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1. Introduction

A growing body of evidence suggests that encouraging rural-urban migration may be a promis-

ing policy option for developing countries looking to increase aggregate productivity and re-

duce poverty rates. Average levels of income and consumption tend to be much higher in urban

areas than in rural areas in most developing countries, even for observationally similar work-

ers (Young, 2013; Gollin, Lagakos, and Waugh, 2014; Herrendorf and Schoellman, 2018). Direct

experimental evidence points to large returns to lowering migration costs for rural workers to

migrate seasonally to urban areas (Bryan, Chowdhury, and Mobarak, 2014; Akram, Chowd-

hury, and Mobarak, 2017). At least partly in light of evidence of this type, developing countries

have begun to pay more attention to the implicit borders that divide rural and urban areas, and

to strategies for facilitating movements of rural workers into more productive urban centers.

Yet other recent findings cast doubt on rural-urban migration as a viable growth strategy for

developing nations. Using panel tracking studies from Kenya and Indonesia and an individual

fixed effects specification, Hicks, Kleemans, Li, and Miguel (2017) find that observational returns

to migration – meaning the returns for those observed to migrate in the data – are near zero

on average. Alvarez (2020) finds a similar result in Brazil using a large panel survey. Relative

to the large cross-sectional gaps, the gains for rural-urban migrants are an order of magnitude

smaller. These studies join a chorus of other recent papers positing that rural-urban gaps are

due to efficient sorting of workers across space within countries (e.g. Lagakos and Waugh,

2013; Young, 2013; Herrendorf and Schoellman, 2018). In short, these studies postulate that the

people who work in urban areas are simply those with better skills for urban jobs, and that

rural workers, who lack these same skills, will not benefit much from migrating to cities. The

implication is that policy makers should not spend time trying to reduce migration costs for

rural households to help them migrate.

In this paper we draw on new evidence and theory to reassess these conclusions and policy

implications. On the empirical front, we draw on panel tracking surveys from six developing

countries and the same fixed effects specification to expand the set of places for which ob-
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servational returns to migration can be estimated. Using consumption measures as our main

outcome of interest, we find observational returns to migration that are larger on average than

those found in previous studies. In our preferred specification, returns to migration in Indone-

sia are similar to those of Hicks et al. (2017), but larger on average in our other five countries –

China, Ghana, Malawi, South Africa and Tanzania – with an overall average return of 23 per-

cent. Returns measured based on income are similar, for the subset of our countries for which

income data are available. In all countries, observational returns to migration are substantially

lower than the cross-sectional gaps, just as in the work of Hicks et al. (2017) and Alvarez (2020).

We then build an equilibrium model of migration to understand how observational returns to

migration and cross-sectional gaps relate to the precise policy question that governments grap-

ple with: Would there be large benefits to lowering internal migration costs? Feasible policy options

that could affect the internal spatial distribution of people in large scale are likely related to low-

ering mobility costs. Our model builds upon the premise that migration costs – broadly defined

– are quite heterogeneous across individuals. Examples abound. People who are geographi-

cally or linguistically isolated from urban areas face higher costs of migrating there than those

living closer by (see e.g. Bryan and Morten, 2019; Bazzi, Gaduh, Rothenberg, and Wong, 2016).

Rural individuals with strong networks in cities face a relatively lower cost of finding work and

housing after migrating (Bryan et al., 2014; Akram et al., 2017), while those with greater ties to

risk-sharing networks in villages have relatively higher costs of leaving those behind (Munshi

and Rosenzweig, 2016; Morten, 2019; Meghir, Mobarak, Mommaerts, and Morten, 2019). Those

who are poorly informed about the relative wages of urban centers have higher migration costs

than those who are better informed (Baseler, 2019). Most strikingly, China’s hukou policy explic-

itly erects greater barriers to internal migration for the low-skilled compared to the high-skilled

(Khanna, Liang, Mobarak, and Song, 2019).

Our model of migration is a multi-region Roy (1951) model in which workers are heteroge-

neous in their comparative advantage in the urban location, and face differing migration costs

depending, for simplicity, on the region from which they migrate. The urban region offers a

productivity premium for all workers, and rural-urban migrants face skill loss from migration
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making them less productive than urban incumbents. We use the model to relate the cross-

sectional consumption gap, the observational returns to migration by region, and the welfare

gains from lowering migration costs.

The model predicts that observational returns to migration may not be as informative about

migration policy as previously thought. In our general formulation, the observational return is

just the cross-sectional gap plus an adjustment for the skill composition of the migrants. Mi-

grants are not on the margin in the model, and migrate whenever their individual return from

migrating exceeds their cost. The observational return to migration thus reflects not just the

urban premium but the average productivity of those for whom the benefit from migration ex-

ceeds the costs. One cannot, therefore, draw inferences about the urban productivity premium

without knowing the joint distribution of costs and benefits of migration across workers.

The model does, however, predict a different use of the observational returns by region. In

the model, comparing the observational returns in two different regions reveals differences in

the extent to which migrants are selected or not across regions. For example, workers from

both high and low migration cost regions share a common benefit of migration, but only the

most productive workers from high-cost region will sort into the urban area, whereas many

relatively less productive workers from the low-cost region migrate. Under standard—and ad-

mittedly restrictive—parametric assumptions, these differential observed returns exactly equal

the difference in migration costs between regions. The upshot is that variation in observational

returns by region may be informative about the underlying differences in migration costs.

We use the model and a utilitarian social welfare function to derive simple expressions for the

welfare gains to lowering migration costs in any given region. In the most general formulation,

the welfare gains take a simple form: the mass of migrants multiplied by the average produc-

tivity of those migrants. This result is surprisingly intuitive: if a region sends more migrants

to begin with, then lowering migration costs there will help more people. If the migrants from

a particular region are particularly productive, then lower migration costs for that region will

do more to raise aggregate productivity. How do observational returns relate to these welfare

expressions? Unfortunately, it is not obvious. Per se, the observational returns to migration
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may not be that informative about the gains from lowering migration costs. Under parametric

assumptions, we do illustrate how relative differences in observed returns (as we emphasized

above) help identify regions in which lower migration costs may lead to relatively high returns

from a social welfare perspective.

Both our analysis of the observational returns and gains to lower migration costs suggest study-

ing how observational returns vary across regions in the data. We do so by examining hetero-

geneity in the observational returns to migration across regions within each country in our data.

Consistent with the model, we see that observational returns are generally higher in regions

where fewer people are currently migrating. When aggregating across countries, the differ-

ence in average returns between high- and low-migration regions is a statistically significant

12 log points. Viewed through the lens of the model, this empirical result suggests that lying

behind the modest observational returns calculated across all regions are situations in which

the returns for some individuals are large. Combined with the model’s welfare expressions, the

implication is that the gains from lowering migration costs may be high in some areas, even if

observational returns are modest on average.

We conclude by turning to experimental evidence on the effects of lowering migration costs,

drawing on data from the travel subsidy experiment of Bryan et al. (2014) that randomly low-

ered migration costs for some rural Bangladeshis. These data are unique in that they allow us

to directly compare experimental estimates of the effect of a policy lowering migration costs

to observational estimates for the exact same population derived using the same type of panel

regression with individual fixed effects used in the recent literature. The observational return to

migration – estimated using year-to-year variation in migration decisions in the control group

– is only 9 log points. In contrast, the experimental return (to lowering migration costs) is 36

log points. The difference between the two estimates is large and statistically significant at the

one-percent level. The sharply larger experimental returns to migration compared to the obser-

vational returns supports our paper’s conclusion that estimated observational returns may not

paint an accurate picture of the gains from lowering migration costs.

This paper builds on a large literature about rural-urban migration in the developing world,
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and necessarily abstracts from many important issues. More comprehensive treatments can

be found in Lucas (1997) and Brueckner and Lall (2015). Our focus on cross-sectional gaps

versus panel returns to migration follows studies in the United States conducted by Glaeser

and Maré (2001) and Herrendorf and Schoellman (2018). In the developing-county setting,

our estimates build on those of Beegle, De Weerdt, and Dercon (2011), Dercon, Krishnan, and

Krutikova (2013) and Garlick, Leibbrandt, and Levinsohn (2016) in addition to the studies men-

tioned above. Our work also follows the earlier literature focused on identifying Roy models

of selection, in particular the work of Heckman and Honoré (1990) and Heckman and Vyt-

lacil (2005); French and Taber (2011) provide an overview of the various approaches this lit-

erature has taken. Our empirical finding of larger experimental returns than observational

returns to migration is broadly consistent with the evidence from the natural experiments stud-

ied by Nakamura, Sigurdsson, and Steinsson (2019) and Sarvimäki, Uusitalo, and Jäntti (2019),

in which individuals forced to migrate experienced substantial returns on average relative to

those staying behind.

2. Observational Returns to Migration: New Evidence

In this section, we draw on data from panel tracking surveys covering six developing countries.

We use these data to estimate the observational returns to migration, by which we mean the

urban consumption premium estimated in regressions with individual fixed effects. We confirm

the finding of Hicks et al. (2017) that cross-sectional gaps are larger than observational returns

to migration in all of our countries. However, we find larger returns in the five countries not

studied by Hicks et al. (2017) than the one they studied that is also in our sample (Indonesia).

