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Abstract 1 

In this paper, a new approach abbreviated as SOCP-SFEM is developed for analysing 2 

geomechanical problems in elastoplasticity. The SOCP-SFEM combines a strain smoothing 3 

technique with the finite element method (FEM) in second-order cone programming (SOCP) and 4 

thereby inherits the advantages of both the smoothed finite element method (SFEM) and the SOCP-5 

FEM. Specifically, the low-order mixed element can be used in the SOCP-SFEM without 6 

volumetric locking issues and the singularity associated with some typical constitutive models (e.g. 7 

the Mohr-Coulomb model and the Drucker-Prager model) is no longer a problem. In addition, the 8 

frictional and the cohesive-frictional interfaces can be implemented straightforward in the developed 9 

SOCP-SFEM owing to the adopted mixed variational principle and the smoothing technique. 10 

Furthermore, the multiple contact constraints, such as a cohesive interface with tension cut-off 11 

which is commonly used for analysing the bearing capacity of a pipeline buried in clays, can be 12 

simulated with little extra efforts. To verify the correctness and robustness of the developed 13 

formulation for SOCP-SFEM, a series of benchmarks are considered where the simulation results 14 

are in good agreements with the analytical solutions and the reported numerical results. 15 
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1. Introduction 21 

The classic finite element method (FEM) is typically developed in a nested solution  manner based 22 

on the Newton–Raphson iteration [1]. In each time increment, the state variables (e.g., 23 

displacements and stresses) are calculated through iteration loops of elastic prediction and plastic 24 

correction between global structural levels, where out-of-balance forces are minimised using 25 

Newton’s method or its variants [2, 3], and local material levels (i.e. Gauss integration points) where 26 

stress-strain relationships are fulfilled.  27 

An alternative to the nested algorithm is the FEM in mathematical programming [4]. In addition to 28 

the wide applications of computational limit analysis of solids [5-8], the FEM in mathematical 29 

programming has been demonstrated to be a powerful technique in dealing with complex 30 

geomechanical problems. An attractive feature associated with the FEM in mathematical 31 

programming lies in the fact that it allows for mathematical analysis of the existence, uniqueness, 32 

and sensitivity of the resulting optimisation problem [1, 9, 10]. Additionally, the implementation is 33 

not an issue. Once the developed formulations are cast into a particular type of optimisation 34 

problems, modern optimisation solvers are available which releases the researchers from designing 35 

and programming the solution algorithm. Among different versions of the FEM in mathematical 36 

programming, the FEM in second-order cone programming (SOCP) is perhaps the one that has 37 

attracted most attentions in the past decades or so. This is to a large extent owing to some unique 38 

merits associated with the FEM in SOCP (SOCP-FEM) for computational plasticity. The widely 39 

used constitutive models for solids and fluids such as the Mohr-Coulomb model, the Drucker Prager 40 

model and the Bingham model can be naturally cast into second-order conic constraints in the 41 

SOCP-FEM, which means singularities in the yield surfaces of these models are no longer problems 42 

[11, 12]. Additionally, the extension from single-surface plasticity to multi-surface plasticity in the 43 
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SOCP-FEM can be achieved by simply including conic constraints in the resulting optimisation 44 

problem requiring little extra efforts. Furthermore, very efficient off-the-shelf SOCP solvers, such as 45 

MOSEK [13] and SeDuMi [14], have been developed in the last decade or so implying that large-46 

scale problems can be tackled efficiently. Consequently, numerous efforts have so far been 47 

dedicated to reformulating various nonlinear mechanics problems as a SOCP program which include, 48 

but are not limited to, static analysis of elastoplastic problems [11, 15, 16], analysis of steady-state 49 

yield flows fluid [17, 18], consolidation analysis of saturated porous media [19], progressive failure 50 

analysis of sensitive clays [10, 20], granular contact dynamics [21-24], particle finite element 51 

analysis [25-27], discontinuous deformation analysis [28-30], stability analysis of masonry block 52 

structures [31, 32] and rock failure behaviour [33, 34]. 53 

It is notable that the SOCP-FEM [25, 35] still encounters the volumetric locking problem [36] if 54 

linear mixed triangular elements are used even though it is developed on the mixed variational 55 

principle. To overcome this issue, a strain smoothing technique [36, 37] developed in the smoothed 56 

finite element method (SFEM) [36, 38, 39] is implemented in the framework of the SOCP-FEM in 57 

this paper. The basic idea is that the strain smoothing is performed over the smoothing domains that 58 

are constructed based on finite elements and the global system of equations are generated on 59 

smoothing domains rather than on finite elements to solve the unknowns. In this paper, the node-60 

based smoothing domain is used and implemented in the SOCP-FEM owing to its following 61 

properties [38, 39]: upper bound in the strain energy of the exact solution when a reasonably fine 62 

mesh is used; super-accurate and super-convergent properties of stress solutions; usage of an 63 

arbitrary number of sides of polygonal elements and insensitivity to element distortion. It is shown 64 

that, as a mixture of the SOCP-FEM and the SFEM, the newly developed approach (abbreviated as 65 

SOCP-SFEM) inherits the advantages of both approaches and, furthermore, offers a more 66 

straightforward way of coping with cohesive-frictional interfaces.  67 
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The paper is organised as follows. In Section 2, we present strain smoothing technique of the SFEM 68 

before proposing the variational formulation of the SOCP-SFEM in Section 3. In Section 4, the 69 

procedures of converting the resulting problems into a standard SOCP program are demonstrated. In 70 

section 5, the proposed approach is validated with four benchmarks, in which the calculated 71 

numerical results are compared with analytical solution and reported numerical results before 72 

conclusions are drawn in Section 6.  73 

2. Principle of smoothed finite element method 74 

2.1 Creation of node-based smoothing domains 75 

The SFEM starts with creating smoothing domains associated with FEM nodes based on given FEM 76 

meshes. An illustration of the generation of “non-overlap” and “no-gap” smoothing domains for the 77 

node-based SFEM is shown in Fig.1. As depicted, the smoothing domain s
kΩ  assigned to node k is 78 

the coloured polygon covering one-third of all the node’s adjacent elements. The smoothing domain 79 

is bounded by multiple straight boundary segments which connect the midpoint of an element edge 80 

to a centroid of a triangular element. In the SFEM, the operation of strain smoothing is carried out 81 

on these smoothing domains instead of finite elements. 82 

  

