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Abstract 19 

1. Fungal mycelium is increasingly recognized as a central component of soil biogeochemical 20 

cycling, yet our current understanding of the ecological controls on fungal necromass 21 

decomposition is limited to single sites and vegetation types.  22 

 23 

2. By deploying common fungal necromass substrates in a temperate oak savannah and 24 

hardwood forest in the midwestern USA, we assessed the generality of the rate at which  25 

high- and low-quality fungal necromass decomposes; further, we investigated how the 26 

decomposer ‘necrobiome’ varies both across and within sites under vegetation types 27 

dominated by either arbuscular (AM) or ectomycorrhizal (EM) plants.  28 

 29 

3. The effects of necromass quality on decay rate were robust to site and vegetation type 30 

differences, with high-quality fungal necromass decomposing, on average, 2.5 times faster 31 

during the initial stages of decay. Across vegetation types, bacterial and fungal 32 

communities present on decaying necromass differed from bulk soil microbial 33 

communities and were influenced by necromass quality. Moulds, yeasts and copiotrophic 34 

bacteria consistently dominated the necrobiome of high-quality fungal substrates.  35 

 36 

4. Synthesis: We show that regardless of differences in decay environments, high-quality 37 

fungal substrates decompose faster and support different types of decomposer 38 

microorganisms when compared with low-quality fungal tissues. These findings help to 39 

refine our theoretical understanding of the dominant factors affecting fast cycling 40 



components of soil organic matter (SOM) and the microbial communities associated with 41 

rapid decay.    42 

Keywords: fungal hyphae, fungal mycelium, mycorrhizal type, oak savannah, temperate forest, 43 

necrobiome, melanin   44 



Introduction 45 

The amount of carbon (C) stored in soils is dependent upon the balance between soil organic matter 46 

(SOM) inputs and their subsequent rates of decomposition and C loss (Chapin et al., 2011). While 47 

plant-derived inputs and losses have received decades of study (Berg & McClaughtery, 2014), 48 

there is growing evidence that fungal mycelium is also a major determinant of soil C stocks 49 

(Godbold et al., 2006; Ekblad et al., 2013; Clemmensen et al., 2013; Zhang et al., 2019). 50 

Conservative estimates of fungal mycelial biomass range from 20-250 g m-2 , with turnover times 51 

ranging from 9-48 days (Godbold et al., 2006; Allen & Kitajima, 2014; Soudzilovskaia et al., 52 

2015). Moreover, once fungal biomass dies (i.e. becomes necromass), its decays rapidly (decay 53 

rate: 6.76 to 15.6 yr−1; Zhang, Hui, Luo, & Zhou 2008; Brabcová, Štursová, & Baldrian 2018) and 54 

is rapidly assimilated into living microbial biomass (Drigo, Anderson, Kannangara, Cairney, & 55 

Johnson 2012; Miltner, Bombach, Schmidt-Brücken, & Kästner 2012; Lopez-Mondejar et al., 56 

2018). The high nutrient content of fungal necromass compared to other organic matter (OM) 57 

inputs also makes it an important resource for a variety of decomposers (Finlay & Clemmensen, 58 

2016; Brabcová et al., 2018). Recent studies indicate that the presence of fungal necromass 59 

significantly increases microbial enzyme activity (Zeglin & Myrold, 2013; Brabcová, Nováková, 60 

Davidová, & Baldrian 2016) and is responsible for up to 80% of nitrogen (N) cycling associated 61 

with the decomposition of belowground OM inputs (Zhang et al., 2019).  62 

 63 

Given the importance of soil fungi to C and nutrient cycling, there is a pressing need to understand 64 

the factors that control the fate of fungal necromass across diverse environments (Fernandez, 65 

Langley, Chapman, McCormack, & Koide 2016; Baskaran et al., 2017; Smith & Wan, 2019; 66 

Zhang et al., 2019). Current knowledge of the controls on decomposition are largely derived from 67 



assessments of plant litter decay, which identify the following interrelated factors: (1) climate; (2) 68 

biochemical traits (which typically indicate resource quality for decomposers); (3) soil properties 69 

(e.g. moisture, pH, and nutrient availability); and (4) decomposer community composition (Tenney 70 

& Waksman, 1926; Prescott, 2010; Berg & McClaugherty, 2014). Although there are no studies 71 

comparing fungal necromass decomposition along climatic gradients, fungal necromass has been 72 

shown to decompose faster when exposed to experimentally elevated temperatures (Fernandez et 73 

al., 2019), suggesting altered climatic conditions can influence the decomposition dynamics of this 74 

OM pool. At local scales, biochemical traits have been shown to be important predictors of fungal 75 

necromass decay and correspond with metrics of plant litter quality (Hurst & Wagner, 1969; 76 

Ekblad et al., 1998; Cleveland et al., 2014; Fernandez et al., 2016). Specifically, both N and cell 77 

wall melanin content have been identified as key biochemical traits driving rates of fungal 78 

necromass decomposition (Koide & Malcom, 2009; Fernandez & Koide, 2012, 2014; Brabcová et 79 

al., 2018; Lenaers et al., 2018). Fungal tissues with a high melanin and low N content (i.e., low-80 

quality substrates) tends to decay more slowly, when compared with fungal tissues with low 81 

melanin and high N content (high-quality substrates). In this way, melanin:N ratios in fungal 82 

necromass parallel lignin:N ratios in plant litter, which can be broadly predictive of decay rate 83 

(Melillo, Aber, & Muratore, 1982; Strickland Osburn, Lauber, Fierer, & Bradford 2009; Fernandez 84 

et al., 2016). Unlike plant litter decay, however, it is not yet understood how site environmental 85 

conditions interact with initial substrate quality to control the rate at which fungal necromass 86 

decomposes. 87 

 88 

In addition to climate and substrate quality, it’s well-established that litter decay is also influenced 89 

by the biotic and abiotic properties of the soil, which are controlled in large part, by the dominant 90 



vegetation (Hooper & Vitousek, 1997; Eviner & Chapin 2003, McLaren & Turkington 2010). 91 