2.1. Data Overview

Our data come from household panel surveys conducted in six developing countries: China,

Indonesia, Ghana, Malawi, South Africa, and Tanzania. The surveys all share three common

characteristics necessary for our analysis. First, they attempt to track and re-survey all indi-

viduals that migrate between survey waves. This tracking of survey respondents across space,
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which is very costly, is necessary to reliably estimate the returns to moving across locations

while controlling for unobserved time-invariant characteristics as in Beegle et al. (2011), Hicks

et al. (2017) and Alvarez (2020). Second, the surveys collect detailed geographic information

on each individual in each survey wave, allowing us to classify all individuals by urban-rural

status and then further by more disaggregated region. This allows us to estimate gains from

rural-urban migration overall and also by source-destination pair. Third, the surveys collect

detailed evidence on consumption expenditures and self-produced items, particularly food,

which allows for the creation of a comprehensive consumption aggregate for each household.

We conducted a broader search for viable panel datasets, and settled on these six countries

because the available data met these criteria.

2.2. Consumption Measures

Our main outcome of interest is household consumption per adult equivalent member (or

“consumption per adult” for simplicity). Consumption is, for the most part, measured simi-

larly across our set of countries, though with varying granularity and some clear differences

in methodology for certain consumption items (as we describe below). Survey respondents

report the monetary value of all goods and services purchased or consumed in the last two

weeks, month, or (for a few select items) year. These values are then annualized, summed and

divided by the number of adult equivalents. Importantly, we consider only contemporaneous

questions about consumption expenditures. Pulido and Swiecki (2018) argue that using retro-

spective questions about income, as in the study of Hicks et al. (2017), leads to a downward

bias in the estimated return to migration because of measurement error.

Consumption has a number of advantages relative to the more popular income measures. Im-

portantly, consumption is measured in the same way for both the self-employed and wage earn-

ers. To see why this may matter in our application, suppose that the self -employed are more

likely to under-report income in surveys relative to wage workers, who may receive consistent

paychecks each week that make their exact earnings more salient. Then a migrant moving from

rural self employment to urban wage work will display a large spurious measured return from
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migration, largely driven by improvements in the accuracy of income reporting.

Another important advantage of consumption as an outcome variable is that urban income

may go toward higher expenses in cities. In principle, income measures can simply be deflated

by an urban-rural spatial price index. In practice, however, price indices are difficult and costly

for surveyors to produce, and often not included with surveys. In contrast, the consumption

surveys record consumption for many goods in physical quantities, such as kilograms of rice

or maize. In other cases the consumption expenditures covered in our surveys are adjusted

explicitly for rural-urban price differences using spatial price indices.

There are several challenges to creating fully comparable measures of consumption across ur-

ban and rural locations. First, a larger fraction of rural food consumption comes from crops

produced by the household. All of our consumption measures include questions about the

value of food consumed from the household’s own farm. Second, some durables are purchased

infrequently, and may not get captured in annualized expenditure surveys. Our consumption

aggregates for five countries excludes expenditures on durables, while in Malawi we include

the annualized use value of durables. A third complication is correctly inferring the value of

housing. For rental housing, this can be estimated with actual expenses on rent. In our con-

sumption aggregates, housing expenditure from both rental and owner-occupied housing are

included for Indonesia, Malawi, and South Africa; housing value is excluded entirely for South

Africa and Ghana. The consumption aggregate for China includes rental housing but not the

value of owner-occupied housing. Table 1 summarizes the characteristics of our consumption

aggregates.

While consumption surveys face various measurement challenges, they are widely perceived as

a more accurate measure of living standards in the developing world compared to income (see,

e.g., Ravallion, 2003). The literature has documented large gaps in consumption per worker

between rural and urban areas (Young, 2013) and between the agricultural and non-agricultural

sectors (Gollin et al., 2014), so the basic puzzle of internal spatial gaps is clearly present in

measures of consumption as well.
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2.3. Urban-Rural Status and Other Controls

Our main independent variable of interest is a binary indicator for rural or urban status. Urban

status comes from the geographic identifier variables provided by the surveys. We follow Hicks

et al. (2017) and use the self-reported coding of locations as either villages, small towns, or cities

in Indonesia. We choose to treat cities as urban areas and the rest as rural, though our results

are not substantively different if we include small towns as urban. In addition, following Hicks

et al. (2017) we include controls for age and years of education in our regression specifications.

Following Pulido and Swiecki (2018) we include controls for household size and household

size squared, though our results are robust to excluding these controls. Additional details on

the measurement, timeline, and scope of each of our panel surveys are given below.

2.4. Panel Tracking Surveys and Characteristics

Table 2 presents some basic characteristics of our surveys. There are at least two survey waves

in each country, and as many as five in Indonesia. The surveys all contain a rich set of geo-

graphic detail. The Chinese survey is divided up into 176 different geographic communities,

which is the smallest number of geographic divisions, and Tanzania, with the most divisions,

is divided up into 409 communities. These surveys collectively cover a total of 183,169 individ-

uals across countries. Each individual is surveyed on average 2.6 times, leading to a total of

472,741 observations.

The countries in our surveys are still largely rural. This is almost a defining characteristic of

being a developing country. Malawi has the highest percent of the population in rural areas, at

72 percent. Tanzania and Ghana are next at 62 percent each, followed by China at 54 percent,

Indonesia at 53 percent and South Africa at 49 percent. People in all six countries are moving

rapidly to cities, and net rural-urban migration rates are positive everywhere. We compute, but

do not report, the converse urban-to-rural migration rates, and these are everywhere smaller

than rural-urban migration rates.

In what follows we summarize the six surveys in more detail, highlighting their key similarities

8



and differences.

China. The China Family Panel Study (CFPS) is a longitudinal survey with waves in 2010,

2012, 2014, and 2016 (Institute of Social Science Survey, 2015). The baseline sampling frame

included 16,000 households across 25 provinces and aimed to represent 95 percent of the Chi-

nese population. Enumerators attempted to track all migrant households and split-off families,

and re-response rates from the previous year were 85.3 percent and 89.7 percent in 2012 and

2014 respectively. Household consumption was measured by asking about the value of 31 cat-

egories of items consumed. Food consumption consists of just two comprehensive categories:

purchased food and own-produced food items.

Ghana. The Yale EGC-ISSER Ghana Panel Survey includes a total of 5,009 households repre-

sentative of all 10 regions of Ghana, with the data collected in two waves in 2009 and 2013.

Migrant and split-off households were tracked in between subsequent waves, and 87 percent

of first wave households were re-interviewed in the second wave. The consumption module

includes 85 food items and 53 non-food items. Households reported both the quantity and the

value of each item consumed. We deflate consumption using differences in prices in rural and

urban locations. Urban-rural status is reported as a single binary variable.

Indonesia. We use the Indonesia Family Life Survey (IFLS), and our variables used mirror

those used by Hicks et al. (2017). Tracking was particularly successful in the IFLS, with re-

interview rates across adjacent waves rounds exceeding 90 percent for all waves. Our cleaned

panel differs slightly from the main dataset used in Hicks et al. (2017) in that we do not use any

recall data. All data is measured contemporaneous to the survey date. For urban status, we use

both the measure used by Hicks et al. (2017) which includes small towns and cities, and our

preferred measure which includes only cities. Our main outcome of interest is consumption

per adult but we also consider income per adult. We measure income per adult as wage income

across all household members plus business income plus farm profits.

Malawi. The Malawi Integrated Household Panel Survey (IHPS) includes an initial sample of

3,104 household surveyed over three waves in 2010, 2013, and 2016. Enumerators attempted
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to track all individuals over 12 within mainland Malawi between waves 1 and 2. Between

waves 2 and 3, enumerators attempted to track migrant households from a randomly selected

half of the original enumeration areas. Tracking rates were high: attrition from 2013-2016 was

only 4 percent, and attrition from 2010 to 2016 (among tracking enumeration areas) was 10

percent. The consumption module includes 136 food items and 120 non-food items, and our

consumption aggregate is deflated for spatial price differences.

South Africa. The South African National Income Dynamics Study (NIDS) included an initial

sample of 7,296 households surveyed over 5 waves from 2008 to 2017. Enumerators attempted

to track all internal migrants between waves, and in total 73 percent of the initial wave sample

remained in wave 5. The consumption module includes a total of 32 food items and 53 non-food

items.

Tanzania. The Tanzania National Panel Survey (NPS) included an initial nationally representa-

tive sample of 3,280 households interviewed over three waves in 2008, 2010, and 2012. Enumer-

ators attempted to track all internal migrants, and were highly successful. Attrition from wave

2 to wave 3 was only 3.5 percent, and attrition from wave 1 to 3 was 4.8 percent. Consump-

tion modules included a total of 72 food items and 46 non-food items, and our consumption

aggregate is deflated by a spatial price deflator.

2.5. Results: Cross-Sectional Gaps and Observational Returns to Migration

Estimates of the rural-urban consumption gaps across all six countries are presented in Table

3. Column (1) shows the cross-sectional gap, defined as the coefficient on an urban dummy in

a regression of log consumption on that urban indicator and no other controls. Just as found in

prior studies, the cross-sectional consumption gaps are large and statistically significant across

all countries. The gap ranges from 41 log points in Ghana to 74 log points in South Africa, and

the gap of 63 log points estimated for Indonesia is similar in magnitude to the 58 point estimate

found by Hicks et al. (2017). The cross-sectional consumption gaps are generally smaller than

the gaps in living standards reported in Gollin et al. (2014) and Young (2013).