Smoothing domain s
kΩ

Node k
Domain boundary s

kΓ

Field nodes

Mid-edge-points

Centroids of triangles
 83 
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Fig. 1. An illustration of node-based smoothing domains created based on FEM meshes (after [36]). 84 

The FEM meshes are represented by solid black lines. 85 

2.2 Strain smoothing technique  86 

Following the classic FEM, for each finite element the strain-displacement relation is given as: 87 

u ˆ= B uε  (1) 88 

where ε  is the strain field that is uniform within the element because the three-node triangular 89 

element is adopted, Bu is the strain-displacement matrix and û  is a vector consisting of nodal 90 

displacements.  91 

In the smoothing domain s
kΩ  (Fig.1), the smoothed strain kε  at node k is calculated by: 92 

u ˆ( ) ( )d ( ) d
s s
k k

k k kΦ Φ
Ω Ω

= Ω = Ω∫ ∫x x x B uε ε   (2) 93 

where ( )kΦ x  is the smoothing function and, in this study, the local constant smoothing function [37, 94 

40]  95 

1 A ,  
( )

0,       

s s
k k

k s
k

Φ
 ∈Ω= 

∉Ω

x
x

x
 (3) 96 

is used where As
k  is the area of the smoothing domain s

kΩ . 97 

As demonstrated in Fig.1, the smoothing domain s
kΩ is comprised of Ns sub-smoothing domains 98 

which are one-third of the FEM triangular elements. Since the strain is uniform inside the adopted 99 

linear triangular element, the smoothed strain kε is:  100 
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1 1

1 1 1 1 ˆA A
A 3 A 3

s sN N
e e e e e

k i i i i is s
i ik k= =

= =∑ ∑ B uε ε  (4) 101 

where ˆA , ,  and e e e e
i i i iB uε  are the area, the strain, the strain gradient matrix and the displacement of 102 

the ith triangular element, respectively. In brief, the basic idea of the node-based SFEM lies in the 103 

calculation of a smoothed uniform strain (4) for each supporting domain based on the displacement 104 

of finite element nodes. The strain at the supporting domain is influenced by nodal displacements of 105 

all the finite elements that cover the supporting domain.   106 

3. Second-order cone programming formulation of smoothed finite element method  107 

3.1 Hellinger-Reissner Variational Principle 108 

Differing from the principle of minimum potential energy in which displacements are the only basic 109 

variables, Hellinger-Reissner variational principle regards both the displacements and the stresses as 110 

independent master fields [41]. For an elastostatic boundary-value problem, the Hellinger-Reissner 111 

functional reads: 112 

T T T T1( , ) dΩ dΩ dΩ dΩ
2Ω Ω Γ Ω

Π = ∇ − − −∫ ∫ ∫ ∫u b u t u σ σ u σ σ  (5) 113 

where σ  is the stress, b is the body force, t is the traction, ∇ is the usual linear strain-displacement 114 

differential operator and   is the elastic compliance modulus. In plane-strain cases, the elastic 115 

compliance modulus is  116 

1        0
1     1     0

0       0         2
E

υ υ
υ υ υ

− − 
+  − − 

  

 =  (6) 117 

where E and υ  are the elastic modulus and Poisson’s ratio, respectively. 118 
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The solution of the boundary-value problem can be obtained via ( , ) 0δΠ =uσ  and the obtained 119 

solution is a saddle point of the functional. In other words, the elastostatic boundary-value problem 120 

is equivalent to the following min-max optimisation problem [19]: 121 

T T T T1 dΩ dΩ dΩ dΩmaxmin 2Ω Ω Γ Ω
∇ − − −∫ ∫ ∫ ∫u

u b u t u 

σ
σ σ σ  (7) 122 

The extension of the above min-max problem to incremental elastoplastic analysis is straightforward. 123 

It can be achieved by expressing the incremental form with a yield condition being included as a 124 

constraint:  125 

( ) ( ) ( ) ( ) ( )

( )
n+1

TT T T
n+1

1

1 dΩ dΩ dΩ dΩmaxmin 2
subject to  0nF

Ω Ω Γ Ω∆

+

∇ ∆ − ∆ − ∆ − ∆ ∆

≤

∫ ∫ ∫ ∫u
u b u t u 

σ
σ σ σ

σ
 (8) 126 

where the displacement and stress increments are n+1 n∆ −u = u u  and n+1 n∆ −σ = σ σ , respectively, 127 

and F is the yield function. The subscripts n+1 and n denote the unknown and known states of the 128 

corresponding variables.   129 

3.2 Optimality conditions 130 

To prove its validity, the optimality conditions of problem (8) are derived in this section. Following 131 

the procedure in [42-44], the inequality constraint is converted into an equality constraint by 132 

introducing a positive slack variable s. To enforce the constraint s≥0 explicitly, a logarithmic barrier 133 

function is included in the objective function. Problem (8) thereby is reformulated as  134 

( ) ( ) ( ) ( ) ( )

( )
n+1

TT T T
n+1

n+1

1 dΩ dΩ dΩ dΩ lnmaxmin 2
subject to  0

s

F s

b
Ω Ω Γ Ω∆

∇ ∆ − ∆ − ∆ − ∆ ∆ +

+ =

∫ ∫ ∫ ∫u
u b u t u 

σ
σ σ σ

σ
 (9) 135 
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where β is an arbitrarily small positive constant. The standard Lagrange multiplier technique can be 136 

employed to solve (9) by first constructing its associated Lagrangian 137 

( ) ( ) ( ) ( ) ( )

( )

TT T T
n+1

n+1

1L= dΩ dΩ dΩ dΩ
2

 ln dΩ λ( )dΩs F sβ

Ω Ω Γ Ω

Ω Ω

∇ ∆ − ∆ − ∆ − ∆ ∆

+ − ∆ +

∫ ∫ ∫ ∫
∫ ∫

u β u t u σ σ σ

σ
 (10) 138 

where λ is the Lagrangian multiplier. The optimality conditions associated with problem (9) are then 139 

derived by the differentiation of (10) which results in the following set of governing equations:  140 

( )

