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Abstract—The paper explores the deep neural learning (DNL) 

based predictive control approach for offshore wind farm using 

high fidelity large eddy simulations (LES) data. The DNL 

architecture is defined by combining the Long Short-Term 

Memory (LSTM) units with Convolutional Neural Networks 

(CNN) for feature extraction and prediction of the offshore wind 

farm. This hybrid CNN-LSTM model is developed based on the 

dynamic models of the wind farm and wind turbines as well as 

higher-fidelity LES data. Then, distributed and decentralized 

model predictive control (MPC) methods are developed based on 

the hybrid model for maximizing the wind farm power generation 

and minimizing the usage of the control commands. Extensive 

simulations based on a two-turbine and a nine-turbine wind farm 

cases demonstrate the high prediction accuracy (97% or more) of 

the trained CNN-LSTM models. They also show that the 

distributed MPC can achieve up to 38% increase in power 

generation at farm scale than the decentralized MPC. The 

computational time of the distributed MPC is around 0.7s at each 

time step, which is sufficiently fast as a real-time control solution 

to wind farm operations. 

 
Index Terms—Deep neural learning; Offshore wind farm; 

Model predictive control; LES data. 

I. INTRODUCTION 

HE European Union has set an ambitious target that 20% 

of the energy consumed in Europe should be contributed 

from renewables by 2020. Offshore wind plays a leading role in 

achieving this target [1]. However, the power generation 

efficiency of the offshore wind farm is currently still not very 

attractive, and an improvement is required, which can further 

reduce offshore wind power costs. Control systems are seen as 

an important enabler in maximizing wind energy capture. 

Common industrial practice in offshore wind farm operation is 

to control each turbine individually using locally available 

measurements, which causes the whole wind farm to operate in 

a non-optimum way. Actually, wind turbines in a wind farm 

experience extensive wake interactions which reduce energy 

extraction and increase dynamic mechanical loads. Neglecting 

the wake interactions will result in great suboptimal 

performance of wind farm operations. Thus, it is necessary to 

develop an efficient wind farm control strategy to coordinate 

the turbine operations at farm scale to optimize the overall 

operations in both energy production and maintenance. 

The wind farm control can be exploited by leveraging 

farm-level interactions between wind turbines and has been 

receiving an increasing amount of attention. In [2], the 

feasibility of the Bayesian Ascent (BA) algorithm was explored 

for the optimal coordinated control actions of the wind turbines 

within a farm, using limited amount of data. In [3], a wind farm 

controller was designed with both local and central levels of 
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control. In [4], the optimal coordinated control techniques were 

used in LES to increase the total wind farm power extraction. In 

[5], a simple distributed population-games-based algorithm 

was proposed for wind farm control with multiple estimated 

gradients being used. In [6], a wind farm controller was 

proposed to adjust the power generation of individual turbine to 

match the grid requirements. In [7], an optimal active power 

control method was developed to optimize the pitch angle and 

active power curves. In [8] and [9], a bi-level decentralized 

active and reactive power controller was designed for a 

large-scale wind farm cluster consisting of multiple wind 

farms. In [10], a constrained closed-loop wind farm controller 

was proposed to provide secondary frequency regulation and 

power tracking. In [11], a control strategy was proposed to 

allocate power regulation task to individual turbines to satisfy 

the overall dispatch order. In [12], a constrained MPC was 

proposed to minimize power losses due to wakes in a wind 

farm. In [13], a MPC based distributed coordinated active and 

reactive power control scheme for a wind farm was proposed. 

In [14], a nonlinear MPC scheme was proposed for a wind farm 

to achieve the objectives of both frequency response and wind 

generator stability. 

However, most of the afore-mentioned control schemes were 

designed based on analytical wind farm models or LES study. 

The detailed turbulent wind flow state in the atmospheric 

boundary layer is very high-dimensional, and an accurate LES 

state model is computationally very expensive. Hence, the 

induced computational cost is rather intractable for real-time 

control operations. The above optimization methods were also 

typically based on the estimated gradients of cost functions, 

which may lead to local suboptimal solutions. Actually, the 

lack of suitable tools for modeling the interactions between the 

turbines and the flow across the wind farm is a major hurdle to 

effective farm level control. Such tools need to address 

multi-fidelity dynamic modelling and offer the right balance 

among simplicity and fidelity for developing closed-loop 

advanced control algorithms at a farm level. 

As the latest paradigm in computational intelligence, the 

DNL has demonstrated greater potential over traditional 

machine learning methods and thus has attracted substantial 

attention [15]. It can model extremely sophisticated functions 

and can discover intricate structures from natural data in its raw 

forms through multiple levels of abstraction and non-linear 

processing layers trainable from the beginning to the end. In 

addition, it has dynamic nature and can deal with varying 

conditions within relatively small timescales, and hence is 

suitable for modelling wind farm flow dynamics. 