Column (2) reports the same urban-dummy coefficients, but adds year fixed effects and indi-
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vidual fixed effects to the regressions. The urban premium is now identified from consumption

changes for individuals that are observed in both urban areas and rural areas in different sur-

vey waves. The urban coefficients here thus represent one estimate of the observational return

to migration that are at the heart of the Hicks et al. (2017) and Alvarez (2020) studies. Column

(2) shows that the observational returns to migration are substantially lower than the cross-

sectional urban gaps, which is consistent with those studies. The urban coefficient falls from

55 to 16 log points in China, from 41 to 15 log points in Ghana, from 52 to 5 log points in

Malawi, from 74 to 21 log points in South Africa and from 67 to 11 log points in Tanzania. The

Indonesian urban coefficient falls from 63 log points to 15 log points.

Even with the addition of individual fixed effects, meaningful urban gaps remain in many

countries. The median urban coefficient estimate across our countries gap is 14 log points. In

South Africa, a 21 point gap remains even after the addition of individual fixed effects. Four of

the six have statistically significant gaps (at the 5 percent level or lower) in Column (2): China,

Ghana, Indonesia and South Africa. Malawi and Tanzania have positive remaining gaps but

are statistically indistinguishable from zero.

An important deficiency of column (2) is that it groups together rural-to-urban and urban-to-

rural migrants. If people always move in search of a better life – i.e. when the net returns to

moving are positive – then the coefficient on the urban dummy will be biased towards zero

on account of the reverse urban-to-rural movers. To address this, columns (3) and (4) repeat

the same fixed effects regressions, but simply split the sample into those who started out in

the city in the first wave of data (column 3), versus those that start out in the rural area (col-

umn 4). Column (4) identifies the urban coefficient using only rural-to-urban migrants, which

most closely resembles the conceptual underpinning of the spatial productivity gaps literature.

Column (4) displays large gains to urban moves in each of the six countries in our sample. The

smallest coefficient is the 17 percent in Indonesia, which was the subject of the Hicks et al study.

Malawi and Tanzania are next at 19 and 21 percent, with the latter statistically significant at the

one-percent level and the former insignificant. China has a statistically significant return of

23 percent and South Africa a significant return of 29 percent. Ghana is the largest at 34 log
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points. The unweighted average is 23 log points, and these positive returns are statistically dis-

tinguishable from zero with 95 percent confidence in five of the six countries. When pooling all

the countries, this average return is significant at the 0.1 percent level.1

We see a very similar pattern when we replace our consumption measure with household in-

come in Table 4. In Indonesia and South Africa, the two countries for which we could reliably

construct household income, the gains look very similar. The per-capita-income gain for rural-

to-urban movers in Indonesia is 15 log points in column (4), comparable to the 17 log points

gain in consumption. The trend is the same in South Africa. The overall income gains of 25 log

points in the fixed effects regression are entirely driven by rural-to-urban movers, who experi-

ence a 29 percent increase in household income per adult.

A word is in order about hours controls, which Hicks et al. (2017) include in their preferred

specification. We do not. One reason is that some of our surveys do not have reliable data on

hours worked. More importantly, Pulido and Swiecki (2018) make a compelling case not to in-

clude hours control at all. They argue that potential migrants are not simply choosing between

the higher of two fixed hourly wage rates as in simple two-sector models like the one in Gollin

et al. (2014). The choice is in fact the higher income and higher hours of urban areas versus the

lower income and lower hours of the rural area. Both consumption and leisure of course matter

for welfare. However, one may wonder whether the value of leisure is very high at the margin

for rural workers near subsistence consumption levels in the poor countries and households in

our sample. Empirically, the substantially higher average work hours in poor countries (Bick,

Fuchs-Schündeln, and Lagakos, 2018) suggest that those households may not put much weight

on leisure relative to consumption at the margin. If so, the level of consumption in the city may

better capture the outcome of interest for a poor rural individual considering migrating to the

city rather than consumption per hour worked.

Overall, the evidence in this section points to substantial observational returns for those mov-

1Consistent with the simple theory that people move to better opportunities, the urban coefficient in column (3)
– which is estimated based only on people who move away from cities - is often negative or zero. For example, the
large negative urban coefficient for Malawi indicates that when the first wave of the survey observes an individual
in the city she gains 35 percent in consumption when she subsequently chooses to move to a rural area.
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ing from rural to urban areas. This is a substantively different conclusion from Hicks et al.

(2017), and more similar to the observational returns found for Tanzania by Beegle et al. (2011),

for South Africa by Garlick et al. (2016), or for India by Dercon et al. (2013).

2.6. Differences with Previous Literature

Our preferred estimates of the urban premia in Indonesia differ to some extent from those

found in Hicks et al. (2017) and Pulido and Swiecki (2018), and we explain the reasons for

these differences here. As in the analysis Pulido and Swiecki (2018), and unlike that of Hicks

et al. (2017), we do not use recall data in any of our variables, and we examine household con-

sumption and income per capita rather than per hour. The remaining differences between our

estimates and those of Pulido and Swiecki (2018) and Hicks et al. (2017) can be accounted for by

our choices of outcome measure and the types of urban destinations we include. These differ-

ences are shown in the different rows of Table 5, where we vary the types of urban destinations

included (cities only vs. cities and small towns) and also the outcome measure (individual in-

come vs. household income per capita vs. consumption per capita). Our approach in row 4

most closely match the strategy of Hicks et al. (2017) and Pulido and Swiecki (2018), and we see

that our estimate of 6.5 log points in column (2) is similar to the main estimates of those papers.

In addition, we can see two trends clearly: the gains to consumption and household income are

larger than the gains to individual income, and the gains to migration to cities are larger than

the gains to migrating to small towns. The differences between household-measured outcomes

and individually-measured outcomes may be due to a larger sample being included in the

former. We lack individual wage income for many individuals who reside in families where

subsistence agriculture is their only livelihood. It is plausible that there are larger gains for

individuals who move from subsistence agriculture to wage work than for individuals who

move from wage work in a rural area to wage work in an urban area. Indeed, Pulido and

Swiecki (2018) find that rural-urban wage premia in Indonesia are largely driven by those who

switch out of agriculture when they move.
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3. Model of Heterogeneous Costs and Benefits of Migration

The results in Table 3 provoke the following questions: How should one interpret these ob-

served returns to migration? And what do they say about the gains from lowering internal

migration costs? In this section we attempt to answer these questions using a stylized model of

migration in which individuals differ in returns to migration – as in most of the previous litera-

ture – as well as in costs of migration, which evidence (e.g. the studies cited in the introduction)

suggests is important.

3.1. Model Environment

Regions and Migration Costs. The economy is composed of a unit measure of individuals who

live for two periods. There are many regions, each with a competitive labor market. Amongst

these regions there is one urban region, indexed by u. The remaining regions are rural and

indexed by ri. A share λu of individuals is born in the urban region; of those born in the rural

area, a share λri are born into rural region i. The total population is λu +
∑

i λri = 1.

The rural regions differ in their costs of migrating out of the region. Individuals who choose to

migrate out of rural region i lose a fraction of their income, mi, where 0 < mi < 1. We assume

that migration is only possible at the end of the first period, so that we can observe the income

of migrants both before and after migration.

Endowments and Preferences. Individual utility is linear in consumption, which equals indi-

vidual income net of migration costs. Individuals are also endowed with one unit of time in

each period which they supply inelastically to the labor market in which they are located. Fol-

lowing Roy (1951), we assume that individuals are also endowed with a bivariate skill vector,

{z, 1}, representing the efficiency of their labor in the urban and rural locations. The simplify-

ing assumption here is that the skill vector—and hence the pattern of selection—is “one sided”

in the sense that individuals are only heterogenous in productivity in one location.

The distribution of urban skills is given by a cumulative distribution function, F (z), and proba-

bility density function, f(z), with support on the positive reals. We make the standard assump-
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tions on these distributions that moments exist and that they are continuous and differentiable.

We will also express outcomes in terms of the conditional distributions given where f(z|Z ≥ ẑ)

is the conditional density function given threshold ẑ. In the discussion below, we present gen-

eral results without appealing to distributional assumptions. We also provide examples using

a Pareto distribution: F (z) = 1 − z−θ, where the minimum of the support is normalized to the

value one, and θ controls the variation in skills, with a lower θ implying more dispersion in

skills.

A final source of heterogeneity arises from place of birth. We also assume that individuals are

more productive in their location of birth, by a factor ψ > 1. This assumption is motivated by

Bazzi et al.’s (2016) evidence that exactly this kind of “local knowledge” prevents skills from

being transferable across regions. In our setting, individuals born in the urban area with a

particular z draw will be more productive than rural-urban migrants with that same z draw by

a factor ψ.2

Technology. Competitive firms in each region use labor services as the sole input to produce

a single consumption good, Y . The production function in the urban and rural areas are given

by:

Yu = ALu and Yri = Lri, (1)

where

Ll =

∫
Ωl

zl dF and Nl =

∫
Ωl

dF,

Ωl denotes the set of individuals employed in labor market l, Ll is the number of efficiency units

employed in region l, and Nl is the total number of workers employed in region l. The appeal

to linear production technologies simplifies matters in the sense that wages per efficiency unit

will be pinned down by technology parameters.

2While the urban incumbent productivity advantage is assumed exogenously here, it could be captured in the
steady state of a more dynamic environment. For example, Lagakos, Mobarak, and Waugh (2019) endogenously
generate higher average worker productivity in urban areas in the stationary distribution of their dynamic two-
sector Roy model.

15



3.2. Optimization, Equilibrium, and Social Welfare

Below we describe the choices of workers and the associated equilibrium conditions more for-

mally.