T
1

T
1

, in L =
,       on 

n

n

+

+

∇ Ω∂ 
∂ ∆ = Γ

0
u N

σ + b =
σ t

 (11) 141 

where N is the matrix containing the unit outward normal to the boundary Γ; 142 

( )
n+1 n+1

L 0Fλ∂ ∂
= ∇ ∆ − ∆ −∆ =

∂ ∂
u  σ

σ σ
 (12) 143 

( )n+1
L 0F s
λ

∂
= + =

∂∆
σ  (13) 144 

L λ 0 λs
s s

β β∂
= −∆ = ⇒ = ∆

∂
 (14) 145 

Obviously, Eq. (11) reproduces the equilibrium equation and the boundary condition and Eq. (12) 146 

states that the total strain increment ∆ε  is split into an elastic part e∆ε  and a plastic part p∆ε  by 147 

additive decomposition as: 148 

( ) e p∇ ∆ = ∆ = ∆ + ∆u ε ε ε   (15) 149 

where 150 



8 

e

p

n+1

Fλ

∆ = ∆


∂∆ = ∆ ∂

ε σ

ε
σ

 (16) 151 

Eq. (13) illustrates the yield function F recalling that s is a small positive variable. Eq. (14) (in the 152 

limit of β=0) ensures that plastic deformation takes place only when the stresses reach the yield 153 

surface and otherwise. It is clear that the derived optimality conditions associated with the min-max 154 

optimisation problem (9) are the governing equations for the quasi-static analysis in elastoplasticity. 155 

In order to use convex programming, the associated flow rule is adopted in this work. Therefore, the 156 

plastic potential is same to the yield function F. 157 

3.3 Smoothed finite element discretisation  158 

Using standard FEM notations, the displacement can be interpolated using shape functions as:  159 

u ˆ≈u N u  (17) 160 

where û is the nodal displacement vector of the element, uN  is the matrix containing the shape 161 

functions for displacements arranged as: 162 

1 2 3

1 2 3

0 0 0
0 0 0u

N N N
N N N

 
=  
 

N  (18) 163 

with N1, N2 and N3 being three shape functions corresponding to three nodes of the linear triangular 164 

element.  165 

For the ith element, the strain-displacement matrix is e
i u= ∇B N  and thereby is in the form of 166 
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31 2

31 2

3 31 1 2 2

0 0 0

0 0 0e
i

NN N
x x x

NN N
y y y

N NN N N N
y x y x y x

 ∂∂ ∂
 
∂ ∂ ∂ 

 ∂∂ ∂
=  ∂ ∂ ∂ 
 ∂ ∂∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 

B  (19) 167 

Substituting (19) into (4) results in the smoothed strain kε  on the smoothing domain s
kΩ , which is  168 

ˆk k k= B uε  (20) 169 

where 170 

1

1 1A
A 3

sN
e e

k i is
ik =

= ∑B B                                                                                                                          (21) 171 

The following notation is used for the stress interpolation: 172 

σ≈ Nσ σ  (22) 173 

where σ  is the stress at the node which can also be interpreted as a smoothed stress of the 174 

smoothing domain (e.g. the stress at the kth node which is also the smoothed stress for the kth 175 

smoothing domain), and σN  is the matrix containing the shape function for the stress. For the linear 176 

triangular elements, both the smoothed strains and stresses are uniform within the smoothing 177 

domains. Hence, the shape function matrix for stress (i.e. σN ) is simply an identity matrix. 178 

The principle (8) is discretised in space by using Eqs. (17), (20) and (22), which is given as: 179 

( )
n+1

T T T T
n+1 n+1 n+1

ˆ

n+1

1ˆ ˆ maxmin 2
subject to  0F

s∆
∆ − ∆ − ∆ ∆

≤
u

u B u f Csss 

s  (23)
 

180 
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where  181 

T T T T T
u u( ) dΩ, dΩ and dΩ d

s s s
k ssss   Ω Ω Ω Γ

= = + Γ∫ ∫ ∫ ∫B B N C = N N f N bN N t

  (24) 182 

It is notable that in the SFEM the integration is calculated on node-based smoothing domains sΩ  183 

rather than on finite elements. Because the linear triangular elements are employed, the integration 184 

of equations in (24) can be performed analytically. 185 

3.4 Frictional and cohesive-frictional interfaces 186 

A proper treatment of interfaces between a solid body (e.g. cone penetrometers, pipelines, retaining 187 

walls) and soils in the numerical model is essential for analysing geotechnical problems. Inspired by 188 

the recently proposed framework for the discrete element method, the contact algorithm has been 189 

developed in the SOCP-FEM [25]. The effectiveness and efficiency of the algorithm have been 190 

demonstrated through a series of studies on large deformation problems, in which dynamic nonlinear 191 

contacts between rigid surfaces and deformable bodies occur often. However, the algorithm 192 

developed in [25] is restricted to the purely frictional contact. In this study, contact algorithms for 193 

both the purely frictional and the cohesive-frictional interfaces are developed in the SOCP-SFEM.  194 

As indicated in Fig. 2, interfaces are considered for yellow smoothing domains which are in contact 195 

with the rigid surface while red smoothing domains have potential to contact the surface. To prevent 196 

the penetration of the deformable body into the rigid surface, the following non-penetration 197 

conditions are imposed: 198 

( )T

0 ˆ 0

0

I I I I

I I

g g

p g

= + ∆ ≥

=

u n  (25) 199 
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where ˆ I∆u is the displacement increment of the node at contact I, nI is the outward normal vector of 200 

the boundary, pI is the contact force from the boundary, 0
Ig is the initial gap and Ig  is the gap at the 201 

next step. 202 

Rigid surface
Potential contacts

Cohesive-frictional interfaces

0
I

g

(
)

I
I

p
n

( )ˆ
I

I
q

n

 203 

Fig. 2. Contacts between a deformable body and a rigid surface. Smoothing domains are shown with 204 

dash lines. Smoothing domains with cohesive-frictional interfaces are coloured in yellow. Red 205 

smoothing domains that have potential contacts are considered as purely frictional behaviour.  206 

Following the approach in [23, 28, 33], the condition (25) can be enforced into the principle (23) 207 

leading to: 208 

( )

( )
( )

n+1

T T T T T
n+1 n+1 n+1 0

ˆ 1

n+1

1ˆˆ ˆ ˆ maxmin 2
subject to  0

,  0

bN
I I

I

b

g p

F

F

∆ =

∆ − ∆ −∆ + − ∆ ∆ −

≤

≤

∑
u

u B u f u C np nq

p q

s
sss 

s  
(26)

 

