the most efficient solvent extraction when compared to 

shorter extraction times or increased surface area methods. The results within this 

chapter could go towards a factor which real data would be multiplied by to 

determine ‘true’ concentrations of malodours. Finally, it was established that the 

hydrogels with ‘sweat’ could be stored, at room temperature, a major goal of this 

project. 
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5. Real Sampling, bacteria and qualitative 

screening 

In previous chapters, the work has been carried out using a ‘model sweat’ mixture; 

an aqueous solution of 10 volatile free fatty acids, one unsaturated aldehyde and one 

thioalcohol, known to be involved in axilla malodour. This chapter explores the use 

of the hydrogel devices in ‘real life’ settings in vivo as well as dealing with key, living 

elements of the axillary biome in vitro by looking at cell cultures as further evidence 

of the passive nature of the presence of the hydrogel when in situ. Finally, the 

addition of indicators examines an immediate qualitative handle for pre-screening. 

5.1 Bacterial Assay 

These data are provided in collaboration with Diane Cox of Unilever Colworth, where, 

to show that the hydrogel does not affect the natural bacterial microbiome on the 

axillary skin, a staphylococcus epidermis assay on pig skin was carried out that 

compared the culture in open air and covered with a hydrogel.1 Where T0 and T4 

indicate time incubated at 37 °C prior to buffer scrub analysis (0 and 4 hours 

respectively). It should also be noted that <log103 is the limit of sensitivity when using 

the plating protocol and therefore this should be treated as no countable cells were 

recovered from the control. 

 

 

 

 

 

 

 

 



111 
 

Table 5-1: Summary of the results of the bacterial assay on pig skin test. N.B. T4 uninoculated (with 
and without hydrogel) account for failure to achieve total sterility of the pig skin, via radiation, prior 

to testing. 

Treatment Cells recovered,log10 CFU/cm2 

T0 uninoculated <3.00 

T0 inoculated 5.86 

T4 uninoculated <4.00 

T4 inoculated 8.77 

T4 uninoculated + hydrogel 1 <4.00 

T4 inoculated + hydrogel 1 7.16 

T4 uninoculated + hydrogel 2 <4.00 

T4 inoculated + hydrogel 2 6.78 

The cell count data in Table 5-1 and illustrated in Figure 5-1 demonstrate that similar 

results were obtained from the hydrogel-covered and standard pigskin experiments. 

Although the cell count from the hydrogel experiments appears lower, this is due to 

some cells being removed on the hydrogel and is therefore treated as an 

underestimate. It is also useful to note that the hydrogel patches were shown, by 

contact print, to be sterile prior to use. This is seen as a positive as it is evidence that 

no external bacteria or other contaminants are being added into the axilla when the 

hydrogel is introduced therefore it can be assumed that all malodour comes from the 

armpit itself. This all indicates that data regarding sweat obtained by using the 

hydrogel devices will be representative of ‘real-life’ data.  
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Figure 5-1: Illustration of the bacterial assay results. 

5.2 Unilever Study 

Using hydrogels synthesised at Warwick, an in situ study was carried out at Unilever’s 

R&D facility in Port Sunlight, near Liverpool by myself. Standard p(NaAMPS) 

hydrogels (synthesised at University of Warwick by myself), were tested against 

textile patches. Figure 5-2 illustrates the olfactometry data recorded from unbiased 

assessment of the underarms after 24 hour wear cycle of the hydrogels / textile 

patches as described in Chapter 7. The data presented are the average of six sensory 

assessments by six different people on each armpit. It shows that, within error, there 

is no difference between the ratings recorded when a textile patch is worn compared 

to when a hydrogel patch is worn. Especially when considering that the textile and 

the hydrogel were worn in the same underarm on different (consecutive) days which 

would lead to variation in results even under otherwise identical conditions. Similarly 

differences between left and right axilla, within the same time period, are expected.2–

4 This is a good indication that the hydrogels do not affect the axilla microbiome, 

complimentary to the bacterial studies, above. Note there is expected to be a 

noticeable difference in sensory assessment, across the participants, as the panel of 

assessed volunteers are known to emit different levels of odour. 
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Figure 5-2: Anonymised data from the olfactory assessment of the hydrogel and textile patch 
comparison study. 

In collaboration with Steph Blissett (Unilever Port Sunlight), the hydrogels worn as 

part of this study were then extracted via standard solvent extraction procedure and 

analysed by GC-MS. This illustrated that 21 different compounds were identified in 

the samples (that were not found in an unworn hydrogel extraction, the ‘blank’). Of 

these 21, de Costello et al. list 11 of these as being previously reportedly emanating 

from the skin. However, the authors recognise that their list is not necessarily 

exhaustive (as is compiled from a review of the literature) but that it is a useful 

database from which further research, such as this work, will be stimulated and add 

to.5 The mean number of different compounds identified per sample was 13.75 (n = 

20, SD ± 2.4) with the greatest number of different compounds identified in a single 

sample = 18, Figure 5-3.  
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The greatest difference in number of different compounds identified between a 

participant’s two samples was 5. Most of the participants had a greater number of 

compounds identified in their first sample (mean = 14.20, S.D. = ± 1.8, n = 10) 

compared to their second (mean = 13.30, S.D. = ±2.9, n = 10), regardless of which 

underarm was sampled on which day although this was not statistically significant. 

Similarly, there was no significant trend when comparing left to right; the mean 

number of compounds identified from left samples was 14.10 (S.D. = ±2.5) compared 

to 13.40 in the right (S.D. = ±2.4). Notably, three compounds used in the model sweat 

were identified in some of the samples; propanoic acid (13), butyric acid (8), and 2-

methylbutanoic acid (11). All three were observed more often in the first day than 

the second, this is consistent with the general trend observed. Of the two 

participants with the highest olfactometry scores (2 and 15, Figure 5-2) both of 

participant 2’s samples and participant 15’s left sample contained all three of these 

known malodour compounds, Figure 5-4. The pattern of first vs. second sample 

continues in this comparison as 15’s second sample (right sample) contained only 

propionic acid of these three compounds of interest.  

Squalene 

Figure 5-3: Chromatogram of sample containing 18 different identified compounds (pink line) 
compared to the ‘blank’ extract (black line) (supplied by Steph Blissett, Unilever Port Sunlight). 
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This analysis only includes compounds that are present in concentrations above the 

limit of detection of the method applied. 

5.3 Real Sampling 

As the end goal of the project is to create a device suitable for use in vivo, hydrogels 

have been worn by anonymous volunteers as a preliminary test to determine the 

viability of the device. These volunteers would affix a hydrogel under one or both 

underarms for the duration of their exercise, e.g. a one hour gym session. These 

samples were then stored in sealable pouches until recovery, or immediately 

recovered as discussed in Chapter 4, and analysed by the methods described in 

Chapter 2. Figure 5-5 illustrates that the GC of these samples reveals peaks in the 

chromatograms, as predicted with the model sweat solution in Chapter 4. As 

illustrated, there are fewer peaks than anticipated from these worn hydrogels which 

could be for a number of reasons. This could be due to these particular volunteers 

not being particularly sweaty / smelly volunteers as, unlike in industry standard tests, 

no pre-screening was carried out on the volunteers to determine this. It is also likely 

that they were wearing antiperspirant / deodorant products as there were no 

conditions on participants. Further, there may not have been enough time between 

Butyric Acid 
Propionic Acid 

Figure 5-4: Overlaid GC-MS chromatograms for participant 2’s samples, highlighting the presence of 
propionic acid and butyric acid (supplied by Steph Blissett, Unilever Port Sunlight). 
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sweating and removal of the hydrogel for bacterial metabolism to occur and 

therefore a lack of the expected compounds. Conversely, it may be that there are 

other compounds present but they are at concentrations lower than the current 

analytical limit of detection (LOD, see Chapter 2). 