Plant communities influence decomposition processes directly through litter inputs (Cornwell et 92 

al., 2008) and indirectly via their alteration of soil moisture, pH and microbial community 93 

composition (Finzi, Canham & Breemen, 1998; Vivanco & Austin 2008). Broadly, rates of decay 94 

differ among plant functional types (Zhang et al., 2008), with some evidence to support faster rates 95 

of plant litter decay in grasslands when compared with forest ecosystems (Solly et al., 2014; 96 

Portillo-Estrada et al., 2016). Additionally, decay dynamics can vary within ecosystems depending 97 

on the dominant type of mycorrhizal symbiosis that is present. Trees that associate with arbuscular 98 

mycorrhizal (AM) fungi often promote soils that have properties distinct from trees that associate 99 

with ectomycorrhizal (EM) fungi (Phillips, Brzostek, & Midgley 2013), and such differences can 100 

lead to divergent rates of litter decay of the same litters (Midgely, Brzostek, & Phillips 2015; Keller 101 

& Phillips 2018). Furthermore, differences in the dominant mycorrhizal symbioses across the 102 

landscape often reflect strong gradients in soil pH and nutrient availability (Read & Perez-Mereno, 103 

2003; Phillips et al., 2013; Lin et al., 2017; Jo, Fei, Oswalt, Domke & Phillips, 2019). There is  104 

evidence to support that these differences in soil properties may lead to functional variation among 105 

decomposer organisms within AM and EM communities (Cheeke et al., 2016: Mushinski et al., 106 

2019), creating  an ideal testbed for exploring how substrate quality and differences in abiotic and 107 

biotic environmental conditions interact to control fungal necromass decay.    108 

 109 

Molecular-based identification techniques have led to a rapid increase in the characterization of 110 

necromass-associated microbial communities or the ‘necrobiome’ (Drigo et al., 2012, Brabcová et 111 

al., 2016, 2018, Fernandez & Kennedy, 2018, Lopez-Mondejar et al., 2018). Importantly, the 112 

composition of the fungal ‘necrobiome’ has been shown to be distinct from that of  the surrounding 113 



soil environment, suggesting that fungal necromass has unique qualities relative to the bulk soil 114 

(Brabcová et al., 2016, 2018, Fernandez & Kennedy, 2018). Fungal decomposer communities of 115 

necromass are frequently dominated by fast-growing moulds in the order Eurotiales, but also show 116 

considerable changes in composition over time (Brabcová et al., 2016, 2018), including significant 117 

colonization by EM fungi (Fernandez & Kennedy, 2018). Similarly, bacterial decomposers of 118 

fungal necromass appear to be dominated by generalist Proteobacteria, at least initially (Brabcová 119 

et al., 2018, Lopez-Mondejar et al., 2018), but also include more specialized taxa such as 120 

Chitinophaga, which have high chitin degradation abilities (Sangkhobol & Skerman, 1981). 121 

Additionally, it appears that necromass quality can significantly influence bacterial and fungal 122 

decomposer community composition, either through variation in C:N ratio (Brabcová et al., 2018) 123 

or melanin content (Fernandez & Kennedy, 2018).  124 

 125 

While there has been notable recent progress in characterizing the effects of abiotic and biotic 126 

factors on fungal necromass decomposition and  necromass-associated decomposer communities, 127 

the generality of the aforementioned patterns remains unclear. This is because all studies of this 128 

topic to date have been conducted at single sites. Here, by deploying common fungal necromass 129 

substrates in a temperate oak savannah and hardwood forest, we sought to address two key gaps 130 

in current knowledge: 1) to determine whether high- and low-quality fungal necromass would 131 

decompose differently between the two sites and 2) to characterize the structure of the fungal 132 

necromass ‘necrobiome’ within and across sites under differing vegetation types. We hypothesized 133 

that similar to plant litter, high-quality fungal necromass (i.e. low melanin, high N) would 134 

decompose more rapidly than low-quality necromass (i.e. high melanin, low N). However, we also 135 

predicted that the effects of necromass quality would depend on the dominant vegetation under 136 



which it decayed, with the expectation that plant litter inputs can lead to functional differences in 137 

decomposer communities between vegetation types (Lambers, Chapin & Pons 1998 ; Strickland 138 

et al., 2009). We further hypothesized that both necromass quality and vegetation type would 139 

significantly influence the taxonomic and functional guild composition of microbial communities 140 

present on decomposing necromass, with fast-growing moulds, yeasts, and copiotrophic bacteria 141 

being the dominant decomposers of high-quality necromass and low-quality necromass being more 142 

heavily colonized by oligotrophic bacteria as well as saprotrophic and/or EM fungi depending on 143 

vegetation type.   144 

 145 

 146 

Materials and Methods 147 

Study sites  148 

Parallel necromass decomposition experiments were conducted at two sites and under two 149 

different vegetation types at each site: a temperate savannah containing EM-associated trees and 150 

AM-associated grasses and a temperate hardwood forest containing adjacent EM- and AM-151 

dominated stands. The savannah site was located at Cedar Creek Ecosystem Science Reserve in 152 

central Minnesota, USA (N 45.42577 W 093.20852). Cedar Creek is a 2266 ha reserve affiliated 153 

with the University of Minnesota, which contains of a mix of prairie and forest ecosystems. The 154 

mean annual temperature at Cedar Creek is 6.7°C and the mean annual precipitation is 801 mm. 155 

The forest site was located at Moores Creek in south-central Indiana, USA (N  39.08333 W  156 

086.46666). Moores Creek, which is part of the Indiana University Research and Teaching 157 

Preserve system, is comprised of 105 ha of mixed deciduous hardwood forest (~80 years in age). 158 