209 

where Nb is the number of boundary contacts, the normal and tangential vectors of the boundaries 210 

are collected in n and n̂ , respectively, contact forces in the normal and tangential directions are 211 
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organised into vectors p and q, respectively, and shear strength for boundary contacts is considered 212 

with a constraint (i.e. ( ),  0bF ≤p q ). The constraints on the shear strength for the boundary contact 213 

are formulated as: 214 

,  frictional interfaces

tan , cohesive-frictional interfacesc

µ

f

 ≤


≤

q p

q p + A
 (27) 215 

where μ is the friction coefficient, ϕ is the internal friction angle, c is the cohesion of the shear 216 

strength and A is the area of the interfaces. 217 

The minimisation part of principle (27) with respect to ˆ∆u  can be solved analytically resulting in a 218 

maximisation problem: 219 

( )
( )

n+1

T
n+1 n+1 0

, ,  1

T
n+1

n+1

1
max 2

ˆsubject to  
0

,  0

bN
I I

I

b

g p

F

F

=

− ∆ ∆ −

= +

≤

≤

∑C

B f +
p q

np nq

p q

s
ss

s
s  

(28)
 

220 

Obviously, this maximum problem is equivalent the following minimum problem: 221 

( )
( )

n+1

T
n+1 n+1 0

, ,  1

T
n+1

n+1

1
min 2

ˆsubject to  
0

,  0

bN
I I

I

b

g p

F

F

=

∆ ∆ +

= +

≤

≤

∑C

B f +
p q

np nq

p q

s
ss

s
s  

(29) 
 

222 
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4. Second-order cone programming  223 

The transformation of the optimisation problem (29) into a standard SOCP problem is explained in 224 

this section. Very efficient solvers capable of dealing with large-scale SOCP problems have been 225 

developed in last decades or so. Of particular notes are the packages MOSEK [13] and SeDuMi [14].  226 

 227 

The SOCP is a generalisation of linear and quadratic programming that allows for affine 228 

combinations of variables to be constrained inside a special convex set, called second-order cone 229 

[45]. The following primal standard form of the SOCP is often used: 230 

Tmin       
subject to   

    
=

∈

a
D

y
y e

y 
  (30) 231 

where y are the full problem variables and   is a Cartesian product of second-order cones i.e., 232 

1 2 n= × × ×    . Two most common conic cones are: 233 

• the quadratic cone:  234 

{ }2 2
1 2 |  m

q my y y= ∈ ≥ + +y   (31) 235 

• the rotated quadratic cone:  236 

{ }2 2
1 2 3 1 2 | 2 , 0,  0m

r my y y y y y= ∈ ≥ + + ≥ ≥y   (32) 237 
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Comparing (29) to the standard SOCP form (30), the quadratic term T
n+1 n+1

1
2
∆ ∆Cσ σ  in the objective 238 

function has to be removed. To this end, an auxiliary variable h is introduced in the objective 239 

function that is: 240 

( )
( )

0
1

T
n+1

T
n+1 n+1

n+1

min

ˆsubject to  
1
2

0

,  0

bN
I I

I

b

g p h

h

F

F

=

+

= +

≥ ∆ ∆

≤

≤

∑
B f +

C

 np nq

p q

s

ss

s

 
(33) 

 

241 

The newly introduced inequality constraint can be converted to a rotated quadratic cone: 242 

{ }
( )
( )

0
1

T
n+1

1
2

n+1

2

n+1

T

min

ˆsubject to  

,  1,  ( , , )

 ( , , ) | 2 , 0,  0

0

,  0

bN
I I

I

r

m
r

b

y y

g p h

h

h yhy h

F

F

y

=

+

+

= +

∆ = ∈

= ∈ ≥ ≥ ≥

≤

=

≤

∑
B f +

C







np nq

p q


ssss  

ssssss    

ξ ξ

ξ ξ

s

s

ξ

s
 

(34) 
 

243 

The yield criterion ( )n+1 0F ≤σ  can be reformulated as a quadratic cone as well. Regarding the 244 

commonly used Mohr-Coulomb yield criterion, the following formulation applies to the plane strain 245 

problem: 246 

( ) ( ) ( )2 24 sin 2 cos 0x y xy x yF css  τ ssφφ   = − + + + − ≤s
 

(35)  247 

Inequality (35) is reformulated as a quadratic cone that is: 248 
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{ }
1

3 2 2
1 2 1 1 2 3

3

,  |n q q n

ρ
ρ ρ ρ ρ
ρ

+ +

 
 = ∈ = ∈ ≥ + 
  

  ρ ρ
 

(36) 249 

where 250 

1 n+1

sin sin 0 2 cos
1 1 0  + 0
0 0 2 0

x

n y

xy

cs
s
τ

φφφ 

+

 − −   
    = + = −     
        

D dρ s
 

(37) 251 

It is necessary to note that other yield criteria such as the Drucker–Prager/von Mises model and the 252 

Cam-Clay model can be converted to second-order cones as well. Readers are referred to [12, 19, 46] 253 

for more details. In addition, multi-surface plasticity may be required for the model, which can be 254 

performed simply by adding more conic constraints in the optimisation problem.  255 

The inequality constraint ( ),  0bF ≤p q  owing to contacts has to be converted into a quadratic cone 256 

as well. This can be achieved by introducing a virtual shear strength Iq  at each contact node I that is: 257 

,  frictional interfaces

tan , cohesive interfaces

I I I

I I I I

q p q

q p cA q

µ

f

 = ≥


= + ≥
 (38) 258 

As a consequence, the related inequality constraint is reformulated as the following cone 259 
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q q q q
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

 

  (39) 260 

Finally, the SOCP problem equivalent to the minimisation problem (29) is as follows: 261 
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(40) 262 

In this work, MOSEK [13] is adopted as the SOCP solver. 263 

5. Numerical examples 264 

In this section, the correctness and robustness of the SOCP-SFEM is examined by modelling a series 265 

of benchmarks. The validation of the proposed approach in dealing with elastic problems and 266 

addressing the volumetric locking issues with linear elements is conducted in the first example. In 267 

the second example, the strip footing problem is adopted to validate the approach in modelling the 268 

associate and non-associated plasticity problems. The simulation results of the developed SOCP-269 

SFEM are compared with analytical solutions and numerical results by the PLAXIS 2D software 270 

[47]. The bearing capacity can be derived with merely one loading step whereas more than 200 271 

loading steps need to be used in PLAXIS. The robustness of the developed formulation for handling 272 

both the purely frictional contacts and cohesive-frictional contacts are shown in the third numerical 273 

example. In the last example, the unique feature of the approach (i.e., implementation of multi-274 

surface plasticity models is no more involved than that of single-surface models) is demonstrated.  275 

 276 
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5.1 A plate with a central circular hole 277 

