
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/136413 

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136413
mailto:wrap@warwick.ac.uk


 
 

Development of new diagnostic tools to identify 

canine reservoir super-spreaders  

of Leishmania infantum 
 

 
by 

 
 

Aurore Lison 
 
 

 
 

A thesis submitted in fulfillment of the requirements for 

the degree of Doctor of Philosophy. 

 
School of Life Sciences, University of Warwick 

 
 
 
 
 

December 2018 
 
 
 



1 
 

Table of contents 
 

LIST	OF	TABLES	...........................................................................................................................	5	

LIST	OF	FIGURES	.........................................................................................................................	8	

ACKNOWLEDGMENTS	..............................................................................................................	13	

DECLARATION	...........................................................................................................................	14	

SUMMARY	...................................................................................................................................	15	

LIST	OF	ABBREVIATIONS	.......................................................................................................	16	

CHAPTER	1.	 INTRODUCTION	................................................................................................	17	

1.1	 GENERAL	BACKGROUND	.......................................................................................................	17	
1.2	 CANINE	VISCERAL	LEISHMANIASIS	......................................................................................	18	
1.2.1	 COURSE	OF	INFECTION	IN	RESERVOIR	DOGS	........................................................................................	18	
1.2.2		INFECTIOUSNESS	AND	SUPER-SPREADERS	...............................................................................................	19	
1.2.4	ROLE	OF	ASYMPTOMATIC	CARRIES	.............................................................................................................	22	
1.3	 INTERVENTIONS,	CONTROL	AND	PREVENTION	PROGRAMS	..................................................	22	
1.3.1		VACCINES	IN	DOGS	..........................................................................................................................................	23	
1.3.2		VECTOR	CONTROL	..........................................................................................................................................	23	
1.3.3		CHEMOTHERAPY	FOR	HUMANS	...................................................................................................................	24	
1.3.4		CHEMOTHERAPY	FOR	DOGS	.........................................................................................................................	25	
1.3.5		DOGS	CULLING	AND	CONSEQUENCES	.........................................................................................................	26	
1.4	 DIAGNOSTIC	TOOLS	OF	VL	...................................................................................................	28	
1.4.1	 EVALUATION	OF	CURRENT	DETECTION	TOOLS	FOR	LEISHMANIA	INFECTION	.............................	28	
1.4.2	 DIAGNOSTIC	TOOLS	USED	BY	THE	VISCERAL	LEISHMANIASIS	CONTROL	AND	SURVEILLANCE	
PROGRAM	IN	BRAZIL	..................................................................................................................................................	33	
1.4.3	 IMPROVEMENT	STRATEGIES	FOR	THE	DETECTION	LEISHMANIA	INFECTION	..............................	35	
1.5	 MATHEMATICAL	MODELLING...............................................................................................	36	
1.5.1	 MODELLING	INFECTIOUS	DISEASES	........................................................................................................	36	
1.5.2	 MODELS	OF	VISCERAL	LEISHMANIASIS	..................................................................................................	37	
1.5.3	 CURRENT	MODELS	OF	ZVL	IN	CANINE	POPULATION	.........................................................................	39	
1.5.4	 MODELLING	SUPER-SPREADERS	IN	OTHER	INFECTIOUS	DISEASES	................................................	38	
1.6	 PROJECT	SUMMARY	AND	RATIONAL	.....................................................................................	41	
1.6.1	 SUMMARY	OF	THE	PROJECT	......................................................................................................................	41	
1.6.2	 GENERAL	AIMS	OF	THE	PROJECT	.............................................................................................................	41	

CHAPTER	2	VALIDATION	OF	CANINE	SERA	COLLECTION	FROM	BRAZIL	AND	
CROSS-REACTIVITY	TEST	FOR	TRYPANOSOMA	CRUZI	AND	LEISHMANIA	INFANTUM
	 43	

2.1	 INTRODUCTION	....................................................................................................................	43	
2.2	 METHODS	.............................................................................................................................	44	
2.1.1	DESCRIPTION	OF	THE	SAMPLE	COLLECTION	.............................................................................................	44	



2 
 

2.2.2	 ENZYME-LINKED	IMMUNOSORBENT	ASSAY	WITH	CLA	....................................................................	46	
2.2.3	 ENZYME-LINKED	IMMUNOSORBENT	ASSAY	WITH	CHAGAS	ANTIGENS	..........................................	47	
2.3	 RESULTS	AND	DISCUSSION	...................................................................................................	48	
2.3.1	 COMPARATIVE	STUDY	OF	SAMPLE	PERFORMANCE	ACROSS	TIME	...................................................	48	
2.3.2	 CROSS-REACTIVITY	ASSAYS	OF	THE	SAMPLES	AGAINST	CHAGAS	DISEASE	...................................	50	
2.4	 CONCLUSION	........................................................................................................................	52	

CHAPTER	3	 IMPROVED	SERODIAGNOSIS	IN	LEISHAMANIA-INFECTED	CANINE	
POPULATION:	LONGITUDINAL	EVALUATION	OF	NOVEL	AND	CURRENT	ANTIGENS
	 53	

3.1	 INTRODUCTION	....................................................................................................................	53	
3.2	 MATERIALS	AND	METHODS	..................................................................................................	55	
3.2.1	 ORIGINAL	STUDY	COLLECTION	OF	DOG	SERA	FROM	BRAZIL	............................................................	55	
3.2.2	 SAMPLE	SELECTION	....................................................................................................................................	55	
3.2.3	 STORAGE	AND	CONVERSATION	OF	SAMPLES	........................................................................................	55	
3.2.4	 CONTROL	GROUP	.........................................................................................................................................	55	
3.2.5	 DEFINITION	OF	CONFIRMED	INFECTION	...............................................................................................	56	
3.2.6	 LEISHMANIAL	ANTIGENS	...........................................................................................................................	56	
3.2.7	 ENZYME-LINKED	IMMUNOSORBENT	ASSAY..........................................................................................	57	
3.2.8	 THRESHOLD	DETERMINATION	.................................................................................................................	58	
3.2.9	 STATISTICAL	ANALYSIS	..............................................................................................................................	58	
3.3	 RESULTS	...............................................................................................................................	59	
3.3.1	 CROSS-SECTIONAL	ANALYSIS	OF	PERFORMANCE	OF	THE	ANTIGENS	TO	DETECT	INFECTION	IN	
DOG	COHORT	................................................................................................................................................................	59	
3.3.2	 LONGITUDINAL	ANALYSIS	OF	ANTIGEN	DETECTION...........................................................................	62	
3.3.3	 COMBINED	ANTIGENS	TO	IMPROVE	DETECTION	OF	LEISHMANIA	INFECTION	.............................	65	
3.4	 DISCUSSION	..........................................................................................................................	67	

CHAPTER	4	 SERODETECTION	OF	INFECTIOUSNESS	:	IDENTIFICATION	OF	
LEISHMANIA	SUPER-SPREADERS	IN	MIXED	CANINE	POPULATION.	COMPARATIVE	
STUDY	OF	CURRENT	AND	NOVEL	ANTIGEN-BASED	TOOLS.	.........................................	72	

4.1	 INTRODUCTION	....................................................................................................................	72	
4.2	 MATERIALS	AND	METHODS	..................................................................................................	73	
4.2.1	 ORIGINAL	STUDY	DESIGN	(APRIL	1993	TO	JULY	1995)	.................................................................	73	
4.2.2	 SAMPLE	SELECTION	....................................................................................................................................	74	
4.2.3	 DEFINITION	OF	CONFIRMED	INFECTION	...............................................................................................	74	
4.2.4	 MEASURES	OF	INFECTIOUSNESS	(THE	ABILITY	TO	TRANSMIT	THE	INFECTION)	........................	75	
4.2.5	 LEISHMANIA	ANTIGENS	CANDIDATES	....................................................................................................	75	
4.2.6	 ENZYME-LINKED	IMMUNOSORBENT	ASSAY	(ELISA)	........................................................................	76	
4.2.7	 DEFINING	THRESHOLD	VALUES	...............................................................................................................	76	
4.2.8	 STATISTICAL	ANALYSES	.............................................................................................................................	77	
4.3	 RESULTS	...............................................................................................................................	77	
4.3.1	 PERFORMANCE	OF	ANTIGENS	TO	DETECT	INFECTIOUSNESS	IN	ELISA	.........................................	77	
4.3.2	 TIMES	OF	ANTIBODY	DETECTION	RELATIVE	TO	THE	ONSET	OF	INFECTIOUSNESS	......................	81	
4.3.3	 COMBINING	ANTIGENS	...............................................................................................................................	83	
4.4	 DISCUSSION	..........................................................................................................................	86	

CHAPTER	5	DEVELOPMENT	OF	NOVEL	RECOMBINANT	ANTIGEN	KL914		TO	
IDENTIFY	VL	SUPER-SPREADERS	IN	THE	CANINE	RESERVOIR	POPULATION	.........	91	



3 
 

5.1	 INTRODUCTION	....................................................................................................................	91	
5.2	 MATERIALS	AND	METHODS	..................................................................................................	92	
5.2.1	 GENE	DESIGN	AND	PROTEIN	EXPRESSION	.............................................................................................	92	
5.2.2	 CHARACTERISTICS	OF	SERA	COLLECTION	.............................................................................................	99	
5.2.3	 ENZYME-LINKED	IMMUNOSORBENT	ASSAY.......................................................................................	100	
5.2.4	 STATISTICAL	ANALYSES	..........................................................................................................................	100	
5.3	 RESULTS	.............................................................................................................................101	
5.3.1	 CHARACTERISTIC	OF	RECOMBINANT	ANTIGEN	KL914	.................................................................	101	
5.3.2	 EXPRESSION	OF	THE	PROTEIN	KL914	...............................................................................................	102	
5.3.3	 DETECTION	OF	INFECTIOUSNESS	IN	ASSAYS	USING	PROTEIN	KL914	........................................	104	
5.3.4	 THRESHOLDS	DETERMINATION	AND	PERFROMANCE	.....................................................................	104	
5.3.5	 DETECTION	TIMES	BY	THRESHOLD-BASED	ANTIGEN......................................................................	106	
5.3.6	 DETECTION	OF	INDIVIDUAL	TRANSMISSION	EVENTS	......................................................................	107	
5.4	 DISCUSSION	........................................................................................................................107	

CHAPTER	6	 EVALUATION	OF	THE	NOVEL	PROTEIN	KL914	IN	DIPSTICK	FORMAT,	A	
NEWLY	PORPOSED	RAPID	DIAGNOSTIC	TOOL	FOR	THE	DETECTION	OF	
LEISHMANIA	SUPER-SPREADERS	........................................................................................109	

6.1	 INTRODUCTION	..................................................................................................................109	
6.2	 MATERIALS	AND	METHODS	................................................................................................110	
6.2.1	 PRODUCTION	OF	PROTEIN	KL914	......................................................................................................	110	
6.2.2	 PERFORMANCE	OF	PROTEIN	IN	IMMUNO-ASSAYS	(KL914-ELISA)	..........................................	110	
6.2.3	 DEVELOPMENT,	PRINCIPLE	AND	INTERPRETATION	OF	RAPID	TEST	FORMAT	(RDT)	............	110	
6.2.4	 KALAZAR	DETECT™	CANINE.................................................................................................................	112	
6.2.5	 SERA	SELECTION	FOR	RDT	EVALUATION	..........................................................................................	112	
6.2.6	 STATISTICAL	ANALYSES	..........................................................................................................................	112	
6.3	 RESULTS	.............................................................................................................................113	
6.3.1	 VALIDATION	OF	KL914-RDT	DIPSTICK............................................................................................	113	
6.3.2	 KL914-RDT	ON	LONGITUDINALLY	COLLECTED	SERA...................................................................	115	
6.3.3	 COMPARATIVE	STUDY	OF	PERFORMANCE	OF	KL914	IN	RDT	AND	ELISA	..............................	117	
6.4	 DISCUSSION	........................................................................................................................119	

CHAPTER	7	MODELLING	CANINE	VL	TRANSMISSION:	IMPACT	OF	NOVEL	
DIAGNOSTIC	TOOL	FOR	SUPERS-SPREADERS	ON	CANINE	VL	TRANSMISSION	RATES
	 121	

7.1	 INTRODUCTION	..................................................................................................................121	
7.2	 MATERIAL	AND	METHODS	.................................................................................................122	
7.2.1	 INITIAL	MODEL	OF	VL	TRANSMISSION	...............................................................................................	122	
7.2.2	 INCLUSION	OF	THE	DIAGNOSTIC	TOOL	................................................................................................	124	
7.2.3	 INTERVENTIONS	MODELLED	BASED	ON	DIAGNOSTIC	TOOL...........................................................	126	
7.3	 RESULTS	.............................................................................................................................128	
7.3.1	 TRANSMISSION	MODEL	AND	CONDITIONS	FOR	DIAGNOSTIC	TOOL	..............................................	128	
7.3.2	 CULLING	SCENARIO	WITH	CONTINUOUS	INTERVENTION	...............................................................	129	
7.3.3	 PULSED	INTERVENTION	FOR	THE	CULLING	SCENARIO	...................................................................	136	
7.3.4	 COMPARATIVE	ANALYSIS	:	FIELD	VERSUS	NOVEL	SCREENING	......................................................	142	
7.4	 DISCUSSION	........................................................................................................................143	

CHAPTER	8	GENERAL	DISCUSSION	...................................................................................150	



4 
 

8.1	 SUMMARY	OF	FINDINGS......................................................................................................150	
8.2	 GLOBAL	DISCUSSION	AND	CONTEXT	OF	THIS	PROJECT	.......................................................152	
8.3	 STUDY	LIMITATIONS	AND	FURTHER	WORK	.......................................................................155	

REFERENCES	............................................................................................................................158	

APPENDIX	I	–	DOG	CHARACTERIZATION	.....................................................................................188	
APPENDIX	II	-	POSSIBLE	THRESHOLDS	VALUES	FOR	EACH	CANDIDATE	AND	THE	PROPORTION	OF	
SAMPLE	DETECTION	AMONG	GROUPS	OF	DOGS	(NEVER,	MILDLY,	HIGHLY	INFECTIOUS)..............194	
 
 
 
  



5 
 

List of Tables 

 

Table 1.1 –  List of actual Leishmania antigens with the related proteins, the origin 
species and  the references where published at first……………………………….…..33 
 
Table 2.1 – Results of the statistical tests using a non-parametric Mann-Whitney test, 
comparing the samples positive for Leishmania (n=180) and the results obtained for the 
Chagas antigens (n=180)…………………………………………………………..…50 
 
Table 2.2 – Complete table of results of the statistical test, Tukey’s multiple 
comparison test, comparing the mean of each ELISA result for Chagas antigen and the 
Leishmania control……………………………………………………………..…….52 
 
Table 3.1 – Threshold values determined for each antigen with sensitivity and 
specificity when applied on the test population. False positives and negatives, as well 
as the predictive values were reported for each antigen………………………………62 
 
Table 3.2 – Longitudinal evolution of antigens compared for times after confirmed 
infection as represented in Figure 3.4(A)………………….………….…………..….63 
 
Table 3.3 – Comparison on the longitudinal evolution of antigen detection in serum, 
comparing time before and time after confirmed infection, for 26 naturally infected 
dogs using the antigens (Mann-Whitney test) ………………..…………..…………..63 
 
Table 3.4 – Combined antigens analysis reporting ROC curves with AUC values (and 
95% confidence interval), thresholds (based Youden Index), sensitivities and 
specificities (with 95% confidence interval) when applied on the population. All curves 
were significant (p<0.0001) based the non-parametric method as described by Hanley 
and McNeil, 1982)……………………………………………………………………66 
 
Table 4.1 – Table summarizing the ROC curves analysis, threshold selection and 
performance of each antigen. Receiver-Operator Characteristics (ROC) curves 
analysis, determined by the boundary between the control group composed of 72 never 
infectious samples and the positive group composed of 29 highly infectious samples 
from the Brazilian cohort. Thresholds were determined based on point xenodiagnosis, 
selected to be the best performing using ROC curves and applied to samples selected 
for longitudinally classified dogs within the xenodiagnoses study. The proportion with 
related percentage of samples detected in each group (never, mildly, and highly) by 
each possible cut-off value for indicating the performance of the diagnostic tool. 
Respective sensitivity and specificity towards detecting super-spreaders is reported 
with the 95% confidence interval (CI); and the degree of agreement compared to the 
infectiousness data was reported with the kappa coefficient (k)………………..…….80 
 



6 
 

Table 4.2 – Mean of detection time in days for each group of dogs (never, mildly, and 
highly infectious dogs) using threshold-based antigen assays and analysis by Kaplan-
Meier based longitudinal analysis, compared to the onset of infectiousness determined 
during xenodiagnoses follow-up from the moment of introduction in the field……….81 
 
Table 4.3 – For each threshold-based antigen, number of infected flies detected at the 
seroconversion time point was reported for each group of dogs. The ratio is based on 
the positive flies detected to the total positive flies for a group of dogs (never, mildly, 
and highly infectious dogs) using threshold-based antigen assays and analysis by 
Kaplan-Meier based longitudinal analysis…………………………..……………..…83 
 
Table 4.4 – Summary table of ROC curves, threshold and performance for combined 
antigens. Receiver-Operator Characteristics (ROC) curves were based on the control 
group is composed of never infectious dogs (n=72) while the positive group was made 
of 29 super-spreaders. The threshold was selected based on the Youden Index, and the 
performance calculated towards the detection of super-spreaders (as sensitivity, 
specificity and detection of samples)……………………………………………..…..85 
 
Table 5.1 – Based on each threshold value, proportion and the related percentage of 
samples detected in groups of dogs (never, mildly, highly) by each possible values of 
cut-offs for indicating the performance of the diagnostic tool. Thresholds were 
determined based on point xenodiagnostic and applied on samples selected for 
longitudinally classified dogs within the xenodiagnoses study…………….……….105 
 
Table 6.1 – Super-spreaders dog (A78) and related data collection, comparing 
xenodiagnosis detection, KL914-ELISA and KL914-RDT detection….…………...116 
 
Table 6.2 – Comparative study of the detection of samples from highly, mildly and 
never infectious dogs using the rapid diagnostic prototype based on the novel protein 
(KL914-RDT) and immunoassays (KL914-ELISA) in preliminary assays. Performance 
of KL914-RDT and KL914-ELISA to detect super-spreaders in a mixed population. 
The degree of agreement between the test and the reality (as measured by 
xenodiagnosis) data was measure using Cohen’s method with the percent and the kappa 
coefficient…………………………………………………………………….……..117 
 
Table 6.3 – Comparison of the detection between KL914-RDT and KL914-ELISA 
with degree of agreement measured using Cohen’s method and the kappa 
coefficient…………………………………………………………………………...118 
 
Table 7.1 – Definitions and estimates of parameters and variables used in this 
model…………………………………………………………………….………….127 
 
Table 7.2 – Reduction of transmission rate (%) over time (A) with a pulsed intervention 
with 3 screenings per year, 50% coverage, duration of 2 weeks for each screening and 



7 
 

50% culling (B) with a continuous intervention where the daily screening rate is 0.0014. 
Screening was based on the current field method : DPP-RDT+ELISA in sequence. Note 
that the intervention starts after 20 years of equilibrium…………………….………131 
 
Table 7.3 – Interpretation of Figure 7.5 (A) for which, to reach a reduction in 
transmission of 80 to 90% after 1 year of intervention, optimal conditions of screening 
and culling rates were calculated. The performance of RDT (d and dz) was 
constant………………………………………………………………………….…..133 
 
Table 7.4 – Impact of the time spent in intervention on the reduction in transmission, 
calculated for both the ELISA and the RDT at a culling rate of 100% and the screening 
rate set at their breakpoint of transmission. The performance of the RDT and ELISA (d 
and dz) were constant. The percentage of reduction are compared to the non-intervention 
levels…………………………………………………………………………...……134 
 
Table 7.5 – Impact of the time spent in intervention on the reduction of transmission, 
calculated for both the ELISA and the RDT at a culling rate of 100%, a coverage at 
100% and 5 screenings per year. The performance of RDT and ELISA (d and dz) were 
constant. Note that the percentage of reduction here are compared to the non-
intervention levels.……………………………………………………………..…...140 
 
Table 7.6 – Comparative table of the newly-proposed ELISA and RDT, versus the 
current field screening in their respective conditions; and their impact of the time spent 
in intervention on the reduction of transmission. For the ELISA and the RDT, the pulse 
intervention involves 100% culling rate with a coverage at 100% and 5 screenings per 
year whereas the continuous testing had a screening rate at 0.02 and the culling rate of 
100%. For the current tests, the coverage is 50% to represent the reality of screening in 
the field………………………………………………………………………….…..142 
  



8 
 

List of Figures 

 

Figure 1.1 – Schematic representation of the structure of single proteins K26 and K9 
and of recombinant proteins rK39, rK28 and rK34…………………………………..33 
 
Figure 1.2 – Schematic representation by Rock et al. (2016) of the mathematical model 
developed in Costa et al. (2013) including canine VL including infectiousness, clinical 
status of dogs, and current diagnostic methods for infection in the dog 
population…………………………………………………………………………….40 
 
Figure 2.1 – The antibodies units detected by the crude Leishmania antigen in 1996 
and 2008. Linear correlation was reported by the R2 (0.77)…………………………..48 
 
Figure 2.2 – Level of antibodies units detected by the crude Leishmania antigen in 
1996 (A) and by rK39 recombinant antigen in 2008 (B), compared to the related results 
in 2017. Linear correlations were reported by the coefficient R2 (0.55 and 0.66, 
respectively)…………………………………………………………………….....…49 
 
Figure 2.3 – The absorbance level detected against the Chagas antigens (TCF2, TCF26, 
TCF43, ICT8.2) and compared with a positive detection test (Leishmania antigen). The 
groups are composed of 180 samples positive for Leishmania infection and 78 samples 
negative for Leishmania infection. On each graph, the dotted line representds the 
threshold for the Chagas antigens. Similar, in graph (A) the mean and error bars (SEM) 
are indicated whereas in graph (B) the mean and the standard deviation (SD) are 
indicated. on each graph. For both, the statistical test used is a non-parametric Mann-
Whitney test which results reported in Table 2.1…………………..……………..…..51 
 
Figure 3.1 – Mean absorbance levels of antibodies detected  against the leishmanial 
antigen candidates (rK39, rK28, rK26, rK9, rK34, rKR95, rK18, TR18, and CLA) for 
uninfected (n=113) and infected (n=180) dogs of the Brazilian cohort. Mann-Whitney 
test was performed for each of the antigen (***p<0.0001)……………………..…….59 
 
Figure 3.2 – Receiver-Operator Characteristics (ROC) curves determined for antigen 
candidates. The control group is composed of 113 uninfected samples from Brazil, and 
the positive group is composed of 180 infected samples from the same Brazilian cohort. 
The area under the ROC curve (AUC), the 95% confidence interval, and the p-value 
were reported for the different antigens………………………………………………60 
 
Figure 3.3 – Illustration of the impact of threshold values applied on the antigen K26 
absorbance values. The median and the 95% CI was indicated separately for uninfected 
and infected, whereas the thresholds were applied over the complete set of absorbance. 
Threshold values were 0.476 for Mean+3SD; 0.354 for Mean+2SD; 0.188 for the 



9 
 

Youden Index and 0.132 for the values indicating the upper 95% CI of the mean of non-
infected dogs…………………………………………………………………..……...61 
 
Figure 3.4 – (A) Longitudinal evolution of the mean detection of antibodies in serum 
for 26 naturally infected dogs using the antigens. From the point of infection, the level 
of antibodies could be measured up to 20 months. Negative values represent months 
prior to infection. (B) Longitudinal evolution of the mean detection of antibodies in 
serum for endemic controls (n=36) using the antigens………………………….…….64 
 
Figure 3.5 – Mean of net absorbance levels and standard errors detected for each 
combination of antigen candidates for the uninfected group (n=113) and the infected 
group (n=113) from the same Brazilian cohort………………………………..……..66 
 
Figure 3.6 – Longitudinal analysis of the detection of antibodies in serum for naturally 
infected dogs (n=257 samples from 26 dogs) using combinations of antigen candidates. 
The point of infection is point 10. From points 1 to 9, dogs were not infected and neither 
were endemic controls. From time point 10, dogs were naturally infected. Measures 
were taken up to 20 months……………………………………………….………….67 
 
Figure 4.1 – Mean absorbance level of antibodies detected against infectious and non-
infectious samples (Leishmania antigen) reported with the related standard error 
(SEM). The never infectious group is composed of 72 samples negative for 
xenodiagnosis while the infectious group is composed of 73 samples positive for 
xenodiagnosis (*p<0.05, **p<0.001, ***p<0.0001 Mann-Whitney test)………..…..78 
 
Figure 4.2 – Mean absorbance level of antibodies detected against mildly infectious 
and highly infectious samples reported with the related standard error (SEM). The 
mildly infectious group is composed of 44 samples while the highly infectious group is 
composed of 29 samples (*p<0.05, **p<0.001, ***p<0.0001 Mann-Whitney 
test)………………………………………………………………………….……..…78 
 
Figure 4.3 – Kaplan-Meier based longitudinal analysis of detection time of the 
xenodiagnoses-classified dogs by threshold-based antigen assays. Different curves and 
time estimates were compared using the log rank test. The P values are indicated in 
each graph (in green, for the comparisons between highly and never infectious; and in 
blue, for the comparisons between mildly and never infectious)……………….……..82 
 
Figure 4.4 - Absorbance level of antibodies detected against ever infectious and never 
infectious samples (Leishmania antigen). The never infectious group is composed of 
72 samples negative for xenodiagnosis while the infectious group is composed of 73 
samples positive for xenodiagnosis. All p-values are <0.0001 for Mann-Whitney 
test……………………………………………………………………………..….….84 
 



10 
 

Figure 4.5 - Absorbance level of antibodies detected against mildly infectious and 
highly infectious samples. The mildly infectious group is composed of 44 samples 
while the highly infectious group is composed of 29 samples. Analysis was performed 
using Mann-Whitney U test (p-value **** for <0.0001)…………….…………..…...84 
 
Figure 4.6 - Receiver-Operator Characteristics (ROC) curves for each of the six 
combinations of antigens. The control group is composed of never infectious dogs 
(n=72) while the positive group is composed of the super-spreaders (n=29)…..……..85 
 
Figure 5.1 – Novel protein description. Complete sequence of the recombinant protein 
KL914 containing the 261-bp sequence of gene K9 and the 477-bp sequence of Lin14 
(Linj14.1160r4). The final sequence of KL914 is 738 bp length and encompasses for 
245 amino acids……………………………………………………………………..102 
 
Figure 5.2 – (A) Mini-inductions with protein KL914 expressed in E.Coli BL21 plyS 
cells and Rosetta cells; only BL21 showed induction. (B) The final product and the 
lyophilised version were run on another gels. (C) Gel run with protein before and after 
lyophilisation to compare expression levels. All gels were 4-12% Bis-tris Gel 
(NuPAGEÒ Novex) with SeeBlue2 pre-stained standard (Thermo Fisher)………...103 
 
Figure 5.3 – Cross sectional analysis of absorbance level in immune assays (A) 
Absorbance level detected against ever-infectious (n=73) and never-infectious (n=58) 
samples. (B) Absorbance level of antibodies detected against mildly infectious (n=44) 
and highly infectious (n=29) samples (p<0.0001 Mann-Whitney test)………….….104 
 
Figure 5.4  –  Receiver-Operator Characteristics curve of recombinant KL914 protein 
based on the control group of 58 samples from never infectious dogs and the positive 
group of 29 samples of highly infectious dogs from the Brazilian cohort……..…….105  
 
Figure 5.5 – Kaplan-Meier curves and longitudinal analysis on the detection time (in 
days) of the xenodiagnoses-classified dogs. The statistical difference in curves and time 
estimates were compared using the log rank test (c2= 5.73, p<0.01). Mean of detection 
time in days for dogs (mildly and highly) using threshold-based antigen is compared to 
the onset of infectiousness determined during xenodiagnoses follow-up………..….106 
 
Figure 6.1 – Development of rapid test format (A) Schematic representation of the 
dipstick; (B) The dipstick-format of the prototype includes a test pad (blue square) 
where the blood sample and the migration buffer are dropped. After 15 minutes 
migration, results are indicated by one visible line if negative, and two visible lines if 
positive. In other cases, the test is invalid and must be redone……………………...111 
 
Figure 6.2 – (A) Rapid diagnostic test prototype comparing three positive strips on 
KL914 and the control based on Kalazar DetectÔ. The antigen reactivity for the three 



11 
 

prototype strips is stronger than on the control strip. (B) Kalazar DetectÔ Canine as 
negative control for the detection of super-spreaders…………………………….….114 
 
Figure 6.3 – Example of longitudinal follow up in rapid diagnostic test on dog A78 
classified as super-spreader from sample n°5 to n°8 in xenodiagnoses, which also 
corresponds to the positive results of the RDT……………………………..………..116 
 
Figure 7.1  –  Representation of compartmental models to calculate VL transmission 
between dogs  (S, susceptible; E, exposed; IN, infected and non-infectious; IM, infected 
and mildly infectious; and IH, infected and high infectious) with parameters b as birth 
rate, d as death rate, r as proportion of super-spreaders, i as latency rate, and q as 
proportion of infected dogs that become infectious…………………………………122 
 
Figure 7.2 – Schematic representation of the detection of S, E, IN, IL and IH at different 
rates using the novel diagnostic tool (Dpos, positive result at diagnosis; and Dneg, 
negative results for diagnosis)………………………………………………………125 
 
Figure 7.3 – Population dynamics and number of dogs in each category (S, susceptible; 
E, exposed; IN, never infectious; IL, mildly infectious and IH, highly infectious) over a 
period of 20 years to reach the equilibrium in the initial population scenario………..128 
 
Figure 7.4 – Plot of the population dynamics with 20 years intervention (A) with a 
pulsed intervention with 3 screenings per year, 80% coverage, duration of 2 weeks for 
each screening and 50% culling (B) with a continuous intervention where the daily 
screening rate is 0.0014. Screening was based on the current field method : DPP-RDT 
+ ELISA used in this sequence with sensitivity and specificity of 70% and 99.5%. The 
intervention starts after 20 years of equilibrium…………………………………….130 
 
Figure 7.5 – Contour plots showing the impact of screening rate and culling rate 
variations on the transmission rate (colour bar), calculated for 1, 2 and 20 years of 
intervention, using both the ELISA and the RDT (with their sensitivity and specificity, 
d and dz, constant)……………………..…………………………………………….132 
 
Figure 7.6 – Plot of the screening rate versus the transmission rate, in the optimal 
culling scenario (100% of DP) while using the RDT (A) or the ELISA (B) as diagnostic 
method………………………………………………………………………………133 
 
Figure 7.7 – Plot of the population dynamics over time when applying the culling on 
100% of the positively detected dogs, with a screening rate is set at the breakpoint of 
transmission. Screening performed with RDT (A) and ELISA (B) using their fixed 
sensitivity and specificity. Note that the intervention starts after 20 years of 
equilibrium………………………………………………………………………….135 
 



12 
 

Figure 7.8 – Plots of the population dynamics over time when applying one pulse 
intervention, a coverage of 100% and a culling of 100% of the positively detected dogs. 
Screening performed with RDT (A) and ELISA (B) using their fixed sensitivity and 
specificity. Note that the intervention starts after 20 years of equilibrium……….….137 
 
Figure 7.9 – Plots of the impact of the pulsed intervention on the reduction in 
transmission while varying both the coverage and the number of screenings, for (A) 
RDT and (B) ELISA, when the pulsed intervention is applied for 5 years, assuming that 
100% of the detected dogs undergo the intervention……………………….………138 
 
Figure 7.10 – Impact of culling proportion on the transmission rate after 5 years of 
pulse intervention with variable range of culling, number of screenings per year and 
coverages of 50 and 100%. Screening tool were (A) RDT and (B) ELISA, with constant 
performances……………………………………………………………..…………139 
 
Figure 7.11 – Plot of the population dynamics over time when applied a pulse 
intervention is applied for 10 years with a culling rate of 100%, a coverage at 100% 
and 5 screenings per year. The performance of the RDT and ELISA (d and dz) were 
constant. Screening performed with RDT (A) and ELISA (B) using their fixed 
sensitivity and specificity………………..……………………………….…………141 
 
 
 
  



13 
 

Acknowledgments 

 
 

I would like to acknowledge everyone who directly or indirectly contributed to 

the delivery of this thesis. 

 

First, I would like to acknowledge my supervisor Dr Orin Courtenay for the 

continuous trust and support given throughout the project.  

Second, to Prof Steve Reed, thanks for hosting me at the Infectious Disease 

Research Institute (IDRI, Seattle, USA) for the secondment full of opportunities.  

Third, thanks to Dr Syamal Raychaudhuri from InBios International, Inc. 

(Seattle, USA) for giving me the chance to apply my research into an applicable tool. 

 

Thanks to all my colleagues at the University of Warwick, especially to Raquel, 

Erin and Lidija for their advices and discussions throughout these three years at the 

University of Warwick. 

Thanks to all IDRI staff for their heart-warming welcome during the 6-month 

secondment. I would like to express my gratitude to Dr Malcolm Duthie from IDRI for 

his guidance and the many helpful discussions providing me more prospects. 

 

Finally, for the funding and the opportunities this project offered, I would like 

to acknowledge the European Union’s Horizon 2020 Research and Innovation Program 

under the Marie Sklodowska-Curie grant agreement (nº642609), as well as all members 

of the Euroleish network (fellows, supervisors and partners) for all work realised and 

time spend together. 

 

This PhD project would not have been the same without the daily support of the 

entourage: thanks to my family and all my friends. 

  



14 
 

Declaration 

 

I hereby declare that the work presented in this thesis is the result of original research 

carried out by the author, Aurore Lison, under the supervision of Dr. Orin Courtenay 

and Dr. Steven Reed. No part of this thesis has been submitted for a degree at another 

University. 

 

Data presented in the thesis has been published as detailed below : 

 

Malcolm S. Duthie, Aurore Lison, Orin Courtenay (2018) “Advances toward 

Diagnostic Tools for Managing Zoonotic Visceral Leishmaniasis.” Trends in 

Parasitology. October 2018, Vol. 34, Issue 10, 881-890.  

DOI: 10.1016/j.pt.2018.07.012 

 

  



15 
 

Summary 

 
 

Zoonotic visceral leishmaniasis (ZVL) is a vector-borne infection induced by protozoan 
parasite Leishmania infantum and transmitted from animal reservoir to human. 
Domestic dogs are the main proven reservoir, and the detection of their transmission 
potential is a research priority. Longitudinal xenodiagnosis studies of natural infection 
in dogs showed that a large fraction of transmission events to the sand fly vector is due 
to a small fraction of the infected canine reservoir population, known as super-
spreaders. The management of visceral leishmaniasis requires a different approach to 
current blanket control operations that otherwise require extremely high intervention 
coverage to successfully include the super-spreaders.  
 
The aims of the study were to discriminate super-spreaders in a mixed reservoir 
population by developing novel diagnostic tools, and to complete mathematical models 
based on collected data including transmission potential and tool-implementation in the 
field. Existing and novel anti-Leishmania antigens were tested in enzyme-linked 
immunosorbent assays (ELISA) on archived sera collected from a naturally infected 
cohort population of Brazilian dogs. Their transmission potential was measured by 
xenodiagnoses during a two years longitudinal study. 
 
Results from serological assays showed that carefully selected threshold-based antigens 
allowed a more specific test towards reducing transmission; and some of the novel 
proteins (rK28, K26, rK34) out-performed the currently available test antigens for 
infection. These antigens were tested for the serodetection of infectiousness and were 
able to discriminate super-spreaders of Leishmania within the mixed canine population. 
Based on these results, a prototype of rapid diagnostic test (RDT) was developed based 
on a brand-new antigen, KL914, and specifically designed for detecting super-
spreaders. The aim was to setup a field-friendly screening method. The impact of the 
novel diagnostic tool to detect and remove super-spreaders from the population before 
the onset of infectiousness was modelled and quantified under different population 
dynamic scenarios. The mathematical model offered a notice on the diagnostic tool to 
be applied in the field, and pointed out the limitations and the possible improvement.  
 
This project was funded by the European Union’s Horizon2020 Research and 
Innovation Program under the Marie Sklodowska-Curie grant agreement. 
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CHAPTER 1. Introduction 

 
 

1.1     General background 
  

Visceral leishmaniasis is considered to be a major tropical and subtropical disease by 

the World Health Organization (WHO), and affects impoverished people in Africa, 

Asia and Latin America. Leishmaniasis is endemic in 98 countries, and over 90% of 

cases occur in six countries: Bangladesh, Brazil, Ethiopia, India, Sudan and South 

Sudan (Alvar et al., 2012). Over 12 million people are affected, and 0.2 to 0.4 million 

new cases are thought to occur each year (Alvar et al., 2012; Van der Auwera et al., 

2015). Visceral leishmaniasis (VL) can be life threatening in the absence of treatment. 

The mortality rate also remains significant ranging from 5 to 15%, even with treatment. 

The overall case-fatality rate is 10%, meaning that VL causes between 20,000 and 

40,000 deaths each year worldwide (Alvar et al., 2012). The disease is characterized by 

irregular fevers, weight loss, hepatosplenomegaly (enlargement of liver and spleen) and 

anaemia. Death usually occurs following an opportunistic secondary infection. 

 

Visceral leishmaniasis is caused by an obligate intracellular protozoan of the 

Leishmania species (Kinetoplastida, Trypanosomatida). In Latin America, the main 

Leishmania species responsible for infection are L. donovani and L. infantum (Alvar et 

al., 2012). Leishmania has two successive morphological forms: the amastigote form is 

replicating intracellularly and spreading within the host tissue, while the promastigote 

form is the infective stage (Sacks et al., 2001). As a vector-borne parasite, Leishmania 

is transmitted by the bite of female phlebotomine sandflies from the genera 

Phlebotomus and Lutzomyia, respectively restricted to the Old World and the New 

World. In Latin America, Lutzomyia longipalpis is responsible for the transmission of 

the protozoan to various mammalian hosts. During blood meal, the sandflies inject 

promastigotes into the host circulation. These parasites are phagocytosed by 

macrophages, and transform into amastigotes for intracellular replication. Infected cells 

implode and release their contents in amastigotes in the blood and lymph. They can 

then infect tissues. During a new blood meal, sandflies retake cells infected with 

amastigotes. In the intestines of the sandflies, parasites are released and differentiate 

into promastigotes, which migrate to the salivary glands, ready to infect other 
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individuals (Sacks et al., 2001). In Latin America, especially in Brazil, there is a 

seasonal variation in transmission of Leishmania based on the natural vector cycle; 

therefore, the transmission is the lowest in the wettest months from January to March, 

and increases during the dry season up to December (Quinnell et al., 1997; Grimaldi et 

al., 2012b). 

 

Animal reservoir hosts, along with sand flies, maintain the transmission cycle of the 

parasite. In L. infantum-endemic areas, domestic dogs are considered to be the main 

proven reservoir host to the sandfly vector (Courtenay et al., 2014; Quinnell et al., 

2009). Studies have shown that infection in dogs precedes infection in humans (Oliveira 

et al., 2001). Subsequent transmission between dogs and humans then leads to the 

zoonotic infection (Connolly, 2005). In zoonotic VL, humans are incidental hosts and 

do not contribute to the transmission of Leishmania infantum (Quinnell et al., 2009). 

The first case of infection of L. infantum from domestic dogs by the bite of sandflies 

was demonstrated in the 1930s (Parrot et al., 1930; Adler et al., 1932). Since then, many 

studies have confirmed the role of the domestic dog as the primary reservoir of ZVL. 

