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Abstract

Language-independent tokenisation (LIT) methods that do not require labelled language resources or lexicons have
recently gained popularity because of their applicability in resource-poor languages. Moreover, they compactly represent
a language using a fixed size vocabulary and can efficiently handle unseen or rare words. On the other hand, language-
specific tokenisation (LST) methods have a long and established history, and are developed using carefully created
lexicons and training resources. Unlike subtokens produced by LIT methods, LST methods produce valid morphological
subwords. Despite the contrasting trade-offs between LIT vs. LST methods, their performance on downstream NLP
tasks remain unclear. In this paper, we empirically compare the two approaches using semantic similarity measurement
as an evaluation task across a diverse set of languages. Our experimental results covering eight languages show that LST
consistently outperforms LIT when the vocabulary size is large, but LIT can produce comparable or better results than
LST in many languages with comparatively smaller (i.e. less than 100K words) vocabulary sizes, encouraging the use
of LIT when language-specific resources are unavailable, incomplete or a smaller model is required. Moreover, we find
that smoothed inverse frequency (SIF) to be an accurate method to create word embeddings from subword embeddings
for multilingual semantic similarity prediction tasks. Further analysis of the nearest neighbours of tokens show that
semantically and syntactically related tokens are closely embedded in subword embedding spaces.
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1. Introduction
One of the first steps in many NLP pipelines is to-
kenisation – the process of splitting a given text into a
sequence of continuous lexical units for the purpose of
representing the given text. Tokenisation can be per-
formed at various granularities such as at phrase-level,
word-level, sub-word level or character-level, consider-
ing the level of textual representation required for a
particular task (Riedl and Biemann, 2018). For exam-
ple, for information retrieval, we must ensure that both
documents and user queries are tokenised in a consis-
tent manner considering the relevance of the search
results. In specialised domains such as biomedical,
proper tokenisation can significantly improve the re-
trieval accuracy by up to 80% (Jiang and Zhai, 2007).
Exceedingly finer tokenisation is likely to return many
irrelevant results with incorrect or partial matches,
whereas not tokenising larger phrases will return zero
results. In this paper, we use the term token to refer to
both words as well as subwords, which might not nec-
essarily be morphological units but character n-grams.
For example, given the string “Hello_world”, where
“_” denotes the space character, a possible sequence
of subtokens could be H/el/l/o/_/world. As can be
seen from this example, some of the subtokens such as
H, el„ l are not valid English words, whereas some such
as world are. Therefore, the effect of subtokenisation
on downstream NLP tasks that require the semantics
of the original input string to be retained remains un-
clear.
The complexity of the tokenisation problem is language
dependent. For example, punctuation rules, delim-
iter characters etc. have found to be adequate to to-

kenise non-agglutinative languages such as English or
Italian (Moreau and Vogel, 2018), whereas non-white
space delimited languages such as Japanese or Chi-
nese require more sophisticated methods that jointly
perform Part of Speech (PoS) tagging with tokenisa-
tion (Kudo et al., 2004). Moreover, hyphenated words,
acronyms that use punctuations must be treated as
single tokens in most NLP applications, which makes
tokenisation a complex problem.
Tokenisation methods can be classified into language-
specific tokenisation (LST) and language-independent
tokenisation (LIT). LST methods require lexicons for
the language under consideration and are often trained
on manually tokenised corpora. The accuracy of LST
depends on the coverage and quality of the linguis-
tic resources used to train them. In particular, when
the coverage of the training resources are poor such
as for rare words, named entities or neologisms, the
accuracy of tokenisation of out of vocabulary (OOV)
words can be low. LST methods have been trained us-
ing different sequence labelling methods such as hidden
Markov models (HMMs) (Jurish and Würzner, 2013),
conditional random fields (CRFs) (Kudo et al., 2004)
and recurrent neural networks (RNNs) (Morita et al.,
2015).
LIT has gained popularity as an alternative to
LST (Sennrich et al., 2016; Zhu et al., 2019; Kudo
and Richardson, 2018; Kudo, 2018; Schuster and Naka-
jima, 2012) because, unlike LST, LIT methods do not
require predefined vocabularies nor manually tokenised
texts, and operate on statistical information obtained
from a large text corpora. For example, text compres-
sion methods such as byte pair encoding (BPE) (Gage,
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1994; Sennrich et al., 2016) and language modelling
(LM) methods (Kudo, 2018) automatically select fre-
quent subwords as tokens, and segment a given text
such that some loss function (e.g. negative likelihood
or code length) is minimised. LIT has become the
de-facto standard in text generation applications such
as Neural Machine Translation (NMT) (Ataman and
Federico, 2018), where a small vocabulary size is pre-
ferred for speeding up the decoding process (Bahdanau
et al., 2015). Moreover, subword regularisation using
probabilities produced by the LM approach has shown
to improve the accuracy of NMT (Kudo, 2018). How-
ever, as seen from our previous example, unlike LST,
LIT often produces nonsensical subwords, which are
not valid morphological units (Zhu et al., 2019).
As discussed above, LST and LIT have complemen-
tary trade-offs. It remains unclear whether the loss
in morphological information and the noise introduced
by LIT out weights the benefits of using a small and
fixed vocabulary, enabling us to overcome OOV issues
across typologically diverse languages. To empirically
answer this question, we compare LST vs. LIT for
multilingual lexical semantic similarity prediction for
the eight languages: English (en), German (de), Span-
ish (es), Farsi (fa), Italian (it), Japanese (ja), Turkish
(tr) and Thai (th). Our contributions and findings in
this paper can be summarised as follows:

• We independently conduct LST and LIT on eight
languages and use Global Vectors (GloVe) (Pen-
nington et al., 2014) to learn word embeddings.
We then predict the semantic similarity between
two words using the learnt word embeddings, and
measure the correlation against human similarity
ratings across a suite of benchmark datasets.

