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Abstract. In engineering simulation a black-box code is often a complex, legacy or proprietary
(secret) black-box software used to describe the physics of the system under study. Strategies to
propagate epistemic uncertainty through such codes are desperately needed, for code verifica-
tion, sensitivity, and validation on experimental data. Very often in practice, the uncertainty in
the inputs is characterised by imprecise probability distributions or distributions with interval
parameters, also known as probability boxes. In this paper we propose a strategy based on
line sampling to propagate both aleatory and epistemic uncertainty through black-box codes to
obtain interval probabilities of failure. The efficiency of the proposed strategy is demonstrated
on the NASA LaRC UQ problem.
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1 INTRODUCTION

Digital twins seem to be the emerging modelling paradigm for industrial system simulation.
According to ANSYS [1], a digital twin is “a complete virtual prototype of an entire system, a
working system in a real world environment, a complex system integrating multiple engineering
disciplines, requiring system-level simulation knowledge”. ANSYS also state that digital twins
“ represent a new era in simulation, a new world of predictability, a new tool for engineering
the future”.

The rise of digital twins is justified by the progressive increase of high-fidelity methods (e.g.
finite element and computational fluid dynamic) and the fast-paced growth of the computing
power that has led to the solution of unprecedentedly complex models, for ever more realistic
boundary conditions. The excitement about this new era of simulation must face the truth
about our limitation of modeling the physics around us. Deterministic models are rarely suited
to describe in detail the multifaceted reality of a system, and usually the more detailed the
model the more sensitive it is to variations and uncertainty. Comparing predicted responses
with measured data, however, does not generally show that the fidelity has improved as much
as our ability of making more detailed models and accurate analyses.

The reason for this discrepancy is often the presence of uncertainties, for instance in the
parameters of the model, which are not precisely known and must be expected to deviate from
the assumed deterministic values. Another source of uncertainty is in the mathematical model,
which usually involves some abstraction and simplifying assumptions to represent the actual
mechanical/physical response. Given the limitations of data, quantification methods often rely
on subjective judgement and assumptions and it may not always seem reasonable to character-
ize the uncertainties in a classical probabilistic way. To avoid the inclusion of subjective and
often unjustified hypothesis, the imprecision and vagueness of the data can be treated by using
generalized probabilistic methods.

The unavoidable uncertainties must be explicitly included in the computations to guarantee
that the components or systems will continue to perform satisfactorily despite variability and
precise models. If the effect of uncertainties in the optimized design is ignored, this design may
perform unsatisfactorily in realistic conditions. Resilient/reliable systems are less sensitive to
the uncertainties and hence, they reach low variability of the overall performance allowing for
significant reductions in terms of e.g. the manufacturing and operating costs.

Quantifying the effect of the uncertainty is a necessary step to support decision makers.
For instance, the analyst can estimate the importance of collecting additional information and
identify the parameters that contribute the most to the variability of the output. One of the most
important analyses is to identify the extreme response performances of the system. It is also
important to determine the combination of input parameter values that causes a performance
metric of interest to reach its extreme. Knowing such conditions, it might be possible to prevent
those extreme performances or mitigate their consequences.

The need for efficient and robust uncertainty propagation on black-box models has been
shown by the NASA Langley Uncertainty Quantification Challenge [2]. The only information
that was released about the model is that it described the flight of a remotely controlled twin-jet
aircraft pushed to the edge of the flight envelope, thus subject to strong uncertainties.

In this paper, a novel approach for black box failure probability propagation analysis is pre-
sented and discussed. The theoretical framework of imprecise probability is used for the repre-
sentation of the uncertainty. An efficient and general computational framework based on Line
Sampling simulation is proposed to perform reliability analysis [3]. The Cauchy-deviate method
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is used for the propagation of epistemic uncertainty [4]. We show that these two approaches
can be combined to obtain interval failure probability of the aircraft performance. We show the
applicability and efficiency of the methodology on the NASA Langley UQ black-box model.

2 BLACK-BOX CODES

In uncertainty quantification distinguishing between black-box models and open-source mod-
els is consequential. The research community is not united on the definition of black boxes.
Researchers in machine learning often refer to black boxes as deep learning models, which are
practically impenetrable due to their complexity. A more general definition of black-box code
can be found in [4]. In this paper a black-box model is a quantitative model, whose source code
is inaccessible.

