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ABSTRACT2

A variational problem for a fourth order parabolic surface partial differential equation is discussed.3
It contains nonlinear lower order terms, on which we only make abstract assumptions, and which4
need to be defined for specified problems. We derive a semi-discrete scheme based on the5
surface finite element method, show a-priori error estimates, and use the analytical results6
to prove well-posedness. Furthermore, we present a computational framework where specific7
problems can be conveniently implemented and, later on, altered with relative ease. It uses a8
domain specific language implemented in Python. The high level program control can also be9
done within the Python scripting environment. The computationally expensive step of evolving10
the solution over time is carried out by binding to an efficient C++ software back-end. The11
study is motivated by cell blebbing, which can be instrumental for cell migration. Starting with12
a force balance for the cell membrane, we derive a continuum model for some mechanical and13
geometrical aspects of the onset of blebbing in a form that fits into the abstract framework. It14
is flexible in that it allows for amending force contributions related to membrane tension or the15
presence of linker molecules between membrane and cell cortex. Cell membrane geometries16
given in terms of a parametrisation or obtained from image data can be accounted for by the17
software. The use of a domain specific language to describe the model makes is straightforward18
to add additional effects such as reaction-diffusion equations modelling some biochemistry on19
the cell membrane. Some numerical simulations illustrate the approach.20

Keywords: Interface tracking, surface finite elements, unified form language, distributed unified numerics environment, cell motility,21
biomembranes22

1 INTRODUCTION

We present and analyse a finite element approximation to parabolic fourth order surface partial differential23
equations of the form24

∂tu+ ∆2
Γ0u−∇Γ0 · ψ′(∇Γ0u) + k(u) = 0 (1)

for a vector field u = (u1,u2,u3) : Γ0 → R3 on a surface Γ0 that is the smooth boundary of a bounded25
domain in R3. Here, ∆Γ0 is the Laplace-Beltrami operator and ψ′ and k are given Lipschitz continuous26
functions (see Section 2.2 for precise definitions and assumptions). We also present a software framework27
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that facilitates a convenient implementation of specific problems and report on numerical simulations on an28
application in cell biology.29

Our investigation is motivated by cell blebbing, which refers to the detachment of the plasma membrane30
from its actin cytoskeleton and the fast formation of a spherical protrusion. This is then followed by a31
slower reformation of the actin cortex close to the deformed part of the membrane and a retraction phase32
[27, 12]. The phenomenon is observed in various processes including apoptosis, spreading, migration,33
division, embryonic development, and viral entry (see [44] for a recent overview), and is the subject of34
significant ongoing research. In [49, 14] a mechanical model based on ideas in [53, 46] for curves in 2D is35
presented. It accounts for membrane tension, excess cell pressure, membrane bending resistance, forces36
due to molecules connecting the membrane with the cortex, and drag due to motion through the viscous37
ambient fluid, and it is used to study the influence of the initial geometry on the propensity to nucleate38
blebs. One of our objectives is to extend this model to surfaces in 3D and to perform numerical simulations39
of the onset of blebbing.40

Computational approaches to cell blebbing are based on various methodology for fluid-structure interac-41
tion. In 2D, the membrane may be tracked by a closed curve. Forces due to its elastic properties can be42
computed by approximating the curve with a polygonal chain and using finite difference techniques as in43
[49, 14]. The approach can be interpreted as a finite element method and then analysed in a variational44
framework. We aim for a generalisation of this approach including its convergence analysis to surfaces in45
3D that are approximated by triangulated surfaces. If (viscous) fluid flow inside and outside of the cell46
is accounted for then these membrane forces can be incorporated into the flow equations with a Dirac47
delta distribution. Smoothing the delta distribution according to certain principles and approximating the48
fluid flow equations on a regular bulk grid underpins the immersed boundary method, which is understood49
as both a mathematical formulation and a numerical approach [43]. Based on these ideas, in [53] a50
vorticity-stream formulation for the Newtonian, viscous flow is used, and in [46] a staggered grid finite51
difference method. As an alternative, there are boundary element formulations that are set up directly on52
the polygonal chain [36]. In 3D, the fluid flow becomes significantly more expensive, and tracking points53
on a surface whilst maintaining a good representation becomes much more involved. In [39], a spectral54
method for the flow is coupled with two approaches for the surface, one based on a parametrisation with55
spherical harmonics and one based on a piecewise linear representation. In [10, 11] a surface finite element56
method for reaction-diffusion equations on the cell membrane is coupled with a projection method for57
the flow. In both approaches the immersed boundary method is used for the coupling. Alternatively to58
tracking the membrane, interface capturing methods may be used. We are not aware of such an approach to59
cell blebbing but in [40] 3D simulations of a phase field model for moving cells are presented, which uses60
isogeometric analysis for the spatial approximation and a second order stable time discretisation involving61
a two-stage predictor-corrector scheme.62

The coupling between the surface terms and the bulk flow may also be realised using variational63
approaches that are amenable to finite element techniques. In the last chapter of [5] this is presented for64
vesicles formed by biomembranes that are governed by the Helfrich energy [33]. Such methods address the65
quality of the evolving surface mesh but a convergence analysis seems out of reach. However, accounting66
for the fluid flow with a simple drag force or just relaxing some elastic surface energy with a gradient67
flow dynamics leads to geometric evolution equations, and for the simplest one, the mean curvature flow,68
convergence of a surface finite element method has been proved recently [34]. Cell blebbing will lead69
to a more complicated problem but as our focus is on the onset of blebbing, which involves only small70
deformations, we can expect reasonable results by parametrising the membrane position over a reference71
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surface. We choose the initial surface as a reference surface and show that the emerging PDE problem can72
then be of the form (1). This motivates one of our main objectives, namely to prove weak well-posedness73
and convergence of a surface finite element method for such type of problems. To this end, we proceed74
essentially as in [24], where the Cahn-Hilliard equation, a scalar parabolic fourth order equation, on an75
evolving surface is analysed. The procedure involves splitting the fourth-order problem into two equation76
of second order by introducing a support field, namely77

w = −∆Γ0u,

that can be interpreted as the curvature of the membrane. The essential challenge is the nonlinear second78
order term in (1). To deal with it, we exploit the above linear equation to show strong convergence of the79
gradient of u.80

The surface finite element method dates at least back to [21] for the Laplace-Beltrami operator on81
stationary surfaces and has seen significant development since [23]. It is a versatile tool that can be used82
for cell motility modelled by a geometric evolution equation coupled with a systems of surface reaction-83
diffusion equations [25] and can be coupled with bulk finite elements in one of the adjacent domains84
[26, 37] in a fitted approach in the sense that the surface mesh is the boundary of a bulk mesh. Also85
approaches for the unfitted case of a surface mesh intersecting a fixed bulk mesh rather arbitrarily have86
been developed, where we mention the trace finite element method [31] and the cut finite element method87
[32]. In both methods, PDEs are solved on the intersection of a surface with a, usually, Cartesian bulk mesh88
on which additional terms are set up for stabilisation to deal with small intersection patches. For the case89
of a PDE on an evolving surface the trace finite element method has been analysed in depth [35]. All these90
methods have in common that they are usually not provided by PDE software packages out of the box but91
require expert knowledge to implement them. One of our objectives is therefore to make the methodology92
we have developed accessible by providing code that enables users to implement specific problems with93
relative ease.94

Let us briefly summarise our objectives and achievements, and outline the paper:95

• The surface PDE (1) is analysed for well-posedness using surface finite element techniques. Stability96
estimates for the semi-discrete scheme are derived and exploited to show convergence. Under slightly97
more restrictive assumptions on the quality of the solution, error estimates are shown. The suitable98
abstract variational problem is thoroughly formulated in Section 2.2, and the finite element approach99
is presented and analysed in Section 3.100

• The force balance model in [49, 14], which is based on ideas in [53, 46], is extended from curves101
in 2D to surfaces in 3D. More precisely, a continuum model is presented such that, when restricting102
the model to a curve in 2D and discretising the governing equations using standard finite difference103
methods, the original computational model is obtained. This specific model has been used for some104
numerical simulations and is derived in Section 4.105

• A software framework for numerical simulations has been developed. It features a high-level interface106
to implement a problem in the Unified Form Language (UFL) [2], which enables a user to conveniently107
alter the variational problem. Whilst the overall program control and the time stepping are done at108
the high level, bindings to the Distributed Unified Numerics Environment (DUNE) [7, 6] are used for109
efficiently discretising and solving the spatial problems, more precisely, the Python bindings to the110
DUNE-FEM module [17, 16]. Section 5 contains the time discretisation, details on the implementation,111
and numerical simulations, which also demonstrate the extensibility of the software package.112
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2 VARIATIONAL PROBLEM FORMULATION

2.1 Setting and notation113

Let [0, T ] for some T > 0 denote a time interval and let Ω(t), t ∈ [0, T ], be an open, time dependent
bounded domain. Its evolving boundary Γ(t) = ∂Ω(t) is parametrised over the initial (smooth) surface
Γ0 = Γ(0), i.e. Γ(t) = u(Γ0, t) for some function u : Γ0 × [0, T ] → R3 such that u(·, 0) = idΓ0 is
the identic map of Γ0. The setup is illustrated in Figure 1, which also shows some forces acting on the
surface that are explained in Section 4. The dependence on t will usually be dropped in the following. We
furthermore introduce the following notation:

d signed distance to Γ0, well-defined in a thin layer around Γ0,

convention: d < 0 inside of Ω(0),

νΓ0 = ∇d outwards pointing unit normal of Γ0,

H = ∇2d shape operator of Γ0,

κ = trace(H)νΓ0 curvature vector pf Γ0,

P = I − νΓ0 ⊗ νΓ0 projection to the tangent space,

= ∇Γ0idΓ0 where I ∈ R3×3 is the identity matrix,

∇Γ0η = P∇η surface gradient of any differentiable function η : Γ0 → R
= (D1η,D2η,D3η) extended to a thin layer around Γ0,

∆Γ0η = ∇Γ0 · (∇Γ0η) Laplace-Beltrami operator on Γ0 for η smooth enough,

dσ surface area element when integrating over Γ0,

A : B =
3∑

i,j=1

Ai,jBi,j scalar product for matricesA,B ∈ R3×3,

|A| =
√
A : A (Frobenius) norm for a matrixA ∈ R3×3.

We aim for approximating the PDE problem (1) using finite elements and thus require a variational114
formulation. We say that a function f ∈ L1(Γ0) has a weak derivative ηi = Dif ∈ L1(Γ0) if115 ∫

Γ0
fDiϕdσ = −

∫
Γ0
ηiϕdσ +

∫
Γ0
fϕκidσ, i = 1, 2, 3,

holds true for all smooth functions ϕ with compact support. We also use∇Γ0 to denote this weak derivative116
and write∇k

Γ0 , k ∈ N, for the k-th derivative. Sobolev spaces on Γ0 are defined by H0(Γ0) = L2(Γ0) and117

Hk = Hk(Γ0) =
{
η ∈ L2(Γ0)

∣∣∇lΓ0η ∈ L2(Γ0), l = 1, . . . , k
}
.