There are similarities and differences between the peaks in all four volunteer 

chromatograms, Figure 5-5. This suggests that there are some common compounds 

within the malodour profile of some of the volunteers but also some differences 

especially in quantity and therefore potential strength of malodour. 

 

Figure 5-5: Stacked example chromatograms of real sweat collected using hydrogels. 

One of these real samples is then stacked with two of the VFAs in Figure 5-6. This 

illustrates that two of the peaks in that sample occur at the same elution times as 

those for acetic and propionic acids respectively, which suggests that this is their 

identity. This is where the importance of the combined techniques such as GC-MS, 

become apparent as further information is required for conclusions on the identity 

of components in the real samples to be made. For further studies, a more 

comprehensive library of retention times of sweat components would need to be 

created. 
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Figure 5-6: Stacked chromatograms comparing a real sweat sample and two VFAs. 

5.4 Additives 

Hydrogels are widely used as delivery vehicles, e.g. in the medical industry for drug 

delivery, therefore it is known that hydrogels can incorporate far more than just 

water. The following work investigates the addition of pH indicators as an immediate 

tool for qualitatively pre-screening samples or possible additional methods of 

quantitative analysis. Finally, the incorporation of fragrance is investigated with the 

potential for a future product or more complex device. 

5.4.1 Indicators 

As discussed in Chapter 1, indicators were to be used to allow for a more immediate 

indication of volatiles present in human sweat. Thus far, two indicators have been 

used, quinine and bromophenol blue. These pH indicators work on accepting and 

donating protons and the changes this causes to the π-interactions in the molecules 

leading to the visible colour / fluorescence changes we rely on as indicators.  

Furthermore, as well as an immediate colour response, quantification could be 

achieved via spectroscopy, for example concentration could be calculated via UV-Vis. 

The Beer-Lambert equation would allow for the calculation of an unknown 

concentration based on the UV absorption by creating a calibration curve of 
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absorption vs. concentration. However, this would only give a total acid 

concentration rather than individual data. UV-Vis data are presented for the 

bromophenol blue experiments but this quantification was not carried out. 

5.4.1.1 Quinine and Quinine Sulfate 

Quinine is a common, pH-dependent fluorophore; under acidic conditions, the 

addition of the proton to the lone pair on the nitrogen disrupts the conjugation that 

was otherwise quenching the fluorescence. Following the work of Liu et al.,6 attempts 

were made to introduce quinine to the p(NaAMPS) hydrogels as an indicator of the 

presence of sweat, as quinine has pH-sensitive fluorescence and sweat is acidic.7 As 

quinine has very limited solubility in water, which is a large part of both the hydrogel 

and sweat, quinine sulfate was also investigated as this salt form has increased 

aqueous solubility.  

Figure 5-7 illustrates the pH-dependent fluorescence of quinine in water using model 

sweat to decrease the pH. This can be seen in the fluorescence spectra and the 

photographs taken, when using the UV nail lamp (broad band with λ ~360 nm) as the 

UV source. Quinine has a fluorescence at ~ 400 nm in general conditions, on 

decreasing the pH, this shifts to a longer wavelength, ca. 460 nm.  

 

 

 

 

 

 

 

 

Figure 5-7: a) Overlaid fluorescence spectra of quinine at the two different pH. b) the corresponding 
structures of quinine. c) the corresponding photos of the solutions under the UV lamp with the 

recorded pH of the solutions. 

 

 

b 

c 

pH = 8.56 pH = 4.03 

a 
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Figure 5-8a shows the products of the initial polymerisation attempt. As can be seen, 

the quinine ‘gel’ is more yellow than the standard hydrogel and required more passes 

under the Light Hammer (10 instead of the standard 5) to form a gel disc. When using 

quinine sulfate the polymerisation was disrupted further, (Figure 5-8b and c) which 

is theorised to be due to quinine sulfate’s increased solubility, compared to quinine, 

in water. 

 

 

 

 

There are currently two possible explanations as to why quinine disrupts the 

polymerisation; firstly, although quinine has a vinyl bond where polymerisation can 

take place, once it adds to the chain it could terminate the chain due to a lack of a 

neighbouring electron withdrawing group, therefore preventing the normal highly-

cross linked network forming. Kobayashi and Iwai reported the copolymerisation of 

cinchona alkaloids in the 1980s,8,9 however, they also reported a decrease in yield 

and inherent viscosity with the increase in quinine content. The second possibility is 

that photo-polymerisation is inhibited due to absorbance of the UV by the quinine. 

These same quinine concentration gels were synthesised in NMR tubes for ‘gel’ 1H 

NMR analysis. These give evidence for the lack of polymer gel network formation 

when 10 mg of indicator was added to the reaction mixture, as the vinyl groups are 

observable with both quinine and quinine sulfate (Figure 5-9). 

Figure 5-8: a) The quinine ‘gel’ that is yellow in colour. b and c) Photos of the quinine-AMPS 
polymers that did not form a stable gel network as standard p(AMPS) hydrogels do. 

a b c 
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Even though the polymerisation was not as desired, pH-fluorescence of the ‘gels’ was 

still tested. As can be seen in Figure 5-10, the fluorescence maxima shifts from ~380 

nm to ~470 nm with the addition of the model sweat, this is in agreement with the 

aqueous solution (Figure 5-7).  

 

Figure 5-10: 10 mg /gel quinine fluorescence spectra overlaid. 

In order to ensure gelation of the hydrogels during synthesis, the concentration of 

quinine used was decreased. Reducing the concentration to 1 mg or 0.1 mg per 

hydrogel (compared to the previous 10 mg) ensured that hydrogel networks, with a 

structure more akin to the standard hydrogels, were synthesised. As can be observed 

in Figure 5-11, for both quinine and quinine sulfate, there is still a high enough 

concentration in the hydrogel to elicit the pH-dependent fluorescence when the 

Figure 5-9: Left: Stacked 1H NMR spectra of the hydrogels synthesised containing different 
concentrations of quinine. Right: the same spectra for the gels containing quinine sulfate. 
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same volume of sweat is added to the gels, as observed when using 10 mg of active 

ingredient. 

As one of the key properties of the hydrogel is its ability to absorb aqueous solutions, 

this property was then exploited to synthesise an indicator-containing hydrogel post-

polymerisation, Figure 5-12. Figure 5-13 illustrates that the fluorescence response is 

the same from a hydrogel whether the quinine is added pre- or post-polymerisation. 

This appears to be a viable solution to the polymerisation problems described above. 

 

 

 

 

 

 

 

 

 

Figure 5-11: Left: Normalised overlaid fluorescence spectra of the three different concentrations of 
quinine tested to-date. Right is the same spectra using quinine sulfate. 

Figure 5-12: Quinine rehydrated hydrogel (top), under the UV light (bottom left), under the UV light 
with absorbed model sweat (bottom right). 
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These hydrogels were further tested on real, axillary-produced sweat. A challenge 

with using quinine as a visual indicator is that, whilst λmax, em shifts to a longer 

wavelength, under a UV lamp, the quinine hydrogel alone will fluoresce also (Figure 

5-14b), necessitating the use of a fluorescence spectrophotometer.  

Figure 5-15 illustrates the fluorescence data of the ‘blank’ quinine hydrogels with the 

worn (dark blue trace) and dosed (turquoise trace) versions, where a difference can 

be observed between the worn (or dosed) and unworn samples (red and pink traces).  

Figure 5-14: a) Worn hydrogels that contain quinine sulfate (left) and no indicators (right) under UV 
lamp. b) Comparison of worn and unworn halves of a quinine sulfate – containing hydrogel under a 

UV lamp. 