• We evaluate different methods to compose word
embeddings from subword embeddings and find
that Smoothed Inverse Frequency (SIF) (Arora et
al., 2017) to outperform simple averaging, which
has shown to be a strong baseline in prior work.

• For LIT methods, for the first time, we compare
BPE and LM in terms of both tokenisation speed
and their accuracies for predicting semantic simi-
larity between words.

• Our experimental results show that for smaller
(less than 100K tokens) vocabularies, LIT consis-
tently outperforms LST. Moreover, between LIT
methods, LM outperforms BPE.

Our goal in this paper is not to propose novel methods
for LST or LIT. Instead, our objective is to compare
LST and LIT for word embedding learning, and em-
pirically evaluate the differences across a diverse set
of languages using semantic similarity prediction as an
evaluation task. Tokenisation is one of the fundamen-
tal pre-processing steps in any NLP pipeline and has a
long and established history of numerous approaches.
Although we cannot hope to conduct an extensive sur-
vey of all prior tokenisation methods due to space lim-
itations, we briefly summarise the background details

of LIT and LST methods in Section 2. to support
the readers to understand the experimental results de-
scribed in the paper. Several prior work have already
investigated the effect of subtokenisation for different
NLP tasks. We describe these related prior work in
Section 3. and highlight the important differences be-
tween the findings reported in this paper. Evaluation
protocol and experimental results comparing LST vs.
LIT methods are described in Section 4..

2. Background
2.1. Language Specific Tokenisation
LST methods use language-specific resources such as
lexicons, manually tokenised corpora and/or language-
specific rules. Earlier versions of the Stanford Core
NLP toolkit (Manning et al., 2014) internally used
JFLex1, a meta language for specifying tokenisation
rules based on regular expressions and procedures, to
execute when a rule matches. Unlike the statistical to-
kenisers, rule-based tokenisers are easier to debug and
their behaviour is deterministic. For example, a prod-
uct name might be required to tokenise in a specific
manner, which is easier to specify as a rule rather than
having to prepare numerous manually tokenised exam-
ples of contexts to train a model. For those reasons,
rule-based tokenisers have been used extensively in in-
dustrial NLP applications either as a standalone mod-
ule or in conjunction with statistical tokenisers (Remus
et al., 2016).
Statistical or machine learning-based tokenisation
methods model tokenisation as a sequence labelling
problem where we must predict whether a token
boundary must be placed at a given position in an
input text string. For example, information about the
current token and its context such as previous or fol-
lowing tokens can be used as features for training a se-
quence labeller such as a hidden Markov model (Papa-
georgiou, 1994), conditional random field (Kudo et al.,
2004) or a recurrent neural network (Chen et al., 2015).
In languages such as Japanese or Chinese where multi-
ple possible tokenisations of the input string exist, one
must find the most likely sequence of tokens (Kudo et
al., 2004). This can be modelled as a dynamic pro-
gramming problem and solved efficiently via forward-
backward inference methods. Moreover, token bound-
aries as well as morphological properties of the tokens
such as their part-of-speech (POS) tags can be simulta-
neously determined, which is known as morphological
analysis.
To train statistical tokenisers we need lexicons, which
lists all the words in a language, and manually to-
kenised texts as the training data. Words that do not
occur in the lexicon (i.e. out of vocabulary words) can
get incorrectly tokenised and is a major cause of errors
in statistical tokenisers. Moreover, manually tokenised
texts might not be available for the domain in which
we might want to use the tokeniser after training, and
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manually creating such labelled training data can be
both costly as well as time consuming.