For a function η ∈ H1 and a vector field v ∈ (L2)3 the definition of the weak derivative yields that118 ∫
Γ0

(∇Γ0 · v)ηdσ = −
∫

Γ0
v · ∇Γ0ηdσ +

∫
Γ0
ηv · κdσ. (2)
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For the L2 ’mass’ inner product and for the H1 ’stiffness’ semi-inner product of vector valued functions
we write

m(v, z) =

∫
Γ0
v · zdσ, v, z ∈ (L2)3,

s(v, z) =

∫
Γ0
∇Γ0v : ∇Γ0zdσ, v, z ∈ (H1)3.

Based on these Sobolev spaces we will consider the Bochner spaces119

L2
Hk =

{
ζ : (0, T )→ Hk

∣∣ ∫ T

0
‖ζ(t)‖2Hkdt <∞

}
, L∞Hk =

{
ζ : (0, T )→ Hk

∣∣ ess sup
t∈(0,T )

‖ζ(t)‖Hk <∞
}
.

2.2 Assumptions and weak formulation120

In order to enable us to approximate (1) with linear finite elements, we split up the fourth order operator121
by using the curvature122

w = −∆Γ0u.

The function ψ : R3×3 → [0,∞) is assumed to be continuously differentiable with uniformly Lipschitz123
continuous partial derivative, i.e., denoting with ψ′ this (3× 3 tensor-valued) partial derivative we assume124
that there is a constant Cψ > 0 such125

|ψ′(A)− ψ′(B)| ≤ Cψ|A−B| ∀A,B ∈ R3×3. (3)

This implies that |ψ′(A)| ≤ Cψ|A| + C for some constant C > 0. Moreover, we assume that ψ′ is126
tangential in the following sense:127

ψ′(A)νΓ0 = 0 ∀A ∈ R3×3 withAνΓ0 = 0.

Note that then ψ′(A)κ = 0 because κ points in the normal direction. The PDE (1) involves the term128
∇Γ0 · ψ′(∇Γ0u), and thus by (2)129 ∫

Γ0
(∇Γ0 · ψ′(∇Γ0v)) · zdσ = −

∫
Γ0
ψ′(∇Γ0v) : ∇Γ0zdσ

for sufficiently smooth functions v, z. With a slight abuse of notation we write130

s(ψ′;v, z) =

∫
Γ0
ψ′(∇Γ0v) : ∇Γ0zdσ, v, z ∈ (H1)3.

The function k : Γ0 ×R3 → R3 is assumed to be bounded, measurable with respect to the first argument,131
and uniformly Lipschitz continuous in the second argument, i.e., there is some constant Ck > 0 such that132
for all y ∈ Γ0133

|k(y,a)− k(y, b)| ≤ Ck|a− b| ∀a, b ∈ R3. (4)

This implies that |k(y,a)| ≤ Ck|a|+ C for some constant C > 0.134

The (weak) variational formulation of (1) reads:135

Frontiers 5



Stinner et al. SFEM for cell blebbing

PROBLEM 2.1. Find u,w ∈ L2(0, T ;H1(Γ0)) with ∂tu ∈ L2(0, T ;L2(Γ0)) such that for all φ,η ∈
H1(Γ0) and almost all t ∈ (0, T )

m(∂tu,φ) + s(w,φ) + s(ψ′;u,φ) +m(k(·,u),φ) = 0, (5)

s(u,η)−m(w,η) = 0, (6)

and such that u(·, 0) = idΓ0 .136

REMARK 2.2. One could consider a function ψ that, like k, depends on the position y on Γ0. For the137
finite element approximation discussed in the next section, we make use of an approximation kh of k (see138
around (10)). Something similar could be done for ψ as well. This would result in some additional terms139
that would need to be estimated using a consistency assumption similar to (10). As the procedure is similar140
to the one for k we omit the details for conciseness.141

3 SURFACE FINITE ELEMENT APPROACH

3.1 Surface triangulations and finite elements142

The membrane Γ0 is approximated by a family of polyhedral surfaces {Γ0
h}h, each one being of the form

Γ0
h =

⋃
E∈Th

E ⊂ R3

where the E are closed, flat non-degenerate triangles whose pairwise intersection is a complete edge, a143
single point, or empty. For each E belonging to the set Th of triangles we denote by h(E) = diam(E) its144
diameter and then identify h = maxE∈Th

h(E) with the maximal edge length of the whole triangulation.145
We assume that the vertices of Γ0

h belong to Γ0 so that Γ0
h is a piecewise linear interpolation of Γ0. We146

also assume that h is small enough so that Γ0
h lies in the thin layer around Γ0 in which the signed distance147

function d is well-defined. Furthermore, we assume that Γ0
h is the boundary of a domain that approximates148

Ω(0) and denote the external unit normal, which is defined on the triangles and thus piecewise constant,149
with νΓ0

h
. By P h = I − νΓ0

h
⊗ νΓ0

h
we denote the projection to the tangent space in points on Γ0

h where150

it exists (i.e., in the interiors of the triangles E ∈ Th). This gives rise to the piecewise (i.e., triangle by151
triangle) definition of a surface gradient ∇Γ0

h
on Γ0

h. The same notation ∇Γ0
h

is used again for the weak152

derivative. We write dσh for the surface area element when integrating functions on Γ0
h.153

For the error analysis we have to measure the distance of functions such as u on Γ0 to functions such154
as the finite element solution on Γ0

h. For this purpose, we assume that for each yh ∈ Γ0
h there is a unique155

point y ∈ Γ0 such that156
yh = y + d(yh)νΓ0(y). (7)

This bijection gives rise to the lift of any function η : Γ0
h → R to Γ0 defined by157

η` : Γ0 → R, η`(y) = η(yh).

Writing µh for the local change of the surface area element, i.e., dσh = µhdσ, integrals transform as158 ∫
Γ0
h

ηdσh =

∫
Γ0
η`µhdσ. (8)
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A straightforward calculation show that in points where both η and η` are differentiable159

∇Γ0
h
η(yh) = Qh(y)∇Γ0η`(y) where Qh(y) = P h(yh)(I − d(yh)H(y))P (y). (9)

The following two lemmas on the errors due to the approximation of the surface and on the stability of the160
lift are due to [21, 22].161

LEMMA 3.1. The following estimates hold true for some constant C > 0 independent of h:

‖1− µh‖L∞(Γ0) ≤ Ch2,

‖Qh − P ‖L∞(Γ0) ≤ Ch.

LEMMA 3.2. Let η : Γ0
h → R with its lifted counterpart η` : Γ0 → R. Let also E ∈ Th and

E` = {y ∈ Γ0 |yh ∈ E} with y as in (7) for a given yh. The following estimates hold true with a constant
C > 0 independent of h and the element E:

1

C

∥∥∥η`∥∥∥
L2(E`)

≤ ‖η‖L2(E) ≤ C
∥∥∥η`∥∥∥

L2(E`)
,

1

C

∥∥∥∇Γ0η`
∥∥∥
L2(E`)

≤
∥∥∥∇Γ0

h
η
∥∥∥
L2(E)

≤ C
∥∥∥∇Γ0η`

∥∥∥
L2(E`)

.

These inequalities generalise to the whole surfaces by summing over the elements.162

The standard finite element space used throughout is

Sh = {φh ∈ C0(Γ0
h) |φh|E is linear for each E ∈ Th}.

Note that the identic map of Γ0
h belongs to S3

h. Bilinear forms corresponding to m and s are defined for
finite element functionsRh,Zh ∈ S3

h on the triangulation by

mh(Rh,Zh) =

∫
Γ0
h

Rh ·Zhdσh, sh(Rh,Zh) =

∫
Γ0
h

∇Γ0
h
Rh : ∇Γ0

h
Zhdσh,

and we will also use again the notation sh(ψ′;Rh,Zh) =
∫

Γ0
h
ψ′(∇Γ0

h
Rh) : ∇Γ0

h
Zhdσh. For the163

discrepancy to the forms on Γ0 we note the following result:164

LEMMA 3.3 ([21]). There is a constant C > 0 independent of h such that for allRh,Zh ∈ S3
h

|mh(Rh,Zh)−m(rh, zh)| ≤ Ch2‖Rh‖L2(Γ0
h)‖Zh‖L2(Γ0

h),

|sh(Rh,Zh)− s(rh, zh)| ≤ Ch2‖∇Γ0
h
Rh‖L2(Γ0

h)‖∇Γ0
h
Zh‖L2(Γ0

h),

where rh = R`
h and zh = Z`

h.165

We define the Ritz projection Πh : H1(Γ0)→ Sh by166

sh(Πh(ξ), φh) = s(ξ, φ`h) ∀φh ∈ Sh,
∫

Γ0
h

Πh(ξ)dσh =

∫
Γ0
ξdσ.
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It’s lift is denoted by πh(ξ) = Πh(ξ)` and has the following approximation properties:167

LEMMA 3.4 ([24]). If ξ ∈ H1(Γ0) then168

‖ξ − πh(ξ)‖H1(Γ0) → 0, ‖ξ − πh(ξ)‖L2(Γ0) ≤ Ch‖ξ‖H1(Γ0),

and if ξ ∈ H2(Γ0) then169

‖ξ − πh(ξ)‖L2(Γ0) + h‖∇Γ0(ξ − πh(ξ))‖L2(Γ0) ≤ Ch2‖ξ‖H2(Γ0)

where C > 0 is a constant independent of h and ξ.170
The projection and the convergence results extend to functions in L2

H1 with a pointwise (in time) definition171
of the projection and with the norms ‖ · ‖Hk replaced by ‖ · ‖L2

Hk
, k = 0, 1, 2.172

3.2 Semi-discrete problem173

In applications, we may only have access to a triangulated surface Γ0
h but not Γ0, for instance, when Γ0

h is174
computed from image data. In such cases we may also know functions such as k only approximately. For175
instance, the specific choice (55) of k for our numerical simulations involves the unit normal νΓ0 and the176
cortex position uc, both of which may not be known exactly if we only have Γ0

h rather than Γ0. However,177
we have the approximations νΓ0

h
or uc,h = idΓ0

h
− l0νΓ0

h
at our disposition. For the analysis of the abstract178

model we therefore assume that k is approximated by some function (properly, a h family of functions)179
kh : Γ0

h × R3 → R3 that has the same regularity properties as k. In particular, kh is Lipschitz continuous180
in the second argument with the same Lipschitz constant Ck > 0 independently of h. We define its lift181
k`h : Γ0 × R3 → R3 by k`h(y,a) = kh(yh,a), a ∈ R3, with y and yh related as defined around (7). We182
assume that kh is an approximation of k in the following sense: There is a constant C > 0 independent of183
h such that for all a ∈ R3184

‖k(·,a)− k`h(·,a)‖L∞(Γ0) ≤ C(1 + |a|)h. (10)