Dogs often have a high prevalence of both infection and infectiousness, have long-

lasting infections, and are common in the peridomestic environment in which most 

ZVL transmission occurs (Quinnell et al., 2009). Nowadays, little is known about 

canine transmission, but it is essential to understand this, as human disease is dependent 

upon canine infection. This project focuses on the transmission of the Leishmania 

infection from the canine reservoir to the sandfly vectors, with the aim of limiting 

incidence in humans. 

 
1.2  Canine Visceral Leishmaniasis  

 

1.2.1 Course of infection in reservoir dogs 

The course of Leishmania infection varies greatly among the canid population, and 

these heterogeneities are essential to the understanding of the transmission. 

Leishmaniasis may, for instance,  become patent after initial infection in some dogs, 

approximately 2 or 3 months (82 to 111 days, average of 94 days) (Quinnell et al., 

1997). Alternatively, infections in other dogs remain sub-patent for more than a year. 

This prepatent period appears to correlate to the period of time between infection and  

seroconversion. Seroconversion allows the infection to be detected through a  serology 
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diagnosis test (Coura-Vital et al., 2013a). A further complication is that the definition 

of infection varies within the literature. Infection does not invariably lead to illness, nor 

does it necessarily lead to infectiousness. The clinical symptoms manifested by dogs 

are weight loss, fever, lethargy, lymphadenopathy (swollen lymph nodes), 

onychogryphosis (abnormal nails), conjunctivitis (ocular disease), splenomegaly 

(enlarged spleen), alopecia and several dermal affectations including dermatitis, 

hyperkeratosis (excessive epidermal scaling) and depigmentation on the face, ears and 

feet (Ozbel et al., 2000). Besides these clinical signs, dogs are considered to be positive 

for infection when they test positive for parasite culture, PCR and serology (Quinnell 

et al., 2001) which involves the seroconversion of the dog. Moreover, about 20 to 30% 

of infected dogs never develop clinical signs; they are referred to as asymptomatic 

(Sundar et al., 2006b). The canine population in endemic areas has been described as 

being composed of four mutually exclusive groups of hosts: (1) those susceptible to the 

infection, (2) those resistant to the infection, (3) those susceptible that become latent 

after a sandfly bite (called asymptomatic), (4) and those infectious to sandflies that 

emerge from latent canine infection (Grimaldi et al., 2012b). Dogs that are born 

resistant are able to maintain an effective cellular immune response against the parasite, 

and thus never become infectious. The reasons why some dogs are resistant while others 

become latent are unknown (Courtenay et al., 2002b; Grimaldi et al., 2012b).  

 

1.2.2  Infectiousness and super-spreaders  

In infectious diseases, heterogeneity in the transmission potential of reservoirs and 

vectors is well known; where infectiousness is defined as the ability of reservoirs to 

transmit infection to the vector. Moreover, a small percentage of infected individuals 

within any population is observed to control most transmission events. This is known 

as the 20/80 rule, in which an average of 20% of the host population is expected to 

responsible for over 80% of all transmission events. This highly infectious individuals 

are called super-spreaders and infect disproportionately more secondary contacts. Over 

time, super-spreading events (in humans and animals) have been documented, in many 

diseases such as for tuberculosis, Ebola haemorrhagic fever, West Nile viral infection, 

Typhoid fever and so many other. The first symbolic case, named Mary Typhoid, was 

detected during an outbreak of Typhoid fever in the 1900’s when a single asymptomatic 

person infected more than 200 individuals over several years. However, the real first 

evidence of the existence of super-spreading events was demonstrated during the severe 
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acute respiratory syndrome (SARS) outbreak of 2003. During this pandemic, majority 

of the infected individuals had low infectivity and the super-spreaders were maintaining 

up to 75% of the infections on their own (Li et al., 2004). A stochastic model showed 

that the average transmission was 2.7 secondary cases for one normal person (Riley et 

al., 2003), whereas super-spreaders would infected over 10 secondary contacts 

(Lipsitch et al., 2003). This outbreak revealed the epidemiologic importance of this 

heterogeneous transmission. Many other evidences confirmed it throughout the 

following infections, for which the most recent examples are the outbreaks of Ebola 

virus in 2014-2015 or MERS coronavirus (middle-east respiratory syndrome) in 2015. 

Even if it is still unclear what makes super-spreaders; according to the review of Stein 

(2011), the super-spreading events are influenced by host, pathogen and environment 

factors. Examples are multiple: the virulence of Salmonella is associated with super-

spreading; co-infection with HIV induces higher shedding; the host behaviour (length 

and frequency of contacts) is correlated with the intensity of transmission for the West 

Nile viral infection; the immune response of the host is linked super-spreading in 

SARS; crowding increases the number of secondary contacts in SARS; and finally, 

misdiagnoses or mismanagement of cases would be the environment related factors 

(Stein, 2011). 

 

In the case of ZVL, the presence of heterogeneity in dogs’ infection and infectiousness 

was demonstrated first by Courtenay et al. (2002b) during a longitudinal study on 

Marajo Island, Brazil. Indeed, not all dogs were equally susceptible to infection: a small 

number of infected dogs became infectious, while others never became infectious to 

sandfly vectors (Courtenay et al., 2002b). Moreover, the presence of variable L. 

infantum loads between dogs suggests that the bulk of the transmission is due to a small 

proportion of infectious dogs (Courtenay et al., 2014). Combined results for the Marajo 

study showed that less than half (43%) of infected dogs became infectious and a much 

smaller proportion of dogs (17%) became highly infectious. They are the super-

spreaders. Results coincide with the “20/80 rule” detailed above. Later studies have 

confirmed the presence of heterogenicity of infectiousness in ZVL. In Brazil, studies 

from Michalsky et al. (2008) and da Costa-Val et al. (2007) aimed to measure the 

infectivity of dogs based on their clinical status and the immune response; whereas in 

Europe, a study form Guarga et al. (2000) on dogs’ infectiousness was positively 

associated with the immune response of the hosts. It is still unclear why certain dogs 
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become super-spreaders and infect disproportionately large numbers of contacts. One 

potential explanation is that highly infectious dogs have greater than average parasite 

loads compared to mildly and non-infectious dogs. Another question is how we might 

identify super-spreaders a mixed canid population. The present  project seeks to address 

this question. Identifying super-spreaders would enable to reduce approximately 80% 

of pathogen transmission events in the population. As super-spreaders infect 

disproportionally more secondary contacts (Stein, 2011), they hinder the successful 

implementation of infection control strategies. Little is known about super-spreaders or 

their public health implications. Although the concepts of super-spreaders are not new, 

current models do not sufficiently take super-spreaders into consideration. A meta-

analysis of the available canine infectiousness data for the New and Old Worlds, 

indicated that the proportion of infectious dogs in the infected dog population may be 

higher in European than in Brazilian studies, 0.86 and 0.45 respectively (Quinnell and 

Courtenay, 2009). A further reason for heterogeneity is that infectiousness varies over 

time (Courtenay et al., 2002b). Indeed, infectiousness develops on average 6 months 

after infection in endemic areas. According to Courtenay et al. (2002b), the mean 

proportion of flies infected reached a peak of 20% at 135 days after patent infection 

and declined significantly thereafter. Infected dogs became infectious a median of 105 

days after seroconversion, 135 days after patent infection, and 333 days after the dogs 

were placed in the study site. As previously mentioned, Quinnell et al. (1997) estimated 

that seroconversion occurs on average 94 days after infection. Combined with 

Courtenay’s results, this indicates a latent period of 199 days between infection and 

infectiousness (Courtenay et al., 2002b; Quinnell et al., 1997).  

 

Heterogenicity in infectiousness is also present in other hosts of VL; for example, 

humans can be transmitters in L. donovani anthroponotic infection in the Indian 

subcontinent (discussed in Chapter 9), as well as in the murine model of visceral 

leishmaniasis (Doehl et al., 2017). However, it has been demonstrated that foxes, while 

they are the wildlife host of Leishmania infantum, are not considered to maintain the 

transmission cycle (Courtenay et al., 2002a). Indeed, foxes have the same infection 

level as dogs, but none of them were infectious to the sandflies in a longitudinal study 

(Courtenay et al., 2002a). One explanation for the lack of infectiousness of foxes may 

be their low parasite loads. A conservative estimate of the possible contribution of foxes 

to transmission was 9%, compared to 91% by domestic dogs. 
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1.2.4 Role of asymptomatic carries 

In the Indian subcontinent, where the transmission of L. donovani is anthroponotic, it 

is well known the asymptomatic infectious people are an important source to start 

and/or maintain epidemies. The identification of these cryptic carriers is a priority for 

the elimination of VL. Controverly, in ZVL, neither the role of these asymptomatic 

dogs in transmission, nor the prognosis of asymptomatic infection at the individual 

level has been fully elucidated. Moreover, results differ concerning the transmission 

potential of asymptomatic dogs compared to symptomatic dogs. Some studies have 

shown that asymptomatic dogs are unable to transmit the parasite (Travi et al., 2001; 

Verçosa et al., 2008). Other studies have demonstrated that transmission occurs in 

similar proportion for symptomatic dogs (Courtenay et al., 2002b; Costa-Val et al., 

2007; Michalsky et al., 2007). Finally, a single other study demonstrated that 

asymptomatic dogs are an important source of amastigotes for the infection of 

phlebotomine, which  contribute to the transmission of L. infantum (Molina et al., 1994; 

Michalsky et al., 2007; Courtenay et al., 2002b). In 2013, Laurenti et al. observed that 

asymptomatic dogs are highly able to transmit L. infantum to sandflies. In their  study, 

all asymptomatic dogs except one (93%) were able to transmit the parasite. 

Additionally, it seems that sandflies fed more on asymptomatic dogs than on 

symptomatic dogs. However, according to a longitudinal study by Courtenay et al. 

(2002b) on the role of asymptomatic dogs in transmission, the majority of those 

infectious asymptomatic dogs (75%) were in fact pre-symptomatic, developing 

symptoms after becoming infectious. Only 2 of 9 dogs that clearly remained 

asymptomatic were infectious, thus, pre-symptomatic or symptomatic dogs were 

responsible for the vast majority of sandfly infections (99.6%). Overall, the 

transmission potential of asymptomatic still remains highly controversial. 

1.3    Interventions, control and prevention programs 
 

Different prevention and control programs to limit transmission have been created in 

areas where infection is endemic. There is currently no efficient vaccine, and treatment 

of infected dogs is not usually curative (Baneth et al., 2002). Thus, most control 

programs are based on early diagnosis and treatment of human cases, health education, 

vector control by spraying residual insecticides (Desjeux, 1966), and canine removal 
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(Quinnell et al., 2009). These efforts to control canine leishmaniasis are essential to 

prevent the disease and reduce transmission to humans. 

 

1.3.1  Vaccines in dogs 

As studies have shown, dog infection is usually followed by human infection, so 

vaccination of dogs is a key research focus. In 2006, several vaccines designed for dogs 

became available on the Brazilian market, including LeishmuneÒ and Leish-TecÒ 

(Fort Dodge Wyeth, Brazil), a preventive second-generation vaccine. In 2010, the 

Brazilian Ministry of Agriculture and Health discontinued the prescription of 

LeishmuneÒ as it did not prove its efficacy in Phase III studies (Lima et al., 2010). 

Since 2014, Leish-TecÒ is the only commercial vaccine approved in Brazil and has 

71% proven efficacy for prophylaxis of canine infection (Regina-Sliva et al., 2016). A 

comparative trial, conducted in 2014 with vaccinated dogs, has shown no significant 

difference between LeishmuneÒ and Leish-TecÒ, based on parasitology, serology, 

clinical signs, or infectiousness (Testasicca et al., 2014). The advantage of Leish-TecÒ 

compared to LeishmuneÒ is that vaccinated dogs can be differentiated from naturally 

infected dogs, since the vaccine does not interfere with the diagnostic tests. Indeed, the 

diagnostic tests are based on antigens from promastigotes, while the Leish-TecÒ 

vaccine is based on antigens from amastigotes, which is not the case for LeishmuneÒ 

(Fernandes et al., 2008). In Europe, another vaccine, CaniLeishÒ, based on excreted-

secreted proteins from Leishmania was approved in 2011, offering prophylactic action 

by reducing the transmission of Leishmania from vaccinated dogs to sandflies (Oliva 

et al., 2014). Despite the promising nature of these trials, however, vaccines are used 

as individual protection for dogs, rather than a public health tool, since there is no 

evidence that vaccines reduce human infection rate (Manual de Vigilância e Controle 

da Leishmaniose Visceral Americana do Estado de São Paulo, 2006). 

 

1.3.2  Vector control  

Many control and prevention programs have focused on vector control by applying 

insecticides and repellents in endemic areas and/or on animal reservoirs as vectors are 

highly zoophilic (Hewitt et al., 1999). The current insecticides include semi-synthetic 

pyrethroids, such as Deltamethrin, alone or in combination with other insecticides to 

protect dogs from sandfly bites. However, there is little evidence that the sandfly 
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population can be reduced effectively by spraying insecticides. As they present a low 

stability, insecticides have been included in collars, lotions and sprays to facilitate their 

application by dog owners. Over the years, several field trials provided evidences that 

insecticide-impregnated collars can prevent dogs from Leishmania infection in Europe 

and in Brazil with an individual protection of 85% towards sandfly bites (Killick-

Kendrick et al., 1997; Maroli et al., 2001; Reithinger, 2001; Reithinger et al., 2004; 

Mondal et al., 2013). The insecticide-impregnated in the collars spread slowly into the 

skin of the dogs, and is maintained for period up to 6 months, leading to an anti-feeding 

effect and further death of the sandflies (Killick-Kendrick et al., 1997). Systematic 

review from Wylie et al. (2014) on the efficacy of insecticide treatments (impregnated 

collars and spots-on) analysed 8 studies from 2001 to 2012 including 4 papers on 

collars, 3 papers on spot-on treatments and one paper on both collar and spot-on; all 

studies reported that deltamethrin-impregnated collars, and spot-on treatments with 

permethrin (alone or in combination) were significantly reducing the proportion of dogs 

infected with ZVL. Despite being effective individual preventive methods, the efficacy 

of the collars at the community level needs to be investigated, widely depends on the 

coverage of the collars within the population including their application on newly 

introduced dogs, and the replacement of lost collars (Reithinger et al., 2004; Travi et 

al., 2018). Moreover, being a high cost intervention for the dog owners, the application 

of collars, whereas possible in Europe, would require financial support by the 

government in Brazil (Travi et al., 2018). Finally, the effect of insecticide-treated 

materials on reducing visceral leishmaniasis is controversial in the literature, with 

several investigators expressing their concerns over the resistance of sandflies to 

residual insecticides. 

 

1.3.3  Chemotherapy for humans 

Human treatments are readily accessible and available within the National Health 

System of Brazil. Those drugs currently in use were developed many years ago, and 

have many disadvantages, such as toxic side effects, relapses, or an incomplete cure 

due to the development of resistances by parasites. The first line drugs are pentavalent 

antimonials such as sodium stibogluconate SbV compounds (Pentostam®, Wellcome 

Fundation, UK) and meglumine antimoniate (Glucantime®, Rhone Poulenc, France). 

In March 2014, the Food and Drug Administration approved the oral agent Miltefosine 

as a substitute for pentavalent antimonial. Others drugs are also selected as the second 
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choice for treating selected cases of leishmaniasis, such as the parenteral agents 

amphotericin B (AmBisome®, Vestar, USA), aminoglycoside paromomycin and 

pentamidine isethionate, as well as the orally administered "azoles" (ketoconazole, 

itraconazole, and fluconazole). However, these are not approved by international 

agencies. 

1.3.4  Chemotherapy for dogs  

Anti-leishmanial medication used for humans has also been tested on dogs. However, 

treatment of infected dogs is not curative (Baneth et al., 2002), and the current drugs 

used for VL do not completely eliminate the parasites (Mancianti et al., 1988). 

Antimonials reduce most of clinical signs of sick dogs, but require continuous 

administration, and the incomplete clearance of the parasite leads to extremely high 

rates of relapse. Drugs such as miltefosine and allopurinol are tested to treat canine 

infection, as reviewed by Reguera et al. (2016). Gradoni et al. (1987) was the first to 

report significant reductions in infectiousness to sand fly vectors resulted from treating 

dogs with antimonials. Afterwards, other studies also demonstrated a considerable 

reduction of the infectiousness of infected dogs within a few months, and up to 150 

days post-treatments (Alvar et al., 1994; Guarga et al., 2002; Ribeiro et al., 2008; Miro 

et al., 2011 and da Silva et al., 2012). A recent trial published in Brazil (De Mari et al., 

2017) concluded similarly the non-infectivity of dogs to sandflies for three months after 

miltefosine treatment, corresponding to significant reductions in parasite loads in bone 

marrow. All reported impacts of treatment on infectiousness were significant for limited 

periods of time, as the treatment is short-lived (Travi et al., 2018). The treatment of 

infected dogs is controversial, and subject to various politics, as described below. The 

Ministry of Health in Brazil, on 11 July 2008 (Ministerio de Saude, inter-ministerial 

1.426, 2008), voted for the prohibition of the treatment of infected or sick dogs using 

drugs designed for humans (Ministerio de Saude, Brazil, 2006). However, a court 

decision from January 2013 (Tribunal Regional Federal da 3a Região, São Paulo, 

Brazil) declared this provision to be illegal, based on legislation guaranteeing the right 

of free exercise of vets. Since 2013, the treatment of dogs with drugs designed for 

humans has thus been permitted. In November 2017, the Ministry of health website 

published a factsheet on the consequences of the treatment of infected dogs (Ministerio 

de Saude, Brazil, 2017). In dogs, treatment might result in improved clinical symptoms, 

although they are still sources of infection of the vector, and so a risk for the further 
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transmission. In this case, euthanasia of dogs is recommended as one of the ways to 

control ZVL. 

 

1.3.5  Dogs culling and consequences 

Endemic countries such as Brazil have recommended the identification and the 

euthanasia of positive dogs by a test-and-slaughter policy. In Brazil, the Visceral 

Leishmaniasis Control and Surveillance Program (VLCSP) started test-and-slaughter 

campaigns in 1990, leading to the screening and subsequent slaughter of millions of 

dogs, but with very little impact on transmission rates (Vieira and Coelho, 1998; Lemos 

et al., 2008). For example, over 176,000 seropositive dogs were eliminated from 1990 

to 1997 (Ministerio da Saude, Brazil, 2006) and more than 160,000 seropositive dogs 

from 2003 to 2005 (Lemos et al., 2008) without corresponding reductions in human VL 

cases nationally (online SINAN database). Likewise, at the local level, the removal of 

seropositive dogs did not result in significant changes in human cases. Despite all 

efforts to reduce reservoir populations, the dog culling strategy is not therefore 

sufficiently effective. During 1990-1997, more than 176 000 seropositive dogs were 

eliminated; however, there is no scientific evidence to indicate that dog culling reduces 

the incidence of the disease in humans (Romero et al., 2010; Harhay et al., 2011). 

Ashford et al. (1998) measured the effect of culling seropositive dogs at 12 months 

intervals, reporting a temporary reduction of seroconversion in one year, but with no 

change in cumulative incidence after 5 years of study. And, as already mentioned by 

Evans (1992), there was no change in human transmission rates before and after dog 

culling. In a more recent study, Grimaldi et al. (2012b) concur with the previous study 

and demonstrating that removing seropositive dogs with active disease soon after 

detection may affect the cumulative incidence of seroconversion in dogs temporarily, 

although it is insufficient as a measure for eradicating of canine VL. The failure of the 

culling program has been ascribed (1) to the low sensitivity of the available serological 

methods, (2) to delays in detecting and eliminating infected dogs, and (3) to the 

tendency to replace infected dogs with susceptible puppies (Courtenay et al., 2002b; 

Grimaldi et al., 2012b). Indeed, diagnosis of canine infection lacks sensitivity (Braga 

et al., 1998; Courtenay et al., 2014). The incidence of infection is high in endemic areas, 

and infectiousness develops on average 6 months after infection in endemic areas. As 

a result, effective control through culling requires a very high proportion of dogs to be 

tested, and thus, the use of a highly sensitive diagnostic test (Courtenay et al., 2002b). 
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Moreover, the time delay between diagnosis and culling can reach 80 to 180 days 

(Braga et al., 1998). Such a delay leads to a reduction in the sensitivity of the diagnostic 

test (Courtenay et al., 2002b). Finally, dog owners also have the tendency to replace 

infected dogs with susceptible puppies (Grimaldi et al., 2012b). At present, Brazil is 

the only country that euthanizes all seropositive dogs. According to several published 

papers and as already mentioned, a proportion of infected dogs never become 

infectious, but these dogs may be replaced by susceptible puppies that do become 

infectious (Parantos-Silva et al., 1998; Courtenay et al., 2002b; Nunes et al., 2008; 

Grimaldi et al., 2012b). A model created by Courtenay et al. (2002b) assumes that 

culled dogs will be rapidly replaced with young susceptible dogs, although this 

assumption has been criticized. Moreover, the culling programme does lead to greater 

collaboration on the part of dog owners. Such individuals are not always aware of the 

danger of transmission that comes with keeping infectious dogs at home. Moreover, 

owners can oppose the protocol of slaughtering seropositive dogs by hiding or releasing 

animals in nature. According to Esch et al. (2012), the owners’ lack of awareness 

regarding canine transmission of Leishmania is associated with an increased risk of dog 

infection, whereas educating these dog owners is associated with decreased levels of 

seropositive dogs. Thus, pet attachment and perception of disease risk are significantly 

associated with the willingness to voluntarily prevent transmission of canine VL. 

According to Grimaldi et al. (2012b) during the test-and-slaughter policy, the 

transmission of L.infantum was never curtailed; indeed, newly infected dogs could be 

detected each month throughout the test-and-slaughter protocol in Brazil. The efficacy 

of dog culling may be increased if only dogs that were infectious could be identified 

and removed (Quinnell et al., 2009). However, at present there are no diagnostic 

methods that can reliably distinguish between infectious and non-infectious dogs 

(Coura-Vital et al., 2013a). Several published field trials have used more sensitive 

diagnostic techniques and more efficient dog removal regimes than the official 

surveillance program, as described below (Braga et al., 1998, Ashford et al., 1998; 

Dietze et al., 1997). 
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1.4    Diagnostic tools of VL 
 

1.4.1 Evaluation of current detection tools for Leishmania infection 

Various tools based on parasitology, immunology, molecular and cellular biology have 

been studied and evaluated in order to detect Leishmania infection. Diagnosis may  be 

based on direct demonstration of amastigotes by microscopic examination; indirect 

demonstration by in vivo or in vitro cultures (Schnur et al., 1987); or indirect detection 

of amastigotes in biopsies using parasite DNA-based techniques, such as polymerase 

chain reaction (PCR) (Smyth et al., 1992; Ravel et al., 1995; Howard et al., 1991). 

Parasite observations have a 100% specificity, but their sensitivity depends on the level 

of parasites in the blood stream. The samples taken are blood, bone marrow, liver, 

lymph nodes, and spleen, which requires invasive methods. It is estimated that  direct 

parasite detection has an 80% sensitivity in symptomatic dogs, but is lower in 

asymptomatic dogs. PCR-based assays are among the most successful detection tools, 

showing a sensitivity range of 94-100% (Quinnell et al., 2013). Among the molecular 

screening methods, PCR can detect infection before seroconversion (Quinnell et al., 

2001; Oliva et al., 2006), but it is important to follow this test up with PCR-positive 

dogs, so as to monitor seroconversion during the course of L. infantum infection. In the 

same study, a few dogs became PCR-negative for several months before the infection 

recrudesced and progressed, suggesting that PCR-positive dogs should be monitored 

throughout the serological testing process (see below). Cultures and microscope 

analyses are commonly used in research laboratories; however, they require technical 

skills and specific material, and are therefore less suitable in field settings. For example, 

PCR requires invasive sample collection, nucleic acid extraction, amplification by a 

thermocycler, and gel-based analysis. Arguably, these processes have led  to a lengthy  

delay between the sampling, diagnosis and application of the control program (Quinnell 

et al., 2013). Indirect detection based on immune assays has been developed to make  

detection strategies more tenable for surveillance programs. Cell-based assays include 

Leishmania skin tests, such as delayed type hypersensitivity (DTH) response and ex 

vivo assays measuring secretion of cytokines in blood (Carrillo et al., 2009; Martinez-

Orellana et al., 2017a; Martinez-Orellana et al., 2017b). Compared to cell-based assays, 

antibody-detection against Leishmania is relatively cheap, durable and more practical 

for screening programs. Most of these assays require only a drop of blood, making them 

minimally invasive. Such  tests include serological analysis such as indirect fluorescent 
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antibody test (IFAT) (Shaw et al., 1964), direct agglutination test (DAT), (Harith et al., 

1986) and the enzyme-linked immunosorbent assay (ELISA) (Hommel et al., 1978). 

 

However, sensitivities and specificities of these tests vary substantially, within the 

literature, based on the laboratory, the study population, and the threshold titre chosen 

to define infection. ELISA and DAT have high sensitivity (78-100%), while the 

sensitivity of IFAT is usually lower. The specificity of serology is more variable 

(Romero et al., 2010). Overall, the conventional serological test lacks the sensitivity 

needed to detect asymptomatic dogs. Asymptomatic animals usually present low 

serological titres (Cardoso et al., 2007; Teixeira et al., 2010), causing borderline and 

discordant results in different diagnostic tests. Antigen-based immune assays have been 

refined to improve detection, from the use of crude Leishmania antigen (CLA) to the 

development of purified recombinant antigens. Incorporating them into field-friendly 

formats, known as rapid diagnosis tests (RDT), has revolutionised diagnosis and 

screening campaigns. 

 

In an operational setting, a rapid diagnosis test (RDT) allows dogs to be diagnosed in 

situ. This RDT has several advantages. In addition to being more sensitive and specific 

in terms of diagnosis, it accelerates the implementation of control measures in endemic 

areas (only 15 minutes between the sampling and diagnosis) and does not require 

specialized equipment or supplies (Fraga et al., 2015). Over the last decade, several 

specific antigens of Leishmania have been characterized, allowing a recombinant-based 

immunoassay to be developed (Boarino et al., 2004).  

 

The first RDT field kit for VL diagnosis was based on rK39 RDTs (Kalazar Detect™, 

InBios). rK39 is a 39 amino acid repetitive immunodominant B-cell epitope in a 

kinesin-related protein of L. infantum and L. donovani (Burns et al., 1993; Badaró et 

al., 1996). In 1996, Badaró and collaborators discovered that during the acute phase of 

the disease, the host (human or dog) may produce specific antibodies against replicating 

Leishmania, suggested by observing that the sera from symptomatic patients strongly 

recognized K39, but patients with asymptomatic or self-healing infections had low or 

undetectable levels of anti-rK39 antibodies. The development of rK39-based rapid 

diagnostic tests revolutionized the human diagnosis of VL by offering high sensitivity 

and specificity. In human studies, results from evaluations concluded with a high 



30 
 

sensitivity (95%) and specificity (90%) to detect Leishmania infection (Pattabhi et al., 

2010). The results of rk39-based RDT in dog assays have been more variable, and it is 

important to note that test usage has drifted somewhat from its original intent, which 

was to confirm a clinical suspicion (Guan et al., 2001; Reithinger et al., 2002b). The 

sensitivity of the test to confirm disease in symptomatic dogs is 77%, although it is not 

often used to detect infected dogs. According to the evaluation of a cohort of 54 sentinel 

dogs, the overall sensitivity of the rK39 RDT to detect infected dogs in Brazil is 46%; 

and concerning the detection of infectiousness, the sensitivity of rK39 RDT is 78% in 

Brazilian trials (Quinnell et al., 2013). A study of Silva et al. (2014) evaluated several 

tools for canine VL diagnosis including direct parasitological exam, IFAT, RDT-rK39, 

ELISA with recombinant-rK39 (ELISA-rK39), and ELISA with soluble extract 

antigens (ELISA-SE). ELISA-SE was able to detect anti-Leishmania antibodies in the 

serum of the highest number of dogs (71.6%) followed by ELISA-rK39 (65.7%), IFAT 

(65.7%), RDT-rK39 (55.2%) and finally parasitological exam (40.3%) of positive dogs. 

It was suggested that RDT-rK39 be  used as a complementary method in association 

with either ELISA-SE or IFAT, particularly in symptomatic dogs. ELISA and RDT 

using the recombinant antigenic protein (rK39) were the methods that detected the 

lowest prevalence rates (33.3%) of Leishmania infection in asymptomatic dogs. 

Overall, the sensitivity of tests mainly needs to be improved for asymptomatic dogs 

(Silva et al., 2014). 

 

In terms of further advancements in diagnosis, a new synthetic polyprotein rK28 has 

been introduced as a diagnostic tool, named DPP®CVL. A synthetic gene, k28, was 

generated by fusing multiple tandem repeat sequences of the L. donovani haspb1 and 

k39 kinesin genes to the complete open reading frame of haspb2, thereby increasing 

antigen epitope density, while providing complementing epitopes in the resulting 

recombinant protein (Pattabhi et al., 2010). An important note, here, is that the sequence 

of haspb2 corresponds to k9, and haspb1 is k26. Both related proteins are detailed 

below; however, for the thesis purpose, the consistent nomenclature of k26/k9 will be 

used rather than haspb1/haspb2. 

 

 Current screening campaigns use antigen K28 in DPP®CVL kits from Bio-

Manguinhos/Fiocruz (2005). The sample is considered positive for Leishmania 

infection if the net absorbance value is higher than the cut-off values plus the percentage 
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of the referent interval in the kit used, which is 20% in Bio-Manguimthos (2005). In 

the current screening campaigns, confirmation IFAT is used along with ELISA 

analysis. 

 

While comparing the diagnostic accuracy of rK39 and rK28 in terms of  detecting active 

human VL cases, several studies have observed similar levels of reactivity. Vaish et al. 

(2012) evaluated sensitivity and specificity of rK28 antigen in a micro-ELISA format 

in comparison to rk39 antigen in human cases. The rK28 antigen yields 99.6% 

sensitivity, which was similar to sensitivity of rK39 ELISA (99.6%). The specificity of 

rK28 antigen and rK39 antigen was 95.4% and 96.6% respectively (Vaish et al., 2012). 

The results suggest that rK39 and rK28 antigens have similar sensitivity and specificity, 

and that rK28 can also be used as a serodiagnostic tool in endemic human populations. 

In dog assays, the RDT based on the chimeric rK28 protein (DPP®CVL) improves 

diagnosis by reducing the detection of false-positive dogs and minimizing the number 

of false-negative dogs that are maintained in endemic areas (Fraga et al., 2015). Indeed, 

the sensitivity of DPP®CVL toward infection is 85.5%, and its specificity reaches 

94.3%; however, the test has low sensitivity (47%) in identifying parasite-positive dogs 

that do not manifest clinical signs of VL (Grimaldi et al., 2012a). 

 

Novel antigens are under development as tool for canine VL diagnostics. For instance, 

antigens K9 and K26 are two related hydrophilic antigens of L. chagasi that differ for 

the presence of 11 copies of a 14-amino-acid repeat in the open reading frame of K26 

(Boarino et al., 2004). While rK39 and rK28 are chimeric proteins containing multiple 

individual genes fused into one, K9 and K26 are single hydrophilic acylated surface 

proteins of L. infantum (syn. L. chagasi). Specific and independent antibody reactivity 

to the antigens K9 and K26 have been studied and utilised in the serodiagnosis of 

Leishmania (Rosati et al., 2003). The sequences of K9 and K26 are included in 

recombinant proteins such as rK28 and rK34 (Pattabhi et al., 2010). Specific and 

independent antibody reactivity to each of the antigens, rK9 and rK26, have been 

studied and tested in serodiagnosis of VL infection in dogs (Rosati et al., 2003). Antigen 

rK34 is also a recombinant protein including LdK39, k26, protein A2 and another 

sequence labelled LinJ32 related to kinesin-proteins. 
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TR18 and rKR95 are conserved and Leishmania specific. TR18 is a B-cell protein 

containing several tandem repeats (Goto et al., 2007; Vallur et al., 2016) while rKR95 

is an L. donovani kinesin-related protein (Vallur et al., 2016). Both were both 

previously identified in a bioinformatics screen and validated as being reactive with VL 

serum samples (Vallur et al., 2016). Genetic alignment indicates that TR18 is highly 

conserved across Leishmania species, not just in those that cause VL. The other selected 

antigen, rKR95, is also highly conserved across Leishmania species, causing both VL 

and CL. The high level of conservation of each protein across Leishmania species 

suggests that they serve important functions at a given life stage of the parasite. There 

are other studies that have sought to set up RDT by using combinations of different 

antigens, e.g. K26 and K39, but this has been reported to have a lower sensitivity in 

detecting asymptomatic dogs (Grimaldi et al., 2012a). In similar vein, a multi-epitope 

recombinant chimeric protein created by Boarino et al. (2005) by fusing the L. infantum 

k9 gene with single repeat units of the k39 and k26 genes (whereas rK28 contains 

multiple repeats of the same sequences) was evaluated for serodiagnostic of canine and 

human VL. The ELISA results with this fusion protein provided 96% sensitivity for 

canine VL with 99% specificity (Boarino et al., 2005). Finally, the antigen rK18 is 

construct similarly as a recombinant protein that is highly conserved in Leishmania 

(Vallur et al., 2015). The other selected antigens 6H, 8E, Lin14/2, Lin14/4, Lin11/2, 

and Lin 34/2 are all recombinant protein, highly conversed in Leishmania. All antigens 

were previously identified in a bioinformatic screen and validated as being reactive 

with VL serum samples. The currently used RDT field kit for VL diagnosis are based 

on rK39 for the Kalazar Detect™ Rapid Test and rK28 for the DPP® CVL. 

 

In the thesis, recombinant antigens were selected and designed in collaboration with 

the Infectious Disease Research Institute (IDRI), Seattle, USA. They were all 

proprietary sequences derived from the Leishmania genome, with data suggesting their 

utility as antigens to detect infection and/or disease. In addition to the currently used 

and well-characterised rK39 and rK28, novel recombinant antigens were selected, such 

as rK26, rK9, rK34, rKR95, rK18, TR18, 6H, 8E, Lin14/2, Lin14/4, Lin11/2, and Lin 

34/2.  
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Table 1.1 –  List of actual Leishmania antigens with the related proteins, the origin 

species and  the references where published at first. 

Antigen Related protein Species Reference 
rK39 Kinesin-related protein L. infantum Burns et al., 1993 
K9/K26 1 Hydrophilic acylated surface proteins L. infantum Bhatia et al., 1999 
LdK39 Kinesin LdK39 L. donovani Gerald et al., 2007 
rK28 haspb1/LdK39/ haspb2 L. donovani Pattabhi et al., 2010 
rK34 LdK39/A2/ haspb2/LinJ32 L. donovani Not applicable 
rK18 Not given Not given Vallur et al., 2015 
rKR95 Kinesin-related protein L. donovani Vallur et al., 2016 
TR18 Kinesin-related protein L. donovani Vallur et al., 2016 

 1 K9 and K26 correspond respectively to HASPB2 and HASPB1 

 

 

Figure 1.1 –  Schematic representation of the structure of single proteins K26 and K9 

and of recombinant proteins rK39, rK28 and rK34. 

 

  

1.4.2 Diagnostic tools used by the Visceral Leishmaniasis Control and 

Surveillance Program in Brazil 

Accurate and rapid detection of canine leishmanial infection is crucial due to its role in 

the transmission of infection to vectors. The Visceral Leishmaniasis Control and 

Surveillance Program (VLCSP) created by the Brazilian Ministry of Health 

recommended the setup of screening campaigns in the field to detect dogs infected by 

Leishmania that are based on several diagnostic tools. Before 2011, the dog screening 

was based on an ELISA screening method followed by Indirect Immunofluorescence 

Test (IFAT) confirmatory method (Braga et al., 1998). However, these assays were 
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difficult to setup in the field and offered low results. In an operational setting, a rapid 

diagnosis test (RDT) was developed to allow dogs to be diagnosed in situ. In addition 

to being more sensitive and specific in terms of diagnosis, it accelerates the 

implementation of control measures in endemic areas (only 15 minutes between the 

sampling and diagnosis) and does not require specialized equipment or supplies (Fraga 

et al., 2015).  

 

Therefore, in 2012, the VLCSP recommended the use of the field-friendly Dual Path 

Platform (RDTÒDPP) for the screening of infected dogs followed by ELISA to confirm 

positive results (Ministério de Saudé, 2011). In regards to diagnostic tool, kits are 

provided by Bio-Manguinhos/Fiocruz (2005). Fraga et al. (2015) compared the 

previous protocol (ELISA followed by IFAT)  to the current protocol (DPP®CVL 

followed by ELISA), showing the improvements brought by the VLCSP by using the 

DPP, rather than IFAT. Indeed, the previous protocol had a prevalence of 6.2% while 

the current protocol had a prevalence of 8.1%. The current protocol showed improved 

performance with a higher specificity (97.6% versus 94.8%) and a higher positive 

predictive value (83.3% versus 70.2%) than the previous protocol. The sensitivity of 

these two protocols was, however, similar (73%), as was the negative predictive value 

(95%), which means that when a result is negative, it is highly probable that the dog is 

uninfected. When tested on asymptomatic animals, the new protocol had a much higher 

positive predictive value (62.5% versus 40%) than the previous protocol. This means 

that the current protocol provides a greater level of confidence in diagnosing positive 

dogs (Fraga et al., 2015). Moreover, recent studies have demonstrated that the test 

sequence used in the current protocol (DPP followed by ELISA) or the reverse order 

(ELISA followed by DPP) did not lead to a significant change in the final number of 

infected dogs detected (Coura-Vital et al., 2014b; Almeida et al., 2017). The probability 

of the two tests in sequence being positive is substantially different than either test used 

individually. For example, using data from Almeida et al. (2017) where sensitivities for 

DPP and ELISA were respectively 82.3% and 85%, the probability for both tests to be 

positive together is 70%, which is considerably lower. However, while specificities for 

DPP and ELISA reach 92.8% and 92.8% individually, the specificity for both tests used 

in sequence will be higher 99.5%. 
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The management of cases is dependent on the final serological test results using these 

kits. A double negative result for serology does not lead to any intervention. 

Meanwhile, if one result is negative while the other is positive, the result is not 

conclusive, and a new test must be performed on a new sample collected within 15 to 

30 days after the initial collection. When dogs are positive for both test in sequence, 

two options are available based on the geographic location: (1) when transmission is 

known and confirmed in the municipality, euthanasia or treatment of dogs are 

recommended; (2) in municipalities with no proven transmission, the first 

recommendation is to perform direct parasitology to identity the species of Leishmania 

in order to inform the Visceral Leishmaniasis Control and Surveillance Program 

(VLCSP) and further measures include removal or treatment of the double-positive dog. 

 

1.4.3 Improvement strategies for the detection Leishmania infection 

All the diagnostic tests described above have focused on the infection. However, not 

all infected individuals present with clinical symptoms, nor are they infectious to 

sandflies. The infectiousness and the proportion of asymptomatic dogs strongly impact 

the success of control strategies (Costa et al., 2013). Nowadays, it is believed that the 

key goal is transmission, and thus infectiousness. According to Quinnell et al. (2009), 

the efficacy of dog culling will be increased only if those dogs that are infectious can  

be identified. Canid transmission must be reduced to prevent human disease. Control 

targeted toward infectious dogs thus requires a specific diagnostic test for infectious 

dogs (Courtenay et al., 2002b). At present there are no diagnostic methods that reliably 

distinguish between infectious and non-infectious dogs. Direct measurement of 

infectiousness requires xenodiagnostic tests. However, this method is logistically very 

difficult to set up and is expensive, making it impractical in endemic areas. An 

alternative could be qPCR, which would require a high cut off titre to find a specific 

antigen. The sensitivity of serology to detect currently infectious dogs was 96.4%–

100% but was much lower in the latent period (62.5%–75.0%). Serology has also 

detected a high proportion of non-infectious dogs (75.8%–80.6%) and has a low 

specificity for infectious dogs (19.4%–24.2%). PCR was generally less sensitive than 

serology, whereas a high clinical score had very low sensitivity but was the most 

specific test for infectious dogs (91.2%). Use of combined tools did not improve the 

overall test performance (Courtenay et al., 2002b). Tissue parasite load is also known 

to have the potential to provide a reliable indirect marker of infectiousness (Travi et al., 
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2001; Michalsky et al., 2007; Verçosa et al., 2008). Indeed, infectiousness to the sandfly 

vector is associated with high parasite numbers. A recent study of Courtenay et al. 