Firms. Given the technologies described in (1) and the competitive market structure, optimiza-

tion implies that each labor market is characterized by a wage per efficiency unit:

wu = A and wri = 1 for all i. (2)

In other words, wages per efficiency unit equal the marginal products of labor.

Workers. Workers make a migration decision at the end of period one to maximize their earn-

ings in the second period. For simplicity, we assume that those in the urban location stay there.

Because of the local knowledge each individual is born with, no rural individual will move to

any other rural region. Thus, migration decisions are only about potential moves from rural ar-

eas to the urban area. An individual with skill vector {z, 1} chooses their location to maximize

their utility:

max{mwuz , ψ}. (3)

Market Clearing. In each period, market clearing in the labor and output markets requires

that:

Nu +
∑
i

Nr,i = 1 and Yu +
∑
i

Yr,i = C, (4)

so that labor is fully employed in production and aggregate output equals aggregate consump-

tion.

Definition 1 A Competitive Equilibrium consists of location choices and wages per efficiency units

{wu, wri} that satisfy the following conditions:

• Wages per efficiency units {wu, wri} satisfy firm optimization, (2).
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• Given wages, locations choices are optimal, (3).

• Markets clear, (4).

We can now characterize some properties of the equilibrium. Note that the workers’ location

choices in (3) take a very simple form, where migration to the urban area is optimal if and only

if:

miAz ≥ ψ. (5)

This implies that there is a single cutoff value ẑi = ψ
miA

determining which workers migrate to

the city and which remain in the rural area.

This single cut-off property is useful because it allows us to characterize social welfare (under a

utilitarian welfare function with equal weights) in a very simple fashion. Furthermore, because

there is no optimization for the first period, we can focus on outcomes in the second period.

Given these observations, the social welfare function is:

W(m, ẑ(m)) = λu

∫
ψAzf(z)dz +

∑
i

λri

{
(1− F (ẑi))

[∫
ẑi

miAzf(z|Z ≥ ẑi)dz

]
+ ψF (ẑi)

}
,

(6)

which we will write as a function of the migration costs, m, and the cutoffs ẑ(m), which depend

on the migration costs indirectly. This formulation will be useful below when we characterize

the gains from lowering migration costs.

It is useful to walk through each term in (6) carefully. The first term represents the welfare of

urban incumbents: the number of people born in the urban region multiplied by the integral

over each urban incumbent’s utility. The utility of each urban incumbent is their wage in the

urban area, which equals the acquired skill of that location, ψ, times aggregate productivity in

the urban location, A, times the worker’s innate skill in the urban area, z.

The second term in (6) represents the welfare of those in the rural regions, which is the sum of
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the utility of those who migrate and those who stay. For a given region, i, the term (1 − F (ẑi))

represents the mass of migrants who have productivity above ẑ, and hence migrate. This term

is then multiplied by the average utility of these migrating agents (hence, the conditioning on

values above ẑ). The utility of these migrating agents is the migration cost,m, times the wage in

the urban area, A, times z. The second component inside the brackets represents the expected

utility those who remain in the rural area, i.e. the mass of those with productivity below ẑ times

their utility, which is just ψ.

3.3. A Story of Three “Returns”

To what extent are commonly measured “returns” to migration informative for migration pol-

icy? To what extent do the gains from reducing migration costs relate to measures of potential

and actual returns to migration that one may observe in cross-sectional or panel data? The

model above allow us to think through these questions in the context of three different mea-

sures of returns to migration: (i) the cross-sectional urban-rural earnings gap, (ii) the observa-

tional returns to migration, estimated using panel fixed effects regressions, and (iii) the gains

from lowering migration costs, which may be estimated in some settings using experimental

evidence.

3.3.A. The Cross-Sectional Gap

The cross-sectional gap is the average consumption in the urban area compared to the average

consumption in the rural area (as in Gollin et al. (2014), Young (2013) and Herrendorf and

Schoellman (2018)). In a regression context, the cross-sectional gap is analogous to the OLS

coefficient on an urban dummy in a regression of log consumption or income on the urban

dummy and possibly other cross-sectional covariates. In period one, the cross-sectional gap (in

logs) takes a simple representation in our model described below.

Proposition 1 The Cross-Sectional Gap is given by

CSG = logA+

∫
log zf(z)dz, (7)
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which with Pareto distributed skills is

= logA+
1

θ
. (8)

Equation (7) tells us that the cross-sectional gap reflects two forces: (i) the effect of being in the

urban area—captured by A—and (ii) the average skill level of those in the urban area, repre-

sented by the second term. This formulation exactly picks up the idea that the cross-sectional

gap is a mixture of both the “treatment effect” of being in the urban area and inherent differ-

ences in the workers between urban and rural areas. Of course, the former is causal from the

perspective of migration policy while the latter is not.

The example with Pareto distributed skills further develops this intuition. In the Pareto case,

the parameter θ controls how dispersed skills are in the urban area. As θ becomes larger, work-

ers become more homogeneous, and the cross-sectional gap reflects more of the pure urban

productivity effect and less of the worker selection effect.

3.3.B. Observational Returns to Migration

To try to separate the effects of worker selection from the pure urban productivity effect, studies

since Glaeser and Maré (2001) have turned to panel regressions that estimate the urban coef-

ficient while controlling for individual worker fixed effects. This is the approach taken, in a

developing country context, by Beegle et al. (2011), Dercon et al. (2013), Garlick et al. (2016),

Hicks et al. (2017), and Alvarez (2020), among others, before the current study. The idea is

that if one sees the same worker’s outcomes in two locations, perhaps one can learn something

about the intrinsic benefit of the urban area by “differencing out” the worker effect. We will re-

fer to the return to migration estimated using such a fixed-effects strategy as the observational

returns to migration.

We can use our model to interpret the observational returns to migration. To do so, we first

define the return,R, for an individual worker as the difference in log consumption (or earnings)
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between the urban and rural areas:

R = logA+ (log z − log(1))− logψ. (9)

For those that actually work in the rural area in period one and the urban area in period two,

this is an actual return to migration. For those that do not move this is a potential outcome.

The first term in this return is the benefit of being in the urban area, A, relative to the rural area.

The second term, log z− log(1), is about the relative productivity advantage that the individual

enjoys in the urban area, which reflects selection on comparative advantage. The third term

reflects losses in the local knowledge that rural-urban migrants give up when they leave their

home areas behind.

Looking at (9) reinforces why one would want to look at a return to migration for one individ-

ual—it partially reveals the productivity advantage of being in the urban area,A. The downside

is that it is contaminated with other issues—selection on individual ability and skill loss. The

hope would be that these issues do not matter much and that taking an average across many

migrants may be mostly informative about the pure urban effect. Averaging across all migrants

in the model gives the observational return to migration, which we characterize below.

Proposition 2 The Observational Return to Migration is given by

ORM = logA+
∑
i

πuri
πur

(∫
ẑi

log zf(z|Z ≥ ẑi)dz − logψ

)
(10)

where πuri = λri(1 − F (ẑi)) is mass of rural to urban migrants from rural region i and πur =
∑

i πuri

is the total mass of migrants. The observational return is then the Cross-Sectional Gap plus a skill

adjustment for migrants:

= CSG +
∑
i

πuri
πur

{(∫
ẑi

log zf(z|Z ≥ ẑi)dz −
∫

log zf(z)dz

)
− logψ

}
︸ ︷︷ ︸

skill adjustment for migrants

. (11)

The first expression for the observational return in Proposition 2 integrates over the return in
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(9) conditional on migrating. The observational return to migration reflects urban productivity,

the selected productivity of those migrating, and then skill loss. The next result in Proposition

2 is the surprise. It says that the observational return is just the cross-sectional gap plus a skill

adjustment for those who migrate in equilibrium (see Appendix B for a formal derivation). The

skill adjustment reflects (i) how skilled the migrants are relative to the incumbents (the term

inside the parenthesis), and (ii) the skill loss from moving away from the rural area.

The issue here is that the observational return to migration still reflects both the productivity

effect of the urban area and the composition of who migrates in equilibrium. It is, in other

words, no panacea for stripping out the pure urban effect from the cross-sectional gap. In fact,

the observational return embeds the issues of treatment and selection in a way that is not much

different than what shows up in the cross-sectional gap. The intuition for this outcome—and we

discuss alternative perspectives on this below—is that, in our model, migrants are not marginal.

Because of the assumption that people are not optimally located in period one, there are infra-

marginal migrants who started out in the wrong place (the rural area). As these migrants move

in to the urban area and their returns get measured, the entire distribution of gains are traced

out up to a correction for selection and skill loss.

One perspective on these observational returns is that they should also have an implication

of for the size of the migration cost (our discussant Schoellman (Forthcoming) articulates this

view well). In particular, if the observed returns are small, then migration costs must be small

and vice versa. Under the assumption of Pareto distributed skills we can get some more insight

about this perspective. Under this assumption we have

ORM =
1

θ
−
∑
i

πuri
πur

logmi, (12)

which helps illustrate the general point that the observational return mixes several forces. Yes,

the observational return does contain information about the migration costs, mi, in the rural

regions. However, the migration costs are intermingled with the important of selection, as the

prominent role for parameter θ shows. In other words, it is not so easy to draw sharp inferences
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about the size of the migration costs without knowing more about the importance of selection.