2.2. Language Independent Tokenisation
Tokenising texts into subwords/subtokens, lexical
units smaller than words/tokens, has received much at-
tention lately with their effectiveness in deep learning-
based NLP models. For example, named entities, cog-
nates/loanwords, and morphologically complex words
that contain multiple morphemes are extremely chal-
lenging to properly tokenise because the occurrences
of such terms are rare even in large training datasets.
On the other hand, substrings of such terms are likely
to be more frequent. Tokenising texts into subtokens
has been sufficient for a broad range of NLP tasks such
as machine translation (Sennrich et al., 2016) and lan-
guage modelling (Pires et al., 2019), where tokens are
represented using lower-dimensional embedding vec-
tors and fed into deep learning architectures.
Sennrich et al. (2016) proposed a subtokenisation
method inspired by BPE, which is a data compression
technique that iteratively replaces the most frequent
pair of bytes in a sequence with a single unused byte.
Specifically, the set of symbols (i.e. symbol vocabu-
lary) is initialised with the set of characters and each
word is represented as a sequence of characters, plus a
special end-of-word symbol. This is useful if we want
to restore the original tokenisation after subtokenising.
Next, BPE iteratively counts all symbol pairs and re-
places each occurrence of the most frequent pair (‘A’,
‘B’) with a new symbol ‘AB’. Each merge operation
produces a new symbol, which represents a character
n-gram. Frequent character n-grams (or whole words)
are eventually merged into a single symbol. Because
of this bottom-up nature of BPE, it does not require a
shortlist and the final symbol vocabulary size is equal
to the size of the initial vocabulary, plus the number of
merge operations. This is ideal for producing smaller
vocabularies in natural language generation tasks such
as machine translation to reduce the GPU memory
footprints and the training time because every element
in the output vocabulary is a potential candidate for
generation. The number of merge operation is a hy-
perparameter in BPE that can be tuned to generate
arbitrarily smaller vocabulary sizes.
An alternative subtokenisation method was proposed
by Kudo (2018) based on the unigram language model
under the assumption that each subword occurs in-
dependently, and consequently, the probability of a
subword sequence can be computed as the product of
the individual subword occurrence probabilities. This
method iteratively increases the size of the vocabu-
lary (set of subtokens) such that a user-defined limit
is reached. It computes the optimal set of subto-
kens based on their occurrence probabilities, estimated
using the expectation maximisation (EM) algorithm.
The initial seed vocabulary can be set to the union of
all characters and the most frequent substrings in the
corpus. Because the vocabulary contains all individual
characters in the corpus, subtokenisation using the un-

igram language model produces a probabilistic mixture
of characters, subtokens and word segmentations.
Both BPE and unigram language model can be trained
using untokenised text corpora. Moreover, both meth-
ods can be used independently of the language, which
make them ideal candidates for tokenising resource
poor languages. Because of those reasons BPE and
unigram language model are considered as LIT meth-
ods to compare in this paper.

3. Related Work
Learning embeddings for the subtokens produced by
LIT methods has shown to be an effective method
to overcome data sparseness issues encountered when
training named entity recognisers for low-resource lan-
guages such as Uyghur and Bengali (Chaudhary et al.,
2018). By modelling a word as a bag of subtokens and
combining pre-trained subtoken embeddings to repre-
sent rare out-of-vocabulary (OOV) words, Zhao et al.
(2018) obtained SoTA results for joint prediction of
POS tagging and morphosyntactic attributes in 23 lan-
guages. These prior work show that LIT can be used
to overcome OOV and rare word related issues and is
especially effective for resource poor languages, but did
not perform a systematic comparison between LIT vs
LST methods for those tasks.
Zhu et al. (2019) compared supervised morpholog-
ical segmentation (SMS) by CHIPMUNK, Morfes-
sor (a family of generative probabilistic models for
unsupervised morphological segmentation) and BPE.
They train word and subword embeddings using skip-
gram with negative sampling (SGNS) (Mikolov et
al., 2013a). They used multilingual word similar-
ity, universal dependency parsing and fine-grained
entity typing as the evaluation tasks. They found
that subword SGNS embeddings outperform subword-
agnostic SGNS embeddings for morphologically richer
languages such as Finnish and Turkish. SMS, which is
trained according to the readily available gold standard
morphological segmentations, performs best for word
similarity but worst for entity typing. Compared to
BPE, which produces short and nonsensical subwords,
Morfessor is a conservative segmenter that captures
longer subwords. Consequently, Morfessor reports the
best performance on entity typing. More importantly
they emphasise that there is no single configuration
that outperforms the others in all three tasks, which
demonstrates the challenges involved in using subword
information in a consistent manner across languages
and tasks. Moreover, addition, elementwise multipli-
cation of subword embeddings, and self-attention are
used as the composition functions for creating word
embeddings from subword embeddings. They found
that addition to be an extremely robust composition
function across languages and tasks. Surprisingly, the
more sophisticated self-attention reports poor perfor-
mance in many tasks. In this paper, we propose the
use of smoothed inverse frequency (SIF), which was
originally proposed by Arora et al. (2017) for creat-
ing sentence embeddings from word embeddings, for



the purpose creating word embeddings from subword
embeddings.