(2014) has sought to identify infectious individuals by using different tissue samples 

(skin and bone narrow) and different techniques, such as qPCR and ELISA. Their 

results suggest that the parasite load in ear skin tissue was the best predictor of being 

infectious. L. infantum amastigotes in skin tissue or skin capillaries are directly 

accessible to sandflies, which are known to feed abundantly on ear pinnae (Travi et al., 

2001; Michalsky et al., 2007; Verçosa et al., 2008). In order to control leishmaniasis, 

the real focus is on transmission. Canids’ transmission must be reduced in order to 

prevent human disease. However, there are still gaps in our scientific knowledge, 

including: (1) the dynamics of transmission; (2) a gold-standard for diagnosis; (3) 

detection of asymptomatic infections and symptomatic infections; (4) the distinction in 

positive serology results between natural infection and vaccine; (5) determinants of dog 

susceptibility to infection; (6) determinants of dog infectiousness; and finally, (7) 

efficient evaluation of diagnostic test performance. 

 

1.5    Mathematical modelling 
 
 

1.5.1 Modelling infectious diseases 

Elementary transmission models are based on compartmental boxes, where individuals 

may move from one box to another according to their infection status: susceptible (S), 

infected (I), recovered (R), or exposed (E), giving rise to the SEIR model (Anderson et 

May, 1991; Keeling and Pejman, 2008). Compartmental models can be implemented 

to be (1) deterministic, defined by ordinary differential equations (ODE), or (2) 

stochastic which involves random variable for the inputs. In deterministic models (as 

implemented in the project), assuming that birth and death can be ignored, two 

parameters are essential: (1) the infection rate which is assumed to be proportional to 

the prevalence of the infection, and (2) the recovery rate which is often assumed to be 

a constant rate. From this basic model, ‘extensions’ can then be considered to increase 

the precision of the predictions and get closer to the reality. Another key concept to 

know the intensity of transmission is the basic reproduction number (R0), defined as 

the average number of secondary cases arising from a primary case in a susceptible 

population. Its magnitude correlates with the difficulty of  controlling the disease. R0 
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can be estimated using the prevalence or the incidence of infection and reservoir life 

expectancy. 

 

1.5.2 Modelling interventions on visceral leishmaniasis 

Mathematical models developed for VL are usually based on the prediction human and 

canine infection and the understanding the interaction and role with the sandfly vector; 

or used to evaluate the impact of interventions, such as (1) human diagnostic, treatment 

and vaccine, (2) control of vectors with insecticides, and (3) dog diagnostic, treatment, 

culling and vaccination. These models are usually separated based on geographic areas 

(e.g. Brazil, Africa and Indian Subcontinent) due to the region-specific diversity of 

Leishmania. For example, mathematic models are necessary to evaluate the accuracy 

of diagnostic tests, as most interventions are depending on them. On humans, the main 

tools are PCR, ELISA, DAT, LST and RDT based on rK39. The presence of parasites, 

antigens or antibodies can thus be evaluated. Clinical symptoms and mortality are also 

considered in these models. They aimed to compare the effectiveness and more 

specifically the cost-effective relation of the different diagnostic strategies applied in 

each country. This is also realised for treatment and vaccine strategies. The following 

section (1.5.3) describes the most recent models of ZVL in canine population, which 

will be used in Chapter 7 of this thesis. Mathematical models of VL on either humans 

or animals are considered central to improving the efficacy of control programs. Since 

the infection involves multiple hosts, control measures must target various populations, 

as discussed previously. From a theoretical point of view, the best way to control an 

infectious disease is to change one of the three parameters needed for efficient 

transmission, namely the vector control (p), the proportion of bloodmeals taken from 

the host (h), and the duration of host infectiousness in days (d) (Lloyd-Smith et al., 

2005). The most efficient way of doing so is vector control, although this is theoretical, 

as vectors are difficult to control and insecticide-spreading campaigns have little impact 

on average transmission, as discussed previously. The blood feeding of the vector is 

also impossible to change. As a result, the last option is to modify host infectiousness, 

or at least to reduce it, as is the aim of this study, by developing a novel diagnostic test 

specific to infectiousness. Nevertheless, even if mathematical models include the 

heterogenicity for transmission; to the best of my knowledge, not a single model 

focuses on targeted interventions on super-spreaders. In the paper of Galvani and May 

(2005), the authors setted as follows: “Control efforts should aim to identify the highly 
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infectious super-spreaders and target interventions at them, {…} even if identifying 

them before they transmit the infection is easier said than done”. 

1.5.3 Modelling super-spreaders in other infectious diseases 

Super-spreading events should be involved in modelling ZVL transmission. Lloyd-

Smith et al. (2005) defined a super-spreader as any infected dog that infects more than 

Z(n) others, where Z(n) is the nth percentile of the Poisson (R) distribution with mean 

effective reproductive number (R) estimated. Currently, there are no applied models on 

interventions including super-spreaders in ZVL. Super-spreading events were 

mathematically modelled for other infectious disease with control settings. Targeting 

super-spreaders for therapeutic or preventive measures is assumed to increase the 

efficacy of interventions (Woolhouse et al., 1997; Lloyd-Smith et al., 2005) while 

failure to target these weakens efforts to achieve herd immunity by vaccination and also 

severely limits the ability to reduce disease at the population level (Baggaley et al., 

2006). For example, a preliminary model of the vaccination of super-spreaders in 

Influenza virus suggested that this approach would offer a certain benefit (Skene et al., 

2014). The authors suggest that targeted vaccination of super-spreaders is more 

effective to reducing the epidemic size and total cost, and achieves it with fewer vaccine 

doses than a mass strategy (Skene et al., 2014). Similarly, for helminthic diseases, 

stochastic models predict that burdens are inversely related to the intensity of the host’s 

immune response; and consequently, it affects interventions such as vaccines, mass or 

selective chemotherapy (Anderson and Medley, 1985; Galvani, 2003). Concerning the 

West Nile virus, the heterogenicity in mosquitos biting has been widely demonstrated 

where birds are hosts of the virus. Recent studies suggested the American Robins 

(Turdus migratorius) have the key role of super-spreaders in the transmission of the 

virus in America (Kilpatrick et al., 2006). Stress hormones alter the vector’s behaviour 

(such as feeding preferences, success and productivity) but predicts a host super-

spreader phenotype (Gervasi et al., 2016; Gervasi et al., 2017). Finally, a retrospective 

analysis of control interventions in MERS (middle east respiratory syndrome) 

incorporated and explored the role of super-spreaders in a dynamic compartmental 

model (Lee et al., 2016). Results suggest that the outbreak duration and size were 

positively correlated with the number of secondary cases stopping from the super-

spreaders. When the control measures containing infections from super-spreaders were 

implemented, the outbreak duration and size were remarkably reduced. Therefore, 

focusing in VL canine super-spreaders could offer a better control strategy. 
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1.5.4 Current models of ZVL in canine population 

Understanding the epidemiology of ZVL in dogs is essential to control infection in both 

humans and canids (Quinnell et al., 2009). Values of R0 for ZVL infection varies greatly 

among studies, since previous estimates have led to a large range of 1.44 to 11, mainly 

due to the poor performance of available diagnostic tests. In Malta and Brazil, it has 

been estimated that R0 had values of 11 and 9 respectively (Dye et al. 1992; Dye et al. 

1993; Quinnell et al., 1997; Courtenay et al., 2002b; Oliva et al., 2006), suggesting that 

ZVL will be difficult to control, and requires a minimum reduction of 89% of 

transmission to be eliminated, whereas others studies have produced much lower R0 

values (Amela et al., 1995; Zaffaroni et al., 1999). Accurate estimates require the use 

of sensitive methods to detect infection, as well as detailed longitudinal studies (Dye et 

al., 1992; Hasibeder et al., 1992). In deterministic model of ZVL, the variable R is 

assumed to be equal to zero as the disease is fatal for dogs. Nevertheless, models have 

made a number of simplified assumptions. For instance, transmission heterogeneity and 

infectiousness are not sufficiently taken into consideration. In addition to the vectorial 

capacity involving parameters of the vector such as species, density, longevity, blood 

intake, and infective period, ZVL is a multiple-host infection, as is the case with  many 

other vector-borne diseases. Incorporating the contribution of the dog population into 

the model is a challenge, requiring an increase in the interactions and status of each 

member. Indeed, the clinical features of infected dogs (symptomatic or asymptomatic) 

will impact the results when they include innate resistance population, infectiousness 

capacity, latent period, etc. The impact of intervention programs such as vector control 

by insecticides or canine removal strategies serve to further complicate the model. 

 

Costa et al. (2013) have offered the most complex model for canine VL. In addition to 

the basic SEIR model (susceptible (S), infected (I), recovered (R) or exposed (E)), this 

model includes infectiousness, asymptomatic dogs, and the imperfect diagnosis of dogs 

which is the main aim of this project. To begin with, all dogs are susceptible from birth. 

But once infected and having passed through the incubation period, only some will 

develop symptoms. About 30% of infected dogs remain asymptomatic (Sundar et al., 

2006b). When applying the diagnostic tools to screen dogs, the parameters include the 

rate (r) with sensitivity (d), and correctly diagnosed symptomatic dogs (DS) and 
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asymptomatic infection dogs (DA). Due to the lack of specificity (dZ), non-infected 

dogs are incorrectly diagnosed (DZ). In the bellow figure, the green ellipse shows all 

dogs categorised as seropositive using the current diagnostic tools. All red boxes 

correspond to infectious dogs, although asymptomatic dogs are around three-fold less 

infective to sandflies as those which are symptomatic. The study concludes that the 

previous models without asymptomatic dogs undoubtedly over-estimate the success of 

interventions dependent on diagnostic tools (e.g. culling), as they have negative impact 

on the results. Moreover, the authors conclude that diagnostics need to be improved 

with high sensitivity identify asymptomatic reservoir and high specificity to reduce the 

numbers of false positives (and thus, the unnecessary culling of dogs). Modelling will 

identify the most efficacious test interpretations as criteria for local interventions. 

Adopting threshold-based diagnostic tests will increase specificity further, thereby 

increasing dog owner compliance and reducing transmission rates with greater efficacy 

than is possible with current policy protocols. 

 

 
Figure 1.2 – Schematic representation by Rock et al. (2016) of the mathematical model 

developed in Costa et al. (2013) including canine VL including infectiousness, clinical 

status of dogs, and current diagnostic methods for infection in the dog population. 

 

Of course, the presence of others animal population that would be able to transmit to 

humans could completely change the structure of the models; however, Quinnell and 

Courtenay (2009) have demonstrated that only domestic dogs are reservoirs of ZVL in 

Brazil. The main weakness of current models is that they fit into a cross-sectional study, 

rather than in a longitudinal one with dynamic time point data. The next step is therefore 

for possible infective asymptomatic dogs but also for imperfect screening due to diagnostic tools via
the use of extra compartments (see Figure 10). This modelling approach is more sophisticated than
its predecessors, with model equations corresponding to this progression allow for delay between
diagnosis and culling (discussed in Section 4).

Figure 10: Model of VL progression in dogs used by Costa et al [45]. Here all dogs are born susceptible
but only some will develop symptoms after becoming infected and passing through the incubation
period. Dogs are screened at a rate r with sensitivity d, and correctly categorised as diagnosed with
symptomatic and asymptomatic infection, DS , DA, respectively. Due to imperfect specificity dZ of
diagnostic tools, some non-infected dogs are incorrectly diagnosed DZ . All dogs within the green
ellipse test seropositive. All red boxes correspond to infective dogs, although asymptomatic dogs are
around 3-fold less infective to sandflies than those which are symptomatic.
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to create a mathematical model from a longitudinal study, and obviously include the 

super-spreaders. 

1.6    Project summary and rational 
 

1.6.1  Summary of the project 

In order to control the transmission of leishmaniasis from zoonotic reservoirs, it is 

necessary to  identify the proportion of the population that are  infectious to the sandfly 

vector. Recent xenodiagnosis and quantitative molecular (qPCR) studies of cohorts of 

naturally infected dogs demonstrate that these super-spreader dogs contributing to over 

80% transmission events have significantly higher Leishmania burdens in their skin 

than may be detected with higher specificity and earlier in the infection process by 

adopting specific qPCR and serum antibody diagnostic test thresholds. The present 

project aims to test novel antigens or/and antigen combinations to develop a more 

specific test to identify super-spreaders in the mixed canid population. In conjunction 

with mathematical modelling, the performance of these tests under varying 

epidemiological scenarios to reduce transmission will be explored for potential field 

efficacy. This  project seeks  to identify efficacious intervention strategies against 

visceral leishmaniasis in humans, where domestic dogs are the reservoir host. In many 

endemic regions, current policy against transmission focuses on the blanket culling of 

Leishmania seropositive dogs, and insecticide spraying against vector(s). However,  

there is little or  no evidence that these approaches have had a significant impact on 

human or canine infection incidence. More specifically, the test-and-slaughter of 

seropositive dogs uses test antigens that have low specificity for disease and canine 

infectivity to the vector, i.e. transmission potential. Consequently, the mass slaughter 

policy is questioned on theoretical, scientific and ethical grounds, and dog-owner 

compliance with the national program is low.  

 

1.6.2 General aims of the project 

This project aims to test novel antigens and/or antigen combinations to develop a more 

specifics test to identify super-spreaders in the mixed canid population. In conjunction 

with mathematical modelling, the performance of these tests under varying 

epidemiological scenarios to reduce transmission will be explored for potential field 

efficacy.  
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The project seeks to:  

(1) Develop and evaluate a prototype diagnostic assay of novel antigens and antigen 

combinations to improve the specificity of a potential “roll-out” serological test 

to target super-spreaders. Serum samples come from endemic cohort dog and 

fox populations that are well characterised for infectiousness to the vector and 

clinical and infection outcomes.  

(2) Adapt the antigen test to a rapid diagnostic test platform in collaboration with 

IDRI (Infectious Disease Research Institute) and InBios International, in 

Seattle, USA. 

(3) Mathematically model the performance of these tests under varying 

epidemiological scenarios to reduce transmission, evaluate potential field 

efficacy, and use these results in quantitative models to identify optimal testing 

regimes to impact on transmission to reduce infection. The novel data will be 

used to help parameterise future mathematical models to predict the potential 

efficacy of new antigen RDT to reduce transmission. 
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CHAPTER 2 Validation of canine sera collection from Brazil and 

cross-reactivity test for Trypanosoma cruzi and Leishmania infantum 

 
 

2.1 Introduction 
 

Samples used  in the present study were collected in villages of Marajo Island in Brazil, 

as fully described in the Methods section of this chapter. As the sera were collected 

several years ago, it is essential to ensure that the samples are still reactive and 

performing in assays. A previous study carried out on the dog sera in 1996 and 2008 

allow a comparative study to guarantee the quality and the veracity of data in the 

project. For the study, the reactivity of each serum was characterized in standard ELISA 

conditions using the crude Leishmania antigen (CLA). The comparative unpublished 

data was obtained from the previous researchers on the sera collection (Quinnell, 1996 

and Carson, 2008). With the aim to verify once again the reactivity of the samples in 

2017, they were tested following in ELISA using the same conditions and compared to 

the previously collected data. The rationale of this chapter is to validate the performance 

of samples within the sera collection, prior to any further assays, to ensure the quality 

of the research. 

 

Moreover, multiple antigens are shared between Leishmania infantum and 

Trypanosoma cruzi, the two causative agents of visceral leishmaniasis (VL) and Chagas 

disease. Antigens common to both agents could lead to cross-reactivity within 

diagnostics. Serological tools such as ELISA, IFAT and Kalazar DetectÔ (RDT based 

on antigen rK39) designed for the identification of Leishmania infection are also able 

to detect serum samples positive for Trypanosoma cruzi (Zanette et al., 2014; Laurenti 

et al., 2014). In order to develop a novel diagnostic tool for Leishmania infection and 

infectiousness (as documented in Chapters 3 and 4 respectively), the sera collection 

was tested for cross-reaction to guarantee their specificity for Leishmania antigens. 

Even if there have been no reports of Chagas disease reported for the area Marajo, the 

prevalence of the infection in others parts of Brazil reaches 15 to 50%. Therefore, 

diagnostic tool should be tested for cross-reactivity between Chagas disease and VL. 
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Leishmaniasis and Chagas disease have in common that they are both protozoan 

parasitic infections, vector-borne, life-threatening, endemic in Latin America and, use 

the dog population as a reservoir of the infection. Therefore, their discrimination in the 

canine population is essential to avoid misleading diagnoses and inefficient screening 

campaigns. To evaluate the potential cross-reactivity of the sera samples, they were 

assayed against Chagas’ antigens. The objective of the chapter is to ensure that the 

samples are correct to use in the context of the project by (1) validate the reactivity of 

the samples, and (2) test the potential cross-reactivity of the sera. 

 
 

2.2 Methods 
 

2.1.1 Description of the sample collection 

 

2.2.1.1 Study design from Brazil field work (April 1993 – July 1995) 

Serum samples were selected using archived material from a prospective study. This 

large-scale longitudinal study was carried out from April 1993 to July 1995, and focused 

on dogs naturally exposed to Leishmania within 24 villages of the municipality of 

Salvaterra, Marajo Island, Para, Brazil (Quinnell et al., 1997). This area had a high 

incidence of canine infection (8.66x10-3/day) (Quinnell et al., 1994). The study involved 

126 uninfected dogs from 2 sources: 99 were young adults (generally 6–18 months old) 

obtained in Belem, where there is no leishmaniasis, and 27 were young (6 months old) 

serologically IFAT-negative animals, born in the study area (Quinnell et al., 1997). 

These dogs were placed in the field in 8 cohorts and served as sentinels to natural disease 

transmission. At every 10-week interval, sera, ear tissue and bone marrow samples were 

collected from each animal. Each dog was sampled for 4–13 sampling rounds during 

the study. From April 1993 to July 1995, 86 dogs were considered to be infected and 36 

dogs were non-infected (Quinnell et al., 2001). Dogs were considered to be infected 

when testing positive using  the following methods: detection of anti-Leishmania IgG 

by ELISA using crude leishmanial antigen (CLA); PCR on bone marrow biopsies using 

primers specific for kinetoplast DNA (kDNA) and ribosomal RNA (rRNA); and 

parasitological culture in vitro and in vivo in hamsters (Quinnell et al., 2001). The exact 

date of infection was unknown, due to the time lapse between the two sample 

collections. Rather, the date of patent infection corresponding to the date of the first 
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positive detection test was used during analyses. From the previously described study, 

dogs were examined at each time point and classified according to a semi-quantitative 

method, based on six clinical signs of leishmaniasis: alopecia, dermatitis, chancres, 

conjunctivitis, onychogryphosis, and lymphadenopathy (Quinnell et al., 2001). The total 

scoring of the following scale classifies the dogs as asymptomatic (scores 0–2), 

oligosymptomatic (3–6) and symptomatic (>7) (Courtenay et al., 2002b). Dogs were 

considered as long-term asymptomatic when the post infection follow-up was over 8 

months and all bimonthly clinical scores were above 3.  

 

2.2.1.2 Determination of infection status of dogs 

The definition of infection is the same as for the studies performed on the same sample 

collection and described previously. When testing positive for serology, bone marrow 

PCR, and parasitological culture, dogs were considered to be  infected by Leishmania. 

Similar to previous studies, the exact date of infection was unknown, as collection 

occurred every 10-weeks. Instead, the date of the first positive detection test was used 

as the reference day (Quinnell et al., 1997).  

 

2.2.1.3 Xenodiagnosis 

From the Brazilian collection, a proportion of the dogs (n=50 dogs in 185 trials) were 

tested for xenodiagnoses, as described by Courtenay et al. (2002b). Xenodiagnoses was 

used to determine the infectiousness of the dog to the sand fly vector. Sentinel dogs 

were placed in individual cages covered by sandfly-proof nets and exposed overnight 

to females of the laboratory-bred sandfly species L. longipalpis for a mean of 3.5 feeds 

per dog (with a range of 1-12 feeds). Five days after feeding, the flies were dissected 

and analysed by microscopy for visible parasites in the midgut. The ratio of infected 

flies to uninfected flies was reported for each dog at each time point. Among these, 15 

dogs were male while 34 were female, and 1 was not sexed (Courtenay et al., 2002b). 

 

2.2.1.4 Infectiousness status of dogs 

Infectiousness is the potential of each dog to infect sandfly vectors which will then 

infect more individuals, either other dogs or humans. “Never infectious” dogs are 

infected by Leishmania parasite, but have never become infectious to the sandfly vector 

(n=36). For this study, the definition was set at six or more successive months of 

negative results for xenodiagnosis trials during the 1993-1995 study. The category 
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“ever infectious” regroups naturally infected Brazilian dogs that have become 

infectious to sandflies at some point during xenodiagnoses trials in the 1993-1995 study 

(n=180). These dogs were classified as highly infectious (>20% of total flies infected), 

mildly infectious (0-20% of flies infected), and non-infectious (no flies infected) 

(Courtenay et al., 2002b; Courtenay et al., 2014). Highly infectious dogs are renamed 

‘super-spreaders’ and are the key target of this study. Another classification includes 

active and latent dogs. Active dogs became infected and infectious at the same time 

point, while latency is the period where the dog is infected but not yet infectious. This 

latency period can take several months, with an average of 94 days (Quinnell et al., 

1994). 

 

2.2.1.5 Sample selection from the previously collected sera 

From the Brazilian collection, only archived samples with xenodiagnosis data were 

used as the test benchmark against the antigen candidates. A total of 257 samples from 

26 dogs were selected for this study. Among these, 78 samples tested negative for 

infection, while 180 were positive for infection by Leishmania. Dogs were considered 

to be infected when testing positive for parasite culture, PCR, and serology (Quinnell 

et al., 2001). Once more, the exact date of infection was unknown, due to a possible 

prepatent period (Quinnell et al., 1997). Instead, the date of patent infection was used 

during the present analyses, this being the date of the first positive detection test. During 

the assays, sera from two negative control groups were tested: (1) non-endemic controls 

corresponding to unexposed UK dogs’ samples from veterinary clinics with no history 

of foreign travel (n=40); and (2) endemic negative controls corresponding to non-

infected Brazilian study dogs (n=36).  

 

2.2.1.6 Storage and conversation of samples 

Prior the thesis, the sera samples were stored at -80°C. During the thesis, the quality 

control of samples was essential. Samples were aliquoted at the start of the thesis, and 

used one at the time for assays to avoid samples to be thawed and refrozen several times 

during the thesis. 

 

2.2.2 Enzyme-linked immunosorbent assay with CLA 

In order to validate their performance, sera samples were tested in the same conditions 

as described by Carson et al. (2010a) to allow a comparative study. To this aim, sera 
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samples were tested using the crude Leishmania antigen (CLA). ELISA plates (96-well 

polystyrene microtitre plates from Maxisorp) were coated overnight at 4°C with 

bicarbonate buffer containing 0,1µg of CLA. Wells were washed with 

PBS/0.05%Tween 20. Blocking was performed for 2 hours at 37C with 2% dried milk 

powder in bicarbonate buffer. After washing, diluted sera samples were added. For the 

detection of IgG, rabbit anti-dog secondary antibody conjugated with horseradish 

peroxidase (HRP-IgG, Sigma-Aldrich) was added to the wells for a 1-hour incubation 

at 37°C. The enzyme reaction was developed with TMB substrate solution for 20 

minutes. The reaction was stopped using sulfuric acid. Plates were read using an 

automated ELISA plate reader set at 450 nm. 

 

2.2.3 Enzyme-linked immunosorbent assay with Chagas antigens 

Trypanosome antigens used for the cross-reactivity assays were TCF2, TCF26, TCF43, 

ICT8.2. They are partially purified sub-fractions of the crude Trypanosoma antigen 

(CTA) on peripheral blood mononuclear cells. These antigens active during the acute 

phase of T. cruzi  infection and stimulate the production of cytokines for the progression 

of infection. Results of the ELISA were considered valid when the negative controls 

had OD values of less than 0.200 and the positive controls had OD values above 0.800 

(pers. comm. IDRI as they manufacture the antigens). Other papers offered the same 

OD values; for example, in Ferreira et al. (2001). A total of 180 samples positive for 

Leishmania infection (as determined by PCR, parasite culture and serology) were tested 

by enzyme-linked immunosorbent assays. Briefly, 96-well plates were coated overnight 

at 4°C with appropriated dilutions of the Trypanosoma antigens. The non-specific 

reactivity on the plate was blocked with 1% BSA in PBS for one hour at room 

temperature. After washing with PBS and 0.1% Tween 20, sera were added in a serum 

diluent buffer (PBS, 0.1% BSA, 0.1% Tween 20) and incubated for another 2-hours. A 

new washing was followed by the preparation of the bound antibody (HRP-IgG, 

Thermo Fisher Scientific) which was added to the wells for a one-hour incubation at 

room temperature. The enzyme reaction was developed with 100 µl/well of TMB 

substrate solution (Tetramethylbenzidine, Fisher) for 30 minutes in the dark. Finally, 

the reaction was stopped with sulfuric acid. Plates were read using an automated ELISA 

plate reader set between 450 nm. Their results were compared to the positive control 

based on the Leishmania antigen. 
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2.3 Results and discussion  
 

2.3.1 Comparative study of sample performance across time 

Results of ELISA with the crude antigen from 2008 and 1996 were previously 

compared, concluding in a correlation of 76.8% (unpublished, Figure 2.1). The yellow 

dot in that figure indicated an outlier that was removed from analysis of 2008 as it had 

lost reactivity (personal communication from Rupert Quinnell). 

 

 
Figure 2.1 The antibodies units detected by the crude Leishmania antigen in 1996 and 

2008. Linear correlation was reported by the R2 (0.77). 

 

Data obtained in 2017 using CLA and rK39 were compared to the previously 

documented data of 1996 and 2008. The units from 2017 was calculated based on the 

absorbance levels normalised into units with standard curves for each ELISA, as the 

total antibody content is different for dog. The correlation of CLA results from 1996 

with the present study indicates a lower relationship (R2=0.55), compared to the one 

from 2008 and 1996 (R2=0.77). Therefore, another correlation was realised using the 

ELISA results from rK39 in 2008 and 2017. The result indicates a correlation of 66%. 

Despite the variation reported by the coefficient of correlation (R2), the reactivity of the 
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sera samples in ELISA using the crude Leishmania antigen (CLA) and the recombinant 

antigen rK39 is sufficient to allow further assays on the sera collection. 

 

(A)  

 
(B) 

 
 
Figure 2.2 Level of antibodies units detected by the crude Leishmania antigen in 1996 

(A) and by rK39 recombinant antigen in 2008 (B), compared to the related results in 

2017. Linear correlations were reported by the coefficient R2 (0.55 and 0.66, 

respectively). 
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2.3.2 Cross-reactivity assays of the samples against Chagas disease 

Trypanosome antigens were TCF2, TCF26, TCF43, ICT8.2; all sub-fractions of the 

crude Trypanosoma antigen (CTA) on peripheral blood mononuclear cells. The results 

were considered positive when they had OD values above 0.800 (personal 

communication from IDRI as manufacturer of these antigens). Ferreira et al. (2001) 

offered the same OD values. The threshold was indicated by a dotted line in the below 

Figure (2.3A). And, indeed, some individual sera samples presented a potential cross-

reactivity with T. cruzi antigens (2.3B), and were removed from the samples collection. 

Overall, the samples had no cross-reaction with the Chagas antigens, guaranteeing that 

the samples are only reacting to the Leishmania antigens. While comparing all the 

Trypanosoma antigens (TCF2, TCF26, TCF43, ICT8.2) to the positive control (based 

on the Leishmania antigen), there is a highly significant difference for all of them 

(p<0.0001, Mann-Whitney test) as reported in Table 2.1. Similarly, the negative control 

based on the Leishmania antigen showed no significant difference compared to the 

Chagas antigens in multiple comparison tests (Table 2.2). There is no significant 

difference among the detection levels of Trypanosoma antigens (Table 2.2). 

 

 

Table 2.1 – Results of the statistical tests using a non-parametric Mann-Whitney test, 

comparing the samples positive for Leishmania (n=180) and the results obtained for the 

Chagas antigens (n=180). 

Positive control versus all the other groups in Mann-Whitney test 

 Positive control 

TCF2 Mann-Whitney U=3618, n1=n2=180, p<0.0001 two-tailed 

TCF26 Mann-Whitney U=1433, n1=n2=180, p<0.0001 two-tailed 

TCF43 Mann-Whitney U=2906, n1=n2=180, p<0.0001 two-tailed 

ICT8.2 Mann-Whitney U=3925, n1=n2=180, p<0.0001 two-tailed 
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(A)  Graph using Mean+SD 

 
 

(B) Graph using Mean+SEM 

 
Figure 2.3 – The absorbance level detected against the Chagas antigens (TCF2, TCF26, 

TCF43, ICT8.2) and compared with a positive detection test (Leishmania antigen). The 

groups are composed of 180 samples positive for Leishmania infection and 78 samples 

negative for Leishmania infection. On each graph, the dotted line representds the 

threshold for the Chagas antigens. Similar, in graph (A) the mean and error bars (SEM) 

are indicated whereas in graph (B) the mean and the standard deviation (SD) are 

indicated. on each graph. For both, the statistical test used is a non-parametric Mann-

Whitney test which results reported in Table 2.1. 
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Table 2.2 – Complete table of results of the statistical test, Tukey’s multiple comparison 

test, comparing the mean of each ELISA result for Chagas antigen and the Leishmania 

control. 

 
 Multiple comparisons test 

 Mean difference (95%CI) P Value 
Control Pos vs. TCF2 Neg 1.19 (1.02 to 1.36) <0.0001 ****  
Control Pos vs. TCF2 Pos 1.06 (0.92 to 1.19) <0.0001 ****  
Control Pos vs. TCF26 Neg 1.23 (1.06 to 1.41) <0.0001 ****  
Control Pos vs. TCF26 Pos 1.19 (1.05 to 1.32) <0.0001 ****  
Control Pos vs. TCF43 Neg 1.20 (1.03 to 1.38) <0.0001 ****  
Control Pos vs. TCF43 Pos 1.10 (0.97 to 1.24) <0.0001 ****  
Control Pos vs. ICT8.2 Neg 1.15 (0.97 to 1.32) <0.0001 ****  
Control Pos vs. ICT8.2 Pos 1.03 (0.89 to 1.16) <0.0001 ****  
Control Pos vs. Control Neg 1.08 (1.25 to 0.91) <0.0001 ****  
Control Neg vs. TCF2 Neg 0.11 (-0.09 to 0.32) 0.7830 ns  
Control Neg vs. TCF2 Pos -0.02 (-0.20 to 0.15) 0.9999 ns  
Control Neg vs. TCF26 Neg 0.16 (-0.05 to 0.36) 0.3301 ns  
Control Neg vs. TCF26 Pos 0.11 (-0.07 to 0.28) 0.6349 ns  
Control Neg vs. TCF43 Neg 0.12 (-0.08 to 0.33) 0.6702 ns  
Control Neg vs. TCF43 Pos 0.02 (-0.15 to 0.20) 0.9999 ns  
Control Neg vs. ICT8.2 Neg 0.07 (-0.14 to 0.27) 0.9909 ns  
Control Neg vs. ICT8.2 Pos -0.05 (-0.22 to 0.13) 0.9967 ns  

 
 

2.4 Conclusion 
 
This comparative study of the sample collection of their performance in ELISA across 

time or their cross-reactivity with Chagas disease allowed the validation of further 

assays on the sera collection. Indeed, no cross-reactivity could be detected, and the 

samples were still as active due to good conservation conditions. Based on this 

conclusion, these samples can be used for the next part of this project aim: to develop 

an improved diagnostic tool in order to limit transmission from the canid reservoir to 

the human population. 
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CHAPTER 3 Improved serodiagnosis in Leishamania-infected 

canine population: longitudinal evaluation of novel and current 

antigens 

 

3.1 Introduction 
 

Zoonotic visceral leishmaniasis (ZVL) remains a major health risk for humans and dogs 

in endemic regions of Leishmania infantum transmission. In Brazil and the Americas, 

the number of new human cases per year remained stable between 2001 and 2017, with 

an annual average of 3500 cases reported (WHO, February 2018). The recent expansion 

into new regions and into peri-urban habitats is particularly challenging for the Visceral 

Leishmaniasis Control and Surveillance Programme (VLCSP). Leishmania infantum is 

transmitted by the sandfly vector between reservoirs, where domestic dogs are known 

to be the main source of parasites and where humans are considered to be accidental 

hosts. Part of the VLCSP, the serological screening of infection in dogs is still a major 

prevention measure in Brazil, aiming to limit natural transmission. The subsequent 

culling of dogs tested positive lead to estimations that over 176,000 seropositive dogs 

were eliminated from 1990 to 1997 (Ministerio da Saude, Brazil, 2006) and more than 

160,000 seropositive dogs from 2003 to 2005 (Lemos et al., 2008). However, there is 

no scientific evidence to indicate that dog culling reduces the incidence of human VL 

cases (Costa et al., 2008; Romero et al., 2010; Harhay et al., 2011). Indeed, such a mass 

slaughter policy may be questioned on theoretical and ethical grounds. Several studies 

have concluded that dog culling did not lead to changes in terms of human transmission. 

Ashford et al. (1998) measured the effect of culling seropositive dogs at 12 months 

intervals, reporting a temporary reduction of seroconversion in one year, but with no 

change in cumulative incidence after 5 years of study and no complete elimination of 

canine and human infection. Evans et al. (1992) concluded that there was no change in 

human transmission before versus after dog culling.  Grimaldi et al. (2012b) found that 

removing seropositive dogs with active disease soon after detection may affect the 

cumulative incidence of seroconversion in dogs, although it is insufficient as a measure 

for eradicating canine infection. Thus, the ZVL control programme involving dog 

culling is highly controversial. Control policy in Brazil and related consequences are 

fully described in Chapter 1. 
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The lack of sensitivity and specificity of the available screening tools has been ascribed 

to the failure of the culling programme (Courtenay et al., 2002b; Martinez-Abad et al., 

2017; de Mendonca et al., 2017). The serological diagnostic procedure currently 

recommended by the Brazilian Ministry of Health (Ministério da Saúde, 2006) to detect 

canine infection consists of a screening using the Dual-Path platform (DPP® CVL; Bio-

Manguinhos/Fiocruz, Brazil) based on recombinant antigen rK28 and followed by 

ELISA for confirmatory. The RDT based on the chimeric rK28 protein (DPP®CVL) 

improves the diagnosis by reducing the number of false-negative dogs that are 

maintaining the infection cycle in endemic areas. Its sensitivity and specificity reach 

85.5% and 94.3%, respectively, for symptomatic dogs (Fraga et al., 2016); however, 

DPP®CVL has low sensitivity (47%) in identifying asymptomatic individuals 

(Grimaldi et al., 2012a). The test performance of this method varies substantially 

between studies (Santarém et al., 2010; Grimaldi et al., 2012a; Fraga et al., 2016). In 

absence of a gold standard, studies define infection based on a different number and 

type of diagnostic test (serological, molecular and parasitological), and clinical sample 

(sera, whole blood, skin tissue, lymph node, bone marrow), each combination limited 

by their sensitivity and specificity. Furthermore, most studies are cross-sectional in 

nature which may fail to identify infected dogs in a pre-seroconversion (pre-patent) 

infection phase. 

 

This study aims to compare the test performance of an enzyme-linked immunosorbent 

assays (ELISA) to target a large range of antigens among which rK39, rK28, rK26, rK9, 

rK34, rKR95, rK18, TR18, and the crude Leishmania antigen (CLA) to define infection 

on longitudinal samples of a naturally infected cohort population of dogs in Brazil 

(Quinnell et al., 1997). Common criteria to define threshold titres are also examined. 

An additional novelty of the study is that test performances were assessed 

longitudinally, up to 20 months after estimated time of infection confirmed by several 

of tests (PCR, parasite culture, and serology) characterising the infection history of each 

dog. The strength points of the study are (i) the large range of antigens tested, (ii) the 

exploration of most efficient thresholds (ii) the well-characterised dog cohort with 

longitudinal follow-up data (for over two years) and the serological assays which are 

the most suitable in operational settings. Choice of antigen and manipulation of 

thresholds would enable better identification of Leishmania-infected dogs, aimed to 

impact VL transmission. 
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3.2 Materials and methods 
 

3.2.1 Original study collection of dog sera from Brazil 

This study used archived dog sera samples generated by longitudinal sampling of 

naturally infected dogs from 24 endemic villages in the municipality of Salvaterra, 

Marajo Island, Para, Brazil, where the incidence of canine infection was 8.66x10-3/day. 

The complete study design has been described in Quinnell et al. (1997). The study 

involved 126 uninfected dogs from 2 sources: 99 were young adults (generally 6-18 

months old) obtained in Belem, where there is no leishmaniasis, and 27 were young (6 

months old), serologically IFAT-negative animals born and recruited in the study area. 

These dogs were placed in the field in 8 cohorts, and served as sentinels to natural 

transmission. At approximately 10-week intervals between April 1993 and July 1995, 

sera, ear tissue and bone marrow samples were collected from each animal and clinical 

signs recorded.  

 
3.2.2  Sample selection 

From the full set of 768 archived samples from 125 dogs collected in the original study, 

samples used in the current study were selected to meet the following inclusion criteria: 

(i) at least 100µl of sera was available to enable multiple assays; (ii) dogs with 

confirmed infection data available, and (iii) with longitudinal data available for  a 

minimum of 6 months post recruitment. Based on these criteria, 293 samples from 26 

dogs were selected for testing; among which 113 were negative and 180 were 

confirmed positive for Leishmania infection. A table reporting the details for each dog 

and each time point can be found as supplementary data. 

 

3.2.3 Storage and conversation of samples 

Prior the thesis, the sera samples were stored at -80°C. During the thesis, the quality 

control of samples was essential. Samples were aliquoted at the start of the thesis, and 

used one at the time for assays to avoid samples to be thawed and refrozen several times 

during the thesis. 

 
3.2.4 Control group 

Control uninfected dogs were composed of healthy sentinel dogs from Brazil (n=36 

dogs) (Quinnell et al., 1997) and UK dogs with no history of foreign travel collected 
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from 3 collaborative UK veterinary clinics with owner consent (n=40). All dogs were 

shown to be negative for the presence for Leishmania parasites in culture, by PCR of 

bone marrow and ear biopsies and for antibody detection in blood. Moreover, the level 

of anti-Leishmania antibodies in sera samples of the endemic controls had to be under 

the threshold value to be considered to be negative. 

 
3.2.5 Definition of confirmed infection 

There is no gold standard test of infection for canine leishmaniasis. Here, dogs were 

considered infected on first detection of Leishmania presence by the following 

diagnostic methods: parasite culture of bone marrow aspirates and PCR of bone marrow 

and ear biopsies (Quinnell et al., 2001). Clinical signs were not sufficiently specific to 

be a reliable marker of infection. The exact date of infection is unknown, due to a 

possible prepatent period (Quinnell et al., 1997). Rather, the date of patent infection 

was used during analyses, which was the date of the first positive detection test.   