The mean annual temperature at Moores Creek is 11.6°C and the mean annual precipitation is 1200 159 



mm. Within both sites, vegetation communities differed in their AM- and EM-associated plant 160 

species and edaphic characteristics (Table 1).  161 

 162 

Plot locations at each site were chosen based on dominant vegetation type and mycorrhizal 163 

association. Three replicate plots were established at two locations in the savannah site; 10 m into 164 

EM-dominated Quercus forest and 20 m into the adjacent AM-dominated grassland. These 165 

distances were chosen based on previous work at the same site by Dickie and Reich (2005), which 166 

found little to no EM colonization of Quercus seedlings at 20 m away from the forest edge. At the 167 

forest site, 7 replicate plots were established based on known mycorrhizal associations of dominant 168 

tree species. In all plots, trees from the dominant mycorrhizal type (AM or EM) represented >85% 169 

of the basal area of the plot and AM and EM plots were paired according to geographic proximity. 170 

Additional details about the layout of the plots in the forest site are available in Midgley and 171 

Phillips (2016). 172 

 173 

Fungal necromass generation and incubation 174 

Two fungal species, Mortierella elongata and Meliniomyces bicolor, which have previously been 175 

demonstrated to differ in multiple chemical traits (Maillard, Schilling, Andrews, Schreiner, & 176 

Kennedy 2020; Table 2), were chosen to represent high- and low-quality necromass. M. elongata 177 

is a fast-growing saprotrophic fungus in the phylum Mucromycota, which is frequently found in 178 

both forest and agricultural soils (Li et al., 2018). M. bicolor is an EM and ericoid mycorrhizal 179 

(ErM) Ascomycotan fungus frequently found in temperate and boreal forest soils (Grelet, Meharg, 180 

Duff, Anderson, Alexander & 2009; see Fehrer, Réblová, Bambasová & Vohník  2019 for an 181 

update on the taxonomic status of this genus). These two species have contrasting melanin and 182 



nitrogen levels, with M. elongata representing a high-quality substrate and M. bicolor representing 183 

a low-quality substrate (Table 2). Complete details on the methods used for the chemical 184 

characterization of both species are provided in the online Supplementary Information.  185 

 186 

Fungal biomass for both species was produced in liquid cultures by individually inoculating 50 187 

mL flasks containing half-strength potato dextrose broth with 3 mm diameter mycelial plugs (one 188 

plug per flask). Following inoculation, cultures were transferred to an orbital shaker and left to 189 

shake at 80 rpm for at least 30 days or until growth stopped. To produce fungal necromass, cultures 190 

were rinsed with distilled water and dried at 26°C for 24 hours. Dried fungal necromass (~25 mg) 191 

were then placed into nylon mesh litter bags constructed from 53-micron mesh (Elko, Minneapolis, 192 

MN, USA) and heat-sealed. The 53-micron mesh size excluded both tree and grass root in-growth. 193 

Separate litter bags were constructed for replicates of each fungal species. During deployment, 194 

litter bags were buried at organic-mineral soil interface (0-5 cm depth). To determine if there was 195 

any mass loss due to transport and handling, an additional set of litter bags was carried into the 196 

field (n = 3). Necromass recovery was greater than 98% and did not differ between fungal species, 197 

so masses were not corrected for any loss during transport. At each harvest, litter bags were 198 

individually bagged, placed on ice, and taken directly to the laboratory for processing. For each 199 

sample, necromass was carefully removed from the litterbag and dried at 30°C to a constant mass 200 

to determine mass remaining (this temperature was chosen to limit DNA degradation ahead of 201 

molecular analyses). Following mass measurements, the remaining necromass was stored at -80oC 202 

for molecular analyses.  203 

 204 



While the preparation and processing of fungal necromass was standardized across the two sites, 205 

the specific incubation times varied slightly between studies due to logistical constraints. At the 206 

savannah site, fungal necromass was incubated for 14, 28, 42, and 56 days beginning in July 2017 207 

(n = 3 litter bags of each fungal species for each vegetation type for each sampling date). At the 208 

forest site, fungal necromass was incubated for 14, 31, and 92 days beginning in July 2017 (n = 7 209 

litter bags of each fungal species for each vegetation type for each sampling date). Soil moisture 210 

measurements at both sites were taken at the time litter bags were harvested. Gravimetric soil 211 

moisture data was collected from the composite of two 5 × 10 cm soil cores per plot at the savannah 212 

site and three 6.35 × 10 cm soil cores per plot at the forest site. To determine pH, a sub-sample of 213 

soil collected at the time of the first litter bag harvest was air-dried and analyzed in a 0.01 M CaCl2 214 

solution using a bench-top pH meter. An additional subsample of soil taken from the first litter bag 215 

harvest was stored at -80oC prior to molecular analyses. 216 

 217 

Molecular analyses 218 

Total genomic DNA was isolated from soil and necromass samples using DNeasy PowerSoil 219 

Extraction Kits (QIAGEN, Germantown, MD, USA). DNA extractions were done according to 220 

the manufacturer’s instructions, with the addition of a 30 second bead-beating step prior to 221 

extraction to enhance sample homogenization (as in Fernandez & Kennedy, 2018). Positive and 222 

negative controls were included for both bacteria and fungi. Positive controls included the bacterial 223 

mock community from the Human Microbiome Project (https://www.hmpdacc.org/HMMC/) and 224 

the fungal synthetic mock community developed by Palmer, Jusino, Banik & Lindner (2018). 225 

DNA extractions were also performed on necromass samples that were placed into litterbags but 226 

https://www.hmpdacc.org/HMMC/


not incubated. Negative controls included lysis tubes lacking substrate and PCR reactions with no 227 

DNA template added. 228 

 229 

Microbial communities in soil and on decomposing fungal necromass were identified using high-230 

throughput sequencing (HTS). For bacteria, the 515F-806R primer pair was chosen to target the 231 