To verify the developed formulation of the SOCP-SFEM, a quasi-static elastic boundary-value 278 

problem is concerned. The problem is shown in Fig. 3 [38] where an elastic plate with a central 279 

circular hole of radius r=1 m is subject to a horizontal tensile load σx = 1.0. The material parameters 280 

include an elastic module of 1.0 kPa and Poisson's ratio of 0.3. Only the upper right part is simulated 281 

owing to the symmetry and the domain is discretised using linear triangular elements as indicated in 282 

Fig. 3 (b). The analytical solutions of this plane-strain problem are available in [37, 48]. 283 
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Fig. 3. The numerical model: (a) an infinite plate with a circular hole and (b) the discretised model 285 

using linear triangular elements (800 elements). 286 

The SOCP-SFEM, the SFEM and the FEM method with linear elements are used to simulate this 287 

problem. One analysis step is conducted for this problem. Fig. 4 shows the displacement errors for 288 

three methods. It is observed that mesh refinement enhances the simulation accuracy. The numerical 289 

results of the SOCP-SFEM and the SFEM are identical, indicating the correctness of the developed 290 

SOCP-SFEM.  291 
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Fig. 4. Displacement error norm with different meshes. 293 

Additionally, the well-known “overly stiff” phenomenon is studied using the developed approach. 294 

To this end, the problem is re-analysed with Poisson’s ratio increasing from 0.4 (for compressible 295 

materials) to 0.49999 (for incompressible materials). A total of 800 elements are used in the 296 

simulations. The corresponding displacement errors from different approaches for different 297 

Poisson’s ratios are shown in Fig. 5. The SFEM and the SOCP-SFEM lead to a very small error 298 

regardless of Poisson’s ratio, indicating that the SFEM and the SOCP-SFEM are naturally “immune” 299 

from the volumetric locking even though linear elements are used. 300 
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Fig. 5. Displacement errors with different Poisson’s ratios (800 elements) 302 

5.2 Strip footing 303 

The classic bearing capacity problem of strip footing is concerned as the second example to test the 304 

SOCP-SFEM in modelling elastoplastic problems. The numerical model setup is shown in Fig. 6 305 

where the domain is discretised using four different meshes from a very coarse one (184 elements) 306 

to a very fine one (20661 elements). The soil is assumed to be an elastic-perfectly plastic material 307 

with material parameters as follows: Young’s modulus E = 100 MPa, Poisson’s ratio υ  = 0.49 and 308 

undrained shear strength Su=100 kPa (Tresca model). The analysis is performed under the 309 

displacement control and the mobilised bearing capacity Nc is defined as: 310 

c
u

FN
S B

=

 
 

(41) 311 

where F is the vertical reaction force on the footing. 312 
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 313 

Fig. 6. Model setup with four finite element meshes: (a) 184 elements; (b) 390 elements; (c) 1144 314 

elements and (d) 20661 elements. 315 

 316 

For comparison purposes, the PLAXIS 2D software [47] is used. A total of 274 loading steps are 317 

implemented in the software to reach a vertical displacement of 0.2 m. The same loading process is 318 
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used in our approach. The simulation results in comparison with the well-known Prandtl’s analytical 319 

solution (i.e. Nc=2+π) [49] are shown in Fig. 7. The results regarding the bearing capacities are 320 

summarised in Table 1. It shows a satisfactory agreement on the loading curves and bearing capacity 321 

even when a very coarse mesh is adopted.  322 
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Fig. 7. Numerical load-displacement curves for the strip footing problem. The footing width and 324 

displacement are B and uf, respectively.  325 

 326 

Table 1. Bearing capacity with varied meshes  327 

Meshes Mesh a Mesh b Mesh c Mesh d PLAXIS 

Bearing capacity, Nc 5.220 5.186 5.121 5.138 5.148 

Relative error (%) 1.52 0.83 0.41 0.08 0.12 

 328 
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The influence of loading steps on the bearing capacity is studied. The loading steps ranging from 1, 329 

10 to 100 are employed. The numerical results are shown in Fig. 8, in which numerical results of 330 

274 loading steps from Table 1 are included. It shows loading steps have negligible impact on the 331 

bearing capacity. In other words, the bearing capacity can be estimated in only one step with the 332 

developed approach.  333 
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Fig. 8. Bearing capacity with varied loading steps. 335 

Next, the soil is considered as a cohesive-frictional material. The setup of the problem is the same 336 

except that the Mohr-Coulomb yield criterion is applied. The frictional angle varies from 5˚ to 40˚ 337 

with an interval of 5˚ and the cohesion is 100 kPa. The mesh shown in Fig. 6 (d) is employed in this 338 

simulation. According to Prandtl’s solution [49], the bearing capacity of the cohesive-frictional soil 339 

is: 340 

2 tanπ(tan 1)cot
4 2
π

cN e φφ φ = + − 
   

(42) 341 
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Fig. 9 shows the numerical results in comparison with those from Prandtl’s solution where a good 342 

agreement is achieved.  343 

0 10 20 30 40

0

20

40

60

80

100
Be

ar
in

g 
ca

pa
ci

ty
, N

Friction angle (degree)

 Analytical solution
 Numerical results

c

 344 

Fig. 9. Bearing capacity with varied friction angles 345 

 346 

Although the associated flow rule is introduced in this approach, the computational associated 347 

scheme developed in [50, 51] can be employed, when modelling non-associated shear dilatancy. The 348 

basic operation is to replace the original yield function with an approximate function that coincides 349 

with the plastic potential at the current stress status. The model setup of the strip footing described 350 

above is employed here while the dilatancy angles are set as a third of the frictional angles. To test 351 

the results, the problem is conducted with the PLAXIS 2D software [47]. The numerical results by 352 

the proposed approach and PLAXIS are shown in Fig. 10. Their results reach a very good agreement. 353 

For the cases of the frictional angles of 35˚ and 40˚, PLAXIS suffers from numerical instabilities and 354 
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an error code of 101 was reported. The possible reason is the nonuniqueness of the failure 355 

mechanism or a varying failure surface [52]. 356 
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Fig. 10. Bearing capacity of the strip footing with the non-associated flow rule.  358 

5.3 Cohesive-frictional contact behaviour 359 

The interaction between a device and soils is of great importance for some geotechnical problems 360 

such as T-bar/cone penetrations, pipeline-soil interactions, and interactions between the sliding mass 361 

and the basal surface in landslides. The third numerical example is to show the capability of the 362 

developed formulation for handling both the purely frictional contacts and cohesive-frictional 363 

contacts. The numerical model is shown in Fig. 11 (a). Model parameters include length of 364 

rectangular blocks of 2 m, height of 1 m, density of 2.0×103 kg/m3, elastic modulus of 100 MPa, 365 