2.1 Why such models exist

The reason why this kind of model exists can be ascribed to (i) secrecy: for example, com-
mercial companies release to the open market only the software binaries, or the code is en-
crypted for verification and validation by third parties; (ii) legacy: for example, the source code
is partially or totally lost and only the binaries are available, or the source code is available but
does not build on the current compiler; (iii) complexity: for example, deep learning models,
and large FEM and CFD models.

2.2 Need to distinguish black-box and open-source codes

In automatic uncertainty propagation the source code can be decomposed into a list of basic
binary operations. This turns out to be the key for efficient rigorous propagation, as numerical
strategies for interval analysis can be deployed.

2.3 Restrictions introduced by black boxes

Uncertainty quantification on black-box models is particularly challenging. This is because
the model can only be queried and often the time required by a single evaluation is very long,
in some cases ranging from hours to weeks.

Furthermore, when the user does not completely know the origin of the model, more evalua-
tions are usually needed to characterise the mathematical properties of the model. For example,
checking that the function is continuous or smooth may already require a significant amount
of evaluations. Nevertheless, even if we know that the function is e.g. smooth, computing the
partial derivatives may be computation expensive. This fact rules out the efficient use of dif-
ferential algebra, local Taylor expansions, and monotonicity checks that may be alternatively
possible in the case of open-source code. Another big limitation introduced by black-box codes
is the difficulty of rigorous propagation of epistemic uncertainty. The rigorous propagation is
only possible by means of intrusive interval analysis.

2.3.1 What can be done?

We can establish prove that the function in a black-box model is deterministic, by check-
ing whether the outputs are different on a number of repeated computer experiments. If the
black-box model is non-deterministic and single evaluations are computation expensive, then
rigorous uncertainty quantification may not be practically possible. Techniques that combine
surrogate modelling, and massive high performance parallel and distributed computing, may be
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the answer. If the model is deterministic, the aforementioned techniques may still be necessary,
but it is also possible to better characterise the behaviour of the black box and deploy sampling
schemes and accelerating strategies to achieve efficiency.

3 PROBLEM STATEMENT

A deterministic model can be conceptually represented in the functional form

y = f(x) (1)

where f is a function that maps x to y [5]. The variable x = [x1, ..., xNX
] is a vector of real

valued inputs, and y = [y1, ..., yNY
] is a vector of real-valued model outputs. In this paper we

will restrict the discussion to NY = 1, so for simplicity we assign N = NX .
The uncertainty about the elements of x will be represented by a sequence of imprecise

distributions D1, ...,DD, where Dj characterises the uncertainty associated with the element xj
of x. Various correlations and other restrictions involving the elements of x may be specified.
Typically, these distributions are obtained through some form of expert elicitation or expert
review process.

3.1 Uncertainties

The imprecise distributionDj fully characterises both the aleatory and epistemic uncertainty
of the element xj . The probability box or simply p-box [D, D] denote the set of all non-
decreasing functions D from the real line into [0, 1], such that D(x) ≤ D(x) ≤ D(x) [6]. Eq. 2
summarises in one formula the latter sentence.

D : R→ [0, 1], D(x) ≤ D(x) ≤ D(x) (2)

So if [D,D] is a p-box for a random variable X whose distributionD is unknown except that
is within the p-box, then D and D are respectively lower and upper bounds on D(x), which is
the – imprecisely known – probability that the random variable X is smaller than x. In practical
applications it is very common to construct p-boxes using known probability distributions with
interval parameters. In these cases the assumption on the probability distribution type may be
relaxed to include all the distributions that fall within the bounds.

3.2 Failure probability

The probability that the model output y is greater than a given, yet uncertain, threshold can
be expressed as

P (Y > ỹ) = P (f(X) > ỹ) (3)

Often the threshold ỹ represents a given performance limit that the model under study should
be in, with a large margin of safety. The more catastrophic are the consequences associated with
exceeding the given threshold, the larger the safety margin, therefore the smaller is the failure
probability.

