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Modulation Parameter Estimation of LFM
Interference for Direct Sequence Spread Spectrum

Communication System in Alpha-Stable Noise
Mingqian Liu, Member, IEEE, Yuting Han, Yunfei Chen, Senior Member, IEEE, Hao Song, Zhutian Yang, Senior

Member, IEEE, and Fengkui Gong, Member, IEEE

Abstract—The linear frequency modulation (LFM) interfer-
ence is one of the typical broadband interferences in direct
sequence spread spectrum (DSSS) communication system. In
this paper, a novel modulation parameter estimation method of
LFM interference is proposed for DSSS communication system
in alpha-stable noise. To accurately estimate the modulation
parameters, the alpha-stable noise should be eliminated first.
Thus, we formulate a new generalized extended linear chirplet
transform (GELCT) to suppress the alpha-stable noise, for a
robust time-frequency transformation of LFM interference is
realized. Then, using the Radon transform, the maximum value
after transformation and the chirp rate according to the angle
related to the maximum value are estimated. In addition, a
generalized Fourier transform (GFT) is introduced to estimate
the initial frequency of the LFM interference. For performance
analysis, the Cramér-Rao lower bounds of the estimated chirp
rate and the initial frequency of the LFM interference in the pres-
ence of alpha-stable noise are derived. Moreover, the asymptotic
properties of the modulation parameter estimator are analyzed.
Simulation results demonstrate that the performance of the
proposed parameter estimation method significantly outperforms
existing methods, especially in a low SNR regime.

Index Terms—Alpha-stable noise, Cramér-Rao lower bound,
generalized extended linear chirplet transform, generalized
Fourier transform, linear frequency modulation, parameter esti-
mation.

I. INTRODUCTION

L INEAR frequency modulation (LFM) occupies a wide
bandwidth to offer a high system processing gain. Due

to this attribute, LFM have been widely used in wireless
communications, radar, and sonar systems [1]. Due to the
wide applications of LFM, wireless communication systems,
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such as direct sequence spread spectrum (DSSS) communi-
cation systems, may suffer from the interference caused by
LFM interference, which can be characterized as a common
broadband non-stationary interference. To effectively reduce
the interference, the parameters of LFM interference should
be accurately estimated, so that the interference caused by
LFM to DSSS systems can be characterized and countered
to provide a frequency modulation scheme with a high in-
terference suppressing ability. Thus, parameter estimation of
LFM interference is very critical for DSSS communication
systems. LFM interference could be defined as the inter-
ference with linearly time-varying instantaneous frequency.
There are two basic parameters, the chirp rate and the initial
frequency, that describe the instantaneous frequency of LFM
interference. Therefore, this paper aims to estimate the chirp
rate and the initial frequency of the LFM interference.After
estimating the modulation parameters of the LFM interference,
a demodulation reference signal can be constructed, and the
interference term becomes a single frequency component, so
that the interference term can be suppressed by a notch filter
[2]. Nowadays, in the context of Industry 4.0, interference
detection and suspicious identification in industrial equipments
are required to be intelligent [3]. Interference parameters esti-
mation can be used as prior information to lay the foundation
for its intelligent implementation.

The interferences of DSSS system are divided into narrow-
band interference and broadband interference. The narrowband
interference suppression methods include time domain adap-
tive processing and transform domain processing. Transform-
domain interference suppression technologies include Fouri-
er transform, wavelet transform, and overlapping transform.
At present, the proposed broadband interference suppression
methods include compressed sensing algorithm [4], Wigner-
Ville distribution and Hough transform (WHT) algorithm [2],
fractional Fourier transform algorithm [5], and so on. However,
when the interference power is low, there is an error in the
time-frequency analysis, and the parameters of the interference
signal cannot be accurately estimated, so that its suppression
performance is degraded. The method for estimating the
interference parameters is better in the suppression effect,
which makes the bit error rate at the receiving end lower.
Therefore, the interference can be analyzed and processed
in depth through the estimated interference parameters, so
as to design an interference suppression method with better
performance.
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In wireless communications, frequency multiplexing is com-
monly used to enhance system capacity. However, due to the
reuse of frequency resource, co-channel interference arises [6].
As a result, environmental noise in wireless communications
has strong randomness and impulsiveness [7]. To precisely
model such a wireless environment, alpha-stable distribution is
commonly used. Alpha-stable distribution captures the bursty
characteristics of the pulse in a real wireless environment.
Hence, in this paper, we focus on studying the modulation
parameter estimation of LFM interference in the alpha-stable
noise.

The parameter estimation of LFM interference has been
widely studied. In [8], the fractional Fourier transform was
used to estimate the chirp rate of the LFM interference.
However, this method requires two-dimensional search with
high complexity. In [9], the parameters of LFM interference
were estimated by using the modulus fractional cross-spectrum
and cubic spline interpolation. In [10], short-time Fourier
transform (STFT) was used to approximate the local signal
to a stationary signal by adding windows. In [11], a LFM
modulation parameter estimation method based on STFT
transform was proposed. The STFT used a long window length
to enhance LFM interference. Then, frequency shift and energy
accumulation according to STFT results were obtained, and
the chirp rate was roughly estimated. Finally, a fine search
of the chirp rate was carried out by using a suitable short
window length and search step size to accurately estimate the
parameters. In [12], a new method was proposed to shorten
the estimation time. Unfortunately, all these methods cannot
be adapted to LFM interference in alpha-stable noise, thus
making the parameter estimation of LFM interference more
challenging.