With that said, the model does, however, predict a different use of the observational returns by

region. For simplicity, suppose that there were simply two regions: a high cost location, indexed

by h, and a low cost location, indexed by l. If we compare observational returns across these

two regions we have

ORMh −ORMl =

∫
ẑh

log zf(z|Z ≥ ẑh)dz −
∫
ẑl

log zf(z|Z ≥ ẑl)dz (13)

which says that relative observational return reveals the relative productivity of those migrating

from one region to another. Comparing observational returns in two regions differences out the

common component related to the cross-sectional gap. What remains are the differences in the

extent to which migrants are selected or not across regions.

The standard intuition behind the conditional expectation in (13) is that it is increasing in the

conditioning point. Thus, only most productive workers from high-cost region will sort into the

urban area, and their observed returns will be high. In contrast, many relatively less productive

workers from the low-cost region migrate urban area, and their observed returns will be low.

Again, per se the observed returns are contaminated with many things, but the difference re-

veals the extent to which a region may be a high or low return region. Moreover, as we discuss

below, inputs of this nature are useful in identifying the relative welfare gains from lowering

migration costs in different regions.

With Pareto distributed skills, differences in observational returns exactly reveal differences in

migration costs:

ORMh −ORMl = [logml − logmh] > 0. (14)

Returning to the discussion around (13), why would observed returns be relatively large in

high moving cost locations? Because the cost of migration is large and only those who are most

able to overcome the cost are observed to be migrating. Put differently, variation in observa-
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tional returns to migration by region may be informative about the underlying differences in

migration costs and their relative importance.3

3.3.C. Gains from Lower Migration Costs

The specific policy question many care about is: what are the welfare gains from lowering

internal migration costs? Should a policymaker turn to the observational return to migration

for guidance on this matter? The short answer in our model is no. Below, we use the model and

the social welfare function in (15) to derive a connection between observed flows of migrants

and the extent to which migrants are selected.

Given our social welfare function in (6), we compute change in social welfare given a change

in migration costs from region i. We express this derivative as:

dW
dmi

=
∂W

∂mi

+
∂W

∂ẑi

∂ẑi
∂mi

, (15)

where the total derivative is decomposed into a direct effect from a reduction in migration

costs and an indirect effect that works through the change in the equilibrium cut-off. This

decomposition is useful from a mechanical perspective – it’s easier to compute – and from an

economic perspective, as it develops intuition.

Direct effect. The direct effect of a change in migration costs is:

∂W

∂mi

= λri(1− F (ẑi))︸ ︷︷ ︸
rural to urban migrants

×
∫
ẑ

Azf(z|Z ≥ ẑi)dz,︸ ︷︷ ︸
avg. prod. of migrants

(16)

which is how many people are currently migrating (as we are holding ẑi fixed) multiplied by

the average productivity of the migrants.

Indirect effect. The indirect effect is how a change in migration costs changes the composition

3As we discuss in the Appendix, with parametric assumptions one can combine differential returns in (14) with
differences in migration rates across regions (similar to gravity models in the trade literature, or Bryan and Morten
(2019)) to estimate the parameters of the model and separate out A and θ.
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of those migrants. This component is then

∂W

∂ẑi
= λri ( −miAẑif(ẑi) + ψf(ẑi) ) |ẑi = 0. (17)

where the first term in the parenthesis can be thought of as the marginal social cost of moving

the marginal worker into the urban area versus the marginal social benefit of keeping that

marginal worker in the rural area. When this trade-off is evaluated at the equilibrium cutoff of

ẑi, it says that the indirect effect is zero. In other words, a reduction in migration costs provides

no welfare gain through the change in the composition migrants.

It may be surprising to some readers, as it was to some of the authors, that the gains from real-

location are zero in this model. The reason the model delivers zero indirect effects is because the

model is efficient. What we mean by efficiency here is that the decentralized allocation satisfy-

ing the definition of the competitive equilibrium (Definition 1) corresponds with the centralized

allocation of workers that would arise from a planner maximizing social welfare, (6).4 What this

implies is the allocation at which migration costs are changed already optimally balances the

marginal cost of adding one more worker to the urban area versus the marginal benefits of

keeping that worker in the rural area. Thus, the social gain from reallocating a worker into (or

out of) the urban area is zero on the margin.

Combing (15), (16) and (17) allows us to summarize the gains from lower migration costs:

Proposition 3 The Gains from Lower Migration Costs in location i are given by

GLCi = λri(1− F (ẑi))︸ ︷︷ ︸
rural to urban migrants

×
∫
ẑ

Azf(z|Z ≥ ẑi)dz,︸ ︷︷ ︸
avg. prod. of migrants

(18)

4More specifically, one can cast the social planning problem as the planner choosing cut-offs, ẑi to maximize
(6). This optimization problem leads to the first-order necessary condition that ∂W

∂ẑi
= 0 (which is the same as in

17) and, hence, the planner’s cut-off corresponds with the cut off in the competitive equilibrium.
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which, with Pareto distributed skills, is

GLCi = πuri ×
θ

θ − 1
× ψ

mi

(19)

where πuri = λri(1− F (ẑi)) is mass of rural-urban migrants from region i.

There are several observations to be made about the gains from lowering migration costs. First,

notice that the first term in (18) or (19) is the share of migrants from region i into the urban lo-

cation. Holding all else equal, areas with more rural-urban migrations will have larger benefits

from lowering costs of migrating.

A second observation is the role that the migration costs play. Conditional on the same amount

of flows, areas with higher migration costs (lower mi) will have larger gains associated with

them. The observation further motivates the idea discussed around equation (14), that identi-

fying high migration cost regions is useful approach to identifying high gains from migration

situations.

Proposition 3 has implications for the importance of selection and the associated policy pre-

scriptions. How selected migrants are also matters and the dispersion in talents is a key force

in shaping the importance of selection. In the context of the Pareto distribution, this observa-

tion comes out very clearly. If θ is large and there is not much dispersion in talent, then the

gains from migration will be small (holding all else constant). If θ is small and there is a lot of

dispersion in talents, then the gains from migration are larger.

This last observation is important in the context of interpreting the role of selection in the cross-

sectional gap or the observational return and how it maps to the gains from lowering migration

costs. Hicks et al. (2017) articulate the convention wisdom well when they write: “if observed

gaps are partly driven by selection, the policies to incentivize workers to move to urban areas

. . . would be a less attractive policy direction.” The results in Proposition 3 suggest the opposite:

the more important is selection, the larger are the gains from migration.

All these observations illustrate the mapping from observational returns in Proposition 2 to the
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gains from lowering migration costs in Proposition 3 is not one-to-one. Observational returns

in Proposition 2 confound the cross-sectional gap and the average net-benefits for migrants.

The welfare gains in Proposition 3 reflect migration flows and migrants average productivity

in the urban area.

With that said, one approach could be to measure the relative gains across regions by combining

relative observational returns and relative migration flows. Specifically, the relative gains are

GLCh

GLCl

=
πurh
πurl
× exp {ORMh −ORMl} . (20)

This approach would identify relatively beneficial situations when comparing different inter-

ventions across different regions.

Before moving on, there are two important caveats regarding Proposition (3). While these

formula build a lot of intuition, they are local effects and, hence, may not fully capture all the

gains associated with larger attempts to influence patterns of internal migration. A second

caveat is that we have nothing to say regarding the costs and fiscal burden associated with

lowering internal migration costs. This is, of course, an important part of any policy decision-

making, but well beyond the scope of the paper.

3.4. Alternative Perspectives

While our model is a relatively standard Roy (1951) model, we must admit that there are im-

portant alternative perspectives on what observational returns mean and reflect and how they

relate to the gains from lower migration costs. Below we discuss the perspective provided by

our discussant (Schoellman, 2020). A key issue is that the interpretation on the observational

returns depends critically on why migrants migrate. At a minimum, this validates the point

that observational returns are very difficult to interpret. However, the gains to migration (at

least in the contexts we discuss) do not.
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3.4.A. The Model of Schoellman (2020)

Our discussant shares our view that starting from a Roy (1951) model makes sense. The key

difference is that in our model there are some rural workers who start out in life in a rural loca-

tion, but eventually move to the urban location. Some workers started out in the wrong place,

in other words. In contrast, our discussant wants to think about a situation where everybody

is already in the correct location, but that movers move because, say, there is some growth in

urban productivity.

This alternative assumption about initial conditions leads to a different interpretation of the

observation returns. Because workers are essentially in the correct place in this view, anyone

who is observed to move must have been near indifferent and hence have productivity approx-

imately equal to the cutoff, ẑ. The observational return in this view is:

ORMi = logA+ log ẑi − logψ = − logmi (21)

which reflects the direct cost of migrating. Where are the extra selection terms that show up our

equation for observed returns in (10)? The key difference here is that in our discussant’s world,

all movers are marginal. In contrast, migrants in our model are not marginal. Thus, some

workers gain above and beyond the moving cost and that gain reflects the talent distribution in

the urban area.

Does this matter for welfare and the gains to lowering migration costs? Not quite. To see this,

social welfare in our discussant’s world would be:

W =
∑
i

λi

{
(1− F (ẑi))

[∫
ẑi

miAzf(z|Z ≥ ẑi)dz

]
+ F (ẑi)ψ

}
(22)

where i indexes the origin location. So for each location there are some urban people who have

arrived recently, or far in the past, and the first term in the brackets reflects the urban incum-

bents from i and the last term reflects the people remaining in the rural location. Comparing

(22) and (6) reveals that they would lead to the same first order conditions and, in turn, the
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same results described Proposition 3. There would be an interpretation difference in that the

stock of migrants in the urban area that came from location i matters, not the flow of migrants

as in our model. But the same idea is there—the gains are described by the amount of people

from a location adjusted by the productivity of people coming in. Overall, our discussant’s

comments, and these observations, suggest a need for dynamic frameworks in future work to

better understand the welfare gains from lowering migration costs.