PROBLEM 3.5. Find Uh,W h ∈ C1(0, T ;S3
h) × C0(0, T ;S3

h) such that for all Φh,Hh ∈ S3
h and all

t ∈ (0, T )

mh(∂tUh,Φh) + sh(W h,Φh) + sh(ψ′;Uh,Φh) +mh(kh(·,Uh),Φh) = 0, (11)

sh(Uh,Hh)−mh(W h,Hh) = 0, (12)

and such that Uh(·, 0) = idΓ0
h
.185

In the next subsection we will show the following main result:186

THEOREM 3.6. The semi-discrete problems 3.5 are well-posed for all h > 0 small enough. As h→ 0 the187
lifted solutions (uh,wh) = (U `

h,W
`
h) converge to some functions (u,w) that uniquely solve the abstract188

variational problem 2.1 and satisfy189

‖u‖2L∞
H1

+ ‖w‖2
L2
H1
≤ C (13)

with some C > 0 that depends on data only.190
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3.3 Proof of Theorem 3.6191

We generally follow the procedure in [24]. Essential differences consist in the approximation of the data192
k by kh and the non-linear function ψ′ of the gradient. To deal with the former, the consistency assumption193
(10) will turn out sufficient, whilst for the latter we will exploit the relations (6) and (12) to show strong194
convergence of the gradient of the deformation.195

Short time existence for (11), (12) is straightforward to show. Estimates are now derived that are, at first,196
only valid at times of existence but then in the usual way can be used to show existence over the whole197
time interval by a continuation argument. We therefore state these estimates directly on the whole time198
interval. We also use the standard notion of C > 0 for a generic constant that depends on the problem data199
but not on any solution, and which may change from line to line.200

Testing with Φh = Uh in (11) andHh = W h in (12) and subtracting these identities yields that

1

2

d

dt
‖Uh‖2L2 + ‖W h‖2L2 = −sh(ψ′;Uh,Φh)−mh(kh(Uh),Φh)

≤ C
(
‖∇Γ0

h
Uh‖2L2 + ‖Uh‖2L2 + 1

)
. (14)

Here and in the following we use the Lipschitz continuity of ψ′ and kh, which implies linear growth (see201
(3), (4) and the comments after). ChoosingHh = Uh in (12) and applying Young’s inequality we see that202

‖∇Γ0
h
Uh‖2L2 = sh(Uh,Uh) = mh(W h,Uh) ≤ ε̂

2
‖W h‖2L2 +

1

2ε̂
‖Uh‖2L2 ,

for ε̂ > 0, and choosing ε̂ small enough we thus obtain from (14) that203

1

2

d

dt
‖Uh‖2L2 +

1

2
‖W h‖2L2 ≤ C

(
‖Uh‖2L2 + 1

)
.

A Gronwall argument therefore yields the estimate204

‖Uh‖2L∞
L2

+ ‖W h‖2L2
L2
≤ C. (15)

Testing with Φh = W h in (11) andHh = ∂tUh in (12) and then adding these equations yields that205

sh(∂tUh,Uh) + sh(W h,W h) = −sh(ψ′;Uh,W h)−mh(kh(Uh),W h).

WithHh = W h in (12) and using Young’s inequality again we get for any small ε̂ > 0 that206

‖W h‖2L2 = mh(W h,W h) = sh(Uh,W h) ≤ ε̂‖∇Γ0
h
W h‖2L2 +

1

4ε̂
‖Uh‖2L2 .
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Using the Lipschitz continuity of ψ′ and kh again we thus can conclude that

1

2

d

dt
‖∇Γ0

h
Uh‖2L2 + ‖∇Γ0

h
W h‖2L2

≤ 1

2
‖ψ′(∇Γ0

h
Uh)‖2L2 +

1

2
‖∇Γ0

h
W h‖2L2 +

1

2
‖kh(Uh)‖2L2 +

1

2
‖W h‖2L2

≤ 1 + ε̂

2
‖∇Γ0

h
W h‖2L2 + C

(
‖Uh‖2L2 + ‖∇Γ0

h
Uh‖2L2 + 1

)
.

Choosing ε̂ small enough and then applying (15) and a Gronwall argument we obtain the estimate207

‖∇Γ0
h
Uh‖2L∞

L2
+ ‖∇Γ0

h
W h‖2L2

L2
≤ C. (16)

Taking the time derivative of (12) (note that, using that ∂tUh exists, this equation can be used to show that208
∂tW h exists) yields that sh(∂tUh,Hh) = mh(∂tW h,Hh). We test this withHh = W h and subtract it209
from (11) with Φh = ∂tUh to obtain that210

mh(∂tUh, ∂tUh) +mh(∂tW h,W h) + sh(ψ′;Uh, ∂tUh) +mh(kh(Uh), ∂tUh) = 0.

Noting that211

sh(ψ′;Uh, ∂tUh) =

∫
Γ0
h

ψ′(∇Γ0
h
Uh) : ∂t∇Γ0

h
Uhdσh =

∫
Γ0
h

d

dt
ψ(∇Γ0

h
Uh)dσh

and using the Lipschitz continuity of kh again we see that212

‖∂tUh‖2L2 +
1

2

d

dt
‖W h‖2L2 +

d

dt

(∫
Γ0
h

ψ(∇Γ0
h
Uh)dσh

)
≤ C(‖Uh‖2L2 + 1) +

1

2
‖∂tUh‖2L2 .

Therefore, with (15) we obtain the estimate213

‖∂tUh‖2L2
L2

+ ‖W h‖2L∞
L2

+ sup
t∈[0,T ]

∫
Γ0
h

ψ(∇Γ0
h
Uh)dσh ≤ C. (17)

These estimates (15)–(17) are now lifted from Γ0
h to Γ0. We can then apply compactness arguments

to deduce the existence of limits (u,w), which we will show to satisfy Problem 2.1. As a first step, the
stability estimate (13) will be derived. Using Lemma 3.2 the lifted solutions satisfy the estimates

‖uh‖2L∞
H1

+ ‖wh‖2L2
H1
≤ C, (18)

‖∂tuh‖2L2
L2

+ ‖wh‖2L∞
L2
≤ C. (19)

Hence, there are functions u ∈ L2
H1 with ∂t ∈ L2

L2 and w ∈ L2
H1 such that for a subsequence as h→ 0

uh ⇀ u in L2
H1 , ∂tuh ⇀ ∂tu in L2

L2 , (20)

uh → u in L2
L2 and a.e., wh ⇀ w in L2

H1 , (21)
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and these limits also satisfy (18) and (19) and, thus, the stability estimate (13).214

Let us now show that (u,w) satisfies (6). For any η ∈ L2
H1 letHh = Πh(η) denote its Ritz projection

with the lift ηh = πh(η). Then sh(Uh,Hh) = mh(W h,Hh), whence

∫ T

0
s(u,ηh)−m(w,ηh)dt =

∫ T

0

(
s(u,ηh)− s(uh,ηh)

)
dt+

∫ T

0

(
s(uh,ηh)− sh(Uh,Hh)

)
dt

+

∫ T

0

(
mh(W h,Hh)−m(wh,ηh)

)
dt+

∫ T

0

(
m(wh,ηh)−m(w,ηh)

)
dt =: J1 + J2 + J3 + J4.

By the properties of the Ritz projection (Lemma 3.4) we have that ηh = πh(η)→ η in L2
H1 . Thanks to215

(20) we thus have that J1 → 0 as h→ 0, and similarly J4 → 0 thanks to (21). Lemma 3.3 together with216
the estimates (16) and (17) ensures that J2 → 0 and J3 → 0 as h → 0. Therefore, (u,w) satisfies the217
following identity, which implies (6):218 ∫ T

0

(
s(u,η)−m(w,η)

)
dt = 0 ∀η ∈ L2

H1 . (22)

Next, we show strong convergence of∇Γ0uh. We note that219

‖∇Γ0(u− uh)‖2
L2
L2

=

∫ T

0
s(u− uh,u− πh(u))dt+

∫ T

0
s(u− uh, πh(u)− uh)dt =: K1 +K2.

Using again Lemma 3.4 we see that πh(u)→ u in L2
H1 , and with (20) this implies thatK1 → 0. Regarding

the second term we note that thanks to (22) and (12)

K2 =

∫ T

0

(
m(w, πh(u)− uh)−m(wh, πh(u)− uh)

)
dt

+

∫ T

0

(
m(wh, πh(u)− uh)−mh(W h,Πh(u)−Uh)

)
dt

+

∫ T

0

(
sh(Uh,Πh(u)−Uh)− s(uh, πh(u)− uh)

)
dt =: K21 +K22 +K23.

As both πh(u)→ u and uh → u by (21) we see that πh(u)− uh → 0 in L2
L2 as h→ 0. With wh ⇀ w220

in the same space we obtain that K21 → 0. From the definition and properties of the Ritz projection it221
easily follows that ‖Πh(ξ)‖H1 ≤ C‖ξ‖H1 with some C > 0 independent of h and ξ ∈ H1(Γ0). The222
stability estimate (13), which is already proved, and the estimates (15) and (16) therefore yield that223
‖Πh(u)−Uh‖H1 is uniformly bounded in h. Using (15) and (16) again forW h and Lemma 3.3 we obtain224
that K22 → 0 and K23 → 0 as h→ 0. This finally shows that225

uh → u in L2
H1 and a.e. (23)
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To conclude the proof of Theorem 3.6 we need to show that (u,w) satisfies (5). For any φ ∈ L2
H1 let

Φh = Πh(φ) be its Ritz projection with lift φh = πh(φ). Then∫ T

0

(
m(∂tu,φ)−mh(∂tUh,Φh)

)
dt

=

∫ T

0

(
m(∂tu,φ)−m(∂tuh,φ)

)
dt+

∫ T

0

(
m(∂tuh,φ)−m(∂tuh,φh)

)
dt

+

∫ T

0

(
m(∂tuh,φh)−mh(∂tUh,Φh)

)
dt =: L1 + L2 + L3. (24)

Thanks to (21) we have that L1 → 0 as h → 0. Lemma 3.4 on the Ritz projection ensures that L2 → 0.226
It also ensures that Φh is uniformly bounded in h, and with Lemma 3.3 and (17) we obtain that L3 → 0.227
Altogether228 ∫ T

0
mh(∂tUh,Φh)dt→

∫ T

0
m(∂tu,φ)dt. (25)

Analogously one can show that229 ∫ T

0
sh(W h,Φh)dt→

∫ T

0
s(w,φ)dt. (26)

Next, we can write∫ T

0

(
s(ψ′;u,φ)− sh(ψ′;Uh,Φh)

)
dt

=

∫ T

0

∫
Γ0

(
ψ′(∇Γ0u) : ∇Γ0φ− ψ′(∇Γ0uh) : ∇Γ0φ

)
dσdt

+

∫ T

0

∫
Γ0

(
ψ′(∇Γ0uh) : ∇Γ0φ− ψ′(∇Γ0uh) : ∇Γ0φh

)
dσdt

+

∫ T

0

(∫
Γ0
ψ′(∇Γ0uh) : ∇Γ0φhdσ −

∫
Γ0
h

ψ′(∇Γ0
h
Uh) : ∇Γ0

h
Φhdσh

)
dt

=: M1 +M2 +M3. (27)