To estimate the parameters of LFM interference in the
alpha-stable noise environment, a method based on fractional
Fourier transform and Sigmoid transform was proposed in
[13]. Although this method can be used in the impulse noise
environment and effectively estimated the parameters of LFM
interference, the estimation performance degrades significantly
in the low SNR regime. In [14], a combination of fractional
lower-order statistics and scaled ambiguity transformation was
introduced to improve the performance of impulse noise envi-
ronments and estimated the modulation parameters of LFM
interference. However, the estimation error of this method
was large. In [15], a fractional low-order covariance (FLOC)
fractional spectrum estimation algorithm was proposed to
estimate the LFM interference parameters. However, according
to the experimental results presented, the overall error was
large and the estimation performance was not satisfaction. In
[16], the impulse noise was suppressed by using the nonlinear
transformation. Then, the fractional Fourier transform (FRFT)
was used to identify the LFM interference and the parameters
are roughly estimated according to the peak coordinates.
Finally, a two-dimensional particle swarm optimization (PSO)
algorithm was used to estimate the parameters. However, this
method had a high computational complexity.

In this paper, to further improve the accuracy in alpha-stable
noise, especially in a low SNR regime, a novel method is
proposed using a generalized extended linear chirplet trans-

form (GELCT) and a generalized Fourier transform (GFT) to
estimate modulation parameters of LFM interference for DSSS
communication system. The main creative contributions of this
paper can be summarized as follows:

• In order to accurately estimate the modulation parameters
of LFM interference, the GELCT-Radon transform is
used to estimate the chirp rate. More specifically, the
GELCT transform applies nonlinear transformation to the
signal first to suppress the alpha-stable noise, and then
carries out time-frequency transformation. On the other
hand, the Radon transform converts a two-dimensional
plane function into a linear function defined in two-
dimensional space. The line on the GELCT plane is
integrated, and a peak point is achieved on the new plane.
After searching for the peak, the chirp rate of the signal
can be estimated.

• For the estimation of the initial frequency, a GFT method
is proposed, which is used to suppress the alpha-stable
noise and convert the signal from the time domain to
the frequency domain. Then, the initial frequency is
effectively and accurately estimated.

• The asymptotic property of the chirp rate and the initial
frequency estimator is thoroughly analyzed to show that
the proposed method is asymptotically consistent.

• The Cramér-Rao lower bounds (CRLBs) of the modula-
tion parameter estimation of LFM interference in alpha-
stable noise are derived. A lower bound is analyzed for
the variance of the unbiased estimator.

The remainder of the paper is organized as follows. The
signal and noise models are presented in Section II. Section
III describes the proposed algorithm for joint estimations of
modulation parameters of LFM interference. Section IV illus-
trates the asymptotic property of the modulation parameters
estimator. In Section V, the CRLBs for the estimation of
LFM interference’ modulation parameters are derived in alpha-
stable noise. The simulation results are given in Section VI.
Finally, conclusions are made in Section VII.

II. SYSTEM MODEL

DSSS communication system that encounter LFM interfer-
ence will be considered in this paper, where the receive signal
of the DSSS system in interference condition can be given by

r(t) = x(t) + s(t) + e(t), (1)

where x(t) represents the useful communication signal, s(t) is
the LFM interference, e(t) is the alpha-stable noise, and s(t)
is expressed as

s(t) = A exp(j2πf0t+ jπkt2), (2)

where A is the signal amplitude, f0 is the initial frequency, k is
the chirp rate, which is the ratio of the modulation bandwidth
to the pulse bandwidth. The instantaneous phase of the signal
is ϕ(t) = 2πf0t + πkt2 and the instantaneous frequency is
f(t) = f0 + kt. The probability density function (P.D.F.) of
the alpha-stable random variable has no closed form, thus e(t)
is expressed by the characteristic function as [17]

φ(t) = exp{jδt− γ|t|α[1 + jβsgn(t)w(t, α)]}, (3)
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where

sgn(t) =

 1, t > 0,
0, t = 0,
−1, t < 0,

(4)

w(t, α) =

{
tan(απ/2), α ̸= 1,
(2/π) log |t| , α = 1.

(5)

The parameters in (3) are:
• α is the characteristic exponent with 0 < α ≤ 2,

which determines the shape of the stable distribution
or the heaviness of the tail of the stable density. When
α = 2, (3) corresponds to the characteristic function of a
Gaussian distribution with variance 2γ.

• γ is the dispersion parameter with γ ≥ 0, and is similar
to the variance of Gaussian noise, which determines the
spread of the distribution around the center.

• β is the index of skewness with −1 ≤ β ≤ 1, which
controls the symmetry of the distribution.

• δ is the location parameter, which indicates the center of
the P.D.F. of the alpha-stable distribution on the x-axis,
and the value interval is the real number field.