4. Evaluation Protocol
Evaluating tokenisation methods is a challenging task
because there is no universally agreed gold standard
for tokenisation (Habert et al., 1998; Webster and Kit,
1992). Tokenisation depends both on the language as
well as the task for which it is used. Although there
are some manually tokenised texts such as the Penn
Treebank dataset (Marcus et al., 1994) for English and
Kyoto University corpus (Kawahara et al., 2002) for
Japanese that can be used to train and evaluate LST
methods, no such resources are available for LIT eval-
uation. Indeed, given that the subtokens produced by
LIT methods are arbitrary and depends on the size of
the vocabulary specified by the user and the statistics
in the corpus used to train the LIT method, what is a
valid LIT of a given text remains undefined in the first
place. Therefore, following prior work comparing LST
and LIT methods, we resort to an extrinsic evaluation
approach where we use the tokenised output produced
by a particular tokenisation method to solve an NLP
task and measure its performance.
To evaluate the ability of LST and LIT methods for
producing semantically meaningful tokens, we first to-
kenise a given text corpus using a particular tokenisa-
tion method and then use a word embedding learning
method to learn embeddings for the generated tokens.
Next, we use the learnt embeddings to compute the
similarity between two words and compare that with
the similarity ratings assigned by human annotators
for those two words. If there exists a high degree of
correlation between the predicted similarity scores and
the human ratings, then it follows that the tokens pro-
duced by the employed tokenisation method correctly
preserves the semantic information about words. Se-
mantic similarity prediction has been used as an evalu-
ation task in prior work comparing tokenisation meth-
ods (Zhu et al., 2019).
To cover a diverse set of languages with differ-
ent tokenisation complexities, we select English (en),
German (de), Spanish (es), Farsi (fa), Italian (it),
Japanese (ja), Turkish (tr) and Thai (th). For each
of those languages we downloaded the March 2019
Wikipedia dump2 and used Wikiextractor3 to extract
texts. We then used the Pragmatic Segmenter4 to split
each Wikipedia article into a set of sentences.
For LST, we used spaCy5 with its corresponding pre-
trained LST models6 for en, de, fr, es, it, fa, th and
tr. For ja, we used the CRF-based Japanese tokeniser
MeCab7 with the Japanese IPA dictionary (IPAdic)
as the backend of spaCy. Table 1 shows the numbers

2https://dumps.wikimedia.org
3https://github.com/attardi/wikiextractor
4https://github.com/diasks2/pragmatic_segmenter
5https://spacy.io/
6https://spacy.io/models
7https://github.com/taku910/mecab

Language #sentences #LST tokens
en 98,382,467 2,441,459,380
de 43,733,620 860,259,675
es 21,824,361 616,392,562
fa 4,334,205 82,277,928
it 16,888,201 489,437,122
ja 19,258,206 547,956,927
tr 4,006,783 62,444,210
th 777,397 40,105,530

Table 1: Sizes of corpora used in the experiments

of sentences extracted and the unique tokens for each
language.
For LIT, we consider BPE and unigram language
modelling (LM) both implemented in sentencepiece8.
Specifically, we randomly shuffle sentences in each cor-
pus and train LM models with vocabulary sizes of 20K,
50K, 100K and 1M tokens. For BPE, we train models
with vocabulary sizes of 20K, 50K and 100K tokens.
As discussed later in section 5., training time of BPE
is significantly longer compared to that of LM, which
prevented us from creating 1M model for BPE. The
character coverage rate and maximum sentence length
in sentencepiece are set respectively to 1.0 and 16384
to cover 99% of sentences in the corpora.

4.1. Token Embedding
For corpora tokenised by LST and LIT methods, we
use GloVe to learn separate token embedding sets for
each language. We set the co-occurrence window size
to 15 tokens and the frequency threshold (xmax) to
100 in our experiments. We trained 100 and 300 di-
mensional token embeddings and found the latter to
perform better in our experiments across languages.
Due to the space limitations, we show experimental
results only for 300 dimensional embeddings.
A word can be tokenised into multiple subwords by
both LST and LIT methods. For the purpose of com-
posing the embedding of a word from the embed-
dings of its subwords, Zhu et al. (2019) compared
vector addition, elementiwse multiplication and self-
attention-based composition (Lin et al., 2017). They
found vector addition to outperform other composi-
tion methods across languages and tasks. On the other
hand, prior work on sentence embedding have shown
that a weighted-average of word embeddings to pro-
duce simple yet surprisingly accurate sentence embed-
dings (Arora et al., 2017; Ethayarajh, 2018). Inspired
by these prior findings, we propose and compare three
methods for composing a word embedding from its
subword embeddings as follows:

unweighted: This is the simple unweighted vector ad-
dition that reported the best performance in Zhu
et al. (2019).

weighted: We use the Smoothed Inverse Frequency

8https://github.com/google/sentencepiece
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(SIF) (Arora et al., 2017), where a word em-
bedding w is computed as the sum of its con-
stituent set of subwords, S(w), weighted by their
inverse unigram probabilities, p(x), for subwords
x ∈ S(w) as given by (1).

w =
∑

x∈S(w)

a

a+ p(w)
x (1)

Here, the smoothing parameter a is set to 0.001
following Arora et al. (2017).

weighted + PC removal: After creating word embed-
dings using (1), we substract the first Principal
Component (PC) as suggested by Arora et al.
(2017) to remove information that is common to
all words, thereby emphasising the relative seman-
tic differences among words.