4. Observational Returns to Migration by Region

An important feature of our model is that it emphasizes different costs of rural-urban migration

across different communities. The feature led us to the following insights. While the observa-

tional returns overall are hard to interpret, studying how observational returns vary across

regions in the data is beneficial. In particular, the theory says that variation in observational

returns is informative about situations in which the returns for some individuals may be rel-

atively large. The theory suggests that these situations reflect high migration costs, and our

formula for the welfare gains suggests that the gains from lowering migration costs may be

high in some areas, even if observational returns are modest on average. A related testable

prediction of the model is that regions with lower rural-urban migration rates have higher ob-

servational returns to migration.

To test this prediction of the model, we examine the observed returns to migration for migrants

from rural communities with high urban migration rates and low urban migration rates sepa-

rately. For each enumeration area in our initial data, we calculate the share of individuals that

begin in that community who migrate to an urban area. We then split our sample of rural-urban

migrants in half, based on whether the out-migration rate in their community of origin is above

or below the median community.

In our data, we find support for our model’s prediction that regions with higher migration costs

have higher observational returns to migration. Table 6 shows that in three of our six countries

(China, Indonesia, and Tanzania), migrants from low-migration communities have significantly

higher consumption gains from migration than those from high-migration communities. In the
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remaining three countries we cannot reject that the returns are equal across our two groups.

In the case of South Africa, we can reject any large differences in the returns between low and

high-migration communities. In contrast, our confidence intervals for Ghana and Malawi, by

virtue of the small sample sizes in these countries, are largely uninformative. In no country is

the observed gains to migration significantly higher in high-migration communities. When we

aggregate our results across countries using a random-effects model, we find that the difference

in returns between low and high migration communities averages 12 log points, and that this

difference is significant at the 5-percent level.5

5. Observational versus Experimental Returns to Migration

While our results from Table 6 suggest that the observational returns to migration may under-

state the returns to migration for some non-migrants, it is ambiguous whether the observational

gains to migration will overstate or understate the gains from any given migration-reducing

policy. This is impossible to test in our panel datasets because we lack any policy experiment

which exogenously lowered migration costs. Instead, we examine the difference between the

observational and experimental returns to migration using data from Bryan et al. (2014), a ran-

domized controlled trial that experimentally lowered the cost of seasonal rural-to-urban migra-

tion by offering travel subsidies to rural households in northern Bangladesh.

The subsidy, valued at roughly $8.50 USD, provided enough money for a round-trip bus fare

to nearby cities conditional on the household sending at least one migrant during the agricul-

tural lean season, a period between planting and harvest where rural labor demand falls. This

subsidy effectively reduced the cost of migration and increased temporary rural-urban migra-

tion from 36 percent to 58 percent. The authors measure household migration and per-capita

consumption during the lean season for all households in both 2008 (the year of the subsidy)

and 2009.
5In this calculation we weight each country by 1/[se2 + t2], where se is the standard error of the estimate in

that country and t2 is an estimate of the variance of the true estimates across countries. Note that while there
is substantial heterogeneity in the returns to rural-urban migration across our samples, this is driven entirely
by returns in high-migration communities. The returns to migration from low-migration communities are very
similar across countries and we cannot reject that there are no differences.
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These data give us the rare opportunity to compare the observational returns to migration to

the experimental returns accruing to those who were induced to move by reduced costs. We

can generate a local average treatment effect estimate of the consumption gains for induced mi-

grants by instrumenting for the household’s migration decision with the travel subsidy treat-

ment. In addition, due to the panel nature of the datasets that the authors collected, we can also

estimate the returns to migration for a subset of migrants that were migrating in the status quo,

using the same individual-year fixed-effects regression we used in our main analysis.

Table 7 shows two estimates of the return to migration in this context. The first, in column 1,

estimates the returns to migration for status-quo migrants in the control group who switched

between migrant and non-migrant status from 2008 and 2009. This non-experimental estimate

includes household and year fixed-effects as in tables 2 and 3. In column 2, we show the Local

Average Treatment Effect (LATE) of migration on consumption using treatment status as an in-

strument for migration. This estimates the returns to migration for migrants who are induced

to migrate due to a reduction in migration costs. Column 3 shows the difference between these

estimates, where we bootstrap the standard error of this difference by re-sampling households

stratified by treatment status 1000 times. The difference between the two estimates is an eco-

nomically meaningful and statistically significant 27 log points. In other words, the returns

to migration for policy-induced migrants in this context are some 300 percent greater than the

returns for those that change from being a migrant to a non-migrant in the status quo.

Admittedly, this is a very specific context which may not generalize well. Our experimental

sample involves only temporary rather than permanent migration, during a specific agricul-

tural lean season, and includes households from only two districts in northern Bangladesh.

However, it is informative that in this one setting where we can observe both the observational

and experimental returns, the observational returns significantly understate the gains to migra-

tion stemming from an external shock that reduced migration costs.
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6. Conclusion

Recent evidence shows that observational returns to rural-urban migration are not far above

zero in three large developing countries. One may be tempted to conclude from this evidence

that those who haven’t migrated yet would also gain little from migrating, and hence that

policymakers should give up on trying to reduce internal migration costs. We argue that this

conclusion would be premature. Empirically, we draw on panel evidence from six developing

countries and find higher observational returns on average than those reported in the existing

literature. We then show theoretically that such estimates of the observational returns, using

panel fixed effects regressions, are not that informative about the gains from lowering migration

costs in an economy with heterogeneous benefits and costs of migration. The reason is that

lowering migration costs can help those with high potential benefits from migration, but who

happen to face even higher costs. Complementary experimental evidence from Bangladesh

highlights the fact that many rural households do indeed face high costs, and they gain a lot

when those costs are reduced by a policy experiment. Moreover, running the panel fixed effects

regression in that same sample heavily understates the “true” returns that can be extracted from

the experimental design.

Our paper points to the need for more research to help identify the joint distribution of benefits

and costs of rural-urban migration in developing countries. To inform migration policy, we

need to develop a more refined understanding of the potential benefits of migration for those

not already migrating, and the precise reasons why they are not migrating. Experiments can

help, particularly in identifying the specific barriers that hold back internal migration. For

example, in the field experiment of Baseler (2019), an information treatment given to a random

group of rural Kenyan villagers increased the fraction of rural households sending a migrant

to Nairobi from 20 percent to 28 percent. Information frictions appear to be a type of migration

cost that is holding back migration in that setting. Using the construction of a network of

new highways to connect the new capital of Brasilia, Brazil, as a natural experiment, Morten

and Oliveira (2019) find that roads promoted internal migration in Brazil. Asher and Novosad

31



(2020) also find changes in mobility and occupational choice in rural India associated with last-

mile road connections to villages, identified by applying a regression discontinuity design to

data on a massive village road building program. The lack of good transportation infrastructure

is, in short, not just a barrier to trade in goods but to movements of workers internally. Future

work should explore other costs of internal migration in the developing world.

32



References

AKRAM, A. A., S. CHOWDHURY, AND A. M. MOBARAK (2017): “General Equilibrium Effects

of Emigration on Rural Labor Markets,” Unpublished Working Paper, Yale University.

ALVAREZ, J. A. (2020): “The Agricultural Wage Gap: Evidence from Brazilian Micro-data,”

American Economic Journal: Macroeconomics, 12, 153–73.

ASHER, S. AND P. NOVOSAD (2020): “Rural Roads and Local Economic Development,” Ameri-

can Economic Review, 110, 797–823.

BASELER, T. (2019): “Hidden Income and the Perceived Returns to Migration: Experimental

Evidence from Kenya,” Unpublished Working Paper, University of Rochester.

BAZZI, S., A. GADUH, A. ROTHENBERG, AND M. WONG (2016): “Skill Transferability, Mi-

gration, and Development: Evidence from Population Resettlement in Indonesia,” American

Economic Review, 106, 2658–98.

BEEGLE, K., J. DE WEERDT, AND S. DERCON (2011): “Migration and Economic Mobility in

Tanzania,” Review of Economics and Statistics, 93, 1010–1033.
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GLAESER, E. L. AND D. C. MARÉ (2001): “Cities and Skills,” Journal of Labor Economics, 19,

316–342.