 
3.2.6 Leishmanial antigens 

The leishmanial antigens tested comprised of recombinant antigens K26, rK34, rKR95, 

K9, rK18, and TR18, being proprietary sequences derived from the Leishmania genome 

selected in collaboration with the Infectious Disease Research Institute (Seattle, USA). 

Their performance to detect infection were compared to rK39 and rK28 which is used 

for the screening campaigns (Ministerio da Saude, 2006). The candidates are fully 

described in Chapter 1. Antigen rK39, as used in Kalazar Detect™ Rapid Test, is a 39 

amino acid repetitive immunodominant B-cell epitope in a kinesin-related protein 

highly conserved in different strains of Leishmania (L. infantum, L. donovani and L. 

chagasi) (Burns et al., 1993).  Proteins K9 and K26 are two related hydrophilic antigens 

of L. chagasi that differ for the presence of 11 copies of a 14 amino acid repeat in the 

open reading frame of K26 (Bhatia et al., 1999; Boarino et al., 2004). The sequence of 

K9 and K26 are included in recombinant proteins such as rK28 and rK34. Antigen 

rK28, used in the DPP®CVL, was synthetically generated by fusing multiple tandem 

repeat sequences of L. donovani k26, LdK39 and k9 providing complementing epitopes 

and increasing the density (Pattabhi et al., 2010). Antigen rK34 is also a recombinant 

protein including LdK39, k9, A2 and kinesin-related sequence labelled LinJ32. TR18 

is a B-cell related protein containing several tandem repeat proteins (Goto et al., 2007), 

while rKR95 is an L. donovani kinesin-related protein (Vallur et al., 2016). Neither 
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related protein, nor the origin of rK18, were described in detail by the authors, who are 

however mentioning that the sequence is highly conserved in the genome among the 

Leishmania species (Vallur et al., 2015). The crude Leishmania antigen (CLA) made 

from whole promastigotes or their soluble extracts was produced as described in Stober 

et al. (2005). Freeze-thawed CLA was prepared from stationary phase promastigotes of 

Leishmania infantum by resuspension in 10 mM Tris-HCl (pH 8.5), 0.5 M NaCl, 1 mM 

PMSF, and 50 µg/ml leupeptin, with three freeze-thaw cycles over liquid nitrogen 

(Stober et al., 2005). 

 

3.2.7 Enzyme-linked immunosorbent assay 

An enzyme-linked immunosorbent assay (ELISA) was used to compare the 

performance of current and novel Leishmania antigens following the protocol below. 

Initially, each antigen was tested independently. Based on the results of the single 

antigen testing, combinations of antigens were also tested in order to increase the 

performance of the test. The best performing antigens were selected to be combined 

afterwards. Leishmania antigens were titrated (25, 50, 100, 200 ng/well) with different 

dilutions of positive and negative sera (1:100, 1:200, 1:400, 1:800) on 96-well Linbro 

plates to determine the optimized ELISA conditions. For each assay, the 96-well Linbro 

plates were coated overnight at 4°C with 1µg/ml (100 ng/well) of the antigens diluted 

in bicarbonate buffer (0.05 M), except the rKR95, which was diluted in a phosphate-

buffered saline solution (PBS). The plate was blocked with 1% BSA in phosphate-

buffered saline (PBS) pH 7.2, 0.1% Tween 20 for 2 hours at room temperature to 

prevent non-specific reactivity. After washing (PBS, 0.1% Tween 20), 50 µl of diluted 

sera (at 1:400) in diluent buffer (0.1% BSA in phosphate buffered saline pH 7.2, 0.1% 

Tween 20) were added to the antigen wells and incubated at room temperature for 2 

hours. The plates were washed and the bound antibody HRP-IgG at dilution 1:30,000 

(Thermo Fisher Scientific) was added to incubate at room temperature for one hour. 

The enzyme reaction was developed with 100µl/well of TMB substrate solution 

(Tetramethylbenzidine, Fisher) for 15 minutes. The reaction was stopped using 50 

µl/well of sulfuric acid. Plates were read using an automated ELISA plate reader 

(Wallac Victor2, Perkin Elmer) between 405-410 nm. 
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3.2.8 Threshold determination 

Test-specific threshold values were based on non-infected dogs (n=113 samples). The 

thresholds determination was based on several methods to define the optimal threshold 

values to adopt. Conventional thresholds included common practices such as the 

Mean+2SD or the Mean+3SD. The receiver-operator characteristic (ROC) curves as 

described by Hanley and McNeil (1982) provided a range of possible threshold values; 

the threshold value selected represented that with maximised sensitivity and specificity. 

Finally, a method described by Ruopp et al. (2008) provides a Youden’s J Index that 

summarizes the ROC data, classifying the diagnostic test performance on a scale 

between -1 and 1. A value of 1 indicates 100% sensitivity and specificity i.e. the perfect 

test. Post selection of the thresholds, the sensitivity and specificity of tested antigens 

were calculated. 

 
3.2.9 Statistical analysis  

All analyses were carried out using GraphPad Prism 7 and Stata 14.5 (Stata 

Corporation, College Station, Texas, USA). A comparison of values of optical densities 

for IgG was performed using the Krustal-Wallis  H test with Stata and Mann-Whitney 

with GraphPad Prism 7 software. The data obtained from ELISA were used to 

determine receiver-operator characteristic (ROC) curves as described by Hanley and 

McNeil (1982) that that plot the true-positive rate against the false positive rate. To 

create these ROC curves, the control group was composed of 113 uninfected samples 

from Brazil, and the positive group was composed of 180 infected samples from the 

same Brazilian cohort. Results were reported with the area under the curve (AUC) 

ranging from 0 to 1, with scores determining the performance of the test. This parameter 

is widely accepted for evaluating diagnostic accuracy. If the AUC value is between 1-

0.9, the test is excellent; it is good between 0.9-0.8; fair between 0.8-0.7; poor between 

0.7-0.6; and worthless between 0.6-0.5 (McFall and Treat, 1999; Langlotz, 2003; Tape, 

2004). Thresholds were determined as defined below and reported with their related 

sensitivity and specificity. When  comparing the sensitivity and specificity of diagnostic 

test using different antigen candidates, a pairwise calculation was performed using 

McNemar’s Chi-square (c2). Pairwise comparisons of the test performance using 

different antigen candidates was performed using Pearson’s correlation coefficient. 

Post-hoc pairwise comparisons and Tukey HSD test were performed within 

the ANOVA one-way analysis, on longitudinal scale. 
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3.3 Results 
 

3.3.1 Cross-sectional analysis of performance of the antigens to detect 

infection in dog cohort 

The 293 sera samples from 26 dogs were tested among which 113 were negative and 

180 were positive for Leishmania infection (confirmed by parasite culture, qPCR, and 

PCR). The antigens tested in ELISA were rK39, rK28, K26, rK34, rKR95, K9, TR18, 

rK18 and the crude Leishmania antigen (CLA). The significant differences between the 

mean absorbance values for infected (n=180) versus uninfected (n=113) samples 

suggests that all candidate antigens were potentially able to distinguish infected and 

uninfected dogs in serum samples (Figure 4.1). However, significant differences in 

mean absorbance values were observed between the nine antigens (Kruskal-Wallis H 

test, χ2(9)=417.8 (P<0.0001). The receiver-operator characteristic (ROC) curves for the 

antigens were represented in Figure 3.2, offering all the performances of the test 

calculated for each possible threshold values (***p<0.0001). The high AUC values 

(>=0.90) estimated by fitting ROC curves to uninfected and confirmed infected samples 

(Figure 3.2) suggest that rK28, K26, rK34 and CLA have greater higher sensitivity and 

specificity to distinguish the two groups.  

 

 
Figure 3.1 – Mean absorbance levels of antibodies detected  against the leishmanial 

antigen candidates (rK39, rK28, rK26, rK9, rK34, rKR95, rK18, TR18, and CLA) for 

uninfected (n=113) and infected (n=180) dogs of the Brazilian cohort. Mann-Whitney 

test was performed for each of the antigen (***p<0.0001)  
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Figure 3.2 – Receiver-Operator Characteristics (ROC) curves determined for antigen 

candidates. The control group is composed of 113 uninfected samples from Brazil, and 

the positive group is composed of 180 infected samples from the same Brazilian cohort. 

The area under the ROC curve (AUC), the 95% confidence interval, and the p-value 

were reported for the different antigens. 

 

Exploring a range of possible thresholds for each candidate aims to maximise 

sensitivity and specificity of the diagnosis (as described in the Methods). An illustration 

of the impact of the thresholds on the antigen detection were represented in the Figure 

3.3. In this study, the selection of the threshold was consistent among all antigens, and 

based on the Youden Index calculated from the ROC curve. The Youden Index was 

identified to facilitate selection of the possible threshold titre combinations of sensivity 

and specificity generated by ROC curve analysis (Figure 3.3). Therefore, for all 

analyses below, the Youden Index interpretation of ROC data were applied. The 

identified thresholds for each antigen and resulting test performances are shown in 

Table 3.1 with sensitivity and specificity, false detection (positives and negatives), 

positive predictive values (PPV) and negative predictive values (NPV). Antigens rK28, 

K26, and rK34 showed highly significant performances to detect infection compared to 

rK39 (Table 3.1). The antigen rK28 is currently using in the Dual-Path Platform (DPP-

RDT) to detect Leishmania infection in canine population; however, K26 offers a 

similar performance and is an element of rK28 construct. 
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Thresholds options Sensitivity (95% CI) Specificity (95% CI) 

0.476 (Mean+3SD) 37.8 (30.7 - 45.3) 98.2 (93.8 - 99.8) 
0.354 (Mean+2SD) 48.3 (40.8 - 55.9) 94.7 (88.9 - 98.0) 
0.188 (Youden Index) 80.0 (73.4 - 85.6) 88.6 (81.3 - 93.8) 
0.132 (Upper 95% CI of the 
mean of the non-infected) 

89.4 (84.0 - 93.5) 75.4 (66.5 - 83.0) 

 
Figure 3.3 – Illustration of the impact of threshold values applied on the antigen K26 

absorbance values. The median and the 95% CI was indicated separately for uninfected 

and infected, whereas the thresholds were applied over the complete set of absorbance. 

Threshold values were 0.476 for Mean+3SD; 0.354 for Mean+2SD; 0.188 for the 

Youden Index and 0.132 for the values indicating the upper 95% CI of the mean of non-

infected dogs. 
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Table 3.1 – Threshold values determined for each antigen with sensitivity and 

specificity when applied on the test population. False positives and negatives, as well 

as the predictive values were reported for each antigen. 

 
 

3.3.2 Longitudinal analysis of antigen detection 

Analyses of the longitudinal absorbance data accounts for fluctuations in responses 

over time (Figure 3.4A). All dogs were aligned by the sampling round (month) of 

confirmed infection (time point labelled 0 in Figure 3.4A). Antibody absorbance was 

measured an average of 10 months prior to infection confirmation (73 samples), and 

for this analysis, up to 8 months post infection (144 samples). Prior to confirmed 

infection, antibody levels against each antigen were similar to those in the uninfected 

control group (Figure 3.4B). From point of confirmed infection, the longitudinal 

response profiles showed significant increases for all antigens (p<0.0001, Mann-

Whitney) reaching a plateau 2 to 8 months post infection (Figure 3.4A). Possible 

reasons for the apparent decay in absorbance values thereafter (up to 20 months post 

infection, Figure 3.4A) is discussed (see below). In the Tukey HSD comparison, the 

absorbance levels before confirmed infection were not significantly different between 

antigens, except rKR95 which was significantly higher to all other antigens before the 

point of confirmed infection, which could lead to false positive results. When 

comparing antigen detection before and after the time of confirmed infection, all 

Antigen Threshold1 Sensitivity 
(CI 95%) 

Specificity 
(CI 95%) 

False 
positive 

False 
negative 

PPV 
 

NPV 
 

rK39 0.092 75.0  
(68.0 – 81.1) 

70.2  
(60.9 – 78.3) 29.8 25.0 71.6 73.7 

rK28 0.201 82.2  
(75.8 – 87.5) 

86.8  
(79.2 – 92.4) 13.2 17.8 86.2 83 

K26 0.188 80.0  
(73.4 – 85.6) 

88.6  
(81.3 – 93.8) 11.4 20.0 87.5 81.6 

rK34 0.151 81.7  
(75.2 – 87.0) 

85.1  
(77.2 – 91.1) 14.9 18.3 84.6 82.3 

rKR95 0.218 82.2  
(75.8 – 87.5) 

79.8  
(71.3 – 86.8) 20.2 17.8 80.3 81.8 

K9 0.121 69.5  
(62.1 – 76.1) 

88.6  
(81.3 – 93.8) 11.4 30.5 85.9 74.4 

rK18 0.107 51.1  
(43.6 – 58.6) 

72.8  
(63.7 – 80.7) 27.2 48.9 65.3 59.8 

TR18 0.133 55.6  
(48.0 – 62.9) 

79.8  
(71.3 - 86.7) 20.2 44.4 73.4 64.3 

CLA 0.201 83.3  
(77.1 - 88.5) 

89.5   
(82.3 - 94.4) 10.5 16.7 88.8 84.3 

 1 based on the Youden Index   
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antigen levels increased except rK18 (Table 3.3). Therefore, antigen rK18 is not a good 

diagnostic candidate for infection in dogs. When comparing the antigen curves after the 

point of confirmed infection (0 to 8 months post infection) (Table 3.2), antigens rK28, 

K26, rK34 and CLA presented similar aspect and were not significantly different from 

each other (p-values between 0.999 and 0.058 in Tukey HSD test). The absorbance 

levels after infection for antigens rK39, K9, rK18 and TR18 are significantly lower than 

for the other antigens (p<0.0001 Tukey HSD test; data not shown). However, among 

the lower performing antigens, antigens rK39 and K9 presented similar rises in 

detection curves (p=0.05, in Tukey HSD test). 

 

 

Table 3.2 – Longitudinal evolution of antigens compared for times after confirmed 

infection as represented in Figure 3.4(A). 

 Mean difference (95% CI) p-value 
rK28 after vs. CLA after 0.046 (0.026 - 0.118) 0.9557 
K26 after vs. rK34 after 0.038 (0.110 - 0.034) 0.999 
K26 after vs. rKR95 after 0.006 (0.078 - 0.066) >0.999 
K26 after vs. CLA after 0.071 (0.143 - 0.001) 0.058 
rK34 after vs. rKR95 after 0.031 (0.041 - 0.104) >0.999 
rK34 after vs. CLA after 0.033 (0.106 - 0.038) >0.999 
rK39 after vs. K9 after 0.073 (0.001 - 0.145) 0.050 
rK18 after vs. TR18 after 0.079 (0.151 - 0.007) 0.015 

 

 

Table 3.3 – Comparison on the longitudinal evolution of antigen detection in serum, 

comparing time before and time after confirmed infection, for 26 naturally infected 

dogs using the antigens (Mann-Whitney test). 

 Mean Difference (95 % CI) Adjusted P Value 
rK39 before vs. after 0.32   (0.39 - 0.24) **** <0.0001 
rK28 before vs. after 0.55   (0.63 - 0.47) **** <0.0001 
K26 before vs. after 0.45   (0.53 - 0.38) **** <0.0001 
rK34 before vs. after 0.48   (0.56 - 0.41) **** <0.0001 
rKR95 before vs. after 0.36   (0.44 - 0.29) **** <0.0001 
K9 before vs. after 0.27   (0.35 - 0.19) **** <0.0001 
rK18 before vs. after 0.07   (0.15 - 0.00) ns 0.0768 
TR18 before vs. after 0.12   (0.20 - 0.05) **** <0.0001 
CLA before vs. after 0.52   (0.60 - 0.45) **** <0.0001 
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(A) Longitudinal evolution of the mean detection of antibodies in serum 
for 26 naturally infected dogs using the antigens 

 
 

(B) Longitudinal evolution of the mean detection of antibodies in serum 
for endemic controls (n=36) 

 
Figure 3.4 – (A) Longitudinal evolution of the mean detection of antibodies in serum 

for 26 naturally infected dogs using the antigens. From the point of infection, the level 

of antibodies could be measured up to 20 months. Negative values represent months 

prior to infection. (B) Longitudinal evolution of the mean detection of antibodies in 

serum for endemic controls (n=36) using the antigens. 
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3.3.3 Combined antigens to improve detection of Leishmania infection 

To increase sensitivity and specificity of the detection tool, a well-known option in 

previous studies of diagnostic assays is to combine antigens to increase the performance 

and the detection rate of infected dogs. Six combinations of 4 antigens were examined: 

(1) K26/K28; (2) K26/K9; (3) K28/K9; (4) K26/K34; (5) K28/K34 and (6) K9/K34. 

These were selected from inspection of the individual antigen performances both in 

ROC analysis and inspection of changes in the longitudinal absorbances. The candidate 

KR95 was not selected for combination assays based on results for infectiousness 

potential, as described in Chapter 4. All combinations showed highly significant 

difference between infected and non-infected sera (p<0.0001, Mann-Whitney test) 

(Figure 3.5). Thresholds were identified by ROC analysis as described previously, and 

reported in Table 3.4. Comparing the AUC values of these combinations, no significant 

superiority among the paired combinations were detected (p=0.03); except for 

rK28/K26 which showed higher sensivity and specificity compared to the other 

combinations (P<0.0001). The performance of combined candidates could also be 

analysed over time, through the longitudinal nature of the study design (Figure 3.6). In 

the non-parametric test (Mann-Whitney test), all of the combinations present a highly 

significant difference (p<0.0001) in the level of absorbance detected before and after 

the point of infection (n°10) Combinations of antigens offer higher sensitivity and 

specificity than the single antigen assays, and thus improve the performance of the test. 

Among the combinations, the pair K28/K26 presents the highest performance rate. 

With the exception of the previously mentioned pair, none of the antigen pairs showed 

improved performance in sensitivity and specificity compared to the single antigens. 
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Figure 3.5 – Mean of net absorbance levels and standard errors detected for each 

combination of antigen candidates for the uninfected group (n=113) and the infected 

group (n=113) from the same Brazilian cohort. 

 

 

Table 3.4 – Combined antigens analysis reporting ROC curves with AUC values (and 

95% confidence interval), thresholds (based Youden Index), sensitivities and 

specificities (with 95% confidence interval) when applied on the population. All curves 

were significant (p<0.0001) based the non-parametric method as described by Hanley 

and McNeil, 1982. 

Antigens AUC  
(CI 95%) 

Threshold Sensitivity  
(CI 95%) 

Specificity 
 (CI 95%) 

rK28/K26 0.92 (0.89 – 0.95) 0.048 90.6 (85.3 – 94.4) 83.3 (75.2 – 89.7) 
K26/K9 0.81 (0.76 – 0.86) 0.137 72.2 (65.1 – 78.6) 75.5 (66.5 – 83.0) 
rK28/K9 0.88 (0.85 – 0.92) 0.107 67.2 (59.9 – 74.0) 97.4 (92.5 – 99.4) 
K26/rK34 0.87 (0.82 – 0.91) 0.055 74.5 (67.4 – 80.6) 83.3 (75.2 – 89.7) 
rK28/rK34 0.86 (0.82 – 0.90) 0.060 67.8 (60.4 – 74.5) 93.0 (86.6 – 96.9) 
K9/rK34 0.84 (0.79 – 0.88) 0.103 66.7 (59.3 – 73.5) 92.1 (85.5 – 96.3) 
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Figure 3.6 – Longitudinal analysis of the detection of antibodies in serum for naturally 

infected dogs (n=257 samples from 26 dogs) using combinations of antigen candidates. 

The point of infection is point 10. From points 1 to 9, dogs were not infected and neither 

were endemic controls. From time point 10, dogs were naturally infected. Measures 

were taken up to 20 months. 

 
 

3.4 Discussion 
 

For an equivalent sensitivity, antigens K26 and rK34 surpass antigens rK39 and rK28, 

with respective specificities of  89%, 89%, 70% and 87% towards detecting canine 

infection. Test performances were improved by applying thresholds identified using the 

Youden Index within the ROC curves analysis. The results demonstrate the potential of 

select novel antigens in their performance relative to currently available tests to detect 

canine infection. The Kalazar Detect™ Rapid Test based on rK39 was used for 

screening of canine infection (Ministério de Saùde, 2006). Previous studies of rK39 

RDT and rK39 ELISA reported generally high but variable sensitivity (77% to 88%) to 

detect infection in the symptomatic dog population, but a lack of sensitivity (46% to 

56%) to detect infection in asymptomatic dogs (parasite-positive dogs that do not 

manifest clinical signs of VL) (Guan et al., 2001; Reithinger et al., 2002b; Lemos et al., 
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2008; Santarém et al., 2010; Quinnell et al., 2013). Since all dogs in the current study 

were symptomatic to varying extents, and clinical signs are not generally specific to 

canine Leishmania infection, it was not possible to differentiate test performances 

between these two clinical categories of dogs. But following published results, it may 

be that the symptomatology of the current study dogs contributed to the high-test 

sensitivities in this study. Nonetheless, the results here study suggest that antigens 

rK28, K26, rK34 have higher specificity than rK39 in reducing the number of false-

positive dogs. This is important as this should increase dog owner compliance by 

reducing the numbers of uninfected (often asymptomatic) dogs that are likely to be 

culled in a test-and-slaughter control program, such as practised by the Visceral 

Leishmaniasis Control and Surveillance Programme  in Brazil. The VLCSP currently 

recommends testing dogs using the Dual-Path Platform (DPP®CVL) which is based on 

the chimeric rK28 protein (Ministério de Saùde, 2011). This is an improvement to 

rK39; its overall sensitivity in the mixed population ranges from 86% to 90.6% 

(Grimaldi et al., 2012a; Laurenti et al., 2014; Fraga et al., 2016). The test also shows 

high specificity when tested on symptomatic dogs from 94% to 96% (Grimaldi et al., 

2012a; Laurenti et al., 2014; Fraga et al., 2016), but poor specificity in asymptomatic 

dogs (47%) (Grimaldi et al., 2012a). A report from Venturin et al. (2015) compared 

antigens rK39 and rK28 in enzyme-linked immunosorbent assays, showing that the 

performance of rK28 is higher than rK39 in detecting infected dogs, even if there was 

no signification difference. In their study, rK39 and rK28 had sensitivities of 96.25% 

and 100%, and specificities of  97.6% and 100%, respectively (Venturin et al., 2015). 

Human trials have already shown that antigens rK39 and rK28 have similar sensitivity 

and specificity in detecting infection (Vaish et al., 2012).  

 

Towards further advancement in canine infection diagnosis, two related hydrophilic 

antigens of L. infantum (K26 and K9) have been proposed for implementation (Rosati 

et al., 2003). Applying ROC derived thresholds, this study shows antigens K26 and 

rK34 and rK28 to out-performed antigens rK39 with respective specificities of 89%, 

87%  and 89%, versus 70% at equivalent levels of sensitivity derived from ROC 

analysis. Comparing the gene construct of the antigens, K26 is a component of many 

other proteins including antigen rK28. When comparing the performance of antigen 

K26 in the present study we showed similar test performance to that reported by 

Martinez-Abad et al., (2017) with sensitivities of 80% and 77%, and specificities of 
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88.6% and 91% respectively. These results implicate K26 to be a promising candidate 

for canine infection screening. Contrary to previous studies that consider rK28 to be 

more performant than K26 in detecting canine infection (Venturin et al., 2015; 

Martinez-Abad et al., 2017), our results show no significant differences between 

antigens rK28, K26, and rK34 overall, though it is clearly a better performing antigen 

than rK39 (Rosario et al., 2005; Venturin et al., 2015; Martinez-Abad et al., 2017). The 

important of the threshold determination was demonstrated here. 

 

As this study used total IgG detection, Martinez-Abad et al. (2017) also performed 

assays on the different IgG subclasses. Using antigen K26 for detection, the AUC for 

IgG1 and IgG2 were, respectively, 0.64 (0.569-0.706) and 0.89 (0.847–0.936). The 

amount of IgG2 antibodies is thus higher than IgG1 in seropositive dogs. Indeed, the 

protective response against Leishmania are specifically associated with high level 

levels of IgG2 (de Freitas et al., 2012; Iniesta et al., 2005; Day, 2007; Reis et al., 2014;  

Rodriguez-Cortes et al., 2007, Laranjeira et al., 2014). Moreover, correlations between 

asymptomatic dogs and high levels of IgG1 were also reported by several studies 

(Deplazes et al., 1995; Iniesta et al., 2005; Asl et al., 2013). Indeed, Th1 responses are 

characterized by a predominant IgG2 antibody response associated with the control of 

leishmaniasis and maintenance of asymptomatic infection (Asl et al., 2013; Cruz-Chan 

et al., 2014). Previous studies have shown that detection of infection in asymptomatic 

dogs has lower sensitivity than in symptomatic dogs, as described in Chapter 1. While 

comparing detection of infection in symptomatic vs. asymptomatic dogs, rK39 in 

ELISA has high sensitivities, from 93% to 100% for symptomatic dogs, but only 53% 

to 65% in asymptomatic dogs (Badaro et al., 1999; Rosario et al., 2005; Mettler et al., 

2005). A comparative study of enzyme-linked immunosorbent assays was done using 

the antigens rK39 and K26 on infected dogs demonstrated specificities of 85% and 90% 

(Porrozzi et al., 2007). Sensitivities were 100% and 94%, respectively, for symptomatic 

dogs, and both 66% for asymptomatic dogs (Porrozzi et al., 2007) supporting the need 

to develop more efficient diagnostic tool based on K26. The obvious correlations 

between symptomatic/asymptomatic dogs, IgG subclasses and detection antigens 

should be the next target of research to develop diagnostic tool efficient for all infected 

dogs.  
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Antigen combinations have proven to improve test performance to detect canine 

infection (Boarino et al., 2005; Grimaldi et al., 2012a; Martinez-Abad et al., 2017). In 

this study, K28/K26 was superior to all the other combined antigens, with a sensitivity 

of 91% and a specificity of 83%. As such, in its gene construct it represents a double-

sequence of k26, which might explain the improved detection. Moreover, results 

indicate that the K26 antigen performed even better in combination with K9 or K28 

than either single antigen alone. This supports the case for inclusion of the K28/K26 

combination (and K26) as novel candidate serological tools. According to previous 

studies, the combination K26/K39 showed 96% sensitivity and 99% specificity 

(Boarino et al., 2005), though another study reported a lower sensitivity in detecting 

asymptomatic infections (Grimaldi et al., 2012a). More recently, a novel antigen of 

Sudanese L. donovani (rKLO8) in combination with K26 was tested, and showed 

improved diagnostic accuracy for canine infection (Martinez-Abad et al., 2017).  

 

With respect to the longitudinal antibody profiles in the current study dogs, all antigen 

responses increased from the time of confirmed infection reaching a plateau within 6 

months (Figure 3A). Comparison of the rises in antigen absorbances were analysed for 

this phase (from 2 to 8 months). The decay in absorbance titres for most antigens 

thereafter i.e. from 10 months post infection, is most likely related to the reduced 

number of dogs for which samples were available after 10 months post infection. Sero-

recovery to negative against CLA in this cohort was rare (Quinnell 2007) and decays 

rates in anti-Leishmania titres are slow (Bhattacharyya et al., 2014). The loss of signal 

in the profiles observed here is more likely due to the loss of the sickest dogs of the 

cohort, thus those with the highest antibody titres. Moreover, as observed in the 

longitudinal data, there is a delay of 2 to 4 months in antibody rise post confirmed 

infection, depending on the antigen, which is in line with the expected pre-patent period 

between infection and seroconversion, previously estimated for this population as a 

median 94 (95% 82 – 111) days (Quinnell et al., 1997).  

 

Previous diagnostic papers used a threshold of “Mean+2SD” as most convenient. 

Exploring threshold possibilities is time-consuming, but essential to reach optimal 

performance of tools. Whether the current test could be upgraded by adapting their 

threshold, this study suggested that would be an option for improvement, as for antigen 

rK28. However, defined antigens have higher specificity to detect infection, as 
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demonstrated for K26, predictably due to the antigenicity of the molecules. Indeed, 

rK28 was generated by fusing multiple tandem repeat sequences including K26, K39 

and K9, resulting in the recombinant protein (Pattabhi et al., 2010). The change in 

polymorphism, as the charge change in K26 compared to rK28, potentially affected the 

antigenicity. Therefore, we recommend the develop of diagnostic assays based on K26 

with optimisation of thresholds. 

 

The choice of high-performance antigens, and threshold values to define infection, 

enables more precise identification of infected (seropositive) dogs in the mixed canine 

population.VL is a health risk for both humans and canids, where canine infection 

maintains zoonotic transmission to humans (Quinnell & Courtenay, 2009). With the 

ultimate aim to impact on Leishmania transmission, the pursuit of cost-effective 

diagnostic tools also needs to consider implementation and follow-up actions with 

regard to identified seropositive dogs, with few currently acceptable or affordable 

options. Improved test specificity, as shown in this study, is paramount in winning the 

consent of dog owners for effective implementation of reservoir control (Courtenay et 

al., 2002). Furthermore, the heterogeneity in transmission potential as demonstrated by 

Courtenay et al. (2002b), suggest that focusing on the infectiousness for dogs is likely 

to  improve the control program in Brazil. The second part of this project concerns the 

transmission potential of dogs and how this transmission potential, known as 

infectiousness, may be detected. 
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CHAPTER 4 Serodetection of infectiousness : identification of 

Leishmania super-spreaders in mixed canine population. Comparative 

study of current and novel antigen-based tools. 

 

4.1 Introduction 
 

Being an essential component of the national (albeit decentralised) leishmaniasis 

control program, dog culling remains highly controversial. While current intervention 

programs focus on eliminating VL disease as a public health problem by removal of 

seropositive dogs, breaking the transmission cycle requires understanding transmission 

dynamics and which portion of the population is most important for onward 

transmission (Rock et al., 2016). A published field study of Ashford et al. (1998) 

suggested that canine culling in Brazil led to a temporary and incomplete reduction in 

canine incidence; whereas other studies showed no reduction of infection rates in 

humans or dogs (Evans et al., 1992; Grimaldi et al., 2012b). However, published field 

studies tend to use more efficient detection method than the current control program 

applied in Brazil (Ashford et al., 1998; Evans et al., 1992; Grimaldi et al., 2012b). 

Likely reasons for the low efficacy are discussed in Chapter 1. In this project, novel 

Leishmania antigens were compared to the currently used antigens in order to identify 

potentially more sensitive and specific serodiagnostic tests for canine infection. Some 

of the candidates, such as K26, out-performed the antigens currently used, as 

demonstrated in Chapter 3. However, these diagnostic tools detect the presence of 

canine anti-Leishmania antibodies, which can be variably interpreted as current 

infection, previous exposure to Leishmania, latent infection, or residual antibody 

following cure. Indeed, IgG antibody levels do not decay rapidly following interruption 

of exposure or cure (Bhattacharyya et al., 2014). Moreover, it is established that not all 

infected dogs become equally infectious (Courtenay et al., 2002b; Courtenay et al., 

2014). In longitudinal xenodiagnosis studies of dogs naturally infected with L. infantum 

in Brazil, Courtenay et al. (2002b) observed 42.9% of infected dogs became infectious 

post infection, whereas a much smaller proportion of infected dogs (17%) were 

considered highly infectious. The latter dogs, referred to as super-spreaders, accounted 

for over 80% of all transmission events (Courtenay et al., 2002b). Such heterogeneities 

in transmission potential is seen across many infectious diseases (Graham et al., 2007; 
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Clay et al., 2009; Stein, 2011; Enriquez et al., 2016; Castillo-Neyra et al., 2017; Hodo 

et al., 2017). As only a minority of infected dogs are super-spreaders, it is reasonable 

to propose that these offer a potential focal target for control. It is still unclear why 

certain dogs disproportionately infect secondary contacts; however, canine 

infectiousness is associated with high parasite loads in tissues, skin and blood, severe 

clinical signs of disease, and high IgG antibody titers (Courtenay et al., 2002b; 

Courtenay et al., 2014; da Costa-Val et al., 2007; Guarga et al., 2000; Magalhães-Junior 

et al., 2016; Borja et al., 2016; de Sousa Gonçalves et al. 2016).  As only a minority of 

infected dogs are super-spreaders, it is reasonable to propose that they offer a potential 

focal target for control (Courtenay et al., 2014). To date, xenodiagnosis is the only 

method that provides conclusive data to discern infectious from non-infectious dogs. 

Despite these potential surrogate markers, there are no field friendly diagnostic tools to 

detect infectiousness. Due to the need for identifying highly infectious dogs, a newly 

proposed diagnostic test was developed for the specific detection of super-spreaders in 

a mixed canine population. Novel and current Leishmania antigens were evaluated in 

enzyme-linked immunosorbent assays on archived sera collected from naturally 

infected cohort of dogs in Brazil. The antigens tested included rK39 and rK28, known 

and used for infection screening in Brazil, (Ministério da Saúde, 2011; Almeida et al., 

2017), as well as antigens  K26, rK9, rK34, rKR95, rK18, TR18, 6H, 8e, Lin14/2, 

Lin14/4, Lin11/2 and Lin34/2. Another novelty of this study is the longitudinal analysis 

of antigenic responses over 20 months in relation to canine infectiousness measured by 

longitudinal xenodiagnosis (Quinnell et al., 1997). Importantly, these data allow 

estimation of the assays’ ability to detect infectious classes of dogs from the point of 

seroconversion relative to the time of the onset of infectiousness. 

 

4.2 Materials and methods 
 

4.2.1 Original study design (April 1993 to July 1995) 

Dog sera were collected during a longitudinal study from April 1993 to July 1995 in 

24 endemic villages in the municipality of Salvaterra, Marajo Island, in Brazil. The 

complete study design has been described in the method section (Chapter 2). Briefly, 

the study involved 126 uninfected dogs from 2 sources: 99 were young adults 

(generally 6–18 months old) obtained in Belem, where there is no leishmaniasis, and 

27 were young (6 months old), serologically IFAT-negative animals born in the study 
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area (Quinnell et al., 1997). Dogs were placed in the field and served as sentinels to 

natural disease transmission. At every 10-week interval, sera, ear tissue and bone 

marrow samples were collected from each animal. Each dog was sampled for 4 to 13 

sampling rounds during the study. These samples were stored at -80°C. These samples 

were stored at -80°C. Despite the long storage of these samples until the current study, 

their continued immunoreactivity was shown as described in Chapter 2. Serial 

xenodiagnoses were performed on a proportion of these original cohort dogs (n=50 

dogs, in 185 xenodiagnosis experiments) (Courtenay et al., 2002b) for which sera 

samples were available, and were the baseline against which the antigens were tested. 

In brief, female laboratory-bred sandflies, L. longipalpis, were exposed to infected 

dogs on a mean of 3.5 occasions per dog (range of 1–12 feeds) over 12 months (range 

8.9-15.6) after being placed into the endemic study site. The sandflies were observed 

by microscopy for the presence of promastigotes in their midgut at 4-5 days post 

exposure. At any single timepoint (point xenodiagnosis), the number of infected flies 

of the total number of flies dissected was recorded for each dog. 

 

4.2.2 Sample selection 

From the archived 345 sera samples for 58 infected dogs with xenodiagnosis data, 145 

samples from 26 dogs were used in this study. Sample selected was realised to meet the 

inclusion criteria: (i) the availability of sera samples in sufficient quantity (at least 

100µl) for repeat assays, (ii) the quality of sera (tested prior to experiments with the 

crude antigen as described thereafter), (iii) the longest follow-up period after infection 

with an average of 6 repeat samples per dogs, (iv) accompanying xenodiagnosis data, 

and (v) the dog was considered infected at the time of sample. A total of 145 sera 

samples for 26 infected dogs were selected. 

 

4.2.3 Definition of confirmed infection 

Dogs were considered infected on first detection of Leishmania presence by the 

following diagnostic methods: parasite culture of bone marrow aspirates, and PCR of 

bone marrow and ear biopsies (Quinnell et al., 2001). Clinical signs were not 

sufficiently specific to be a reliable marker of infection. The exact date of infection is 

unknown, due to the prepatent period, so the date of patent infection defined above was 

used here in analyses. 
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4.2.4 Measures of infectiousness (the ability to transmit the infection) 

Dogs were classified according to their infectious status at point xenodiagnosis, and 

longitudinally by calculating the proportion of dissected flies infected measured across 

all point xenodiagnosis trials on the dog. The latter measures the intensity of an 

individual dog’s transmission potential referred to here also as the number of 

transmission events resulting from each dog. These classifications resulted in 3 groups 

of individuals: never infectious, mildly infectious, or highly infectious (syn. super-

spreaders). “Never infectious” dogs were naturally infected with Leishmania but never 

became infectious to the sand fly vector (n=72 samples from 9 dogs) for six or more 

consecutive months of xenodiagnoses. The “ever infectious” group comprises dogs that 

become infectious to sandflies at some point during longitudinal xenodiagnosis follow-

up (n=73 samples from 17 dogs). The “ever infectious” dogs were further classified as 

“highly infectious” when the proportion of infected sandflies was >= 20% (n=29 

samples from 7 dogs), or as “mildly infectious” when the percentage was >0% and 

<20% of flies infected (n=44 samples from 10 dogs). The highly infectious group (syn. 

super-spreaders) was a key target for investigation as they were shown to contribute 

80% of all transmission events in the larger study (Courtenay et al., 2002b). 

 

4.2.5 Leishmania antigens candidates 

The originals antigen candidates, rK39, rK28, rK26, rK9, rK34, rKR95, rK18, TR18 

and CLA (used in Chapter 3), and an additional six novel antigens candidates known 

as 6H, 8e, Lin14/2, Lin14/4, Lin11/2 and Lin34/2 were tested for their performance to 

detect infectiousness and super-spreaders. The latter were identified from proprietary 

sequences derived from a Leishmania genome (Infectious Diseases Research Institute).  

Protein rK39 is a 39 amino acid repetitive immunodominant B-cell epitope in a kinesin-

related protein highly conserved in different strains of Leishmania (L. infantum, L. 

donovani and L. chagasi) (Burns et al., 1993). K9 and K26 are two related hydrophilic 

antigens of L. chagasi that differ for the presence of 11 copies of a 14 amino acid repeat 

in the open reading frame of rK26 (Bhatia et al., 1999). Antigen rK28 is synthetically 

generated by fusing repeated sequences of L. donovani such as k26, LdK39 and k9 

providing complementing epitopes and increasing the density (Pattabhi et al., 2010). 

Antigen rK34 is also a recombinant protein including LdK39, k9, A2 and kinesin-

related sequence labelled LinJ32. TR18 is a B-cell related protein containing several 
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tandem repeat proteins (Goto et al., 2007), while rKR95 is an L. donovani kinesin-

related protein (Vallur et al., 2016). Neither related protein, nor the origin of rK18 was 

given by the authors but this recombinant antigen is made of highly conserved among 

the Leishmania species (Vallur et al., 2015). The crude Leishmania antigen (CLA) 

made from whole promastigotes or their soluble extracts was produced as described in 

Stober et al. (2005). Freeze-thawed CLA was prepared from stationary phase 

promastigotes of Leishmania infantum by resuspension in 10 mM Tris-HCl (pH 8.5), 

0.5 M NaCl, 1 mM PMSF, and 50 µg/ml leupeptin, with three freeze-thaw cycles over 

liquid nitrogen (Stober et al., 2005). 

