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Abstract—Electroencephalography (EEG) is the recording of
brain electrophysiological activity, usually by electrodes placed on
the scalp. The EEG signals contain useful information about the
brain state, with specific states being associated with oscillations
at specific frequencies (the so-called brain waves); hence, EEG
signals are usually analyzed in terms of their frequency content.
A notable example is the amplitude estimation of alpha waves (8-
14 Hz). This paper proposes a model-based estimation approach,
based on known physical properties of alpha waves, which allows
enhanced robustness in presence of fast amplitude dynamics,
as well as an automatic identification of possible artifacts or
discontinuities in the alpha wave. The proposed method is
illustrated in this paper with application to a clinical EEG signal,
but it is particularly promising for wearable EEG applications,
such as brain-computer interface (BCI), to name one, where no
expert human supervision is available.

Index Terms—Electroencephalography, Biomedical measure-
ment, Signal processing, Time-domain analysis, Frequency-
domain analysis, Digital filters, Brain-computer interfaces

I. INTRODUCTION

Electroencephalography (EEG) is the recording of brain
electrophysiological activity, which is usually performed in
a non-invasive way by placing electrodes on the scalp [1].
The EEG signals contain useful information about the brain
state, which is routinely used in clinical applications for
the diagnosis of neurological conditions, but it is nowadays
increasingly used also in non-clinical applications, e.g. for
cognitive tests and brain-computer interfaces (BCI) [2]. The
non-clinical applications are rapidly growing, owing to the
increased availability of affordable wearable EEG systems.
While they undoubtedly open the way for a number of promis-
ing applications, they also raise important concerns about
the accuracy and reliability of brain activity measurements
obtained from such devices, particularly when they are used
without expert supervision.

EEG signals are very challenging to measure and to analyze,
primarily because of their very low amplitude (typically less
than 100 µV), which makes them prone to being significantly
affected by noise and artifacts created by other electrophys-
iological activity in the body, such as muscular, ocular and
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cardiac activity. The high contact impedance between skin
and electrodes also contributes to adding noise caused by
electromagnetic interference. Furthermore, the EEG signals
themselves can change rapidly, in both amplitude and fre-
quency content, as the brain continuously changes its state.
For these reasons, despite the vast research carried out on the
subject, the EEG signal processing remains a challenging task
and most clinical applications still rely on the visual analysis
performed by a trained clinician as the most accurate way
to interpret an EEG recording. While this may be acceptable
(though time consuming) in a clinical environment, it is not
feasible in non-clinical applications; in this case, automated
analysis tools are required to extract relevant features from
the signals.

EEG signals are traditionally analyzed in the frequency
domain, because different frequencies are associated with dif-
ferent types of brain activity, often originating from different
parts of the brain [1]. A notable example is the alpha activity,
typically defined in the range from 8 to 13-14 Hz in adults,
and associated with a state of wakeful relaxation or meditation
[3]. The measurement of alpha activity has been proved to be
useful for the investigation of cognitive states in a number
of clinical studies [4] as well as non-clinical applications [5].
However, traditional signal processing methods in the time or
frequency domains, suitable for periodic signals, can lead to
significant errors in the amplitude estimation when the signal
is characterized by fast dynamics and/or by the presence of
artifacts. Signals are often pre-processed by means of digital
band-pass filters to remove frequency components outside the
alpha range, but the bandwidth of those filters is typically large
enough to preserve fast amplitude oscillations that can pose
significant challenges to the amplitude estimation; moreover,
filters can make artifacts more difficult to detect, as they may
look similar to alpha oscillations once they have been filtered.

Several general (not model-based) approaches exist and
have been widely used to overcome the limitations of tradi-
tional Fourier analysis of oscillating signals with time-varying
amplitude and/or frequency, such as the Hilbert transform, the
Taylor-Fourier transform and the wavelet transform [6]–[9].
While some of them may offer some advantages in the analysis
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of EEG signals, they may also appear as excessively complex
in some circumstances, and the results do not always allow a
straightforward physical interpretation.