Thanks to (23) and the Lipschitz continuity of ψ′ we have that ψ′(∇Γ0uh)→ ψ′(∇Γ0u) in L2
L2 and almost

everywhere, whence M1 → 0 as h→ 0. For the second term we observe that

M2 ≤
∫ T

0
‖ψ′(∇Γ0uh)‖L2(Γ0)‖∇Γ0φ−∇Γ0φh‖L2(Γ0)dt

≤
∫ T

0
C
(
‖∇Γ0uh‖L2(Γ0) + 1

)
‖φ− φh‖H1(Γ0)dt → 0

This is a provisional file, not the final typeset article 12



Stinner et al. SFEM for cell blebbing

thanks to the estimate (16) and Lemma 3.4. In the last term we lift the second integral to Γ0 (recall (8) and
(9) for the transformation of the derivative):

M3 =

∫ T

0

(∫
Γ0
ψ′(∇Γ0uh) : ∇Γ0φhdσ −

∫
Γ0
ψ′(Qh∇Γ0uh) : Qh∇Γ0φhµhdσ

)
dt

=

∫ T

0

∫
Γ0

(
ψ′(∇Γ0uh)− ψ′(Qh∇Γ0uh)

)
: ∇Γ0φhdσdt

+

∫ T

0

∫
Γ0
ψ′(Qh∇Γ0uh) :

(
P − µhQh

)
∇Γ0φhdσdt. (28)

We can now apply the Lipschitz continuity of ψ′ and the geometric error estimates in Lemma 3.1 (which
imply that ‖Qh‖L∞(Γ0) is uniformly bounded in h) to obtain that

|M3| ≤
∫ T

0
Cψ
∣∣∇Γ0uh −Qh∇Γ0uh

∣∣ |∇Γ0φh|dt

+

∫ T

0
C
(
|Qh∇Γ0uh|+ 1

)(
|P −Qh|+ |Qh|

∣∣1− µh∣∣)|∇Γ0φh|dt

≤ Cψ‖P −Qh‖L∞(Γ0)‖∇Γ0uh‖L2
L2
‖∇Γ0φh‖L2

L2

+ C
(
‖Qh‖L∞(Γ0) + 1

)(
‖P −Qh‖L∞(Γ0) + ‖1− µh‖L∞(Γ0)

)
‖∇Γ0uh‖L2

L2
‖∇Γ0φh‖L2

L2

≤ Ch‖∇Γ0uh‖L2
L2
‖∇Γ0φh‖L2

L2
. (29)

Using estimate (18) and that also ‖φh‖L2
H1
≤ C‖φ‖L2

H1
is uniformly bounded (follows from Lemma 3.4)230

we see that M3 → 0, and we can conclude that231 ∫ T

0
sh(ψ′;Uh,Φh)dt→

∫ T

0
s(ψ′;u,φ)dt. (30)

For the last term in (5) we note that

∫ T

0

(
m(k(u),φ)−mh(kh(Uh),Φh)

)
dt =

∫ T

0

(
m(k(u),φ)−m(k(uh),φ)

)
dt

+

∫ T

0
m(k(uh),φ− φh)dt+

∫ T

0

(
m(k(uh),φh)−mh(kh(Uh),Φh)

)
dt =: N1 +N2 +N3. (31)

Thanks to (21) and the Lipschitz continuity of k we have that k(uh)→ k(u) inL2
L2 and almost everywhere,

so that N1 → 0 as h→ 0. The second term converges to zero thanks to φh → φ in L2
L2 . Regarding N3,
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we lift the second integral to Γ0:

N3 =

∫ T

0

(∫
Γ0
k(uh) · φhdσ −

∫
Γ0
k`h(uh) · φhµhdσ

)
dt

=

∫ T

0

∫
Γ0

(
k(uh)− k`h(uh)

)
· φhµhdσdt

+

∫ T

0

∫
Γ0

(1− µh)k`h(uh) · φhdσdt. (32)

Using now the consistency (10) of the approximation of k by kh, the Lipschitz continuity of kh, and the
geometric error estimates in Lemma (3.1) we obtain that

|N3| ≤
∫ T

0

(∫
Γ0
Ch(1 + |uh|)|φh|dσ

)
dt+

∫ T

0

(
‖1− µh‖L∞(Γ0)

∫
Γ0
C(|uh|+ 1)|φh|dσ

)
dt

≤ Ch
(
1 + ‖uh‖L2

L2

)
‖φh‖L2

L2
→ 0 (33)

using estimate (18) and that also ‖φh‖L2
L2
≤ C‖φ‖L2

L2
is uniformly bounded. Altogether232

∫ T

0
mh(kh(Uh),Φh)dt→

∫ T

0
m(k(u),φ)dt. (34)

The convergence results (25), (26), (30), and (34) show that (u,w) satisfies (5), which is the limit of233
(11) as h→ 0.234

In the next section we show error estimates. These techniques can also be used to show uniqueness of235
the solution (u,w) to Problem 2.1. We therefore omit the details for brevity. This concludes the proof of236
Theorem 3.6.237

3.4 Error estimates238

Deriving error estimates is possible when assuming higher regularity of the solution, henceforth:239

Assume that u, ∂tu,w ∈ L2
H2 . (35)

We will derive error estimates on the triangulated surfaces and for this purpose us the bijection (7) to define240
the inverse lift of the solution (u,w) to Γ0

h:241

u−`,w−` : Γ0
h → R3, u−`(yh) = u(y), w−`(yh) = w(y).

We use the Ritz projection to split the errors into a projection error ρ and a discrete error θ:

u−` −Uh =
(
u−` − Πh(u)

)
+
(
Πh(u)−Uh

)
=: ρ(u) + θ(u),

w−` −W h =
(
w−` − Πh(w)

)
+
(
Πh(w)−W h

)
=: ρ(w) + θ(w).
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Thanks to the regularity assumption (35), the properties of the Ritz projection (Lemma 3.4), and the
properties of the lift (Lemma 3.2) error bounds for the projection errors are straightforward:

‖ρ(u)‖L2
L2(Γ0

h
)

+ h‖∇Γ0
h
ρ(u)‖L2

L2(Γ0
h

)

≤ Ch2‖u‖L2
H2
, (36)

‖ρ(w)‖L2
L2(Γ0

h
)

+ h‖∇Γ0
h
ρ(w)‖L2

L2(Γ0
h

)

≤ Ch2‖w‖L2
H2
. (37)

To estimate the discrete errors let Φh ∈ S3
h, test (11) with −Φh and test (5) with −φh, which is the lift

of Φh. We get that

−mh(∂tUh,Φh)− sh(W h,Φh)− sh(ψ′;Uh,Φh)−mh(kh(Uh),Φh)

= −m(∂tu,φh)− s(w,φh)− s(ψ′;u,φh)−m(k(u),φh).

Now we add the terms mh(∂tΠh(u),Φh), sh(Πh(w),Φh), sh(ψ′; Πh(u),Φh), and mh(kh(Πh(u)),Φh)
on both sides. Using that sh(Πh(w),Φh) = s(w,φh) by the definition of the Ritz projection this yields
that

mh(∂tθ
(u),Φh) + sh(θ(w),Φh)

+ sh(ψ′; Πh(u),Φh)− sh(ψ′;Uh,Φh) +mh(kh(Πh(u)),Φh)−mh(kh(Uh),Φh)

=
(
mh(∂tΠh(u),Φh)−m(∂tu,φh)

)
+
(
sh(ψ′; Πh(u),Φh)− s(ψ′;u,φh)

)
+
(
mh(kh(Πh(u)),Φh)−m(k(u),φh)

)
=:Et(Φh) + Eψ(Φh) + Ek(Φh). (38)

Proceeding similarly with (6) and (12) for anyHh ∈ S3
h with lift ηh we obtain that242

sh(θ(u),Hh)−mh(θ(w),Hh) = mh(Πh(w),Hh)−m(w,ηh) =: Ew(Hh). (39)

The error terms satisfy the following estimates:243

LEMMA 3.7. There is some C > 0 independent of h (sufficiently small) such that for all Φh,Hh ∈ S3
h

|Et(Φh)| ≤Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h), (40)

|Eψ(Φh)| ≤Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h), (41)

|Ek(Φh)| ≤Ch
(
1 + ‖u‖H2(Γ0)

)
‖Φh‖L2(Γ0

h), (42)

|Ew(Hh)| ≤Ch2‖w‖H2(Γ0)‖Hh‖L2(Γ0
h). (43)

PROOF. To show the estimates, we will frequently apply Lemma 3.3 on the approximation of the bilinear244
forms, Lemma 3.2 on the stability of the lift, and Lemma 3.4 on the Ritz projection without explicitly245
pointing it out for conciseness.246

The Ritz projection commutes with the time derivative thanks to the regularity of u. Therefore247

Et(Φh) =
(
mh(∂tΠh(u),Φh)−m(∂tπh(u),φh)

)
+
(
m(πh(∂tu),φh)−m(∂tu,φh)

)
=: L̃3 + L̃1.
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The term L̃3 is similar to L3 in (24) but without the time integral and with πh(∂tu) instead of uh and thus248
can also be estimated similarly:249

|L̃3| ≤ Ch2‖Πh(∂tu)‖L2(Γ0
h)‖Φh‖L2(Γ0

h) ≤ Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h).

Furthermore,250

|L̃1| ≤ ‖πh(∂tu)− ∂tu‖L2(Γ0)‖φh‖L2(Γ0) ≤ Ch2‖∂tu‖H2(Γ0)‖Φh‖L2(Γ0
h),

which altogether yields (40).251

We can also split up Eψ:252

Eψ(Φh) =
(
sh(ψ′; Πh(u),Φh)− s(ψ′; πh(u),φh)

)
+
(
s(ψ′; πh(u),φh)− s(ψ′;u,φh)

)
=: M̃3 + M̃1.

The first term M̃3 is similar to the term M3 in (27), without the time integral and with πh(u) instead of uh.253
Following the lines of (28) and (29) we obtain that254

|M̃3| ≤ Ch‖∇Γ0πh(u)‖L2(Γ0)‖∇Γ0φh‖L2(Γ0) ≤ Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h).

Using that ψ′ is Lipschitz, the other term is estimated as255

|M̃1| ≤ Cψ‖∇Γ0πh(u)−∇Γ0u‖L2(Γ0)‖∇Γ0φh‖L2(Γ0) ≤ Ch‖u‖H2(Γ0)‖∇Γ0
h
Φh‖L2(Γ0

h),

which together shows (41).256

For the third estimate we use the splitting257

Ek(Φh) =
(
mh(kh(Πh(u)),Φh)−m(k(πh(u)),φh)

)
+
(
m(k(πh(u)),φh)−m(k(u),φh)

)
=: Ñ3+Ñ1.