The aim of this paper is to present a sampling strategy to compute small failure probabil-
ity bounds on Y when continuous imprecise probability distributions are defined for the input
variables of the black-box model.
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3.3 Sampling

The probability of Eq. 3 can be approximated via sampling. The solution of the multi-
dimensional integral of Eq. 4 can be obtained by averaging over the generated samples so to
avoid the numerical integration.

Let Cx : [0, 1]N → [0, 1] be the copula function of the vector of uncertain variables, and let
g(x) = ỹ − f(x), with ΩF = g(x) < 0 denote the failure domain.

The probability of failure can be given as:

P (g(x) < 0) =

∫
ΩF

dCx (4)

Where, the copula expresses the aleatory dependence between the p-boxes, and can be used
to represent without loss of generality, the uncertainty about the model in its entirety. Clearly,
this is restricted to the case of precise aleatory dependence among the variables. The depen-
dence among focal elements, also known as epistemic dependence, will not be treated in this
paper.

In this particular formulation of the uncertainty model, every draw corresponds to a focal
element, which is the interval counterpart of a pointwise sample. We use the inverse trans-
formation method to generate focal elements from the copula function [7]. Focal elements
[x]{s} = [x, x]{s} are propagated through the model solving the following two problems:

min
x∈[x]{s}

g([x]{s}), max
x∈[x]{s}

g([x]{s}). (5)

Let us define the set A of all the boxes contained in ΩF , and the set Bc of all the boxes strictly
not contained in ΩF . Let B be the complement of Bc, then the two sets are

A = {[x] : [x] ⊆ ΩF} ; B = {[x] : [x] ∩ ΩF 6= ∅} (6)

Let us define the characteristic function χA for a set A as

χA(ei) =

{
1 if ei ∈ A
0 if ei /∈ A

(7)

where ei is a box in Ω. Lower and upper bounds on the failure probability are obtained averaging
the number of focal elements classified as in Eq. 6.

p̂F =
N∑
s=1

χA

(
[x]{s} ⊆ ΩF

)
, p̂F =

N∑
s=1

χB

(
[x]{s} ∩ ΩF 6= ∅

)
. (8)

4 LINE SAMPLING

Line sampling is a simulation method primarily developed to efficiently compute small fail-
ure probabilities for high dimensional problems [3]. Line sampling has been recently extended
to deal with epistemic uncertainty in the form of intervals [8]. The method is generally appli-
cable and it only requires the knowledge of the so-called “important direction”, a ∈ RN , which
can be any vector pointing towards the failure region. In this paper we use the line sampling
scheme to produce focal elements. On each focal element we run the problem of Eq. 5 to solve
the classification of Eq. 6.
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5 PROPAGATION OF EPISTEMIC UNCERTAINTY

5.1 Why Monte Carlo is bad for epistemic propagation

Monte Carlo simulation works particularly well with aleatory uncertainty. This is because
Monte Carlo is insensitive to the number of random variables. For example, the estimation of
E (f(x)), where E is the mean operator, can be done efficiently by Monte Carlo. However,
this is quite the opposite in epistemic uncertainty, where the accuracy of the simulation method
drastically decreases with the number of epistemic variables. Consider this simple example: we
want to sum a number N of epistemic variables x1:N in the box [a, b]N , and compute the bounds
of the resulting sum. The exact bounds on the sum can be computed exactly and are

f(x) =
∑
i=1:N

xi = [N ∗ a,N ∗ b] = N ∗ [a, b].

Now, let us pretend that the function f(x) is a black-box model, so we do not know that behind
the model is doing a simple sum. A Monte Carlo way to approach the problem consists in
(i) generating random samples in [a, b]N , (ii) summing the generated samples, (iii) getting the
minimum and maximum of the sum. This process gets increasingly less accurate as the number
of variables increases. In fact, for the central limit theorem, the obtained sum will approximate a
Gaussian distribution, with mean µ and variance σ2/N , where σ2 is the sample variance. Given
that the variance of the sum linearly decreases with the number of variables, it gets ever more
improbable to sample close to the endpoints of the box where the exact bounds hold. Note that
this applies to any probability distribution within the box [a, b]N , because of the generality of
the central limit theorem.