An alternative method for the estimation of the time-varying
amplitude of alpha waves in EEG signals is therefore proposed
in this paper, based on the a priori knowledge of some
physical properties of those signals, such as the sinusoidal
waveform and the almost constant frequency [10], [11]. Such
a knowledge allows a more robust amplitude estimation in
presence of fast amplitude dynamics and, more importantly, it
also allows using the measured deviations from the model to
identify artifacts and discontinuity in alpha activity. A prelim-
inary implementation of the proposed method is illustrated in
this paper, with application to a clinical EEG signal, but this
approach is particularly promising for wearable EEG, where
large artifacts are more likely to occur [12]. This method
has the potential to improve the reliability of decision-making
processes based on the extraction and interpretation of EEG
signal features, e.g. in BCI, but it can be applied also to
research studies, e.g. in cognitive and clinical neuroscience.

II. EEG DYNAMICS AND FILTER DESIGN

A. Amplitude Modulation and Frequency Bandwidth

A typical EEG signal may show significant frequency
components in a range from less than 1 Hz to more than 30 Hz.
Those components are traditionally divided into bands (delta,
theta, alpha, beta and gamma), corresponding to different types
of brain activity, often originating from different parts of the
brain [1]. A notable example is represented by the alpha waves,
typically defined in the range from 8 to 13-14 Hz in adults,
which are usually the most visible oscillations in an EEG
signal due to their relatively large amplitude.

The alpha activity can be modeled, with good approxi-
mation, as a sinusoidal oscillation in the EEG signal, at a
frequency fα in the alpha range defined above:

sα (t) = Aα (t) sin (2πfα (t) t+ ϕα (t)) (1)

where the amplitude, frequency and phase are generically
functions of time. The frequency fα may be different in
different people and it may slightly change with their age;
however, in an individual person, it is unlikely to show
significant variations on short timescales [10]. When analyzing
alpha waves in an EEG recording, the model in (1) can
therefore be simplified by considering a constant frequency
fα and taking into account any residual frequency variation
within the phase ϕα(t):

sα (t) = Aα (t) sin (2πfαt+ ϕα (t)) (2)

The amplitude Aα(t) is likely to show large and fast
variations, on timescales shorter than 1 s. Even when tracking
those fast amplitude oscillations is not of practical interest,
they should be taken into account to inform the design and
choice of signal processing methods, including filters and
amplitude estimation algorithms. For illustration purposes, and
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Fig. 1. Qualitative representation of a sinusoidal signal at frequency fα,
whose amplitude is modulated at a frequency fk (top), and its frequency
spectrum (bottom).

without loss of generality, a periodic amplitude modulation is
considered, so that Aα(t) can be expressed by a Fourier series:

Aα (t) = A0 +
∑
k

Ak sin (2πfkt+ ϕk) (3)

The amplitude oscillations at frequencies fk in (3) produce
two side-band frequency components in the spectrum of sα(t)
around the main frequency fα, at frequencies fα±fk. This is
illustrated in Fig. 1 for a single modulation frequency fk. The
bandwidth of the alpha signal sα(t) is therefore defined not
only by the nominal frequency fα, but also by the amplitude
modulation dynamics, with higher frequencies fk creating a
larger bandwidth, from fα − fk to fα + fk.

B. Digital Filter Design

The band-pass digital filter applied to EEG signals to extract
alpha waves is usually designed based on the nominal alpha
range, i.e. with a pass band from 8 Hz to 14 Hz (or similar
values) [13]. The advantage of this choice is that the filter is
suitable for all adults and it does not require to be adjusted
based on the individual’s alpha frequency. However, such a
large pass band also means that fast amplitude oscillations, up
to a few hertz, can pass through the filter. E.g., according to
(2)-(3), if fα is 11 Hz, the amplitude of the filtered signal will
contain modulation frequencies fk up to 3 Hz, not much lower
than the alpha frequency itself. Such fast amplitude dynamics
should be taken into account in the design of signal processing
algorithms because they can lead to errors in the amplitude
estimation, as it will be shown in Sec. III.