This paper leverages the latest development of the DNL to 

address the dynamic modelling and predictive control of the 

offshore wind farm. As shown in Fig. 1, the offshore wind farm 

is connected to the main AC (alternating current) grid through a 

VSC-HVDC (voltage source converter - high voltage direct  
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Fig. 1 The offshore wind farm connected to the main AC grid through VSC-HVDC link, where AC: alternating current, HVDC: high voltage direct current, POC: 

point of connection, VSC: voltage source converter, and • denotes other wind turbines that are not depicted. 

 

current) transmission link that comprises the offshore 

transformers, AC feeder, VSCs, DC (Direct Current) subsea 

cables and onshore transformer. The paper focuses on the DNL 

based predictive control of the offshore wind farm that consists 

of N wind turbines represented by using the high-fidelity LES 

data. The DNL model to be established in Sec. III is a hybrid 

CNN-LSTM model that combines the CNN and LSTM to 

predict wind farm outputs by using the LES data. Based on this 

hybrid models, decentralized and distributed MPC methods 

(see Fig. 3) are designed in Sec. IV to maximize the power 

output of the wind farm while guaranteeing reliable operations. 

The main contributions of the work are: 

(a). The hybrid CNN-LSTM model with a deep learning 

architecture is established based on high-fidelity LES data to 

predict wind farm outputs with enhanced capabilities of 

processing strong spatial and temporal correlations of the LES 

data. 

(b). Based on the established CNN-LSTM models, 

distributed and decentralized MPC methods are designed to 

maximize power generation of the wind farm while 

guaranteeing reliable operations. 

(c). The feasibility and effectiveness of the CNN-LSTM 

based wind farm models and the MPC methods are evaluated 

through extensive computational simulations of two typical 

wind farm cases. 

II. THE WIND FARM AND WIND TURBINE MODELS 

This section develops a dynamic wind farm model based on 

the LES data, and a dynamic wind turbine model. 

A. The Dynamic Wind Farm Model 

The wind farm flow dynamics can be generally modelled by 

the standard incompressible three-dimensional Navier–Stokes 

equations [16]. These equations are spatially discretized over a 

staggered grid by the hybrid differencing scheme and the finite 

volume method [17], where each wind turbine is modelled as a 

classical non-rotating actuator disk. The temporal discretization 

can be transformed to a two-dimensional difference algebraic 

equation (1) which retains the main elemental features of the 

three-dimensional turbulent wind flows [17]. 

   ( ) ( 1) ( ) ( ), ( )E q k q k Aq k b q k w k    (1) 

where  ( )E q k  is a non-singular square descriptor matrix 

containing the diffusion and convection terms after spatial 

discretization, ( )q k  is a state vector including the longitudinal 

and lateral flow velocities and pressure variables along the grid 

points at the time step k, A is a constant matrix representing the 

temporal discretization of the flow depending on the chosen 

sampling time,  ( ), ( )b q k w k  contains the turbine forcing 

terms and boundary conditions, ( )w k  is the vector of control 

variables including the disk-based thrust coefficient ( )C k  and 

yaw angle ( )k  at the time step k. 

The above terms are described as 
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 (2) 

where u(k), v(k) and p(k) are respectively the longitudinal and 

lateral flow velocities and pressure at the time step k, ( )TnC k  is 

the disk-based thrust coefficient of turbine n at time step k, N is 

the number of wind turbines in the wind farm, N≥n. 

The wind farm model (1) is a large-scale system whose order 

is determined based on the chosen domain size and staggered 

grid resolution. It can represent the complex wake interactions 

and turbulence. By denoting the prediction of ( )x k i  by 

( | )x k i k  provided the initial state ( )x k  at time step k, Eq. (1) 

is expanded as 

   
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 (4) 
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For the Np time step ahead prediction, (1) can be expanded as 
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 (5) 

The inflow wind velocity for the turbine n can be represented 

by using the state vector ( )q k . Therefore, 

2 2

2 2

( ) ( ) ( )

( | ) ( | ) ( | )

n n n

n p n p n p

V k u k v k

V k N k u k N k v k N k

  
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 (6) 

where Vn denotes the inflow wind velocity for the turbine n. 

B. The Dynamic Wind Turbine Model 

The wind power captured by the turbine n in the wind farm is 

 
2

3

( | )

( | ) ( | ) cos ( | )
2

n p

pn p n p n p

P k N k
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C k N k V k N k k N k
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 (7) 

where 
nP  and pnC  are respectively the captured wind power 

and power coefficient of the turbine n, the parameters   and 

R  are respectively the air density and rotor radius (same for all 

the turbines). The coefficient pnC  determines the proportion of 

the available aerodynamic power that a turbine can capture, 

which is related to the disk-based thrust coefficient as follows 
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3
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It can also be represented as [18] 
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where 
n  and 

n  are respectively the tip speed ratio and pitch 

angle of the turbine n. the turbine n’s tip speed ratio is 

gntn

n

n n gn

RR

V V i


    (10) 

where tn  and gn  are respectively the turbine rotor speed and 

generator speed, which are related through the constant gear 

transmission ratio gni . 