Noting and exploiting the similarity of Ñ3 with N3 in (27) we proceed as in (32) and (33) to obtain that258

|Ñ3| ≤ Ch
(
1 + ‖πh(u)‖L2(Γ0)

)
‖φh‖L2(Γ0) ≤ Ch

(
1 + ‖u‖H2(Γ0))

)
‖Φh‖L2(Γ0

h).

Furthermore,259

|Ñ1| ≤ Ck‖πh(u)− u‖L2(Γ0)‖φh‖L2(Γ0) ≤ Ch2‖u‖H2(Γ0)‖Φh‖L2(Γ0
h),

which finally yields the estimate (42).260

The last estimate (43) can be proved analogously to (40). This concludes the proof of Lemma 3.7.261

With these estimates we can derive the following estimates for the error:262

THEOREM 3.8. Assume that (u,w) solves Problem 2.1 and satisfies u, ∂tu,w ∈ L2
H2(Γ0)

. For all
sufficiently small h the solution (Uh,W h) of Problem 3.5 satisfies

‖u−l −Uh‖2L∞
L2(Γ0

h
)

+ ‖w−l −W h‖2L2
L2(Γ0

h
)

+ ‖∇Γ0
h
(u−l −Uh)‖2

L2
L2(Γ0

h
)

≤ Ch2

with a constant C > 0 independent of h.263
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PROOF. We proceed as for deriving (15) but start with (38), where we test with Φh = θ(u), and with
(39), where we chooseHh = θ(w). Taking the difference we obtain that

mh(∂tθ
(u),θ(u)) +mh(θ(w),θ(w))

= − sh(ψ′; Πh(u),θ(u)) + sh(ψ′;Uh,θ
(u))−mh(kh(Πh(u)),θ(u)) +mh(kh(Uh),θ(u))

+ Et(θ
(u)) + Eψ(θ(u)) + Ek(θ

(u))− Ew(θ(w)).

In Lemma 3.7 we absorb the norm of u into C to obtain that264

|Et(θ(u))| ≤ Ch4 +
1

2
‖θ(u)‖2

L2(Γ0
h)
, |Eψ(θ(u))| ≤ Ch2 +

1

2
‖∇Γ0

h
θ(u)‖2

L2(Γ0
h)
,

and similarly for the other two errors. Using that ψ′ and kh are Lipschitz we then get that

1

2

d

dt
‖θ(u)‖2

L2(Γ0
h)

+ ‖θ(w)‖2
L2(Γ0

h)

≤
∫

Γ0
h

Cψ|∇Γ0
h
Uh −∇Γ0

h
Πh(u)| |∇Γ0

h
θ(u)|dσh +

∫
Γ0
h

Ck|Uh − Πh(u)| |θ(u)|dσh

+ |Et(θ(u))|+ |Eψ(θ(u))|+ |Ek(θ(u))|+ |Ew(θ(w))|

≤Cψ‖∇Γ0
h
θ(u)‖2

L2(Γ0
h)

+ Ck‖θ(u)‖2L2(Γ0)

+ C(h2 + h4) + ‖θ(u)‖2
L2(Γ0

h)
+

1

2
‖∇Γ0

h
θ(u)‖2

L2(Γ0
h)

+
1

2
‖θ(w)‖2

L2(Γ0
h)
. (44)

SubstitutingHh = θ(u) in (39) gives for any ε̂ > 0 that265

‖∇Γ0
h
θ(u)‖2

L2(Γ0
h)
≤ ε̂

2
‖θ(w)‖2

L2(Γ0
h)

+
1

2ε̂
‖θ(u)‖2

L2(Γ0
h)

+ Ch4 + ‖θ(u)‖2
L2(Γ0

h)
. (45)

We can thus estimate the terms involving ‖∇Γ0
h
θ(u)‖2

L2(Γ0
h)

on the right-hand-side of (44) by terms266

involving ε̂‖θ(w)‖2
L2(Γ0

h)
. Choosing now ε̂ > 0 small enough, these terms involving ‖θ(w)‖2

L2(Γ0
h)

can then267

be absorbed in the left-hand-side to that altogether268

d

dt
‖θ(u)‖2

L2(Γ0
h)

+ ‖θ(w)‖2
L2(Γ0

h)
≤ C‖θ(u)‖2

L2(Γ0
h)

+ Ch2.

By standard interpolation theory (recall that the identic map of the triangulated surface Γ0
h linearly269

interpolates the identic map of Γ0) the initial error satisfies270

‖θ(u)(0)‖2
L2(Γ0

h)
≤ ‖ρ(u)(0)‖2

L2(Γ0
h)

+ ‖u−`(0)−Uh(0)‖2
L2(Γ0

h)
≤ Ch2 + ‖id−`

Γ0 − idΓ0
h
‖2
L2(Γ0

h)
≤ Ch2.

Applying Gronwall therefore yields that271

‖θ(u)‖2L∞
L2(Γ0

h
)

+ ‖θ(w)‖2
L2
L2(Γ0

h
)

≤ Ch2.
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From (45) we now see that also272
‖∇Γ0

h
θ(u)‖2

L2
L2(Γ0

h
)

≤ Ch2.

Together with (36) and (37) these two estimates conclude the proof of Theorem 3.8.273

4 CONTINUUM MODEL FOR THE ONSET OF BLEBBING

4.1 Force contributions274

Mathematical models that aim to provide insight into the mechanisms that control cell blebbing require275
an approach to describe the evolving geometry and have to account for various force contributions acting276
on the plasma membrane. Based on previous ideas [53, 46, 49, 14] we postulate that a force balance of the277
form278

fpressure + f coupling + f tension + f reg + fdrag = 0 (46)

governs the cell membrane’s shape. The contributions are force densities on the cell membrane and are279
modelled in a form such that a surface partial differential equation of the form (1) is obtained. Figure 1280
gives an idea of the setup. We specifically aim for generalising the model in [49, 14] for curves in 2D to281
surfaces in 3D but also put the force contributions into the wider literature context.282

• Pressure: Building up internal pressure, for instance, by actin-myosin contraction in the cortex, is283
essential for blebbing (see [13] and references). We write the corresponding force density as284

fpressure =
p0

V (u)
νΓ0 , (47)

where V (u) = max{
∫

Γ0
1
3u · νΓ0dσ, 0} is an approximation of the volume of Ω and p0 is a pressure285

coefficient so that p0/|V (u)| is the pressure difference between interior and exterior of the cell.286
This simple assumption of a constant (in space) pressure difference should be sufficient to study the287
influence of the initial shape on the blebbing propensity. However, for the dynamics of blebs the288
pressure distribution will be of importance and requires to model the ambient fluid as in [47, 28] and289
probably also the actin-myosin biochemistry.290

• Coupling between membrane and cortex: Forces arise due to molecules connecting the membrane with291
the actin cortex, and when the membrane detaches during the blebbing process these linkers break.292
Figure 1 gives an impression of such a force (denoted by f coupling). An actin scar is left behind the293
bleb [46, 49] that disintegrates in the longer run, and the cortex reassembles close to the new membrane294
position. However, as we are interested in short times and the onset of blebbing we assume the cortex295
to be stationary and positioned a small distance l0 away from the initial membrane. Connection points296
of linkers in the cortex are given by uc = idΓ0 − l0νΓ0 . The linker molecules can be modelled as the297
density of simple springs with parameter kl and assumed to be initially at rest. In a continuum setting298
this can be modelled with an energy density ecoupling = kl

2 (|u− uc| − l0)2 as long as they are intact.299
As a critical length uB is exceeded they break. Moreover, when they get closer than a distance uR300
to the cortex then the repulsion force is increased to prevent any intersection. A model for the force301
density thus reads302

f coupling = −kcoupling(|u− uc|)
(

(u− uc)− l0
(u− uc)
|u− uc|

)
, (48)
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with303
kcoupling(y) = kl

(
1 + kLH(uR − y)

)
H(uB − y) (49)

with some constant kL > 0 and the Heaviside function H(r) = 1 if r ≥ 0 and H(r) = 0 otherwise.304
The assumption of a constant kl, which corresponds to a homogeneous linker, is a simplification. The305
cell usually is able to control the density and, thus, the local effective linker strength by its biochemistry306
[50]. We briefly report on a way to account for membrane-bound biochemistry in Section 5.5.307

• Tension: Lateral tension in curved membranes leads to net forces in normal direction that, in the case308
of isotropic materials, are proportional to the curvature. The distribution of tension is of relevance in309
moving cells [45]. It has been noted in [49] and further investigated in [14] that the propensity of blebs310
in concave regions of the cell membrane is higher. In such areas, the force due to the membrane tension311
points outwards (Figure 1 gives an impression, the force is denoted by f tension) and then adds to the312
pressure whilst in convex regions it opposes the pressure. We consider an energy density of the form313

etension =
kψ
2

(
|∇Γ0u| −

√
2x0

)2
, (50)

where kψ > 0 and x0 ∈ [0, 1] are parameters. Note that |∇Γ0u(·, 0)| = |∇Γ0idΓ0| = |P | =
√

2 so314
that in the case x0 = 1 the membrane initially is at rest.315
If Γ0 was a curve in 2D then we would obtain the model in [49, 14], which is motivated by chains of316
linear springs with spring constant kψ and resting length x0. More sophisticated elastic energies for317
membranes than (50) can be derived from discrete models for meshes formed by springs [19, 42] and318
then usually also account for resistance to bending (discussed further below around (52)). Let us also319
note that biomembranes, the basic component of cell membranes, rupture when stretched beyond a few320
percentages. Whilst this seems satisfied by the small deformations during the onset of blebbing that we321
study, the area increase during full bleb formation can be more significant and require the supply of322
membrane area [30], which then is likely to affect the tension, too.323
The (tension) force density is given by minus the variation of our energy (50),324

f tension = kψ∇Γ0 ·
(
∇Γ0u−

√
2x0
∇Γ0u

|∇Γ0u|

)
. (51)

• Regularisation: The membrane resists bending, though much less than stretching. The corresponding325
elastic energy may be modelled as in [33, 51], see [52] for a discussion of minimal approaches.326
The impact of the bending force on the blebbing site selection and its shape has been found to be327
significantly smaller than that of the tension [49]. However, we suspect that it is of relevance in the328
area where the bleb is connected with the cell as there the curvature and its derivative can be high.329
Therefore, we want methodology and software capable of addressing this aspect for future studies. We330
here choose a simple linear bending model that may be considered as a regularisation with the energy331
density332

ereg = kb
2 |∆Γ0u|2

where kb is a (small) bending resistance coefficient. Minus its variation yields the regularisation force333
density334

f reg = −kb∆2
Γ0u. (52)

• Viscous drag: Blebbing approaches often explicitly account for the fluid in the interior and exterior335
of the cell, which then is assumed Newtonian and viscous [53, 46, 36]. Our focus is on the onset of336
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blebbing rather than on the time evolution and the growth of blebs. We therefore only postulate a337
viscous drag force density that opposes any membranes movement:338

fdrag = −ω∂tu,

where ω is an effective material parameter related to the viscosity of the ambient fluid. Though this339
approach might yield a good approximation to the dynamics, at least at short time scales, it should340
rather be considered as another regularisation term and a mean to decrease membrane energy in a341
controlled way. It may also enable us to compute bleb shapes, noting that the drag force is zero if the342
membrane is at rest, i.e., if ∂tu = 0. To address questions such as the origin of the fluid in the bleb343
(from outside of the cell via pores in the membrane [48] or from inside through the cortex [29]) our344
approach will be insufficient, of course.345