Figure 5-13: Normalised fluorescence spectra illustrating that the quinine can be added pre- or post-
polymerisation for the same detection result. 

a b 
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Quinine and quinine sulfate are found in tonic water and most commonly used as an 

antimalarial.10–12 This means they have already been approved for human 

consumption, however, they are both classed as skin irritants and therefore leaching 

studies would need to be carried out to determine if they are safe to be worn for a 

period of time. 

While this could be a useful analytical technique allowing for quantification of total 

acids via pH-induced fluorescence, it is not practical as a qualitative screening tool. 

 

 

 

 

 

 

Figure 5-15: Normalised overlaid data of the worn quinine sulfate hydrogel and the equivalent 
model sweat spectra. 
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5.4.1.2 Bromophenol Blue 

Bromophenol blue (BPB) is a common pH indicator, where it is the protonation / 

deprotonation of the phenol oxygen that is responsible for the colour that is visible. 

Bromophenol blue is a pH indicator which is yellow at pH = 3 and blue at pH = 4.6. 

When the oxygen is protonated (under strongly acidic conditions) the hydroxyl group 

is not involved in the conjugated π-bonding of the aromatic ring, however, when the 

phenolate anion is present (basic conditions) the lone pair will conjugate into the 

aromatic ring and the blue colour is observed. 

 

 

Figure 5-16: Structure of bromophenol blue. 

This indicator was used as it was readily available and has previously been shown to 

work for sweat related sensors.13,14 As an aqueous solution of NaAMPS has a basic 

pH (measured with probe as pH = 6.0), the standard hydrogels, with bromophenol 

blue added pre-polymerisation, are purple, Figure 5-17a. When 0.5 ml of model 

sweat is added and left to absorb (as standard procedure) a colour change takes place 

but only around the edge of the hydrogel, Figure 5-17b. To overcome this, the 

concentration of bromophenol blue in the hydrogel was reduced and the indicator 

experiment was repeated (Figure 5-17c and d respectively). Visible colour change of 

the hydrogels was monitored by UV-Vis spectroscopy (Figure 5-18). Although the 
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peak at ~600 nm is visible in all three samples (purple region), there is a clear 

appearance of a peak at ~450 nm (yellow region) when the model sweat is added. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17: Original standard hydrogel containing BPB (a), with 0.5 ml added model sweat (b), 
decreased concentration of BPB (c), with 0.5 ml added model sweat (d). 

 

Figure 5-18: UV-Vis spectra of a BPB containing hydrogel, before and after the addition of model 
sweat. 

 

 

a b 

c d 
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Worn Bromophenol Blue Hydrogels 

These were also tested by being worn in the axilla by volunteers as described 

previously. Figure 5-19 illustrates the before and after of bromophenol blue 

containing hydrogels when worn by a volunteer during exercise. This illustrates that 

the blue to yellow transition is achieved in vivo as well as during the model studies. 

Where the colour change is clearly visible to the eye in this case, it is less obvious in 

the UV-Vis spectra (Figure 5-20). The peak in the yellow region is only visible as a 

change in gradient between 420 and 450 nm in the worn samples in combination 

with a decrease in the height of the peak in the blue region (normalised data). 

Figure 5-19: Unworn (left) and worn (right) hydrogels all containing bromophenol blue. 
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Figure 5-20: Overlaid UV-vis spectra of a ‘blank’ BPB hydrogel (- - -), when model sweat is added (---) 
and the volunteer worn hydrogels (solid line). 

Although the bromophenol blue will be freely solvated in the hydrogel, one of the 

reasons it was chosen is that it has no known associated hazards .15 Furthermore, 

there is a “500 Dalton rule” associated with transcutaneous delivery. Bos and 

Meinardi illustrated that there is a rapid decline in skin absorption of small molecules 

at approximately 500 Da.16 Bromophenol blue has an RMM = 669.96 Da and 

therefore would be above this limit. Further work is required to examine whether 

the bromophenol blue leaches from the patch to the skin. 
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5.4.1.3 p(HEMA) 

Using an indicator and collecting UV-Vis data in this manner has added complications 

when using HEMA containing hydrogels. As discussed in Chapter 3, p(HEMA) 

hydrogels are opaque white with even a small amount of water within (the xerogels 

are transparent and colourless). With the addition of BPB, the colour change is still 

visible to the eye as, initially, opaque pale blue hydrogels are formed which, on 

addition of acid, become yellow as is illustrated by the addition of acetic acid to the 

hydrogel in Figure 5-21. This means using it for qualitative screening is still possible, 

however, UV-Vis data was not possible using the available equipment due to the high 

opacity of these materials. Future work could involve investigating the use of diffuse 

reflectance measurements instead. 

 

Figure 5-21: p(HEMA) hydrogels containing bromophenol blue. 
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5.4.2 Fragrance 

The incorporation of fragrance into an otherwise standard p(NaAMPS) hydrogel was 

investigated as a potential future product or possibly a more advanced collection 

device.17 The oily fragrance (‘New Day’) is immiscible in the aqueous NaAMPS 

solution therefore it is incorporated into the hydrogels as dispersed droplets, Figure 

5-22. Two concentrations of fragrance were incorporated, where, as expected, the 

lower concentration displayed smaller fragrance droplets. Both hydrogels smelled 

strongly of the fragrance after polymerisation and continued to do so for several 

weeks and months after initial synthesis. It was also observed that the addition of 

fragrance increased the curing time required to form a solid hydrogel akin to the 

standard.  

This was then repeated using a more aqueous soluble fragrance known as ‘White 

Willow’, Figure 5-23, however, this still exhibited the same fragrance droplet 

formation as with the ‘New Day’ fragrance. 

 

 

 

 

 

 

c b a 

c b a 

Figure 5-22: p(NaAMPS) hydrogels containing ‘New Day’ fragrance at 1 % (v/v) fragrance (a), 0.5 
% (v/v) fragrance (b) and no fragrance incorporated (c). 

Figure 5-23: p(NaAMPS) hydrogels containing ‘White Willow’ fragrance at 0.1 % (v/v) fragrance 
(a), 0.5 % (v/v) fragrance (b) and 1 % (v/v) fragrance (c). 
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Further optimisation would be required to examine further decreasing the 

concentration of fragrance to eliminate the biphasic appearance whilst maintaining 

fragrance release. Studies would also be required into the rate of the fragrance 

release, for example by headspace GC-MS. 

5.5 Conclusion 

It has been evidenced, through in vitro bacterial assay and in situ olfactory 

assessment, that the hydrogels do not alter the bacterial microbiome as they neither 

introduce bacteria nor restrict the growth of the natural bacteria, as they are not an 

occlusive material. This suggests they are a suitable device for collecting realistic, 

quantifiable data. In situ collection of real sweat also evidenced the viability of the 

device in vivo. Furthermore, the addition of pH indicators provides the potential for 

non-extraction based quantification of total acid concentration or the ability to 

qualitatively pre-screen samples. This was further evidenced by in situ testing. Finally, 

the addition of fragrance to the hydrogel, as a potential product additive, appeared 

possible, though further work would be required if this was to become part of the 

sensory device. 
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6. Conclusions & Future Work 

Current industrial standard methods for the analysis of the efficacy of antiperspirant 

/ deodorant products are somewhat archaic and provide minimal quantitative 

information; the mass of sweat produced and the general level of perceived 

malodour through weighing sweat collected in textile patches and olfactory 

assessment (marked out of five) respectively. The goal of this research was to create 

a sampling device and analytical method that would update the efficacy testing of 

future products and provide more detailed quantitative information on specific 

malodorous compounds. 

Chapter 2 demonstrated the development of a successful GC-FID method for the 

separation and quantification of malodorous compounds involved in body odour. 