GOLLIN, D., D. LAGAKOS, AND M. E. WAUGH (2014): “The Agricultural Productivity Gap,”

Quarterly Journal of Economics, 129, 939–993.
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Table 1: Comparison of Consumption Aggregates

Variable CHN GHA IDN MWI ZAF TZA
Number of Food Categories 2 85 37 136 32 72
Number of Non-Food Categories 29 53 23 120 54 46
Own-Produced Food Yes Yes Yes Yes Yes Yes
Durable Goods No No No Yes No No
Rent/Mortgage Yes No Yes Yes Yes No
Rental Value of Owner-Occupied Housing No No Yes Yes Yes No
Spatially-Deflated No Yes No Yes No Yes

Note: This table summarizes the features of the consumption aggregates in China (CHN), Ghana (GHN),
Indonesia (IDN), Malawi (MWI), South Africa (ZAF) and Tanzania (TZA).
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Table 2: Characteristics of the Panel Tracking Studies

Waves Communities Individuals Observations P(Rural) P(Migrate RU)

China 4 176 50,965 143,923 .54 .027
Ghana 2 334 15,964 26,786 .62 .016
Indonesia 5 296 48,184 131,803 .63 .011
Malawi 3 204 13,969 38,165 .72 .008
South Africa 5 400 38,430 104,090 .49 .025
Tanzania 3 409 15,887 35,103 .62 .029

Note: Columns 1-4 list the number of survey waves, the number of communities (i.e. enumeration areas) surveyed,
the number of individuals surveyed, and the total number of observations, for each country. Column 5 lists the
fraction of adults living in a rural location in wave 1. Column 6 presents the annualized rural-urban migration rate
for adults in wave 1.
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Table 3: Observational Returns to Migration in Six Developing Countries

(1) (2) (3) (4)

China 0.545∗∗∗ 0.161∗∗∗ 0.012 0.226∗∗∗

(0.005) (0.028) (0.064) (0.031)

Ghana 0.410∗∗∗ 0.148 -0.173 0.339∗∗

(0.013) (0.122) (0.220) (0.148)

Indonesia 0.625∗∗∗ 0.145∗∗∗ 0.039 0.167∗∗∗

(0.009) (0.019) (0.031) (0.029)

Malawi 0.520∗∗∗ 0.048 -0.350∗∗∗ 0.189
(0.012) (0.089) (0.123) (0.134)

South Africa 0.737∗∗∗ 0.212∗∗∗ 0.028 0.291∗∗∗

(0.006) (0.022) (0.044) (0.026)

Tanzania 0.666∗∗∗ 0.112∗∗∗ 0.101∗∗ 0.213∗∗∗

(0.032) (0.030) (0.045) (0.043)

Individual FE No Yes Yes Yes
Year FE No Yes Yes Yes
Sample Full Full Start Urban Start Rural

Note: This table presents the estimated coefficients of urban dummy variables from regres-
sions of log consumption per adult on urban dummies and other covariates in the six coun-
tries. Column (1) presents the cross-sectional estimates, with no other controls. Column (2)
adds year and individual fixed effects, plus quadratic controls for age and household size.
Column (3) has year and individual fixed effects, plus quadratic controls for age and house-
hold size, and restricts the sample to only those starting in an urban location. Column (4)
is the same model as in column (3), but restricts the sample to only those starting from a
rural location. Robust standard errors, clustered at the level of the wave 1 household, are
in parenthesis. ∗p < .1,∗∗ p < .05,∗∗∗ p < .01
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Table 4: Observational Returns to Migration: Income Measures

(1) (2) (3) (4)

Indonesia 0.541∗∗∗ 0.112∗∗∗ -0.004 0.148∗∗∗

(0.013) (0.023) (0.035) (0.037)

South Africa 0.649∗∗∗ 0.249∗∗∗ 0.035 0.289∗∗∗

(0.006) (0.023) (0.045) (0.029)

Individual FE No Yes Yes Yes
Year FE No Yes Yes Yes
Sample Full Full Start Urban Start Rural

Note: This table presents the estimated coefficients of urban dummy variables from
regressions of log household income per adult on urban dummies and other covari-
ates in the six countries. Column (1) presents the cross-sectional estimates, with no
other controls. Column (2) adds year and individual fixed effects, plus quadratic
controls for age and household size. Column (3) has year and individual fixed ef-
fects, plus quadratic controls for age and household size, and restricts the sample
to only those starting in an urban location. Column (4) is the same model as in col-
umn (3), but restricts the sample to only those starting from a rural location. Robust
standard errors, clustered at the level of the wave 1 household, are in parenthesis.
∗p < .1,∗∗ p < .05,∗∗∗ p < .01

40



Table 5: Results for Indonesia Under Alternative Specifications

(1) (2) (3) (4)
Cross-Section Panel Rural-Only Work Moves

City, Ind. Earnings 0.638∗∗∗ 0.101∗∗∗ 0.081 0.016
(0.019) (0.038) (0.066) (0.134)

City, HH. Earnings 0.541∗∗∗ 0.112∗∗∗ 0.148∗∗∗ 0.272∗∗∗

(0.013) (0.037) (0.037) (0.076)

City, HH. 0.625∗∗∗ 0.145∗∗∗ 0.167∗∗∗ 0.263∗∗∗

Consumption (0.009) (0.019) (0.029) (0.056)

City + small towns, 0.739∗∗∗ 0.065∗∗ 0.044 0.071
Ind. Earnings (0.014) (0.030) (0.034) (0.073)

City + small towns, 0.393∗∗∗ 0.094∗∗∗ 0.086∗∗∗ 0.142∗∗∗

HH. Earnings (0.009) (0.018) (0.020) (0.048)

City + small towns, 0.597∗∗∗ 0.125∗∗∗ 0.110∗∗∗ 0.156∗∗∗

HH. Consumption (0.006) (0.014) (0.015) (0.036)

Individual FE No Yes Yes Yes
Year FE Yes Yes Yes Yes
Initial Location All All Rural Rural
Move Reason Any Any Any Work

Note: This table presents the estimated coefficients of urban dummy variables from regressions
of welfare measures on urban dummies and other covariates for Indonesia. Column (1) presents
the cross-sectional estimates, with no other controls. Column (2) adds year and individual fixed
effects, plus quadratic controls for age and household size. Column (3) has year and individ-
ual fixed effects, plus quadratic controls for age and household size, and restricts the sample to
only those starting in an rural location. Column (4) estimates the same model as column (3) and
restricts the sample to only those starting from a rural location and also excludes migrant indi-
viduals who report the reason for their move being a non-work reason. Robust standard errors,
clustered at the level of the wave 1 household, are in parenthesis. The rows vary in their defini-
tion of urban areas and in the dependent variables. The urban definition in rows 1-3 includes only
locations coded as cities. The urban definition in rows 4-6 includes both towns and cities, as in
Hicks et al. (2017). The dependent variable in rows 1 and 4 is individual earnings, as in Hicks et al.
(2017). The dependent variable in rows 2 and 5 is household income per adult. The dependent
variable in rows 3 and 6 is household consumption per adult. ∗p < .1,∗∗ p < .05,∗∗∗ p < .01
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Table 6: Observational Returns to Migration by Region

(1) (2) (3)
High Migration Low Migration p-value: (1) = (2)

China 0.108∗∗ 0.233∗∗∗ 0.043
(0.046) (0.043)

Ghana 0.240 0.428∗ 0.507
(0.174) (0.228)

Indonesia 0.074∗ 0.260∗∗∗ 0.001
(0.040) (0.041)

Malawi 0.287 0.121 0.532
(0.199) (0.179)

South Africa 0.303∗∗∗ 0.277∗∗∗ 0.616
(0.039) (0.037)

Tanzania 0.071 0.357∗∗∗ 0.000
(0.052) (0.061)

Individual FE Yes Yes
Year FE Yes Yes
Sample High Migration Low Migration

Note: This table presents the estimated coefficients of urban dummy variables from regres-
sions of log consumption per adult on urban dummies. Specifications are as in Table 3, Col-
umn (4), with year and individual fixed effects, plus quadratic controls in age and household
size, and restricting the sample to only those starting from a rural location. The sample is
divided by the rural-urban migration rate in the origin community, so that there are an equal
number of rural-urban migrants in each group. Column (2) restricts the sample to include
households from enumeration areas with rural-urban migration rates above the median rate
for rural-urban migrants. Column (2) restricts the sample to include households from enumer-
ation areas with rural-urban migration rates below the median rate for rural-urban migrants.
Column (3) reports the p-value of the difference between the estimates in Column (1) and
Column (2). Robust standard errors, clustered at the level of the wave 1 household, are in
parenthesis. ∗p < .1,∗∗ p < .05,∗∗∗ p < .01
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Table 7: Observational vs. Experimental Returns to Seasonal Migration

(1) (2) (3)
Observational Experimental Difference

Seasonally Migrated 0.092∗ 0.357∗∗

(0.053) (0.156)

Difference in 0.265∗∗∗

Returns (0.095)

Constant 6.739∗∗∗ 6.652∗∗∗

(0.022) (0.084)

Individual FE Yes Yes
Year FE Yes Yes
Observations 1194 1867 1867

Note: The dependent variable in the regressions is the log of consumption per adult. The data
come from Bryan, Chowdhury, and Mobarak (2014). Column (1) is estimated using house-
holds in the control group with household and year fixed effects. Column (2) presents the Lo-
cal Average Treatment Effect (LATE) of migration on consumption using treatment assignment
as an instrument for migration. Column (3) presents the difference between Columns (1) and
(2). Standard errors in Columns (1) and (2) are clustered at the village level. The standard error
in column (3) is computed from 1,000 bootstrap replications. ∗p < .1,∗∗ p < .05,∗∗∗ p < .01
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Appendix (for Online Publication)

A. Data Appendix: Spatial Price Deflation

Malawi. The Malawi Integrated Household Panel Survey (IHPS) created a spatial and temporal
price index that is used to deflate consumption aggregates. Spatial deflation and within-year
monthly deflation is based on the official monthly Malawi CPI during the duration of fieldwork
across four regions: Urban, Rural North, Rural Centre, and Rural South. Urban prices were
consistently higher than those in all other regions. Due to a rebasing of the Malawi CPI midway
through the panel the official CPI could not be used to adjust for price differences across survey
rounds. Instead, deflation across rounds of the survey rely on a Laspeyres index constructed
using food price data from IHPS household surveys and non-food prices from IHPS community
surveys. The bundle of items used to construct this index covered 58 percent of consumption
in the sample.