4.2. Datasets and Evaluation Measures
To evaluate the word embeddings created using differ-
ent tokenisation and composition methods described
above, we use the datasets created for en, de, fr, es,
it and fa in SemEval 2017 Task 2 (Camacho-Collados
et al., 2017) monolingual word similarity evaluation
task. For ja we used the dataset created by Kodaira
et al. (2016) via crowd sourcing for evaluating lexi-
cal simplification rules, which covers word-pairs cate-
gorised into different PoS categories. For th, we used
Thai SimLex-999 dataset created by Netisopakul et al.
(2019). They first translated the word-pairs in the En-
glish SimLex-999 (Hill et al., 2015) and then asked 16
annotators, who are native Thai speakers, score the
word-pairs for similarity, following the guidelines of
SimLex-999 (Hill et al., 2015). For tr, we used the An-
lamVer dataset (Ercan and Yıldız, 2018) contains re-
latedness and similarity ratings for 500 Turkish word-
pairs, annotated by 12 human annotators. Following
the official evaluation measure used in SemEval 2017
Task 2, on all datasets we report the harmonic mean of
the Spearman and the Pearson correlation coefficients,
computed between human similarity ratings and cosine
similarities between the words computed using their
subword-composed embeddings.

5. Results
Performances of different tokenisation methods and
composition methods across languages are summarised
in Table 2. Among the composition methods, we see
that weighted+PC removal (SIF) consistently outper-
forms both unweighted and weighted for all languages.
To the best of our knowledge, SIF has not been used
before for creating word embeddings from subword em-
beddings. Ethayarajh (2018) showed that by modify-
ing the random walk model proposed by Arora et al.
(2016) such that the probability of generating a word
given its discourse is proportional not with the inner-
product between embeddings, but with their angular
distance, vector length confounding effects in SIF can
be rectified to create more accurate sentence embed-
dings. Given such developments, an interesting future

research direction would be to apply sentence embed-
ding methods to learn better word embeddings given
a subtokenisation.
From Table 2, we see that the best performances are
reported by LST for all languages except for de and
fa where respectively LM and BPE are the best. In-
terestingly, for smaller vocabulary sizes (50K, 100K),
we see that LM and BPE outperform LST in each lan-
guage. Given that LIT methods have been popularly
used in NMT, where decoder vocabularies are typically
less than 100K, it is encouraging to see that this bene-
fit is transferrable to other NLP tasks such as semantic
similarity prediction.
In de and fa where morphological agglutination and
partial usage of fusional features are common (e.g. in
the case system), we see that LIT methods such as
BPE and LM outperform LST. For example, spaCy
de tokeniser does not split compounds such as selbst-
fahrendes (selbst = self, fahren = drive, des = a con-
jugative suffix), while LM with vocabulary size 100K
correctly splits it into selbst/fahren/des. For th, we
see that LST trained with vocabulary sizes of 50K and
100K perform better than other settings. On the other
hand, LM trained with a vocabulary size of 20K per-
forms comparably to the best LST settings for th. Sim-
ilar to th, for tr we see that the LIT methods trained
with vocabularies of sizes 50K and 100K perform bet-
ter than other settings. In particular, for tr LIT consis-
tently outperforms LST. This can be explained by the
fact that tr being a highly inflectional language with a
derivational morphology. This result reinforces the ob-
servation that subword tokenisation via LIT methods
is particularly effective for strong inflective languages
such as ja and tr, when creating word embeddings.
Given the language independent nature of LIT meth-
ods, an interesting question is whether it would be
beneficial to train a single LIT tokeniser for a group
of languages. To address this question,iIn a prelimi-
nary study, we mixed all corpora in Table 1 to create
a single multilingual corpus and trained LM and BPE
on it. However, the tokeniser models obtained by this
approach were poor, which suggests that LIT methods
must be trained on monolingual corpora. This could
be due to the disproportions of the sizes of the cor-
pora available for different languages, which bias the
subtoken statistics for some languages than the others.
Careful data sampling would be needed to create bal-
anced text corpora for learning universal LIT models.
Investigating methods for learning universal LIT mod-
els is beyond the scope of the current paper and would
be an interesting future research direction.

5.1. Effect of Part-of-Speech
To further study the effective of tokenisation for dif-
ferent POS categories, we use the Japanese word sim-
ilarity dataset created by Kodaira et al. (2016). This
dataset classifies word-pairs according to POS cate-
gory of the two words being compared. In particular,
both words in a word-pair belong to the same POS
category, which makes it an ideal candidate for study-



Composition model N de en es fa it ja th tr

un
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ht

ed
LST 50K 34.95 52.89 55.15 50.01 49.62 9.66 55.75 26.81

100K 48.35 58.90 61.41 50.15 61.01 13.04 55.57 27.06
1M 50.07 63.29 64.78 50.42 62.42 14.37 52.88 20.27

10M 54.10 63.80 66.20 50.57 64.88 14.85 54.90 20.52
LM 20K 52.17 55.61 53.78 58.59 52.89 21.11 35.52 35.34

50K 60.66 65.05 60.72 59.48 60.91 22.77 31.36 32.51
100K 63.38 66.55 65.46 59.19 62.29 18.00 32.37 36.47
1M 59.46 63.06 64.85 58.62 62.71 5.33 35.59 33.51

BPE 20K 49.41 51.47 52.86 55.09 55.73 18.82 49.56 35.34
50K 58.33 63.63 59.54 59.33 60.56 13.76 53.98 37.00
100K 61.33 63.98 62.79 58.60 63.26 14.20 52.86 31.96

we
ig

ht
ed

LST 50K 34.80 53.34 55.90 50.18 49.70 13.20 57.01 26.81
100K 48.08 59.17 62.80 50.58 61.74 13.84 56.84 27.06
1M 50.08 63.04 67.37 50.41 63.55 21.46 54.07 20.27
10M 54.01 63.40 68.55 50.57 65.74 22.04 56.06 20.52