This paper uses the symmetric alpha-stable (SαS) distribution,
i. e. both the index of skewness β and the location parameter
δ are 0, and the dispersion parameter γ assumed as 1. Also,
we assume the characteristic exponent α has a value range of
1 ≤ α ≤ 2.

Since the finite second-order statistical moment of SαS
noise does not exist, the signal-to-noise ratio (SNR) in the
traditional sense is redefined based on the dispersion coeffi-
cient γ of the alpha-stable noise and the variance of the signal
σ2
s as the generalized SNR (GSNR), which can be defined as

GSNR = 10log10(σ
2
s/γ). (6)

III. JOINT MODULATION PARAMETER ESTIMATION OF
LFM INTERFERENCE

A. Chirp Rate Estimation

The chirplet transform can extract a number of frequency
components from a certain type of signal [18]-[20]. Hence,
this transform can be used to estimate the chirp rate. Since
SαS noise does not have second and higher-order statistics,
this paper proposes a generalized extended linear Chirplet
transform (GELCT), which is expressed as

G(t, w) =

∫ ∞

−∞
f [r(τ)]h(τ − t)e−jwτe−j 1

2 (τ−t)2 fs
2Ts

tanϑdτ,

(7)
where r(τ) is the received signal, h(·) is the window function,
fs is the sampling frequency, Ts is the sampling time, and
ϑ = −π/2 + lπ/(L+ 1), l = 1, 2, · · · , L. In addition, f [·] is
the nonlinear transformation, expressed as

f [r(t)] =

(
loge(|r(t)|)

1
e + 1

|r(t)|

)
r(t), |r(t)| ̸= 0. (8)

From (7), it is clear that the GELCT is applied to the signals
by nonlinear transformation to suppress the alpha-stable noise,
and then performs a chirplet transform. From (8), it is observed
that the nonlinear transformation of the received signal with

SαS noise can limit the infinite amplitude of the noise to a
limited range, so as to existence of the second and higher-order
statistics, while retaining useful information about the signal.
Therefore, the statistics above the second order can still play
their role.

Property 1: The nonlinear transformation defined in (8)
maps the amplitude of the signal to a finite range. For signals
in SαS noise, the amplitude of the noise is also mapped to
this range without changing the period and phase information
of the signal.

Proof: See Appendix A.
The Radon transform is applied to the line detection in

the time-frequency domain after the GELCT is applied to
estimate the parameters of the signal [21]. The procedures
of the Radon transform are to rotate the time-frequency right-
angle coordinate (t, w) of the original time-frequency domain
by v angles to obtain a new angular radius coordinate (u, v),
and to integrate the line with different u parallel to the v-axis.
The Radon transform actually maps any line on plane (t, w)
to a point on plane (u, v), and each point (u0, v0) on plane
(u, v) determines a line equation t cos v0 + w sin v0 = u0.

For the time-frequency analysis graph G(t, w), the Radon
transform is given by

R(u, v) =

∫
L

G(t, w)ds, (9)

where ds is the line micro-element on L, the equation of the
straight line L is t cos v + w sin v = u. The Delta function is
a generalized function that the function takes a value of 0 at
non-zero points, and the integral in the entire domain is 1. It
is expressed as

δ(x) =

{
0, x ̸= 0,
1, x = 0.

(10)

According to the equation of a line, the Delta function can be
expressed as

δ(t cos v + w sin v − u) =

{
0, t cos v + w sin v − u ̸= 0,
1, t cos v + w sin v − u = 0.

(11)
The point (t, w) on the time-frequency analysis graph G(t, w)
satisfies δ(x) = 1, and the points on the other non-time-
frequency analysis graph G(t, w) satisfy δ(x) = 0. Thus, the
Radon transform becomes

R(u, v) =

∫ ∞

−∞

∫ ∞

−∞
G(t, w)δ(t cos v + w sin v − u)dtdw.

(12)
The GELCT has the effect of compressing and focusing the

LFM signal, which can suppress the influence of SαS noise to
some extent. The Radon transform can integrate the line on the
GELCT plane and integrate it into a peak point on the (u, v)
plane. By searching for the peak, according to k̂ = − cot(v̂),
we can estimate the chirp rate k̂ of the signal. The peak of
the Radon transform can be expressed as

Rmax(û, v̂)=max
u,v

[R(u, v)]. (13)

Therefore, the chirp rate of the LFM interference is estimated
as

k̂ = − cot(v̂)∆f/∆t, (14)
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where ∆f and ∆t are the frequency-domain sampling interval
and the time-domain sampling interval of the GELCT, respec-
tively.

The procedure of the chirp rate estimation for LFM inter-
ference in SαS noise is summarized in Algorithm 1.

Algorithm 1 The chirp rate estimation for LFM interference
in SαS noise
Input: r(t) : the received signal.
Output: k̂: the estimated value of the chirp rate.