The amplitude dynamics should be taken into account also
for the design of the filter, with regard to its response time.
Digital filters are categorized into Infinite Impulse Response
(IIR) and Finite Impulse Response (FIR) types. IIR filters are
recursive, i.e. they use previous output values to calculate the
new output at each time; this makes them computationally
more efficient than FIR filters, but the practical duration of
any transient created by input variations cannot be predicted
(mathematically, it is infinite). Therefore, IIR filters are less
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Fig. 2. Frequency response (magnitude, blue, and phase, red) of the designed
band-pass FIR filter.

convenient to use in EEG applications, where large artifacts
can occur and can instigate long and unpredictable transients in
the output. FIR filters, on the other hand, have a fixed response
time, they are intrinsically stable and allow a linear phase
filtering (i.e., the time delay is constant for all frequencies and
can be compensated for), which are important properties for
EEG signal processing [9], [14]. The main drawback of FIR
filters is the high order, which requires a large computational
effort, but this is usually acceptable in EEG applications,
particularly when the processing is done offline.

The order of a FIR filter is equal to the number of input
samples that are involved in the output calculation, and it is
therefore proportional to the length of the time window that
affects each output sample. The best order of the filter should
be chosen as a trade-off between a good approximation of the
desired frequency response (the higher the order the better)
and a short time window (the lower the order the better). The
suitable length of the time window, in turn, depends on the
expected dynamics of the signal, to insure that an appropriate
time resolution is maintained in the output signal.

Although filters are widely available from commercial EEG
processing software packages, a dedicated FIR filter has been
designed for this work, according to the principles explained
above, and its frequency response is shown in Fig. 2. The
filter is designed to extract alpha waves from an EEG signal
acquired with a sampling rate of 512 samples/s; this is a
common choice of sampling frequency, often used also in
wearable EEG devices, but slightly different values would not
affect the validity of the analysis presented in this paper. The
chosen pass band is 8-14 Hz, whereas frequency components
below 3 Hz and above 18.5 Hz are attenuated more than
−20 dB. The order of the filter is 150, corresponding to a time
window of approximately 0.3 s, compatible with the expected
amplitude dynamics in the filtered signal. The phase of the
filter is linear in the pass band, so the equivalent constant
time delay is easily removed by post-processing.

As an example, the designed filter has been applied to a
clinical EEG signal recorded from a 12-years-old boy, with
a sampling rate of 512 samples/s; a channel in the occipital
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Fig. 3. Raw (green, thin line) and filtered (black, thick line) EEG signals,
showing alpha activity with a noticeable amplitude modulation on short
timescales.

area (O2) has been selected, because the alpha activity is the
highest in this area. The raw and filtered signals are reported
in Fig. 3. The fast amplitude oscillations are well visible, and
they correspond to the expected dynamics of the signal.

III. CHALLENGES IN AMPLITUDE ESTIMATION

Even after the application of the band-pass filter in Fig. 2,
the signal reported in Fig. 3 is still far from being stationary,
because of the large and fast amplitude oscillations, in addition
to the possible phase variations and the residual presence of
spurious signal components. Therefore, estimating the ampli-
tude of the alpha wave poses significant challenges in terms
of signal processing. The challenges are similar in the time
and frequency domains, and they mainly arise from the lack
of synchronism between the observation window and some
or all of the frequency components in the signal (alpha and
modulation frequencies).

The simplest method to estimate the signal amplitude,
often employed, consists in calculating the power (or the
Root Mean Square value) of the signal and estimating the
equivalent amplitude from it, assuming a sinusoidal waveform.
The total signal power can be conveniently calculated in the
time domain, by selecting a time window Tw = LTs (being
Ts the sampling time) and averaging the signal squared over
that window:

Ptot (L) =
Aeq (L)

2

2
=

1

L

L∑
k=1

s (kTs)
2 (4)

If the signal s(t) is periodic and the window Tw corresponds
to its period (or an integer multiple of it), the calculation of
Ptot does not depend on the position of the window and it
corresponds to the true power of the signal. If, on the contrary,
this condition is not satisfied, the calculation of Ptot according
to (4) will lead to some errors, which will vary with the
window position.