LM 20K 51.80 56.99 54.08 58.05 53.35 23.72 61.43 32.73
50K 60.4 65.34 61.58 58.49 60.95 27.00 61.03 33.19
100K 63.93 66.48 66.57 58.25 62.75 26.80 58.18 34.27
1M 59.85 62.62 66.50 57.83 64.23 20.77 36.15 32.28

BPE 20K 51.84 51.07 53.56 54.52 55.69 22.95 51.49 32.73
50K 58.8 63.69 60.30 58.65 61.10 22.25 55.78 35.99
100K 61.67 64.24 63.91 58.34 63.22 21.90 53.80 29.57

we
ig

ht
ed

+
PC

re
m

ov
al

LST 50K 38.90 55.00 59.73 54.52 53.52 19.16 63.58 27.09
100K 51.82 61.84 67.43 59.23 65.34 23.29 64.69 28.73
1M 63.12 71.39 75.41 60.92 70.53 30.98 63.81 29.31
10M 65.61 71.49 74.81 60.01 70.85 30.87 64.85 28.95

LM 20K 53.79 57.29 57.83 59.84 54.30 25.68 62.49 37.18
50K 62.45 66.69 65.45 62.72 63.05 28.97 61.92 38.74
100K 64.56 67.58 71.38 64.20 65.63 29.39 59.33 36.68
1M 68.14 68.23 74.35 64.26 70.16 22.29 38.47 32.68

BPE 20K 53.03 52.56 56.36 56.86 55.66 23.89 52.04 37.18
50K 60.17 64.28 64.24 63.19 62.76 21.93 55.92 41.22
100K 62.60 65.17 68.75 65.40 65.76 21.80 53.66 28.51

Table 2: Harmonic mean of the Spearman and Pearson correlation coefficients computed between the predicted
cosine similarity scores using word embeddings and human similarity ratings for different languages. Best result
for each language is bolded.

ing the effect of tokenisation on different POS cate-
gories. As observed in Table 2, among the different
composition methods, SIF method reported the best
results across languages. Therefore, we use SIF for
creating word embeddings from subword embeddings
in this experiment. Specifically, we use the GloVe em-
beddings for Japanese subtokens/tokens obtained by
a particular tokenisation method and use SIF to cre-
ate the word embeddings for each word in word-pairs
in the Japanese semantic similarity dataset. The sim-
ilarity between two words is computed by the cosine
of the angle between the corresponding word embed-
dings. Next, we measure the Spearman and Pearson
correlation between the predicted similarity scores and
the human ratings for each POS category and report
the harmonic mean between the Spearman and Pear-
son correlation coefficients as done in the previous ex-
periment. Arithmetic mean (average) over the four
POS categories – adjectives, adverbs, nouns and verbs,

are reported in Table 3.
From Table 3, we see that the performance of LST with
smaller vocabularies such as 50K or 100K tokens for
adjectives is poor. Compared to other POS categories,
adjectives are highly inflected in Japanese and depend
on the tense of the sentence. Therefore, a smaller vo-
cabulary might not be sufficient to cover all the vari-
ants of adjectives. On the other hand, LIT methods
such as LM significantly outperforms LST even with
a smaller vocabulary size of 20K subtokens. This re-
sult reinforces the observation we made in Table 2 that
LIT methods are attractive for obtaining good perfor-
mance with smaller vocabulary sizes. Increasing the
size of the vocabulary results in a steady improvement
in performance for LST. However, the same cannot be
said about LIT. For example, the performance of LM
increases when the size of the vocabulary is increased
from 20K to 50K but drops when it is increased be-
yond 50K. This issue is particularly sever for nouns.



Method N adjective adverb noun verb average

LST 50K 7.50 22.80 20.04 26.29 19.16
100K 6.99 28.19 25.35 32.61 23.28
1M 24.85 35.67 27.06 36.34 30.98
10M 24.63 35.66 26.70 36.45 30.86

LM 20K 30.66 21.79 19.85 30.42 25.68
50K 32.32 23.97 24.54 35.05 28.97
100K 33.33 26.64 23.87 33.70 29.38
1M 24.20 22.64 12.30 29.99 22.28

BPE 20K 24.13 22.98 18.40 30.01 23.88
50K 22.87 19.54 16.66 28.64 21.93
100K 22.95 19.70 16.12 28.42 21.80

Table 3: Harmonic mean of the Spearman and Pear-
son correlation coefficients computed between the pre-
dicted cosine similarity scores using word embeddings
computed using the SIF method and human similar-
ity ratings for Japanese word-pairs. Results are shown
separately where both words in a word-pair belongs to
a particular POS category. The final column shows
the arithmetic mean over the four POS categories ad-
jectives, adverbs, nouns and verbs.