This followed the work of Fleming et al. in both the method and the column choice 

(30 m polar PEG column, internal diameter 0.32 mm, film thickness 0.25 µm).1 HPLC 

and GC-MS were also investigated, however, GC-FID was the preferred analytical 

technique for quantification purposes. GC-MS was found to be useful for 

identification of the unknown compounds found in the real samples from the study 

carried out at Port Sunlight (Chapter 5). Future development would include the use 

of thermal desorption and solid phase microextraction as possible extraction / 

injection techniques into a GC. A further chromatography technique to be 

investigated is supercritical fluid chromatography, a complimentary technique to GC 

and LC. 

Chapter 3 initially detailed the investigation of the synthesis of p(NaAMPS) hydrogels 

as devices for absorption of sweat. In this investigation the optimum synthetic 

procedure for these materials was determined, the optimum photoinitiator 

concentration was found to be 0.065 mol% with 1 pass (7 seconds) under the Light 

Hammer. As part of this investigation a method for analysis of these materials by 

solution state NMR was developed. The crosslinker concentration of these hydrogels 

was then further optimised with a focus on the swelling kinetics and mechanical 

properties.  
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Alternative monomers, such as HEMA and HEA, were also compared, however, these 

were found to be more challenging to synthesise compared to p(NaAMPS) and also 

did not swell to the same degree (a necessity of this application). 

More complex architectures, such as double network IPNs, were then investigated 

to determine if they could add mechanical strength to the device. Initially, alginate 

was used as a physical network in combination with the p(NaAMPS) network before 

attention turned to combining two covalent networks; NaAMPS with HEA or HEMA. 

The NaAMPS and HEMA combination was focussed on whereby it became apparent 

that the swelling kinetics were between the individual networks’ behaviours. This has 

led to an MChem project investigating the effect of which network is synthesised first 

in the sequential IPN synthesis and the effect of the ratio of the two networks on the 

swelling and mechanical properties. Future work would include imaging these 

different materials as well as determining the effect of supercritical fluid on the IPNs 

in order to be able to use supercritical fluid extraction. As well as further work on the 

physical-covalent combination as alternative materials plus the synthesis of a 

p(NaAMPS-co-HEMA) single network for comparison. 

Chapter 4 applied the p(NaAMPS) hydrogels from Chapter 3 in an investigation of 

absorption and extraction of a model sweat mixture of 10 VFAs, one unsaturated 

aldehyde and one thiol in aqueous solution. Several extraction methods were tested 

such as simple solvent (including sample pre-treatment), Soxhlet and supercritical 

fluid extraction. It was found that simple solvent extraction (minimum solvent, sealed 

for 24 hours) without any sample pre-treatment (cutting up / sonication of samples) 

was the most effective. SFE proved promising, however, further method 

development is required to optimise device stability during this process whilst 

retrieving all analytes. Although Soxhlet extraction allowed for the comparison 

between a hydrogel and a textile patch, it was found to be time and resource 

consuming, which is non-ideal with industrial application in mind. The results did 

indicate that the absorption and extraction from the novel hydrogel devices are 

comparable to the textile patches already in use by Unilever.  

Furthermore, it was found that dosed p(NaAMPS) hydrogel devices could be stored 

for up to 4 weeks at room temperature prior to extraction and analysis. This gave 
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promising initial results, an improvement on the current vacuum packing and storage 

at -80 °C, a key element for future global testing. A future study using the hydrogel 

devices in vivo would be required to compare to storage of the textiles. 

In Chapter 5 it was demonstrated (in collaboration with Unilever Colworth) that the 

p(NaAMPS) hydrogels do not disrupt the natural bacterial microbiome. This was 

further evidenced when these hydrogel devices were then tested in situ at Unilever 

Port Sunlight in a typical sweating study (tested against current textile patches), 

where it was found that the hydrogel devices did not affect the olfactory assessment.  

Chapter 5 also illustrated that the absorption and recovery investigated using model 

sweat in Chapter 4, could be successfully applied to samples collected in situ. The 

p(NaAMPS) hydrogel devices were tested on volunteers at Warwick, where it was 

found that they do absorb over the course of exercise activities and can be extracted 

to determine malodorous compounds. This is excellent proof of concept and even 

showed, by GC-FID, some differences between volunteers. The hydrogel devices 

worn for 24 hour periods as part of the Port Sunlight study were also extracted and 

analysed by GC-MS which successfully identified some of the known malodour 

samples as well as giving insight into other unknown compounds found in axillary 

sweat. Further studies involving hydrogel devices being worn and extracted, 

eventually using the SFE technique would be required to gain more data. Studies 

would also be required which included antiperspirant / deodorant products being 

worn to determine if their efficacy can be determined using the devices; the ultimate 

goal of this device. 

Further, the addition of pH indicators to the hydrogels was investigated for use as a 

qualitative pre-screening method. Both quinine (sulfate) and bromophenol blue (pH 

sensitive fluorophore and chromophore respectively) were shown to be successful 

indicators of the acid content of sweat with both the model sweat and real samples. 

Quinine was found to be less useful as a screening tool as it fluoresces with and 

without sweat (it is the emission wavelength that shifts) but could be used as an 

alternative quantitation tool. Bromophenol blue could be used as a colour indicator 

visible for pre-screening or for quantitation via UV-Vis where a total acid 

concentration could be calculated using the Beer-Lambert law. If this were to be 
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pursued, further optimisation would be required for the p(HEMA)-containing 

hydrogels as they are opaque. 

This investigation into the use of indicators led to a PhD project investigating the use 

of (PEG) dibromomaleimide as a colorimetric / fluorescence indicator of the presence 

of thiol compounds and the possibility of decreasing their volatility using long chain 

polymer analogues so as to obtain better analytical data for this type of compound. 

This would then also be incorporated into a hydrogel device and as an end goal would 

be part of a multicomponent device that can give insights into the various different 

functional groups involved in malodour, preferably quantifiably, perhaps in a 

compartmentalised device similar to some of the smart devices investigated recently 

such as that reported by Koh et al..2 

Future work would also include further development of the full device, including the 

sticky, breathable backing, which would involve carrying out peel testing on the 

Universal Tester. 

Even though development is required before these hydrogel devices can be regularly 

used in industrial applications, extensive progress has been made in producing and 

testing a material that will bring antiperspirant / deodorant testing into the 21st 

century. 

 

1 S. E. Fleming, H. Traitler and B. Koellreuter, Lipids, 1987, 22, 195–200. 
2 A. Koh, D. Kang, Y. Xue, S. Lee, R. M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, 

P. Bastien, M. C. Manco, L. Wang, K. R. Ammann, K.-I. Jang, P. Won, S. Han, R. 
Ghaffari, U. Paik, M. J. Slepian, G. Balooch, Y. Huang and J. A. Rogers, Sci. 
Transl. Med, 2016, 8, 366–165. 
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7. Experimental Techniques 

7.1 Materials 

7.1.1 Model Sweat Solution 

Table 7-1 presents the compounds used to prepare the model sweat solution; all 

materials were used as supplied. Bromobenzene was purchased from Sigma-Aldrich 

and used as supplied. 

Table 7-1: Volatile compounds used. 