Tanzania. The Tanzania National Panel Survey (NPS) price index adjusts for spatial and tem-
poral price differences. The index relies on the prices of food items recorded in NPS household
surveys. These differences in food prices were used to deflate both food and non-food con-
sumption, with the assumption that trends in non-food prices were similar. The NPS created
Fisher price indices using the median unit price of each food item. The index adjusts for spatial
price differences across four strata: rural, Zanzibar, Dar es Salaam and other urban areas. The
index adjusts for temporal price differences at the monthly level. It includes all items that had
been purchased by at least 10 households by stratum and quarter, resulting in a bundle of items
which covered 67 percent of total food consumption.

Ghana. We built a price index for Ghana that deflates prices for urban relative to rural areas.
The index relies on the prices of food items recorded in our survey data. We use this index
to deflate both food and non-food consumption, with the assumption that trends in food and
non-food prices were similar across space. Food consumption was reported using a diverse
mixture of standard and non-standard units, with 73 unique units used. We therefore include
only unit-prices for units-item combinations with at least 10 observations in both rural and
urban locations (which covers 98 percent of food consumption in both regions. We treat each
item-unit pair as a separate good in our index, and calculate a Fischer price index for rural
consumption with urban locations as the base.

B. Model Appendix

This appendix derives the results in Section 3.3. We begin with some mathematical preliminar-
ies regarding the Pareto distribution that we use in our examples.
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• The Pareto CDF is F (z) = Prob{Z ≤ z} = 1 − T θz−θ and the associated PDF is θT θz−θ−1.
The expected value is θ

θ−1
T . Throughout the examples we normalize the parameter T = 1.

• The expected value, conditional on being at or above the value x̂, is θ
θ−1

x̂.

• The logarithm of z
x̂

is distributed exponentially with parameter θ. This implies that the
expected value of log

(
z
x̂

)
is 1

θ
.

The Cross-Sectional Gap is simply the average of consumption in the urban area minus the
average of consumption in the rural area. We focus on period one for simplicity and with

CSG = logA+

∫
log zf(z)dz + logψ︸ ︷︷ ︸

urban consumption

−

 log 1 + logψ︸ ︷︷ ︸
rural consumption

 , (23)

CSG = logA+

∫
log zf(z)dz

In the case of Pareto distributed talents, notice that

= logA+ log T − log T +

∫
log zf(z)dz. (24)

and again as:

= logA+ log T +

∫
log
( z
T

)
f(z)dz. (25)

Then, applying the properties of the exponential distribution, we have:

= logA+ log T +
1

θ
. (26)

Then with T = 1 (our normalization) the result in equation (8) follows.

The Observational Return is given by

ORM = logA+
∑
i

πuri
πur

(∫
ẑi

log zf(z|Z ≥ ẑi)dz − logψ

)
, (27)

where πuri = λri(1 − F (ẑi)) is mass of rural to urban migrants from rural region i and πur =∑
i πuri is the total mass of migrants. To connect this with the cross-sectional gap, do the fol-
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lowing: add and subtract the unconditional distribution of talent

ORM = logA+

∫
log zf(z)dz −

∫
log zf(z)dz +

∑
i

πuri
πur

(∫
ẑi

log zf(z|Z ≥ ẑi)dz − logψ

)
,

(28)

and then pulling the minus term into the brackets by noting that the weights πuri
πur

sum to one
gives us

= CSG +
∑
i

πuri
πur

{(∫
ẑi

log zf(z|Z ≥ ẑi)dz −
∫

log zf(z)dz

)
− logψ

}
︸ ︷︷ ︸

skill adjustment of migrants

(29)

which is (11) in the body of the paper. For Pareto distributed talents, first focus on the
∫
ẑi

log zf(z|Z ≥
ẑi)dz term ∫

ẑi

log zf(z|Z ≥ ẑi)dz = log ẑi +

∫
ẑi

log z

log ẑi
f(z|Z ≥ ẑi)dz (30)

= log ẑi +
1

θ
(31)

then plugging the expression above into the ORM formula (27) we have

ORM = logA+
∑
i

πuri
πur

(
log ẑi +

1

θ
− logψ

)
. (32)

Before further canceling terms, notice that if everybody is migrating, so ẑi = 1, then the obser-
vational return just reflects the cross-sectional gap logA + 1

θ
net of skill loss − logψ. Assuming

that we are away from this case, substitute in for ẑi and we have

ORM = logA+
∑
i

πuri
πur

(
log

(
ψ

mA

)
+

1

θ
− logψ

)
. (33)

After canceling terms we get

ORM =
1

θ
−
∑
i

πuri
πur

logmi (34)

which is equation (12) in the body of the paper.

Several observations about the observational return.

• First, if we compare observational returns across two regions (say a high migration and
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low migration region) we have

ORMh −ORMl =

∫
ẑh

log zf(z|Z ≥ ẑh)dz −
∫
ẑl

log zf(z|Z ≥ ẑl)dz (35)

which the relative observational return reveals the relative productivity of those migrat-
ing from one region to another (note that this strongly relies upon common skill loss).
The standard intuition about this is that the conditional expectation is increasing in the
conditioning point. This intuition implies that workers from the high migration cost are
relatively more productive than workers from the low migration cost region. The Pareto
distributed talents case makes a stronger prediction illustrating that

ORMh −ORMl = [logml − logmh] > 0 (36)

high migration cost regions are where the migrants are of higher productivity and the
relative return exactly reveals the relative migration costs.

• A second observation is that under some assumptions, the treatment effect A can be esti-
mated. Under the assumption of Pareto and if one assumes that

∑
i
πuri
πur

logmi ≈ 0, then
the observational return

ORM ≈ 1

θ
(37)

reveals 1
θ

which is the selection part of the cross-sectional gap in (8). In other words, under
this assumption

CSG−ORM ≈ A (38)

so the difference between the cross-sectional gap and the observational return tells us
about A or the treatment effect of being in the urban area.

• A third observation is a relationship between relative flows and relative returns can be
used to estimate the importance of selection θ. Under the assumption of Pareto distributed
talents, notice that

πuri = λri

(
ψ

Ami

)−θ

(39)

which after taking logs and rearranging gives

log
πuri
λri

= −θ (logψ − logA− logmi) (40)
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where πuri
λri

is the migration rate out of region i. Take differences across the high migration
cost region and the low migration cost region

log
πurh
λrh
− log

πurl
λrl

= θ logmh − θ logmi (41)

= −θ (logmi − logmh) (42)

where common terms such as the A and the ψ cancel, then comparing (41 ) with the
relative observational return under Pareto distributed talents reveals

log
πurh
λrh
− log

πurl
λrl

= θ (ORMh −ORMl) (43)

which says that by connecting the flows and the relative returns, this is another approach
to reveling θ and in turn A or the treatment effect from urban area. Or anther way to put
this is that an estimate of A is

CSG− (ORMh −ORMl)

log πurh
λrh
− log πurl

λrl

= A. (44)

The Gains from Lower Migration Costs. To compute this start with our social welfare function

W(m, ẑ(m)) = λu

∫
ψAzf(z)dz +

∑
i

λri

{
(1− F (ẑi))

[∫
ẑi

miAzf(z|Z ≥ ẑi)dz

]
+ ψF (ẑi)

}
,

(45)

and then compute this in two steps. First, we will compute the direct effect, so a change in m

holding fixed ẑ

∂W

∂mi

= λri(1− F (ẑi))︸ ︷︷ ︸
rural to urban migrants

×
∫
ẑ

Azf(z|Z ≥ ẑi)dz,︸ ︷︷ ︸
avg. prod. of migrants

(46)

which just follows from straightforward differentiation. The next step is to compute the indirect
effect. That is the change in social welfare through how a change in m changes ẑ. Before
proceeding, note that

(1− F (ẑi))

∫
ẑi

miAzf(z|Z ≥ ẑi)dz =

∫
ẑi

miAzf(z)dz (47)

48



and using this substitution and computing the requisite derivative gives

∂W

∂ẑi
= λri

(
∂

∂ẑi

∫
ẑi

miAzf(z)dz + ψf(ẑi)

)
. (48)

and then partial derivative inside the parenthesis is

∂

∂ẑi

∫
ẑi

miAzf(z)dz = −miAzf(z) (49)

which follows from fundamental theorem of calculus. Then combining this we have

∂W

∂ẑi
= λri (−miAẑif(ẑi) + ψf(ẑi) ) (50)

which equals zero when evaluated at ẑi. Thus, only the direct effect matters for the gains to
lowering migration costs. That is the

GLCi = λri(1− F (ẑi))︸ ︷︷ ︸
rural to urban migrants

×
∫
ẑ

Azf(z|Z ≥ ẑi)dz.︸ ︷︷ ︸
avg. prod. of migrants

(51)

Finally the direct effect with the Pareto distribution then simply follows from the mathematical
preliminaties. Applying these formula leaves

= πuri ×
θ

θ − 1
× ψ

mi

. (52)

Some observations on connecting this with the observational return or the cross-sectional gap.
Under Pareto distributed talents (and the common ψ) one can identify relative gain situations:

GLCh

GLCl

=
πurh
πurl
× ml

mh

(53)

and then the important point is the following: the ratio of the migration costs just equals the
difference in observational returns from those discussed above. So

GLCh

GLCl

=
πurh
πurl
× exp (logmi − logmh) (54)

=
πurh
πurl
× exp (ORMh −ORMl) . (55)
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