In the case of the considered EEG signal, with fast am-
plitude oscillations, two types of errors may arise, depending
on the length of the window. A short window, approximately
equal to the alpha period (Tw ≈ 1/fα), would provide a
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Fig. 4. Estimation of the amplitude of the signal shown in Fig. 1 from the
total power calculation (4), with three choices of the time window Tw: 0.09 s
(yellow line), 0.1 s (black line) and 1 s (blue dashed line).

suitable time resolution to follow the fast amplitude dynamics,
but it can lead to errors if the window is not synchronous
with the alpha period, and also if it is, because the amplitude
oscillations would not be synchronous with that window.
On the other hand, the choice of a much larger window
(Tw � 1/fα) would decrease the errors caused by a lack
of synchronism, but it would include the power associated
with the amplitude oscillations in the calculation of the total
power of the signal (4); therefore, in this case, the errors in
the amplitude estimation would arise from the assumption of
sinusoidal waveform, which is no longer a good approximation
on long timescales.

The errors described above are illustrated in Fig. 4, based
on an artificial signal defined according to (2)-(3), with a
sampling rate of 512 samples/s, fα = 10 Hz, a single mod-
ulation frequency fk = 1 Hz, and Ak = 0.8A0; ϕα and ϕk
are chosen equal to zero to simplify the analysis (this signal
is used here for illustrative purposes only, and it should be
noted that real signals are affected by more complex, non-
periodic amplitude variations with a large frequency band-
width). Three different values for the time window Tw are
chosen, approximately equal to 0.09 s (L = 46), 0.1 s (L = 51)
and 1 s (L = 512). The two shortest time windows can follow
the amplitude modulation, but with some errors due to the
lack of synchronism with all frequency components in the
signal (Tw = 0.09 s) or only with the amplitude modulation
(Tw = 0.1 s). On the other hand, the longest time window
(Tw = 1 s) is perfectly synchronous with all signal components,
but it provides an average amplitude that is higher than A0

because it includes the contribution from Ak in the total power
calculation; moreover, this choice of the time window is not
suitable to track the amplitude modulation, so it may not be
appropriate for some applications.

Similar issues arise if the signal power is calculated in the
frequency domain, after applying the Fourier Transform to the
signal, again on a time window Tw = LTs. The total power of
the signal can be calculated by summing the powers associated
with each frequency component (positive and negative) in the

spectrum S(jω):

Ptot (L) =
Aeq (L)

2

2
=

L/2∑
i=−L/2

|S (jωi)|2 (5)

The expressions in (4) and (5) are equivalent; therefore, the
estimation of the signal amplitude from the calculation of the
total power in the frequency domain is affected by the same
errors discussed above for the time-domain estimation.

In principle, the frequency-domain analysis may offer some
advantages because it allows separating the power associ-
ated with different frequency components. When the time
window is large enough to acquire all signal components
synchronously (e.g., Tw = 1 s in the example considered
above), a correct estimation of the average amplitude A0 can
be obtained by considering only the power at frequency fα
in the signal spectrum. In practice, however, the required time
window to acquire all signal components synchronously (or at
least with negligible errors) may not be acceptable in many
applications because of the corresponding poor time resolu-
tion. If shorter time windows are considered, the resulting
limited frequency resolution will not be enough to separate
the spectral component at fα from the side-bands at fα ± fk,
and the results will be similar to those obtained from the total
power calculation. Moreover, the spectral leakage resulting
from the poor frequency resolution may add further errors,
particularly when the time window is not synchronous with
fα. The numerical results in the considered example are not
reported because they are almost identical to those in Fig. 4,
with a mean difference of 0.006A0 for the 0.1 s window and
0.02A0 for the 0.09 s window.