Similar trends can be observed with BPE as well.
Larger vocabularies contain many smaller subtokens
and the probability of a given text getting over-
tokenised into many smaller tokens increases with the
size of the vocabulary for LIT. Creating the embedding
for a word using embeddings for its subtokens becomes
difficult when the word is split into many subtokens,
some of which might be too small to retain the se-
mantics of the original word. Recall that SIF method
creates word embeddings as the weighted-average of
the subtoken embeddings, ignoring the position of the
subtoken in the word. Incorporating character-level
embeddings via LSTMs has shown to improve perfor-
mance for named entity recognition tasks (Zhai et al.,
2018). Therefore, applying more sophisticated super-
vised composition methods such as a recurrent neural
network might help to create word embeddings from
subtoken embeddings under such situations. We defer
this line of investigation for future work. We conclude
here that the size of the vocabulary is a hyperparame-
ter of LIT methods that must be carefully set consid-
ering the performance of the target task.

5.2. Nearest Neighbour Analysis
Given that some subtokens correspond to character
n-grams representing morphology such as inflections,
it remains an interesting qualitative analysis to study
whether such information is encoded in the learnt sub-
word embeddings. We select prefixes or suffixes that
have known inflectional roles and compute the cosine
similarity between each prefix/suffix and all other to-
kens in the vocabulary using the unweighted embed-
ding method to find the nearest neighbours in the em-
bedding space. Specifically, we conduct this nearest
neighbour analysis for the three languages: English,
Japanese and Turkish. English is selected as a lan-

ing ed
ed (0.610188) ing (0.610188)
_utiliz (0.416099) _aggravat (0.3683)
_consolidat (0.4143) _dispos (0.3682)
_thereby (0.4138) _encas (0.3670)
_manipulat (0.4125) _accentuat (0.3666)
_incorporat (0.4029) _clipp (0.3634)
_facilitat (0.3980) _precipitat (0.3600)
_expell (0.3937) _produc (0.3580)
_involves (0.3916) _exacerbat (0.3576)
_dedicat (0.3895) _rechristen (0.3543)
_without (0.3841) _supplant (0.3498)

Table 4: Nearest neighbours and their cosine similarity
scores (indicated within brackets) for the two English
suffixes ing and ed.

guage that uses the space character to denote word
boundaries, Turkish and Japanese are selected as ag-
glutinative languages, whereas word boundaries are
not marked by the space character in Japanese. We
use the LIT models obtained using LM with vocabu-
lary sizes 100K, 50K and 50K respectively for English,
Japanese and Turkish for finding the nearest neigh-
bours using subword embeddings.
Table 4 shows the nearest neighbours for the suffixes ed
and ing, which often inflects verb tense in English. We
use an underscore to denote a token boundary corre-
sponding to the space character. From Table 4, we see
that verbs that are frequently inflected using those suf-
fixes are ranked at the top as the nearest neighbours,
indicating that the relationship between inflective suf-
fixes and verbs is preserved during LIT.
Table 6 shows the nearest neighbours for the Japanese
verb ending form masu. We see that various inflections
of masu are listed as the top nearest neighbours such
as its past tense (mashita), negation (masen) and the
volitional form (mashou). We also see that other fre-
quent sentence ending forms such as desu and kudasai
are also listed as nearest neighbours. Similar trends
have been reported with distributional word-level em-
beddings, where both semantically similar as well as
related/associated words are often found as the nearest
neighbours for a given word when the cosine similarity
between word embeddings is used as the neighbour-
hood criterion (Hill et al., 2015; Weeds et al., 2014).
Table 7 shows the nearest neighbours for the Turkish
suffixes iyor and miyor, which respectively denote the
present tense and its negation. Likewise in English
and Japanese results, we see related words are listed
as the nearest neighbours for those suffixes. However,
the nearest neighbours retrieved in the case of Turk-
ish are more noisier compared to that for English and
Japanese. We believe this is due to the comparatively
smaller corpora used for Turkish.
Word embedding spaces learnt by word2vec and GloVe
have shown to demonstrate a surprisingly high degree
of relational structure, which can be exploited to solve
analogies (Allen and Hospedales, 2019; Mikolov et al.,



Analogy Top candidates

_improving - ing + ed _improved (0.5817), _improve (0.5791), _prioritize (0.4582), _improvement (0.4526)
_posterior - _prior + _pre _anterior (0.6705), _dorsal (0.5405), _medial (0.5341), _ventral (0.5266)
_export - _ex + _im _exports (0.4191), _markets (0.3998), _exporting (0.3906), _importation (0.3850)

��� - �� + �� ��� (0.6492), ��� (0.6344), �� (0.5570), ��� (0.5551)
��� - �� + �� ��� (0.6054), ��� (0.5686), ���� (0.5634), ��� (0.5627)
�� - � + � �� (0.5424), ��� (0.5046), �� (0.4738), ��� (0.4677)

meyecek - ecek + iyor _miyor (0.5093), _miyordu (0.4835), _iyordu (0.4828), _mekteydi (0.4459)
_bunu - nu + na _buna (0.5207), _rağmen (0.4771), _fakat (0.4610), _ama (0.4530)
_gitmek - mek + ti _gönderilmiş (0.4135), _gitti (0.4078), ten (0.3550), _yola (0.3424)

Table 5: Top candidates for the analogies ranked according to their cosine similarity (shown within brackets)
with the target vector for English, Japanese and Turkish.