V4 region of the 16S rRNA gene. For fungi, the 5.8S-Fun and ITS4-Fun primer pair (Taylor et al., 232 

2017) was used to target the ITS2 region of the fungal rRNA operon. Samples were first amplified 233 

in individual 20 ul reactions containing 10 ul of Phusion Hot Start II High-Fidelity PCR Master 234 

Mix (Thermo Scientific, Waltham, MA, USA), 0.5 ul of each 20 mM primer, 1 ul of DNA template 235 

and 8 ul of PCR-grade water. Thermocycling conditions were as follows: 1. 98°C for 30 seconds, 236 

2. 98°C for 10 seconds, 3. 55°C for 30 seconds, 4. 72°C for 30 s, repeat steps 2-4 34 times, 5. 72°C 237 

for 10 minutes and 6. infinite hold at 4°C. If initial PCRs were not successful, dilutions or increased 238 

cycle numbers (34x) were performed. For all samples with amplicons, a second PCR was run under 239 

thermocycling conditions to add unique Golay barcodes and sequencing adaptors. PCR products 240 

were then cleaned using the Charm Just-a-Plate Purifiation and Normalization Kit (Charm Biotech, 241 

San Diego, CA, USA). Each sample was then pooled at equimolar concentration and sequenced 242 

on a full MiSeq lane (2 x 300 bp V3 Illumina chemistry) at the University of Minnesota Genomics 243 

Center.  244 

 245 

Sequences were processed using the AMPtk pipeline v1.1 (Palmer et al., 2018). First, paired-end 246 

reads were merged using VSEARCH (Rognes et al., 2016) and then subjected to quality trimming. 247 

Following pre-processing, reads were denoised with UNOISE3 (Edgar, 2016), and clustered into 248 

unique OTUs at 97% similarity using USEARCH v10 (Edgar, 2010). A 0.0005 abundance cut-off 249 



was applied to the bacterial data to eliminate low abundance OTUs thought to be spurious. For the 250 

fungal data, SynMock abundances were used to determine a similar filtering threshold. Read 251 

counts for any OTUs present in PCR and DNA negative controls were also subtracted from all 252 

samples. A small number of samples contained OTUs that matched the decomposing necromass 253 

(i.e. M. elongata and M. bicolor necromass). This signal could be residual DNA from the fungal 254 

necromass itself or from colonization by closely related species present in the soil. Because we 255 

encountered these OTUs in the soils at our sites and previous studies have demonstrated that the 256 

DNA associated with necromass decomposes rapidly (~7-14 days, Drigo et al., 2012; Schweigert, 257 

Herrmann, Miltner, Fester & Kästner  2015), they were retained in our analyses. However, any 258 

bacterial OTUs assigned as chloroplast without genus identification were removed. 259 

 260 

Bacterial OTUs were assigned to copiotrophic and oligotrophic tropic modes based on Trivedi et 261 

al., (2018). Specifically, all bacterial OTUs belonging to the phylum Bacteroidetes and classes 262 

alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria were defined as copiotrophs, 263 

while bacterial OTUs belonging to phylum Acidobacteria and class delta-Proteobacteria were 264 

defined as oligotrophs. Trophic mode assignments for fungi were made with FUNGuild (Nguyen 265 

et al., 2016). Fungi that could not be assigned to a functional guild were classified as 266 

“unidentified.” Symbiotrophic fungi were parsed between ectomycorrhizal fungi and arbuscular 267 

mycorrhizal fungi. Remaining fungal OTUs belonging to Eurotiales, Hypocreales, Morteriellales, 268 

Mucorales, Saccharomycetales, Tremellales and Sporidiales as well as fungal OTUs defined by 269 

FUNGuild as microfungi, yeast and facultative yeast were classified as moulds and yeasts, 270 

following Sterkenburg et al. (2015).  271 

 272 



Statistical analyses 273 

Statistical analyses and data visualization were conducted in R version 3.5.1 (R Core Team, 2018). 274 

Analysis of variance (ANOVA) was used to test for differences in soil pH between sites and 275 

vegetation types within sites. To test for differences in soil moisture, ANOVAs were run with 276 

vegetation type (AM- vs. EM-associated vegetation) and sampling date as the predictor variables 277 

for each site. Prior to running the ANOVAs, soil moisture data was log-transformed to meet the 278 

assumptions of normality. Linear mixed-effect (LME) models were used to analyze the amount of 279 

fungal necromass remaining within each site (Bradford, Berg, Maynard, Wieder & Wood 2016). 280 

Fixed predictor factors included vegetation type (AM- vs. EM-associated vegetation), necromass 281 

type (high- vs. low-quality), incubation period, and soil moisture. Replicate sampling locations 282 

(either plots or plot pairs) were designated as a random factor. Because pH was only measured 283 

during one harvest at each site it was not included in this analysis. Mass remaining data were log 284 

logit-transformed to meet statistical assumptions (Sokal & Rohlf, 1995; Warton & Hui, 2011). To 285 

evaluate the significance of linear mixed-effects models the Kenward-Roger approximation was 286 

used to estimate F statistics and denominator degrees of freedom (Halekoh & Højsgaard, 2014). 287 

Least square means were computed for each fixed effect and post-hoc comparisons were carried 288 

out on pairs of the least-squares means using the Tukey’s adjustment for multiple comparisons.  289 

Given the well-established non-linear nature of OM decomposition (Berg, 2014), decay constants 290 

were calculated separately for each necromass type at each site. To calculate decay constants, we 291 

fit the proportion of remaining necromass against incubation time (days) using single- and double-292 

exponential decay models. The best fitting model was selected using Akaike’s Information Criteria 293 