1: Perform GELCT time-frequency analysis
on the received signal by G(t, w) =∫∞
−∞ f [r(τ)]h(τ − t)e−jwτe−j 1

2 (τ−t)2 fs
2Ts

tanϑdτ ;
2: The time-frequency analysis graph G(t, w) is Radon trans-

formed to obtain R(u, v) by R(u, v) =
∫
L
G(t, w)ds;

3: Obtain the maximum value Rmax(û, v̂) of R(u, v) by
Rmax(û, v̂)=max

u,v
[R(u, v)];

4: Estimate the chirp rate k̂ according to the angle v̂ corre-
sponding to the maximum value by k̂ = − cot(v̂)∆f/∆t.

B. Initial Frequency Estimation

When estimating the initial frequency, the demodulation
reference signal e−jπk̂t2 is constructed by using the estimated
chirp rate k̂. Multiplied by the received signal r(t), r1(t) is
obtained as

r1(t) = (x(t) + s(t) + e(t)) e−jπk̂t2

= x(t) · e−jπk̂t2 +Aej2πf0t+jπkt2 · e−jπk̂t2

+ e(t) · e−jπk̂t2

= x(t) · e−jπk̂t2 +Aej2πf0t + e(t) · e−jπk̂t2 .

(15)

After obtaining the signal r1(t), GFT is performed to con-
vert the signal from the time domain to the frequency domain,
thereby extracting the information of the initial frequency
in r1(t). In this paper, we propose GFT which is based on
performing a nonlinear transformation as shown in (8) on the
signal, and then performing a Fourier transform as follows

GF (w) =

∫ ∞

−∞
f [r1(t)]e

−jwtdt (16)

Property 2: Nonlinear transformation on r1(t) can suppress
alpha-stable noise and preserve useful information of the
signal.

Proof: See Appendix B.

According to property 2, (16) can be expressed as follows:

GF (w) =

∫ ∞

−∞
f [r1(t)]e

−jwtdt

=

∫ ∞

−∞
(x1(t) + s1(t) + e1(t))e

−jwtdt

=

∫ ∞

−∞
s1(t)e

−jwtdt+

∫ ∞

−∞
(x1(t) + e1(t))e

−jwtdt

=

∫ ∞

−∞
c(t)Aej2πf0te−jwtdt

+

∫ ∞

−∞
c(t)(x(t) + e(t))e−jπk̂t2e−jwtdt

(17)

where c(t)= loge(|x(t)+A+e(t)|)
1
e +1

|x(t)+A+e(t)| , when the noise is low,

c(t) ≈ loge(|x(t)+A|)
1
e +1

|x(t)+A| . Thus, (17) can be rewritten as:

GF (w) =

∫ ∞

−∞
c(t)Aej2πf0te−jwtdt

+

∫ ∞

−∞
c(t)(x(t) + e(t))e−jπk̂t2e−jwtdt

≈
∫ ∞

−∞

loge(|x(t) +A|)
1
e + 1

|x(t) +A|
Aej2πf0te−jwtdt

+

∫ ∞

−∞
c(t)(x(t) + e(t))e−jπk̂t2e−jwtdt

≈ A

(
loge(|x(t) +A|)

1
e + 1

|x(t) +A|

)∫ ∞

−∞
ej2πf0te−jwtdt

+N(w)

≈ A

(
loge(|x(t) +A|)

1
e + 1

|x(t) +A|

)
δ(w − 2πf0)

+N(w)
(18)

where N(w) =
∫∞
−∞ c(t)(x(t) + e(t))e−jπk̂t2e−jwtdt. N(w)

firstly performs nonlinear transformation on the useful com-
munication signal and SαS noise, and then performs Fourier
transform on the useful communication signal and SαS noise,
in addition, w = 2πf , so we can obtain

GF (2πf) ≈ A

(
loge(|x(t) +A|)

1
e + 1

|x(t) +A|

)
δ(2πf − 2πf0)

+N(2πf)
(19)

The LFM signal is converted from the time domain to the
frequency domain by GFT, and the r1(t) signal is a pulse
signal, so the initial frequency f̂0 can be estimated by using
the position of the maximum value as

f̂0= argmax
f

[GF (w)] · ∆f1
2π

, (20)

where ∆f1 is sampling interval in the frequency domain of
the GFT.

The procedure of the initial frequency estimation for LFM
interference in SαS noise is summarized in Algorithm 2.
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Algorithm 2 The initial frequency estimation for LFM inter-
ference in SαS noise
Input: r(t): the received signal; k̂: the estimated value of the

chirp rate.
Output: f̂0: the estimated value of the initial frequency.

1: Constructed the demodulation reference signal e−jπk̂t2 by
the chirp rate k̂, and then multiplied by the received signal
r(t) to obtain r1(t) by (15);

2: Obtain the GFT of r1(t) by (16);
3: Estimate the initial frequency f̂0 according to the posi-

tion corresponding to the maximum value of GF (w) by
f̂0= argmax

f
[GF (w)] ·∆f1/2π.

IV. ASYMPTOTIC ANALYSIS OF THE PROPOSED
ESTIMATION METHODS

A. Asymptotic Analysis of the Chirp Rate Estimation Method

According to the discussion in Section III, we obtain the
estimation of the chirp rate by GELCT and Radon transform.
In this section, we analyze the asymptotic property of the chirp
rate estimation method. The asymptotic analysis of the chirp
rate estimation can be considered as a asymptotic analysis of
the generalized linear chirplet transform estimator Ĝ(t, w).