Poisson’s ratio of 0.49 and gravitational acceleration of −9.8 m/s2. Firstly, slope angle α is set to 0˚ 366 

for which an external force is required to move the block. For purely frictional interfaces, a series of 367 

frictional angles from 0˚ to 60˚ are used. For cohesive-frictional interfaces, the cohesion varies from 368 

20 kPa, 50 kPa to 100 kPa. The external forces required to trigger the movement for all cases are 369 



25 

recorded and compared to the analytical solution in Fig. 11 (b) where a good agreement has been 370 

achieved verifying the correctness of the developed frictional and cohesive-frictional contact 371 

formulation.  372 
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Fig. 11. The stability of a block: (a) geometric model and (b) comparison between numerical and 374 

analytical solutions, where α is the slope angle. 375 

Next, a slope with a general angle (i.e. α=60˚) is considered to test contacts with an inclined surface. 376 

The internal frictional angle in this case decreases from 60˚ to 0˚. To maintain the stability of the 377 

block, a minimum cohesion is required. The numerical results in comparison with analytical 378 
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solutions are shown in Fig. 12. As illustrated, the numerical results agree with the analytical solution, 379 

indicating the correctness of the improved contact formulations.  380 

0 10 20 30 40 50 60

0

2

4

6

8

10

12

14

16

18

 Numerical results
 Analytical solution

Internal frictional degree (°)

Co
he

sio
n 

(K
pa

)

 381 

Fig. 12. A block resting on a slope 382 

5.4 Bearing capacity of offshore pipelines 383 

In this example, the proposed SOCP-SFEM is adopted to study the bearing capacity of a pipe 384 

embedded in undrained clays, which is a typical problem that should be considered in the design of 385 

pipeline networks. The problem setup is shown in Fig. 13. The major factors controlling the bearing 386 

capacity of the pipe include its embedment, the properties of the surrounding soil and the 387 

characteristics of the pipe/soil interface. In this study, the embedment of the pipeline is set to 5 m, 388 

the diameter of the pipe is D=1 m and the undrained shear strength of the soil is Su=100 kPa. For 389 

simplicity, the soil is considered as weightless.  390 

Four types of pipe surfaces are concerned as shown in Fig. 14. In reality, the surface can have the 391 

full shear strength of the soil, corresponding to the rough cases (for example, when the pipe is 392 

coated with rough concrete) or cannot resist any shear stress, i.e., the smooth cases (for example, 393 
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when the pipe has a slippery plastic insulation coating). In addition, it is common to assume that the 394 

pipe surface cannot resist any tension (no tensile capacity) or the pipe surface is fully bonded 395 

(infinite tensile capacity). It is worth noting that, in our formulation, these requirements on the yield 396 

criterion of the pipe/soil interface cause little extra efforts.  397 
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Fig. 13. The problem setup for a plane-strain pipe: (a) geometry and (b) mesh. 399 
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Fig. 14. Four soil-pipe interface models: (a) rough with tension, (b) rough without tension, (c) 401 

smooth with tension and (d) smooth without tension. 402 

The numerical results of this problem using limit analysis are available in [53]. The penetration 403 

resistance Pr  for all cases is calculated using our SOCP-SFEM in this study and compared to the 404 

limit analysis results from [53]. As shown in Fig. 15, a good agreement has been observed for two 405 

methods. Additionally, the failure mechanism of the clay for all cases is illustrated in Fig. 16 406 

implying that the tensile strength plays a significant role on both the failure mechanism and the 407 

penetration resistance. The equivalent plastic strain increment is defined as 408 

( ) ( ) ( )2 2 2
2 / 3 2p p p p

eq x y xyd d d de e e e = + +  
based on the von Mises criterion, where p

xdε  and p
ydε  409 

are the normal plastic strain increments and p
xydε   is the shear plastic strain increment. 410 
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Fig. 15. Penetration resistance Pr for pipes in soils.  412 
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(a) (b)

(c) (d)  413 

Fig. 16. Penetration mechanisms of four cases: (a) rough with tension, (b) rough without tension, (c) 414 

smooth with tension and (d) smooth without tension. Colours are proportional to the equivalent 415 

plastic strain increment. 416 

6. Conclusion  417 

In this paper, a finite element formulation called SOCP-SFEM is developed on the basis of the 418 

smoothed finite element method (SFEM) and the finite element method in second-order cone 419 

programing (SOCP-FEM). This is achieved by implementing the smoothing technique of the node-420 

based SFEM into the computational framework of the SOCP-FEM. More specifically, the mixed 421 

variational principle is adopted to reformulate the elastoplastic boundary-value problem with contact 422 

interfaces into an equivalent min-max problem. The smoothed finite element discretisation is then 423 

performed to discretise the min-max problem with both the displacement and the smoothed stress 424 

being the independent fields which results in a uniform distribution of the strain and stress over the 425 

smoothing domain. The discretised min-max problem is then recast as a standard SOCP problem 426 

which is resolved using an efficient modern optimisation engine MOSEK.  427 
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Owing to the mixture, the SOCP-SFEM inherits the advantages of both the SOCP-FEM and the 428 

SFEM. The numerical examples show that linear elements can be used in the approach without 429 

special treatments for nearly incompressible materials since it is naturally immune from volumetric 430 

locking owing to the embedded strain smoothing technique. Additionally, since the final problem is 431 

in the form of a SOCP, it possesses advantages as follows: (1) the singularities in the Mohr-432 

Coulomb and Drucker-Prager models can be treated naturally without approximations; (2) the 433 

extension from a single-surface yield function (e.g. cohesive interfaces) to a multi-surface yield 434 

function (e.g. cohesive interfaces with tension cut-off) is straightforward; and (3) the resulting 435 

SOCP problem can be resolved efficiently using the interior-point method available in advanced 436 

optimisation engine. Furthermore, the cohesive-frictional interface can be considered forthrightly 437 

owing to the use of smoothing domains.  438 

It is also worth noting that, comparing to the SOCP-FEM, the developed SOCP-SFEM is more 439 

suitable to be implemented as the solver of the particle finite element method developed in [25] for 440 

large deformation analysis. This is because all variable states (e.g. displacements, strains and 441 

stresses) in the SOCP-SFEM are stored on mesh nodes, meaning that variable mapping from old 442 

meshes to new meshes is not required anymore in the particle finite element analysis of history-443 

dependent problems despite remeshing operations.  444 
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Notations 449 