Name Description 
 Purity 

(%) 
Supplier 

Acetic acid 

 

 
>99 

Fisher 

Scientific 

Butyric acid 

 

 
99+ 

Acros 

Organics 

4-Ethyloctanoic 

acid 

 

 

97 Alfa Aesar 

Hexanoic acid 

 

 
 Merck 

Isobutyric acid 

 

 

99 Alfa Aesar 

Isovaleric acid 

 

 
 Merck 

3-Mercapto-1-

hexanol 
 

 
96 Alfa Aesar 
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2-Methylbutyric 

acid 

 

 

98 
Sigma 

Aldrich 

4-Methylvaleric 

acid 

 

 

99 Alfa Aesar 

Propionic acid 

 

 
 Merck 

Trans-2-nonenal 

 

 
97 

Sigma 

Aldrich 

Valeric acid 

 

 
99 Alfa Aesar 

 

 

 

 

 

 

 

 

 

 

 

 



138 
 

7.1.2 Polymerisation 

Table 7-2 and Table 7-3 present the materials used to prepare p(NaAMPS) and 

p(HEMA) hydrogels respectively; all materials were used as supplied. 

Table 7-2: Starting materials for synthesis of p(NaAMPS) hydrogels. 

Name Description 
Purity 

(%) 
Supplier 

2-Acrylamido-2-

methylpropane 

sulfonic acid sodium 

salt (NaAMPS)  

50 (in 

water) 

Sigma 

Aldrich 

Poly(ethylene glycol) 

diacrylate 

 

 
Sigma 

Aldrich 

2-Hydroxy-2-

methylpropiophenone 

(Irgacure 1173) 
 

97 

 

Sigma 

Aldrich 

(BASF) 
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Table 7-3: p(HEMA) thermal polymerisation materials. 

Name Description 
Purity 

(%) 
Supplier 

2-Hydroxyethyl 

methacrylate (HEMA) 

 

 
Sigma 

Aldirch 

poly(ethylene glycol) 

diacrylate 

 

 
Sigma 

Aldrich 

2,2-azobis(2-

methylpropionitrile) 

(AIBN)  

98 

 

Sigma 

Aldrich  

2,2'-Azobis[N-(2-

carboxyethyl)-2-

methylpropionamidine] 

tetrahydrate 

 
 

Wako 

Chemicals 

 

Hydroxyethyl acrylate (HEA) was purchased from Sigma Aldrich and used as supplied. 

Acrylamide (>99 %), N,N’-methylenebisacrylamide (99 %), ammonium persulfate 

(98+ %) and tetramethylethylenediamine (99 %) were purchased from Sigma-Aldrich 

and used as supplied.  

Sodium alginate was purchased from Vickers Labs and used as supplied. 

Calcium chloride was purchased from Fisher and used as supplied. 

7.1.3 Indicators 

Quinine and quinine sulfate were purchased from Acros Organics and used as 

supplied. 

Bromophenol blue was purchased from Sigma-Aldrich and used as supplied. 
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Fluorescein isothiocyanate (FITC) was purchased from Thermo Fisher and used as 

supplied. 

7.1.4 Fragrances 

White Willow and New Day were kindly supplied by Unilever and used as supplied. 

7.1.5 Solvents 

Ethyl acetate and acetonitrile (both HPLC grade) were purchased from Fisher and 

used as supplied. 

Diethyl ether was purchased from Fisher and used as supplied. 

Deuterium oxide and chloroform-d (99.8 % with TMS) were purchased from Sigma 

Aldrich and used as supplied. 

7.2 Model Sweat Solution 

Acetic acid, propionic acid, isobutyric acid, butyric acid, isovaleric acid, 2-

methylbutyric acid, valeric acid, 4-methylvaleric acid, hexanoic acid, 3-mercapto-1-

hexanol, trans-2-nonenal and 4-ethyl octanoic acid were used in a mixed solution to 

mimic sweat (concentration of the stock mix in water was 1 % (v/v) which equates to 

~1-3 mmol dm-3 of each individual volatile in water), Table 7-1. 

7.3 Hydrogel Synthesis 

7.3.1 Standard Procedure 

To prepare standard p(NaAMPS) hydrogels, a batch aqueous solution was prepared 

from 46.4 g 2-acrylamido-2-methylpropane sulfonic acid sodium salt (NaAMPS, 50% 

in water, 0.10 mol), 0.1077 g poly(ethylene glycol) diacrylate (PEGDA, Mn ~ 575 g mol-

1, 0.2 mmol), 0.01 ml of the photoinitiator Irgacure 1173 (2-hydroxy-2-

methylpropiophenone, 0.07 mmol) and 30.5 ml water in the absence of light, Table 

7-2. This was allowed to stir before 3 ml aliquots were transferred to each individual 

mould (30 mm diameter) via syringe, then photo cured. The UV source used for the 

synthesis was a Light Hammer®, Figure 7-1, where standard procedure is 5 passes (at 

5 m min-1, each pass ~ 7 seconds UV exposure). 
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For equivalent HEA hydrogels, a large batch aqueous solution was prepared from 

11.6 g hydroxyethyl acrylate (HEA, 0.10 mol), 0.05385 g poly(ethylene glycol) 

diacrylate (PEGDA, Mn ~ 575 g mol-1, 0.1 mmol), 0.005385 ml of the photoinitiator 

Irgacure 1173 (2-Hydroxy-2-methylpropiophenone, 0.03 mmol) and 29.1 ml water in 

the absence of light. This was allowed to stir before 3 ml aliquots were transferred 

to each individual mould via syringe, then photo cured. The UV source used for the 

synthesis was a Light Hammer®, Figure 7-1, where standard procedure is 5 passes (at 

5 m min-1, each pass ~ 7 seconds UV exposure). 

7.3.2 Initiator Concentration 

7.3.2.1 p(NaAMPS) 

Standard preparation of p(NaAMPS) hydrogels was followed with the exception of 

the initiator concentration was decreased from 0.065 mol% to 0.013 mol% and 

0.0013 mol% respectively. 

7.3.2.2 p(HEA) 

This followed the equivalent p(HEA) procedure for photo-induced polymerisation 

except the initiator concentration was increased. These were mixed in a smaller 

batch (total volume approximately 10 ml) as they were for NMR studies. 2.85 g HEA 

(0.025 mol), 0.0132 g PEGDA (0.023 mmol), 0.0013 or 0.013 ml Irgacure 1173 (0.008 

and 0.08 mmol, respectively) and 7.14 ml water were combined in the absence of 

light. This was allowed to stir before 1 ml aliquots were transferred to 5 mm NMR 

tubes via syringe, then photo cured. The UV source used for the synthesis is a Light 

Figure 7-1: The Light Hammer®. 
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Hammer®, Figure 7-1, where standard procedure is 5 passes (at 5 m min-1, each pass 

~ 7 seconds UV exposure). 

7.3.3 Crosslinker Concentration 

Standard p(NaAMPS) hydrogels were synthesised containing 0.2 (standard), 0.5, 1.0 

and 2.0 mol% PEG diacrylate as crosslinker. 

7.3.4 Use of indicators 

7.3.4.1 Quinine and quinine sulfate 

Initially, quinine was tested in aqueous solution; 10 mg of quinine was added to 10 

ml of water and the pH recorded. 0.25 ml of the model sweat solution was then 

added and the pH recorded. Fluorescence spectroscopy was carried out on both 

samples. 

p(NaAMPS) hydrogels containing quinine were synthesised via standard procedure 

with the addition of 10, 1 or 0.1 mg quinine per hydrogel added to the monomer 

solution pre-polymerisation. This was carried out using both quinine and quinine 

sulfate. 

Alternatively, a standard p(NaAMPS) hydrogel was dehydrated as standard, then 

rehydrated with 3 ml of an aqueous solution containing 10 mg quinine sulfate 

overnight. 

7.3.4.2 Bromophenol Blue 

Bromophenol blue, 3 mg, was added to the standard p(NaAMPS) solution prior to 

polymerisation as standard procedure. 0.5 ml of model sweat was added and left to 

absorb as per standard procedure before UV-Vis analysis of the bromophenol blue-

containing hydrogels was carried out before and after model sweat addition. 