�� (masu) similarity info

��� (mashita) 0.8273 conjugation of masu
��� (masen) 0.6522 conjugation of masu
���� (mashou) 0.6400 conjugation of masu
���� (kudasai) 0.5846 imperative verb for please
�� (desu) 0.5819 sentence ending
��� (nasai) 0.5514 imperative verb for do

Table 6: Nearest neighbours and their cosine similarity
scores for the Japanese verb masu.

iyor miyor
iyordu (0.7491) miyordu (0.6765)
miyor (0.5655) iyor (0.5655)
ecektir (0.5349) miyorsa (0.5370)
eceğini (0.5097) _destekle (0.5130)
eceği (0.5036) _gel (0.5033)
_geçir (0.5005) ebiliyordu (0.5012)
iyorum (0.4971) ememektedir (0.4971)
mektedir (0.4911) ebiliyor (0.4961)

Table 7: Nearest neighbours and their cosine similarity
scores (indicated within brackets) for, iyor and miyor
the Turkish suffixes indicating respectively the present
tense and its negation.

2013b). To test whether these relational properties
exist in subtoken embedding spaces, we use the un-
weighted word embeddings and solve exemplar analo-
gies as shown in Table 5. Specifically, for an analogy
“a is to b as c is to d”, given a, b and c we find candi-
dates d that satisfy the analogy according to the cosine
similarity between the vector b−a+c and each of the
subtoken embedding d in the vocabulary. We then
rank the candidates d in the descending order of the
cosine similarity scores. The first set of three rows in
Table 5 show analogies for English, whereas the second
and third sets of three rows respectively show analogies
for Japanese and Turkish.
For English we see that suffixes (as in the case for im-
prove) as well as prefixes (as in the case for export)
demonstrate a certain level of relational structure in
the embedding space. However, analogies are not al-

ways correctly preserved in the subtoken embedding
spaces as seen from the example for posterior. Al-
though anterior (front of the body) and dorsal (up-
per side or back of an animal or plant) are closely
related to the semantics implied by the resulting vec-
tor, they are not perfect candidates. On the other
hand, the Japanese subtoken embeddings show inter-
esting analogical structures. For example, subtracting
the embedding for the kanji character � (mae, mean-
ing before) from �� (chokuzen, meaning immediately
before) and adding � (ato, meaning after), we can dis-
cover �� (chokugo, meaning immediately after). We
see that the Turkish suffixes ecek (indicating the fu-
ture tense) and meyecek (indicating the negated fu-
ture tense) form the analogy meyecek - ecek + iyor
with miyor. Overall, we see that the analogical rela-
tionships reported for word embeddings in prior work
can also be seen with subword embeddings.

5.3. Training time

LIT methods such as BPE and LM must be first
trained on an untokenised corpus to compute the vo-
cabularies and the frequencies of the subtokens. Larger
corpora that cover various word forms are desirable for
this purpose because it enables us to obtain reliable
subtoken frequencies for a larger vocabulary. However,
the training time depends on the size of the vocabulary
and is an important aspect to consider in practice.
In Figure 1, to study the scalability of LIT methods, we
compare BPE and LM in a single threaded setting on
the same hardware (m5.24xlarge AWS instances) un-
der different numbers of input sentences. To the best
of our knowledge, prior work comparing LIT methods
have not studied the effect on training time for LM or
BPE. From Figure 1, we see that LM is significantly
faster than BPE, and its training time decreases with
the vocabulary size, while the opposite is true for BPE.
This is because BPE iteratively increases the vocabu-
lary until the desired size is reached, whereas LM it-
eratively decreases the same. Moreover, further speed
ups for LM can be easily obtained via multi-threading
because the E-step of the likelihood computation in
LM is embarrassingly parallelisable.
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Figure 1: Comparison of the training time for BPE
and LM for different numbers of input sentences.

6. Conclusion
We compared LST against two LIT methods (BPE and
LM) for multiple languages using similarity prediction
as an evaluation task. After tokenising a text corpus,
we used GloVe to learn embeddings for the subtokens.
Next, we created word embeddings by composing the
subtoken embeddings. We used semantic similarity
prediction as a evaluation task where we predict the
similarity between two words by the cosine of the an-
gle between the corresponding word embeddings. We
found that when the vocabulary size is large, LST
methods consistently outperform LIT methods. How-
ever, for smaller vocabularies (less than 100K), LIT
methods outperformed LST methods, suggesting that
LIT is suitable for resource poor languages or when
smaller models are required. Moreover, SIF method,
which weights subword embeddings by unigram prob-
ability and subtract the first principal component vec-
tor was found to be an effective composition method
for creating word embeddings from subword embed-
dings. We analysed the nearest neighbours for subto-
kens and found that semantically and syntactically re-
lated subtokens are retrieved as the top nearest neigh-
bours using subword embeddings. Moreover, analog-
ical structures, which have been previously reported
for word embedding spaces, can also be found even in
subword embedding spaces.
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