 A cohesive interfaces’ area 450 

 Ae
i  ith triangular element’s area 451 

 As
k  area of the smoothing domain s

kΩ  452 

 b body force 453 

 Bu and 
e
iB  strain-displacement matrix and corresponding matrix of element i 454 

 kB  smoothed strain-displacement matrix 455 

   elastic compliance modulus 456 

 c cohesion 457 

 D diameter 458 

 E elastic modulus  459 

 F vertical loading 460 

 0
Ig  and Ig  initial gap and contact gap at contact I  461 

 h, 1n+ρ and Iq  auxiliary variables for standard SOCP program 462 

 

In , ˆ In  normal and shear vector at Ith contact 463 

 n  and n̂  matrices collecting the normal and tangential unit vectors  464 

 N matrix containing the unit outward normal to the boundary 465 

 Nc bearing capacity for the strip footing problem 466 

 Nu and σN  matrix containing the shape functions for displacements and stresses 467 

 pI and p  normal contact force at contact I and its global vector 468 

 Pr penetration resistance for the pipe 469 
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 qI and q  tangential contact force at contact I and its global vector 470 

 Iq   shear strength at contact I 471 

 r  radius 472 

 s slack variable 473 

 Su undrained shear strength 474 

 t tractions 475 

 u and û  displacement variable and nodes’ displacement 476 

 ˆ ku and ˆ e
iu  displacement in the smoothed domain k and the element i, respectively  477 

 ˆ I∆u  and ˆ∆u  displacement increment at contact I and its global vector 478 

 α slope angle 479 

∆ε , e∆ε  and p∆ε  total strain increment, elastic part and plastic part 480 

 ε  and 
e
iε  strain and corresponding vector of element i 481 

 kε  smoothed strain in the smoothing domain s
kΩ  482 

 λ Lagrange multiplier 483 

 μ friction coefficient 484 

 σ  and σ  stress variables and smoothed stresses 485 

 υ  Poisson’s ratio 486 

 ( )kΦ x  smoothing function 487 

 ϕ internal friction angle 488 

489 



33 

References490 

[1] Sivaselvan M. Complementarity framework for non‐ linear dynamic analysis of skeletal 
structures with softening plastic hinges. International Journal for Numerical Methods in Engineering. 
2011;86(2):182-223. 

[2] Sheng D, Sloan SW, Abbo AJ. An automatic Newton–Raphson scheme. The International 
Journal Geomechanics. 2002;2(4):471-502. 

[3] Simo JC, Hughes TJ. Computational inelasticity. New York: Springer, 1998. 

[4] Maier G. A matrix structural theory of piecewise linear elastoplasticity with interacting yield 
planes. Meccanica. 1970;5(1):54-66. 

[5] Portioli F, Casapulla C, Cascini L. An efficient solution procedure for crushing failure in 3D 
limit analysis of masonry block structures with non-associative frictional joints. International 
Journal of Solids and Structures. 2015;69:252-66. 

[6] Portioli F, Cascini L. Assessment of masonry structures subjected to foundation settlements 
using rigid block limit analysis. Engineering Structures. 2016;113:347-61. 

[7] Makrodimopoulos A, Martin C. Lower bound limit analysis of cohesive‐frictional materials 
using second ‐ order cone programming. International Journal for Numerical Methods in 
Engineering. 2006;66(4):604-34. 

[8] Le CV, Nguyen-Xuan H, Askes H, Rabczuk T, Nguyen-Thoi T. Computation of limit load using 
edge-based smoothed finite element method and second-order cone programming. International 
Journal of Computational Methods. 2013;10(01):1340004. 

[9] Bolzon G, Maier G, Tin-Loi F. On multiplicity of solutions in quasi-brittle fracture computations. 
Computational Mechanics. 1997;19(6):511-6. 

[10] Zhang X, Sheng D, Sloan SW, Bleyer J. Lagrangian modelling of large deformation induced by 
progressive failure of sensitive clays with elastoviscoplasticity. International Journal for Numerical 
Methods in Engineering. 2017;112(8):963-89. 

[11] Krabbenhøft K, Lyamin A, Sloan S. Formulation and solution of some plasticity problems as 
conic programs. International Journal of Solids and Structures. 2007;44(5):1533-49. 

[12] Makrodimopoulos A. Remarks on some properties of conic yield restrictions in limit analysis. 
International Journal for Numerical Methods in Biomedical Engineering. 2010;26(11):1449-61. 

[13] Mosek A. The MOSEK optimization toolbox for MATLAB manual.  Version 71 (Revision 
28)2015. 

[14] Sturm JF. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. 
Optimization methods and software. 1999;11(1-4):625-53. 

[15] Yonekura K, Kanno Y. Second-order cone programming with warm start for elastoplastic 
analysis with von Mises yield criterion. Optimization and Engineering. 2012;13(2):181-218. 

[16] Wang D, Chen X, Lyu Y, Tang C. Geotechnical localization analysis based on Cosserat 
continuum theory and second-order cone programming optimized finite element method. Computers 
and Geotechnics. 2019;114:103118. 

[17] Bleyer J, Maillard M, De Buhan P, Coussot P. Efficient numerical computations of yield stress 
fluid flows using second-order cone programming. Computer Methods in Applied Mechanics and 
Engineering. 2015;283:599-614. 



34 

[18] Bleyer J. Advances in the simulation of viscoplastic fluid flows using interior-point methods. 
Computer Methods in Applied Mechanics and Engineering. 2018;330:368-94. 

[19] Zhang X, Sheng D, Sloan SW, Krabbenhoft K. Second-order cone programming formulation 
for consolidation analysis of saturated porous media. Computational Mechanics. 2016;58(1):29-43. 

[20] Zhang X, Sloan SW, Oñate E. Dynamic modelling of retrogressive landslides with emphasis on 
the role of clay sensitivity. International Journal for Numerical and Analytical Methods in 
Geomechanics. 2018;42(15):1806-22. 

[21] Huang J, da Silva MV, Krabbenhoft K. Three-dimensional granular contact dynamics with 
rolling resistance. Computers and Geotechnics. 2013;49:289-98. 

[22] Krabbenhoft K, Huang J, Da Silva MV, Lyamin A. Granular contact dynamics with particle 
elasticity. Granular Matter. 2012;14(5):607-19. 