(AIC). According to AIC values, a double-exponential decay model (Equation1) produced the best 294 

fit. 295 



Equation 1: [𝑚𝑎𝑠𝑠]𝑡 =  𝑎𝑒−𝑘1𝑡 + (1 − 𝑎) 𝑒−𝑘2𝑡 296 

The proportional mass remaining ([mass]t) was calculated by dividing the mass remaining at time 297 

(t) by the initial mass for each litterbag. In equation 1, a refers to is the initial proportion of fast 298 

decomposing or labile material, 1-a is the initial proportion of slow decomposing or recalcitrant 299 

material. k1 and k2 are the degradation rate constants of the labile (fast-decomposing) and 300 

recalcitrant (slow-decomposing pool), respectively. The nonlinear least-squares Levenberg-301 

Marquardt algorithm used to estimate model parameters, a, k1 and k2, using the ‘minpak.lm’ 302 

package (Elzhov, Mullen,  Spiess & Bolker 2016). Like the mass remaining analyses, due to 303 

differences in the fungal necromass incubation times at the two sites, the following microbial 304 

community analyses were analyzed for each site separately. Sample-OTU accumulation curves 305 

indicated that most samples achieved sequencing depths with high levels of OTU saturation (Fig. 306 

S1). To account for differences in sequence read totals among samples, rarefaction was applied to 307 

4000 and 1000 reads/sample for bacteria and fungi, respectively. OTU richness (N0) and diversity 308 

(H) were calculated using the ‘vegan’ package (Oksanen et al., 2013). The effect of vegetation 309 

type, necromass quality, and incubation period on each of these metrics was assessed using a series 310 

of three-way ANOVAs for each decomposer group (bacteria or fungi) separately. Due to 311 

successful sequencing of only one 56-day sample at the savannah site, that harvest date was not 312 

included in the ANOVAs. Additionally, to balance the sampling design between sites (i.e. each 313 

site having an equal number samples from AM and EM vegetation types), all of the samples from 314 

the 5m grassland plots in the savannah site were not included in the ANOVAs, as preliminary 315 

analyses revealed very similar patterns of richness and diversity between the two AM grass-316 

dominated plots (data not shown). Prior to running each ANOVA, variance homoscedasticity was 317 

tested using Cochran's test and data were log-transformed if necessary.  318 



 319 

For analyses of microbial community composition, quality-filtered sequence read counts were 320 

transformed to proportional data per sample for all bacterial and fungal OTUs. Differences in 321 

bacterial and fungal OTU composition were visualized with non-metric multi-dimensional scaling 322 

(NMDS) plots using the ‘metaMDS’ function. The NMDS plots were generated based on Bray-323 

Curtis OTU dissimilarity matrices. Permutational multivariate analyses of variance 324 

(PERMANOVA) were applied to assess the effect of vegetation type, necromass quality, and 325 

incubation period on microbial community composition. Effects of the same three predictor 326 

variables were also assessed for each microbial guild using three-way ANOVAs. Finally, 327 

Wilcoxon signed-rank tests were used to identify specific bacterial and fungal genera that had 328 

significantly differential relative abundance depending on necromass quality. Similar to the 329 

analyses of richness and diversity, preliminary analyses of two AM grass-dominated plots at the 330 

savannah site revealed very high similarity in OTU and guild composition, so all samples from the 331 

5 m grassland plots were not included in any of the community composition analyses. All tests 332 

were considered significant using a threshold of P ≤ 0.05. 333 

 334 

 335 

Results 336 

Soil pH did not differ between sites (F1,19 = 1.20, P = 0.291), but did differ between vegetation 337 

types within sites (F1,19 = 5.17, P = 0.038), being ~1 pH unit lower under EM vegetation compared 338 

to soils under AM vegetation (Table 1). In contrast to pH, soil moisture did not differ between 339 

vegetation types (F1,57 = 0.010, P = 0.921), but there was a modest difference between sites (F1,57 340 

= 3.96, P = 0.051). On average, the savannah site soils were ~65% wetter (10.6 ± 0.5%) (mean ± 341 



1 s.e.) during the necromass decay period than those at the forest site (6.8 ± 0.4%) over the duration 342 

of the incubations.  343 

   344 

At each site, the amount of mass remaining in fungal necromass was significantly influenced by 345 

both necromass quality (F1,37 = 20.24, and F1,66 = 100.22 for the savannah and forest sites 346 

respectively; P values < 0.001) and incubation period (savannah, F1,37  = 74.29;  forest, F1,66  = 347 

66.76; P values < 0.001), but not vegetation type (savannah, F1,37  =  0.24, P = 0.627; forest, F1,66 348 

= 0.26, P = 0.609). On average, the high-quality fungal necromass decomposed 2-3 times faster 349 

than low-quality fungal necromass. However, the effect of necromass quality was mediated by 350 

incubation time (see quality by time interaction terms in Table S1), with the greatest differences 351 

between quality types occurring at 14-days (Fig. 1). After 14 days, 60% and 80% more low-quality 352 

necromass remained at the savannah and forest sites respectively, but after 56 and 92 days, the 353 

mass remaining of both necromass types reached a similarly stable value (~80% mass loss; Fig. 354 

1). No other higher order interactions were significant (Table S1). The non-linear decay models 355 

showed similar trends, with k1 values being much higher at both sites for high-quality fungal 356 

necromass, and the k2 values being largely equivalent across sites and necromass types (Fig. 1 & 357 

Fig. S1).  358 

 359 

Microbial OTU diversity was significantly higher under AM- than EM-dominated vegetation soils, 360 

particularly fungal communities at the savannah site and bacterial communities at the forest site 361 

(Fig. 2a,b, Table S2). Bacterial OTU diversity was ~50% lower on necromass than in the 362 

surrounding soil at both sites (Fig. 2c) and fungal OTU diversity was also decreased on necromass 363 

relative to soil, although only significantly at the savannah site (Fig. 2d). Microbial diversity was 364 