The estimator Ĝ(t, w) is expressed as

Ĝ(t, w) =
1

N

N−1∑
n=0

f [r(n)]h(n− t)e−jwne−j 1
2 (n−t)2 fs

2Ts
tanϑ,

(21)
and the mean value of Ĝ(t, w) is

E
(
Ĝ(t, w)

)
=E

(
1

N

N−1∑
n=0

f [r(n)]h(n− t)e−jwne−j 1
2 (n−t)2 fs

2Ts
tanϑ

)

=
1

N

N−1∑
n=0

E
(
f [r(n)]h(n− t)e−jwne−j 1

2 (n−t)2 fs
2Ts

tanϑ
)
.

(22)

When N → ∞, it can be derived that

lim
N→∞

E
(
Ĝ(t, w)

)
= G(t, w). (23)

Thus, the proposed estimator is asymptotically unbiased.
The mean square of Ĝ(t, w) can be expressed as

E
(
Ĝ2(t, w)

)
=E

((
1

N

N−1∑
n=0

f [r(n)]h(n− t)

· e−jwne−j 1
2 (n−t)2 fs

2Ts
tanϑ

)2)
=

1

N2
E

((
N−1∑
n=0

f [r(n)]h(n− t)

· e−jwne−j 1
2 (n−t)2 fs

2Ts
tanϑ

)2)
.

(24)

When N → ∞, it can be derived that

lim
N→∞

var
[
Ĝ(t, w)

]
= lim

N→∞

(
E(Ĝ2(t, w))− E2(Ĝ(t, w))

)
= lim

N→∞

(
E(Ĝ2(t, w))

)
− lim

N→∞

(
E2(Ĝ(t, w))

)
=G2(t, w)−G2(t, w)

=0.

(25)

Thus, the proposed estimator is consistent.

B. Asymptotic Analysis of the Initial Frequency Estimation
Method

According to the discussion in Section III, we get the
estimation of the initial frequency by GFT. In this section,
we analyze the asymptotic property of the initial frequency
estimation method. The asymptotic analysis of the initial
frequency estimate can be considered as a asymptotic analysis
of the generalized Fourier transform estimator ĜF (w).

The proposed estimator ĜF (w) is expressed as

ĜF (w) =
1

N

N−1∑
n=0

f [r1(n)] · e−jwn, (26)

and the mean value of ĜF (w) is

E
(
ĜF (w)

)
=

1

N

N−1∑
n=0

E
(
f [r1(n)] · e−jwn

)
. (27)

When N → ∞, we obtain

lim
N→∞

E
(
ĜF (w)

)
= GF (w). (28)

Thus, the proposed estimator is asymptotically unbiased.
The mean square of ĜF (w) can be expressed as

E(ĜF
2
(w)) = E

( 1

N

N−1∑
n=0

(f [r1(n)]) · e−jwn

)2


=
1

N2
E

(N−1∑
n=0

(f [r1(n)]) · e−jwn

)2
 .

(29)

When N → ∞, we obtain

lim
N→∞

var
[
ĜF (w)

]
= lim

N→∞

(
E(ĜF

2
(w))− E2(ĜF (w))

)
= lim

N→∞

(
E(ĜF

2
(w))

)
− lim

N→∞

(
E2(ĜF (w))

)
=GF 2(w)−GF 2(w)

=0.

(30)

Thus, the proposed estimator is consistent.
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V. CRLBS OF MODULATION PARAMETERS ESTIMATORS

From the alpha-stable noise model described in this paper,
we can see that there is no closed form of P.D.F. for the alpha-
stable noise. When the value of α is 1 or 2, we can obtain
two special distributions respectively, as Cauchy distribution
(α = 1) and Gauss distribution (α = 2). For the Cauchy
distribution, the P.D.F. is expressed as

f1(γ, δ;x) =
1

π

γ

γ2 + (x− δ)
2 , (31)

where δ is the location parameter and γ is the dispersion pa-
rameter. For the Gauss distribution, the P.D.F. is be expressed
as

f2(γ, δ;x) =
1√
4πγ

exp

[
− (x− δ)

2

4γ

]
. (32)

This paper adopts the SαS distribution with location pa-
rameter δ = 0 and dispersion parameter γ = 1. Then, the
density function of the SαS distribution is expressed as f(x),
which is described in [22] and [23] as

f(x) =



1
πx

∞∑
k=1

(−1)k−1

k! Γ(αk + 1)x−αk sin(kαπ2 ),

0 < α < 1,
1

π(x2+1) , α = 1,

1
πα

∞∑
k=0

(−1)k

2k! Γ(2k+1
α )x2k, 1 < α < 2,

1
2
√
π
exp[−x2

4 ], α = 2.