The turbine torque is represented as 

 
5 2

3 2
,

2

gn

n pn n n

n gn

R
T C

i
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 


  (11) 

where nT  is the rotation torque for the turbine n. 

The turbine’s drive-train dynamics are represented as [19] 
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 (12) 

where 
tk  and 

tnJ  are respectively the damping ratio and 

equivalent inertia of the turbine n, Ts denotes the sampling time 

interval, and gnT  denotes the generator torque control input. 

By expanding (12) for pN  time step ahead, one obtains 
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Above the rated wind speed, the pitch control system acts to 

maintain the rotor speed at the rated value. Its dynamics can be 

represented in the discrete time form as 

 ( 1) ( ) ( ) ( ) ( ) 1 ( )s s s

n rn n n rn n

T T T
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(14) 

where 
n ,

rn  and   are respectively the pitch angle, pitch 

control command and the time constant of the pitch system. 

By expanding (14) for pN  time step ahead, one obtains 

1
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 (15) 

By using the similar principle as the pitch system, the yaw 

mechanism dynamics can be expressed as 
1
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  

 (16) 

where n , rn  and   are respectively the yaw angle, yaw 

control command and the time constant of the yaw mechanism. 

III. DEEP NEURAL LEARNING BASED WIND FARM MODELS 

In this section, a hybrid CNN-LSTM model with a deep 

learning architecture is proposed for predicting wind speed, 

generator speed and the wind turbine power, which represents 

the farm dynamics following the relationships in section II. 

A. The Hybrid CNN-LSTM Model 

The CNN-LSTM model is a hybrid LSTM architecture 

particularly designed for sequence prediction. It involves CNN 

layers for feature extraction on input data and LSTM units to 

support sequence prediction. The CNN typically includes 

convolutional layers, pooling layers, hidden layers and fully 

connected layers. The convolutional layers are used with 

learning filters that represent features of the input and generate 

a feature map. The pooling layers perform non-linear down 

samplings by combining a cluster of neurons at one layer into 

the next single neuron based on non-linear functions including 

max pooling and average pooling. The fully connected layers 
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are then added after the convolutional and pooling layers for 

final output. The LSTM units are introduced to circumvent the 

vanishing and exploding gradient problems in the general 

recurrent neural network (RNN). The LSTM units use input 

gates, output gates, and forget gates to control modifying, 

accessing and storing of the internal states, and hence to 

discover long-range temporal relationships from the input 

sequences [20]. In order to alleviate the over-fitting problems, 

the “dropout” technique is employed, which randomly drops 

out some hidden and visible units to make nodes more 

insensitive to the weights of other nodes, and hence provides a 

method for approximately combining many different neural 

network architectures efficiently. 

Fig. 2 describes the overall architecture of the employed 

hybrid CNN-LSTM model for wind farm predictions. This 

model contains seven layers with weights, which contains two 

convolutional layers with Max pooling after each, one LSTM 

layer, one dropout layer (not shown in Fig. 2), and one fully 

connected output layer for output predictions. 

CONV Pool LSTM CONV Pool

Output 

activation

Output 

data
Input 

data

 
Fig. 2 The architecture of the CNN-LSTM model for wind farm predictions 

The input data has been preprocessed in such a way that each 

data record contains 50 time slices. This results in a matrix of 

length 50. The first one-dimensional convolutional layer 

defines a filter with the kernel size of three, and totally 64 filters 

are defined, which allows to train 64 different features on the 

first layer. The output of the first layer is a 50 * 64 neuron 

matrix. Each column of the output matrix holds the weights of 

one single filter. With the defined kernel size and considering 

the length of the input matrix, each filter will contain 50 

weights. The first Max pooling layer is used after the first 

convolutional layer in order to prevent overfitting of the data 

and reduce the complexity of the output. The pool length of this 

layer is chosen as three, which means the size of the output 

matrix of this layer is only a third of the input matrix. 

To learn the temporal structure from input sequences, the 

LSTM hidden layer is added after the first Max pooling layer, 

which forms the hybrid CNN-LSTM architecture. In this case, 

200 LSTM units are defined in this hidden layer and each 

LSTM unit has connections with other nodes in LSTM layer. 

The LSTM units possess the ability to learn long range 

dependency from the input sequences and each LSTM unit 

essentially acts as an accumulator of the state information. 

Actually, each LSTM unit has a memory cell to store the 

internal state and three additional gates (input, output and 

forget gates) to control the behavior between the memory cell, 

the input and the output cells [21]. 

To reduce over-fitting, a dropout layer is added after the 

LSTM layer, which will randomly assign zero weights to the 

neurons in the network. A rate of 0.1 is chosen and 10% of the 

neurons will receive a zero weight. With this operation, the 

network becomes less sensitive to smaller variations in the data 

and further increase the accuracy on unseen data. The result 

from the dropout layer will be fed into the second convolutional 

layer and the second Max pooling layer with the length of 3. 