With these choices, the force balance (46) yields the PDE

p0

V (u)
νΓ0 − kcoupling(|u− uc|)

(
(u− uc)− l0

(u− uc)
|u− uc|

)
+ kψ∇Γ0 ·

(
∇Γ0u−

√
2x0
∇Γ0u

|∇Γ0u|

)
− kb∆2

Γ0u− ω∂tu = 0. (53)

4.2 Non-dimensionalisation and regularisation346

The PDE (53) has been non-dimensionalised by choosing a length scale U and by using kψ as an energy
density scale. Choosing the time scale Θ = U2ω/kψ then eliminates the viscosity parameter ω. We
furthermore define the non-dimensional parameters λb = kb/(U

2kψ), λl = klU
2/kψ, and λp = p0/(U

2kψ)
and note that x0 and kL are non-dimensional already. Writing again Γ0, u, uc, uB , uR, l0, and V (u) for
the respective non-dimensional objects, equation (53) in non-dimensional form and rearranged reads

∂tu+ λb∆
2
Γ0u−∇Γ0 ·

(
∇Γ0u−

√
2x0
∇Γ0u

|∇Γ0u|

)
+ λl

(
1 + kLH(uR − |u− uc|)

)
H(uB − |u− uc|)

(
(u− uc)− l0

u− uc
|u− uc|

)
−

λp
V (u)

νΓ0 = 0. (54)

Note that the model in [49, 14] is obtained by reducing the dimension of this equation (54) (i.e., Γ0 is a347
curve in 2D). The curve then is parametrised by arc-length, and their computational model is obtained by348
using standard finite difference techniques.349

Equation (54) can be cast in the form (1) (without loss of generality we can assume that λb = 1 as we350
may divide by λb, rescale in time, and absorb the 1/λb term into k and ψ defined below) by defining351

k(u) = λl
(
1 + kLH(uR − |u− uc|)

)
H(uB − |u− uc|)

(
(u− uc)− l0

u− uc
|u− uc|

)
−

λp
V (u)

νΓ0 (55)

and352

ψ(∇Γ0u) =
1

2

(
|∇Γ0u| −

√
2x0

)2 so that ψ′(∇Γ0u) =
(

1−
√

2x0

|∇Γ0u|

)
∇Γ0u. (56)
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Note neither k nor ψ′ satisfy the Lipschitz continuity conditions in Section 2.2. We still used them for the353
simulations in Section 5 but also have redone some simulations with regularised versions of k and ψ′. To354
ensure that the assumptions in Section 2.2 are satisfied, smoothing the Heaviside function and ensuring355
that the denominators do not degenerate is sufficient. With a small parameter ε > 0 the choice356

λcoupling,ε(y) = λl

(
1 +

kL
1 + exp(2(y − uR)/ε)

) 1

1 + exp(2(y − uB)/ε)

and then357

k(u) = −λcoupling,ε(|u− uc|)
(

1− l0
|u− uc|+ ε

)
(u− uc) +

p0

V (u) + ε
νΓ0(y) (57)

satisfies the assumptions around (4). The approximation

kh(yh,Uh) = −kcoupling,ε(|Uh − uc,h(yh)|)
(

(Uh − uc,h(yh))− l0
(Uh − uc,h(yh))

|Uh − uc,h(yh)|+ ε

)
+

p0

Vh(Uh) + ε
νΓ0

h
(yh)

with358

Vh(Uh) = max
{∫

Γ0
h

1

3
Uh · νΓ0

h
dσh, 0

}
satisfies the consistency assumption (10). Similarly, the choice359

ψ(∇Γ0u) =
1

2

(√
|∇Γ0u|2 + ε−

√
2x0

)2
so that360

ψ′(∇Γ0u) =
(

1−
√

2x0√
|∇Γ0u|2 + ε

)
∇Γ0u (58)

satisfies the assumptions around (3).361

5 SOFTWARE AND SIMULATIONS

5.1 Time discretisation362

We performed some numerical simulations for (54) to illustrate the capability of the theoretical framework363
that has been presented and analysed. The variational form with operator splitting in Problem 2.1 is364
discretised in time with a simple semi-implicit first order scheme as follows: We split the time interval365
[0, T ] into M ∈ N equal parts of size τ = T/M , denote the time steps with t(m) = mτ , and write366
f (m) = f(t(m)) for any time dependent fields or functions.367
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PROBLEM 5.1. Given Γ0
h, S3

h 3 uc,h ≈ uc, and parameters λb, λl, λp, l0, uB , kL, uR, for m =

0, . . . ,M − 1 find (U
(m+1)
h ,W

(m+1)
h ) ∈ S3

h × S3
h such that for all (Φh,Hh) ∈ S3

h × S3
h∫

Γ0
h

1

τ
Uh

(m+1) ·Φh + λb∇Γ0
h
W

(m+1)
h : ∇Γ0

h
Φh +∇Γ0

h
U

(m+1)
h : ∇Γ0

h
Φh + λ

(m)
couplingU

(m+1)
h ·Φhdσh

=

∫
Γ0
h

1

τ
Uh

(m) ·Φh +
√

2x0

∇Γ0
h
U

(m)
h : ∇Γ0Φh

|∇Γ0
h
U

(m)
h |

+ λ
(m)
coupling

(
uc,h + l0

U
(m)
h − uc,h

|U (m)
h − uc,h|

)
·Φh +

λp

|Vh(U
(m)
h )|

νΓ0
h
·Φhdσh, (59)∫

Γ0
h

∇Γ0
h
U

(m+1)
h : ∇Γ0

h
Hh −W

(m+1)
h ·Hhdσh = 0, (60)

with368
λ

(m)
coupling = λl

(
1 + kLH(uR − |U

(m)
h − uc,h|)

)
H(uB − |U

(m)
h − uc,h|)

5.2 Implementation369

We have solved the above problem using the Python bindings from the DUNE-FEM module [17], which370
is based on the Distributed and Unified Numerics Environment (DUNE) [6]. DUNE is an open source371
C++ environment that uses a static polymorphic interfaces to describe grid based numerical schemes. The372
package provides a large number of realisations of these interfaces including many finite element spaces on373
structured and unstructured grids. This approach allows for the efficient and flexible simulation of a large374
variety of mathematical models based on partial differential equations.375

The Python bindings described in [18] simplify the rapid prototyping of new schemes and models, while376
maintaining the efficiency and flexibility of the DUNE framework. This is achieved by using the domain377
specific language UFL [2] to describe the mathematical model and implementing the high level program378
control within Python. All computationally critical parts of the simulation are carried out in C++ using just379
in time compilation of the required DUNE components. Consequently, the assembly of the bilinear forms380
and solving of the linear and non linear problems is implemented in C++ while the time loop and the input381
and output of data is carried out using the Python scripting language. More information on the concepts382
can be found in [16].383

Meshes can be provided using a GMsh file or, as done for this work, by using the internal Dune Grid384
Format (DGF). All simulations reported on in this paper were performed using a first order Lagrange space385
over a simplicial, locally adaptive, distributed grid, which can be used for both bulk and surface domains386
[1]. Bindings for a number of different solver packages are available through DUNE-FEM including the387
iterative solvers from DUNE-ISTL [8] (used for this work), direct solvers from the SuiteSparse package388
[15], and a number of solvers and preconditioners from the PetSc package [4]. The simulation results were389
exported using VTK and visualised using ParaView [3].390

In the following we show how to setup the grid and how some parts of the mathematical model are391
defined within UFL. The full code needed to perform the simulations shown in this paper is available (see392
the Data Availability Statement).393
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The first listing shows how to read in a grid for a cell obtained from experimental data that was used for394
the simulations in Section 5.4:395

from dune . a l u g r i d import a l u S i m p l e x G r i d396
from dune . fem . s p a c e import l a g r a n g e397
s u r f a c e G r i d = a l u S i m p l e x G r i d ( ” c e l l . dg f ” , d i m g r i d =2 , dimworld =3)398
s o l u t i o n S p a c e = l a g r a n g e ( s u r f a c e G r i d , dimRange =3 , o r d e r =1 , s t o r a g e =” i s t l ” )399

400
# a vector-valued finite element function for the position,401
# initialised with the vertex positions of the initial grid402
p o s i t i o n = s o l u t i o n S p a c e . i n t e r p o l a t e ( lambda x : x , name=” p o s i t i o n ” )403
# another finite element function, later on used to store the previous time step404
p o s i t i o n n = p o s i t i o n . copy ( )405

The following snippet demonstrates how the bending terms and tension terms are defined using UFL.406
The remaining terms, e.g., for the pressure and the linker-molecules, are defined in a very similar way:407

from u f l import T r i a l F u n c t i o n , T e s t F u n c t i o n , i n n e r , grad , s q r t408
# test and trial function used to define the bilinear forms409
u = T r i a l F u n c t i o n ( s o l u t i o n S p a c e )410
p h i = T e s t F u n c t i o n ( s o l u t i o n S p a c e )411
w = T r i a l F u n c t i o n ( s o l u t i o n S p a c e )412
e t a = T e s t F u n c t i o n ( s o l u t i o n S p a c e )413

414
# the bending terms using operator splitting415
bend ing im = lam b ∗ i n n e r ( g r ad (w) , g r ad ( p h i ) )416
o p s p l i t p o s i m = i n n e r ( g r ad ( u ) , g r ad ( e t a ) )417
o p s p l i t c u r v i m = − i n n e r (w, e t a )418
# the tension terms419
t e n s i o n i m = i n n e r ( g r ad ( u ) , g r ad ( p h i ) )420
t e n s i o n e x = s q r t ( 2 . 0 ) ∗ x 0 ∗ i n n e r ( g r ad ( p o s i t i o n n ) , g r ad ( p h i ) ) /\421

s q r t ( i n n e r ( g r ad ( p o s i t i o n n ) , g r ad ( p o s i t i o n n ) ) )422

In each time step a saddle point problem is solved using a Uzawa-type algorithm where a CG method is423
used to invert the Schur complement as described, for example, in [9]. The main algorithm is implemented424
in Python calling C++ routines to compute the matrix-vector operations and to solve the inner problem.425
The time loop with the solver is fairly long and doesn’t seem worthwhile listing here but, as stated above426
already, the whole code is publicly available.427

A number of tests have been performed for problems with known solutions (u,w) to validate the428
convergence (rates) of Theorems 3.6 and 3.8. Recall that the choices of the tension term ψ, (56), and the429
coupling term k, (55), in the specific model (54) do not satisfy the requirements of the analysis. However,430
in our simulations, the denominators in these terms did not become very small. Comparative simulations431
with the regularised choices (58) and (57) with ε = 10−5 did not reveal any essential difference. More432
details on computations to support the theoretical results and validation of the code can be found in [41].433
For conciseness, we don’t report on these here but focus on an investigation of the parameter space instead.434