 

4.2.6 Enzyme-linked immunosorbent assay (ELISA) 

An enzyme-linked immunosorbent assay was used to quantify Leishmania specific IgG 

antibody responses to the candidate antigens in the test samples. Initially, each antigen 

was tested independently. Based on the results of the single antigen testing, 

combinations of antigens were also tested in order to increase the performance of the 

test. The best performing antigens were selected to be combined afterwards. As 

mentioned in chapter 3, the optimisation of the ELISA conditions was realised by 

titrating the antigens (25, 50, 100, 200 ng/well) and different dilutions of sera (1:100, 

1:200, 1:400, 1:800). For each assay, 96-well Limbro plates were coated with 1µg/ml  

(100 ng/well) of antigen diluted in bicarbonate buffer (0.05 M) overnight at 4°C. The 

non-specific reactivity on the plate was blocked with 1% BSA in phosphate-buffered 

saline for 2 hours at room temperature. After washing (PBS, 0.1% Tween-20), 50 µl of 

diluted sera at 1:400 in serum diluent buffer (PBS, 0.1% BSA, 0.1% Tween-20) was 

added to the antigen wells and incubated at room temperature for a further 2 hours. The 

plates were then washed and the diluted (1:30,000) bound antibody (HRP-IgG, Thermo 

Fisher Scientific) was added at room temperature and left for 1 hour. The enzyme TMB 

substrate solution (Tetramethylbenzidine, Fisher) was added 100µl/well for 15 minutes, 

and stopped using 50 µl/well of sulfuric acid. Optical absorbance values were then read 

using an automated ELISA plate reader (Wallace Victor2, Perkin Elmer) at 405-410 

nm. 

4.2.7 Defining threshold values  

All analyses were carried out in Graph Pad Prism 7 and Stata 14.5 (Stata Corporation, 

College Station, Texas, USA). Test-specific threshold values were identified for each 
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antigen using the ELISA absorbance values to generate receiver-operator characteristic 

(ROC). The area under the curve (AUC) values ranged from 0 to 1; following the 

classification described by Tape (2004), values between 1-0.9 for an excellent test; 0.9-

0.8 as “good”; 0.8-0.7 as “fair” 0.7-0.6 as “poor”, and 0.6-0.5 as “worthless”. The ROC 

analysis offered a range of possible threshold values associated with sensitivity and 

specificity values, from which the threshold values with concurrent maximum 

sensitivity and specificity to detect super-spreader dogs the mixed population were 

identified. Sensitivity and specificity for each of the threshold was reported according 

to the ROC list with the related proportion of 95% confidence interval. These were 

reported for the threshold list in Appendix II. The Youden’s J Index, as described by 

Ruopp et al. (2008), was also applied to the optional ROC threshold values, providing 

an objective interpretation of the test’s performance, whereby each potential threshold 

value was scored on a semi-quantitative scale between -1 and 1 where a value of 1 

indicates that there are no false positives or negatives i.e. the perfect diagnostic test. 

 

4.2.8 Statistical analyses 

All analyses were carried out in Graph Pad Prism 7 and Stata 14.5 (Stata Corporation, 

Texas, USA). Comparison of mean absorbance values were performed using a non-

parametric Mann-Whitney U test. Pairwise comparisons of the performance of the 

diagnostic tests was examined by inspection of Pearson’s correlation coefficients. The 

degree of agreement of the detection with the infectiousness data was measured by 

Cohen’s method (k) and McNemar’s Chi-square test (c2). Kaplan-Meier curves were 

generated to identify the mean time that each infectious class of dog was detected for 

each candidate antigen candidate. The onset of infectiousness was calculated from the 

introduction of the dogs in the field. 

 

4.3 Results 
 

4.3.1 Performance of antigens to detect infectiousness in ELISA 

Ten of the fifteen candidate antigens (rK39, rK28, K26, rK34, rKR95, K9, CLA, 6H, 

8e, and LinJ14) significantly differentiated non-infectious (n=72 samples) and 

infectious (n=73 samples) dogs at point xenodiagnosis (Figure 4.1). The antigens that 

failed to differentiate infectious and non-infectious dogs were dropped from further 

analysis.  The remaining antigens were then tested to differentiate two subclasses of 
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infectious dogs: mildly infectious (n=44) and highly infectious (n=29). Significant 

differences in mean absorbance values between the two groups were observed using 7 

of the antigens (rK39, rK28, K26 and rK34, 6H, 8e and LinJ14); among these, rK28 

was the most significant (p<0.0001) (Figure 4.2). Candidates rKR95, K9, the crude 

antigen and LinJ14 did not demonstrate differential potential for highly and mildly 

infectious dogs (p>0.05) and were thus dropped from further analyses. 

 
Figure 4.1 – Mean absorbance level of antibodies detected against infectious and non-

infectious samples (Leishmania antigen) reported with the related standard error 

(SEM). The never infectious group is composed of 72 samples negative for 

xenodiagnosis while the infectious group is composed of 73 samples positive for 

xenodiagnosis (*p<0.05, **p<0.001, ***p<0.0001 Mann-Whitney test). 

 

 
Figure 4.2 – Mean absorbance level of antibodies detected against mildly infectious 

and highly infectious samples reported with the related standard error (SEM). The 

mildly infectious group is composed of 44 samples while the highly infectious group is 

composed of 29 samples (*p<0.05, **p<0.001, ***p<0.0001 Mann-Whitney test). 
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Potential threshold values were explored for each antigen to differentiate super-

spreaders from the rest of the infected population (results in Appendix II). The threshold 

method providing the greatest test performance in all cases was the defined by the 

Youden Index and applied throughout. From the ROC analyses, antigens rK39, rK28, 

and K26 were shown to have AUC values between 1 and 0.9, indicating an excellent 

test performance, while other candidates were shown to have lower AUC values, 

suggesting either a good performance (0.9–0.8) or a fair performance (0.8–0.7); the 

degree of agreement of the test with the infectiousness data measured by the Cohen’s 

coefficient of agreement were also high (Table 4.1). Candidate rK28 offers the best 

threshold-based test performance with complete detection of the super-spreader 

samples (29/29) with a sensitivity of 100% (95% CI: 88.1–100). The specificity of rK28 

was 93% (95%CI: 84.5-97.7) with only 5/72 (6.9%) never infectious samples detected, 

and 14/44 (31%) mildly infectious samples detected. Moreover, candidate rK28 

showed the highest degree of agreement to the infectiousness data (93.1%) and no 

systematic differences between the antigen detection and the xenodiagnosis data 

methods. The Cohen’s kappa value k equals 0.81 suggests an almost perfect strength 

of agreement (Table 4.1). Pairwise comparison between antigenic performances 

indicated positive correlations between all of them (Pearson’s correlation, p<0.0001 in 

each case), however, the degree of agreement with the xenodiagnostic data were lower 

for the other antigens than for rK28 (k=0.65) (Table 4.2). rK39, K26, rK34 and K9 

showed sensitivities of 97%, 90%, 93% and 83%, and specificities of 70%, 85, 75% 

and 81% respectively (Table 4.1). 
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4.3.2 Times of antibody detection relative to the onset of infectiousness  

The mean time of antigen detection from exposure relative to the onset of infectiousness 

was illustrated as Kaplan-Meier survival curves, and the estimates compared using the 

log rank test (Figure 4.3, Table 4.2). Antigens K28, K26 and rK34 detected super-

spreaders significantly earlier than they detected mildly infectious and never infectious 

dogs (Figure 4.3). The mean time to detection of mildly and non-infectious dogs were 

not statistically different for all antigens. The P values are indicated in each graph (in 

green, for the comparisons between highly and never infectious; and in blue, for the 

comparisons between mildly and never infectious). All super-spreaders were detected 

before the mean of onset of infectiousness using K26 and rK34, and rK28 threshold-

based assays, the latter detect super-spreaders slightly later than the other two antigens 

(Table 4.2). Threshold-based rK9 curves for highly and mildly infectious intersect 

which does not offer distinct detection. For rK39, the detection time of the never 

infectious is earlier than the mildly infectious, which do not offer a significant 

difference. The onset of infectiousness was calculated from the introduction of the dogs 

in the field. 

 
 
Table 4.2 – Mean of detection time in days for each group of dogs (never, mildly, and 

highly infectious dogs) using threshold-based antigen assays and analysis by Kaplan-

Meier based longitudinal analysis, compared to the onset of infectiousness determined 

during xenodiagnoses follow-up from the moment of introduction in the field. 

Mean detection times and onset of infectiousness (in days) 
 Never infectious (n=9) Mildly infectious (n=10) Highly infectious (n=7) 
rK39 251 (117 – 386) 282 (130 – 433) 97 (69 – 124) 
rK28 488 (336 – 641) 371 (193 – 549) 83 (55 – 110) 
rK26 421 (261 – 581) 278 (120 – 435) 80 (57 – 103) 
rK34 320 (176 – 464) 288 (134 – 442) 80 (57 –103) 
rK9 412 (251 – 574) 180 (98 – 262) 147 (96 – 198) 
6H 338 (159 – 517) 257 (155 – 358) 123 (63 – 182) 
8e 261 (120 – 402) 260 (136 – 384) 98 (52 – 143) 
Lin14/4 439 (263 – 614) 288 (159 – 416) 107 (70 – 144) 
Onset – 408 (255 – 561) 298 (218 – 377) 

 



82 
 

 
Figure 4.3 – Kaplan-Meier based longitudinal analysis of detection time of the 

xenodiagnoses-classified dogs by threshold-based antigen assays. Different curves and 

time estimates were compared using the log rank test. The P values are indicated in 

each graph (in green, for the comparisons between highly and never infectious; and in 

blue, for the comparisons between mildly and never infectious). 
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When the threshold-based antigen was applied to the dog population, the actual number 

of infected flies detected at the seroconversion time point was reported for each group 

of dogs, with the proportion of positive flies detected to the total positive flies reported 

(Table 4.3). In relation to the time of detection, the proportion of transmission events 

that would be avoided by removal of dogs based on detection, here estimated as the 

proportion of total positive flies infected by individual dogs, was 98.3% (467/475) 

applying antigen rK28; this included 422 transmission events by highly infectious dogs 

and 45 events by mildly infectious dogs. The other antigens ranged between 51% and 

98% overall detection (Table 4.3). 

 

Table 4.3 – For each threshold-based antigen, number of infected flies detected at the 

seroconversion time point was reported for each group of dogs. The ratio is based on 

the positive flies detected to the total positive flies for a group of dogs (never, mildly, 

and highly infectious dogs) using threshold-based antigen assays and analysis by 

Kaplan-Meier based longitudinal analysis. 

Proportion of all transmission events detected by threshold-based antigens 
 Overall detection    Highly infectious Mildly infectious 
rK39 93.7% (445/475) 93.8% (396/422) 92.4% (49/53) 
rK28 98.3% (467/475) 100.0% (422/422) 84.9% (45/53) 
rK26 98.1% (466/475) 100.0% (422/422) 83.0% (44/53) 
rK34 98.5% (468/475) 100.0% (422/422) 86.9% (46/53) 
rK9 51.2% (243/475) 45.7% (193/422) 94.3% (50/53) 
6H 56.8% (270/475) 54.0% (228/422) 79.2% (42/53) 
8e 58.3% (277/475) 66.7% (235/422) 79.2% (42/53) 
Lin14/4 51.4% (244/475) 46.2% (195/422) 92.4% (49/53) 

 
 

4.3.3 Combining antigens 

Combined antigens were examined for potential improvement relative to the single 

antigens. Four antigens were used in different combinations: (1) K26/rK28; (2) 

K26/K9; (3) rK28/K9; (4) K26/rK34; (5) rK28/rK34 and (6) K9/rK34. These were 

selected from inspection of the individual antigen performances and inspection of 

changes in the longitudinal absorbances. The equivalent ROC and Kaplan-Meier 

analyses showed that in each case, the antigen combinations showed a lower 

performance compared to the respective single antigens (as showed in the below figures 

and table). 
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Figure 4.4 - Absorbance level of antibodies detected against ever infectious and never 

infectious samples (Leishmania antigen). The never infectious group is composed of 

72 samples negative for xenodiagnosis while the infectious group is composed of 73 

samples positive for xenodiagnosis. All p-values are <0.0001 (Mann-Whitney test). 

 
 

 
Figure 4.5 - Absorbance level of antibodies detected against mildly infectious and 

highly infectious samples. The mildly infectious group is composed of 44 samples 

while the highly infectious group is composed of 29 samples. Analysis was performed 

using Mann-Whitney U test (p-value **** for <0.0001). 
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Figure 4.6 - Receiver-Operator Characteristics (ROC) curves for each of the six 

combinations of antigens. The control group is composed of never infectious dogs 

(n=72) while the positive group is composed of the super-spreaders (n=29). 

 
 

 
Table 4.4 – Summary table of ROC curves, threshold and performance for combined 

antigens. Receiver-Operator Characteristics (ROC) curves were based on the control 

group is composed of never infectious dogs (n=72) while the positive group was made 

of 29 super-spreaders. The threshold was selected based on the Youden Index, and the 

performance calculated towards the detection of super-spreaders (as sensitivity, 

specificity and detection of samples). 
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4.4 Discussion 
 

The present study demonstrates for the first time the possibility to differentiate highly 

infectious dogs within a mixed population by serological assay. The results suggest that 

antigens rK28, rK26 and rK34 are highly sensitive with respect to super-spreaders when 

using carefully selected thresholds. Antigen rK28 had a sensivity and specificity of 

100% (95%CI: 88.1–100) and 93% (95%CI: 84.5–97.7) respectively. 

 

Current intervention programs in Brazil focus on eliminating canine reservoirs and 

hence human VL disease. This assumes that infection is synonymous with transmission 

potential, which are quite different infection states (Rock et al., 2016). Detection and 

removal of infectious hosts is the underlying aim of control strategies to reduce the 

basic reproduction number of VL infection. Targeting super-spreaders would 

concentrate intervention effort on a smaller number of dogs, potentially reducing  costs 

to the health system, and lowering the number of unnecessary sacrificed dogs 

(Courtenay et al., 2002b; Moreno and Alvar, 2002). However, this could be possible 

only with the availability of a practical differential test to identify super-spreaders. 

 

Based on carefully selected thresholds, we demonstrated high performances of a select 

number of antigens to detect super-spreaders. Antigens such as rK39, K26, rK34 and 

K9 had sensitivities of 97%, 90%, 93% and 83% respectively, as well as specificities 

of 70%, 85, 75% and 81% respectively; however, their degree of agreement with the 

xenodiagnostic data was lower than for rK28 (Cohen’s kappa values were below 0.65). 

Among all the antigens, rK28 out-performed with a sensitivity and specificity of 100% 

(95%CI: 88.1–100) and 93% (95%CI: 84.5–97.7) respectively. Antigen rK28 is already 

used in the field under the RDT tool, known as the Dual-Path Platform (DPP; Bio- 

Manguinhos/Fiocruz, Rio de Janeiro, Brazil), used for the current screening campaigns 

for canine infection, serological screening of humans’ infection, and as confirmatory 

test of infection or confirmatory test of disease in humans as well as in dogs. The test 

was initially developed for a detection purpose: its current multiple use can confound 

interpretation and case management.  

 

During this study, one of the first concerns was the ability of serological tests to 

differentiate infectious and non-infectious dogs, as another study concluded that 
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serological tests fail to detect dogs that transmit Leishmania to the sandfly vector (de 

Mendonca et al., 2017). That study tested current diagnostic tools ELISA (no antigen 

specified), immunofluorescence (IFAT), direct agglutination tests, and 

immunochromatographic assays with the recombinant antigen rK39, and Dual-Path 

platform (DPP®RDT) based on the chimeric protein rK28. They attempted to 

differentiate non-infectious dogs from infectious dogs with resulting specificities under 

13%, but with high sensitivities (>85%). In that study, the antigens showed poorer test 

performances to differentiate all infectious dogs from non-infectious dogs, which 

assumes all infectious dogs have similar transmission potential. The published study 

does not differentiate dogs based on their infectious status i.e. super-spreaders or mildly 

infectious. However, the authors admitted that their study is not conclusive due to the 

small number of xenodiagnosis tests performed. Indeed, in their field trials, sandfly 

blood feeding was limited, and the threshold used for xenodiagnosis (which was not 

specified) may bias the results of performance. Indeed, it is known that, under natural 

conditions, infectious dogs may be exposed to higher number of flies, thus leading to 

different degrees of infectiousness and at different periods of the dogs’ lives.  

 

So, whereas our results show that the threshold-based antigen rK28 offered a high 

performance with 100% sensitivity and up to 98% specificity in detecting super-

spreaders, the study of de Mendonca et al. (2017) suggested failure of antigens rK39 

and rK28. This trial has two major advantages: (1) dogs were naturally infected and (2) 

the longitudinal follow-up, over two years, of the sentinel dogs (Quinnell et al., 1997). 

And as demonstrated, detection of infectious dogs was possible using enzyme-linked 

immunosorbent assay with novel antigen candidates. No other studies done on the 

development of serological assays to detect infectiousness could be found to date. A 

carefully selected threshold is particularly important to optimise diagnostic tools. 

Indeed, various other threshold options tested in this study showed lower performances 

(data not showed) indicating the crucial importance of thresholds selection.  

 

The timing of detection is also important for limiting transmission of Leishmania. Dogs 

that become infectious before seroconversion would not be detected; also, delays in 

testing and follow-up action could permit dogs to become infectious prior to their 

removal or treatment (Courtenay et al., 2002b). Using the longitudinal xenodiagnoses 

data, the ability of the antigen assays to detect super-spreaders from the time of 
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observed onset of infectiousness could be calculated. The threshold-based antigen rK28 

detected all the super-spreaders in the mixed population an average of 83 (55-110) days 

from exposure, whereas the onset of infectiousness was observed to be 298 (218-377) 

days from the introduction of dogs in the field. There is thus an early discrimination of 

the super-spreaders while using the threshold-based antigens, never infectious and 

mildly infectious dogs were detected later, 488 (336-641) days, and 371 (193-549) 

days, respectively. The impact of the rK28 threshold-based antigen was clear: 100% of 

transmission events from highly infectious dogs and 85% from mildly infectious dogs, 

were detectable and could be avoided with the early timing of testing. In the 

comparative analysis with the xenodiagnostic data, antigen rK28 offer the highest  

degree of agreement (93.1%) with no systematic difference and a Cohen’s coefficient 

of 0.81 suggesting an elevated strength of agreement. Furthermore, the Logit model 

indicates a perfect success in the detection of super-spreaders; it also offers a perfect 

prediction of failure in the case of never-infectious dogs (data not showed). Thirty 

percent of mildly infectious dogs were also detectable by the threshold-based antigen, 

reducing the proportion of transmission events.  

 

Concerning the relationship between parasite load and canine infectiousness, previous 

studies have demonstrated their positive correlation (Courtenay et al., 2014; de Sousa 

Gonçalves et al., 2016; Borja et al., 2016). Highly infectious dogs seemed to have 

higher parasite loads in skin, in bone marrow and in hair, where the ear skin was the 

strongest predictor of being infectious (Courtenay et al., 2014; de Sousa Gonçalves et 

al. 2016). A recent study compared the intensity of parasite loads in skin and bone 

marrow dogs and the parasite loads detected in sandflies after feeding on those dogs, 

demonstrating a strong positive correlation (Borja et al., 2016). We predict that the 

threshold-based antigens could also predict tissue parasite loads, however very few skin 

biopsy PCR data were available in the current sample to test this hypothesis.  

Several studies indicated that infectiousness is higher in symptomatic than 

asymptomatic infection (Quinnell and Courtenay 2009; da Costa-Val et al., 2007; 

Guarga et al., 2000; Magalhães-Junior et al., 2016), though an individual study show 

that asymptomatic dogs may be equally infectious as symptomatic dogs (Laurenti et al., 

2013); and some other studies reported that infectiousness is independent of clinical 

symptomology (Molina et al., 1994; Guarga et al., 2000). However, longitudinal studies 



89 
 

in Brazil demonstrated that dogs classified as asymptomatic at a single time point, as 

in cross-sectional studies, usually go on to develop progressive disease, and so should 

be more appropriately described as pre-symptomatic. Thus, it is assumed that 

asymptomatic dogs contribute very little to transmission compared to (pre-) 

symptomatic dogs (Courtenay et al., 2002b).  

In Brazil, despite control measures applied, the incidence of Leishmania infantum 

infection has remained high and unchanged over the years in Brazil (WHO report, 

February 2018). Culling campaigns that removed asymptomatic seropositive dogs from 

the population have led to dog-owner low compliance with the program. Dog owners 

usually replace the “lost” dog with a new and often young dog (Nunes et al., 2008). As 

a result, removal of seropositive dogs that do not transmit the infection may be replaced 

with susceptible potentially infectious dogs, which will contribute to sustained 

transmission through maintaining the infectious dog population turnover.  

 

The euthanasia of dogs in Brazil is not well accepted by locals. In developed countries, 

an alternative for dog culling is the treatment of dogs with drugs designed for human, 

recently legalized in Brazil (Ministerio de Saude, 2016). According to several studies, 

treatment of dogs can reduce infectiousness but do not prevent it as the cure is short-

lived with incomplete clearance of tissue parasite (reviewed by Travi et al., 2018). 

Moreover, those treatments are mainly applied in developed countries as their costs are 

very high.  

 

The preliminary step to a potential different approach to current blanket control 

operations is provided by the results of this study. Focusing on the transmission 

potential of dogs rather than infection per se could improve the efficacy of reservoir 

control program. What is required now is the application of the test results using 

mathematical models to define the coverage and the frequency of testing required to 

enable efficient control of transmission. Simulations should include variable 

epidemiological scenarios accounting for transmission rates, canine turnover rates, and 

sandfly biometrics, as shown by previous model sensitivity analyses (Rock et al., 2016; 

Buckingham-Jeffery et al., 2018). 
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Finally, some limitations of a potential novel diagnostic tool for super-spreaders using 

threshold-based rK28 were considered. The main concerns regarding a diagnostic test 

based on the rK28 is that the test is already used in the field for different purposes, such 

as the current screening campaigns for canine infection, serological screening of 

human’s infection, and as confirmatory test of infection or confirmatory test of disease 

in humans as well as in dogs. The use of these similar antigens can be confounding in 

the field with regard to interpretation of the results in case management. If this antigen 

is also used to identify super-spreader dogs, as we have proposed, it will add to the 

confusion. We offer an alternative by developing a novel tool with a specific antigen 

designed for infectiousness in Chapter 5. 
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CHAPTER 5  Development of novel recombinant antigen KL914  

to identify VL super-spreaders in the canine reservoir population 

 
5.1 Introduction 

 

The presence of Leishmania super-spreaders in the field currently hinders the 

implementation of successful prevention strategies. Identifying super-spreaders would 

offer a more efficient Visceral Leishmaniasis Control and Surveillance Programme 

(VLCSP). To develop a tool that is able to detect super-spreaders, existing antigens 

derived from the Leishmania genome, were tested on archived dog sera (as described 

in Chapter 4). The best performing antigen to detect super-spreaders in a mixed canine 

population was rK28, a recombinant protein synthetized to increase the B-cell epitope 

in a kinesin-related protein of Leishmania infantum. This finding, however, leads to a 

further discussion concerning the potential field application of rK28. The protein is 

already used in the Dual-Path Platform (DPPÒRDT) as a screening tool for infected 

dogs were a positive result triggers the recommendation of culling (Almeida et al., 

2017). However, the use of an identical antigen for different purposes (detection of 

infection, disease, relapses, reinfection, and even after-cure controls) could lead to mis-

interpretation by the field-workers in VL case management. Hence, having a clear and 

stated goal of the diagnostic tool is essential for field use.  

 

The development of an antigen-based diagnostic tool, designed specifically for the 

detection of super-spreaders in a mixed canid population, seems essential for both 

improved understanding of transmission dynamics and as a preventive method against 

VL. In collaboration with the Infectious Diseases Research Institute (IDRI, Seattle, 

USA), the design of the synthetic recombinant KL914 protein was made following an 

analysis of various fusion proteins and mixtures of proteins. The adaptation of the 

recombinant KL914 protein within a rapid diagnostic test (RDT) prototype was made 

with InBios International, Inc. (Seattle, USA), and will be described in Chapter 6. Both 

the recombinant protein within immunoassays and the RDT prototype were evaluated 

using archived sera collected from prospective studies carried out from 1993 to 1995 

in the Marajo Island in Brazil (Quinnell et al., 1992). An analysis of the performance 

of the novel protein was conducted by monitoring infectiousness longitudinally, along 

with the correlations to the parasite loads in ear skin or bone marrow biopsies and the 
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clinical signs observed. The development of the novel KL914-based rapid diagnostic 

tool will enable Leishmania super-spreaders to be diagnosed more easily within the 

canine population, thereby improving the efficiency of the VLCSP. 

 

5.2 Materials and methods 
 

5.2.1 Gene design and protein expression 

The gene construct design, as well as protein expression and purification, was 

performed in collaboration with the Infectious Disease Research Institute (IDRI), 

Seattle, USA. Targeted gene sequences were previously identified based on the 

bioinformatic screening of the genome of Leishmania infantum (as described in details 

below). The design of KL914 was made following analyses of various fusions and 

mixtures of proteins, as well as from the previous analysis of their performance. The 

synthetic gene for KL914 was designed by fusing two nucleotide sequences: 261 

nucleotides of gene k9, and 477 nucleotides of gene LinJ14.1160r4. Gene k9 

correspond to HASBP2, a hydrophilic acylated surface protein (Alce et al.,1999) that 

is an essential key component of other fusion proteins such as rK28 and rK34. The gene 

product of LinJ14.1160r4 is a kinesin-related protein containing four tandem repeats of 

LdK39. The multiple repeat is responsible for varying the number of repetitive regions 

typically impacting signal intensity in assays. In attempts at further improvement, more 

sequence was added to the initial construct of KL914 but these did not generate any 

significant improvement in the performance to detect super-spreaders. Therefore, the 

focus was placed on the original recombinant antigen to develop a novel tool. In regard 

to the protein expression and purification, the complete protocol has been described 

below. Each step of the production of recombinant proteins is described below. 

 

5.2.1.1 Bioinformatic screening and identification of candidates 

The identification of antigen candidates was based on the bioinformatic screening of 

Tandem Repeat (TR) genes of the Leishmania donovani Complex. Using a program 

(Tandem Repeats Finder), tandem repeats were located and displayed in DNA 

sequences of L. major and L. infantum. A scoring system based on characteristics of 

the TR genes (period size of the repeat, number of copies aligned with the consensus 

pattern, and the percentage of matches between adjacent copies overall) was used as a 

scale for the possession of larger TR sequences with highly conserved repeats among 
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copies. Only the highest scoring TRs were used for analyses and protein production.  

5.2.1.2 Polymerase Chain Reaction to amplify DNA 

Using Expand High FidelityPLUS PCR System (Roche #3300242), the DNA was 

amplified. The protocol was complete as follows. Diluted DNA (1-50ng Template 

DNA in water) was added to the Master Mix Cocktail, which was composed of solution 

buffer, dNTPs, 5’ Oligonucleotide, 3’ Oligonucleotide, Expands Enzyme and distilled 

water is the concentrations and volumes detailed below. To inhibit secondary structure 

formation in G/C rich sequence, dimethyl sulfoxide (100% DMSO) was added. 

 
Master Mix Cocktail 

5x Buffer (final concentration 1x) 
10mM dNTPs (final concentration 0.2mM) 

10x conc. 5’ Oligonucleotide (final concentration 0.4 µM) 
10x conc. 3’ Oligonucleotide (final concentration 0.4 µM) 

Expands Enzyme (concentration of 2.5 U per 50µl reaction) 
Mg2+ (final concentration of 1.5 mM to 4 mM) 

DMSO (final concentration at 10%) 
Distilled H2O 

 

The total volume of the PCR reaction was variable to specific needs. The annealing 

temperature was calculated based on amount of A/T and G/C using the below formula.  

 
    4(G+C) + 2(A+T)= melting temp of the primers 
 
The program was run as following (1) 1 cycle at 5°C for 5 min; (2) 0.45 sec at 95°C; 

(3) 0.45 sec at 55°C; (4) 35 cycles at 72°C, 1 min per kb of product; (5) 1 cycle at 72°C 

for 5 min. The PCR was run for appropriate time intervals based on the sequence being 

amplified. PCR products were run on an agarose gel to ensure a quality product, 

proceeding with only the best products. 

 

5.2.1.3 Purification of PCR product 

The PCR products obtained previously were purified using mini-elute PCR Purification 

Kit using a micro centrifuge (Qiagen #28004). Five volumes of Buffer PB were added 

for every 1 volume of PCR sample. Using the mini-elute spin column, PCR samples 

were applied to the column and spun for 30-60 seconds at 1300 RPM. The flow-through 

was discarded and Buffer PE, containing ethanol, was added to the column. The column 

was spun for 30-60 sec. Again, the flow-through was discarded and spun to remove 
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excess ethanol. Buffer EB was added to the column, incubated for 1 minute, and then 

spun again. 

 

5.2.1.4 Restriction digest of DNA Insert 

The digest of the DNA insert was mixed with React Buffer (Invitrogen) and two 

restriction enzymes. For optimal restriction, the enzyme concentration was kept under 

10% of the total volume. The DNA digest was incubated in a bath at 37°C for 1 hour. 

Sample buffer was added to digest the samples. The digests were run on a 1% agarose 

gel. The percentage of agarose varied depending on the size of insert being run. The 

product was visualised using UV light. 

 

5.2.1.5 Gel Extraction Protocol 

For the extraction, a mini-elute Gel Extraction Kit and a micro-centrifuge (Qiagen 

#28604) were used. The desired DNA bands were cut from the gel with a scalpel and 

put into a 1.5ml tube. Based on the weight of the gel slice, three volumes of Buffer QG 

were mixed with 1 volume of gel (usually 100 mg of slice for 300 µl of buffer) and 

incubated at 50°C for 10 minutes. A gel volume of isopropanol was added to each 

sample. To bind the DNA, the samples were added to QIAquick columns and spun at 

1300 RPM for 1 minute (each column holds 750ul and one can split the sample between 

2 spins if more than that is present). The flow-through was discarded, and Buffer QG 

was added to the column and spun for 1 minute. Again, the flow-through was discarded 

and Buffer PE was added to the sample and spun for 1 minute. The column was then 

placed into a new 1.5 ml tube and buffer EB was added to the column, being sure to 

wet all of the filter. The column then stood for 1 minute before being spun for 1 minute. 

 

5.2.1.6 Ligation of Insert into Plasmid Vector 

Using the Rapid DNA Ligation Kit (Roche, #1635379), the insert was ligated into the 

plasmid vector. Both insert and vector were run on a gel before ligation to estimate the 

intensity of them to determine amounts present of both. If both intensities were similar 

and neither was degraded, then one was selected for further use. Ligations were 

conducted with 3x the molar amount of insert as the vector, and since the insert was 

much smaller than the vector, the intensities being the same meaning that the insert was 

at about 3x the molar amount. A tube was set up to be a control that received no DNA 
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insert and one tube was set up per desired insert. First, the vector was prepared. The 

restriction digest begun with 5-10 µg of plasmid DNA in 100 µl total volume of the 

React Buffer, and was mixed with the two enzymes. When using two restriction 

enzymes, the most compatible React Buffer were determined. Again, the concentration 

of enzyme was kept at <10%. The total volume was brought to 100 µl with dH20. The 

incubation took place in a 37°C bath for 90 minutes. The product was then cleaned 

using the mini-elute PCR Purification Kit using a micro centrifuge (Qiagen, #28004). 

The same protocol was followed as listed above, but plasmid sample was split into two 

columns as the mini-elute columns hold only 5 µg of DNA each. The elutions were 

combined to finish. For the sample ligation, the prepared vector was mixed with the 

prepared insert and DNA dilution buffer. 2x DNA Ligation Buffer was added to the 

preparation, and then immediately after, the ligase was added. The reaction took 5-10 

minutes. The vector was dephosphorylated to prevent the cut ends of plasmid from 

religating. The dephosphorylation buffer (Roche # 1243284) was mixed with the 

plasmid DNA and Alkaline Phosphatase (Roche #71302) and incubated at 37°C for 30 

minutes. A 1% agarose gel was prepared by adding 10x dye to the sample, which was 

then placed into wells for the electrophoresis. The gel was then visualized with UV 

light and the plasmid band was excised. DNA concentration was read at 260-280 nm. 

If the DNA concentration was above 50 ng/µl, it was diluted appropriately to 50 ng/µl. 

The same mixes and procedures were realized for the control ligation, but with no DNA 

insert. Therefore, the water must be adjusted accordingly. 

 

5.2.1.7 Transformation into competent E. coli cells  

Competent XL10 E. coli cells were obtained from Stratagene (#200315) and thawed on 

ice for 10 minutes. Cells had to be kept on ice throughout the whole protocol. Beta-

mercapto-ethanol was added to the cells as soon as they thawed and left on ice for 10 

minutes. Always on ice, the ligated sample and XL10 cells were mixed and incubated 

for 10 minutes. Cells received a heat shock at 42°C for 30 seconds. To allow the  cells 

to recover, they were incubated with high nutrient broth (2x YT) and incubated for 30 

minutes at 37°C with shaking. Cells were finally plated on corresponding antibiotic 

plates and incubated at 37°C overnight. 
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5.2.1.8 Plasmid DNA Preps. 

One colony from the transformed cell plate was picked up using a toothpick and 

dropped into a tube containing nutrient broth and the appropriated antibiotic 

(Kanamycine in this case). After an overnight incubation at 37°C with shaking, cells 

were spun down and the supernatant was discarded. The pellet was then resuspended 

in buffer containing RNAse A from the Mini-Prep protocol using the QIAprep Spin 

Miniprep Kit using a microcentrifuge (Qiagen #27106). The resuspended pellet was 

transferred into a new tube and Buffer P2 (lysis buffer) was added and mixed gently by 

inverting the tubes. Violent shakes cause shearing of genomic DNA and thus 

contamination of the sample. Buffer N3, a salt solution that binds the DNA, was then 

added and mixed by inverting the tubes. After a quick spin, the supernant was 

transferred into a QAIprep spin column from the QIAprep Spin Miniprep Kit using a 

microcentrifuge (Qiagen #27106). A new spin allowed the flow-through to be 

discarded, and Buffer PE was added. This step was repeated twice to remove excess 

ethanol. The QIAprep column was then placed into a new tube and Buffer EB (10 mM 

Tris and dH20) was added for elution. The eluted DNA was digested and run on an 

agarose gel to verify the presence of the insert. This step allowed the selection of the 

samples that had the greatest and clearest amount of DNA insert and sequence, to 

ensure that the DNA insert was precise and non-mutated. DNA Star software was used 

for sequence analysis. 

 

5.2.1.9 Transformation into Expression Cells 

E. coli (BL-21plys-E, BL-21plys-S, and Rosetta plys-S) cells were obtained from 

Invitrogen and left to thaw on ice for 10 minutes. The previously prepared plasmid was 

added to the cells and incubated on ice. A heat shock at 42°C was followed by one 

minute on ice to permeabilize the cell to the plasmid and de-permeabilize after it was 

entered. To let the cells recover, they were incubated with high nutrient broth (2x YT) 

and incubated for 30 minutes at 37°C with shake. Cells were finally plated onto 

appropriated antibiotic plates and incubate at 37°C overnight.  

 

5.2.1.10 Large-Induction 

A mini-induction was carried out before the large induction to ensure that the cells had 

grown well and that proteins were present on gel in the required amounts. Picking one 

colony from the transformed cells plate, it was shacked it into a flask of nutrient broth 
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along with the appropriated antibiotic for an overnight incubation with shaking at 220 

RPM at 37°C. Cells were transferred to 1L of broth/antibiotic once the 50 ml culture 

had reached an optimal density (OD) of ~1.00. After, the culture was transferred to 1L 

of media and incubated at 37°C with shaking. Optimal density (OD) of the culture was 

taken every hour until it had reached an OD of 0.4. The culture was induced with 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated for 3 hours at 37°C with 

shaking. Optimal density (OD) of the culture was recorded at T=0 (pre-binding) and 

T=3 (post-binding).  Samples were run on SDS-PAGE later. T0 and T3 were spun down 

and resuspended into sample buffer according to the formula below:  

 
150 x OD µl of 2X sample buffer 

 
The sample buffer was composed of Tris at pH 6.8, 4% SDS, 20% glycerol, 10% Beta-

mercaptoethanol, and 1x10-3% Bromophenol Blue. After T3, the culture was poured 

into centrifuge bottles and spun for 15 minutes at 3,500 RPM. Discarding the 

supernatant, pellet was resuspended in Lysis Buffer, which was composed of 0.1M 

PMSF, Tris pH 8, NaCl and H20. Cells were frozen at -60°C overnight. 

 

5.2.1.11 Cell Lysis  

Frozen cells were placed into a warm water bath to thaw. Once thawed, cells were 

sonicated until they had the consistency of water. Cells were transferred into 

polycarbonate centrifuge tubes and spun down at 10,000 RPM for 15 minutes. 

Supernatant was transferred to a new tube and a sample of 15 µl was taken for an SDS-

PAGE gel. The pellet was resuspended in 15 ml of Chaps solution (0.25 g Chaps for 

1% final, 1 M Tris at pH 8 for 10 mM final and 30 ml with dH2O). After a new spin, 

the supernatant was transferred into a new tube, labelled “Chaps.” Finally, the pellet 

was resuspended in the Chaps solution and label “pellet.” Samples of “Chaps” 

supernatant and pellet were also taken to run on the gel later. All tubes were placed 

onto rotation for at least 4 hours to a night. The samples in aliquots (T=0, T=3, Sup, 

Chaps, and Pellet) were kept for SDS-PAGE to determine where the largest quantity of 

protein resides. 
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5.2.1.12 Nickel-NTA affinity chromatography under denaturing conditions 

The sample was briefly centrifuged to discard the supernatant and the protein product 

was added to Nickel-NAT agarose bind tubes. After 1 hour of rotation, tubes were 

centrifuged. The supernatant was poured into a new tube, labelled “post-bind soluble.” 

A DOC solution, composed of 0.5 M Naphosphate at pH 6.3, 1 M Tris at pH 6.3, urea, 

and H2O, was added and mixed to the pellet.  After another rotation and centrifugation, 

the sample was labelled “wash 1 – soluble.”  The pellet was then washed with TrisWash 

and the supernatant was discarded before a new rotation with DOC solution, and the 

new sample was labelled “wash 2 – soluble.” The samples in aliquots (Wash 1 and 2) 

were kept for SDS-PAGE to determine where the largest quantity of protein resided. 

 

5.2.1.13 Elution of supernatants 

Using elution columns, the supernatant remaining after the second DOC wash was 

added to a column and washed with Elution Buffer (1 M Tris at pH 8, 0.5 M 

Naphosphate at pH 8, 0.8 g Imadazole, urea and H2O). The elution was kept in a new 

tube labelled “Elute 1.” Samples of each elution were taken for a later gel run. After 

the first elution, the column was placed under a new tube, “Elute 2,” and washed again 

with the same amount of Elution Buffer. This protocol was repeated once more and 

labelled “Elute 3.” The samples in aliquots (Elute 1, 2, and 3) were kept for SDS-PAGE 

to determine where the largest quantity of protein resides. 

 

5.2.1.14 SDS-PAGE Gel run 

All samples in aliquots taken since the beginning (T0, T3, Pellet, Pre- and Post- Bind, 

Wash 1 and 2, Elute 1, 2 and 3, and the last nickels) were kept for SDS-PAGE to 

determine where the largest quantity of protein resides. 1x Sample Buffer was added to 

each of these and ran on SDS-PAGE. Finally, elution containing the largest amount of 

proteins were combined. 