More advanced signal processing methods may be able
to overcome some of the limitations above, but they are
mainly designed for different types of signals. E.g., the Hilbert
transform is usually applied to signals with time-varying
frequencies [9], the wavelet transform is more suitable for
signals with a large bandwidth [6], whereas the Taylor-Fourier
transform is used to estimate time-varying harmonic content
of periodic signals [7], [8]. For these reasons, an alternative
approach is proposed in the next section, specifically designed
for the considered application.

IV. MODEL-BASED AMPLITUDE ESTIMATION

In order to overcome some of the issues discussed in the
previous section, a model-based signal processing method is
proposed to estimate the amplitude of alpha waves, with a
short time resolution suitable for the analysis of signals with
fast dynamics. The method is based on the a priori knowledge
that the alpha activity produces a sinusoidal waveform with
an almost constant frequency and limited phase modulation.
Therefore, such a sinusoidal waveform can be identified by
means of a model-based fitting of the EEG signal, after an
initial filtering with the band-pass filter designed in Sec. II-B.

This approach offers a number of advantages: 1) It allows a
short time resolution, without being affected by the significant
errors arising from an asynchronous window, because it does



not require processing an integer number of periods of the
signal; 2) It is less sensitive to other residual frequency
components not completely filtered out by the band-bass filter,
because in each window it extracts only the signal component
at the alpha frequency; 3) Any significant deviation of the
signal from the model can reveal that the signal is not a
continuous undisturbed alpha wave and can therefore be used
for an automatic identification of artifacts or discontinuity in
alpha activity.

The method is based on the following four steps:
1) The filtered signal is divided into windows of length

Tw = LTs, and the signal in each window k is fitted
with the following model, using a least-square-errors
approach:

mk (t) = Ak sin (2πfkt+ ϕk) (6)

The fitting relies on the assumption that the noise not
included in the model is unbiased and uncorrelated with
the alpha signal.

2) As the frequency of the alpha wave is expected to be
almost constant, its value is identified as the median of
the frequencies fk estimated in the windows where the
amplitude Ak is higher than a defined threshold:

fα = median (fk|Ak > Amin) (7)

The threshold on the amplitude (here empirically set at
20 µV) is used to discard the windows with negligible
alpha activity, where the frequency estimation is less
accurate. The median is chosen instead of the mean to
decrease the effect of possible outliers.

3) The signal in each window is then fitted again with the
same model in (6), but with the known frequency fα, in
order to estimate only the amplitude Ak and phase ϕk.

4) Finally, the amplitudes and phases estimated in the step
above for each window are interpolated, in order to
estimate the functions A(t) and ϕ(t) with the same time
resolution as the original signal.

Steps 1 and 2 above may require further work to optimize the
procedure, but this is beyond the scope of this paper, which
illustrates only a preliminary implementation of the method.

The resulting A(t) for the EEG signal shown in Fig. 3
is reported in Fig. 5, for two different choices of the time
window Tw (0.09 s and 0.1 s, corresponding to L = 46 and
51, respectively), and it is compared to the filtered signal.
The estimated constant fα for this signal is 9.9 Hz, so the
0.1 s window corresponds to almost synchronous conditions,
whereas the 0.09 s window corresponds to asynchronous
conditions. The results confirm not only that the amplitude
estimation is accurate, but also that this method is robust
with respect to the choice of the time window Tw, because
the model-based fitting does not require a selection of an
integer number of periods to obtain an accurate result. The
optimal choice of Tw is a trade-off between model accuracy
and noise rejection: A too long time window may jeopardize
the validity of the constant-parameter model, due to the time-
varying nature of the signal, whereas a too short time window
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Fig. 5. Band-pass filtered EEG signal (gray thin line, same as in Fig. 3),
compared to its estimated amplitude A(t) according to the model-based
method described in Sec. IV, with two choices of the time window Tw:
0.09 s (black line) and 0.1 s (orange line).
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Fig. 6. Comparison between the alpha wave amplitude estimation according
to the proposed model-based fitting method (black lines) and from the total
signal power (4) (orange lines), with two choices of the time window Tw:
0.1 s (top plot) and 0.09 s (bottom plot).

may be too sensitive to noise. A time window close to the
alpha period (around 0.1 s) appears to be a reasonable choice,
but it does not have to be strictly synchronous with the alpha
period, as Fig. 5 confirms.