The concentration of bromophenol blue was then reduced to 1.5 mg in the batch and 

the process repeated. This concentration was also used in the materials tested with 

real sweat. 

Bromophenol blue, 0.2 mg, was added to a standard aqueous HEMA solution (for 

thermal solution polymerisation, subsection 7.3.7.2). 3 ml aliquots of this were 
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transferred to the silicon moulds for polymerisation in the oven as standard 

procedure. 

7.3.5 Addition of Fragrances 

A standard batch of p(NaAMPS) pre-polymerisation solution was prepared then 3 

aliquots of 12 ml each were transferred to separate 20 ml vials. 12, 60 and 120 µl of 

‘New Day’ were added to each of these vials to create 0.1, 0.5 and 1.0 v/v% materials 

respectively. These were then shaken before being transferred to moulds and 

polymerised as standard procedure. This was repeated using ‘White Willow’. 

7.3.6 UV source 

The standard UV light source was a Light Hammer® (Figure 7-1) equipped with a ‘H 

bulb’ which supplies UV light over a wide range of wavelengths, Figure 7-2.1 A 

conveyor belt underneath (speed ~ 5 m min-1) controls the exposure of the sample 

to the UV light for a few seconds per pass. 

 

 

 

 

In comparison, the UV “nail lamp” supplies light ~360 nm (Figure 7-3),2 however, this 

requires more than an hour of exposure which leads to over exposure to increased 

temperatures. 

 

Figure 7-3: UV nail lamp that was used as an alternative UV light source. 

Figure 7-2: Output spectrum of 10” Fusion UV Electrodeless Bulb; H bulb (13 mm). 
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A UVP CL-1000 Ultraviolet Crosslinker was also tested as a UV curing source, with 

varying intensities and exposure times investigated. The bulb in this unit emits UV 

light at 254 nm.3  

7.3.7 Thermal Polymerisations 

7.3.7.1 Bulk Polymerisation 

To 9.87 g of 2-hydroxyethyl methacrylate (HEMA, 75.84 mmol) was added 44 mg of 

poly(ethylene glycol) diacrylate (PEGDA, 0.076 mmol) and 74 mg 2,2-azobis(2-

methylpropionitrile) (AIBN, 0.45 mmol). Once homogenous, this was transferred to 

an aluminium pan or a 3 ml aliquot was transferred to a silicon mould and sealed in 

a plastic bag. This was then placed in the oven at 70 °C for 6 hours. Once cool, this 

was sealed in a jar containing 50 ml of deionised water to swell and release any 

residual monomer. The water was changed twice daily by decanting the water, 

weighing the hydrogel and recording the mass (see 7.4.1 Swelling Kinetics) and 

resealed in the jar with a fresh 50 ml of deionised water. The collected water was 

then analysed by UV-vis for residual monomer. 

7.3.7.2 Solution Polymerisation 

To 20 ml of deionised water, 9.87 g of 2-hydroxyethyl methacrylate (HEMA, 75.84 

mmol), 44 mg of poly(ethylene glycol) diacrylate (PEGDA, ~575 g mol-1, 0.076 mmol) 

and 0.19 g VA-057 (2,2'-azobis[N-(2-carboxyethyl)-2-

methylpropionamidine]tetrahydrate, 0.45 mmol) was added. 3 ml aliquots of this 

were transferred to individual silicon moulds as standard procedure. These were 

sealed in a plastic bag then placed in the oven at 70 °C for 6 hours. 

7.3.8 Double Network Synthesis 

Physical networks were synthesised by dissolving sodium alginate in water, to create 

a 1 wt% solution, before adding a 0.1 M aqueous solution of calcium chloride.4 

7.3.8.1 P(AAm)-alginate Double Network 

Sodium alginate, 0.47 g, and 3.7 g acrylamide (AAm) were added to 25.8 g deionised 

water (total monomer concentration = 14 wt%, mass ratio 1 : 8 alginate : acrylamide) 

in a jar. To this was added 2.3 mg N,N’-methylenebisacrylamide (MBA, 0.028 mol%), 

3.7 mg ammonium persulfate (APS,0.031 mol%) and 3.2 mg 
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tetramethylethylenediamine (TEMED, 0.152 mol%). Once homogenous this was 

heated at 50 °C overnight. After polymerisation, approximately 3 g of the gel was 

transferred to a scintillation vial and 3 ml of a 0.3 M aqueous solution of calcium 

chloride was added to crosslink the alginate and complete DN formation.5 

7.3.8.2 Sequential Double Network Synthesis. 

For a NaAMPS-first DN the standard single p(NaAMPS) networksynthetic procedure 

was initially followed. These hydrogels were then dehydrated in a 70 °C oven before 

being rehydrated with an aqueous solution of HEMA, crosslinker and thermal 

initiator. Once absorbed (minimum 24 hours) these were then placed in an 

aluminium pan, sealed in a plastic bag and put in an oven at 70 °C for the thermal 

polymerisation to take place. Alternatively, an initial p(HEMA) xerogel was 

synthesised (see 7.3.7.1 Bulk Polymerisation), then this was allowed to swell in the 

standard aqueous NaAMPS pre-polymerisation solution for 1 week. This was then 

polymerised by passing under the UV lamp conveyor belt system. 

7.3.8.3 One-pot sequential DN synthesis. 

To reduce the time required in the 2-step synthesis, the swelling step was removed 

by mixing all components required for both networks in the pot prior to the first 

reaction. To a scintillation vial, 18 g of 50 % aqueous solution NaAMPS, 1.5698 g 

deionised water, 0.042 g PEGDA and 0.0042 g of Irgacure 1173 were added and 

stirred until homogenous. Simultaneously, to a separate vial, 9.87 g HEMA 0.044 g 

PEGDA and 0.074 g AIBN were mixed until homogenous. The two solutions were then 

combined, stirred briefly, then 3 ml aliquots were syringed into silicon moulds prior 

to exposure to UV light (10 -15 passes under the UV conveyor belt system). The 

moulds were then immediately transferred to a sealed plastic bag and placed in the 

oven at 70 °C for 6 hours as per the HEMA bulk thermal polymerisation. 

7.4 Hydrogel Absorption 

Hydrogel absorption and recovery was tested by first putting the hydrogel in a 60 ml 

jar (diameter 4 cm) with 0.5 ml of the previously described stock aqueous mixture of 

volatile compounds. This was sealed with Parafilm and left for 24 hours to allow the 

hydrogel to absorb the solution.  
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7.4.1 Swelling Kinetics 

Hydrogels were synthesised via standard procedure (unless otherwise stated) and 

then dried in the oven at 70 °C for a minimum of six hours. They were then sealed in 

individual jars containing deionised water and placed in an incubator at 22 °C. At pre-

determined time points the hydrogels were removed from the water, the surfaces 

dried using a Kim wipe, then the mass recorded before being returned to continue 

swelling. In the case of the thermally-induced bulk polymerisation, the hydrogel did 

not need to be dried prior to swelling. 

7.5 Recovery Procedure 

7.5.1  Standard Process 

The standard recovery procedure was to weigh the dosed hydrogel then place in a 

clean jar with 3 ml of ethyl acetate and leave for 24 hours. 1 ml of this solution was 

removed and placed in a 1.5 ml Chromacol vial with 0.1 ml PhBr stock solution (stock 

concentration ~40 mmol dm-3) and immediately analysed by GC as described below.  

7.5.1.1 Partition 

1 ml of model sweat (section 7.2) was freshly prepared in a 7 ml vial. To this was 

added 1 ml of ethyl acetate and sealed. This was manually shaken for 30 seconds 

then left to settle (~ 1 minute). The ethyl acetate was then pipetted from the top into 

a Chromacol vial before immediate analysis via GC-FID. This was then compared to 

an equivalent concentration of VFA mix run in ethyl acetate as a fresh, concurrent 

sample using the equation: 

 
%𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =  

𝐴𝑝𝑎𝑟𝑡

𝐴100
 × 100 (7-1) 

Where Apart is the area in the chromatogram from the partition experiment and A100 

is the area in the chromatogram of the equivalent ‘100 %’ concentration sample. 