 

5.2.1.15 Protein Dialysis 

Using Pierce SnakeSkin® Pleated Dialysis Tubing, the elutions (Elution 1, 2, and 3) 

were placed into dialysis tubing, leaving enough space to allow expansion inside the 

pouch. After wetting one end of the tube and squeezing out the air, the tube was closed 

by fold-over and clamped tightly together. The elution was poured into the tubing using 

the open end and carefully closed, as described previously. The tubes were placed into 
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a large bucket of H2O and Tris at pH 8 and incubated overnight. This solution was 

renewed twice, allowing it to incubate for at least ~12 hours in between. After dialysis, 

the solution was filtered at 20 microns, and placed in a tube at 4°C for storage. 

 

5.2.1.16 Protein quantification 

A Bio-Rad Protein Assay Kit was used for quantification. This dye-binding assay 

results in a colour change when the solution of dye, phosphoric acid, and methanol is 

in contact with various concentrations of protein. The degree of colour change was 

measured by a spectrophotometer (595 nm). 

 

5.2.2 Characteristics of sera collection  

Sera from archived dogs were collected in villages of Marajo Island in Brazil during a 

two-year follow up trial (Quinnell et al., 1992; Courtenay et al., 1994; Quinnell et al., 

1994; Quinnell et al., 1997). The complete study has been described in the previous 

chapters (Methods, Chapters 4 and 5) and elsewhere (Courtenay et al., 1994; Quinnell 

et al., 1994; Quinnell et al., 1997). The samples collected were tested for reactivity, and 

their performance was confirmed in Chapter 3. In this study, only infected dogs with 

matching data for infectiousness were used to focus on the transmission potential 

(n=145). Dogs were considered to be infected when testing positive for parasite culture, 

PCR and serology (Quinnell et al., 2001). Xenodiagnoses was used to investigate 

infectiousness to the sand fly vector, as described previously (chapter 5) and elsewhere 

(Courtenay et al., 2002b). Dogs were classified according to (1) their infectious status 

(yes or no) at point xenodiagnosis, and (2) longitudinally by calculating the proportion 

of dissected flies infected measured across all point xenodiagnosis trials on the dog. 

The latter measures the intensity of an individual dog’s transmission potential, referred 

to here also as the number of transmission events resulting from the dog. These 

classifications resulted in 3 groups of individuals: never infectious, mildly infectious, 

or highly infectious (syn. super-spreaders). “Never infectious” dogs were naturally 

infected with Leishmania but never became infectious to the sand fly vector (n=72 

samples from 9 dogs) for six or more consecutive months of xenodiagnoses. The “ever 

infectious” group comprises dogs that become infectious to sandflies at some point 

during longitudinal xenodiagnosis follow-up (n=73 samples from 17 dogs). The “ever 

infectious” dogs were further classified as “highly infectious” when the proportion of 

infected sandflies was >= 20% (n=29 samples from 7 dogs), or as “mildly infectious” 
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when the percentage was >0% and <20% of flies infected (n=44 samples from 10 dogs) 

(Courtenay et al., 2002b; Courtenay et al., 2014). The highly infectious group (syn. 

super-spreaders) was a key target for investigation in this study. Moreover, the 

proportion of transmission events (individual blood meal from sandfly) was calculated 

based on the ratio of positive flies (for the presence of Leishmania parasite into sandfly 

gut) detected by the antigen-based tool, onto the total positive flies as collected from 

the xenodiagnosis study (Brazil, 1993–1995) from to the onset of infectiousness. 

 

5.2.3 Enzyme-linked immunosorbent assay 

For each assay, the 96-well Linbro plates were coated overnight at 4°C with 1µg/ml of 

the antigen diluted in bicarbonate buffer (0.05 M). The non-specific reactivity on the 

plate was blocked with 1% BSA in phosphate-buffered saline (PBS, pH 7.2) 0.1% 

Tween 20 for 2 hours at room temperature. After washing (PBS, 0.1% Tween 20), 50µl 

of diluted sera at1:400 in serum diluent buffer (PBS, 0.1% BSA, 0.1% Tween 20) were 

added to the antigen wells and incubated at room temperature for 2 hours. The plates 

were washed and the diluted (1/30.000) bound antibody (HRP-IgG, Thermo Fisher 

Scientific) was added at room temperature for 1 hour. The enzyme reaction was 

developed with 100µl/well of TMB substrate solution (Tetramethylbenzidine, Fisher) 

for 15 minutes. The reaction was stopped using 50µl/well of sulfuric acid. Plates were 

read using an automated plate reader (Wallac Victor2, Perkin Elmer) set between 405-

410 nm.  

 

5.2.4 Statistical analyses  

All analyses were carried out in Graph Pad Prism 7 and Stata 14.5 (Stata Corporation, 

College Station, Texas, USA). A comparison of mean absorbance values and antibody 

titres were performed using a non-parametric Mann-Whitney test. To maximize 

sensitivity and specificity, several threshold values were explored based on the 

receiver-operator characteristic (ROC) curve that plots the true positive rate 

(sensitivity) against the false positive rate (1–specificity). The control group was 

composed of 58 samples testing negative for xenodiagnosis follow-up, while the 

positive group was composed of 29 highly infectious samples from the Brazilian cohort. 

Results are reported with the AUC value (area under the curve) ranging from 0 to 1, so 

as to classify the performance of the test. If the AUC value is between 1-0.9, the test is 
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excellent; good (0.9-0.8), fair (0.8-0.7), poor (0.7-0.6), worthless (0.6-0.5). For every 

possible boundary in the two variables, the ROC plot shows the trade-off between 

sensitivity and specificity. Performance of the test was also compared to the 

xenodiagnosis data, which is the gold standard for measuring true infectiousness. 

Cohen’s pairwise method determined the percentage of agreement between both 

methods (ELISA and xenodiagnosis) with the kappa coefficient defining the strength 

of this agreement. Furthermore, a pairwise correlation was realised by Pearson’s r 

correlation test, with Bonferroni adjustment. Kaplan-Meier analysis and survival curve 

were generated to determine the median time of detection, based on the stated threshold 

value. 

 

5.3 Results 
 

5.3.1 Characteristic of recombinant antigen KL914 

The synthetic protein contains a k9 sequence in alignment with four tandem repeats of 

LdK39 (LinJ14.1160r4). The 738-bp nucleotide sequence was expressed and purified 

to give a final protein of 245 amino acids, among which 57 were strongly acidic 

(Aspartic acid [D], Glutamic acid [E]); 28 strongly basic (Lysine [K], Arginine [R]); 

64 hydrophobic or apolar (Alanine [A], Isoleucine [I], Leucine [L], Phenylalanine [F], 

Tryptophan [W], Valine [V]) and 71 hydrophilic or polar (Asparagine [N], Cysteine 

[C], Glutamine [Q], Serine [S], Threonine [T], Tyrosine [Y]). The complete sequence, 

related to amino acids listed above, is reported in Figure 1B. The length of gene KL914 

(738 bp) is similar to the sequence’s length of other proteins such as rK28 (795 bp) 

(Bhatia et al., 1999). The recombinant protein KL914 is highly acidic (pI 4.486) and 

has a molecular mass of 26.9 kDa (26 914.44 Da). By comparison, the molecular mass 

of protein rK39 is at 35.3 kDa, protein rK28 at 28.33 kDa and protein rK26 at 26 kDa 

(Pattabhi et al., 2010). The mobility of KL914 is slightly faster than rK26, due to the 

high acidity and the high lysine content included in K9. As previously mentioned, K9 

and K26 are highly hydrophilic and show aberrant migration, but their sequence differs 

in the presence of 11 copies of a 14 amino acid repeat for rK26, which is significant. 

Indeed, it has been demonstrated that K9 is a highly acidic protein (pI 4.04) of 80 amino 

acids with a molecular weight of 8.54 kDa (Bhatia et al., 1999; Alce et al., 1999) 

whereas K26 is an acidic protein (pI 4.59) of 247 amino acids with a molecular mass 
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of 26.1 kDa. The presence of the gene coding for K9 in the sequence of the recombinant 

protein KL914 allows for a faster migration on the membrane. 

 
 

 
  
Figure 5.1 – Novel protein description. Complete sequence of the recombinant protein 

KL914 containing the 261-bp sequence of gene K9 and the 477-bp sequence of Lin14 

(Linj14.1160r4). The final sequence of KL914 is 738 bp length and encompasses for 

245 amino acids. 

 

5.3.2 Expression of the protein KL914 

In the mini-induction, expressed protein KL914 run on 4-12% Bis-tris Gel (NuPAGEÒ 

Novex), with SeeBlue2 pre-stained standard (Thermo Fisher). The proteins were 

expressed using E.Coli BL21 plyS cells and Rosetta cells, where only BL21 cells 

showed induction as observed in the gel (Figure 5.2A). After completed expression 

protocol, the final product was run on gels at different volume, which good expression 

levels at 2.5 µg and 5 µg (Figure 5.2.B). The last gel was performed to verify the effect 

of the lyophilisation followed by resolubilisation of the protein on the final expression 

levels (Figure 5.2.C). As they were similar, the lyophilisation process does not affect 

the expression of the protein. 
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(5.2A) Mini-induction 

 
(5.2B) Final product 

 
(5.2C) Final product with lyophilisation check 

 
Figure 5.2 – (A) Mini-inductions with protein KL914 expressed in E.Coli BL21 plyS 

cells and Rosetta cells; only BL21 showed induction. (B) The final product and the 

lyophilised version were run on another gels. (C) Gel run with protein before and after 

lyophilisation to compare expression levels. All gels were 4-12% Bis-tris Gel 

(NuPAGEÒ Novex) with SeeBlue2 pre-stained standard (Thermo Fisher). 
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5.3.3 Detection of infectiousness in assays using protein KL914  

Serum samples previously selected as infected were tested in enzyme-linked 

immunosorbent assays (ELISA). Absorbance levels obtained for never infectious 

samples (n=58) were compared to samples classified as ever infectious (n=73) from the 

Brazilian dog population, showing a significant difference (Mann-Whitney test, 

U=328, p<0.0001) (Figure 5.3A). Amongst the ever infectious dogs, samples classified 

as mildly infectious (n=44) and highly infectious (n=29) were also evaluated in ELISA, 

presenting a highly significant difference (Mann-Whitney test, U=339.5, p=0.0006) 

(Figure 5.3B). 

 

(5.3A)  

 

(5.3B) 

 
Figure 5.3 – Cross sectional analysis of absorbance level in immune assays (A) 

Absorbance level detected against ever-infectious (n=73) and never-infectious (n=58) 

samples. (B) Absorbance level of antibodies detected against mildly infectious (n=44) 

and highly infectious (n=29) samples (p<0.0001 Mann-Whitney U test). 

 
 

5.3.4 Thresholds determination and perfromance  

The values obtained from ELISA were used to construct a receiver-operator 

characteristics (ROC) curve, with the control group composed of 58 samples negative 

for the xenodiagnosis follow-up and the positive group composed of 29 highly 

infectious samples from the Brazilian cohort. Whereas  the maximal value is 1, the area 

under the curve for KL914 has a value of 0.975 with confidence limits from 0.95 to 1 

(p<0.0001), which indicates an almost perfect discrimination ability of the antigen 

(Figure 5.4). Threshold values were explored to maximize the sensitivity and specificity 

of the antigen assay and were reported with their related detection performance for 

longitudinally-classified dogs (never, mildly and highly infectious) (Table 5.1). The 
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selected threshold was 1.06, offering a performance of 100% sensitivity for the 

detection of super-spreaders and the lowest detection of never infectious: only 7/58 

samples, which gives a specificity of 87.5%.  In other words, no false-negative was 

detected using the threshold-based antigen, and only 12.5% of false-positives were 

detected using the threshold-based antigen. While comparing the ELISA results to 

xenodiagnosis data used to determine the infectiousness of dogs, Cohen’s method gave 

a degree of agreement of 91.1% with no systematic difference between the ELISA and 

the xenodiagnosis (z=7.23, p<0.0001) and a kappa coefficient of 0.80 suggesting an 

almost perfect strength of agreement between the two methods. 

 

 
Figure 5.4  –  Receiver-Operator Characteristics curve of recombinant KL914 protein 

based on the control group of 58 samples from never infectious dogs and the positive 

group of 29 samples of highly infectious dogs from the Brazilian cohort.  
 
 

Performance and proportion of samples detected (n/total) 

Threshold Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Never 
infectious 

Mildly 
infectious 

Highly 
infectious 

2.99 62.1 (42.3-79.3) 98.2 (90.4-99.9) (0/58) (11/44) (18/29) 
2.16 86.2 (72.6-97.8) 91.1 (80.4-97.0) (5/58) (22/44) (25/29) 
1.15 96.6 (82.2-99.9) 91.1 (80.4-97.0) (5/58) (35/44) (28/29) 
1.06 100 (88.0-100) 87.5 (80.0-95.0) (7/58) (35/44) (29/29) 
0.97 100 (88.0-100) 85.7 (73.8-93.6) (8/58) (35/44) (29/29) 

Table 5.1 – Based on each threshold value, proportion and the related percentage of 

samples detected in groups of dogs (never, mildly, highly) by each possible values of 

cut-offs for indicating the performance of the diagnostic tool. Thresholds were 

determined based on point xenodiagnostic and applied on samples selected for 

longitudinally classified dogs within the xenodiagnoses study. 
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5.3.5 Detection times by threshold-based antigen 

As a result of the longitudinal follow-up, the time (in days) needed for the complete 

detection of infectious dogs (mildly and highly) was measured using the Kaplan-Meier 

curves. Never infectious dogs were excluded, as this category is not the intended target 

of the assay. The difference between the curves offers a significant difference between 

mildly and highly infectious dogs (c2= 5.73, p<0.01). From this longitudinal analysis, 

50% of the super-spreaders were detected after 67 days (Figure 5.5). Complete 

detection of super-spreaders was achieved after 72 days. The mean time of the onset of 

infectiousness determined during xenodiagnoses follow-up for super-spreaders was 

298 (218–377) days, while the mean detection time for threshold-based antigen is 67 

days (62–72) as determined by Kaplan-Meier longitudinal analysis. For mildly 

infectious dogs, the mean of onset of infectiousness is 203 (58–349) days while the 

mean of detection time for threshold-based antigen is 172 (100–243) days (Figure 5.5). 

Therefore, the KL914 antigen offers an early detection of the super-spreaders in the 

mixed population. 

 
 
 First and Last 

detection  
Mean detection  

(in days) 
Standard  

error 
Onset infectiousness 

(in days) 
Mildly 
infectious 

at day 68 and 324 172 (100–243) 3.93 408 (255–561) 

Highly 
infectious 

at day 56 and 74 67 (62–72) 2.61 298 (218–377) 

 

Figure 5.5 – Kaplan-Meier curves and longitudinal analysis on the detection time (in 

days) of the xenodiagnoses-classified dogs. The statistical difference in curves and time 

estimates were compared using the log rank test (c2= 5.73, p<0.01). Mean of detection 

time in days for dogs (mildly and highly) using threshold-based antigen is compared to 

the onset of infectiousness determined during xenodiagnoses follow-up. 
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5.3.6 Detection of individual transmission events 

Besides the importance of super-spreader detection, it is also essential to determine if a 

single transmission event can be detected. As the previous analysis used dogs at some 

points of their infectiousness period, the proportion of transmission events for early 

detection by each threshold-based antigen was also explored. The biological question 

here was to know if the KL914 protein could also detect single time points of 

transmission (i.e. at point xenodiagnosis) The proportion of transmission events 

detected was calculated based on the ratio of positive flies (for the presence of 

Leishmania parasite into sandfly gut) detected by the antigen-based tool, to the total 

positive flies as collected from the xenodiagnosis study (Brazil, 1993-1995) from to the 

onset of infectiousness. Threshold-based protein detects 99.2% of transmission events 

overall (471/475) in a longitudinal analysis, of which 100% (422/422) within super-

spreaders dogs and 92.5% (49/53) within mildly infectious group of dogs, 

demonstrating that the novel protein is able to detect individual events of VL 

transmission. 
 
 

5.4 Discussion 
 
The development of the novel recombinant protein KL914 aimed to offer an alternative 

to the multiple use of existing antigens within diagnostic tests misleading the field work 

and the case management. The purpose of a diagnostic tool should always be clearly 

defined; in this case, the tool was designed to detect super-spreaders within the canine 

population as responsible for the largest fraction of VL transmission.  

 

Protein KL914 is a fusion of hydrophilic acylated surface protein (HASBP2) and 

kinesin-related protein, as the gene construct was designed by fusing a sequence of gene 

k9 in alignment with four repeats of gene LinJ14.1160r4. The multiple repeat is 

responsible for varying the number of repetitive regions typically impacting signal 

intensity in assays.  In enzyme-linked immunosorbent assays, protein KL914 offered a 

sensitivity of 100% and a specificity of 88% in identifying super-spreaders. As no other 

papers have been published on the detection of super-spreaders dogs, KL914 was 

compared to the recombinant antigen rK28, described above and analysed in Chapter 

5. Both KL914 and rK28 are highly performing to detect super-spreaders with 100% 

sensitivity. The specificity is slightly lower for KL914 (87%) compared to rK28 (93%), 
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without being substantially different. Moreover, concerning the detection of single 

transmission events (as infected flies) in the longitudinal analysis, both antigens offered 

similar performances with 99.16% detection for KL914 and 98.3% detection for rK28. 

From a longitudinal perspective, the mean detection time, in days, towards super-

spreaders for rK28 and KL914 are, 83% (55–110) and 69% (56–74), respectively. 

Overall, data suggests that KL914 and rK28 are performing in very similar ways, as 

KL914 was designed to build upon previous data rather than discovery of new target. 

However, KL914 still represents the first rationally designed for screening super-

spreaders. Data indicates that rK28 detects super-spreaders, but the antigen is currently 

used in the Dual-Path Platform for the screening of canine infection, and confirmatory 

test of disease in humans as well as in dogs (Almeida et al., 2017). The distinctions in 

the use of different antigens are important in clarifying the purpose of test, especially 

since the outcome of the result under a test-and-slaughter regime is extreme. 

 

As a further step from bench research to bedside, the recombinant protein developed 

here was adapted into a rapid diagnostic test (RDT) prototype. This opportunity was 

offered through a collaboration with InBios International, Inc. (Seattle, USA) and 

described in Chapter 6. The prototype of RDT based on protein KL914 was created in 

the hope of offering a suitable point-of-care tool for field application.   
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CHAPTER 6 Evaluation of the novel protein KL914 in dipstick 

format, a newly porposed rapid diagnostic tool for the detection of 

Leishmania super-spreaders 

 
 

6.1 Introduction 
 

The development of a novel diagnostic tool designed specifically for the detection of 

VL super-spreaders is an important key point in the prevention of transmission. Rapid 

diagnostic tests (RDT) have improved the control and the management in many 

infections, for example in malaria (WHO report, March 2018). Performing RDT is 

effortless as they do not require much laboratory knowledge or skills; moreover, they 

give results within minutes and their interpretation is instinctive. These field-friendly 

tools allow diagnosis at the community level, even in the more remote areas. Chapter 5 

aimed to answer this conundrum by developing a novel protein named KL914. Tested 

in enzyme-linked immunosorbent assays, it offered sensitivity and specificity of 99% 

(CI95%: 88-100%) and 87.5% (CI95%: 80-95%), respectively, in the detection of 

super-spreaders in a mixed canid population of Brazil (Chapter 5). While the 

recombinant protein ended up being quite similar to known recombinant protein rK28, 

due to its design being built upon previous data, rather than the discovery of new target, 

KL914 represents the first rationally designed to detect super-spreaders. The 

translational aspect of this project, the recombinant protein KL914 was adapted into a 

rapid diagnostic test (RDT) prototype in collaboration with InBios International, Inc. 

(Seattle, USA), offering a potential point-of-care field assay. The rational for RDT 

development is that despite the good performance of the ELISA based assay, it is lab-

based and requires time and specific equipment, whereas the RDT is field-based and 

allows real time decision making. The recombinant protein both within the ELISA and 

the RDT prototype were put to the test using the archived sera collection from the 

prospective study carried out from 1993 to 1995 in the Marajo Island in Brazil (Quinnell 

et al., 1992). Performance of the RDT (labelled KL914-RDT) were also compared to 

the performance of the antigen in enzyme-linked immunosorbent assays (KL914-

ELISA). The prototype was compared to the Kalazar Detect™ Canine kit (RDT based 

on rK39) from InBios International, Inc. 
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6.2 Materials and methods 
 

6.2.1 Production of protein KL914  

The gene construct was designed by fusing a sequence of gene k9 in alignment with 

four repeats of gene LinJ14.1160r4. The gene product is, therefore, a fusion of a 

hydrophilic acylated surface protein (HASBP2) and kinesin-related proteins. The 

multiple repeat is responsible for varying the number of repetitive regions typically 

impacting signal intensity in assays. In brief, to express and purify the protein, the DNA 

sequence (738 bp) was cloned into a plasmid (expression vector pET-15b) containing 

LACK and TRYP promoters, and transformed in Escherichia coli XL 10 cells (from 

Stratagene) for selection and verification of the DNA insert. Transformation into 

Escherichia coli expression cells BL21plyS and Rosetta (from Invitrogen) was then 

performed to express recombinant protein. Proteins were purified by Nickel-NTA 

agarose affinity chromatography under denaturing conditions, and were quantified 

using the Bio-Rad protein assay. The final protein KL914 is composed of 245 amino-

acid, is highly acidic (pI 4.486) and has a molecular mass of 26.9 kDa. 

 
6.2.2 Performance of protein in immuno-assays (KL914-ELISA) 

The recombinant protein was tested in ELISA using the archived sera collection from 

the prospective study carried out from 1993 to 1995 in the Marajo Island in Brazil. 

Complete analyses of the performance of the antigen is available in Chapter 5. The area 

under the ROC curve for KL914 had a value of 0.975, whereas the maximal value was 

1, indicating a high discrimination potential of the antigen. In ELISA assays, the 

threshold-based antigen of 1.06 offered a sensitivity and specificity of 100% (29/29) 

and 87.5% (CI95%: 80-95%), respectively, towards the detection of super-spreaders. 

From the Kaplan-Meier analysis, complete detection of super-spreaders was achieved 

after 72 days, while the mean of the onset of infectiousness was 298 (218–377) days. 

 

6.2.3 Development, principle and interpretation of rapid test format (RDT) 

A prototype of RDT based on the novel recombinant antigen KL914 was developed 

with InBios International, Inc. (Seattle, USA). Although the complete features and 

precise details of the recombinant antigen KL914 RDT prototype are under a non-

disclosure agreement with InBios International, Inc. (Seattle, USA), a schematic 

representation of the general composition of the dipstick is represented in Figure 6.1. 
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The prototype has the format of a dipstick which is field-friendly, does not require lab 

experience or equipment, and offers results within minutes. The nitrocellulose 

membrane of the dipstick was coated with the recombinant protein KL914 on the test 

line. A separate control line, based on protein G, was also present on the membrane and 

captures all IgG demonstrating that both the sample was appropriate and the membrane 

had allowed a proper flow in migration. The principle is represented in Figure 6.1B. 

The sample pad received the drop of serum (10µl) to be tested, as well as a stable 

solution of A-colloidal gold conjugate which facilitates the migration on the membrane 

through capillary action. Another drop of Chase buffer (10µl) was added to the pad a 

few minutes later to ensure the development of the assay. The interpretation of the 

results is highly intuitive. To test reliability of interpretation, the results were scored 

twice independently by the operator and blind by a second person. If the sera contained 

antibodies for the associated antigen, the conjugate would react with the complex on 

the test line which will make the band visible. A positive test was indicated by two 

visible bands on the membrane, while a negative test had only one band (the control 

line). The dipstick assay is invalid when the band for the test line is visible without the 

band for the control line. Similarly, if after the migration, no visible band appears, the 

test is considered to be invalid. In these cases, samples must be retested on other strips. 

 

Principle and interpretation of rapid test format 
(A) (B) 

  
Figure 6.1 – Development of rapid test format (A) Schematic representation of the 

dipstick; (B) The dipstick-format of the prototype includes a test pad (blue square) 

where the blood sample and the migration buffer are dropped. After 15 minutes 

migration, results are indicated by one visible line if negative, and two visible lines if 

positive. In other cases, the test is invalid and must be redone. 
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6.2.4 Kalazar Detect™ Canine 

The Kalazar Detect™ Canine (lot #XA1089) was provided by InBios International, Inc. 

in Seattle, USA) and is based on the recombinant protein rK39. In a previous study, a 

set of the same sera collection was tested on the Kalazar DetectÔ strips (personal 

communication from Rupert Quinnell), and these results were compared to (i) the 

xenodiagnosis data and (ii) the performance of KL914-RDT. 

 

6.2.5 Sera selection for RDT evaluation 

Sera samples used for the RDT evaluation were selected among the archived collection 

from the prospective study carried out from 1993 to 1995 in the Marajo Island in Brazil 

(Quinnell et al., 1994). A total of 109 samples could be included in these preliminary 

assays, due to the limited number of dipsticks available for this project. Selection was 

made so that there were matching data for xenodiagnoses and ELISA. All the samples 

selected came from Leishmania-infected dogs (positive for parasite culture, PCR and 

serology), as the focus is infectiousness. For the purposes of this study, preliminary 

assays included 23 samples from highly infectious dogs, 30 samples from mildly 

infectious dogs and 56 samples from never infectious dogs, as based on the 

xenodiagnoses study used to investigate infectiousness to the sand fly vector as 

described previously (Chapter 5) and elsewhere (Courtenay et al., 2002b).  Never 

infectious dogs were naturally infected, but never became infectious for six or more 

consecutive months of xenodiagnoses. Highly infectious dogs had a proportion of 

infected sandfly over 20% of the total sandflies collected, and mildly infectious dogs 

had between >0% and <20% infected flies (Courtenay et al., 2002b; Courtenay et al., 

2014). 

 

6.2.6 Statistical analyses  

All analyses were carried out using Graph Pad Prism 7 and Stata 14.5 (Stata 

Corporation, College Station, Texas, USA). The results of the KL914-RDT were 

classified according to the intensity of the observed band: (0) for negative test result 

and (1) for positive test result. Performance (sensitivity and specificity) of the rapid 

diagnostic test (labelled KL914-RDT) were compared to those of the antigen in 

enzyme-linked immunosorbent assays (KL914-ELISA). The percentage of agreement 

between the results of the two KL914-based tools (RDT and ELISA) compared to the 
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xenodiagnosis (which is the gold standard for measuring the true infectiousness) was 

measured using Cohen’s method and the kappa coefficient defining the strength of this 

agreement. 

 

6.3 Results 
 

6.3.1 Validation of KL914-RDT dipstick 

Several attempts were needed to obtain an operational dipstick. When lyophilising the 

protein to apply on the stick, the sugars contained in the excipient used for the 

lyophilisation interfered with the strip-coating. After revising to use protein in liquid 

form (i.e. suspended in Tris buffer), the adaptation was successful. A first comparative 

assay used the sera from a highly infectious dog (dog A78, sample n°8) on three strips 

of KL914-RDT, tested as triplicates, and one strip of Kalazar DetectÔ Canine kit as 

control. All three KL914-RDT were positive in detecting the sera sample, and showed 

no significant difference among them, while the Kalazar Detect™ Canine strip had no 

visible band on the test line (Figure 6.3A). To compare with Kalazar DetectÔ Canine, 

three different samples from super-spreaders dogs (A37, A78 and A79) were tested, all 

of which appeared to be negative (Figure 6.3B).  
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(A) 

 
(B) 

 
Figure 6.2 – (A) Rapid diagnostic test prototype comparing three positive strips on 

KL914 and the control based on Kalazar DetectÔ. The antigen reactivity for the three 

prototype strips is stronger than on the control strip. (B) Kalazar DetectÔ Canine 

negative for the detection of super-spreaders. 

 

 

In this study, three sera samples only were tested on Kalazar DetectÔ (as described 

above) due to the limited number of dipsticks and sera available. While Kalazar 

DetectÔ is well-known to detect infection, its performance towards super-spreaders is 

not established yet. In a previous study, a set of the sera collection was tested on the 

Kalazar DetectÔ strips (personal communication from Rupert Quinnell), and these 

were compared to the xenodiagnosis data of this project. The number of samples 

reporting results for both tools (KL914-RDT and Kalazar DetectÔ) were too low 

(n=20) for statistical analysis. The only comparison that could be realised in this project 

was by using different sera samples to establish the performance towards super-

spreaders independently of each other. The results for Kalazar DetectÔ are described 

as follows: 7 out of 9 were correctly identified as highly infectious (e.g. super-

spreaders) and 3 of 6 were correctly identified as mildly infectious. This sample size is 

too low as well to be able tp confirm the lower performance of Kalazar DetectÔ strips 
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on super-spreaders. However, the rate of false positive was high (32.75%): 19 out of 58 

samples where positive on the strip whereas the sample was not infectious according to 

the xenodiagnosis classification. These results appear to be coherent as the aim of the 

tool is to detect all infected dogs regardless of their infectiousness. The false positive 

samples were infected but not infectious. By opposite, the novel KL914-RDT was 

designed to detect infectious dogs only. The results for KL914-RDT are reported below, 

in Table 6.2. with a false positive rate lower than 4%. Therefore, it seems that the novel 

KL914-RDT is more specific towards super-spreaders. Furthermore, the tool currently 

used for screening infected dogs in the field is the Dual-Path Platform; however, no 

strips were available for testing during this PhD. So far, this initial project only 

confirmed that the novel KL914-RDT can detect the infectiousness of super-spreaders, 

without being able to confirm or disprove the performance of other rapid tests such as 

Kalazar DetectÔ or Dual-Path Platform (DPPÒRDT). 

 

 

6.3.2 KL914-RDT on longitudinally collected sera 

An example of the RDT assay results from testing a Leishmania super-spreader dog 

(A78) with  eight samples collected in longitudinal follow-up with the description of 

each condition (Table 6.1). This dog was classified as highly infectious from sample 

n°5 to n°8 for over 200 days. Determination of the transmission potential was tested by 

xenodiagnoses, with more than 20% of Leishmania-infected sandflies collected; in this 

case, the proportion of positive sandflies varied between 35% and 45% during the 

infectiousness period. Results of the protein KL914 in ELISA (as described in Chapter 

5) were compared to the xenodiagnoses results, confirming the ability of KL914 to 

detect super-spreaders. Finally, rapid tests based on KL914 were run with samples of 

the longitudinal collection of sera (Figure 6.4). As mentioned in the method section, 

the tests were confirmed twice by the operator and a blinded person to avoid bias. Two 

visible bands were observed for strips n°5 to n°8, meaning a positive test (Figure 6.4), 

whist tests were negative for samples tested on strip prior to that point. These results 

corresponded to those in xenodiagnoses and ELISA (Table 6.1). In this example, the 

RDT worked as well as the ELISA and the xenodiagnoses to identify sera sample of 

dogs with high infectiousness potential. 
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Table 6.1 – Super-spreaders dog (A78) and related data collection, comparing 

xenodiagnosis detection, KL914-ELISA detection and KL914-RDT detection. 

Sera 
sample 

Days in 
the field 

Infection1 Highly 
infectious2 

KL914-ELISA 
(absorbance value) 

KL914-RDT 
(Figure 4) 

n°1 0 0 0 0 (A=0.262) 0 
n°2 73 0 0 0 (A=0.038) 0 
n°3 129 0 0 0 (A=0.058) 0 
n°4 198 1 0 0 (A=0.115) 0 
n°5 272 1 1 1 (A=3.006) 1 
n°6 341 1 1 1 (A=3.065) 1 
n°7 408 1 1 1 (A=2.998) 1 
n°8 477 1 1 1 (A=2.982) 1 

1 Determined by parasite culture, PCR and serology. 
2 Determined by xenodiagnosis with over 20% of infected sandflies on the total 
collected. 
 
 

 
 
Figure 6.3 – Example of longitudinal follow up in rapid diagnostic test on dog A78 

classified as super-spreader from sample n°5 to n°8 in xenodiagnoses, which also 

corresponds to the positive results of the RDT. 
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6.3.3 Comparative study of performance of KL914 in RDT and ELISA 

Preliminary trials were performed on a proportion of the sera collection (n=109) due to 

the limited number of dipsticks created. The KL914-RDT detected 60% (14/23) of the  

samples from super-spreaders, which corresponds to the sensitivity, and 20% (6/30) of 

the sample of mildly infectious dogs (Table 6.2). Moreover, only 3.6% of samples were 

detected as false positive by the RDT (2/56 of never infectious). Hence, KL914-RDT 

has a higher specificity to detect super-spreaders (96.4%) compared to KL914-ELISA 

(87.5%). Unfortunately, the sensitivity of KL914-RDT is substantially lower than in 

the ELISA, reaching 60% and 100% respectively (Table 6.2). While comparing these 

methods to the xenodiagnosis, Cohen’s method was applied. A percentage of agreement 

of 86.08% for RDT was measured with no systematic difference (z=5.76, p<0.0001) 

and the kappa coefficient was at 0.63, suggesting a substantial strength of agreement 

between the infectiousness and the rapid detect test. For K914-ELISA, the degree of 

agreement was 91.14% (z=7.23, p<0.0001) and the kappa coefficient was 0.80, 

suggesting a highly strength of agreement with the xenodiagnosis. The degree of 

agreement between the two serological methods (KL914-ELISA and KL914-RDT) was 

also measured, giving a Cohen’s kappa coefficient of 0.30.  
 
 
 

Table 6.2 – Comparative study of the detection of samples from highly, mildly and 

never infectious dogs using the rapid diagnostic prototype based on the novel protein 

(KL914-RDT) and immunoassays (KL914-ELISA) in preliminary assays. Performance 

of KL914-RDT and KL914-ELISA to detect super-spreaders in a mixed population. The 

degree of agreement between the test and the reality (as measured by xenodiagnosis) 

data was measure using Cohen’s method with the percent and the kappa coefficient.  

1 Compared with xenodiagnosis data 
 
 

Performance of KL914-ELISA and KL914-RDT to detect super-spreaders 

 Highly  Mildly Never Sensitivity 
 

Specificity False 
positive 

False 
negative 

Degree of 
agreement1 

Kappa 

RDT 14/23 
(60%) 

6/30 
(20%) 

2/56 
(3.6%) 

 60.1% 96.4% 3.6% 39% 86.1% 
z=5.76 

p<0.001 
0.63 

ELISA 23/23 
(100%) 

27/30 
(90%) 

7/56 
(12.5%) 100% 87.5% 12.5% 0% 91.1% 

z=7.23 
p<0.001 0.80 
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Finally, while comparing the results of ELISA and RDT, the degree of agreement was 

61.16% (Table 6.3) which suggests improvement is needed, and a kappa coefficient of 

0.26 (z=3.87, p<0.0001). Individuals results were also compared in the Table 6.3 for 

each group of infectious (super-spreaders, mildly and never-infectious) 

 
 

 

 

 

 

Table 6.3 – Comparison of the detection between KL914-RDT and KL914-ELISA with 

degree of agreement measured using Cohen’s method and the kappa coefficient.  

Comparison of the individual detection between RDT and ELISA and 
degree of agreement using Cohen’s method   

 

 
Agreement=61.16%; z=3.87 ; p<0.0001 and kappa=0.26 
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6.4 Discussion 
 

The development of the first prototype RDT for detecting super-spreaders was 

achieved. Due to the limited number of tests available for the experiment, the results 

presented here are considered to be preliminary; however, the project generated a proof-

of-concept that the RDT can be developed. Further development to improve its 

sensitivity is needed (discussed below), before it can be evaluated under field 

conditions. 

 

In the example of longitudinal follow-up of a super-spreader dog, the rapid diagnostic 

tests based on KL914 were run with all samples of the sera collection. The RDT used 

as screening method matched at all times points with the xenodiagnosis and the ELISA 

results, giving a 100 percent of agreement between these three methods. Hence, the 

RDT worked perfectly for this dog to identify sera sample of dogs with high 

infectiousness potential. However, due to individual variability, not all dogs offered a 

perfect longitudinal detection. After analysing all the dogs tested in the assays, the 

overall performance of KL914-RDT showed a strong degree of agreement (86.1%) with 

the xenodiagnoses used to determine the infectiousness of the dog (k=0.63), suggesting 

a high diagnostic potential for super-spreaders. However, the degree of agreement was 

higher for the KL914-ELISA and xenodiagnosis (91.1%) without being significant 

difference compared to the RDT and the correlation between ELISA and RDT was also 

lower by Pearson’s’ correlation. While comparing the sensitivity and specificity of the 

KL914-rapid test to its equivalent in immune-assays, the results highlight that ELISA 

is the more sensitive method, but that the RDT has a higher specificity in detecting  

super-spreaders. The specificity of RDT to identify super-spreaders increased 

compared to the immune-assays, to 96.4% and 87.5 respectively. The RDT had a low 

detection of mildly infectious dogs (20%); this is not considered a major issue as mildly 

infectious dogs are believed not to contribute to most transmission events. Moreover, 

only 3.6% of the samples were detected as false positives by the RDT which is an 

advantage to improve dog-owner compliance.  

 

The reduced sensitivity of the RDT is likely the result of the conversion of the antigen 

into a rapid diagnostic tool, as observed in other studies (Pattabhi et al., 2010; de Silva 

Solcà et al., 2014). Similar discrepancies were observed between other antigens and 
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their respective RDTs for the detection infection in canine population. For example, the 

crude Leishmania antigen (CLA) was tested in ELISA and RDT, offering sensitivities 

of 78,3 % and 72,5%, and specificities of 90% and 84%, respectively, in detecting  

Leishmania infection (de Silva Solcà et al., 2014). This shows a decrease in  detection 

when the antigen is converted to RDT. Moreover, the adaptation of rK28 into a dipstick 

was only measured for human VL infection: the RDT showed a lower sensitivity 

compared to the ELISA format, without being significantly different, in the detection 

of human VL infection (Pattabhi et al., 2010). No publications comparing rK28 in 

ELISA and in RDT could be found on canine trials. Very limited studies involve the 

detection of canine infectiousness; indeed,  only one could be found in the literature 

comparing the performance of tests towards infectiousness. The performance of rK39 

was compared in ELISA and in the format of Kalazar Detect™ Rapid Test, showing 

that the detection of highly infectious dogs dropped from 97% to 79% (Courtenay et 

al., 2014). The reason why antigens perform weaker in rapid diagnostic tools than in 

ELISA formats  remains unclear. Several reasons could be suggested to explain the lack 

of performance such as the composition of the migration buffer or the adhesion of the 

protein to the nitrocellulose membrane. Moreover, during the conception of the RDT 

in IDRI/InBios, the sera conservation conditions were not optimal; indeed, some of the 

serum seems to be dried out in the wells, even if the reactivity of the samples was 

validated and confirmed by another ELISA during the secondment at IDRI. Therefore, 

further work is required to evaluate the reasons for this discrepancy.  

 

In conclusion, the first prototype rapid diagnostic test for the detection of super-

spreaders has been developed based on a new protein, for its adaption into a field-

friendly tool. Further improvements could be made to the sensitivity of the RDT. On 

full development of the RDT, the impact of such a tool on transmission, when applied 

to the mixed canine population, will require quantification by mathematical modelling 

dynamic scenarios. This is the subject of the next chapter, with the aim of  modelling 

the most efficient screening method in the field, and generating  recommendations to 

improve the Visceral Leishmaniasis Control and Surveillance Programme (VLCSP). 
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CHAPTER 7 Modelling canine VL transmission: impact of novel 

diagnostic tool for super-spreaders on canine VL transmission rates  

 
7.1 Introduction 

 
In most mathematical models of infectious diseases, the heterogeneity of transmission 

is not not sufficiently taken into consideration, whenever it concerns hosts or vectors. 

Furthermore, models including super-spreaders in intervention settings are even fewer. 