[23] Krabbenhoft K, Lyamin A, Huang J, da Silva MV. Granular contact dynamics using 
mathematical programming methods. Computers and Geotechnics. 2012;43:165-76. 

[24] Meng J, Huang J, Sheng D, Sloan SW. Granular contact dynamics with elastic bond model. 
Acta Geotechnica. 2017;12(3):479-93. 

[25] Zhang X, Krabbenhoft K, Pedroso D, Lyamin A, Sheng D, Da Silva MV, et al. Particle finite 
element analysis of large deformation and granular flow problems. Computers and Geotechnics. 
2013;54:133-42. 

[26] Zhang X, Krabbenhoft K, Sheng D, Li W. Numerical simulation of a flow-like landslide using 
the particle finite element method. Computational Mechanics. 2015;55(1):167-77. 

[27] Zhang X, Krabbenhoft K, Sheng D. Particle finite element analysis of the granular column 
collapse problem. Granular Matter. 2014;16(4):609-19. 

[28] Meng J, Cao P, Huang J, Lin H, Chen Y, Cao R. Second-order cone programming formulation 
of discontinuous deformation analysis. International Journal for Numerical Methods in Engineering. 
2019;118(5):243-57. 

[29] Meng J, Cao P, Huang J, Lin H, Li K, Cao R. Three-dimensional spherical discontinuous 
deformation analysis using second-order cone programming. Computers and Geotechnics. 
2019;112:319-28. 

[30] Meng J, Huang J, Lin H, Laue J, Li K. A static discrete element method with discontinuous 
deformation analysis. International Journal for Numerical Methods in Engineering. 
2019;120(7):918-35. 

[31] Portioli F, Cascini L. Large displacement analysis of dry-jointed masonry structures subjected 
to settlements using rigid block modelling. Engineering Structures. 2017;148:485-96. 

[32] Portioli F, Cascini L. Contact dynamics of masonry block structures using mathematical 
programming. Journal of Earthquake Engineering. 2018;22(1):94-125. 

[33] Meng J, Huang J, Sloan S, Sheng D. Discrete modelling jointed rock slopes using mathematical 
programming methods. Computers and Geotechnics. 2018;96:189-202. 

[34] Meng J, Huang J, Yao C, Sheng D. A discrete numerical method for brittle rocks using 
mathematical programming. Acta Geotechnica. 2018;13:283-302. 

[35] Zhang X, Oñate E, Torres SAG, Bleyer J, Krabbenhoft K. A unified Lagrangian formulation for 
solid and fluid dynamics and its possibility for modelling submarine landslides and their 
consequences. Computer Methods in Applied Mechanics and Engineering. 2019;343:314-38. 



35 

[36] Zeng W, Liu G. Smoothed finite element methods (S-FEM): an overview and recent 
developments. Archives of Computational Methods in Engineering. 2018;25(2):397-435. 

[37] Liu G-R, Trung N. Smoothed finite element methods. 6000 Broken Sound Parkway NW, Suite 
300: CRC press, 2010. 

[38] Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Lam K. A node-based smoothed finite element 
method (NS-FEM) for upper bound solutions to solid mechanics problems. Computers & structures. 
2009;87(1-2):14-26. 

[39] Nguyen-Thoi T, Vu-Do H, Rabczuk T, Nguyen-Xuan H. A node-based smoothed finite element 
method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular 
and tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering. 2010;199(45-
48):3005-27. 

[40] Nguyen‐Xuan H, Bordas S, Nguyen‐Dang H. Smooth finite element methods: convergence, 
accuracy and properties. International Journal for Numerical Methods in Engineering. 
2008;74(2):175-208. 

[41] Reissner E. On a variational theorem in elasticity. Journal of Mathematics and Physics. 
1950;29(1-4):90-5. 

[42] Boyd S, Vandenberghe L. Convex optimization: Cambridge university press, 2004. 

[43] Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW. A new discontinuous upper bound limit 
analysis formulation. International Journal for Numerical Methods in Engineering. 2005;63(7):1069-
88. 

[44] Vanderbei RJ. Linear programming: Foundations and extensions. International Series in 
Operations Research & Management Science, 37. Kluwer Academic Publishers, Boston, MA, 2001. 

[45] Calafiore GC, Ghaoui LE. Optimization models: Cambridge University Press, 2014. 

[46] Krabbenhoft K, Lyamin A. Computational Cam clay plasticity using second-order cone 
programming. Computer Methods in Applied Mechanics and Engineering. 2012;209:239-49. 

[47] Brinkgreve R, Swolfs W, Engin E, Waterman D, Chesaru A, Bonnier P, et al. PLAXIS 2D 2010. 
User manual, Plaxis bv. 2010. 

[48] Timoshenko S, Goodier J. “Theory of Elasticity,” 3rd Edition. New York: McGraw Hill, 1970. 

[49] Terzaghi K, Peck R. Soil Mechanics in Engineering Practice. 2nd Edition. New York: John 
Wiley, 1967. 

[50] Krabbenhoft K, Karim M, Lyamin A, Sloan S. Associated computational plasticity schemes for 
nonassociated frictional materials. International Journal for Numerical Methods in Engineering. 
2012;90(9):1089-117. 

[51] Chen X, Wang D, Yu Y, Lyu Y. A modified Davis approach for geotechnical stability analysis 
involving non-associated soil plasticity. Géotechnique. 2020;0(0):1-11. 

[52] Lin H-D, Wang W-C, Li A-J. Investigation of dilatancy angle effects on slope stability using 
the 3D finite element method strength reduction technique. Computers and Geotechnics. 
2020;118:103295. 

[53] Martin C, White D. Limit analysis of the undrained bearing capacity of offshore pipelines. 
Géotechnique. 2012;62(9):847. 

 


	A smoothed finite element method using second-order cone programming
	Abstract
	1.  Introduction
	2. Principle of smoothed finite element method
	2.1 Creation of node-based smoothing domains
	2.2 Strain smoothing technique

	3. Second-order cone programming formulation of smoothed finite element method
	3.1 Hellinger-Reissner Variational Principle
	3.2 Optimality conditions
	3.3 Smoothed finite element discretisation
	3.4 Frictional and cohesive-frictional interfaces

	4. Second-order cone programming
	5. Numerical examples
	5.1 A plate with a central circular hole
	5.2 Strip footing
	5.3 Cohesive-frictional contact behaviour
	5.4 Bearing capacity of offshore pipelines

	6. Conclusion
	Acknowledgement
	Notations
	References