7.5.2 Solvent extraction optimisation 

The standard procedure was modified by either leaving for only 1 hour, sonicating, 

cutting up (manually with a scalpel) or a combination of the above. 
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7.5.3  Soxhlet Extraction 

A standard p(NaAMPS) hydrogel (synthesised in-house, as standard) and a textile 

patch (supplied by Unilever) were tested side-by-side. To each, 0.5 ml of the aqueous 

model sweat solution was added and left in separate sealed jars for 24 hours for 

absorption. After this period, each were place in separate glass-wool Soxhlet 

thimbles within a standard Soxhlet set-up (Figure 7-4) containing approximately 150 

ml of diethyl ether. These were left to reflux at 40 °C for 5 hours.6 The solvent was 

then removed via rotary evaporation before being refilled with ~1.5 ml of ethyl 

acetate for analysis by gas chromatography. 

 

 

 

 

 

 

 

7.5.4 Supercritical Fluid Extraction 

Supercritical fluid extraction (SFE) was carried out in collaboration with Steven Cenci 

at Suprex. Extractions were carried out using a Waters MV-10 ASFE. Hydrogels were 

dosed with 100 µl of a 100 ppm volatile solution, wrapped in pre-cleaned cotton wool 

and placed into a 5 ml Waters stainless steel extractor. Runs were performed in the 

presence of either only CO2 at a flow rate of 5 g min-1 or CO2/acetonitrile at a total 

flow rate of 5 g min-1. Pressure and temperature were varied between 90 – 300 bar 

and 35 – 50 °C, respectively, as was the inclusion of a co-solvent, acetonitrile (4 ml) 

and whether it was included pre- or post-extraction chamber. The run times tested 

were 5-20 minutes. Extracts were analysed by GC-MS. 

 

Figure 7-4: Side-by-side Soxhlet extraction set-up. 
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7.5.5 One month storage stability study. 

Hydrogels were dosed with 0.5 ml of the model sweat solution and left to absorb for 

24 hours as per standard procedure. The 0 time point was then also recovered as 

standard, whilst the rest were transferred to heat-sealable aluminium pouches and 

stored in an incubator at 25 °C for up to 4 weeks prior to standard extraction and 

analysis at the predetermined time points. 

7.6 Analytical Techniques 

7.6.1 Gas Chromatography 

All GC-FID analysis was performed on a Shimadzu GC2014 equipped with a Shimadzu 

A020i autosampler, the injection temperature was 200 °C. The GC was fitted with a 

polar Stabilwax-DA column from (30 m length, 0.32 mm ID and 0.25 µm film 

thickness).The carrier gas was hydrogen, supplied by an external hydrogen 

generator. The injection volume was 1 µl with a 39 split ratio. The detector was a 

flame ionisation detector (FID) with a flame temperature of 300 °C, and a sampling 

rate of 40 ms. The heating profile was 60 °C for 2 minutes and then heated to 220 °C 

at 8 °C min-1 where it remained for a further 5 minutes.  

Samples were analysed by preparing an analyte sample of a known concentration 

and serial diluting until the analyte peak could no longer be observed in the 

chromatogram. This gave a calibration curve for each individual volatile compound 

along with an assumed lower detection limit, which is a concentration between the 

last serial dilution where the analyte was observed and the first where it could no 

longer be observed. The calibration curve can then be used to determine the 

concentration of volatile(s) in a sample of unknown concentration. 

All samples were originally solubilised in ethyl acetate containing bromobenzene as 

an internal standard. The concentration of bromobenzene was kept constant in all 

samples (~5 mmol dm-3). This was then used to determine the concentration ratio 

and subsequently the peak area ratios of the analytes. Results are reported in this 

manner to account for any changes in GC performance over time. 
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7.6.1.1 Gas Chromatography – Mass Spectrometry 

GC-MS was carried out on a single quadrupole Shimadzu GCMS QP2010s. Fitted with 

an AOC20 autosampler and a Restek Rxi-1ms column (15 m length, 0.25 mm internal 

diameter and 0.25 µm film thickness). The carrier gas was helium (supplied from a 

cylinder). The column oven temperature program was; 35 °C for 2 minutes, increased 

to 100 °C at 2 °C min-1 (5 minute hold). Injection temperature was 35 °C and detector 

and transfer line temperatures were both 200 °C. 

Selected ion monitoring mode (SIM mode) monitored 43, 45, 60 and 74 as per Wu et 

al..7 

SFE Extracts 

GC-MS of these extracts was carried out on an Agilent GC-MS 6890 fitted with a 

Phenomemex Zebron column. Injections were 2 µl with a 2:1 split mode. The column 

oven temperature program was; 60 °C for 3 minutes, increased to 150 °C at 6 °C min-

1 (5 minute hold). Injection temperature was 250 °C. 

Real Sampling 

GC-MS was carried out on a single quadrupole Shimadzu GCMS QP2010s fitted with 

a DB-WAX column (20 m length, 0.18 mm internal diameter and 0.18 µm film 

thickness). The column oven temperature program was; 60 °C for 1.33 minutes, 

increased to 220 °C at 15 °C min-1 (2 minute hold). Injection temperature was 250 °C 

and detector and transfer line temperatures were both 200 °C. 

MS scan mode was 33-550 m/z every 0.2 seconds from 3 minutes until the end of the 

heating method (13.99 minutes). 

7.6.1.2 Esterification 

Butyric acid, 0.25 ml, was added to a vial with 0.6 ml chlorotrimethylsilane, this was 

sealed and placed in the oven at 70 °C. 

To synthesise an example FAME; to a scintillation vial, 0.1 ml butyric acid was added 

to 1 ml 0.5 % p-toluenesulfonic acid monohydrate (p-TSA) in methanol and this was 

put in the oven at 100 °C for 1 hour. 
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7.6.2 High Performance Liquid Chromatography 

Reverse-phase HPLC was carried out on an Agilent 1260 Infinity stack fitted with a C-

18 column and a UV detector set to 205 nm. Samples were dissolved in 15 : 85 % 

acetonitrile : water solvent system and the sample was run with a gradient from 15 

% acetonitrile to 40 % over 30 minutes then up to 100 % in the remaining 5 minutes.8 

7.6.3 Absorption monitoring by contact angle. 

Drop shape analysis (DSA) of water droplets was carried out on three different 

materials using a Krüss DSA100 drop shape analyser system with a tilting table. 5 µl 

droplets of deionised water were suspended from a flat-tipped needle before contact 

with the material surface. The Laplace-Young equation was used to determine 

contact angle using Krüss software. 

7.6.4 Proton NMR Studies 

7.6.4.1 Gel NMR 

The hydrogel pre-mix was prepared in a batch as standard procedure with the 

exception that the H2O was replaced with D2O to enable NMR analysis. 1 ml was 

transferred to an NMR tube and passed under the Light Hammer for the specified 

number of passes (1, 5, 10 or 50). These NMR tubes were then wrapped in aluminium 

foil until immediately prior to analysis. 

For the post-polymerisation monomer doping, 0.1 ml of a 50 % NaAMPS solution 

(containing 10 % red food colouring) was added to the NMR tube containing the ’50 

passes’ gel. 

1H NMR analysis was carried out on a Bruker NMR av300 MHz instrument with D2O 

used as the locking solvent, unless otherwise stated, including in the gel. Residual 

water in D2O δH: 4.79(H, b s, OH). 