However, targeting them for preventive measures is assumed to increase the efficacy 

of interventions (Woolhouse et al., 1997; Lloyd-Smith et al., 2005). Moreover, the 

failure of identifying these transmission events reduces the efficiency of control 

measures as discussed thoroughly in the introduction (section 1.5.3). In the case of 

ZVL, Costa et al. (2013) has offered the most complex mode; in addition to the basic 

SEI model, it includes infectiousness and imperfect diagnosis of dogs. The imperfect 

diagnosis was represented by new boxes being “correctly diagnosed” and “incorrectly 

diagnosed” (Costa et al., 2013). However, there was no specification for differences in 

intensity of infectious dogs including super-spreaders, which can have large impacts on 

model predictions: the existence of such heterogeneities is likely to lead to higher 

transmission rates than homogeneous mixing, and a clustering of infection (Courtenay 

et al., 2002b). Models on infection in dogs has shown that sensitivity and specificity of 

diagnostic tools have a direct impact on the success of the intervention (Rock et al., 

2016). To date, xenodiagnosis is the only substantiated method to provide conclusive 

data to discern infectious from non-infectious dogs. Due to the need for identifying 

highly infectious dogs, a newly proposed diagnostic test was developed for the specific 

detection of super-spreaders in a mixed canine population (Chapters 5-6). The present 

study aimed to develop mathematical models based on this novel diagnostic and its 

impact on transmission rates. Using a deterministic model, VL transmission rates were 

calculated for the different categories of infectiousness known as never, mildly and 

highly infectious. The impact of the targeted group was evaluated by the reduction in 

incidence. Two diagnostic tools designed for the identification of super-spreaders were 

used in this chapter: both based on the novel antigen KL914 but in different formats 

(RDT and ELISA) as described in Chapters 5 and 6. The impact of these newly 

proposed tools was quantified under different implementation scenarios, including 

important parameters such as screening and intervention rate, frequency and coverage 
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of the screening. Due to the continuous turnover of dog populations, the screening 

frequency is one limiting factor and is essential to understand towards development of 

efficient campaigns. In addition, the impact of a culling interventions was analysed. 

The aim of this preliminary mathematical study was to develop a working model 

incorporating test diagnostic components and heterogeneities in canine infectiousness, 

to identify the most efficient way to apply the novel diagnostic tool in the field, and to 

use the model to provide initial recommendations to the Visceral Leishmaniasis Control 

and Surveillance Programme, as currently established by the Ministry of Health (MOH) 

in Brazil. 

 
7.2 Material and Methods 

 

7.2.1 Initial model of VL transmission  

The compartmental model was schematically represented in Figure 7.1. Transmission 

dynamics of VL within the dog population were based on the following deterministic 

equations (1–5). The basic model SEI (susceptible, S; exposed, E; infectious, I) was 

modified to divide the infectious group (I) in three subgroups according to their 

infectiousness. The never-infectious group (IN) included infected dogs that never 

transmit the parasite to the sandflies vector; the low infectious group (IL) is made of 

mildly infectious dogs, whereas high infectious group (IH) are the super-spreaders, 

being the target of the diagnostic tool. Note that the exposed box of this model included 

the latent infected dogs, therefore all are infected but not all have seroconverted yet.  

 
Figure 7.1  –  Representation of compartmental models to calculate VL transmission 

between dogs  (S, susceptible; E, exposed; IN, infected and non-infectious; IL, infected 

and mildly infectious; and IH, infected and high infectious) with parameters b as birth 

rate, d as death rate, r as proportion of super-spreaders, i as latency rate, and q as 

proportion of infected dogs that become infectious. 
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Changes in the number of dogs through time are given by the following deterministic 

equations:  

dS/dt	=	bN	–	λ	S	–	dS	 (1) 
dE/dt	=	λ	S	–		i	E	–	dE	 (2) 
dIN/dt	=		i(1-q)	E	–	dNIN	 (3) 
dIL/dt	=		(1-r)iq	E	–	dLIL	 (4) 
dIH/dt	=	ri	q	E	–	dHIH	 (5) 

 
where b is the birth rate of dogs, d is the death rate of dogs (dN, dL, dH are the death 

rates of the different types of infectious dogs), λ is the transmission rate (determined 

below), r is the proportion of infectious dogs that are highly infectious,  i  is the rate of 

latency of dog, and q is the proportion of infected dogs that become infectious.  

 

Transmission rate (λ) and vectorial capacity (C) are respectively defined as: 

λ	=	C	pD	6789:9;
+	78=:=

;
>	

 

 (6) 

C = 	 ?
;
	@

A	BCDE

F
         (7) 

 

where pD is the probability of infected fly transmitting to dog; pVL is the probability of 

low-infectious dog transmitting to fly; pVH is the probability of highly infectious dog 

transmitting to fly; F is the total number of sandflies; 𝑎 is the biting rate of sandflies on 

dogs,	𝑒IFJ is the probability of sandfly surviving the latency period with τ as the latent 

period of the parasite inside sandflies and µ as the mortality rate as sandflies. The 

contribution in transmission and prevalence for highly, mildly and never infectious dog 

was computed separately. Probabilities of high and low infectious dogs transmitting the 

parasite to the sandflies were defined by Courtenay et al. (2002b). Moreover, the birth 

rate of dogs (b) is assumed to be equal to the total death rate, so that the total dog 

population remains constant: 

b	=	d(S+E)	+	dNIN	+	dLIL	+	dHIH	
 

(8) 

where the natural death rate of dogs (d) and the death rate of never-infectious dogs (dN) 

are similar; and where the death rate of low-infectious dogs (dL) and highly infectious 

dogs (dH) are higher. 
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All estimates of parameters were taken from published sources (Courtenay et al., 

2002b; Dye, 1996; Reithinger et al., 2014; Costa et al., 2013, Nunes et al., 2008 and 

Quinnell et al., 1997). Annotations are summarised in Table 7.1. All analyses were 

realised in MATLAB R2018. 

 
 

7.2.2 Inclusion of the diagnostic tool   

Two diagnostic tools were used in this chapter: the RDT and the ELISA, both based on 

the same antigen (KL914) as described in previous chapters. When applying them, the 

number of diagnosed dogs in each group was based on their performance with 

sensitivity (d) and specificity (dz). These variables were determined in previous 

chapters, sensitivities for ELISA and RDT were 99.9% and 91% respectively, whereas 

their specificities were 87.5% and 96.4%. Note that  the loss of performance for the 

RDT compared to the ELISA was recurrent in several other studies and discussed in 

Chapter 6. Although, the selected threshold allows high sensitivity and specificity 

leading to a specific detection of super-spreaders, the model allows correctly and 

incorrectly diagnosed individuals to enter the “diagnosed” group. For example, a lack 

of specificity (large 1-dz) of the diagnostic will lead to a large number of false positive 

dogs. The screening rate (s), being essential to the success of the diagnostic, is the 

proportion of dogs tested a day. A large range of screening rates were modelled 

including 20 logarithmically equally spaced values between 0.001 and 0.1 per day. 

However, in a tool implementation scenario, the daily screening rate is difficult to set 

up. Therefore, a pulsed intervention was also modelled where the pulsed screening 

function takes a time vector, the number of screenings per year, the screening coverage 

(proportion of dogs tested per day during the screening period), and the duration of the 

screening (in days). While modelling diagnostic interventions, the first query to know 

is how the tool needs to be used in the field to have the most efficient impact; this 

implied to vary the screening rate (constant or pulsed) and the intervention rate (culling 

or treatment) to evaluated their combined impact on transmission rate and  incidence. 

The breakpoint in transmission was the reference to determine the screening rate at 

which the diagnostic tool should be applied (instantaneously followed by the 

intervention). Below that point, VL infection is unable to be maintained in the canine 

population and will progressively decline to eventually reach zero. The most efficient 

screening rate was calculated and compared to current field applications. 
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Practically, the detection tool will be positive for correctly diagnosed super-spreaders 

(IH) and misdiagnosed dogs from all the other groups (S, E, IN and IL); whereas the test 

will be negative for misdiagnosed super-spreaders (IH) and correctly diagnosed other 

dogs (S, E, IN and IL). As result of the detection, the total rate of positive and negative 

diagnosis was determined as follows:  

 
Total rate of positive detection (DP) 
= [IH.d + (S+E+IN+IL)(1–dz)] s (9) 
  
Total rate of negative detection  
= [IH.(1–d) + (S+E+IN+IL) dz ] s 
 

(10) 

where d is the true positive rate of detecting super-spreaders (the sensitivity of the 

diagnostic); (1-d) is the false negative rate of diagnosing super-spreaders; dz is the true 

negative rate (the specificity of the diagnostic); (1-dz) is the false positive rate.  

 

 
Figure 7.2 – Schematic representation of the detection of S, E, IN, IL and IH at different 

rates using the novel diagnostic tool (Dpos, positive result at diagnosis; and Dneg, 

negative results for diagnosis). 
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7.2.3 Interventions modelled based on diagnostic tool  

The current intervention modelled in this study was a culling scenario. Exclusively 

applied on the positively detected dogs by the diagnostic tool (at rate DP = [IH.d 

+(S+E+IN+IL)(1-dz)] s), correctly or not, the model evaluates the impact by the 

proportional reduction in VL transmission rate. These interventions were assumed to 

be instantaneous after the testing. Culling intervention was applied with various degrees 

of success. The proportion of positively detected dogs that are removed by the culling 

program was defined as the parameter k ranging from 10 to 100%. This leads to the 

following modifications in the equations: 

 
dS/dt	=	b	–	λ	S	–	dS	–	ks(1-dz)	S	 (1’) 
dE/dt	=	λ	S	–	i	E–	dE	–	ks(1-dz)	E	 (2’) 
dIN/dt	=		i	(1-q)	E	–	dNIN		–		ks(1-dz)	IN	 (3’) 
dIL/dt	=		(1-r)iq	E	–	dLIL	–	ks(1-dz)	IL	 (4’) 
dIH/dt	=	ri	q	E	–	dHIH		–	ksd	IH		 (5’) 
b	=	d(S+E)	+	dNIN	+	dLIL	+	dHIH	+	k(DP)	 (8’) 

 

Moreover, the course for the intervention was varied in order to determine the time (and 

the conditions) needed to reach a certain percentage in reduction of transmission to 

dogs. Here, the basic reproduction number (R0) was not calculated, but the proportional 

reduction in transmission rates; for which, it was assumed that a minimum 80% 

reduction would have a significant impact on VL incidence. Before the screening, the 

population dynamics were run for 20 years without intervention to allow them to reach 

equilibrium, and allows a better visualisation of the impact of the intervention in the 

plots. Each intervention was modelled with (1) a constant screening rate applied daily 

over the time course of the intervention and (2) a pulse intervention where the number 

of screenings per year, the screening coverage, and the duration of the screening are 

variables (as described above). Therefore, the variables in this scenario are sensitivity 

and specificity of tool, time of intervention, culling rate, coverage and frequency 

combined in the screening rate (either constant or pulse). Note that these rates are 

proportions of the total dog population. The reduction in transmission is always 

measured as the percentage difference in the transmission after the intervention versus 

before the transmission at equilibrium. The impact of super-spreaders removal was 

compared to current culling intervention where all infected dogs were removed 

independently of their infectiousness. 



127 
 

 

Table 7.1 – Definitions and estimates of parameters used in this model 
Variable Definition Estimates References 

F Total number of sandflies 50000 Assumed value 
N Total number of dogs 1000 Assumed value 
S Number of susceptible dogs Variable – 
E Number of exposed dogs  

(latency infected) 
Variable – 

IH Number of highly infectious dogs 
(super-spreaders) 

Variable – 

IL Number of low infectious dogs 
(labelled as mildly previously) 

Variable – 

IN Number of never infectious dogs Variable – 
F Number of sand flies Variable –	
b Birth rate Defined above – 
λ Transmission rate Defined above –	
C Vectoral capacity Defined above –	
δ Natural death rate 0.0011/day Courtenay et al., 2002b 
dN Death rate of never-infectious dogs 0.0011/day Courtenay et al., 2002b 
dL Death rate of low-infectious dogs 0.003006/day Courtenay et al., 2002b 
dH Death rate of high-infectious dogs 0.003006/day Courtenay et al., 2002b 
q Proportion of infected dogs that 

become infectious 
0.43 Courtenay et al., 2002b 

r Proportion of infectious dogs that 
are highly infectious 

0.39 Courtenay et al., 2002b 

pD Probability of infected fly 
transmitting to dog 

0.321 Reithinger et al. 2004 

pVL Probability of low-infectious dog 
transmitting to fly 

0.017 Courtenay et al., 2002b 

pVH Probability of highly infectious dog 
transmitting to fly 

0.39 Courtenay et al., 2002b 

i Rate of latency  
(incubation period of dogs) 

0.005/day Quinnell et al., 1997 

𝒂 Biting rate of sandflies on dogs 0.333/day Dye et al., 1991 
τ Latent period of L. infantum in sand 

flies  
7 days Dye, 1996 

µ Sand fly mortality rate  
(1/ µ = life expectancy) 

0.42/day Dye, 1996 

d Sensitivity of diagnostic tool ELISA: 0.99 
RDT: 0.61 

Chapters 6 and 7 

dz Specificity of diagnostic tool ELISA: 0.875 
RDT: 0.964 

Chapters 6 and 7 

s Screening rate (including 
frequency, coverage and duration) 

Variable  – 

k Rate of immediate culling Variable – 
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7.3 Results  
 

7.3.1 Transmission model and conditions for diagnostic tool 

The dynamics of the dog population including the three groups of infectiousness 

(highly, mildly and never infectious) was initially run without any interventions as basic 

model for VL transmission. The dynamics of the groups are represented in Figure 7.3.  

 

 
Figure 7.3 – Population dynamics and number of dogs in each category (S, susceptible; 

E, exposed; IN, never infectious; IL, mildly infectious and IH, highly infectious) over a 

period of 20 years to reach the equilibrium in the initial population scenario. 
 
In this model, transmission rate was based on estimates for parameters taken from 

published sources (Table 7.1) based on which, the equilibrium numbers of infected dogs 

in the model with a sandfly-to-dog ratio of F/N=50 are roughly: E=178, IN=461, IL=78, 

IH=50, which is a prevalence of (178+461+78+50)/1000=76.7% if all latent dogs are 

included, or (461+78+50)/1000=58.9% if you exclude all latent dogs. This result is 

similar to previous prevalence estimated in endemic areas of Brazil (Quinnell et al., 

2001; Felipe et al., 2011; Fraga et al., 2012; Quinnell et al., 2013). 
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7.3.2 Current field screening 

The current culling measures applied by the Visceral Leishmaniasis Control and 

Surveillance Programme, as currently established by the Ministry of Health (MOH) in 

Brazil, involves all infected dogs independent of their infectiousness. The model was 

thus adjusted so that the diagnostic tool would include all infected dogs (not only super-

spreaders), which modifies the equation (9): 

 
Total rate of positive detection (DP)   
DP = [(E+IN+IL+IH).d + S(1–dz)] s (9’) 

 
Current testing in Brazil comprises two diagnostic tests (as described in Chapters 1 and 

4), first by DPP-RDT, followed by a confirmatory ELISA. Used in sequence, the 

sensitivity drops to 70% (0.823*0.85) while the specificity of both tests increases to 

99.5% (0.928 + [1-0.928]*0.928). Current testing conditions were estimated as follow: 

(1) a pulsed intervention with 1 screening per year, 50% coverage, duration of 14 days 

for each screening and 50% culling; and (2) a continuous intervention with a daily 

screening rate is 0.0014, representing 50% of the dog population screened over 1-year, 

and 50% culling of the positively detected dogs. These parameters seem more feasible 

in the field. Indeed, a 100% coverage in the field is not really achievable as there will 

always be some people and dogs absent from the village during the screenings and some 

owners will refuse to take their dog to be screened, or won’t be able to make it to the 

screening location.  

 

Under these conditions, the current MOH recommended test showed little impact on 

transmission outcomes, with a slight reduction in transmission and a new equilibrium 

in the dog dynamics (Figure 7.4). Overall, the continuous and pulsed interventions look 

very similar. The results over time are reported in table 7.2, reaching a plateau phase 

after 5 years. The reduction in transmission for a pulsed and continuous interventions 

are 8.36% and 15.95%, respectively. The continuous model shows better performance 

as the pulsed intervention allows a recovery in transmission between pulses. This 

suggests that the MOH testing regime are unlikely to be effective to control Leishmania 

infection under current conditions. Note that all figures start with a period of 20 years 

of equilibrium, without any intervention, and that the percentage of reduction are 

compared to the non-intervention levels. 
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Dynamics of population after 20 years intervention 
using current field tool and conditions 

(A) Pulsed intervention 

 
(B) Continuous intervention 

 
 

Figure 7.4 – Plot of the population dynamics with 20 years intervention (A) with a 

pulsed intervention with 1 screening per year, 80% coverage, duration of 2 weeks for 

each screening and 50% culling (B) with a continuous intervention where the daily 

screening rate is 0.0014. Screening was based on the current field method : DPP-RDT 

+ ELISA used in this sequence with sensitivity and specificity of 70% and 99.5%. The 

intervention starts after 20 years of equilibrium. 
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Table 7.2 – Reduction of transmission rate (%) over time (A) with a pulsed intervention 

with 3 screenings per year, 50% coverage, duration of 2 weeks for each screening and 

50% culling (B) with a continuous intervention where the daily screening rate is 0.0014. 

Screening was based on the current field method : DPP-RDT+ELISA in sequence. Note 

that the intervention starts after 20 years of equilibrium. 

 

 
Time from 

intervention  

Reduction of transmission rate (%) 
Pulsed  

intervention 
Continuous 
intervention 

1 year 1.80 10.57 
2 years 2.19 15.19 
5 years 8.18 16.39 
10 years 8.36 15.95 
15 years 8.36 15.95 
20 years 8.36 15.95 

 
 

7.3.3 Culling scenario with continuous intervention  

Going back to the application of the newly-proposed tools, the culling scenario was 

first modelled with continuous screening regime. The continuous intervention is based 

on a daily screening rate, a proportion of dogs that need to be screened every day over 

a certain time course to reach a minimal reduction of 80% in VL transmission rate, 

which is expected to have a significant impact on VL incidence. Only the dogs 

diagnosed as positive by the tool (at rate DP) undergo the intervention, which is 

assumed to be instantaneous. A range of screening rates and the culling proportions 

were modelled to evaluate their combined impact on the transmission reduction, for 

interventions over 1, 2 and 20 years (Figure 7.5). From these plots, the effects of RDT 

and ELISA screening effort and positive dog removal efficiency post testing are 

explored. For example, to reach a transmission reduction between 80% and 90% with 

the culling intervention lasting one year and using the RDT as diagnostic tool, several 

implementation scenarios are possible as summarised in Table 7.3. 
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Impact of the screening rate and culling rate on the reduction in VL 
transmission (%) 

(A) One year - RDT (B) One year - ELISA 

  
(C) Two years - RDT (D) Two years - ELISA 

  
(E) Twenty years - RDT (F) Twenty years - ELISA  

  
Figure 7.5 – Contour plots showing the impact of screening rate and culling rate 

variations on the transmission rate (colour bar), calculated for 1, 2 and 20 years of 

intervention, using both the ELISA and the RDT (with their sensitivity and specificity, 

d and dz, constant).  
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Table 7.3 – Interpretation of Figure 7.5 (A) for which, to reach a reduction in 

transmission of 80 to 90% after 1 year of intervention, optimal conditions of screening 

and culling rates were calculated. The performance of RDT (d and dz) was constant. 

Example of interpretation of Figure 8.5 (A) 
Reduction in VL  

transmission 
Time of 

intervention 
Screening rate  

(daily proportion dogs) 
Culling rate 

(% of DP) 
80 – 90% 1 year 0.078 20 – 30 

  0.061 30 – 40 
  0.048 30 – 50 
  0.030 50 – 85 
  0.023 70 – 100 

 
To determine the optimal screening rate, the reduction in transmission (%) is shown 

when culling of detected dogs is undertaken at 100% (Figure 7.6). An important result 

here is that the minimal screening rate to have an impact on transmission is significantly 

higher than the estimated field screening rate. Indeed, the breakpoint in the transmission 

for RDT is observed around 0.02 (proportion of dogs screened per day) and for ELISA, 

it is around 0.01 (Figure 7.6). For both tools, theses screening values are 7 to 14 times 

higher than the currently estimated values for Brazil. Indeed, in the literature, Costa et 

al. (2013) reports screening rates of 0.0028 and 0.0021 corresponding, respectively,  to 

8.3% dogs screened per month (100% of the population per year), and to 6% per month 

(Costa et al., 2013); whereas Courtenay et al. (2002b) simulated screening rates of 

0.0014/day which is 4% per month (50% of the population per year) in their model. 

 
Impact of the screening rate variation on reduction in transmission (%) 

(A)  for RDT (B) for ELISA 

  
Breakpoint in transmission around a 

screening rate = 0.02/day 
Breakpoint in transmission around a 

screening rate = 0.01/day 
Figure 7.6 – Plot of the screening rate versus the transmission rate, in the optimal 

culling scenario (100% of DP) while using the RDT (A) or the ELISA (B) as diagnostic 

method. 
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For these screening conditions, the population dynamics were modelled over time 

leading to a considerable decline in the number of the exposed/infectious dogs within 

5 years of intervention, while only the healthy dogs (S) are remaining (Figure 7.7). The 

intervention based on ELISA has a faster impact than when using the RDT, though 

eventually reach a similar reduction in transmission. After 1 month of intervention, the 

VL transmission rate in dogs decreased by 41.1% using the ELISA and 27.67% using 

the RDT (Table 7.4). In the short term, the more efficient tool is the ELISA than the 

RDT. The RDT reached a reduction in transmission of 99% after 10 years of 

intervention; whereas the ELISA offers a 99% reduction within 3 years of intervention 

and a complete elimination of VL transmission within 12 years of intervention (Table 

7.4). Note that all figures start with a period of 20 years of equilibrium, without any 

intervention, and that the percentage of reduction are compared to the non-intervention 

levels. 

 

 

Table 7.4 – Impact of the time spent in intervention on the reduction in transmission, 

calculated for both the ELISA and the RDT at a culling rate of 100% and the screening 

rate set at their breakpoint of transmission. The performance of the RDT and ELISA (d 

and dz) were constant. The percentage of reduction are compared to the non-intervention 

levels. 

Time since start of 
intervention 

Reduction of transmission rate (%) 
RDT ELISA 

1 month 27.67 41.40 
3 months 57.88 74.38 
6 months 75.51 87.75 
9 months 82.71 92.24 

1 year 86.60 94.75 
2 years 93.24 98.49 
3 years 95.68 99.51 
4 years 96.89 99.83 
5 years 97.64 99.94 
10 years 99.12 99.99 
15 years 99.60 100 
20 years 99.80 100 
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Dynamics of population for culling rate at 100% after 20 years intervention 
RDT 

 
ELISA 

 
 

Figure 7.7 – Plot of the population dynamics over time when applying the culling on 

100% of the positively detected dogs, with a screening rate is set at the breakpoint of 

transmission. Screening performed with RDT (A) and ELISA (B) using their fixed 

sensitivity and specificity. Note that the intervention starts after 20 years of equilibrium. 
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7.3.4 Pulsed intervention for the culling scenario   

For implementation, continual diagnostic screening of the dog population is an unlikely 

scenario. Therefore, a pulsed intervention was modelled rather than a continuous 

intervention. For a fixed screening duration (14 days), the screening rate is the product 

of the coverage and the frequency, where coverage is the proportion of dogs within the 

population screened over the screening period, and the frequency is interpreted as the 

number of pulse screenings per year. Thus, the screening rate will increase either by 

increasing the number of screenings or the coverage in each screening, or both. A first 

simulation was performed for one pulsed intervention per year for 20 years with 

coverage of 100% and culling of 100%, offering a reduction in transmission of 29.88% 

for ELISA and 24.55% for RDT. In Figures 7.8, the pulse effect can be observed. 

Between each pulse, the population recovers meaning that the transmission of VL 

increases in the interim period. To determine the frequency (number of pulses) and the 

coverage needed to reach a significant reduction in transmission, these parameters were 

modelled at a range of values to identify the most efficient combination (Figure 7.9). 

Note that coverage was varied between 40% to 90% of the dog population over the 

course of each screening; for example, a coverage of 50% corresponds to a proportion 

of 0.0357 of the total dog population to be screened daily over the 14 days pulse 

screening period. The impacts on transmission for a pulsed intervention applied over 5 

years, assuming the culling intervention occurs to 100% of the positively detected dogs, 

is shown in Figure 7.9. Results show that even one screening per year is sufficient to 

have a little impact on the transmission, even if not significant (less than 20% 

reduction). To be significant, more screenings need to be performed annually. Under 

the defined conditions, 5 screenings per year with the ELISA diagnostic would result 

in at least 70% reduction in transmission independently of the coverage; whereas, a 

minimum of 7 or 8 pulse screenings are needed for the RDT for the same results. This 

is due to the higher sensitivity and specificity for the ELISA. Based on these figures, 

different possibility of intervention with a significant impact on transmission can be 

created (assuming 100% of detected dogs undergo intervention). In the pulsed 

interventions, there is recovery in the interim period between pulses. Thus, it takes 

longer than continuous interventions to reach the same impact. For example, an 

intervention applied for 5 years needs a minimum of 5 screenings per year to have any 

impact on transmission; whereas in the same pulsed intervention over 20 years, the 
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coverage and the frequency of screening required to reduce transmission by the same 

amount decrease substantially.  

 

Dynamics of population with 1 annual pulsed intervention for 20 years 

RDT 

 
ELISA 

 
Figure 7.8 – Plot of the population dynamics over time when applying one pulse 

intervention, a coverage of 100% and a culling of 100% of the positively detected dogs. 

Screening performed with RDT (A) and ELISA (B) using their fixed sensitivity and 

specificity. Note that the intervention starts after 20 years of equilibrium. 
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Impact of pulsed intervention on transmission rates over 5 years 

RDT 

 
ELISA 

 
Figure 7.9 – Plots of the impact of the pulsed intervention on the reduction in 

transmission while varying both the coverage and the number of screenings, for (A) 

RDT and (B) ELISA, when the pulsed intervention is applied for 5 years, assuming that 

100% of the detected dogs undergo the intervention. 

 

 

 



139 
 

The impact of dog removal post identification also influences transmission. This effect 

was also measured for pulse interventions of different screening frequencies. The 

heatmaps are represented for ELISA and RDT over 5 years of intervention  (Figure 

7.9). As 4-dimentional plots are difficult to interpret visually, heatmaps were present 

for fixed coverages of 50% and 100%, varying the number of screenings per year 

between 1 to 10, and the proportion of diagnosed dogs culled between 0 to 1. Plots 

indicate the culling proportion needed to reach a reduction in the transmission rate. 

Overall, results show that the culling proportion can be low as long as the number of 

screenings per year and the coverage are high. This is due to the instantaneous 

intervention; results would be different if a delay is included (discussed in section 7.4). 

 

Impact of culling on the transmission rate after 5 years 

(A) For RDT  
Coverage 50% Coverage 100% 

  
(B) For ELISA  

Coverage 50% Coverage 100% 

  
Figure 7.10 – Impact of culling proportion on the transmission rate after 5 years of 

pulse intervention with variable range of culling, number of screenings per year and 

coverages of 50 and 100%. Screening tool were (A) RDT and (B) ELISA, with constant 

performances. 
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Finally, a last simulation was performed assuming a coverage of 100%, a culling of 

100% and 5 pulse screenings per year to observe the impact on the intervention over 

time. Results were reported below in Table 7.5 for a period of 20 years. The associated 

plots of the population dynamics over 10 years with 5 screenings per year are shown in 

Figure 7.11. 

 

Table 7.5 – Impact of the time spent in intervention on the reduction of transmission, 

calculated for both the ELISA and the RDT at a culling rate of 100%, a coverage at 

100% and 5 screenings per year. The performance of RDT and ELISA (d and dz) were 

constant. Note that the percentage of reduction here are compared to the non-

intervention levels. 

Time since 
intervention 

Reduction of transmission rate (%) 
RDT ELISA 

1 year 75.66 87.39 
2 years 85.19 94.47 
3 years 88.32 97.05 
4 years 89.56 98.31 
5 years 90.03 99.00 
6 years 90.11 99.39 
7 years 90.01 99.63 
8 years 89.83 99.77 
9 years 89.63 99.86 
10 years 89.43 99.33 
15 years 88.86 99.99 
20 years 

 
88.75 99.99 
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Dynamics of population after 10 years of pulse intervention 

 
RDT 

 

 
 
ELISA 

 

 
Figure 7.11 – Plot of the population dynamics over time when applied a pulse 

intervention is applied for 10 years with a culling rate of 100%, a coverage at 100% 

and 5 screenings per year. The performance of the RDT and ELISA (d and dz) were 

constant. Screening performed with RDT (A) and ELISA (B) using their fixed 

sensitivity and specificity. 
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7.3.5 Comparative analysis : field versus novel screening 

The current MOH tool (DPP+ELISA) under a regime described in section 1.3.2 was 

compared to the threshold-based tests (KL914-RDT and KL914-ELISA) in their 

optimal conditions developed above. As a reminder, conditions were (1) a pulsed 

intervention with 5 screenings per year, 100% coverage, duration of 2 weeks for each 

screening campaign and 100% culling; and (2) a continuous testing scenario at a culling 

rate of 100% and screening rate of 0.02. Note that, once again, the continuous 

intervention is based on a daily screening rate which correspond to a proportion of dogs 

that need to be screened daily over a certain time course to reach a minimal reduction 

in VL transmission rate. Indeed, a screening rate of 0.0014 is equivalent to 50% of the 

whole population screened over 1year; and a screening rate of 0.0028 equivalent to 

100% of the whole population screened over 1 year. Results for the comparative study 

suggest that there was a significant difference between the performance of the current 

tools (which targets all infected dogs) and the KL914-RDT and KL914-ELISA 

targeting only super-spreaders (Table 7.7).  

 

Table 7.6 – Comparative table of the newly-proposed ELISA and RDT, versus the 

current field screening in their respective conditions; and their impact of the time spent 

in intervention on the reduction of transmission. For the ELISA and the RDT, the pulse 

intervention involves 100% culling rate with a coverage at 100% and 5 screenings per 

year whereas the continuous testing had a screening rate at 0.02 and the culling rate of 

100%. For the current tests, the coverage is 50% to represent the reality of screening in 

the field. 

Comparative study of the reduction of transmission rate over time 
 

Time   
Pulse intervention Continuous intervention 

RDT ELISA Current1 RDT ELISA Current1  
1 year 75.66 87.39 1.80 86.60 94.75 10.57 
2 years 85.19 94.47 2.19 93.24 98.49 15.19 
5 years 90.03 99.00 8.18 97.64 99.94 16.39 

10 years 89.43 99.33 8.36 99.12 99.99 15.95 
15 years 88.86 99.99 8.36 99.60 100 15.95 
20 years 88.75 99.99 8.36 99.80 100 15.95 

1 Current field screening tools : DPP-RDT + ELISA used in this sequence. 
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However, if the screening conditions are improved drastically for the current field tools 

(DPP-RDT and ELISA in sequence) to 5 screenings per year, 100% coverage, duration 

of 2 weeks for the pulse intervention; and, to a screening rate of 0.02 for the continuous 

scenario. Results suggest that there was no significant difference between the 

performances. Although the newly-proposed methods (ELISA and RDT) would 

apparently be the same as the current strategy (if occurring that they were applied 

properly in the field), in practice the newly-proposed tools are better as fewer dogs are 

killed to reach the same reduction in transmission (as discussed below). 

 

7.4 Discussion 
 

The detection of super-spreaders is aimed to lead to a reduction in transmission and the 

proportion of new canine infections within the reservoir population, as modelled for 

most infectious diseases (Woolhouse et al., 1997; Lloyd-Smith et al., 2005; Baggaley 

et al., 2006). In ZVL, given the performance of the newly-proposed tools to identify 

super spreaders in a cohort of dogs (described in Chapters 5 and 6), the requirement for 

mathematical modelling arises due to the nature of endemic canine populations that at 

any one time will comprise dogs in all stages of the infection development. For 

example, the average window of opportunity to detect super spreaders before their onset 

of infectiousness is relatively short, thus suggesting that both the screening frequency 

and coverage to identify super spreaders need to be carefully quantified. The other 

important reason for modelling is to simulate logistically feasible and theoretical 

implementation scenarios, including parameters such as testing frequency, testing 

regime (pulsed versus continuous), coverage, and positive dog culling efficiency. The 

above-described mathematical model was developed as a deterministic compartmental 

model incorporating the infectiousness groups with focus on super-spreaders, the novel 

diagnostic tools (KL194 in RDT format and ELISA), and various culling interventions. 

 

First of all, the optimal conditions were defined for the newly-proposed detection tools, 

and their impact evaluated on the proportional reduction in transmission. In the 

continuous screening scenario over one year, screening rates (proportion of dogs 

screened) required to reach 80% reduction in transmission were between 0.02 and 0.01 

per day, which is 7 to 15 times higher than  the values estimated in Brazil. In the 

literature, Costa et al. (2013) reports screening rates of 0.0028 and 0.0021 
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corresponding, respectively, to 8.3% dogs screened per month (100% of the population 

per year), and to 6% per month (as tested here); whereas Courtenay et al. (2002b) 

simulated screening rates of 4% per month (50% of the population per year) in their 

model. Under these screening conditions, the impact on transmission was considerable. 

Indeed, a 90% decline was observed in the number of the exposed/infectious dogs 

within 5 years when applying the ELISA and RDT to detect super-spreaders. After only 

1 month of intervention, canine transmission decreased by 41.1% using ELISA and 

27.67% using RDT. Similarly, for a pulse intervention applied of 5 years, a minimum 

of 5 screenings per year proved at least 80% reduction in transmission (which was 

assumed to be significant). Based on these results, an increased rate of testing e.g. 

quarterly testing each year and high coverage, are required to generate a downward 

trend in transmission. However, in reality, community continual screening is not 

conducted, nor will it ever be for logistic reasons. Brazilian campaigns to detect 

infected dogs are conducted as a pulse (cross-sectional) surveys, and at non-systematic 

frequencies, particularly as the control program is decentralised and each municipality 

is autonomous in their control activities. Thus, simulations of pulse screening are the 

more realistic, though the optimum frequency and coverage requires precise 

identification; by nature, pulse screening is not expected to be as efficient as continuous 

screening since the infectious population can recover in the inter-pulse screening 

intervals. As the modelling shows the length of time for which the pulse interventions 

need to be sustained to reach similar benefits as continuous culling is prolonged. 

 

Contrastingly, simulations of the current MOH screening tool (DDP+ELISA) within 

field testing regime, targeting canine infection rather than infectiousness, showed that 

the protocol was perform poorly: neither pulse nor continuous testing regimes resulted 

in significant reductions in transmission. However, assuming an improved testing 

efficiency in comparative simulations applying the KL914-RDT and KL914-ELISA 

designed to detect super-spreaders, versus the Brazilian DPP+ELISA test for infection, 

resulted in significant (>80%) reductions in transmission, sooner by continuous testing 

than by pulse testing as expected, with surprisingly no substantial differences among 

the three tests when used in optimal conditions (compared to the current field regimes). 

Although the newly-proposed methods (ELISA and RDT) would apparently be the 

same as the current strategy; practically, the newly-proposed tools offer the advantage 

to reduce drastically the number of dogs killed to reach the same reduction in 
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transmission as for the current tools. Indeed, over 176,000 dogs were previously 

eliminated from 1990 to 1997 and more than 160,000 dogs from 2003 to 2005 using 

the field tools to detect seropositivity (Ministerio da Saude, Brazil, 2006; Lemos et al., 

2008; Romero et al., 2010; Harhay et al., 2011); whereas the novel tools are focusing 

on a much small proportion of the infected dog population, and only 20% of the actual 

number of dogs killed would be removed in these conditions. 

 

The model, as developed in this Chapter, represents the initial steps in capturing dog 

dynamics, making simplifying assumptions for modelling convenience. The structure 

of the model, itself, needs discussion. The exposed box (E) included latent infected 

dogs, therefore all are infected dogs, but not all of them will have seroconverted at this 

stage. This will influence the performance to detect infection, as tests are based on 

serology. It would also be possible to improve the model by including additional 

“exposed” compartments to represent three classes of infectious dogs (EIN, EIL, EIH) as 

a convenience to apply the diagnostic. Similarly, the model performance would be 

improved by including a separate detection parameter for the low and mildly infectious 

dogs in the model, as the onset of infectiousness is likely to be different compared to 

highly infectious dogs. However, the choice of model structure, as currently designed, 

was because super-spreaders were the absolute target of the diagnostic tool. The values 

of detection of low and mildly infectious were not determined in this project. 

Consequently, sensitivity and specificity were specifically determined towards the 

highly infectious group (IH). In previous chapters, the method to determine performance 

of detection was measured based on ROC using the super-spreaders as the positive 

group and the never-infectious dogs as the control group. However, these never-

infectious dogs are now included IN box. Anything else was assumed to be equally mis-

diagnosable, at rate 1-dz, including S, susceptible; E, exposed; IN, infected and non-

infectious; and IL, infected and mildly infectious. 

 

Moreover, a major assumption of the modelling exercise was that the intervention was 

applied instantaneously on detection of positive dogs. This simplifying assumption was 

made for modelling convenience; including a delay between diagnosis and culling 

would be more realistic by defining delay differential equations. Time between 

detection and culling is estimated between 80 and 180 days (Braga et el., 1998; Vieira 

et al., 1998). A previous mathematical model demonstrated that such delays lead to the 
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failure of the current culling intervention independently of the diagnostic tools used 

(Courtenay et al., 2002b). A study from Braga et al. (1998) showed that dog 

seroprevalence was reduced by 27% when the culling intervention was applied 7 days 

after diagnosis, whereas it was only reduced by 9% when the delay reached 80 days. 

Similarly, while modelling different scenarios, Courtenay et al. (2002b) demonstrated 

that only a diagnostic tool with high sensitivity and no time delay between diagnosis 

and culling theoretically would result in significant reductions of transmission. When 

the interval was increased to 120 days, simulations showed that the reduction in 

transmission coefficient was minimal. Even if the use of a highly performant diagnostic 

test could slightly compensate the intervention delay, the proportional reduction of 

infectious dogs was higher than when there is no delay, with results of 0.04–0.16 

compared to near zero. The optimal outcomes were achieved where there was no delay 

between testing and infected dog removal (Courtenay et al., 2002b). This makes the 

case for using a specific RDT. 

 

The current model structure also assumes a stable dog population where death equals 

birth with immediate replacement; dogs lost through natural mortality or culling are 

replaced into the susceptible class. The model does not account for delays in canine 

replacement, estimated to range from 0 to 19 months (mean: 120 days) (Nunes et al., 

2008). Furthermore, it does not account for a proportion of replacement dogs being 

potentially infected on arrival (Moreira et al., 2004; Andrade et al., 2007). Most often 

these replacements are young dogs or puppies (Nunes et al., 2008), and therefore more 

likely to be uninfected on arrival. However, not exclusively so, as one study estimated 

30.6% of replacement dogs tested Leishmania seropositive at first follow-up post their 

arrival (unspecified interval) (Nunes et al., 2008), suggesting that at least a proportion 

are likely to have imported infection. Thus, new recruits in the model need to be 

appropriately distributed across infection classes. An improvement of the model would 

be to add “delay differential equations” for the loss and the replacement of dogs, and 

also to account for delays between screening and removal (as mentioned above). More 

generally, a sensitivity analysis of all these parameters should be conducted to identify 

which parameters in the model are likely to lead disproportionately to model 

uncertainty. For example, a recent sensitivity analysis in a model of canine VL 

identified that the infection status of replacement dogs as a key parameter in addition 

to sand fly related parameters (Buckingham-Jeffery et al., 2019). The last assumption 
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made in the model was relative to sandflies for which all parameters were set as 

constant. However, a recent model of canine VL have identified components of the 

vector biology and vectorial capacity as key parameter in modelling transmission 

(Buckingham-Jeffery et al., 2018).  