20% higher, on average, on high than low quality necromass, being significant at the forest site for 365 

bacteria and both sites for fungi (Fig. 2e,f). The effect of vegetation type on microbial OTU 366 

diversity was generally low, only being significantly higher for fungi in AM vegetation at the forest 367 

site (Fig. 2g,h). Similarly, incubation period had a limited impact on microbial OTU diversity, 368 

only being significantly higher for bacteria after 92 days of incubation at the forest site (Fig. 2i,j).  369 

 370 

Like OTU diversity, the composition of bacterial and fungal communities in soil and on necromass 371 

was significantly different at both sites (Fig. 3, Table S4). Soils under EM vegetation were 372 

dominated by EM fungi and oligotrophic bacteria, whereas soils under AM vegetation had some 373 

AM fungi, but a greater proportion of saprotophic fungi along with oligotrophic bacteria (Fig. 4 & 374 

Fig. S6). By contrast, yeasts, moulds, and copiotrophic bacteria were much more common on 375 

necromass at both sites (Fig. 4). Necromass quality significantly influenced bacterial composition 376 

at both sites and fungal community composition at the forest site (Table S5). In general, high-377 

quality fungal necromass had greater relative abundances of copiotrophic bacteria, moulds, yeasts, 378 

and less saprotrophic fungi (Fig. S7). Microbial community composition was also significantly 379 

influenced by vegetation type (Table S5), with fungal pathotrophs being more abundant on fungal 380 

necromass in AM-dominated vegetation and EM and AM fungi being more abundant on fungal 381 

necromass in their matching vegetation types, respectively (Fig. 4). Additionally, incubation time 382 

significantly affected bacterial but not fungal community composition on fungal necromass at both 383 

sites (Table S5), with oligotrophic bacteria increasing in abundance over time at both sites, 384 

particularly on low-quality fungal necromass at the forest site (Fig. 4, Table S5).  385 

 386 



A number of bacterial and fungal genera displayed significant differential abundances depending 387 

on necromass quality. Both across sites (i.e. savannah v. forest) and between vegetation types (AM 388 

v. EM vegetation), the bacterial genera most commonly detected in greater abundance on high-389 

quality fungal necromass included Nocardia, Mesorhizobium, Orchobactrum, and Chitinophaga 390 

(Fig. 5). In contrast, the bacterial genera most commonly found in greater abundance on low-391 

quality fungal necromass included Burkholderia and Mucilaginibacter. Of the fungal genera that 392 

had significant differential abundance by necromass quality, Mortierella was the lone genus 393 

consistently found on high-quality fungal necromass within and across both sites, although Mucor 394 

and Pochonia showed similar preferences for high-quality fungal necromass (Fig. 6). Fungal 395 

genera most positively associated with low-quality fungal necromass included Talaromyces at both 396 

sites, Clonostachys at the forest site, and Chaetosphaeria at the savannah site. 397 

 398 

 399 

Discussion 400 

In this study, we utilized differences between study systems and vegetation types to explore the 401 

relative importance of necromass quality and edaphic characteristics in controlling fungal 402 

necromass decay and microbial decomposer community structure. We found that the effects of 403 

necromass quality on decay were robust to vegetation type as well as differences in site edaphic 404 

characteristics. High-quality fungal necromass decomposed, on average, 2.5 times faster during 405 

the initial stages of decay regardless of site-level variation in soil moisture, pH, or CDI. This result 406 

is consistent with recent studies that have found substrate quality to be a key local predictor of 407 

fungal necromass decay. Brabcová et al. (2018) demonstrated that decreasing C:N ratio was 408 

positively associated with increasing mass loss rates from dead mycelium of 12 fungal species. 409 



Likewise, Fernandez and Kennedy (2018) showed at differences in substrate quality, particularly 410 

increased melanin content, were strongly associated with decreases in mass loss rates. Collectively, 411 

these results indicate that, like plant litter decay, substrate quality is a key driver of fungal decay 412 

at both local and regional scales. 413 

 414 

We did not find support for our hypothesis that necromass quality would interact with vegetation 415 

type to determine decay rate. This was somewhat surprising, particularly at the temperate forest 416 

site, given that the mycorrhizal associations of dominant tree species at this site have been shown 417 

to have distinct effects on soil biogeochemistry via their selection of microbial groups (including 418 

mycorrhizal fungi) with differing enzyme function (Midgley, Brzostek & Phillips 2015; Brzostek, 419 

Dragoni, Brown & Phillips 2015; Rosling et al., 2016; Cheeke et al., 2016; Lin et al., 2017). We 420 

speculate that the difference between our results and those of previous studies may be due to the 421 

fact that fungal necromass used in this study had chemical qualities that would be considered high 422 

compared to plant litter. Specifically, the C:N ratios for the two necromass types was 7 and 13 423 

respectively, which is much lower than C:N ratios typically reported for leaf litter which can range 424 

from 20-100 (Zhang et al., 2008; Ferlian, Wirth & Eisenhauer 2017; Brabcová et al., 2018). In this 425 

case, the higher nutrient content of fungal necromass may not demand the same selective 426 

enzymatic activity to facilitate decomposition, particularly if initial rates of mass loss are 427 

influenced by differences in leaching capacity rather direct microbial degradation (Maillard et al., 428 

2020). It is certainly possible that with more time, differences in the decomposition of the more 429 

recalcitrant fraction of the remaining fungal necromass would develop between vegetation types, 430 

though the rapid mass loss from our high-quality necromass is consistent with a similarly fast rate 431 

of mass loss recently observed for AM necromass in temperate AM-dominated forests in Japan 432 



(Schäfer, Dannoura, Ataka & Osawa 2019). Moreover, given that hyphal production can be 2-3-433 

fold greater in EM-dominated plots relative to AM-dominated plots (Cheeke et al., unpublished 434 

data), total inputs of C and N from necromass may depend on vegetation types.  435 