For NaAMPS monomer δH(300MHz; D2O; Me4Si) 1.5 (6 H, s, Me), 3.5 (2 H, s, CH2), 5.7 

(1 H, d, J = 9 Hz, C=CH), 6.2 (1 H, dd, J = 18 Hz, C=CH), 6.6 (1H, dd, J = 18 Hz, 9 Hz,  

C=CH), 7.9 (1 H, s, NH). For spectra, see Chapter 3. For p(NaAMPS): 1.5 (6H, br, Me), 

3.5 (2H, br, CH2). 
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HEA monomer: δH(300MHz; D2O; Me4Si): 3.8 (2H, t, J = 4.5 Hz, CH2), 4.3 (2H, t, , J = 

4.5 Hz, CH2), 6.0 (1H, d, J = 9 Hz, C=CH), 6.2 (1H, dd, J = 15 Hz, 9 Hz, C=CH), 6.4 (1H, d, 

J = 15 Hz, C=CH). 

p(HEA) hydrogels: δH(300MHz; D2O; Me4Si) 1.8 (2H, br, CH2), 2.45 (1H, br, CH), 3.8 

(2H, br, CH2), 4.3 (2H, br, CH2). 

Quinine and quinine sulfate containing hydrogels are the same broad peaks as the 

standard p(NaAMPS) plus the vinyl peaks of the monomer. 

7.6.4.2 Ester NMR 

Butyric acid 1.0 (3H, t, J = 7.5 Hz, CH3), 1.7 (2H, dt, J = 7.5 Hz, CH2), 2.3 (2H, t, J = 7.5 

Hz, CH2), 11.5 (1H, s, OH). 

The analysis of the trimethyl silane esters was also carried out on a Bruker 300 MHz 

instrument but using deuterated chloroform as the solvent; CDCl3 δH 7.26 (1H, s, CH) 

Butyric acid, trimethylsilyl ester: δH(300MHz; CDCl3; Me4Si) 0.07 (9H, s, CH3), 1.0 (3H, 

t, J = 7.5 Hz, CH3), 1.7 (2H, m, CH2), 2.35 (2H, t, J = 7.5 Hz, CH2). 

For methyl esterification product: δH(300MHz; D2O; Me4Si) 0.86 (3H, t, J = 7.5 Hz, 

CH3), 1.58 (2H, m, CH2), 2.3 (2H, t, J = 7.5 Hz, CH2), 3.65 (3H, s, CH3) 

7.6.5 UV-Vis Spectroscopy 

UV-Vis spectroscopy was carried out on an Agilent Technologies Cary 60 UV-Vis 

instrument using a quartz cuvette for all liquid measurements. 

Hydrogel-based measurements were carried out by sticking the hydrogel to the 

outside of the cuvette holder as demonstrated in Figure 7-5. 

Figure 7-5: Demonstration of hydrogel in situ in the UV-vis spectrometer. 
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7.6.6 Fluorescence Spectroscopy 

Emission Spectra were recorded on an Agilent Technologies Cary Eclipse 

Fluorescence Spectrophotometer using a quartz cuvette. For the quinine 

investigations, the excitation wavelength (λex) was set to 336 nm.  

7.6.7 pH readings 

pH readings of the indicator solutions were recorded using a Mettler Toledo pH probe 

with a 3-point calibration. 

7.6.8 Fourier-Transform Infrared Spectroscopy (FTIR) 

FTIR was carried out on a Bruker Vector 22 FTIR machine equipped with a Golden 

Gate ATR accessory. 

7.6.9 Thermogravimetric Analysis (TGA) 

TGA was carried out on a Mettler Toledo Stare TGA/DSC1 instrument under nitrogen. 

40 µl alumina pans were used and the method was heating from 25 °C to 1000 °C at 

a heating rate of 10 °C min-1.9 

7.6.10 Dynamic Mechanical Analysis (DMA) 

DMA was carried out on a Perkin Elmer DMA8000 with tension clamp geometry. 

Frequency sweeps were performed between 1 and 25 Hz at approximately 25 °C. 

7.6.11 Mechanical Testing 

7.6.11.1 Tensile Testing 

Tensile testing was carried out on a Shimadzu EZ-LX, fitted with a 500 N load cell, 

using the tensile jig set with serrated grips. Elongation was from a 0.1 N pre-load 

before measurements were carried out at 30 m min-1. 

7.6.11.2 Compression Testing 

Compression testing was carried out on a Shimadzu EZ-LX, fitted with a 500 N load 

cell, using compression plates. Materials were compressed to 5 N, which was then 

maintained for 30 seconds then released to no force. This was cycled three times per 

material tested. 
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7.6.12 Laser Scanning Confocal Microscopy 

2 ml of a 0.05 % (w/v) solution of Fluorescein isothiocyanate in water was added to 

the hydrogel and left to absorb for 24 hours at 37 °C (in the absence of light). Imaging 

by LCSM was carried out at room temperature using a Leica TCS SP5-X confocal 

microscope with a 458 nm Ar laser for excitation at 561 nm. 

7.7 Bacterial assay 

In collaboration with Diana Cox at Unilever Colworth, an inoculated pigskin assay was 

carried out as follows. Pigskin was obtained from a local butcher, cleaned, cut into 4 

cm x 4 cm pieces, sterilised by γ-irradiation, and stored at -20 °C until required. 

Pigskin pieces were allowed to thaw overnight in a fridge, then transferred to 

individual sterile Petri dishes containing moistened tissues. The pieces were gently 

swabbed with 96 % ethanol and the petri dishes were warmed in an incubator at 35 

°C and held until ready for use. Each pigskin piece was inoculated with a suspension 

of S. epidermidis (200 µl) and the cells were evenly distributed using a sterile 

spreader. S. epidermidis ATCC 12228 was grown in Tryptone soy broth with Tween 

(TSBT), harvested by centrifugation, and re-suspended in sterile phosphate-buffered 

saline (PBS). Using a spectrophotometer, the turbidity was adjusted to an optical 

density (OD) of ~0.3 with PBS (equivalent to ~108 colony-forming units (cfu) per ml). 

Petri dishes containing the inoculated pigskin pieces were placed in an incubator for 

1 hour at 35 °C to allow the bacterial cells to settle. 

Sampling to determine recovered cell counts was performed using sterile scrub cups 

(2 cm diameter) consisting of a Teflon cylinder and Teflon rod. The cylinder was held 

tightly against the skin surface and aliquots (0.75 ml) of quench fluid pipetted within. 

The skin surface was agitated by means of the Teflon rod and this procedure was 

carried out twice for 30 seconds each, and the retained fluids pooled. Serial dilutions 

of the buffer scrubs were made in sterile diluent and plated on Tryptone soy agar 

with Tween (TSAT) for colony counting.10   
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7.8 In Situ Sampling 

An in situ sampling study was carried out on an anonymised panel at Unilever R&D 

facility in Port Sunlight UK in May 2017. The panel contained 10 women. On day 1 of 

the study each woman’s underarms were washed and dried then a hydrogel (pre-

synthesised at University of Warwick, by R Hand, following standard procedure) with 

a breathable, adhesive backing was fixed in one underarm (random assignment), 

whilst a poly(cotton) patch was fixed in the other underarm of a cotton t-shirt. These 

were then worn for 24 hours. After 24 hours, both patches were removed and 

immediately placed in sealable pouches. The women then faced the standard 

olfactory panel before repeating this process with the underarm switched. The third 

day was for collection of samples and assessment only. In future studies these 

patches will then be analysed by several characterisation techniques. 

Other real samples were collected by volunteers wearing a hydrogel, attached with 

a sports tape of their choice, for a period of approximately 30-60 minutes whilst at 

the gym or doing other sporting activity. 
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