 

The model outputs in this chapter represent parameter estimates taken from Brazilian 

studies (Courtenay et al., 2002b; Dye, 1996; Reithinger et al., 2014; Costa et al., 2013, 

Nunes et al., 2008 and Quinnell et al., 1997). The simulated heterogeneities in canine 

population infectiousness was parameterised from longitudinal studies in Brazil where 

80% of transmission events from dogs to sandflies was due to relatively few dogs 

(Courtenay et al., 2002b). Although the concept of super-spreaders is not new, future 

models should vary the proportions used here. For example, meta-analysis of the 

available canine infectiousness data for the New and Old Worlds, indicated that the 

proportion of infectious dogs in the infected dog population may be higher in European 

than in Brazilian studies, 0.86 and 0.45 respectively (Quinnell and Courtenay, 2009), 

perhaps related to a higher susceptibility of the vector in Europe than in Brazil (Quinnell 

and Courtenay, 2009). Thus, model predictions for European scenarios could be 

contrasted to the Brazilian settings. 

 

Currently, there are no other transmission and intervention models of ZVL including 

heterogeneities to identify specifically the class of super-spreaders. Examples of other 

infectious disease models where control of super-spreaders was modelled showed that 

targeting super-spreaders can be highly beneficial, and helps validate the rationale for 

the current study (as discussed in the general introduction). One example is a 

retrospective analysis of control measures for Middle East Respiratory Syndrome 

(MERS) (Lee et al., 2016). Results suggested that when control measures were focused 

on containing infections from super-spreader class, the outbreak duration and size were 

remarkably reduced. Other studies on various infectious diseases from Anderson and 

Medley, (1985), Woolhouse et al. (1997), Lloyd-Smith et al. (2005), Baggaley et al. 

(2006), Galvani (2003) and more recently, Skene et al. (2014) showed that targeting 

super-spreaders for therapeutic or preventive measures is assumed to increase the 

efficacy of interventions while failure to target these weakens efforts to achieve herd 

immunity by vaccination and also severely limits the ability to reduce disease at the 

population level. Targeting super-spreaders seems thus to be practically effective. 
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Finally, this model focused on a culling scenario of dogs; however, post-identification, 

further scenarios are possible. In Brazil, treatment with human-designed drugs has 

recently been permitted as an option to culling for infected dogs (Ministerio de Saude, 

2016). Treatment of positively detected dogs rather than their removal will reduce 

turnover of the population including potential infected entering the population. In 

reality, infected dogs do not spontaneously recover (Quinnell et al., 1997), and 

treatment does not lead usually to complete cure (Noli and Auxilia., 2005; 

Saridomichelakis et al., 2005b; Pineda et al., 2017). Thus, models need to be developed 

to incorporate possible scenarios. Parasite clearance after treatment ranges from 10% 

to 80% with an average clearance of around 30% (reviewed by Noli and Auxilia., 

2005). For example, treatment with marbofloxacin decreased the parasite load in 72% 

of dogs, from 6.2±3.4 to 4.7±3.41 units (Pineda et al., 2017), being a reduction of 25% 

of the total parasite loads. As treatments reduce the parasite levels without clearing it 

completely, the assumption was that there could be an impact on the intensity of the 

infectiousness due to strong positive correlation between parasites load and the super-

spreaders (described in previous chapters and elsewhere). Therefore, for modelling 

purposes, identified highly infectious dogs might be optionally moved into a lower 

infectious class, under the assumption that some will be treated. In the model of Dye 

(1996), treated dogs were moved to an additional box labelled “resistant dogs” which 

is not supported by the data on the effectiveness of treatment. Gradoni et al. (1987) was 

the first to report significant reductions in infectiousness to sand fly vectors resulted 

from treating dogs with antimonials. Afterwards, several other studies also 

demonstrated a considerable reduction of the infectiousness of infected dogs within a 

few months, and up to 150 days post-treatments (Alvar et al., 1994; Guarga et al., 2002; 

Ribeiro et al., 2008; Miro et al., 2011 and da Silva et al., 2012). A recent trial published 

in Brazil (De Mari et al., 2017) concluded similarly the non-infectivity of dogs to 

sandflies for three months after miltefosine treatment, corresponding to significant 

reductions in parasite loads in bone marrow (De Mari et al., 2017). However, all 

reported impacts of treatment on infectiousness were significant for limited periods of 

time only, treatment being short-lived and not effective for a complete cure of parasite 

infection (as reviewed by Travi et al., 2018). The frequent relapses due to the 

incomplete elimination of Leishmania parasites in treated dogs (Saridomichelakis et al., 
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2005b;  Noli and Auxilia, 2005) is also not taken into consideration in mathematical 

models of canine VL. To start addressing this question, the model was adjusted for 

therapeutic treatments with movements of identified dogs into the lower infectiousness 

class. Simulations of treatment was a continuous scenario, the breakpoint in 

transmission was determined for a treatment of 100% efficacy for a screening rate of 

0.03/day for the RDT and 0.01/day for the ELISA, which are similar to the culling data. 

Using these screening rates, the population dynamic was modelled with 100% efficacy 

(data not shown). The super-spreaders were eliminated within 1 or 2 years, which was 

a faster impact than the culling. However, while using ineffective treatment (i.e. 30%), 

the transmission dropped for the first couple of years before rising again to reach a new 

lower equilibrium in the transmission dynamic.  

 

To conclude, the results from this chapter are considered as outcomes of preliminary 

model development and thus should be treated with caution. We must not forget that 

some interventions may be far easier to deploy in the field than others. Further work is 

needed to address model structure and to correctly incorporate dog dynamics. 

Nonetheless, the modelling has provided initial insights into super-spreader detection 

requirements and the important gaps in the knowledge of some of these epidemiological 

processes. Although the newly-proposed method appears to be similar as the current 

strategy; practically, it offers the advantage to reduce drastically the number of dogs 

killed to reach the same reduction in transmission as for the current tools. Indeed, over 

176,000 dogs were previously eliminated from 1990 to 1997 and more than 160,000 

dogs from 2003 to 2005 using the field tools to detect seropositivity (Ministerio da 

Saude, Brazil, 2006; Lemos et al., 2008; Romero et al., 2010; Harhay et al., 2011); 

whereas the novel tool is focusing on a much small proportion of the infected dog 

population, and only 20% of the actual number of dogs killed would be removed in 

these conditions. 
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CHAPTER 8  General discussion  

 
 

8.1 Summary of findings 
 

Despite the large range of strategies to reduce the transmission of Leishmania infantum, 

the incidence of the infection has remained high and unchanged since 2001 with an 

average of 3,300 new human cases each year in Brazil (WHO Report, February 2018). 

As described in Chapter 7, a mathematical model has been developed to evaluate the 

effectiveness of current dog culling strategy for limiting transmission of Leishmania 

infantum infection. The model predicts that the current strategy of testing-and-

slaughtering dogs, which are assumed to be infected based upon available serological 

tests for infection, is not sufficient to eliminate VL transmission in the canine 

population. This is corroborated by Ashford et al. (1998); Costa and Vieira (2001); and 

Courtenay et al. (2002b). As discussed throughout this thesis, current antigen-based 

serological tests for Leishmania are deployed to identify infected dogs, reflecting the 

presence of antibodies in blood. The IgG detection can be variably interpreted as 

exposure, current infection, latent infection, or after-cure (as discussed in Chapter 3). 

The existence of super-spreaders hinders the control interventions. Targeting infectious 

dogs would be more effective against VL transmission than the current mass slaughter 

of the infected canine population (Courtenay et al. 2002b). To date, xenodiagnosis is 

the only method that provides conclusive method to determine infectiousness, but is 

difficult to set up in the field as requiring specific material and is time-consuming. To 

contribute to solving the issue, this PhD project aimed to develop a high-performance 

diagnostic tool to identify super-spreaders of Leishmania in the canine population, 

which are expected to be responsible for most of the transmission of infection from 

dogs to sand flies, and thus to humans. By immunological test, current and novel 

antigens were tested on a sera collection from a naturally infected dog cohort in Brazil 

for which samples were collected longitudinally. 

 

One of the major findings in the project is the potential of serodetection of 

infectiousness, which was demonstrated for the first time in Chapter 4 and is in contrast 

with the study of de Mendonca et al. (2017) which failed to detect dogs that transmit 

Leishmania to the sandfly vector using serological tests. Highly infectious dogs present 
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higher levels of antibodies which were detected by the Leishmania antigen-based 

ELISA. Results indicated that the super-spreaders could be detected within the mixed 

population. The carefully selected-threshold allowed a specific detection of target. 

Furthermore, the test allowed a detection of the dogs before a large fraction became 

infectious. Among the existing antigen, rK28 out-performed all the others. Assuming 

that threshold-based antigens can detect super-spreaders (as shown in Chapter 4) and 

that infectiousness correlates with parasite loads, the threshold-based antigen would 

also detect infectious dogs with high and low parasite loads. In spite of this, a major 

concern was the current multiple purposes of this antigen in the field. Indeed, the rK28 

antigen is currently used in the Dual-Path Platform to screen for canine infection 

(Almeida et al., 2017), and as confirmatory test of disease in human as well as in dogs, 

resulting into confusion for field workers and case management (Ministerio de Saude, 

2016; Chapter 4). Therefore, an alternative addressed in this project was to develop a 

novel protein designed specifically for the detection of super-spreaders, named KL914 

(Chapter 5). The conception of the first rapid diagnostic tool for the detection of super-

spreaders is a challenge that was partially resolved in this study through the design of 

a brand-new protein, and its adaption into a field-friendly tool. The current RDT 

development represents the initial prototype with potential for improvement, as 

discussed in Chapter 6.  

 

Using the newly-proposed diagnostic tool, implementation scenarios simulated by 

modelling suggested that even given a high-performance diagnostic tool to identify 

super-spreaders, the effort required in the field needs to be drastically increased to reach 

a significant decrease (>80%) in transmission within the dog population. As discussed 

in Chapter 7, elimination of transmission from dogs using current tests recommended  

by MOH (Dual-Path Platform for screening, followed by ELISA as confirmatory test) 

requires continued testing and infected dog removal (treatment or culling) to maintain 

low incidence. The RDT offers an alternative strategy: concentrating intervention 

measures targeting only dogs responsible for maintaining R0>1, thus reducing the 

number of seropositive dogs sacrificed (Moreno and Alvar, 2002). Implementation is 

nonetheless complex and identifying a small select group of dogs in the mixed 

population would probably require high coverage screening. 
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8.2 Global discussion and context of this project 
 

One of the major general gaps in the scientific knowledge concerns the causes of 

infectiousness. Canine infectiousness is associated with more severe clinical signs of 

the disease, high IgG antibody titers and high parasite loads (Courtenay et al., 2002b; 

Courtenay et al., 2014; da Costa-Val et al., 2007; Guarga et al., 2000; Magalhães-Junior 

et al., 2016; Borja et al., 2016; de Sousa Gonçalves et al., 2016). Even if the reasons 

why certain dogs become super-spreaders and infect disproportionately large numbers 

of contacts still remains unclear (discussed in Chapters 1 and 4), one hypothesis is that 

highly infectious dogs have larger parasite loads compared to mildly and non-infectious 

dogs, making them more attractive to sandflies. There is, indeed, a positive relationship 

between the level of parasite loads and the intensity of the infectiousness with time 

since infection, where highly infectious dogs have higher parasite loads in skin, in hair 

and in bone marrow (Courtenay et al., 2014; de Sousa Gonçalves et al,. 2016).  

 

The current approach to controlling transmission in Brazil focuses on dogs as the 

reservoir, assuming that humans are a dead-end host. However, a recent paper from 

Ferreira et al. (2018) demonstrates that humans can transmit L. infantum to the vector, 

including asymptomatic VL cases, and HIV-VL co-infected patients, as noted in 

previous studies in Europe by Molina et al. (1999), Alvar et al. (1997) and Alvar et al. 

(2008). Xenodiagnosis was positive in 5/20 patients negative for HIV and 9/20 positive 

for HIV (Ferreira et al., 2018). Among asymptomatic patients, 4/19 of patients without 

HIV infected sand flies, and one asymptomatic patient with HIV had a positive 

xenodiagnosis (Ferreira et al., 2018). Despite the small sample, this study supports 

previous a report on human infectiousness with L. infantum in Brazil (Costa et al., 

2000). The epidemiological significance of human versus dog infectiousness in 

maintaining the transmission cycle has to be confirmed, through mathematical 

modelling. 

Similar questions can then be asked about the role of asymptomatic versus symptomatic 

canine infection. Several studies indicated that infectiousness is higher in symptomatic 

than asymptomatic dogs (Quinnell and Courtenay 2009; da Costa-Val et al., 2007; 

Guarga et al., 2000; Magalhães-Junior et al., 2016), with a single study showing that 

asymptomatic dogs may be equally infectious as symptomatic dogs (Laurenti et al., 
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2013). Other studies report that infectiousness is independent of clinical symptomology 

(Molina et al., 1994; Guarga et al., 2000). However, longitudinal studies in Brazil 

demonstrated that dogs classified as asymptomatic at a single time point, as in cross-

sectional studies, usually go on to develop progressive disease, and so should be more 

appropriately described as pre-symptomatic (Courtenay et al., 2002b). Another 

interesting observation is that the proportion of infectious dogs is higher in European 

than in South America studies with 0.86 and 0.45, associated with different sand fly 

species (Phlebotomus perniciosus versus Lu. longipalpis, respectively), which may be 

due to a higher susceptibility of the vector in Europe than in Brazil (Quinnell and 

Courtenay, 2009; Rock et al., 2016).   

In the Indian subcontinent (Bangladesh, India, Nepal), the transmission of VL due to 

L. donovani is anthroponotic. A key question is relative to the roles of kala azar cases, 

post kala azar dermal leishmaniasis (PKDL) cases, and asymptomatic infections in 

transmission. This is important for case management and the distribution of limited 

resources. Part of the VL elimination program in the Indian Subcontinent, the 

identification of this cryptic carriers leads to a diagnostic tool issue, despite being 

essential as they are reservoirs of Leishmania infections (Sundar et al., 2008). Early 

diagnosis allows fast treatment of patients; however, the RDT based on antigen rK39 

only detects the antibodies without differencing current from past exposure (Sundar et 

al., 2006a; Sundar et al., 2006b). Moreover, WHO recommend the use the diagnostic 

tool only for VL suspects, and people who present clinical symptoms such as fever for 

at least 2 weeks and have an enlarged spleen (WHO report, 2008). 

The current test development to identify canine super-spreaders was performed on a 

cohort population of naïve dogs in Amazon Brazil. It is possible that inter-population 

variation in dog infection rates and infectious dog population dynamics might occur 

(e.g. owner care regulated governing the general health status of dogs). However, it is 

unlikely that the fundamental immunological relationships between infection, parasite 

burden and anti-Leishmania antibodies differs markedly between canine populations. 

Exceptions might include differences in parasite virulence or co-infections. VL co-

infection with HIV generally leads to the failure of serological diagnostic test in 

humans, mainly due to reducing cellular and humoral immune responses. The lower 

number of T-cells leads to the inability to recognize Leishmania antigens and to 
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stimulate the appropriate B-cells humoral responses (Gradoni et al., 1993; Desjeux et 

Alvar, 2003). Moreover, co-infected patients can become a human reservoir and 

maintain the transmission cycle, as already mentioned by Ferreira et al. (2018). The 

incidence of co-infections is decreasing in Europe due to the better control for HIV and 

the access to treatments, whereas the co-infection is still problematic in Africa or Latin 

America (Desjeux et Alvar, 2003).  

 

The development of serodetection tools should also consider the region-specific 

diversity of antigens, as well as the variation in leishmanial polymorphisms. Indeed, 

strains of Leishmania vary geographically: L. infantum in Europe and Latin America, 

and L. donovani in South Asia and East Africa. For example, antigen rK39, derived 

from a gene of L. infantum originated from Europe, and is successfully used in Brazil 

and in Asia, but shows lower sensitivities in East Africa due to the significant diversity 

between the rK39 homologues among the African L. donovani, with limited binding of 

diagnostic antibodies (Bhattacharyya et al., 2013). Similar results were found for 

antigen K9 and K26 (Bhattacharyya et al., 2013).  

 

The vector-related parameters were not considered in the thesis, whereas sandflies are 

essential to maintain the transmission cycle of parasite Leishmania. A number of 

studies suggest the importance of exposure to sandfly bites and saliva (Gomes et al., 

2007; Barral et al., 2006; Gomes and Oliveria, 2012). In a recent study, Quinnell et al. 

(2018) demonstrated the importance of saliva in the establishment of infection, but not 

the infectiousness or the severity of the disease (Quinnell et al., 2018). Moreover, the 

variation of seasonality impacts the abundance of sandflies and thus the exposure of 

dogs to bites and saliva, which explains the inter-individual variation (Quinnell et al., 

2018) 

 

The highly controversial dog test-and-slaughter strategy under the Visceral 

Leishmaniasis Control and Surveillance Program in Brazil (fully described in Chapter 

1) leading to the slaughter of million dogs has had very little impact on human infection 

rates. As discussed in Chapter 7, a recent alternative to culling is treatment of infected 

dogs with human drugs. The Ministério de Saudé in Brazil legalised the treatment of 

Leishmania-infected dogs in 2018. Despite some studies concluding that canine 

treatment results in significant reductions in infectiousness, the effects are short-lived 
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and not effective for a complete cure of the parasite loads. Thus, treated dogs may still 

be an important reservoir for infection (discussed in Chapter 8). Reductions in tissue 

parasite loads post-therapy could render a test designed for super-spreaders less 

effective. Incomplete cure may also lead to drug resistance by Leishmania (Noli and 

Auxilia, 2005; Pineda et al., 2017). In European endemic countries, private canine 

treatment is more common and human cases are rare. However, in many developing 

regions where human case burdens are substantial, the likelihood that dogs will not be 

treated or will not complete the drug course is high, and drugs will be too expensive for 

most dog-owners.  

 

Other preventive measures include insecticide-impregnated collars, spot-on products 

on dogs, vaccination and immunomodulation (as reviewed by Travi et al., 2018). Even 

if most of these measures have shown evidence of reduction of infection on individual 

intervention, their efficacy at community-level is not clearly established and their 

impact on infectiousness was not been assessed. As described in Reithinger et al. 

(2014), the collars efficacy depends on the coverage of dogs within the population 

including the addition of newly introduced dogs, and the replacement of lost collars 

(Reithinger et al., 2014). This high coverage has the same logistic limitation as the 

implementation of the diagnosis of super-spreaders (Chapter 8). Moreover, being a high 

cost intervention, the application of collars would require financial support by the 

government in Brazil. All the above-mentioned preventive measures may only impact 

on infection and transmission if no other reservoirs occur (e.g. wild reservoirs, such as 

opossums) and if the management of VL includes street dogs. To date, only domestic 

dogs are proven to be reservoirs of Leishmania infantum. 

 

8.3 Study limitations and further work 
 

The general gaps in the scientific knowledge about VL include: (1) the dynamics of VL 

transmission; (2) a gold-standard for diagnosis; (3) detection of asymptomatic 

infections and symptomatic infections; (4) the distinction in positive serology results 

between natural infection and vaccine; (5) determinants of dog susceptibility or 

resistance to infection; and finally, (6) determinants of dog infectiousness (as discussed 

throughout the thesis). In addition to the study limitations discussed in each chapter, 
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several other points are worth making for further improvement in the research on 

detecting infectiousness.  

 

While this project focused on total antibody responses, it could be interesting to analyse 

the different subclasses of antibody. Previous trials on the dog cohort (Quinnell et al., 

2003; Carson et al., 2010a) highlighted that all IgG subclasses of the crude Leishmania 

antigen (CLA) positively correlated with the intensity of the infectiousness of naturally 

infected dogs. The highest level of isotype was for IgG1 followed by lower levels of 

IgG4, IgG3 and IgG2 in that order. Moreover, there was a significant antibody titre 

difference between highly and mildly infectious dogs for IgG 1-3-4, though not 

significant for IgG 2. It would be interesting to perform further assays on subclasses of 

the novel antigens, used in this study, to evaluate their ability to detect infectiousness 

and super-spreaders. 

 

One other important challenge, particularly in European setting where the canine 

vaccines are more widely used, is development of a DEVA assay to differentiate 

antibody responses to natural infection versus vaccination. Otherwise, it potentially 

interferes with sero-surveillance programs. As described in Chapter 1, the available 

vaccines in Brazil, such as LeishmuneÒ and Leish-TecÒ, have led to discussion about 

their efficacy. For example, several cases were reported of vaccinated dogs that develop 

the disease and became infectious to sandfly (pers. com.). CaniLeishÒ based on 

excreted-secreted proteins from Leishmania was approved in 2011, offering 

prophylactic action by reducing the transmission of Leishmania from vaccinated dogs 

to sandflies (Oliva et al., 2014). However, there is a lack of studies to confirm or refute 

that the appropriate community-wide coverage with a canine vaccine would impact on 

human infection incidence. 

 

Finally, the present study describes the design, the development and the initial assays 

of a novel diagnostic tool (KL914-RDT) for the identification of highly infectious dogs, 

which are primarily responsible for the transmission of zoonotic visceral leishmaniasis. 

The application of bench research into the field was the major objective of this project 

(discussed in Chapter 6). Further work is required to improve the point-of-care 

sensitivity of the RDT before the diagnostic tool can be applied in field trials. The 
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reason why antigens perform consistently weaker in rapid diagnostic tests than in the 

ELISA remains unclear (Pattabhi et al., 2010; de Silva Solcà et al., 2014). Several 

reasons could be suggested to explain the lack of performance such as the composition 

of the migration buffer, the adhesion of the protein to the nitrocellulose membrane, or 

the sera conservation conditions (discussed in Chapter 6). Further work is required to 

evaluate the reasons for this discrepancy. 
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Appendix I – Dog characterization 

Sera samples came from dogs (n=26) in a prospective study in Brazil (Quinnell et al., 1997). Dogs 

were well-characterised for infection and infectiousness, as listed below. The number (N◦) and the 

identity (ID) of the dog are reported. For every sample collection, the number of days spent in the 

field was reported with the results of the experiments. Infection was determined based on PCR, 

serology and parasite culture. Xenodiagnosis was performed to determine the infectiousness of the 

dog to the sandflies. The percentage of infected flies was used to classify dogs in infectiousness 

(highly, mildly, or never infectious). 

N◦ ID Days in the field Infection Xenodiagnostic Infected flies (%) Classification 
1 A29 0 0 - -  
 A29 66 0 0 0  
 A29 120 0 0 0  
 A29 195 0 0 0  
 A29 262 0 0 0  
 A29 330 1 1 2.3 Mildly 
 A29 398 1 1 18.75 Mildly 
 A29 467 1 1 0 Mildly 

 
2 A31 0 0 - -  
 A31 63 0 - -  
 A31 132 0 0 0  
 A31 182 1 0 0  
 A31 255 1 0 0  
 A31 321 1 0 0  
 A31 391 1 1 10 Mildly 
 A31 456 1 1 14.2 Mildly 
 A31 526 1 1 46.8 Mildly 
 A31 586 1 1 - Mildly 

 
3 A32 0 0 - -  
 A32 63 0 - -  
 A32 132 0 0 0  
 A32 182 0 0 0  
 A32 256 1 0 0 Never 
 A32 335 1 0 - Never 
 A32 390 1 0 0 Never 
 A32 456 1 0 0 Never 
 A32 527 1 0 0 Never 
 A32 586 1 0 0 Never 
 A32 659 1 0 0 Never 
 A32 722 1 0 - Never 
 A32 796 1 0 - Never 

 
4 A37 0 0 0 0  
 A37 83 0 0 0  
 A37 153 1 0 0  
 A37 209 1 1 67.93 Highly 
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 A37 278 1 1 16.13 Highly 
 A37 353 1 1 0 Highly 
 A37 418 1 1 27.62 Highly 
 A37 488 1 1 83.33 Highly 
 A37 556 1 1 40 Highly 
 A37 614 1 1 23.81 Highly 
 A37 688 1 1 0 Highly 
 A37 749 1 1 28.2 Highly 

 
5 A38 0 0 - -  
 A38 83 0 0 0  
 A38 153 1 0 0 Never 
 A38 211 1 0 0 Never 
 A38 284 1 0 0 Never 
 A38 353 1 0 0 Never 

 
6 A40 70 0 - -  
 A40 127 1 0 -  
 A40 185 1 1 0 Mildly 
 A40 258 1 1 1.9 Mildly 
 A40 327 1 1 0 Mildly 
 A40 392 1 1 0 Mildly 
 A40 462 1 1 0 Mildly 
 A40 531 1 1 0 Mildly 
 A40 589 1 1 0 Mildly 
 A40 662 1 1 - Mildly 
 A40 723 1 1 0 Mildly 

 
7 A41 0 0 - -  
 A41 66 0 0 0  
 A41 125 0 0 0  
 A41 183 1 0 0 Never 
 A41 259 1 0 - Never 
 A41 323 1 0 0 Never 
 A41 397 1 0 - Never 
 A41 473 1 0 - Never 
 A41 537 1 0 0 Never 
 A41 589 1 0 0 Never 
 A41 663 1 0 - Never 
 A41 724 1 0 - Never 

 
8 A43 0 0 - -  
 A43 70 0 0 0  
 A43 127 0 0 0  
 A43 192 0 0 0  
 A43 262 1 - -  
 A43 330 1 0 0  
 A43 398 1 - -  
 A43 467 1 0 0  
 A43 535 1 1 33.3 Mildly 
 A43 591 1 1 0 Mildly 
 A43 663 1 1 15.4 Mildly 
 A43 726 1 1 - Mildly 
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 A43 798 1 1 - Mildly 
 

9 A78 0 0 0 -  
 A78 73 0 - -  
 A78 129 0 0 -  
 A78 198 1 0 0  
 A78 272 1 1 6.25 Highly 
 A78 341 1 1 4.22 Highly 
 A78 408 1 1 36.73 Highly 
 A78 477 1 1 45.45 Highly 

 
10 A79 0 0 - -  

 A79 68 0 - -  
 A79 131 1 0 -  
 A79 189 1 1 0 Highly 
 A79 265 1 1 84.1 Highly 
 A79 331 1 1 10 Highly 

 
11 A83 0 0 - -  

 A83 68 0 - -  
 A83 123 0 - -  
 A83 192 1 0 0  
 A83 264 1 1 42.5 Highly 
 A83 333 1 1 3.27 Highly 

 
12 A84 0 0 - -  

 A84 131 0 - -  
 A84 192 0 - -  
 A84 192 0 - -  
 A84 265 0 - -  
 A84 333 1 - -  
 A84 398 1 - -  
 A84 459 1 0 0 Never 
 A84 534 1 0 0 Never 
 A84 583 1 0 0 Never 
 A84 662 1 0 - Never 
 A84 723 1 0 0 Never 
 A84 798 1 0 - Never 

 
13 B12 0 0 - -  

 B12 77 0 0 0  
 B12 135 1 0 - Never 
 B12 207 1 0 - Never 
 B12 277 1 0 - Never 
 B12 347 1 0 - Never 
 B12 413 1 0 - Never 
 B12 487 1 0 - Never 
 B12 550 1 0 0 Never 
 B12 606 1 0 0 Never 
 B12 679 1 0 - Never 
 B12 742 1 0 - Never 
 B12 813 1 0 - Never 
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14 B24 0 0 0 0  

 B24 71 0 - -  

 B24 122 0 0 0  

 B24 190 1 0 0  

 B24 262 1 1 3.7 Mildly 
 B24 336 1 1 0 Mildly 
 B24 400 1 1 0 Mildly 
 B24 465 1 1 0 Mildly 
 B24 538 1 1 0 Mildly 
 B24 595 1 1 - Mildly 
 B24 666 1 1 - Mildly 
 B24 731 1 1 0 Mildly 
 B24 805 1 1 - Mildly 

 
15 B25 0 0 - -  

 B25 71 1 0 0 Never 
 B25 122 1 0 0 Never 
 B25 190 1 0 0 Never 
 B25 264 1 0 0 Never 
 B25 334 1 0 - Never 
 B25 400 1 0 - Never 

 
16 B26 71 0 0 0  

 B26 122 1 0 0 Never 
 B26 190 1 0 0 Never 
 B26 264 1 0 0 Never 
 B26 334 1 0 - Never 
 B26 400 1 0 - Never 
 B26 468 1 0 0 Never 
 B26 536 1 0 0 Never 
 B26 595 1 0 0 Never 
 B26 667 1 0 - Never 
 B26 737 1 0 0 Never 
 B26 805 1 0 - Never 

 
17 B40 0 0 0 0  

 B40 71 0 - -  

 B40 140 0 0 0  

 B40 202 0 0 0  

 B40 274 0 0 0  

 B40 343 1 0 0 Never 
 B40 408 1 0 - Never 
 B40 480 1 0 0 Never 
 B40 544 1 0 0 Never 
 B40 593 1 0 0 Never 
 B40 672 1 0 - Never 
 B40 733 1 0 0 Never 
 B40 808 1 0 - Never 

 
18 C10 0 0 0 -  

 C10 72 0 0 0  
 C10 125 0 0 0  
 C10 195 1 1 1.3 Mildly 
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 C10 261 1 1 0 Mildly 
 C10 330 1 1 0 Mildly 
 C10 400 1 1 14.8 Mildly 

 
19 C14 0 0 - -  

 C14 60 0 - -  
 C14 124 0 - -  
 C14 197 0 - -  
 C14 261 1 - -  
 C14 330 1 1 5 Highly 
 C14 401 1 1 5 Highly 
 C14 466 1 1 55.6 Highly 

 
20 C2 0 0 - -  

 C2 77 1 - -  
 C2 127 1 - -  
 C2 202 1 - -  
 C2 267 1 0 0  
 C2 335 1 0 0  
 C2 401 1 0 0  
 C2 471 1 - -  
 C2 530 1 - -  
 C2 604 1 - -  
 C2 667 1 1 2.6 Mildly 
 C2 743 1 1 1 Mildly 

 
21 C21 0 0 - -  

 C21 43 0 - -  
 C21 106 1 - -  
 C21 181 1 1 2.5 Mildly 
 C21 246 1 1 0 Mildly 

 
22 C8 0 0 - -  

 C8 73 0 0 0  
 C8 121 0 - -  
 C8 193 0 - -  
 C8 265 0 0 0  
 C8 333 0 0 0  
 C8 400 0 0 0  
 C8 467 0 0 0  
 C8 527 0 0 0  
 C8 598 1 - -  
 C8 667 1 1 40 Mildly 
 C8 736 1 1 40 Mildly 

 
23 C9 0 0 - -  

 C9 73 0 - -  
 C9 122 0 - -  
 C9 196 0 - -  
 C9 262 0 - -  
 C9 331 1 1 - Mildly 
 C9 399 1 1 -999 Mildly 
 C9 467 1 1 -999 Mildly 
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 C9 526 1 1 -999 Mildly 
 C9 597 1 1 -999 Mildly 

 
24 E20 0 0 - -  

 E20 67 1 - - Never 
 E20 140 1 - - Never 
 E20 206 1 - - Never 
 E20 275 1 0 0 Never 
 E20 348 1 0 0 Never 
 E20 409 1 0 0 Never 
 E20 467 1 0 0 Never 
 E20 541 1 0 0 Never 
 E20 602 1 0 0 Never 
 E20 677 1 0 0 Never 

 
25 E4 0 0 - -  

 E4 65 1 - -  
 E4 139 1 - -  
 E4 209 1 - -  
 E4 284 1 1 50 Highly 
 E4 344 1 1 50 Highly 
 E4 413 1 1 50 Highly 

 
26 E40 59 0 - -  

 E40 135 0 - -  
 E40 202 1 - -  
 E40 269 1 - -  
 E40 341 1 1 25 Highly 
 E40 405 1 1 25 Highly 
 E40 456 1 1 25 Highly 
 E40 534 1 1 25 Highly 
 E40 594 1 1 25 Highly 
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Appendix II - Possible thresholds values for each candidate and the proportion of 
sample detection among groups of dogs (never, mildly, highly infectious) 

Proportion and the related percentage of samples detected in each group (never, mildly, and 

highly) for each possible value of cut-offs, indicating the performance of the diagnostic tool. Cut-

offs were determined based on point xenodiagnosis and applied to samples selected for 

longitudinally classified dogs within the xenodiagnoses study as described in the methods section. 

The cut-off options include the conventional (mean+2/3SD), values from the ROC-curve analysis 

such as the Youden Index and other values selected to maximise sensitivity and specificity of the 

test as well as values labelled “max never” and “min highly” as values corresponding to 75% and 

95% of the never samples detection. From the complete table of threshold values, the “max 

never”-threshold and Mean+3SD are usually too high as there is a 0% detection of never 

infectious, but also limited detection of super-spreaders, as opposed to threshold values based on 

“min highly,” which offer complete coverage of super-spreader detection, and also a high 

detection of never infectious dogs (up to 50% for some candidates). As a result, the optimal cut-

off must be a value in between. Among the remaining options, the threshold with the highest 

detection of super-spreaders and the lowest detection of never infectious dogs was selected as the 

default. 

rK39 Cut-offs Detection of never Detection of mildly Detection of highly 
Max never 0.604 0% (0/72) 29.55% (13/44) 65.52% (19/29) 
Mean+3SD 0.663 0% (0/72) 29.55% (13/44) 65.52% (19/29) 
Mean+2SD 0.515 2.78% (2/72) 31.82% (14/44) 65.52% (19/29) 

2Mean 0.439 9.72% (7/72) 34.09% (15/44) 68.97% (20/29) 
Min highly 0.234 38.89% (28/72) 45.45% (20/44) 100% (29/29) 

Youden Index 0.272 26.39% (19/72) 45.45% (20/44) 96.55% (28/29) 
75% CI Never 0.305 25.00% (18/72) 43.18% (19/44) 86.21% (25/29) 
95% CI never 0.254 34.72% (27/72) 45.45% (20/44) 96.55% (28/29) 

        
K28 Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 0.877 0% (0/72) 27.27% (12/44) 89.66% (26/29) 
Mean+3SD 1.085 0% (0/72) 18.18% (8/44) 34.48% (10/29) 
Mean+2SD 0.858 2.78% (2/72) 27.27% (12/44) 89.66% (26/29) 

2Mean 0.808 4.17% (3/72) 29.55% (13/44) 93.10% (27/29) 
Min highly 0.733 6.94% (5/72) 31.82% (14/44) 100% (29/29) 

Youden Index 0.720 6.94% (5/72) 31.82% (14/44) 100% (29/29) 
75% CI Never 0.581 25.00% (18/72) 38.64% (17/44) 100% (29/29) 
95% CI never 0.457 36.11% (26/72) 56.82% (25/44) 100% (29/29) 

        
K26 Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 1.084 0% (0/72) 4.55% (2/44) 20.69% (6/29) 
Mean+3SD 0.975 1.39% (1/72) 13.64% (6/44) 41.38% (12/29) 
Mean+2SD 1.882 0% (0/72) 0% (0/44) 0% (0/29) 

2Mean 0.641 8.33% (6/72) 29.55% (13/44) 79.31% (23/29) 
Min highly 0.248 51.39% (37/72) 63.64% (28/44) 100% (29/29) 
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Youden Index 0.531 15.28% (11/72) 34.09% (15/44) 90% (26/29) 
75% CI Never 0.402 25.00% (18/72) 45.45% (20/44) 90% (26/29) 
95% CI never 0.371 27.78% (20/72) 45.45% (20/44) 93% (27/29) 

        
K34 Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 0.907 0% (0/72) 31.82% (14/44) 37.93% (11/29) 
Mean+3SD 1.036 0% (0/72) 22.73% (10/44) 20.69% (6/29) 
Mean+2SD 0.813 1.39% (1/72) 38.64% (17/44) 51.72% (15/29) 

2Mean 0.735 5.56% (4/72) 40.91% (18/44) 55.17% (16/29) 
Min highly 0.362 50.00% (36/72) 47.73% (21/44) 100% (29/29) 

Youden Index 0.522 25.00% (18/72) 40.91% (18/44) 93% (27/29) 
75% CI Never 0.528 25.00% (18/72) 40.91% (18/44) 93% (27/29) 
95% CI never 0.420 40.28% (29/72) 45.45% (20/44) 93% (27/29) 

        
K9 Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 0.822 0% (0/72) 11.36% (5/44) 17.24% (5/29) 
Mean+3SD 0.686 2.78% (2/72) 13.64% (6/44) 20.69% (6/29) 
Mean+2SD 0.516 5.56% (4/72) 20.45% (9/44) 37.93% (11/29) 

2Mean 0.350 9.72% (7/72) 38.64% (17/44) 58.62% (17/29) 
Min highly 0.099 63.89% (46/72) 93.18% (41/44) 100% (29/29) 

Youden Index 0.235 19.44% (14/72) 59.09% (26/44) 83% (24/29) 
75% CI Never 0.189 25.00% (18/72) 65.91% (29/44) 86% (25/29) 
95% CI never 0.215 23.61% (17/72) 59.09% (26/44) 83% (24/29) 

        
6H Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 1.190 0% (0/72) 4.55% (2/44) 13.79% (4/29) 
Mean+3SD 0.874 2.78% (2/72) 9.09% (4/44) 27.59% (8/29) 
Mean+2SD 0.655 5.56% (4/72) 15.91% (7/44) 37.93% (11/29) 

2Mean 0.434 9.72% (7/72) 29.55% (13/44) 58.62% (17/29) 
Min highly 0.093 68.06% (49/72) 84.09% (37/44) 100% (29/29) 

Youden Index 0.223 27.78% (20/72) 50.00% (22/44) 82.76% (24/29) 
75% CI Never 0.283 25.00% (18/72) 43.18% (19/44) 68.97% (20/29) 
95% CI never 0.268 26.39% (19/72) 45.45% (20/44) 72.41% (21/29) 

        
8e Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 0.935 0% (0/72) 4.55% (2/44) 6.90% (2/29) 
Mean+3SD 0.510 1.39% (1/72) 20.45% (9/44) 37.93% (11/29) 
Mean+2SD 0.380 2.78% (2/72) 27.27% (12/44) 51.72% (15/29) 

2Mean 0.240 9.72% (7/72) 31.82% (14/44) 65.52% (19/29) 
Min highly 0.072 54.17% (39/72) 84.09% (37/44) 100% (29/29) 

Youden Index 0.156 23.61% (17/72) 45.45% (20/44) 86% (25/29) 
75% CI Never 0.150 25.00% (18/72) 45.45% (20/44) 86% (25/29) 
95% CI never 0.150 25.00% (18/72) 45.45% (20/44) 86% (25/29) 

        
Lin14/4 Cut-offs Detection of never Detection of mildly Detection of highly 

Max never 2.466 0% (0/72) 11.36% (5/44) 27.59% (8/29) 
Mean+3SD 2.343 1.39% (1/72) 13.64% (6/44) 27.59% (8/29) 
Mean+2SD 1.733 5.56% (4/72) 27.27% (12/44) 51.72% (15/29) 

2Mean 1.029 19.44% (14/72) 40.91% (18/44) 72.41% (22/29) 
Min highly 0.277 45.83% (33/72) 70.45% (31/44) 100% (29/29) 

Youden Index 0.802 23.61% (17/72) 43.18% (19/44) 90% (26/29) 
75% CI Never 0.791 25.00% (18/72) 43.18% (19/44) 90% (26/29) 
95% CI never 0.658 29.17% (21/72) 45.45% (20/44) 90% (26/29) 
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