  436 

The overall patterns of microbial community diversity on decaying fungal necromass were notably 437 

similar between sites, necromass qualities, vegetation types, and incubation times. The lower 438 

richness of bacterial and fungal communities on fungal necromass relative to bulk soil likely 439 

reflects the active growth required to colonize new substrates, which unlike soil,  may contain little 440 

‘relic’ DNA (Carini et al., 2016). The greater microbial diversity on high-quality necromass 441 

relative to low quality necromass suggests that this resource is utilized by a wider variety of 442 

microbes like fungi, which had elevated diversity on high-quality necromass at both sites. While 443 

the diversity of microbial communities was higher under AM- than EM-dominated vegetation, 444 

diversity on necromass was equivalent between vegetation types. The commonality of this finding 445 

suggests that fungal necromass may foster a distinct community of decomposers, likely due to its 446 

unique chemical composition (Brabcová et al., 2018; Lopez-Mondejar et al., 2018). Further, the 447 

general absence of an incubation time effect on microbial diversity indicates that fungal necromass 448 

likely represents a sustained ‘hotspot’ of decomposition (sensu Brabcová et al., 2016), even after 449 

the rapid mass loss observed during the first weeks of incubation. The general equivalency in 450 

microbial community diversity over time appears to be due to substitutions rather than gains or 451 

losses in local OTU dominance, likely reflecting shifts in substrate chemistry and the availability 452 

of resources during the course of necromass decomposition (Drigo et al., 2012; Tláskal, Voříšková, 453 

& Baldrian 2016; Certano, Fernandez, Heckman & Kennedy 2018, Fernandez, Heckman, Kolka, 454 

& Kennedy 2019; Ryan et al., in press).   455 



 456 

Analyses of the microbial guilds colonizing the different types of fungal necromass were also 457 

notably similar across sites. At both the savannah and forest sites, fast-growing moulds and 458 

copiotrophic bacteria dominated the necrobiome, particularly during early stages of decay. 459 

Generalist fungal saprotrophs were also a common part of the necrobiome, although their relative 460 

abundances were frequently negatively correlated with fungal pathotroph relative abundance. We 461 

suggest the latter guild-level pattern may the direct result of mycoparasitism rather than generalist 462 

fungal pathogen accumulation. Specifically, the high relative abundance of the fungal genus 463 

Clonostachys, which has been demonstrated to be an effective fungal biocontrol agent (Cota, 464 

Maffia, Mizubuti & Macedo 2008), indicates that the rapid increase in living fungi on 465 

decomposing mycelium, may itself be a target for resource exploitation. Furthermore, when 466 

grouped at the genus level, differences in relative abundances of many bacteria and fungi between 467 

the two necromass types aligned with their putative decomposition preferences and abilities. For 468 

example, many chitinolytic bacteria (e.g. Chitinophaga (Sangkhobol & Skerman 1981), 469 

Stretrophonas (Yoon, Kang, Oh & Oh 2006), Variovax (Bers et al., 2011) and fungi (Mortierella: 470 

De Boer, Gerards, Klein, Gunnewiek & Modderman 1999) had significantly higher abundance on 471 

the high-quality fungal necromass, which may reflect easier access to chitin not imbedded in a 472 

melanized cell wall matrix (Bull, 1970). Conversely, the higher abundance of bacterial genera such 473 

as Mucilinibacter and Granulicella as well as fungal genera such as Chaetosphaeria and 474 

Talaromyces on low-quality necromass is consistent with their common association with 475 

decomposing leaf litter and wood (Huhndorf & Fernandez, 2001, Pankratov, Ivanova, Dedysh & 476 

Liesack 2011, Lopez-Mondejar et al., 2016, Yilmaz et al., 2016), which requires greater 477 

carbohydrate-active enzymes activity to initiate decomposition. Additionally, the high overlap in 478 



the dominant microbial genera detected on fungal necromass at both our study sites and those 479 

present on fungal necromass in other study systems (Brabcova et al., 2016, 2018, Lopez-Mondejar 480 

et al., 2018, Fernandez & Kennedy, 2018), suggests there may be core necrobiome (Shade & 481 

Handelsmann, 2012) that is broadly associated with decomposing mycelium.  482 

 483 

While our results provide novel insights into the dynamics of fungal necromass decomposition, 484 

there are some methodological caveats that warrant mentioning. In particular, our two necromass 485 

substrates differed in multiple aspects of their initial biochemistry, including both melanin and 486 

nitrogen. As noted above, it is likely that these two traits interact to determine the quality of fungal 487 

necromass for decomposers (Fernandez & Koide, 2014); as such, future tests should disentangle 488 

the relative importance of each to necromass decay rates. Given the recent documentation of fungal 489 

necromass C being disproportionately utilized by bacteria relative to fungi (Lopez-Mondejar et 490 

al., 2018), but also the significant C and N mining from fungal necromass by EM fungi (Akroume 491 

et al., 2019), it will also be important to use isotopic labeling techniques to understand exactly 492 

which resources are utilized by which microorganisms, particularly in field settings where 493 

symbiotic fungi are present (Zeglin, Kluber, & Myrold 2013; Fernandez & Kennedy, 2018; 494 

Maillard et al.,  2020). Additionally, like most studies of microbial communities, we relied on 495 

relative sequence read counts as a proxies for microbial community abundances. There are known 496 

issues with this approach in terms of potential taxonomic biases (Lloyd-Macgilp et al., 1996, but 497 

see Lekberg & Helgason 2018) as well as count differences being affected by variation in gene 498 

copy number (Lofgren et al., 2019). As such, the differential relative abundances we observed 499 

across our experimental treatments must be interpreted with some caution. However, the notable 500 

consistency in effects of necromass quality across study systems as well as differential responses 501 



of fungi to vegetation type and bacteria to incubation period suggest that our results did capture 502 

significant ecological signal. Lastly, we recognize the limitations of the litter-bag technique, which 503 

excludes potentially important decomposers including soil fauna, as well as roots and rhizosphere-504 

associated microbes (Bradford, Tordoff, Eggers, Jones & Newington 2002; Crowther et al., 2013; 505 