Then, 64 different filters are defined and trained on this 

convolutional layer level and the Max pooling layer is used to 

increase the richness of features and distill the filter maps down 

to the size that includes the most salient features. 

The fully connected output layer is defined to recombine the 

representations learned by convolutional layer and reduces the 

dimension. This final layer will flatten down the neural network 

structure to a single one-dimensional vector by using matrix 

multiplication. The activation function ReLU is used to solve 

the problem of gradient explosion and speed up the forward 

propagation process. 

The above defined hybrid model is trained and fitted on the 

training dataset using the efficient Adam version of stochastic 

gradient descent, and optimized using the mean squared error, 

or “mse” loss function. For efficient training, the learning rate 

is selected to be 0.001 and the truncated Back Propagation 

Through Time (BPTT) algorithm is used to compute gradients 

for the LSTM layer, which reduces the parameters and 

simplifies the complexity of the model. 

The number of the total parameters of the hybrid 

CNN-LSTM model is a little greater than the traditional CNN 

architecture and can be viewed as deep architecture through 

time steps with the LSTM parts sharing the same parameters. 

Therefore, this hybrid architecture has more powerful 

representation ability than the traditional RNN and CNN. 

B. The CNN-LSTM Based Wind Farm Model 

The CNN-LSTM based wind farm models can be established 

by using the formulae in section II and the CNN-LSTM model 

in section III-A. As illustrated in (3)-(5), the flow field state 

variable ( | )pq k N k  can be represented as a function fq of the 

previous state variables and control input vector: 

( | ), ( 1| ),..., ( 1| ),
( | )

( | ), ( 1| ),..., ( 1| )

p

p q

p

q k k q k k q k N k
q k N k f

w k k w k k w k N k

   
       

 (17) 

The inflow wind speed ( | )n pV k N k  for the turbine n is a 

function of the inflow wind speeds and control inputs from the 

time step k to the time step k+Np-1 of the turbines in front of it 

and its own. 

By observing (11) and (13), the generator rotation speed of 

the turbine n can be described as 

( | ), ( 1| ),..., ( 1| ),

( | ) ( | ), ( 1| ),..., ( 1| ),

( | ), ( 1| ),..., ( 1| )

gn gn gn p

gn p gn gn gn p

pn pn pn p

k k k k k N k

k N k f T k k T k k T k N k

C k k C k k C k N k



  



   
 

     
 

   

(18) 

Based on (15), the pitch angle for the turbine n at the k+Np 

time step can be represented as 

( | ), ( | ), ( 1 | ),
( | )

..., ( 1 | )

n rn rn

n p

rn p

k k k k k k
k N k f

k N k

  




 
   

  
 (19) 

In the similar way, by using (16), the yaw angle for the 

turbine n at the time step k+Np is 
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( | ), ( | ), ( 1 | ),
( | )

..., ( 1 | )

n rn rn

n p

rn p

k k k k k k
k N k f

k N k

  




 
   

  
 (20) 

The Eqs. (19) and (20) indicate that the pitch and yaw angles 

are directly and respectively related with their previous states at 

the time step k and the control commands until the time step 

k+Np-1. 

By using (9), the power coefficient ( | )pn pC k N k  for the 

turbine n can be described as a function fC of the inflow wind 

speed, the generator speed and the pitch angle of turbine n: 

 ( | ) ( | ), ( | ), ( | )pn p C n p gn p n pC k N k f V k N k k N k k N k      (21) 

Eq. (21) means that the power coefficient of the turbine n at 

the time step k+Np is directly related with the wind speed, the 

generator speed and the pitch angle at the time step k+Np. 

By observing (8), it is obvious that the disk-based thrust 

coefficient ( | )Tn pC k N k   at the time step k+Np is also directly 

related with the wind speed, the generator speed and the pitch 

angle at the time step k+Np. 

By using (7), the wind power captured by the turbine n can 

be represented as a function fP of the inflow wind speed, the 

generator speed, the pitch and yaw angles at the time step k+Np: 

( | ), ( | )
( | )

( | ), ( | )

n p gn p

n p P

n p n p

V k N k k N k
P k N k f

k N k k N k



 

  
      

 (22) 

Based on (17)-(22), the CNN-LSTM models can be 

established to represent the dynamics of a wind farm. By using 

(17)-(21), the inflow wind speed ( | )n pV k N k  of the turbine n 

can be predicted by training a CNN-LSTM model using the 

inflow wind speeds, the generator speeds, the pitch and yaw 

angle control inputs from the time step k to the time step k+Np-1 

of the turbines in front of it and its own as the inputs. By using 

(18)-(21), the generator speed ( | )gn pk N k   for the turbine n 

can be predicted by training a CNN-LSTM model for the 

generator speed by using the wind speeds, the generator speeds, 

the pitch and yaw angle control commands from the time step k 

to the time step k+Np-1 of its own. Based on the above 

CNN-LSTM models, (21) and (22), the captured wind power 

( | )n pP k N k  of the turbine n at the time step k+Np can be 

predicted by training the third CNN-LSTM model that uses the 

inflow wind speeds, the generator speeds, the pitch and yaw 

angle control inputs from the time step k to the time step k+Np-1 

of the turbines in front of it and its own as the inputs. 