(33)

According to the LFM interference model and the alpha-
stable noise model described in (1) and (2), a sampled discrete
LFM interference and alpha-stable noise can be written as

s(nTs) + e(nTs)

=A cos(2πf0nTs + kπ(nTs)
2)

+jA sin(2πf0nTs + kπ(nTs)
2) + e(nTs),

(34)

where n = 0, ...N − 1.
Let the estimated vector be θ = [f0, k]. Then, the log-

likelihood function of the estimated vector θ is expressed as
follows [24]

Λ(r, θ) =

N−1∑
n=0

[ln f(en,R) + ln f(en,I)], (35)

where en,R is the real part of e(nTs) and en,I is the imaginary
part of e(nTs). Then the Fisher information matrix can be
expressed as

[I(θ)]i,j

=− E

{[
∂Λ(r, θ)

∂θi

] [
∂Λ(r, θ)

∂θj

]T}

=
N−1∑
n=0

{
∂sn,R
∂θi

∂sn,R
∂θj

E[g′(en,R)] +
∂sn,I
∂θi

∂sn,I
∂θj

E[g′(en,I)]

}

−
N−1∑
n=0

{
∂2sn,R
∂θi∂θj

E[g(en,R)] +
∂2sn,I
∂θi∂θj

E[g(en,I)]

}
,

(36)

where g(x) = −f ′(x)
f(x) , sn,R is the real part of s(nTs), and sn,I

is the imaginary part of s(nTs),

E[g(en,R)] =

∫ ∞

−∞
g(en,R)f(en,R)den,R

= −[f(en,R)]
∞
−∞ = 0,

(37)

and

E[g′(en,R)] =

∫ ∞

−∞
g′(en,R)f(en,R)den,R

=

∫ ∞

−∞
[f ′(en,R)]

2
/f(en,R)den,R.

(38)

Let
∫∞
−∞ [f ′(en,R)]

2
/f(en,R)den,R=κ(α), then

E[g(en,I)] = 0 (39)

and

E[g′(en,I)]=

∫ ∞

−∞
[f ′(en,I)]

2
/f(en,I)den,I = κ(α). (40)

So (36) can be simplified as

[I(θ)]i,j = κ(α)

N−1∑
n=0

[
∂sn,R
∂θi

∂sn,R
∂θj

+
∂sn,I
∂θi

∂sn,I
∂θj

]. (41)

Substituting (34) into (41), we obtain

[I(θ)]1,1=κ(α)4A2π2T 2
s

N−1∑
n=0

n2, (42)

and

[I(θ)]2,2=κ(α)A2π2T 4
s

N−1∑
n=0

n4. (43)

It can be obtained that the CRLBs of initial frequency and
chirp rate, respectively, can be expressed as

CRLB(f0) = [I−1(θ)]1,1

=
1

4κ(α)GSNRπ2T 2
s

N−1∑
n=0

n2

=
6

4κ(α)GSNRπ2T 2
s (2N3 + 3N2 +N)

,

(44)

and
CRLB(k) = [I−1(θ)]2,2

=
1

κ(α)GSNRπ2T 4
s

N−1∑
n=0

n4

=
30

κ(α)GSNRπ2T 4
s (6N5 + 15N4 + 10N3)

.

(45)

When α = 1, the SαS distribution is Cauchy, and

κ(α) =

∫ ∞

−∞

(( 1

π(x2 + 1)

)′
)2/

1

π(x2 + 1)

dx

=

∫ ∞

−∞

(2πx)
2

(π (x2 + 1))
3 dx

=
1

2
.

(46)
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Fig. 1. Estimation performance of the chirp rate and the initial frequency
with α = 1.

Therefore, the corresponding CRLBs can be expressed as

CRLB(f0)=
6

2GSNRπ2T 2
s (2N3 + 3N2 +N)

, (47)

and

CRLB(k) =
60

GSNRπ2T 4
s (6N5 + 15N4 + 10N3)

. (48)

When α = 2, the SαS distribution is Gaussian, and

κ(α)

=

∫ ∞

−∞

(( 1

2
√
π
exp[−x2

4
]

)′)2/
1

2
√
π
exp[−x2

4
]

dx

=

∫ ∞

−∞

(
1

2
√
π
· x

2

4
· exp[−x2

4
]

)
dx

=2.
(49)

Therefore, the corresponding CRLBs can be expressed as

CRLB(f0)=
3

4GSNRπ2T 2
s (2N3 + 3N2 +N)

, (50)

and

CRLB(k) =
15

GSNRπ2T 4
s (6N5 + 15N4 + 10N3)

. (51)

VI. NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the performance of the proposed
method, MATLAB simulation is carried out. In this paper, the
parameter setups of LFM interference in DSSS communication
systems are described as follows: the initial frequency is f0
= 1000Hz, the chirp rate is k = 10000Hz/s, the data length
is 1024 points, the sampling frequency is fs = 10240Hz, and
the signal duration is Ts = 0.1s. The noise is the standard
additive SαS noise. The parameter estimation performance is
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Fig. 2. Estimation performance of the chirp rate and the initial frequency
with α = 2.
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Fig. 3. Estimation performance of the chirp rate and the initial frequency
with different characteristic exponents.

measured by the normalized root mean square error (NRMSE),
which is defined as

NRMSE = 10lg

√√√√ N∑
i=1

(
Y − Ŷ (i)

)2
/ (N · Y 2), (52)

where N is the number of Monte Carlo simulation experi-
ments, and the value of N in this paper is 3000. The actual
value of the parameter Y to be estimated is Ŷ (i).