5.2 Cauchy-deviate method

The Cauchy-deviate method propagates epistemic uncertainty using sampling. [4]. The
method exploits the properties of the Cauchy distribution, by which a linear combination of
Cauchy random variates is also Cauchy distributed. The properties of the Cauchy distribution
ensure that the samples do not get trapped around the arithmetic mean of the generated sample
set. Thus the model can be treated as a black box. The method works particularly well when
the intervals are small or the black-box is approximately monotonic over the interval.

6 THE NASA BLACK-BOX MODEL

The NASA Langley multidisciplinary uncertainty quantification (UQ) challenge was re-
leased in 2013 to seek responses from practitioners in the filed of UQ. Among the different
challenge problems, NASA was seeking responses pertaining the propagation of mixed aleatory
and epistemic uncertainties through system models. The challenge page quotes:

“NASA missions often involve the development of new vehicles and systems that must be de-
signed to operate in harsh domains with a wide array of operating conditions. These missions
involve high-consequence and safety-critical systems for which quantitative data is either very
sparse or prohibitively expensive to collect. Limited heritage data may exist, but is also usually
sparse and may not be directly applicable to the system of interest, making uncertainty quan-
tification extremely challenging. NASA modeling and simulation standards require estimates of
uncertainty and descriptions of any processes used to obtain these estimates.” NASA LaRC
UQ Challenge 2014.
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The challenge problem was based upon a model of the NASA Langley Generic Transport Model
(GTM). The GTM is a 5.5% dynamically scaled, remotely piloted, twin-turbine, research air-
craft used to conduct experiments for the NASA Aviation Safety Program. The multidisci-
plinary character of the proposed problems led the challenge scientists to release the model in
the form of a black-box. Again quoting the challenge page:

“Although a discipline-specific application is the focus of this challenge problem, the prob-
lem was specifically structured so that specialized aircraft knowledge is not required. We seek
responses from all interested parties not only those with aircraft experience.”

Five out-of six challenge problems involved solving a forward propagation problem with mixed
aleatory and epistemic uncertainty. The epistemic uncertainty was expressed in the form of
intervals, while the aleatory uncertainty in the form of beta and normal distributions.

6.1 The challenge problem

In this section we analyze a portion of the black-box model provided by the NASA Lan-
gley Research Center. The full model contains twenty-one input parameters and eight out-
puts, nonetheless we will limit our discussion to only the first five input parameters p =
[p1, p2, p3, p4, p5], and the first output y = y1. In the original text of the challenge manifesto
this output was referred to as x.

NASA provided the software binaries to evaluate h:

y = h(p) = h(p1.p2, p3, p4, p5), (9)

Where p1:3 ∈ [0, 1]3, p4,5 ∈ R. Specific information about these parameters are provided in
Table 1. We provide a solution to the following problem:

P (h(p) > 0.39) (10)

Or equivalently P (g(p) < 0), with g(p) = 0.39 − h(p). The problem of Eq.10 in words is:
“What is the probability of y = h(p) being greater than 0.39, when the uncertainty about p is
given in Table 1?”

6.2 Input variables

The input variables of the problem are shown in Table 1, and are classified into Category I,
II, and III.

• Category I represents random variables with a precise distributions; these variables only
have aleatory component.

• Category II represents intervals, any value within the endpoints of the interval is allowed.
Although interval is a pure epistemic way to characterize uncertainty, intervals do have
an aleatory component. In fact, not only any value but also any distribution bounded by
the endpoints of the interval is allowed.

• Category III is the more general representation of uncertainty. Dempster-Shafer structures
and p-boxes fall into this category.
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Table 1: Uncertain input parameters

Variable Category Uncertainty Epistemic Marginal
component distribution

p1 III P-box µ1 = [3/5, 4/5] B(a1, b1)
Unimodal Beta σ2

1 = [1/50, 1/25] independent
p2 II Interval ∆2 = [0, 1] –
p3 I Random variable – U(0, 1)

p4, p5 III P-box µ4 = [−5, 5] N(µ4, σ
2
4)

Normal bivariate σ2
4 = [1/400, 4] dependent on p5

µ5 = [−5, 5] N(µ5, σ
2
5)

σ2
5 = [1/400, 4] dependent on p4

MN(µ4:5, σ4:5, ρ4:5) ρ4,5 = [−1, 1]

7 Results

A preliminary analysis is run with 1000 samples. The model takes approximately 30s to
produce a thousand samples on a common desktop computer.