In Fig. 6, the same A(t) curves shown in Fig. 5 are reported
again, compared to the amplitudes estimated from the total
signal power according to (4), for the same choices of the
time window Tw (0.09 s and 0.1 s). This shows that the
amplitude estimation obtained with the proposed method is not
affected by the oscillations that would appear from the power
calculation, particularly large in case of an asynchronous
window.

V. ARTIFACT DETECTION

According to the method presented in Sec. IV, the am-
plitude Ak and phase ϕk estimated in each time window
are independent of the values in adjacent windows. While
large variations in the amplitude between two windows can be
expected, as the alpha activity is characterized by fast and large
amplitude oscillations, the variation in the phase is expected to
be much more limited. Therefore, the analysis of such phase
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Fig. 7. Raw (green, thin line) and filtered (black, thick line) EEG signals
(top plot), compared to the derivative of the estimated phase ϕ(t) of the
alpha wave according to the proposed method (bottom plot).

variations can be used to detect the presence of spurious signal
components, identified by large and erratic phase variations
between consecutive windows, or a discontinuity between
intervals of alpha activity.

This is illustrated in Fig. 7, where the absolute value of the
numerical derivative of ϕ(t), calculated from the estimated
values ϕk, is plotted together with the EEG signal (raw and
filtered). This signal is the same as the one used in previous
figures, but it is shown in a different time interval (8-12 s),
which represents a better example for the purposes of this
analysis. In the interval 10-11.5 s, the phase derivative is
almost zero, with small oscillations. This means that the signal
in that time interval is an authentic alpha wave. On the other
hand, in the interval 8-10 s, the phase derivative shows large
peaks, which are not compatible with the expected features of
an alpha wave. This indicates that the EEG signal is likely to
be affected by artifacts or discontinuities in the alpha activity
during that time. It is worth noting that the filtered EEG
signal looks similar in the two intervals; the raw signal, on the
contrary, reveals some differences between the two intervals,
particularly in terms of high-frequency components, which
support the conclusion that the interval 8-10 s was affected
by spurious transients.

This preliminary result confirms that the phase derivative
can be effectively used to identify the regions of the signal that
contain an authentic, continuous and undisturbed alpha wave,
where the estimated amplitude is more accurate, because it is
based on a model that correctly represents the signal.

VI. CONCLUSIONS

This paper addressed the challenges that arise from the
amplitude estimation of alpha waves in EEG signals, in
presence of fast and large amplitude oscillations that are likely
to affect those signals. Although alpha waves are characterized
by a sinusoidal waveform with an almost constant frequency,
the digital band-pass filters that are commonly used to ex-
tract alpha waves from raw EEG signals have a relatively
large bandwidth (8-14 Hz), which was shown to allow fast
amplitude oscillations to pass through the filter. To prevent
errors arising from such amplitude oscillations in traditional

signal processing, a model-based method was proposed to
estimate the time-varying amplitude of the alpha wave, based
on the a priori knowledge of some of its physical properties
(sinusoidal waveform, constant frequency and limited phase
oscillations). This method was shown to be more robust than
traditional methods with respect to the choice of the time
window used for the amplitude estimation and the presence of
fast amplitude modulation dynamics, thus decreasing errors
arising from asynchronous windows. More importantly, the
proposed method allows also the automatic identification of
artifacts or discontinuity in the alpha wave, based on the
mismatch between measured and expected signal features. The
method was illustrated with application to a clinical EEG
signal, but its properties make it very promising also for
wearable EEG applications without expert human supervision.
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