Here, the estimation performance of the chirp rate and the
initial frequency is assessed. Let the characteristic exponents
be α = 1 and α = 2, respectively. Fig. 1 presents the
estimation performance of the proposed method for α = 1.
From Fig. 1, we observe that, when the GSNR is -5dB, the
NRMSE of the chirp rate approaches 0.2× 10−2. In addition,
the NRMSE of the initial frequency approaches 0.3× 10−2

when the GSNR is -6dB. The chirp rate and the initial
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Fig. 4. (a) Performance comparison of the chirp rate estimation with different
characteristic exponents and GSNR = 0dB (b) Performance comparison of
the initial frequency estimation with different characteristic exponents and
GSNR = 0dB.

frequency curves are close to the CRLBs, implying that the
proposed estimation method is effective and feasible. When
α = 2, the estimation performance of the proposed method is
shown in Fig. 2. It is seen that the NRMSE of the chirp rate is
close to 0.2× 10−2 and the NRMSE of the initial frequency
is close to 0.3× 10−2, when the GSNR is -8dB. Furthermore,
both the chirp rate and the initial frequency estimation curves
of the proposed method approach their CRLBs. It is evident
that the proposed method is also feasible in Gaussian noise
environment.

In Fig. 3, the estimation performance of the chirp rate and
the initial frequency with different characteristic exponents
α are evaluated. Moreover, the estimation performance of
the proposed method is demonstrated. From Fig. 3, under
the condition that the GSNR is -5dB and the characteristic
exponent is greater than 0.6, the estimation performance is
stable. Also, the stability of the estimation performance is
guaranteed, when the GSNR and the characteristic exponent
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Fig. 5. (a) Performance comparison of the chirp rate estimation with different
GSNRs and α = 1 (b) Performance comparison of the initial frequency
estimation with different GSNRs and α = 1.

are 0dB and greater than 0.2, respectively. Another important
observation is that the estimation performance of the chirp rate
and the initial frequency is not affected by the characteristic
exponent when the GSNR is higher than 5dB, indicating that
the proposed estimation method is robust to the characteristic
exponent in the high GSNR regime.

Under the same simulation environments and parameter
settings, the performance of the proposed method is compared
with the methods introduced in [13] and [14]. In [13], the
fractional Fourier transform and Sigmoid transform (Sigmoid-
FPSD) are used to estimate the chirp rate and the initial fre-
quency of the LFM interference. The authors in [14] proposed
a method based on fractional low-order statistic and scaling
ambiguity transform (FLOSAT) to estimate the chirp rate and
the initial frequency of the LFM interference. Fig. 4 shows
the estimation performance of the proposed method compared
with referred methods under different characteristic exponents
and GSNR = 0dB. From Fig. 4, it is clear that the NRMSE of
this method is reduced by 0.028 compared with the Sigmoid-
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Fig. 6. Chirp rate estimation performance of multi-component LFM
interference.
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Fig. 7. Initial frequency estimation performance of multi-component LFM
interference.

FPSD method proposed in [13], and the NRMSE is reduced by
0.003 compared with the FLOSAT method proposed in [14].
Fig. 5 illustrates the estimation performance of the proposed
method compared with those of the methods in [13] and [14]
under different GSNRs and α = 1. The proposed method
has better estimation performance than the existing methods.
From Fig. 5, it is clear that the NRMSE of the proposed
method is reduced by 0.098 compared with the Sigmoid-
FPSD method proposed in [13], and the NRMSE is reduced
by 0.008 compared with the FLOSAT method proposed in
[14]. The computational complexity of the proposed method,
the method in [13], and the method in [14] can be expressed
by O

(
2N2log2N

)
, O

(
2N2log2N

)
, and O

(
N3log2N

)
, re-

spectively. The comparison of the computational complexity
indicates that the computational complexity of the proposed
method is significantly lower than that of the method in [14]
method, and is almost same as that of the method in [13].
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Fig. 8. Chirp rate estimation performance of LFM in general alpha-stable
noise.
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Fig. 9. Initial frequency estimation performance of LFM in general alpha-
stable noise.

The proposed parameter estimation method in this paper
is also applicable to multi-component LFM interference. The
chirp rate and the initial frequency of each LFM interference
signal are set as k1 = 1 × 104, f01 = 1 × 103, k2 =
2 × 104, f02 = 2 × 103 and k3 = 3 × 104, f03 = 3 × 103,
respectively. Fig. 6 shows the estimation performance of the
chirp rate of the multi-component LFM interference. Fig. 7
shows the estimation performance of the initial frequency of a
multi-component LFM interference. From Fig. 6 and Fig. 7, it
can be seen that the parameters estimation of the proposed
method for three-component LFM interference is effective
and feasible. In particular, when the chirp rate or the initial
frequency of the three-component LFM interference signal is
the same, the estimation performance of the corresponding
initial frequencies or the chirp rates are slightly different at
low GSNR, and the estimation performance are gradually the
same as the GSNR increase.
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The parameter estimation algorithm proposed in this paper
is also applicable to LFM interference parameter estimation in
general alpha-stable noise. Fig. 8 and Fig. 9 are the estimation
performance of the LFM interference signal the chirp rate
and the initial frequency with β = 0,−1,−0.5, 0.5, 1 and
δ = 0, 0.5, 1, 1.5, 2 , respectively. From Fig. 8 and Fig. 9, we
can be seen that the LFM interference parameter estimation
performance gradually decrease as the β and δ change and the
estimation performance in the symmetric alpha-stable noise is
the best.