5.3 Brief parameter study435

One question of interest has been whether surface tension and pressure are sufficient to initiate blebbing436
without any weakening of the cortex, as found in [14] in 2D. We also further study the parameter space but437
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remark that the simulation results are at a qualitative level. An in-depth discussion involving quantitative438
information is beyond the scope of this article and left for future investigations. The parameters are steered439
into the software at the high-level python interface which, in principle, can be conveniently automated at440
that level for more substantial parameter studies.441

We consider an initial shape Γ0 obtained by deforming a sphere of radius one by (all lengths in 10−6m )442

y = (y1, y2, y3)→ (4y1, 4y2, ỹ3), ỹ3 = sign(y3)

{
(3− cos(πr/2))/2, if r ≤ 2,√

4− (r − 2)2, if r > 2,
(61)

with r =
√

(4y1)2 + (4y2)2. This yields a shape similar to a discocyte (or red blood cell, see Figure 2)443
with a volume of about V (idΓ0) ≈ 1.5× 10−16m3 and a largest distance of 4.0× 10−6m from the centre.444
Let us briefly motivate this choice for the initial shape. In the concave parts the force due to the membrane445
tension points outwards and in the convex parts it points inwards. When the cell membrane moves away446
from the cortex then the coupling force, which is due to stretched linker molecules as long as these are not447
broken, points inwards. Therefore, if pressure and tension are able to overcome the coupling force and448
initialise a bleb we will expect this to happen first (and possibly only) in the concave parts of the initial449
shape.450

Parameters for the various force densities vary in the literature, not least due to differing cell types451
and differences in the models. For the tension coefficient we chose kψ = 1.5× 10−5N/m (ranges from452
2.0× 10−6N/m [36] to 1.0× 10−4N/m [38]), for the bending coefficient kb = 7.5× 10−20Nm (between453
1.0× 10−20Nm [51] and 2.0× 10−19Nm [36]), and for the linker spring coefficient kl = 2.7× 106N/m3454
(close to 2.67× 106N/m3 in [46]). The parameters x0 = 0.95, l0 = 4.0× 10−8m, and uB = 5.6× 10−8m455
were chosen as in [14]. The parameters uR = 7.5 × 10−9m and kL = 500.0 were chosen ad hoc but456
repeating some simulations with kL = 0 (particularly those with higher tension so that the membrane got457
closer to the cortex) didn’t reveal any visual difference. As discussed earlier around (47), pressure inside458
of the cell has to be higher than outside of it to initiate blebbing. In the literature we find values between459
10Pa [51] and 81Pa [49]. We found that a value of p0/|V (u(0))| ≈ 2.25Pa was already sufficient in460
our simulations to break the linker molecules and, thus, to generate a bleb site. With a length scale of461
U = 1.0× 10−6m the set of non-dimensional parameters is given in Table 1 and was used for simulations462
unless stated otherwise.463

A triangulation Γ0
h is obtained by starting with a cube with vertices on the unit-sphere, then diagonally464

cutting the square faces into triangles, and then bisecting all triangles 14 times such that the longest edge465
is halved. New vertices are projected to the unit-sphere after each refinement step. After, the above map466
(61) is applied to the 196608 vertices. Figure 2 gives an impression of a mesh thus obtained but with ten467
refinements only. The time step size was set to τ = 0.0025. As mentioned, the model serves to study the468
onset of blebbing and we therefore ended the simulation at T = 2. At that time the final shapes usually469
weren’t at rest yet but the deformations were sufficient to break linker molecules and thus generate a470
blebbing site.471

Figure 3 gives an overview of some shapes at the final time for the data set in Table 1 and some variants472
(see Figure caption for details). The initial shape Γ0 is axisymmetric around its central axis. The initial473
shape Γ0

h for the computations is not. However, on visual inspection, also the computed shapes look474
approximately axisymmetric. For this reasons, we compare cuts through the centres for more insight.475
Figure 4 displays the slices through the initial and the final shape that is visible in Figure 3A. The color code476
from Figure 3 is used again so that parts of the membrane with broken linkers are coloured red. Differences477
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are predominant in the concave part of the initial shape, where the membrane has moved outwards and478
detached. The tension force in such concave parts points outwards and, together with the pressure, initiates479
a bleb without requiring any weakening of the cortex. This simulation thus supports the finding in [14].480

In Figure 5 we compare the final shapes for different parameters of the linker strength λl, more precisely,481
slices of the shapes in Figures 3A and 3B. Note that the color code is different (see caption of Figure 5).482
The deformation isn’t much stronger as, once the membrane is detached, the linker term doesn’t influence483
the evolution any further. But a weaker linker strength λl and, thus, less resistance to breaking leads to a484
wider bleb site.485

A smaller resting length parameter x0 increases the surface tension, which leads to a faster evolution486
and a stronger final deformation. This is visible in Figure 6 where we compare the slices of the shapes in487
Figures 3A and 3C, and the (red) curve for the smaller x0 indicates that the membrane has moved further488
away from the initial shape.489

The impact of a higher pressure is illustrated in Figure 7 where slices through the shapes in Figures 3A490
(blue) and 3D (red) are overlayed. The effect resembles a bit that of a smaller linker strength in that the491
deformation isn’t much different and in that the bleb site is much bigger. The pressure term doesn’t break492
down after detachment and continues to push outwards, though, so that the membrane has moved a bit493
further throughout the bleb site.494

5.4 Application to experimental data495

Apart from given, ’in-vitro’ geometries and their influence on blebbing, users may also be interested496
in studying the effect of ’in-vivo’ geometries that are obtained from experimental data. The image497
postprocessing outlined in [20] enables users to extract triangulated surfaces representing the cell membrane498
from 3D images of cells, which then can be steered into the software framework. This was done with499
data of a Dictyostelium cell (also used in [20]) moving by actin-driven pseudo-pods without any blebbing.500
However, the purpose is again to showcase the capability of the software framework rather than to extract501
any quantitative information, which is left for future investigations.502

We used the non-dimensional parameters in Table 2, T = 20, and τ = 0.02. Figure 8, left, shows the503
triangulated surface Γ0

h that has been obtained from the image data. On the right of Figure 8 the final shape504
is displayed where the same colour code as in Figure 3 for the deformation strength is used. As in the505
simulations before we observe that blebs form in concave regions. We also see some deformations at the506
sides where small protrusions become quite spiky. Both tension and resistance to bending are expected to507
prevent any singularities to occur, however the geometry seems under-resolved by the mesh in these areas.508

5.5 Extensibility509

Due to the use of the Python scripting language for the high level control of the simulation, it is fairly510
easy to extend our mathematical model to include additional effects. So for example we can conveniently511
add surface reaction-diffusion equations to model some biochemistry occurring on the membrane, i.e.,512
adding a system of the general form513

∂tc−∇Γ0 · (D∇Γ0c) = R(c) (62)

for some reactants c : Γ0 → Rr, where the function R : Rr → Rr describes the reactions. The evolution of514
c can depend on the evolution of the membrane, i.e., both the diffusion tensor D and the source and sink515
term R may depend on the deformation u. The reactants c may just be passive in the sense that they do516
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not influence the evolution of the membrane but, in general, they will enter the evolution equation for the517
surface deformation. For example, they may change some material parameters and, thus, the forces acting518
on the membrane.519

As a proof of concept, we investigate the effect of adding a chemical signal (scalar, c maps to R) to the520
model to contain the spread of the bleb. In the current model a bleb will, in general, not remain localised but521
the membrane will detach from large parts of the cortex. In experiments, bleb protrusion stops, forming a522
fairly spherical cap attached to the part where membrane and cortex still seem connected [12]. To reproduce523
this phenomenon at least qualitatively, we add a scalar signal c that is initially zero but is subsequently524
produced where the linkers are broken, and it then diffuses along the membrane. In regions where the linker525
molecules are still intact the signal leads to an increase of the linker strength. This can prevent further526
detachment of the cortex and effectively stop any further protrusion of the bleb. We can localise this effect527
further by making the diffusion tensor D in the reaction-diffusion equation for the signal c depend on the528
cortex detachment from the membrane. More precisely, we may assume a large diffusion coefficient in529
regions where |u− uc| > uB and a small diffusion coefficient elsewhere.530

The variational form of the equation for the signal reads531 ∫
Γ0
∂tcz +Dc(χ(u) + (1− χ(u))df )∇Γ0c · ∇Γ0zdσ =

∫
Γ0
rcχ(u)(lc − c)zdσ (63)

for test functions z with initial condition c(·, 0) = 0 and augments Problem 2.1. Here, Dc > 0 is a532
diffusivity parameter and χ(u) = H(|u− uc| − uB) (recall that H denotes the Heaviside function) is the533
characteristic function of the region where the cortex is detached. In the diffusion term, df is a reduction534
factor. If df = 1 then the diffusion is a uniform constant Dc while if df < 1 then the diffusion is reduced535
by this factor in regions where the cortex is still attached. The signal is produced at a rate rc > 0 as soon536
as the cortex detaches up to a maximum value of lc. We discretise (63) in space using the surface finite537
element method introduced in Section 3. In time we treat the diffusion term implicitly and the reaction538
term explicitly, resulting in a linear problem in each time step. The model for the signal evolution can be539
conveniently added to the code with a couple of lines:540

from u f l import c o n d i t i o n a l541
s p a c e c = l a g r a n g e ( s u r f a c e G r i d , dimRange =1 , o r d e r = po lOrde r , s t o r a g e =” i s t l ” )542
s i g n a l = s p a c e c . i n t e r p o l a t e ( s p a c e c . dimRange ∗ [ 0 ] , name=” c ” )543
s i g n a l n = s i g n a l . copy ( )544
d e t a c h e d = c o n d i t i o n a l ( norm ( c o r D i s t V e c ) < u B , 0 , 1 )545
D = D c ∗ ( d e t a c h e d +(1− d e t a c h e d )∗ d f )546
s i g n a l T e r m s i m = D ∗ i n n e r ( g r ad ( c ) , g r ad ( z ) )547
s i g n a l T e r m s e x = r c ∗ d e t a c h e d ∗ ( l c−s i g n a l n [ 0 ] ) ∗ z [ 0 ]548
s i g n a l M o d e l = ( i n n e r ( c , z )+ t a u ∗ s i g n a l T e r m s i m ) ∗ dx == \549