IV. THE PREDICTIVE CONTROL DESIGN FOR WIND FARM 

In this section, based on the CNN-LSTM based wind farm 

models in section III, the distributed MPC is designed for 

maximizing the wind farm power generation and minimizing 

the usage of control commands. A decentralized MPC method 

is designed for comparison purpose. 

A. Control Problem Formulation 

The MPC is a receding horizon approach in which the 

control signals are optimized and solved for a future time 

window. In order to obtain the control signals at each time step, 

a quadratic cost function needs to be defined. The cost function 

for the turbine n to be minimized has been chosen in order to 

achieve the maximal output power and minimal actuator usage. 

Therefore, the cost function for the turbine n is 

1 2

1 0

( | ) ( | ) ( | )
p c

N N
T

n n n n n n

i i

J q P k i k q u k i k u k i k
 

       (23) 

where q1n is a minus weight for maximizing the turbine power 

generation, q2n is a weight for penalizing the actuator usage, Np 

and Nc respectively denote the prediction horizon and control 

moves, and 

( | ) ( | ), ( | ), ( | )
T

n gn rn rnu k i k T k i k k i k k i k         

denotes the control input vector at the time step k+i. 

Based on (23), the cost function for maximizing the total 

wind farm power production and minimizing the usage of the 

control commands can be derived as 

3

1

N

n n

n

J q J


  (24) 

where q3n is the weight for the turbine n. 

In addition, in order to guarantee the safe operation of the 

wind farm, the following constraints on the realistic control 

inputs are required to be satisfied. 

min max

min max

min max

( | )

( | )

( | )

0,1,...,

gn gn gn

rn rn rn

rn rn rn

c

T T k i k T

k i k

k i k

i N

  

  

  


  


  
 

 (25) 

min max

min max

min max

( | )

( | )

( | )

0,1,...,

gn gn gn

rn rn rn

rn rn rn

c

T T k i k T

k i k

k i k

i N

  

  

     

     

     
 

 (26) 

where mingnT , maxgnT , mingnT  and maxgnT  are respectively the 

lower and upper limits of the generator torque and torque 

increment for the turbine n, 
minrn , 

maxrn , 
minrn , and 

maxrn  are respectively the lower and upper limits of the pitch 

angle control command and pitch control command increment 

for the turbine n, 
minrn , 

maxrn , 
minrn , and 

maxrn  are 

respectively the lower and upper limits of the yaw angle control 

command and yaw control command increment for the turbine 

n, ( | )gnT k i k  , ( | )rn k i k   and ( | )rn k i k   are 

respectively the incremental values for the generator torque, the 

pitch control command and the yaw angle control command for 

the turbine n at the time step k+i, respectively. 

It is obvious from (26) that the actuator's slew rates are 

limited at each control interval, which improves the reliability 

of the wind farm. Typically, the constraints in (25) and (26) 

result in more precise solutions of the control inputs. 

B. The Predictive Control Design 

The MPC exploits the developed CNN-LSTM based wind 

farm models to predict the future behavior of the variables to be 

controlled at each time interval. Its core idea is to solve a finite 

horizon optimal control problem online at each sampling time 

instant using the currently measured wind farm states and the 

CNN-LSTM based wind farm models, with the control 
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constraints in (25) and (26). The MPC is capable of handling 

multivariable constrained wind farm control problem and 

finding the optimal solution at each time interval by virtue of its 

online optimization nature. Hence, a decentralized MPC and a 

distributed MPC are designed for wind farm control. The 

decentralized MPC consists of N local MPC controllers. Based 

on the objective function in (23) and the trained CNN-LSTM 

based wind farm models in section III, each local MPC 

controller can be designed to control a wind turbine separately 

by resolving a constrained optimization problem online at each 

sampling period. Therefore, 

min  in (23)

subject to (25), (26) and the three CNN-LSTM models with =1,2,...,

nJ

n N





(27) 

The decentralized MPC represents a single wind turbine 

optimization approach in the wind farm and therefore can be 

used to distribute the computational burden to each local MPC 

controller. Its optimal control objective is to maximize the 

power generation of each individual wind turbine and limit the 

usage of its control actuators. 

Rather than running individually like the decentralized MPC, 

the distributed MPC treats the entire wind farm as a 

comprehensive real-time optimization object and determines 

the control signals based on the entire wind farm topology. As a 

supervisory controller, wind turbines are coordinated and run 

iteratively to approximate the optimal operations set by the 

distributed MPC so that the optimal performance of the entire 

wind farm is achieved. This distributed MPC combines 

measurement data and takes into account the trade-off between 

wind energy production and the usage of actuators. By 

following the receding horizon control concept, this 

coordination-based distributed MPC can be defined as 

3

1

min

subject to (25), (26) and the three CNN-LSTM models with =1,2,...,

N

n n

n

J q J

n N










  (28) 

The objective function (28) makes the distributed MPC 

developed for the wind farm different from the aforementioned 

decentralized MPC. It is a cooperative wind farm level 

closed-loop control paradigm. 