Brzostek et al., 2015).  506 

 507 

Conclusions 508 

In this study we demonstrate the regional-scale importance of fungal necromass quality in 509 

influencing both decay rate and microbial community composition across sites differing in their 510 

edaphic characteristics and vegetation types. Our results contribute to a growing body of literature 511 

that recognizes the importance of fungal necromass as a fast cycling OM resource that supports a 512 

distinct assemblage of decomposers with consistent taxonomic and functional guild membership. 513 

Future studies analyzing the community structure of fungal necromass-associated microbial 514 

communities in tropical ecosystems will be particularly valuable in gaining a global perspective 515 

on the consistency of the fungal ‘necrobiome’. While our work emphasizes the link between 516 

substrate quality and decomposer community structure, additional studies are required to link 517 

specific characteristics of fungal necromass quality and the necrobiome to long‐term soil C 518 

stabilization.  519 
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Tables 853 

Table 1. Site Characteristics. Climate Decomposition Index (CDI) is a multiplicative function 854 

developed by Adair et al., (2008) that describes the effect of monthly variation in temperature and 855 

water on decomposition, values range from 0 to 1, with higher values being indicative of faster 856 

rates of decay. See Supplementary Note 2 for more details on site CDI calculations. 857 
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Table 2. Analyses of initial fungal necromass quality. Three independent replicates were analyzed 867 

where standard errors are reported, otherwise values are based on a single replicate.  868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

Table 3. Results from permutational multivariate analysis of variance (PERMANOVA) statistical 878 

tests showing the effects of incubation time, vegetation type, necromass quality and their 879 

interactions on Bray-Curtis and Euclidean dissimilarity matrices for both fungal and bacterial 880 

communities at the oak savannah and temperate forest sites (*P≤0.05; **P≤0.01; ***P≤0.001).  881 
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Figure Legends 887 

Figure 1. Proportional mass remaining (mean ± 1 SE) for high-quality Mortierella elongata (light 888 

shading) and low-quality Meliniomyces bicolor (dark shading) fungal necromass in AM-associated 889 

vegetation (grey circles) and EM-associated vegetation (tan triangles) at the oak savannah  (a) and 890 

temperate forest (b) sites. At the oak savannah site, mass remaining was measured at four time 891 

periods, 14, 28, 42 and 56 days (n=3 litter bags of each fungal species for each mycorrhizal 892 

association treatment for each sampling date). At the temperate forest site, mass remaining was 893 

measured at three time periods, 14, 31 and 92 days (n = 7 litter bags of each fungal species for 894 

each mycorrhizal association treatment for each sampling date). Inset graphs show double 895 

exponential decay curves for high- and low-quality necromass, as decomposition did not differ 896 

between vegetation-mycorrhizal types. For measures of error around model parameter estimates 897 

see Fig.S1.  898 

 899 

Figure 2. Diversity indices (H) for bacterial and fungal communities in different habitats (in  the 900 

surrounding soil or on fungal necromass) at the oak savannah (a) and temperate forest (b) sites. H 901 

values are also presented for bacterial and fungal communities under AM- and EM-associated 902 

vegetation for soil and necromass habitats in the oak savannah (c & e) and temperate forest (d & 903 

f). Differences in H values between microbial communities on high and low quality necromass 904 

and for the different fungal necromass periods are shown for the oak savannah (g & i) and 905 

temperate forest sites (h & j). The high-quality necromass species was Mortierella elongata and 906 

the low-quality necromass species was Meliniomyces bicolor. ns refers to non-significant results; 907 

*P≤0.05; **P≤0.01; ***P≤0.001; boxes that do not share similar letters denote statistical 908 

significance, P<0.05.  909 



Figure 3. Non-metric multidimensional scaling (NMDS) analysis of bacterial (a & b) and fungal 910 

(c & d)  communities colonizing high- and low-quality necromass, as well as, in the soil under AM 911 

and EM-associated vegetation at the oak savannah (a & c) and temperate forest (b & d) sites. Small 912 

circles represent individual samples and large circles represent the centroids.  913 

 914 

Figure 4. Relative abundances of necromass-associated bacterial (a) and fungal (b) guilds for the 915 

different vegetation types (AM- and EM-dominated vegetation), necromass qualities (high and 916 

low) and fungal necromass incubation periods (14, 28 and 42 days) in the oak savannah and 917 

temperate forest sites.  918 

 919 

Figure 5. Fungal genera significantly impacted by the necromass quality type (high and low) 920 

depending of vegetation type (AM- and EM-dominated vegetation) in the oak savannah and 921 

temperate forest sites. Circles are coloured based on guild assignment and circle size is 922 

proportional to the relative abundance. Green highlights indicate fungal genera responding in the 923 

same way to the necromass species (high and low) within each site. Purple highlights indicate 924 

fungal genera responding in the same way to the necromass quality type (high and low) within and 925 

between sites.  926 

 927 

Figure 6. Bacterial genera significantly impacted by the necromass quality type (high and low) 928 

depending on vegetation type (AM- and EM-dominated vegetation) in the oak savannah and 929 

temperate forest sites. Circles are colored based on guild assignment and circle size is proportional 930 

to the relative abundance. Green highlights indicate bacterial genera responding in the same way 931 

to the necromass species (high and low) within each site. Purple highlights indicate bacterial 932 



genera responding in the same way to the necromass species (high and low) within and between 933 

sites.  934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

  952 



Figure 1.  953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 



Figure 2. 966 

 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 



 Figure 3. 989 

 990 

 991 

 992 

 993 

 994 

 995 



Figure 4.  996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 



Figure 5.  1007 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 



Figure 6.  1030 

 1031 