The 1000 focal elements are propagated through the model and the classification of Figure 1
is obtained. This preliminary classification shows clear borders between the three states, namely
safe, plausibility, and belief. In Figure 1, the set of dots that are both red and black belong to
the first class of Eq.8, i.e. the focal elements that contribute to the upper bound of the failure
probability pF ; while the black dots only contribute to the lower bound.

Figure 1: Focal elements p1 v. p2:5 in the copula space (top row) and in the standard normal space (bottom row)

If we look at the scatter plot of classified focal elements for the remaining variables as shown
in Figure 5, Figure 6, and Figure 2 we note that there is not a clear border as in the previous
case. This suggests that variable p1 is predominant with respect to the other variables. It is
also to note the characteristic cross-shaped dependence between variable p4 and p5 depicted in
Figure 2 that is typical of the case of unknown linear correlation as specified in Table 1.

With the preliminary analysis it was possible to identify the following important direction α.
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Figure 2: Classification of focal elements for variables p4 v. p5 in the copula (top) and the standard normal space
(bottom)

Figure 3: Performance function envelope on the line, each line displays a different color.

α = [−0.987,−0.0087, 0.162, 0.0145, 0.00028]

The analysis conducted with 100 lines and a total of 500 focal elements, with the threshold of
Eq. 10, led to the failure probability interval [p̂F ] = [0.0378, 0.44], with no update in direction.
The same analysis run on the set of thresholds t = [0.4, 0.5, 0.6, 0.7, 0.8] led to the upper and
lower fragility curves shown in Figure 4.

t 0.4 0.5 0.6 0.7 0.8
pF 4.38E-1 1.71E-2 4.70E-3 1.06E-3 3.26E-4
pF 3.06E-2 1.17E-4 6.57E-6 3.94E-7 3.79E-8
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Figure 4: Upper and lower fragility curves

Figure 5: Classification of focal elements for variables p2 v. p3:5

Acknowledgement

This research is funded by the Engineering & Physical Sciences Research Council (EPSRC)
through the programme grant “Digital twins for improved dynamic design” with grant no.
EP/R006768/1. EPSRC and the DigiTwin consortium are greatly acknowledged for their fund-
ing and support.

REFERENCES

[1] Ansys Inc. Delivering a digital twin. Technical report, Ansys Advantage, Issue 2, 2017.

[2] L.G. Crespo and S.P. Kenny. Special edition on uncertainty quantification of the aiaa journal
of aerospace computing, information, and communication. Journal of Aerospace Informa-
tion Systems, 12(1):9, 2015.

722



De Angelis, Ferson, Patelli, Kreinovich

Figure 6: Classification of focal elements for variables p3 v. p4:5

[3] M. de Angelis, E. Patelli, and M. Beer. Advanced line sampling for efficient robust relia-
bility analysis. Structural Safety, 52(PB):170–182, 2015.

[4] V. Kreinovich and S.A. Ferson. A new cauchy-based black-box technique for uncertainty
in risk analysis. Reliability Engineering and System Safety, 85(1-3):267–279, 2004.

[5] J.C. Helton, J.D. Johnson, W.L. Oberkampf, and C.B. Storlie. A sampling-based compu-
tational strategy for the representation of epistemic uncertainty in model predictions with
evidence theory. Computer Methods in Applied Mechanics and Engineering, 196(37):3980
– 3998, 2007. Special Issue Honoring the 80th Birthday of Professor Ivo Babuka.

[6] S. Ferson, V. Kreinovich, L. Grinzburg, D. Myers, and K. Sentz. Constructing probability
boxes and dempster-shafer structures. Technical report, Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2015.

[7] E. Patelli, D.A. Alvarez, M. Broggi, and M. De Angelis. Uncertainty management in mul-
tidisciplinary design of critical safety systems. Journal of Aerospace Information Systems,
12(1):140–169, 2015. cited By 19.

[8] E. Patelli and M. De Angelis. Line sampling approach for extreme case analysis in presence
of aleatory and epistemic uncertainties. pages 2585–2593, 2015.

723