In order to solve the control problems in (27) and (28), the 

differential evolution (DE) algorithm is used, which is selected 

due to the complexity of the trained CNN-LSTM wind farm 

models and the considered objective functions in (27) and (28). 

As a stochastic optimization algorithm, the DE algorithm does 

not rely on the traditional gradient descent method for 

convergence and can therefore find the global optimal solutions 

with high efficiency [22]. In comparison with the evolutionary 

optimization algorithms such as genetic algorithm or particle 

swarm, the DE algorithm has fast convergence speed that is 

suitable and efficient for optimizing large-scale wind farms in 

an iterative way. After the optimization at each time interval, an 

optimal control sequence can be subsequently obtained in each 

finite horizon and the first step of the optimal control sequence 

is applied and then the optimization procedure repeats itself. 

The above DNL-based distributed MPC is described by the 

block diagram in Fig. 3. 

Cost function 

in (24)

Cost function 

minimization 

using DE

Constraints in 

(25) and (26)

The offshore 

wind farm model

The CNN-LSTM 

based wind farm 

models

( 1 | )nV k k ( 1 | )gn k k

( 1 | )gnT k k

( | )n pP k N k

The proposed distributed MPC
( )nu k

 
Fig. 3 Block diagram of the proposed distributed MPC 

V. CASE STUDY AND VALIDATIONS 

This section verify the feasibility and effectiveness of the 

CNN-LSTM based wind farm models and the two MPC 

methods by simulation studies with high fidelity LES data. 

A. The Data Preparation 

The original data for training the CNN-LSTM models and 

designing the predictive control methods are obtained from the 

high-fidelity simulations from the Simulator fOr Wind Farm 

Applications (SOWFA), developed by the National Renewable 

Energy Laboratory (NREL). The simulations are run based on a 

two-turbine and a nine-turbine wind farm models, respectively. 

The SOWFA solves the filtered, unsteady, three-dimensional, 

incompressible Navier–Stokes equations over a finite spatial 

and temporal mesh, accounting for the geostrophic and Coriolis 

forcing terms, and can provide accurate and high-fidelity 

simulation data of turbulent atmospheric flows together with 

the analysis of wind farm and wind turbine fluid physics and 

structural response at a fraction of the cost of field tests. As a 

LES solver, the SOWFA was designed based upon the coupling 

of the OpenFOAM Computational Fluid Dynamics (CFD) 

tool-kit [23] with the high- fidelity NREL’s aero-elastic wind 

turbine simulation tool OpenFAST. Each wind turbine in the 

SOWFA is designed as the NREL’s 5 MW reference wind 

turbine and is represented using the actuator line model coupled 

with the OpenFAST to address the flow interactions. The 

aerodynamics or the “momentum” part of each turbine model is 

replaced by FAST inflow information at blade elements. The 

interested readers are referred to [24] for more details. 

The wind farms are simulated with the turbulence closure 

and the atmospheric boundary layer for the wind flow solution. 

In addition, different from onshore wind farms, offshore wind 

farms are greatly influenced by atmospheric thermal conditions 

and complex sea states. In the SOWFA, the thermal effects are 

considered through the precursor simulation of atmosphere 

boundary layer while the sea states are considered via the sea 

surface roughness estimation. The consideration of these 

properties makes SOWFA a suitable tool in simulating offshore 

wind farms operating under realistic conditions. The simulated 

LES data are able to capture the dominant dynamics of the 

offshore wind farms including the wake interactions. 

In the chosen simulation scenarios, an 8 m/s inflow wind 

speed from the left along the x axis is set as the wind flow input 

for the wind farm (Figs. 7 and 12). The turbines are operated 

with generator torque control for maximizing the wind farm 

power production. The simulation results from the SOWFA are 

then employed to establish the CNN-LSTM models in section 
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III-B. The number of the CNN-LSTM wind farm models is 

decided based on the prediction horizon Np and the control 

moves Nc, where Nc is decided as Np-1, and Np is chosen as 3 for 

three-step look ahead prediction. The CNN-LSTM models are 

designed and trained in Keras with TensorFlow backend. The 

architecture of the used CNN-LSTM models is designed based 

on Fig. 2 and contains seven layers followed by a Dense layer 

on the output. The CNN-LSTM models are trained to build up 

internal states and update weights using the BPTT with a batch 

size of 78 across the internal vector representations of input 

sequences described in section III-B. The training data are 

normalized and rescaled into the range of [0, 1] before training, 

which stabilizes and speeds up the DNL training using gradient 

descent. 

B. The Deep Neural Learning Results 

The accuracy of the trained CNN-LSTM models has been 

tested against the real values and the mean absolute percentage 

error (MAPE) and the root mean square error (RMSE) are 

chosen to evaluate the prediction performances of these models. 