VII. CONCLUSION

This paper introduces a novel modulation parameter esti-
mation method of LFM interference for DSSS communica-
tion systems in alpha-stable noise. The proposed method is
asymptotically consistent, and the CRLBs of the modulation
parameter estimation is analyzed for the variance of the
unbiased estimator. Simulation results and theoretical analysis
show that this method can not only effectively suppress the
impulse noise interference, but also has higher estimation
accuracy and lower computational complexity in the alpha-
stable noise environment compared with existing methods.
Future work is to improve the method to make it has better
estimation performance over fading channels.

APPENDIX A
PROOF OF PROPERTY 1

The nonlinear transformation of the received signal can be
expressed as:

f [r(t)] =f [x(t) + s(t) + e(t)]

=

(
loge(|x(t) + s(t) + e(t)|)

1
e + 1

|x(t) + s(t) + e(t)|

)
· (x(t) + s(t) + e(t)) .

(53)

The proof of the nonlinear transformation in (8) is divided
into the following three cases:

1) When the noise is low, that is |x(t) + s(t)| ≫ |e(t)|.
Assume r(t) ≈ x(t) + s(t) = x(t) +A exp(j2π(f0t+

1
2kt

2))
, then

f [r(t)] ≈

 loge
(∣∣x(t) +A exp(j2π(f0t+

1
2kt

2))
∣∣) 1

e + 1∣∣x(t) +A exp(j2π(f0t+
1
2kt

2))
∣∣


· (x(t) +A exp(j2π(f0t+

1

2
kt2)))

≈
( 1

e loge(|A|+ |x(t)|) + 1

(|A|+ |x(t)|)

)
· (x(t) +A exp(j2π(f0t+

1

2
kt2)))

(54)

2) When the noise is high, the main performance of SαS
noise is a short-time large-scale pulse, which is also the
main interference of SαS noise on the useful signal, that is

|x(t) + s(t)| ≪ |e(t)|. Therefore, this can be approximated as
r(t) ≈ e(t). Then

f [r(t)] ≈

(
loge(|e(t)|)

1
e + 1

|e(t)|

)
e(t)

≈ 1

e
loge |e(t)|+ 1.

(55)

3) When |x(t) + s(t)| ≈ |e(t)|,

f [r(t)] = f [x(t) + s(t) + e(t)]

=

(
loge(|x(t) + s(t) + e(t)|)

1
e + 1

|x(t) + s(t) + e(t)|

)
· (x(t) + s(t) + e(t))

= c(t) (x(t) + s(t) + e(t))

= x0(t) + s0(t)+e0(t),

(56)

where c(t) is real numbers, and c(t)= loge(|x(t)+s(t)+e(t)|)
1
e +1

|x(t)+s(t)+e(t)| .
x(t), s(t) and e(t) are independent of each other, so x0(t) =
x(t)c(t), s0(t) = s(t)c(t) and e0(t) = e(t)c(t) are also inde-
pendent of each other. s0(t) and s(t) are only the difference
in amplitude, and the phase has not changed.

APPENDIX B
PROOF OF PROPERTY 2

GFT performs a nonlinear transformation on the signal to
suppress SαS noise and retain useful signal information. The
nonlinear transformation on r1(t) is expressed as

f [r1(t)]

=f [Aej2πf0t + (e(t) + x(t)) · e−jπk̂t2 ]

=

 loge(
∣∣∣Aej2πf0t + (e(t) + x(t)) · e−jπk̂t2

∣∣∣) 1
e

+ 1∣∣∣Aej2πf0t + (e(t) + x(t)) · e−jπk̂t2
∣∣∣


·
(
Aej2πf0t + (e(t) + x(t)) · e−jπk̂t2

)
=

(
loge(|x(t) +A+ e(t)|)

1
e + 1

|x(t) +A+ e(t)|

)
·
(
Aej2πf0t + (x(t) + e(t))e−jπk̂t2

)
=c(t)

(
Aej2πf0t + (x(t) + e(t)) · e−jπk̂t2

)
=c(t) ·Aej2πf0t+c(t) · (x(t) + e(t)) · e−jπk̂t2

=x1(t) + s1(t) + e1(t)

(57)

where c(t)= loge(|x(t)+A+e(t)|)
1
e +1

|x(t)+A+e(t)| is a real number, x1(t) =

c(t) · x(t) · e−jπk̂t2 , s1(t) = c(t) · Aej2πf0t, and e1(t) =

c(t) · e(t) · e−jπk̂t2 . x(t) · e−jπk̂t2 , Aej2πf0t and e(t) · e−jπk̂t2

are independent of each other, so x1(t), s1(t) and e1(t) are
also independent of each other. s1(t) and Aej2πf0t only the
differ in amplitude, and the phases are the same.
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