( i n n e r ( s i g n a l n , z)− t a u ∗ s i g n a l T e r m s e x ) ∗ dx550

As stated above, we assume that the signal is not passive but influences the linker strength, i.e., λl in (55)
is replaced by a c dependent function. We want the linker strength to increase from the original value λl to
some value λL > λl when c increases from some value cb > 0 to some value cB > cb. For this purpose we
define

l(c) = λl + ξ(c)(λL − λl)
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where ξ is a piecewise defined monotone C1 weight function with ξ(c) = 0 for c < cb and ξ(c) = 1 for551
c > cB:552

c u b i c = lambda x : ( x−c b )∗∗2 ∗ (3∗ c B−c b − 2∗x ) / ( c B−c b )∗∗3553
x i = lambda x : c o n d i t i o n a l ( x<c b , 0 , c o n d i t i o n a l ( x>c B , 1 , c u b i c ( x ) ) )554
l = l l + ( l L− l l )∗ x i ( s i g n a l n [ 0 ] )555

Note that we treat the impact of the signal on the surface evolution explicitly in time to simplify the presen-556
tation. Consequently, we can solve for the new membrane deformation and the new signal concentration in557
separate steps within the time loop. Details are available in the published code (see the Data Availability558
Statement). In summary, the signal evolution and its interaction with the surface evolution is characterised559
by seven additional constant parameters, Dc, lc, rc, df for the signal and λL, cb, cB for the surface.560

We test the effect of the signal on the evolution of blebs with an artificial surface geometry but with less561
symmetry than in Section 5.3. Figure 9, left, gives an impression of Γ0. In particular, the surface is not562
rotationally symmetric. Non-dimensional parameters that remain fixed for all simulations that we report563
on further below are given on the left of Table 3. They coincide with the parameters used in Section 5.3564
(see Table 1) except for a smaller x0 (this increases the tension force) and a larger λp (this increases the565
pressure difference). All the simulations reported on in this subsection were carried out on a triangulated566
surface with around 40 000 elements with a time step of 0.001. To reach time t = 5 required about 1h of567
computing time on a single core of an Intel Xeon E5-2667 3.20GHz processor.568

We first checked the case rc = 0, for which c = 0 solves (62), i.e., there is no signal. Figure 9, middle and569
right, displays the surface at the final time T = 5. We spot that the cortex has detached from the membrane570
everywhere. We will show now that this can be prevented from happening by accounting for a signal and a571
strengthening of the linker terms.572

We next consider the case df = 1 so that the diffusion parameterDc is constant. The additional parameters573
required for the signal and the coupling are given on the right of Table 3. The evolution of the surface574
with signal is shown in Figure 10. We see the signal being generated where the deformation is strong, i.e.,575
where membrane moves away from the initial shape and thus from the cortex. However, at time t = 5 the576
membrane is still close to the initial shape in regions away from the concave parts. Comparing this with the577
simulation without the signal (see Figure 9, right) it is clearly visible that the increase of the linker strength578
due to the diffusing signal leads to a localisation of the blebs. We also see in Figure 10 that the shape is not579
stationary at time t = 5 but the deformation continues to grow, which we now want to prevent.580

We reduce the diffusion coefficient in regions where the linkers are not broken by setting df = 0.01 whilst581
keeping the other parameters as in the previous simulation. The expectation is that the strengthening of the582
linkers is more focused on the boundary of the bleb than before and increases there faster as the signal is583
not transported away by the diffusion. Thus, also the linker strength should increase faster at the boundary584
of the bleb. The simulation result is demonstrated in Figure 11. Now, the simulation reaches a stationary585
state at time t ≈ 2.5 with a small bleb that has developed in the concave region at the top of the surface. At586
the beginning of the simulation, secondary protrusions also start to develop at the three saddle-shaped sides587
of the surface. Subsequently, the resulting production of the signal c leads to a strengthening of the linkers,588
which then pull the cortex back so that the protrusion disappears again.589
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6 CONCLUSION

A general modelling framework for the onset of blebbing has been presented and analysed. It is formulated590
in terms of partial differential equations on the initial membrane, which is considered as a hypersurface.591
Various forces acting on the plasma membrane due to its elastic properties, linker molecules coupling it592
to the cell cortex, and pressure difference across the membrane are accounted for. Fluid flow within and593
outside of the cell is essentially neglected modulo a drag force but may be considered in future studies.594

The general framework is particularly flexible with regards to membrane tension and the coupling forces.595
A convergence analysis of a surface finite element discretisation shows its robustness to model alterations596
within not too restrictive limits. There are some open questions with regards to the discretisation in time,597
and as blebs are local events, spatial mesh adaptivity may be beneficial.598

Software for a specific instance of the general model is provided and has been used to perform some599
numerical simulations. A convenient high-level interface in Python allows for directly implementing the600
model in its variational form and solving it by an efficient software back-end. Standard software usually601
does not provide functionality for numerically solving problems on moving domains or hypersurfaces in602
3D out of the box but requires a substantial amount of coding. We hope that our approach will address this603
issue and simplify the implementation of such moving boundary problems. Future work on the software604
will include improvements of the efficiency of the implementation, by investigating, for example, the use605
of well established techniques like local grid adaptivity and parallelisation (which are available through606
the grid manager used for the simulations shown here [1]) as well as incorporating more sophisticated607
preconditioning methods in the linear solver implementation. This will be an important step towards608
extending the model to include, for example, fluid flow inside and outside of the cell.609
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FIGURE CAPTIONS

Figure 1. Sketch of some objects defined in in Sections 2.1 and 4 for the abstract framework and the
specific cell blebbing model, respectively. The cell membrane Γ(t) is parametrised by u over the initial
surface Γ0 which, unlike in this sketch, is closed and of spherical topology. Force densities arising from
membrane tension, denoted f tension, point outwards in concave areas (as in the sketch) and inwards in
convex areas. Linker molecules (indicated in orange) connect the membrane with the cortex, which is close
to the initial surface and not explicitly indicated. They are modelled with a force density that points towards
the initial surface when the molecules are stretched. The force vanishes if the linkers break. The pressure
fpressure points in the direction of the unit normal νΓ0 of Γ0, which is the external unit normal of the cell
in its initial shape.

x0 λb λl l0 uB kL uR λp
0.95 0.005 18 0.04 0.056 500.0 0.0075 22.5

Table 1. Standard non-dimensional parameters for the numerical simulations in Section 5.3.

x0 λb λl l0 uB kL uR λp
0.95 0.125 0.72 0.2 0.28 500.0 0.15 150.0

Table 2. Non-dimensional parameters for the simulation with an initial surface obtained from image data,
which we report on in Section 5.4.
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x0 λb λl l0 uB kL uR λp
0.8 0.005 18 0.04 0.056 500.0 0.0075 60

Dc lc rc df λL cb cB
10 1.2 12 1 450 0.2 1

Table 3. Non-dimensional parameters for the numerical simulations discussed in Section 5.5. On the left,
the values for the membrane evolution equation (equation for u), and on the right, the additional parameters
needed for the signal equation and the coupling between the two equations.

Figure 2. Illustration of the initial shape used for the simulation in Section 5.3 by means of its mesh Γ0
h.

For better visibility of the triangles, only ten bisections were performed resulting in a mesh with 20480
vertices. A finer mesh with 196608 vertices was used for the computations.

Figure 3. Final shapes for computations with the initial shape in Figure 2. The colour scheme indicates
the distance of the membrane to the cortex |Uh − uh,c|. Values below the resting length l0 = 0.04 are
highlighted in blue and values above the critical length of breaking uB = 0.056 in red, whilst values in
between are shaded as indicated on the bar. The parameters in Table 1 lead to the upper left shape A. For B,
the linker strength was reduced by setting λl = 12. For C, the tension was increased by setting x0 = 0.85.
For D, the pressure was increased by setting p0 = 30.
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Figure 4. Slices through the central axis of shapes obtained in simulations that we report on in Section
5.3. A magnified image of the black box is presented on the right. The initial (dark grey) and the final
shape (red/light blue) for the computation with the data from Table 1 are displayed. The color code is as in
Figure 3. Strongly deformed parts of the membrane, where the linkers are broken, are red and predominant
in the concave part of the initial shape.

Figure 5. Slices through the central axis of shapes obtained in simulations that we report on in Section
5.3. A magnified image of the black box is presented on the right. The final shapes for two computations
are displayed. One for the standard parameters in Table 1 (blue), and one with a smaller linker strength
parameter, namely λl = 12 (red). In the latter case, the forces that keep the membrane attached to the
cortex are smaller (see (48) and (49), λl corresponds to kl in the dimensional model). The area where the
membrane has detached from the cortex is bigger, so the blebbing region is wider.
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Figure 6. Slices through the central axis of shapes obtained in simulations that we report on in Section
5.3. A magnified image of the black box is presented on the right. The final shapes for two computations
are displayed. One for the standard parameters in Table 1 (blue), and one with x0 = 0.85 (red). The latter
effectively increases the membrane tension but also reduces the area at which the membrane is at rest (see
(50) and (51) and in between). In the concave region of the initial surface the membrane thus moves farther
and its area shrinks further than before.

Figure 7. Slices through the central axis of shapes obtained in simulations that we report on in Section 5.3.
A magnified image of the black box is presented on the right. The final shapes for two computations are
displayed. One for the standard parameters in Table 1 (blue), and one with a higher pressure parameter,
namely p0 = 30 (red). In the latter case, the cell membrane is further pushed outside, and the area where
the membrane has detached from the cortex is wider.

Figure 8. Application of the scheme in Problem 5.1 to a cell surface obtained from image data with the
parameters from Table 2. The color scheme is as in Figure 3. See Section 5.4 for further details.
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Figure 9. Surface evolution with parameters given by Table 3 for the extended model in Section 5.5
but with rc = 0 so that the signal c remains zero. The left figure shows the initial surface. The white
curve indicates a plane along which we cut the shapes for visualisation purposes in Figures 10 and 11. In
the middle and on the right, both the initial surface and the deformed surface are displayed at the final
time T = 5. The initial surface is fully displayed with the white line in the middle and cut on the right
to illustrate the cutting procedure. The coloring of the original surface indicates the magnitude of the
deformation as in Figure 3.

Figure 10. Surface evolution at time t = 0.25, 1.25, 2.5, 10 for the model in Section 5.5 with the parameters
given in Table 3. The diffusion of the signal is a uniform constant. The color from blue via green and
yellow to red corresponds to the signal strength: Dark red indicates c > cB , i.e., regions where the linkers
(if not broken yet) are maximally strengthened by the signal c, dark blue indicates c < cb and thus regions
where the linker strength is not altered by c.

Figure 11. The left three figures show the surface evolution at times t = 0.25, 1.25, 5 for the model in
Section 5.5 with the parameters given in Table 3 but with df = 0.01, i.e., a reduction of the diffusivity of
the signal to 1% of its original value in the region where the linkers are not broken. The color corresponds
to the signal strength and is the same as in Figure 10. The shape at the final time T = 5 is a stationary state.
The figure on the very right displays slices through the shapes at the final time T = 5 for two different
grid resolutions and time steps. The yellow curve is the stationary state corresponding to the left three
figures, i.e., using around 40 000 element and a time step of 0.001. The green curve corresponds to the
final state on 160 000 elements and with a time step of 0.0005. As before, the white curve shows the initial
surface. The final deformed surface with the coarser triangulation also serves to give an impression of the
grid resolution compared to the size of the developed bleb.
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