The MAPE and RMSE are defined respectively as 

1

ˆ1
MAPE( ) 100%

M
i i

i

i i

y y
y

M y


   (29) 

1 2

2

1

1
ˆRMSE( )

M

i i i

i

y y y
M 

 
  
 

  (30) 

where yi is the real value, ŷi is the predicted value and M is the 

total number of data samples. 

 
Fig. 4 The prediction results of the wind speed 

 
Fig. 5 The prediction results of the generator speed 

 
Fig. 6 The prediction results of the generator power 

The test results of these CNN-LSTM models for predicting 

the inflow wind speed, the generator speed and power of the 

rear turbines in the wind farms (Turbine 2 in Fig. 7 and Turbine 

8 in Fig. 12) are shown in Figs. 4-6, as representatives of the 

results from these models. The scattered red points in the 

figures are used to represent the test results. The x coordinates 

of these points denote the predicted values while their y 

coordinates represent the corresponding actual or real values. 

The dashed green diagonal lines are used to represent the exact 

match between the actual and predicted values. As the figures 

show, the scattered points are obviously aligned with the 

diagonal lines, which means that the predicted values of the 

inflow wind speed, generator speed and power are in very good 

agreement with their real values. Hence, the good prediction 

accuracy of the used CNN-LSTM prediction models is 

achieved. The prediction accuracy of the inflow wind speed 

seems to be a bit lower than the other two, which may be 

attributed to the relatively large dimension of the input data into 

the CNN-LSTM models of the wind speed prediction. The 

mean values of the MAPE for the inflow wind speed, generator 

speed and power predictions of the two turbines are 

respectively 2.91%, 0.4432% and 1.517%, and the 

corresponding mean values of the RMSE are respectively 0.205, 

0.46 and 0.02238. All of these MAPE and RMSE values 

indicate that the relative prediction accuracy (calculated by 

100%-MAPE) of the trained CNN-LSTM models can reach 

97% or more, which is sufficiently accurate for predicting the 

necessary outputs for the wind farm control. 

C. The Predictive Control Results 

The two wind farm cases are used to verify the effectiveness 

of the predictive control approaches. 

1) Case I: two-turbine wind farm 

As shown in Fig. 7, the x coordinates of the turbines 1 and 2 

are respectively 400 m and 1032 m, and the y coordinates of the 

two turbines are respectively 400 m and 400.096 m. 

In the MPC design, for each wind turbine, 9 CNN-LSTM 

prediction models are established including the inflow wind 

speed, the generator speed and the generator power at 1st, 2nd 

and 3rd time step ahead, and there are totally 18 CNN-LSTM 

prediction models for the two-turbine case. 
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The two predictive control methods are designed based on 

the trained 18 CNN-LSTM models and their definitions in (27) 

and (28). The weights for the cost functions in (23) and (24) are 

chosen to be q11=q12=-60, q21=q22=0.01, q31=1, q32=0.5. The 

decision variables are chosen to be the generator torques of the 

two turbines, and 10 time steps are used to capture the dominant 

dynamic wake interactions of the wind farm. The DE algorithm 

is used to obtain the optimal solutions for the two control 

methods at each time interval. 

Fig. 7 The offshore two-turbine wind farm configuration using the SOWFA 

Based on the trained CNN-LSTM models, the two MPC 

methods have been implemented and verified individually. As 

shown in Figs. 8 and 9, the distributed MPC has obviously 

outperformed the decentralized MPC in improving the wind 

farm power generation. By using the distributed MPC, the 

averaged wind farm power (defined as the total wind farm 

power divided by the number of wind turbines in the wind 

farm) can be increased by 8% to 30% in comparison with the 

decentralized MPC. The averaged and maximum increase rates 

are respectively 18.8% and 30%. The results demonstrate that 

the distributed MPC is clearly more effective in maximizing 

wind farm power generation than the decentralized MPC that is 

more “greedy” due to the use of the cost function (23) for 

individual wind turbine while not considering the power 

optimization at the whole wind farm level. 

 
Fig. 8 The averaged wind farm power generations based on two types of the 

MPC controls 

 
Fig. 9 The wind farm power increase rate of the distributed MPC 

As illustrated in Fig. 10, the generator torques from the two 

MPC control methods for the front turbine (turbine 1) vary 

around 20 kNm, while they vary between 6 kNm and 18 kNm 

for the rear wind turbine (turbine 2). This is because that the 

front wind turbine has much higher inflow wind speed and the 

generator torque needs relatively large response to adapt to the 

changing wind speed and hence to capture the maximum wind 

power. Also, as can be seen from the figure, the generator 

torques from the distributed MPC method generally have 

smaller variation rates than the decentralized MPC method, 

which indicates that the distributed MPC has the potential to 

lead to more reliable control solutions. The computation time at 

each time step using the distributed MPC has also been 

calculated by using conventional single core computation and 

multi-core in parallel computation. 

As shown in Fig. 11, comparing with the conventional 

computation method, the execution time at each time step is 

significantly reduced by around half due to the use of the 

multiple CPUs. Considering that the sampling time interval of 

the wind farm is around 5 s or longer, the computational time of 

around 1s or 0.7s is sufficiently fast enough to generate a timely 

control solution within a sampling time interval and therefore 

can guarantee safe and reliable wind farm operations. 

 
Fig. 10 The generator torques of the two turbines using the two types of MPC 

controls, TgF and TgR denote the generator torques of the front (turbine 1) and 

rear (turbine 2) wind turbines 
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Fig. 11 The computational time at each time step using the distributed MPC 

2) Case II: nine-turbine wind farm 

A nine-turbine wind farm case is studied to further verify the 

effectiveness of the two MPC methods since the nine-turbine 

wind farm has more complex wake interactions and thus can 

provide a more in-depth insight into the wind farm control than 

the two-turbine wind farm case. 

As shown in Fig. 12, the x-coordinates of turbines in the 

simulation grid are designed as [0.4048, 0.4024, 0.40, 1.0368, 

1.0344, 1.0320, 1.6688, 1.6663, 1.6639] ×103 m, and their 

y-coordinates are designed as [1.1584, 0.7792, 0.40, 1.1543, 

0.7752, 0.3960, 1.1503, 0.7711, 0.3919] ×103 m. The wind 

speed input of the wind farm is also 8 m/s. 

For each wind turbine, 9 CNN-LSTM prediction models 

including wind speed, generator speed and power are 

established for the MPC design. Hence, 81 CNN-LSTM 

prediction models are used for the 9-turbine wind farm case. 

The two MPC methods are designed based on the trained 81 

CNN-LSTM models (27) and (28). The weights for the cost 

functions in (23) and (24) are chosen to be q1n =-50, q2n=0.02, 

(n=1, 2, .., 9), q3i=1, q3j=0.5, q3k=0.25, (i=1, 2, 3, j=4, 5, 6, k=7, 

8, 9). The turbine generator torques are used as the decision 

variables in the 10 time-step simulation. The optimal solutions 

for the two control methods at each time interval are also 

obtained by using the DE algorithm. 

Fig. 12 The nine-turbine offshore wind farm configuration using the SOWFA 

The nine-turbine wind farm has been simulated with the LES 

data based on the two MPC methods. The simulation results are 

presented in Figs. 13 and 14. As the figures show, the 

distributed MPC is clearly more capable of maximizing the 

wind farm power production than the decentralized MPC. In 

comparison with the decentralized MPC, the averaged wind 

farm power increases by 5% to 38% when the distributed MPC 

method is used. As illustrated in Fig. 14, the averaged power 

increase rate is 17% and the maximum increase rate is 38% 

when the distributed MPC method is applied. The better 

performance of distributed MPC is attributed to the fact that it is 

a cooperative farm-level control paradigm that coordinates all 

the wind turbines to maximize the total power generation at 

farm scale, while the decentralized MPC represents a single 

wind turbine optimization approach that aims to maximize the 

power generation of each individual wind turbine. The latter 

does not necessarily lead to the maximal total power generation 

at farm scale due to the complicated interactions (e.g., wakes) 

between the wind turbines. Thus here the former results in up to 

38% increase on power generation at farm scale compared with 

the latter. The test results in Figs. 13 and 14 are also in good 

agreement with that in Figs. 8 and 9, which further 

demonstrates the effectiveness of the distributed MPC in 

improving the wind farm power generations. 

 
Fig. 13 The averaged wind farm power generations using the MPC methods 

 
Fig. 14 The wind farm power increase rate of the distributed MPC 

VI. CONCLUSION 

The paper has explored the DNL based MPC for offshore 

wind farm using high fidelity LES data. The DNL architecture 

has been designed as the hybrid CNN-LSTM models which 

combine the speed of CNNs with the order sensitivity of the 

LSTM. The hybrid models can leverage the local and dense 

property from convolution operation and learn the temporal 

structure by storing information in the LSTM units, and hence 

are particularly suitable for closed-loop wind farm control as it 

is dynamic, including pitch, yaw and generator torque control 

capabilities, and handling temporally and spatially varying 

wind inflows. Then, the distributed and decentralized MPC 

methods were developed to resolve constrained optimal control 

problems of the wind farm power generation based on the 

trained CNN-LSTM models which considered the wake 
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coupling interactions among the turbines. Extensive 

simulations have been conducted to evaluate the accuracy and 

effectiveness of the hybrid models and the MPC methods by 

using high fidelity LES data through a two-turbine and a 

nine-turbine wind farm cases. The test results show that the 

trained CNN-LSTM models achieved a prediction accuracy of 

more than 97%. Compared with the decentralized MPC, an 

increase of up to 38% power generation has been achieved by 

using the distributed MPC. In addition, the computational 

efficiency of the distributed MPC is high enough to be 

applicable in real-time wind farm operations. 
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